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CHAPTER 1	

INTRODUCTION AND SPECIFIC AIMS OF DISSERTATION 

Breast cancer is the most commonly diagnosed cancer and is the second leading cause of 

cancer-related deaths in females in the United States.  Two subtypes for which there are at 

present no effective targeted therapies are triple negative breast cancer (TNBC) and 

inflammatory breast cancer (IBC).  Conventional therapies (surgery, radiation, chemotherapy) 

alone or in combination are not effective against TNBC or IBC. 

PDT is a treatment that requires administration of a light activable photosensitizer that 

localizes to specific sub-cellular organelles.  Once the photosensitizer is excited by light at an 

appropriate wavelength, reactive oxygen species are formed that cause cell death.  Recent 

literature has shown that treating with two PSs (i.e., combination PDT) significantly increases 

apoptotic cell death.  Photodynamic therapy (PDT) is an FDA approved therapy and is currently 

in clinical use for treatment of endobronchial, esophageal and bladder cancers.  An essential 

component for successful PDT is accessibility of the tumors to the light needed for PS excitation.  

PDT is not in clinical use for treatment of breast cancers.  We propose that PDT may have the 

potential to eradicate chest wall metastases of TNBCs and dermal metastases of IBC, i.e., sites 

that would be accessible to this therapy. 

Pre-clinical PDT studies have mainly used cell lines cultured in monolayers growing on 

plastic.  Cells cultured in monolayers do not recapitulate the in vivo architecture that is critical 

for accurately modeling tumor growth and treatment.  In contrast, cells grown in 3D in vitro 

models do recapitulate in vivo cell-cell and cell-matrix interactions.  Moreover, 3D models are 

predictive of resistance to chemo- and radiation therapies unlike monolayer cultures.  We 

propose, through the following two Specific Aims, to use 3D models of TNBC and IBC to 

determine the efficacy of PDT including combination PDT in photokilling.   
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Specific Aim 1: Determine if PDT is more effective in the photokilling of MAME structures of 

TNBC and IBC when lysosomes and mitochondria are sequentially targeted as compared to 

targeting only mitochondria. 

Hypothesis: Combination PDT will be more efficacious in photokilling as two critical 

organelles, lysosomes and mitochondria, will be damaged. 

Specific Aim 2: Identify mechanism(s) involved in photokilling by sequential targeting of 

lysosomes and mitochondria. 

Hypothesis: Sequential targeting of lysosomes and mitochondria causes cell death via apoptosis. 

In this dissertation research, we used 3D Mammary Architecture and Microenvironment 

Engineering (MAME) models of TNBC and IBC to determine the efficacy of PDT.  In Chapter 

3, we describe studies to determine the efficacy of PDT that targets mitochondria (using BPD as 

photosensitizer) in the photokilling MAME structures of TNBC and IBC cells.  We further 

demonstrate that combination PDT targeting both mitochondria and lysosomes is more 

efficacious in photokilling MAME structures of IBC cells.  In Chapter 4 we describe studies 

demonstrating that apoptosis is the mechanism of cell death induced by combination PDT in 

which lysosomal photodamage (using NPe6 as photosensitizer) was followed by mitochondrial 

photodamage (using BPD).  This dissertation research provide evidence that PDT, in particular 

combination PDT, is an efficacious therapeutic modality against two lethal subtypes of breast 

cancer (TNBC and IBC) as assessed in cell lines grown in 3D MAME cultures. 
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CHAPTER 2 

BACKGROUND FOR DISSERTATION  

2.1 Breast Cancer  

The mammary gland is composed of a highly branched ductal network.  The ductal 

network is composed of two cell types: a monolayer of myoepithelial cells underneath the 

ductal epithelial cells (Lakhani and O'Hare 2001, Adriance, Inman et al. 2005).  The 

myoepithelial cells provide the contractile forces during lactation and also induce ductal cell 

polarity during development (Gudjonsson, Ronnov-Jessen et al. 2002).  The breast stroma 

makes up about 80% of the mammary gland (Drife 1986) and is comprised of cells like 

adipocytes, fibroblasts, smooth muscle, macrophages and endothelial cells (Weigelt and Bissell 

2008) and non-cellular matrix components.  The breast epithelial cells and stromal components 

are interdependent in terms of normal regulation of signaling. 

Signaling occurs through receptors such as integrins that bind cells to the extracellular 

matrix (ECM) (Hynes 1992, Lochter and Bissell 1995).  ECM is secreted from stromal and 

epithelial cells and plays an important role in cell adhesion, signaling, and survival (Ghajar and 

Bissell 2008).  The ECM is continuously remodeled during physiological processes such as 

development (Badylak 2005), morphogenesis (Ghajar and Bissell 2008), angiogenesis (Cheresh 

and Stupack 2008), cell migration, and wound healing (Schultz and Wysocki 2009).  Basement 

membrane (BM) is a specialized form of ECM and is composed of laminin and type IV collagen 

(Kalluri 2003).  BM is present as a continuous layer at the epithelial stromal interface (Kalluri 

2003, Weigelt and Bissell 2008).  The BM functions as a mechanical barrier that anchors and 

maintains the organization of an acinus.  

Breast cancer is the most commonly diagnosed cancer and is the second leading cause of 

cancer-related deaths in females in the United States (American Cancer Society).  During 



4 

	

malignant progression changes occur both in the breast epithelium and its microenvironment.  

The transformed epithelial cells proliferate and begin to fill the hollow lumen (Ronnov-Jessen, 

Petersen et al. 1996, Sternlicht, Kedeshian et al. 1997, Debnath and Brugge 2005).  As cancer 

progresses the epithelial cells breach the basement membrane leading to invasion and 

metastasis.  Malignant progression from benign hyperplasia to very aggressive lethal tumors 

takes a long time leaving a large window of opportunity to offer therapeutic interventions if 

detected early in time (American Cancer Society).  Breast cancer is not a single disease but has 

many subtypes based on expression of estrogen receptor (ER), progesterone receptor (PR) and 

human epidermal growth factor receptor 2 (HER2) receptors in primary tumors.  These subtypes 

are referred to as luminal A (when ER and/or PR is present but HER2 is not amplified), luminal 

B (when ER and/or PR is present along with HER2 amplification), HER2-like (when ER and 

PR are absent but HER2 is amplified) and basal-like or triple negative (when all three receptors 

are absent) (American Cancer Society). 

2.1.1 Inflammatory breast cancer (IBC) 

IBC is a rare and very aggressive type of locally advanced breast cancer.  Based on 

expression of ER, PR and HER2, IBC tumors are also classified as luminal A, luminal B, HER2-

like and basal-like or triple negative.  IBC is characterized by erythema, edema and/or peau 

d'orange with or without a palpable mass in the breast causing inflammation of the breast, hence 

the name inflammatory breast cancer (Figure 2.1).  The cancer cells do not generally form a 

lump, but instead form emboli that metastasize to the dermal lymphatic vasculature.  Due to the 

absence of a palpable mass, diagnosis of this subtype of breast cancer is difficult and it is not 

generally detected by mammography.  Additionally, due to the presence of edema and erythema, 

IBC is often confused with an inflammatory condition like mastitis.  IBC is characterized by 

rapid proliferation of cancer cells, chemo-resistance and poor prognosis.  By the time a correct 
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diagnosis is made, IBC has advanced to stages III or IV (Wingo, Jamison et al. 2004).  To date, 

no targeted therapy has been approved for IBC; a combination of conventional chemotherapy 

and radiation remain the standard therapies.  

 

 
IBC is the most lethal type of breast cancer with a three-year survival rate of 42% as 

compared to 85% for non-IBC (Chang, Parker et al. 1998).  In the same study, the authors 

Figure 2.1:  Clinical characteristics of IBC and variations in symptoms. IBC patient with
redness in both breasts (bilateral erythema) with minimal breast inflammation (edema) (A) in
contrast to another IBC patient with increased breast size due to edema and peau d’orange
(appearance of skin like peel of an orange) with minimal erythema (B) (Robertson, Bondy et
al. 2010). 	



6 

	

observed that after 10 years of follow-up, most of the IBC patients had died, whereas more than 

half of the patients with other types of breast carcinoma were still alive.  In another study, a 

comparison among IBC patients of stages IIIB, IIIC and IV revealed that the two-year survival 

among these women was 81%, 67% and 42%, respectively (Dawood, Ueno et al. 2012).  

The incidence of IBC is relatively low but varies depending on geographic region.  For 

example, IBC accounts for approximately 2.5% of all breast cancer cases in the USA (Hance, 

Anderson et al. 2005), whereas in parts of northern Africa (Egypt, Morocco and Tunisia) rates 

may be as high as 6-10% (Soliman, Kleer et al. 2011).  The clinical characteristics of patients are 

also variable by geographic location.  A study on patients from Egypt, Tunisia and Morocco 

showed that Egyptian IBC patients had the highest combined erythema, edema, peau d’orange, 

and metastasis among the 3 IBC groups (Soliman, Kleer et al. 2011).  This study also showed 

that Egyptian IBC tumors had the highest RhoC expression among the three populations under 

study and might be a potential therapeutic target.  In another study by the same group, a 

comparison between Egyptian and US IBC patient population was made showing that erythema, 

edema, and peau d'orange were found in 77% of the Egyptian patients as compared with 29% of 

the U.S. patients and that the expression of RhoC was significantly higher in Egyptian patient 

tumors (Lo, Kleer et al. 2008).  In the U.S. IBC incidence rates are significantly higher in 

African-American women than in Caucasian women (Chang, Parker et al. 1998, Hance, 

Anderson et al. 2005).  Thus IBC appears to result from interplay of epidemiologic, genetic and 

environmental factors, which lead to distinct clinical and molecular characteristics among 

different populations.  

Molecular markers besides RhoC GTPase have also been studied in patient populations.  

IBC tumors have a higher occurrence of p53 gene mutations as compared to non-IBC tumors 

(Riou, Le et al. 1993, Gonzalez-Angulo, Sneige et al. 2004) and increased expression of 



7 

	

angiogenic and lymphangiogenic factors including IL-6, IL-8, VEGF, and VEGF receptor 3 

(Van der Auwera, Van Laere et al. 2004).  Previous studies from our lab have shown that the 

cysteine protease cathepsin B, the serine protease urokinase-type plasminogen activator (uPA) 

and the urokinase-type plasminogen activator receptor (uPAR) are associated with caveolar 

fractions (caveolae are lipid-rich invaginations of the plasma membrane and are involved in 

important cellular processes such as endocytosis, cholesterol transport and cell signaling events) 

in IBC cells (Victor and Sloane 2007, Victor, Anbalagan et al. 2011).  These reports also showed 

that caveolin-1 and cathepsin B are co-expressed in IBC patient samples and this co-expression 

contributes to the aggressive behavior of IBC.  Additional studies have shown that high levels of 

cathepsin B correlate with an increase in numbers of metastatic lymph nodes in IBC patients 

(Nouh, Mohamed et al. 2011).  

2.1.2 Triple Negative Breast Cancer (TNBC) 

At the molecular level, breast cancer is characterized based on expression of hormone 

receptors.  The most lethal breast cancers are those that are characterized by the absence of 

estrogen receptor (ER) and progesterone receptor (PR) and the amplification of human epidermal 

growth factor receptor type 2 (HER2) and are referred to as triple negative breast cancer (TNBC) 

(Bosch, Eroles et al. 2010, de Ruijter, Veeck et al. 2011, Lehmann, Bauer et al. 2011, Chiorean, 

Braicu et al. 2013).  Of all breast cancers, TNBCs account for about 10-20% cases (Morris, 

Naidu et al. 2007, Bosch, Eroles et al. 2010, Lehmann, Bauer et al. 2011, Dreyer, Vandorpe et al. 

2013). TNBC (like IBC) is more likely to affect younger women and occurs before ages of 40 or 

50 whereas age of onset for other breast cancers is 60 or older (Dent, Trudeau et al. 2007, 

Bowen, Duffy et al. 2008, Lund, Trivers et al. 2009).  TNBC is more common in African-

American women and women of Hispanic origin than in Asian and non-Hispanic women (Stead, 

Lash et al. 2009, Lara-Medina, Perez-Sanchez et al. 2011).  The rate of recurrence for TNBCs is 



8 

	

~7% -11% that is higher compared to other breast cancer subtypes (2%-6%) (Steward, Conant et 

al. 2014).  TNBCs also have shorter times to recur that range from 19 to 40 months compared to 

35 to 67 months for non-TNBCs (Steward, Conant et al. 2014).  In addition, about 20-40% of 

IBC cases are also triple negative; in contrast to 15-20% of non-IBC cases being triple negative 

(Lehmann, Bauer et al. 2011, Dawood, Ueno et al. 2012).  Common treatments such as 

endocrine therapy and targeting of HER-2 receptor become ineffective for TNBC (both IBC and 

non-IBC) patients.  Due to lack of targeted therapy, the prognosis for triple negative IBC is 

worse than IBCs that express ER, PR, and/or HER2 (Zell, Tsang et al. 2009, Dawood, Ueno et 

al. 2011, Li, Gonzalez-Angulo et al. 2011, Masuda, Baggerly et al. 2013). 

Due to the absence of receptors, TNBC is non-responsive to the therapies available for 

breast cancer treatment including hormonal therapy such as tamoxifen and aromatase inhibitors) 

or therapies that target HER2 receptors such as Herceptin (or trastuzumab) (Bosch, Eroles et al. 

2010).  According to recent literature, correlation between TNBC and several genetic 

abnormalities have been seen such as mutation of p53, BRCA1, epidermal growth factor receptor 

(EGFR) expression, and androgen receptor expression (Zhang, Fang et al. 2015).  These genetic 

aberrations have generated an interest for developing targeted therapies for treatment of TNBC.  

For example, chemotherapy with EGFR antagonists has shown an enhanced tumor response 

compared to traditional chemotherapy (Corkery, Crown et al. 2009, Nogi, Kobayashi et al. 

2009).  TNBCs with BRCA1 mutations showed good response to poly-adenosine diphosphate 

ribose polymerase (PARP) inhibitors in a Phase II clinical trial (Tutt, Robson et al. 2010) and 

PARP III inhibitors are now in a Phase III trial (NCT02032277).  In another clinical trial using 

Bevacizumab, a monoclonal antibody directed against vascular endothelial growth factor A 

(VEGF A) (intratumoral expression of VEGF is higher in TNBCs as compared to non-TNBCs), 

an overall improvement in survival of TNBC patients was not seen (Linderholm, Hellborg et al. 
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2009).  A major reason for failure of these recent therapies is that TNBCs are heterogeneous.  

Currently, there are no effective targeted therapies for TNBC and there is an unmet need for one 

(de Ruijter, Veeck et al. 2011, Chiorean, Braicu et al. 2013). 

2.2 Photodynamic Therapy (PDT)  

Photodynamic Therapy (PDT) is a process that can eradicate malignant cells and their 

vasculature.  PDT is a treatment that has three components: 1) a photosensitizer that localizes 

primarily in sub-cellular organelles of neoplastic cells, 2) dissolved oxygen in cells and tissues, 

and 3) light to activate the photosensitizer (Figure 2.2).  The resulting photochemistry leads to 

formation of reactive oxygen species that are cytotoxic and can evoke cellular death pathways 

(Celli, Spring et al. 2010, Kessel and Oleinick 2010).  An essential component to successful PDT 

is accessibility of the tumors to the light needed for photosensitizer excitation. PDT has been 

shown to be effective in treating cancers that can be easily accessed by light, including head and 

neck, esophageal, oral, laryngeal, lung and breast cancer chest wall metastases (Allison, Mang et 

al. 2001, Biel 2007, Morrison, Hill et al. 2014). 

2.2.1 Brief history of PDT 

PDT has been known for centuries (Figure 2.3).  Exposure to sunlight (phototherapy) to 

Figure 2.2: Mechanism of
Photodynamic Therapy.
Photosensitizer (ground state)
(PS) is administered to the cells
and then activated (to excited
state) with light of a particular
wavelength. As PS returns to its
ground state, energy is
transferred to tissue oxygen
forming ROS and/or singlet
oxygen that cause cell death
(Dolmans, Fukumura et al.
2003).  
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treat skin diseases and rickets has been used in Egyptian and Indian civilizations since ancient 

times; however, it was not extensively used in medicine until the 18th century (Epstein 1990, 

Epstein 1990, Dolmans, Fukumura et al. 2003, Agostinis, Berg et al. 2011).  In 1904, Raab 

discovered the phenomenon of PDT while studying the effect of light and dyes on paramecia 

(Raab 1904).  Later, von Tappeiner and Jodlbauer (von Tappeiner and Jodlbauer 1904, von 

Tappeiner and Jodlbauer 1907) showed the necessity of oxygen in the process and coined the 

term “photodynamic therapy” 

In the early 20th century the use of PDT was largely confined to treating skin problems 

such as psoriasis.  For treatment of cancer, chemotherapy and ionizing radiotherapy were being 

used clinically; PDT was not used as a treatment modality.  The first pioneering study was by 

Diamond et al. in 1972 showing regression of glioma in rats when treated with PDT using 

hematoporphyrin as photosensitizer and white light as activator (Diamond, Granelli et al. 1972).   

Later, Dougherty and colleagues (Dougherty, Kaufman et al. 1978, Dougherty, Lawrence et al. 

1979, Dougherty, Gomer et al. 1998) initiated a clinical trial of PDT in patients with malignant 

lesions, using hematoporphyrin derivative as photosensitizer that was activated by red light at a 

wavelength of 630 nm, and proved the effectiveness of this therapy.  In 2003, the FDA and other 

health agencies worldwide approved PDT using Photofrin, a photosensitizer made of a mixture 

of oligomers of porphyrin, for treatment of esophageal cancer and lung cancer.  During use of 

PDT clinically, surgeons noticed that PDT not only eradicated tumors by direct cell killing but 

also by shutdown of tumor vasculature.  This finding that PDT leads to vasculature shutdown led 

to one of the major successes in the field, in which a photosensitizer was used for treatment of 

macular degeneration (Brown and Mellish 2001, Yang 2004).  This is a common ailment 

especially in the older population, leading to impaired vision due to proliferation of blood vessels 

in the eye.  Vascular damage after PDT might also contribute to the success of PDT as a 
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therapeutic treatment as the tumor cells no longer have access to nutrients and oxygen from the 

blood stream.  The resulting hypoxia/anoxia post-PDT is thought to abrogate tumor growth and 

progression. 

2.2.2 Photosensitizers 

There are a number of photosensitizers currently known and some of these are registered 

in at least one country for use in clinical practice (Table 2.1).  The second-generation 

photosensitizers are pure compounds, not mixtures like the photofrin and hematoporphyrin 

derivative (HPD) and have been shown to localize to sub-cellular organelles such as 

mitochondria, lysosomes, plasma membrane, endoplasmic reticulum, etc.  For instance, the 

benzoporphyrin derivative monoacid A (BPD, VerteporphinTM) and phthalocyanine (Pc4) 

localize mainly to mitochondria and the mono-L-aspartyl chlorin e6 (NPe6) and meso-tetrakis 

(4-N-methylpyridyl) porphine (T4MPyP) to lysosomes.  Other photosensitizers such as zinc(II) 

phthalocyanine (ZnPc) localize to the Golgi apparatus and m-tetrahydroxyphenylchlorin 

(mTHPC) to both endoplasmic reticulum and mitochondria.  

 

 

 

Figure 2.3: History of Photodynamic Therapy. Timeline showing some key discoveries in the
field of PDT (Celli, Spring et al. 2010).  
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Table 2.1. List of Photosensitizers 

Based on the subcellular localization of photosensitizers, different pathways are activated 

that lead to cell death.  Photosensitizers that target mitochondria and lysosomes generally tend to 

induce apoptosis whereas the photosensitizers that localize in the plasma membrane are more 

likely to lead to necrosis (Moan, Pettersen et al. 1979, Schroder, Chen et al. 1988, Agarwal, Clay 

et al. 1991, Webber, Luo et al. 1996, Kessel and Luo 1998, Kessel, Luo et al. 2000, Kessel and 

Poretz 2000, Kessel and Oleinick 2010).  In addition to sub-cellular localization, concentration of 

photosensitizer and dose of light are also determining factors in regard to cell death mechanisms 

(Fingar, Potter et al. 1987, Wyld, Reed et al. 2001).  Two photosensitizers that were used in our 

study are discussed next.  

Benzoporphyrin Derivative Monoacid A (BPD) 

The trade names of the photosensitizer benzoporphyrin derivative monoacid A are 

Verteporfin and Visudyne™.  BPD is a second-generation photosensitizer (Richter, Waterfield et 

al. 1990, Richter, Waterfield et al. 1991, Aveline, Hasan et al. 1994).  The chemical structure of 

The table shows photosensitizers in use or undergoing clinical trials against cancer types (Agostinis, Berg et
al. 2011).   
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BPD resembles that of porphyrins (Figure 2.4).  BPD is not soluble in water but is soluble in 

organic solvents and serum (Allison, Pritchard et al. 1990) and is available as a liposomal 

formulation for clinical use.  Photodynamic therapy using BPD is the only treatment available 

for wet age-related macular degeneration (Brown and Mellish 2001, Keam, Scott et al. 2003). 

BPD is not toxic to cells in the absence of light (low cytotoxicity).  Once BPD is activated by 

light of 690 nm wavelength, highly reactive, short-lived singlet oxygen and reactive oxygen 

radicals are generated resulting in severe damage to cells and eventually cell death (Keam, Scott 

et al. 2003).  BPD localizes to the mitochondria and photodamage upon activation of BPD leads 

to loss of protection by anti-apoptotic protein BCl2 (Kessel and Luo 1998, Kessel and Luo 1999, 

Kessel 2006, Osaki, Takagi et al. 2006, Kessel and Oleinick 2010).  This results in an increase in 

mitochondrial membrane permeability and in release of cytochrome c from mitochondria 

(Granville, Carthy et al. 1998, Kessel and Luo 1999, Kessel 2006, Kessel and Arroyo 2007, 

Kessel and Oleinick 2010).  The release of cytochrome c results in the activation of caspase 

cascade leading to cell death via apoptosis (Granville, Carthy et al. 1998, Kessel and Luo 1999, 

Kessel 2006, Osaki, Takagi et al. 2006, Kessel and Oleinick 2010).  

 

Mono-L-aspartyl chlorin e6 (NPe6) 

Mono-L-aspartyl chlorin e6 (NPe6) is also known as also known as talaporfin sodium, 

MACE, laserphyrin, and LS11 and is trademarked as Aptocine by Light Sciences Oncology.  

Figure 2.4: Chemical structure of Benzoporphyrin
Derivative Monoacid A (BPD).  
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Chemically, NPe6 is a chlorin-based, second-generation photosensitizer (Figure 2.5) (Usuda, 

Kato et al. 2006).  Upon activation by light of 660 nm wavelength, reactive oxygen species in the 

form of singlet oxygen are primarily detected (Spikes and Bommer 1993).  In vivo imaging of 

NPe6 in an EMT6 mouse tumor model has shown that the photosensitizer undergoes 

redistribution from vessels into the interstitial space ~3 hours administration (Mitra and Foster 

2008).  NPe6 primarily localizes to lysosomes (Wan, Liu et al. 2008).  Upon photodamage to 

lysosomes by activating NPe6 with light at 660 nm wavelength, lysosomal proteases including 

cathepsin B are released into the cytoplasm (Kessel, Luo et al. 2000, Reiners, Caruso et al. 2002, 

Caruso, Mathieu et al. 2004).  Activated cathepsin B (and other lysosomal proteases) cleaves 

cytoplasmic Bid to its truncated form (t-Bid) that is known to interact with the mitochondrial 

membrane, leading to release of cytochrome c (Kessel, Luo et al. 2000, Reiners, Caruso et al. 

2002, Cirman, Oresic et al. 2004).  Once cytochrome c is released, caspase cascade is activated 

resulting in apoptosis and cell death (Figure 2.6) (Kessel, Luo et al. 2000, Reiners, Caruso et al. 

2002, Caruso, Mathieu et al. 2004). 

 

 

 

 

 

2.2.3 Selectivity of PDT 

Multiple factors provide and account for the selectivity of PDT.  First, photosensitizing 

agents show affinity for tumors and their vasculature for reasons not yet completely understood.  

It is believed that photosensitizers are taken up by LDL receptors that are known to be 

upregulated in tumor cells (Maziere, Santus et al. 1990, Kessel 1992, Trauner, Gandour-Edwards 

Figure 2.5: Chemical structure of Mono-L-aspartyl
chlorin e6 (NPe6). 
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et al. 1998).  After administration (generally intravenous) of the photosensitizer, there is a non-

specific distribution throughout the body but over the next 24-48 hours, the agent localizes to the 

tumor site (Figure 2.7).  Second, photosensitizers are inactive and relatively non-toxic to cells 

when administered and until irradiated for activation.  Light delivery using lasers to tumor site 

provides another level of selectivity (Figure 2.7).  Furthermore, the reactive oxygen species 

formed upon PDT have a very short half-life of <0.04 microsecond and can affect <20 nm area 

from the site of formation, thereby limiting the extent of photodamage (Moan and Berg 1991). 

 

 

2.2.4 PDT and breast cancer  

PDT is one of the alternative methods for treatment cancers.  Use of PDT to treat 

recurrent breast carcinoma and chest wall metastasis of breast cancer has been studied, but is 

considered an underutilized modality (Dougherty, Lawrence et al. 1979, Mang, Allison et al. 

1998, Allison, Mang et al. 2001, Dimofte, Zhu et al. 2002). In a study, fourteen patients with 

more than 500 metastatic lesions of breast cancer were treated with PDT.  Patients were 

administered photosensitizer photofrin (0.8 mg/kg) intravenously and light treatment at 630 nm 

Figure 2.6: Pathways showing photodamage to mitochondria, lysosomes or ER resulting in
cell death via apoptosis (Kessel 2015).  
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from a diode laser at a total light dose of 150 to 200 J/cm2 after 48 hours.  All patients showed 

tumor necrosis and 9 patients showed complete response (Cuenca, Allison et al. 2004).  In 

another phase I study, 15 patients were treated with ultra low irradiance (starting at 100 J/cm2) 

continuously over 24 hours but later the light dose was reduced to 50 J/cm2 (Rogers 2012).  Two 

patients had complete tumor response and 9 patients showed a partial response to treatment.  

Moreover no adverse reaction at the control site and ulceration of the normal skin was seen at 24 

hours after treatment.  Breast cancer is known to metastasize to bones and PDT on preclinical 

murine model of breast cancer metastasis to vertebrae showed that response to PDT was 

dependent on both drug dose and light dose (Burch, Bisland et al. 2005, Akens, Yee et al. 2007, 

Akens, Hardisty et al. 2010).  Recent studies from Hu’s group have shown that factor VII-

targeted PDT is an effective treatment for chemoresistant breast cancer (Hu, Rao et al. 2010, 

Duanmu, Cheng et al. 2011, Hu, Rao et al. 2011).  They have also shown that factor VII-targeted 

PDT can selectively kill angiogenic vascular endothelial cells and breast cancer cells in vitro and 

inhibit tumor growth in mice models (Hu, Rao et al. 2010, Hu, Rao et al. 2011).   

2.2.5 Combination PDT 

The first study in which two photosensitizers were combined (combination PDT) was 

done in 1996 and evaluated the efficacy of BPD and the photosensitizer EtNBS in a mouse 

sarcoma model (Cincotta, Szeto et al. 1996).  This study showed that combination of these 

photosensitizers led to an enhanced synergistic effect when lysosomes were targeted before 

mitochondria.  Histology of tumor mass 24 hours post-PDT showed almost complete destruction 

of tumor without extravasation of red blood cells and damage to normal skin.  More recent 

literature has shown that treating with two photosensitizers significantly increases cell death 

(Villanueva, Stockert et al. 2010, Acedo, Stockert et al. 2014, Kessel and Reiners 2014).  A 

combination of photosensitizers: zinc (II)-phthalocyanine (ZnPc) and TMPyP on 2D models of 
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Hela, HaCaT and MCF-7 cell lines, showed that these cells died by apoptosis at dose of 2.4 

J/cm2 and by necrosis at dose of 3.6 J/cm2 suggesting that mechanism of cell death is dependent 

on PDT dose (Acedo, Stockert et al. 2014).  Additionally, a significant dose-dependent reduction 

of tumor volume was observed in subcutaneously transplanted amelanotic melanomas in mice 

after combination PDT treatment (Acedo, Stockert et al. 2014).  In another study from the Kessel 

laboratory the combination of BPD and NPe6 promoted cell death via apoptosis in monolayer 

cultures of 1c1c7 murine hepatoma cells (Kessel and Reiners 2014).  This study also showed that 

a synergistic response was seen when lysosomes were targeted (using NPe6) before 

mitochondria (using BPD) and an additive response was seen when mitochondria were targeted 

before lysosomes.  All these studies have shown that the combination of two photosensitizers is 

more effective in photokilling of tumor cells than is one photosensitizer. 

 

 
2.2.6 Use of 3D models for PDT 

Currently, in vitro preclinical models are being developed that can better predict drug 

responses and success in clinical trials.  Some of the first 3D models for modeling of normal 

breast and breast cancer were developed in the laboratory of Dr. Mina Bissell (Howlett and 

Figure 2.7: Schematic showing sequence of steps for PDT treatment. Photosensitizer is
administered systemically and allowed to distribute throughout the body. After an appropriate
time interval the photosensitizer preferentially accumulates in the target tissue and is activated
by light. Following activation by light at the target location, reactive oxygen species are formed
leading to cytotoxic effect (Celli, Spring et al. 2010).     
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Bissell 1993, Bissell, Weaver et al. 1999, Weaver and Bissell 1999, Weigelt, Ghajar et al. 2014).  

These models utilized reconstituted basement membrane matrix produced from the Engelbreth-

Holm-Swarm tumors of mice [commercially available as Matrigel (Corning Life Sciences) or 

Cultrex (Trevigen)].  These 3D models were found to recapitulate cell-cell and cell-matrix 

interactions.  Non-malignant cells form acini similar as those present in the mammary gland in 

vivo and these acini are functional as they produce milk in the presence of lactogenic hormones 

(Li, Aggeler et al. 1987, Aggeler, Park et al. 1988, Barcellos-Hoff, Aggeler et al. 1989).  The 3D 

models have also been found to be better predictors of responses to drugs and treatments 

(Mueller-Klieser 2000, Friedrich, Seidel et al. 2009, Shin, Kwak et al. 2013, Unger, Kramer et al. 

2014, Antoni, Burckel et al. 2015).  

The majority of pre-clinical PDT studies have been done in cells grown in 2D monolayer 

cultures with some in animal models.  Some of the more recent work on PDT from Dr. Tayabba 

Hasan’s group at Harvard has used 3D models of ovarian and pancreatic cancers (Celli, Rizvi et 

al. 2010, Celli, Spring et al. 2010, Rizvi, Celli et al. 2010, Celli, Solban et al. 2011, Anbil, Rizvi 

et al. 2013, Rizvi, Anbil et al. 2013, Celli, Rizvi et al. 2014).  Studies from the Hasan lab have 

also shown that BPD-PDT significantly decreases the size of 3D ovarian cancer nodules and 

synergistically enhances carboplatin efficacy (Rizvi, Celli et al. 2010).  Thus 3D models may 

play an important role in improving treatment planning for PDT in regard to concentration of 

photosensitizer and PDT dose.  

2.3 Apoptosis 

Apoptosis is a highly regulated process that occurs in multicellular organisms and takes 

place the cell destined to die [reviewed in (Wyllie, Kerr et al. 1980, Strasser, O'Connor et al. 

2000, Gallaher, Hille et al. 2001, Renehan, Booth et al. 2001, Kerr 2002, Derradji and Baatout 

2003, Chowdhury, Tharakan et al. 2006, Elmore 2007, Taylor, Cullen et al. 2008)].  During this 
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process of cell death neighboring cells are minimally damaged.  Apoptosis, also called 

programmed cell death, was first used by Kerr, Wyllie and Curie in 1972 to describe a cell death 

mechanism distinguished by morphological and biochemical characteristics (Kerr, Wyllie et al. 

1972, Kerr 2002).  Apoptosis normally occurs during important processes such as development, 

aging, cell cycle regulation, maintenance of homeostasis (King and Cidlowski 1998, Renehan, 

Bach et al. 2001, Renehan, Booth et al. 2001, Kerr 2002, Opferman and Korsmeyer 2003).  

Apoptosis is an evolutionary conserved biochemical process that is dependent on ATP as source 

of energy.  Apoptosis can be induced by a variety of physiological and pathophysiological 

stimuli, such as tumor necrosis factor (TNF alpha) (Ashkenazi 2002), DNA damage (Gentile, 

Latonen et al. 2003), ultraviolet light (Gentile, Latonen et al. 2003, Zhang, Xing et al. 2009), and 

cytotoxic drugs (Solary, Droin et al. 2000).  Deregulation of the apoptotic pathway results in 

pathological conditions such as cancer, autoimmune diseases, and neurodegenerative diseases 

(Thompson 1995, Hanahan and Weinberg 2000). 

Apoptosis is known to occur by an extrinsic or an intrinsic pathway [Figure 2.8, reviewed 

in (Gallaher, Hille et al. 2001, Derradji and Baatout 2003, Chowdhury, Tharakan et al. 2006, 

Moffitt, Martin et al. 2010, Ola, Nawaz et al. 2011)].  The two pathways have different stimuli 

but converge to conclude the process.  The intrinsic pathway is also known as the mitochondrial 

pathway or stress pathway and is activated by genomic and metabolic stress, unfolded proteins, 

mitochondrial membrane permeabilization, and release of pro-apoptotic proteins such as Bid and 

Bax into the cytoplasm.  Disruption of the mitochondrial membrane potential leads to 

cytochrome c release (Kluck, Bossy-Wetzel et al. 1997, Zhivotovsky, Orrenius et al. 1998).  

Cytochrome c plays a key role in this pathway leading to formation of an apoptosome by 

interaction of cytochrome c with the apoptotic protease-activating factor (Apaf1) and 

deoxyadenosine triphosphate (dATP) (Li, Nijhawan et al. 1997, Riedl and Salvesen 2007, Hu, 



20 

	

Wu et al. 2014, Zamaraev, Kopeina et al. 2015).  The apoptosome recruits initiator caspase 9, 

which gets activated after proteolytic cleavage following dimerization (Salvesen and Dixit 1997, 

Chowdhury, Tharakan et al. 2008).  On the other hand, the extrinsic pathway involves the 

binding of the extracellular ligands (FAS-L and TNF-alpha L) to trans-membrane death receptors 

(FAS and TNF-alpha) (Chen and Goeddel 2002, Wajant 2002, Ihnatko and Kubes 2007, Brint, 

O'Callaghan et al. 2013).  After this interaction, the receptor trimerizes and death adaptor 

molecules are recruited to the cytoplasmic side. Fas recruits Fas-associated death domain protein 

(FADD) and TNF-alpha receptor recruits TNF-R1-associated death domain protein (TRADD), 

which in turn recruits FADD (Ashkenazi 2002, Ola, Nawaz et al. 2011).  This further leads to 

formation of a death-inducing signaling complex (DISC) that consists of the receptor, its ligand, 

the initiator caspase-8 (or caspase-10), and other co-regulators and co-factors [reviewed in 

(Strasser, O'Connor et al. 2000, Chen and Goeddel 2002, Wajant 2002, Zamaraev, Kopeina et al. 

2015)].  Once initiator caspases are activated via either intrinsic or extrinsic pathway, a catalytic 

cascade begins resulting in activation of the executioner caspases i.e. caspases 3, 6 and 7  

(Salvesen and Dixit 1997).  

Many substrates for activated executioner caspases are known and the list is growing.  

The substrates are broadly classified as cytoplasmic proteins (such as actin, β-catenin, keratin 

18), nuclear proteins (such as lamins A and B; lamin B receptor, RNA-binding and 

ribonucleoprotein-associated proteins), DNA metabolism and repair proteins (such as PARP, 

DNA topoisomerases, RNA-polymerase), protein kinases (such as PKC, MAPK, ERK, Akt), 

signal transduction pathway proteins (such as cytokines, phospholipases) and cell cycle proteins 

(such as p21, p27) [(Luthi and Martin 2007), reviewed in (Earnshaw, Martins et al. 1999, 

Nicholson 1999, Chowdhury, Tharakan et al. 2008)]. 
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The breakdown of cytoplasmic and nuclear proteins by activated executioner caspases 

results in certain morphologic features that are associated with apoptosis (Kerr, Wyllie et al. 

1972, Wyllie, Kerr et al. 1980, Kerr 2002).  During early stages of apoptosis cells become 

smaller in size (cell shrinkage), the cytoplasm becomes dense and chromatin condensation takes 

place (pyknosis).  Pyknosis is followed by karyorrhexis or fragmentation of nuclei. In later stages 

of apoptosis, plasma membrane blebbing takes place, the cell fragments and separates into 

apoptotic bodies containing cytoplasm, cellular organelles and fragments of nuclei enclosed in 

plasma membrane.  These apoptotic bodies are either phagocytosed by macrophages or taken up 

by neighboring cells for recycling of the contents. 

 

Apoptosis is essential to maintain homeostasis and for the removal of old, damaged or 

infected cells from the body.  Excessive or too little apoptosis is associated with diseases such as 

atrophy and cancer, respectively.  Most drugs currently used in anti-cancer therapy kill target 

cells by induction of apoptosis, either by the extrinsic or intrinsic pathways.  

  

Figure 2.8: Schematic diagram of apoptosis.
Cell death via extrinsic pathway takes place by a
direct binding of receptors and ligands at the cell
surface resulting in activation of initiator
caspase-8 (casp-8), which then activates
executioner caspases (casp-3, -6 and/or -7).
Alternatively for cell death via intrinsic
pathway, damage to the genome or radiation
causing mitochondrial damage leads to, release
of cytochrome c from mitochondria and
formation of apoptosome that recruits and
activates caspase 9. Activated caspase 9 further
results in the activation of executioner caspases
(casp-3, -6 and/or -7). (Salvesen and Dixit 1999)
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Materials  

Dulbecco’s Modified Eagles Medium/Ham’s F-12, hydrocortisone, insulin from bovine 

pancreas and dimethyl sulfoxide (DMSO) were obtained from Sigma-Aldrich.  Phenol red-free 

mammary epithelial cell growth medium (MEGM), composed of mammary epithelial basal 

medium and MEGM SingleQuot kit supplements and growth factors and MycoZap Plus-CL, was 

procured from Lonza.  Fetal bovine serum (FBS) was purchased from Hyclone; epithelial growth 

factor (EGF) from R&D Systems; and reconstituted basement membrane (rBM, reduced growth 

factor CultrexTM) from Trevigen. LIVE/DEAD kits, Hoechst 33342, L-Glutamine and trypsin-

EDTA were purchased from Life Technologies.  

3.2 Tissue Culture  

The SUM149 cell line (a kind gift from Dr. Steven Ethier, MUSC) was used as a model 

of human triple negative inflammatory breast cancer (Table 3.1); cells were maintained in Hams 

F-12 medium supplemented with 5% FBS, 5µg/ml Insulin, 1µg/ml Hydrocortisone and 1% 

MycoZap plus-CL.  The human invasive TNBC breast cancer cell lines, MDA-MB-231 and 

Hs578T, were purchased from ATCC. MDA-MB-231 cells were cultured and maintained in 

medium composed of DMEM supplemented with 10% FBS, 4mM L-glutamine and 1% 

MycoZap plus-CL (Table 3.1). Hs578T cells were cultured and maintained in DMEM medium 

supplemented with 10% FBS, 5µg/ml Insulin, 4mM L-glutamine and 1% mycozap plus-CL 

(Table 3.1).  All cell lines were maintained in T-25 flasks in a humidified incubator with 5% CO2 

at 37 °C. MEGM medium was used for 3D cultures. 
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Table 3.1.  Cell lines used for PDT studies 
 

Name 
Breast Cancer 

Subtype 
Morphology in 3D 

Cell Culturesa References 

MDA-MB-231 Triple negative Stellate 
(Cailleau, Young et al. 1974, Neve, 

Chin et al. 2006, Chavez, Garimella et 
al. 2010) 

Hs578T Triple negative Stellate 
(Hackett, Smith et al. 1977, Neve, Chin 

et al. 2006, Chavez, Garimella et al. 
2010) 

SUM149 
Triple negative and 

Inflammatory 
Grape-like 

(Forozan, Veldman et al. 1999, Neve, 
Chin et al. 2006, Chavez, Garimella et 
al. 2010, Barnabas and Cohen 2013) 

a: (Kenny, Lee et al. 2007) 

3.3 Generation of 3D Mammary Architecture and Microenvironment Engineering 

(MAME) Models  

A reconstituted basement membrane (rBM) overlay model, developed by Bissell and 

colleagues (Howlett and Bissell 1993, Bissell, Weaver et al. 1999, Weaver and Bissell 1999), has 

been modified by Brugge and colleagues for analysis of oncogenesis of human MCF-10A 

(Debnath, Mills et al. 2002, Debnath and Brugge 2005).  Dr. Stephanie Mullins trained in the 

Brugge laboratory and adapted the model to variants of the MCF-10A non-transformed 

mammary epithelial line (Mullins, Sameni et al. 2012).  The model has been used for multiple 

breast cancer cell lines by our laboratory (Sameni, Dosescu et al. 2008, Victor, Anbalagan et al. 

2011, Sameni, Anbalagan et al. 2012) and was used here for all PDT experiments.  To generate 

the MAME model, glass coverslips (12 mm) placed in 35 mm dishes were coated with 50 µl 

rBM (Cultrex, Trevigen) and the rBM allowed to gel for 15 minutes at 37 °C. 5000 cells were 

resuspended in 50 µl MEGM medium, seeded on rBM and incubated at 37 °C for an hour to 

allow cells to adhere.  Then overlay medium i.e. MEGM with 2% rBM was added gently.  A 

schematic of the 3D MAME model is shown in Figure 3.1 (Sameni, Anbalagan et al. 2012).  3D 

structures were then allowed to form over time. MDA-MB-231 and Hs578T cells were grown in 
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3D MAME cultures for a period of 3 or 6 days allowing us to study effects of treatment on 

invasive structures of two sizes (Sameni, Dosescu et al. 2008, Sameni, Anbalagan et al. 2012). 

SUM149 cells were grown in 3D MAME cultures for 7 days. 

 

 

3.4. Photodynamic Therapy  

A) BPD-PDT  

MAME cultures were incubated for 60 minutes at 37 °C with 1.5 µM BPD, washed with 

PBS and replenished with overlay media.  Cells were irradiated using a 700 watt quartz-halogen 

lamp and an interference filter that confines the irradiation to 690 ± 10 nm, using a power density 

of 1.5 mW/cm2.  Irradiation was performed for PDT doses ranging from 45 mJ/cm2 to 540 

mJ/cm2 (corresponding to time period ranging from 30 seconds to 6 minutes).  Two additional 

controls were used: a protocol that results in 100% killing and a dark control (Celli, Rizvi et al. 

2014).  Following irradiation, samples were placed in an incubator at 37 °C for 18-24 hours 

before live/dead assays were performed.  

B) Combination PDT using BPD and NPe6 

SUM149 cells were grown in MAME cultures for 7 days. On day 7, cultures were 

incubated with 1.5 µM BPD and/or 40 µM NPe6 for 60 minutes.  Then cells were irradiated with 

Figure 3.1. Schematic representation of the 3D MAME model. The cartoon illustrates a
coverslip placed in a dish and coated with Cultrex. An aliquot of single cells was applied to the
coverslip and cells allowed to attach. This was followed by addition of overlay media composed
of MEGM medium containing 2% rBM.  
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light at 690 nm (to initiate photodynamic effects of BPD) and/or at 660 nm (to initiate 

photodynamic effects of NPe6); see figures for light doses.  The sequential treatments are 

represented as NPe6/BPD when NPe6 was activated before BPD and BPD/NPe6 when BPD was 

activated before NPe6.  Following irradiation, samples were placed in an incubator at 37 °C for 

approximately 24 hours or 48 hours before live/dead assays were performed.  

3.5. Live-dead Assays  

The live-dead assay has two components. A dye (calcein AM, CG) that fluoresces green 

when cleaved by intracellular esterases is used to identify live cells.  A second dye, ethidium 

homodimer-1 (EB), exhibits red fluorescence when incorporated into the DNA of dead cells.  

Cells were incubated with assay reagents for 30 minutes at 37 °C, washed once with warm PBS, 

then warm MEGM media was added and cells were imaged live on a Zeiss 510 LSM META 

NLO confocal microscope using a 20X water-immersion objective.  Z-stacks (Figure 3.2) 

through the entire structures were captured for 16 contiguous fields (Figure 3.3) in at least three 

separate experiments.  The images were reconstructed in 3D using Volocity software and are 

represented here as either extended depth of focus images (en face view) or volume rendered 3D 

images tilted at a 45° angle (Figure 3.4).  Cell viability was calculated by quantifying the green 

and red fluorescence intensities as described by Celli et al. (Celli, Rizvi et al. 2014) and 

converted to percentage of dark controls and plotted against the PDT dose.  

Cell viability was then calculated using the formula (Celli, Rizvi et al. 2014): 

where,      

Here, CG bar and EB bar represent the mean relative intensities of CG (live) and EB (dead) 

fluorescence signals respectively.  The subscripts NT and TK are the mean values for non-treated 

and total-killing controls.  The scaling factor φ rescales all values to internal non-treated and 
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total killing controls and further corrects for inevitable variability in imaging parameters and 

minor instrumentation drift across evaluation timepoints (Celli, Rizvi et al. 2010, Rizvi, Celli et 

al. 2010, Celli, Rizvi et al. 2014).  

 

3.6 Viral Transduction of SUM149 Cells  

50,000 cells were seeded in a 6-well dish and allowed to attach.  70% confluent cells 

were transduced with cignal RFP (Qiagen) viral particles (20 µl) resuspended in 300 µl 

antibiotic-free media containing 6 µg Sure-Entry reagent (Qiagen) and the dish was placed back 

in a 37 °C humidified incubator with 5% CO2. On the next day, the cells were washed with PBS 

twice and complete media added.  Cells were then passaged to a T-25 flask and subsequently to a 

T-75 flask, and flow-sorted to separate cells that express RFP.  The sorted cells were then 

maintained using the same protocols as for the wild-type SUM149 cell line. 

Figure 3.2. An example of a z-stack image of an MDA-MB-231 structure  taken through the
entire depth of the structure. These images show cells labeled with Calcein (green) overlaid
with differential interference contrast (DIC) images. 	
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Figure 3.3: An example of a z-stack through 3D MAME structures for 16-contiguous
fields. These images show optical sections through the depth of MAME structures and are an
overlay of differential interference contrast (DIC) images and cells labeled with CG (green) and
EB (red).  
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3.7 Methods for Assessing Apoptosis 

A) Cleaved caspase-3 immunofluorescence  

SUM149 cells were grown in MAME cultures and treated on day 7 using the sequential 

NPe6/BPD PDT protocol at a dose of 22.5 mJ/cm2.  MAME structures were then fixed at 6, 12 

and 24 hours post-PDT using 4% paraformaldehyde for 20 minutes, washed 3 times with PBS 

and permeabilized using 0.2% Triton X-100 for 5 minutes followed by quenching three times 

with 0.1 M glycine for 10 minutes.  Non-specific binding sites were then blocked with 0.2% 

BSA for 60 minutes. Samples were incubated overnight at 4 °C with a 1:400 dilution of cleaved 

caspase-3 antibody (Cell Signaling Technology).  The samples were then washed four times with 

PBS for 10 minutes each. Cells were then treated with a 1:1000 dilution of AlexaFluor 488 (Life 

Technologies) for an hour at room temperature, washed four times with PBS for 10 minutes 

each, fresh PBS with Hoechst was added and the samples were imaged on the Zeiss 510 LSM 

META NLO confocal microscope using a 40X water-immersion objective.  The z-stack images 

were quantified to determine the intensity of cleaved caspase-3 and reconstructed in 3D using 

Figure 3.4. Examples of post-processing and representation of 16-contiguous fields and z-
stacks images. Panel A shows extended depth of focus (also called an en face) view and Panel B
shows volume rendered 3D reconstruction of images tilted at an angle of 45 °. 
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Volocity software.  

B) Nuclear-staining with Hoechst 

SUM149 cells were grown in MAME cultures for 7 days and treated with the sequential 

NPe6/BPD-PDT protocol at a dose of 22.5 mJ/cm2; 24 hours later a 1:1000 dilution of Hoechst 

dye HO33342 was added for 15 minutes.  The medium was replaced and MAME structures were 

imaged live on a Zeiss 510 LSM META NLO confocal microscope using a 40X water-

immersion objective.  The images were reconstructed in 3D using Volocity software to show 

extended depth of focus (en face view). 

3.8 Live Cell Proteolysis Assay 

A detailed protocol for the live cell proteolysis assay has been published (Jedeszko, 

Sameni et al. 2008).  Briefly, glass coverslips in 35-mm dishes were coated with 45 μl of Cultrex 

containing 25 mg/ml of DQ-collagen IV and placed in a 37 °C incubator for 10 min to allow 

solidification.  5000 cells were seeded on top of the Cultrex and incubated at 37 °C for 30-60 

min until adherent, followed by addition of culture media containing 2% rBM.  Media were 

changed after four days.  For inhibitor studies, 10 μM CA074Me, 10 μM E64d, 10 μM 

PD150606 or DMSO was added to overlay media on day 7 (these inhibitors are in routine use in 

the Sloane laboratory).  Cells were washed thoroughly in phosphate buffered saline (PBS) 

followed by addition of MEGM media.  All experiments were imaged on day 8 with a Zeiss 

LSM 510 META NLO confocal microscope using a 20X water-dipping objective to capture the 

3D structures. Volume of degradation of DQ collagen was assessed using Volocity software.   

3.9 Statistical Analysis 

Statistical significance was determined using GraphPad Prism 6.0 software. Experiments 

were analyzed using a two-tailed, unpaired Student’s T-test or one-way ANOVA as stated for 

each experiment. 
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CHAPTER 4 

EFFICACY OF PDT IN PHOTOKILLING IN 3D MAME MODELS OF TNBC AND IBC 
CELLS 

Rationale 

There is an unmet need for therapies against TNBCs and IBCs.  The dermal metastases of 

IBC and the chest wall metastases of TNBC are in locations that are accessible to the light 

needed to activate photosensitizers.  Pre-clinical PDT studies have mainly used cell lines 

cultured in monolayers on plastic (in 2-dimensions).  Cells cultured in monolayers do not 

recapitulate the in vivo architecture (e.g. cell-cell and cell-matrix interactions) that is critical for 

accurately modeling tumor growth and response to therapies.  In contrast, cells grown in 3D 

models do recapitulate cell-cell and cell-matrix interactions (Weigelt and Bissell 2008, Eke and 

Cordes 2011).  Moreover, 3D models have been able to predict resistance to chemo- and 

radiation therapies, something that is not possible for monolayer cultures (Li, Chow et al. 2010, 

Storch, Eke et al. 2010, Celli, Solban et al. 2011, Chen, Wang et al. 2014).  

PDT that targets mitochondria induces immediate release of cytochrome c thus activating 

caspase cascade and the apoptotic pathway (Granville, Carthy et al. 1998).  PDT that targets 

lysosomes induces release of lysosomal proteases into the cytoplasm and causes damage to other 

intracellular organelles (Kessel and Poretz 2000, Reiners, Caruso et al. 2002).  Combination PDT 

using photosensitizers targeting lysosomes and mitochondria sequentially promotes photokilling 

via apoptosis in 2D murine hepatoma model (Kessel and Reiners 2014).  We suggest that 

combination PDT may have the potential to eradicate chest wall metastases of TNBCs and 

dermal metastases of IBC, i.e., sites that would be accessible to this therapy.  We propose to use 

3D models of TNBC and IBC to determine the efficacy of PDT including combination PDT 

targeting lysosomes and mitochondria.  Such a combination therapy protocol has not yet been 
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tested in 3D cultures yet.  

Specific Aim 1: Determine if PDT is more effective in the photokilling of MAME structures of 

TNBC and IBC when lysosomes and mitochondria are sequentially targeted as compared to 

targeting only mitochondria. 

Hypothesis: Combination PDT will be more efficacious in photokilling as two critical 

organelles, lysosomes and mitochondria, will be damaged. 

Results 

4.1 Optimization of BPD Concentration and Incubation Time in 3D MAME Structures 

4.1.1 BPD concentration and uptake  

BPD was used as the photosensitizer in our experiments; its excitation and emission 

spectrum is in the UV and far-red region, respectively.  We used MDA-MB-231 human breast 

carcinoma cells grown in MAME models for optimization as they are easy to culture in 3D and 

are in routine use in the Sloane laboratory.  Cultures were incubated for 60 minutes with BPD at 

concentrations from 0.5 µM to 2.0 µM.  Differential interference contrast (DIC) images were 

taken to illustrate the morphology of the 3D structures at different concentrations of BPD (Figure 

4.1 A-E).  The fluorescent images represent autofluorescence of BPD at the different 

concentrations (Figure 4.1 A’-E’).  We confirmed that BPD was able to penetrated entire 3D 

structures and accumulated in the cells in a dose dependent manner as indicated by the increase 

in red fluorescence.  As the intensity of fluorescence was similar at BPD concentrations of 1.5 

µM and 2.0 µM, we selected the lower concentration of 1.5 µM for further experiments.  
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4.1.2 Incubation time  

MDA-MB-231 cells were grown in MAME cultures for 3 days allowing 3D structures to 

form and then incubated with 1.5 µM BPD for different time periods (Figure 4.2).  We found 

that 1.5 µM BPD penetrates into the structures within the first 15 minutes of incubation as 

A" B" C"

A’" B’" C’"

D" E"

D’" E’"

Figure 4.1. Uptake of BPD by MDA-
MB-231 cells grown in 3D MAME
model: BPD was added at concentrations
of: A, A’) 0.0 µM; B, B’) 0.5 µM; C, C’)
1.0 µM; D, D’) 1.5 µM; and E, E’) 2.0
µM. Cultures were incubated with BPD
for 60 minutes and Z-stacks for 16
contiguous fields were captured at 20X
magnification. A-E are DIC images and
A’-E’ are fluorescent images of BPD and
its accumulation in the 3D structures. Z‐
stacks	 were	 converted	 to	 an	 en	 face
view	using	Volocity.	Scale	bar=	80	µm 
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indicated by the low intensity of red signal (Figure 4.2 A).  At longer times of incubation with 

BPD, accumulation of BPD in the 3D structures is greater as shown by the increases in red 

fluorescence with time. For all future experiments we used a 60-minute incubation time (Figure 

4.2 C).  This incubation time is comparable to that used by the Hasan lab at Boston in 3D models 

of ovarian cancer (Celli, Spring et al. 2010, Anbil, Rizvi et al. 2013).  

 

 

4.2 Dose Response of MAME Structures of Triple Negative Breast Cancer to Photokilling 

by BPD-PDT 

4.2.1 3 day MDA-MB-231 MAME structures  

We utilized a MDA-MB-231 MAME model to assess the dose-response to a PDT 

A" B" C"

D" E"

Figure 4.2. Time dependent uptake of BPD by MDA-MB-231 cells grown in MAME model:
Cultures were incubated with 1.5 µM BPD for different time periods: A) 15 min; B) 30 min; C)
60 min; D) 120 min; and E) 150 min. Z-stacks were captured at 20X magnification. Images were
processed using Volocity software and are presented as extended depth of focus. Red represents
fluorescence of BPD and its accumulation in the 3D structures. Scale bar = 80 µm  
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protocol in which mitochondria are targeted using BPD (Figure 4.3, Table 4.1).  Approximately 

50% of 3D structures were killed at a 45 mJ/cm2 BPD-PDT dose.  When we increased the 

duration of irradiation, we observed a significant decrease in cell viability resulting in 60% cell 

death after 90 mJ/cm2 (one minute), 91% cell death after 180 mJ/cm2 (two minutes), 98% cell 

death after 360 mJ/cm2 (4 minutes) and 99% cell death after 540 mJ/cm2 (six minutes) of 

treatment.  A decrease in live MAME structures (green) and a corresponding increase in dead 

MAME structures (red) with increased dose of PDT were observed (Figure 4.3).  Thus there was 

a significant increase in death of TNBC MDA-MB-231 MAME structures in response to 

escalating the BPD-PDT dose.  

To confirm that light alone does not affect MAME structures, we performed PDT at a 

dose of 540 mJ/cm2 in the absence of photosensitizer. The representative image shown in Figure 

4.4 illustrates that light does not result in photokilling of MAME structures in the absence of a 

photosensitizer (see green cells).  

 
Table 4.1. Viability (% Control) for 3 day MAME cultures of MDA-MB-231 cells  

BPD-Dose (mJ/cm2) 45 90 180 360 540 

Viability(%Control) 49 ± 5 39 ± 8 9 ± 7 2 ± 1 1 ± 2 
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    Dark Control            Total Kill Control        45           

mJ/cm2   

     90                 180         360          

    540        

Figure 4.3: MDA-MB-231 cells grown in MAME model for 3 days exhibited a significant
dose-response to photokilling by BPD-PDT. Representative live/dead images of optical
sections through the 3D structures were captured for 16 contiguous fields and shown in an en
face view (A). Images were taken 24 hours after PDT with 1.5 µM BPD and show live cells
(green, calcein AM) and dead cells (red, ethidium homodimer-1) for non-treated dark control
and BPD-PDT treated samples as indicated in the Figure; scale bar = 80 µm. Intensities of red
and green fluorescence were used to calculate viability and plotted against PDT dose (B) p-value
< 0.0001, one-way ANOVA; n=4, mean ± SD. 
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4.2.2 6 day MDA-MB-231 MAME structures  

In the clinics, cancer patients present with tumors of varied sizes.  So we next tested if 

PDT would target larger structures of about 80 microns (formed in 6 day cultures) as compared 

to structures of less than 50 microns (formed in 3 day cultures).  The MDA-MB-231 cells were 

grown in MAME models for 6 days (Figure 4.5, Table 4.2).  Approximately 14% of 6 day 3D 

structures were killed at a 45 mJ/cm2 BPD-PDT dose as compared to 50% of 3 day 3D structures.  

When we increased the duration of irradiation for the 6 day cultures we observed a significant 

decrease in cell viability resulting in 35% cell death after 90 mJ/cm2 (one minute), 54% cell 

death after 180 mJ/cm2 (two minutes), 74% cell death after 360 mJ/cm2 (4 minutes) and 86% cell 

death after 540 mJ/cm2 (six minutes) of treatment.  A decrease in live MAME structures (green) 

and a corresponding increase in dead MAME structures (red) with increased dose of PDT were 

observed (Figure 4.5).  Thus there was a significant increase in death of 6 day TNBC MDA-MB-

231 MAME structures in response to escalating the BPD-PDT dose. 

 

 

Figure 4.4: Proof of principle confirming that
cells grown in MAME model are not
photokilled by light in the absence of
photosensitizer. Live/dead images of optical
sections through the 3D structures were captured
for 16 contiguous fields and shown in an en face
view. Images were taken 24 hours after PDT in
the absence of BPD and show live cells (green,
calcein AM) and dead cells (red, ethidium
homodimer-1). 
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    Dark Control            Total Kill Control        45           

mJ/cm2   

     90                 180         360          

    540        

Figure 4.5: Response of 6 day MAME structures of MDA-MB-231 to BPD-PDT:
Representative live/dead images of optical sections through 3D structures were captured for 16
contiguous fields and shown in en face view (A). Images were taken 24 hours after PDT with 1.5
µM BPD and show live cells (green, calcein AM) and dead cells (red, ethidium homodimer-1)
for non-treated dark control and BPD-PDT treated samples; scale bar = 80µm. Intensities of red
and green fluorescence were used to calculate viability and plotted against PDT dose (B). p-
value < 0.0001, one-way ANOVA; n=6, mean ± SD. 
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As ~15% of MAME structures of MDA-MB-231 cells were not photokilled by BPD-PDT 

treatment at a dose of 540 mJ/cm2, we increased the dose to 620 mJ/cm2. At the higher dose we 

observed enhanced photokilling as indicated by an increase in dead structures (red) and a 

decrease in live structures (green) (Figure 4.6). These data were not quantified as we only tested 

the effects of the higher dose of 620 mJ/cm2 once.  

Table 4.2. Viability (% Control) for 6 day MAME cultures of MDA-MB-231 cells 

BPD-Dose (mJ/cm2) 45 90 180 360 540 

Viability (%Control) 86 ± 3 65 ± 7 46 ± 4 26 ± 3 14 ± 4 

 

 

4.2.3 3 day Hs578T MAME structures  

To confirm the dose-dependent photokilling effect that was observed using one TNBC 

cell line i.e. MDA-MB-231, we used another TNBC cell line, Hs578T.  The 3D structures 

formed by Hs578T cells were larger and had more invasive outgrowths (multicellular) than those 

formed by the MDA-MB-231 cells.  Hs578T cells were grown in MAME model for 3 days and 

then incubated with 1.5 µM BPD for 60 minutes followed by irradiation for 0.5-6 minutes (45- 

540 mJ/cm2) (Figure 4.7, Table 4.3).  Approximately 50% of 3D structures were killed at a 45 

Figure 4.6: Response of MDA-MB-231 6 day
MAME structures to BPD-PDT at a dose of
620 mJ/cm2: Live/dead images of optical
sections through the volume of 3D structures
were captured for 16 contiguous fields and shown
in en face view (A). This image taken 24 hours
after PDT with 1.5 µM BPD shows primarily
dead cells (red, ethidium homodimer-1). 
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mJ/cm2 BPD-PDT dose.  When we increased the duration of irradiation, we observed a 

significant decrease in cell viability resulting in 72% cell death after 90 mJ/cm2, 20% cell death 

after 180 mJ/cm2, 91% cell death after 360 mJ/cm2 and 93% cell death after 540 mJ/cm2 of 

treatment.  A decrease in live MAME structures (green) and a corresponding increase in dead 

MAME structures (red) with increased dose of PDT were observed (Figure 4.5).  Thus there was 

a significant increase in death of TNBC Hs578T MAME structures in response to escalating the 

BPD-PDT dose.  

 

Table 4.3. Viability (% Control) for 3 day MAME cultures of Hs578T cells 

BPD-Dose (mJ/cm2) 45 90 180 360 540 

Viability (%Control) 51 ± 1 28 ± 5 20 ± 3 9 ± 6 7 ± 4 
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    Dark Control            Total Kill Control        45           

mJ/cm2   

     90                 180         360          

    540        

Figure 4.7: Response of Hs578T 3 day MAME structures to BPD-PDT: Representative
live/dead images of optical sections through the volume of 3D structures were captured for 16
contiguous fields and shown in en face view (A). Images were taken 24 hours after PDT with 1.5
µM BPD and show live cells (green, calcein AM) and dead cells (red, ethidium homodimer-1)
for non-treated dark control and BPD-PDT treated samples at multiple doses as indicted in the
Figure; scale bar = 80 µm. Intensities of red and green fluorescence were used to calculate
viability and plotted against PDT dose (B). p-value < 0.0001, one-way ANOVA; n=4, mean ±
SD 
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4.2.4 6 day Hs578T MAME structures  

To confirm the dose-dependent photokilling effect that was observed in the 6 day MAME 

structures of MDA-MB-231 cells, we grew Hs587T cells for 6 days in MAME cultures.  

Approximately 20% of 3D structures were killed at a 45 mJ/cm2 BPD-PDT dose as compared to 

50% of 3 day 3D structures (Figure 4.8, Table 4.4).  When we increased the duration of 

irradiation for the 6 day cultures, we observed a significant decrease in cell viability resulting in 

34% cell death after 90 mJ/cm2 (one minute), 53% cell death after 180 mJ/cm2 (two minutes), 

64% cell death after 360 mJ/cm2 (4 minutes) and 73% cell death after 540 mJ/cm2 (six minutes) 

of treatment.  A decrease in live MAME structures (green) and a corresponding increase in dead 

MAME structures (red) with increased dose of PDT were observed (Figure 4.8).  Thus there was 

a significant increase in death of 6 day TNBC Hs578T MAME structures in response to 

escalating the BPD-PDT dose.    

As ~30% of MAME structures of Hs578T cells were not photokilled by BPD-PDT 

treatment at a dose of 540 mJ/cm2, we increased the dose to 620 mJ/cm2.  At the higher dose we 

observed enhanced photokilling as indicated by an increase in dead structures (red) and a 

decrease in live structures (green) (Figure 4.9).  These data were not quantified as we only tested 

the effects of the higher dose of 620 mJ/cm2 once. 

 

Table 4.4. Viability (% Control) for 6 day MAME cultures of Hs578T cells 

BPD-Dose (mJ/cm2) 45 90 180 360 540 

Viability (%Control) 82 ± 17 66 ± 11 47 ± 11 36 ± 8 27 ± 8 
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    Dark Control            Total Kill Control        45           

mJ/cm2   

     90                 180         360          

    540        

Figure 4.8: Response of Hs578T 6 day MAME structures to BPD-PDT: Representative
live/dead images of optical sections through the volume of 3D structures were captured for 16
contiguous fields and shown in en face view (A). Images were taken 24 hours after PDT with 1.5
µM BPD and show live cells (green, calcein AM) and dead cells (red, ethidium homodimer-1) for
non-treated dark control and BPD-PDT treated samples as indicated in the Figure; scale bar = 80
µm. Intensities of red and green fluorescence were used to calculate viability and plotted against
PDT dose (B). p-value < 0.0001, one-way ANOVA; n=6, mean ± SD 
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4.3 Dose Response of MAME Structures of Inflammatory Breast Cancer to Photokilling by 

PDT  

4.3.1 BPD-PDT  

We utilized MAME model of IBC cells to assess the dose-response to a PDT protocol in 

which mitochondria are targeted using BPD (Figure 4.10, Table 4.5).  Approximately 50% of 3D 

structures were killed at a 45 mJ/cm2 BPD-PDT dose.  When we increased the duration of 

irradiation, we observed a significant decrease in cell viability resulting in 60% cell death after 

90 mJ/cm2 (one minute), 79% cell death after 180 mJ/cm2 (two minutes), 92% cell death after 

360 mJ/cm2 (4 minutes) and 95% cell death after 540 mJ/cm2 (six minutes) of treatment.  A 

decrease in live MAME structures (green) and a corresponding increase in dead MAME 

structures (red) with increased dose of PDT were observed (Figure 4.10).  Thus there was a 

significant increase in death of IBC MAME structures in response to escalating the BPD-PDT 

dose. 

 

Figure 4.9: Response of Hs578T 6 day
MAME structures to BPD-PDT at a dose of
620 mJ/cm2: Live/dead images of optical
sections through the volume of 3D structures
were captured for 16 contiguous fields and
shown in en face view (A). This image taken
24 hours after PDT with 1.5 µM BPD shows
primarily dead cells (red, ethidium
homodimer-1). 
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    Dark Control            Total Kill Control        45           

     90                 180         360          

    540        mJ/cm2   

Figure 4.10: BPD-PDT induces dose-dependent photokilling of SUM149 cells in MAME
cultures. Tiled 16-panel images and z-stacks through the depth of structures were captured and
reconstructed in 3D to show an en face view (A). Images show live cells (green, calcein AM)
and dead cells (red, ethidium homodimer-1) and were taken 24 hours after PDT with 1.5 µM
BPD and for non-treated dark control; scale bar equals 350 µm. Intensities of red (dead) and
green (live) fluorescence were used to calculate viability and plotted against PDT dose (B).
Significance was calculated by one-way ANOVA, p-value < 0.0001; n=6, mean ± SD. 
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Table 4.5. Viability (% Control) for BPD-PDT treated IBC cells in MAME model 

BPD-Dose (mJ/cm2) 45 90 180 360 540 

Viability (%Control) 52 ± 15 40 ± 14 21 ± 6 8 ± 3 5 ± 3 

 

4.3.2 Combination PDT   

Next, we assessed the cytotoxic response of combining two photosensitizers that target 

two critical organelles within a cell, mitochondria and lysosomes, using BPD and NPe6, 

respectively.  These photosensitizing agents differ in their absorbance spectra and so 

photodamage with each agent can be separately initiated (Kessel and Reiners 2014).  We 

examined the effects on photokilling of the order of activation of the photosensitizers at three 

doses of PDT (Figure 4.11, Table 4.6).  

At a PDT dose of 22.5 mJ/cm2, we observed a significant difference in photokilling in 

response to the order of irradiation of the mitochondrial targeted photosensitizer and the 

lysosomal targeted photosensitizer (Figure 4.11 I).  The response to a combination of BPD and 

NPe6 was greater than additive compared to either alone.  Cell death with BPD was 19% and 

with NPe6 was 5%.  A sequential protocol of irradiation at 690 nm followed by 660 nm, resulted 

in 35% cell death.  In contrast, a sequential protocol of 660 nm irradiation followed by 690 nm 

irradiation yielded 57% photokilled cells.  Thus targeting lysosomes before mitochondria was 

more efficacious in photokilling of IBC MAME structures. 

Additional studies were carried out using a higher PDT dose for NPe6 (45 mJ/cm2) and 

keeping the dose for BPD at 22.5 mJ/cm2 (Figure 4.11 II).  We tested a twofold difference in 

dosage as Kessel and Reiners (Kessel and Reiners 2014) had reported that a twofold difference 

in dosage of NPe6 followed by BPD resulted in a synergistic response to photokilling in a 2D 

model of 1c1c7 hepatoma cells.  In our IBC MAME model, cell death with BPD alone was 12% 
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and with NPe6 alone was 27%.  A sequential protocol targeting either mitochondria or 

lysosomes first resulted in ~60% cell death.  The two-fold difference in doses when targeting 

mitochondria followed by lysosomes did however result in an increase in photokilling by 25% 

compared to that at a dose of 22.5 mJ/cm2 (see Table 4.6).  The order of activation of 

photosensitizers did not affect photokilling in IBC MAME models.  
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Figure 4.11 I: Combination PDT promotes photokilling of SUM149 cells in MAME
cultures. Representative images show live cells (green, calcein AM) and dead cells (red,
ethidium homodimer-1) for untreated dark control; light irradiation targeting mitochondria
(BPD-690 nm) and lysosomes (NPe6-660 nm) at dose of 22.5mJ/cm2 each (I). Optical sections
through the depth of 3D structures were captured for 16 contiguous fields 24 hours after therapy
and reconstructed in 3D; scale bar equals 80 microns. Intensities of red and green fluorescence
were used to calculate viability and plotted against treatment. Significance was calculated by
one-way ANOVA: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value <
0.0001; n=6-8, mean ± SD.	
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At a PDT dose of 45 mJ/cm2, we observed a substantial degree of photokilling, with the 

order of activation of the photosensitizers not being significant (Figure 4.11 III).  Cell death with 

either BPD or NPe6 was 36% and 44%, respectively.  We observed a significant increase in cell 

death using sequential protocols targeting mitochondria first or lysosomes first, i.e., cell death of 
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Figure 4.11 II: Combination PDT promotes photokilling of SUM149 cells in MAME
cultures. Representative images show live cells (green, calcein AM) and dead cells (red,
ethidium homodimer-1) for untreated dark control; PDT targeting mitochondria (BPD) at dose of
22.5 mJ/cm2 and lysosomes (NPe6) at dose of 45 mJ/cm2 (II). Optical sections through the depth
of 3D structures were captured for 16 contiguous fields 24 hours after therapy and reconstructed
in 3D; scale bar equals 80 microns. Intensities of red and green fluorescence were used to
calculate viability and plotted against treatment. Significance was calculated by one-way
ANOVA: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001; n =
6-8, mean ± SD. 	
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81% and 94%, respectively.  If lysosomes are targeted first, all IBC MAME structures are 

photokilled at a PDT dose of 45 mJ/cm2. 
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Figure 4.11 III: Combination PDT promotes photokilling of SUM149 cells in MAME
cultures. Representative images show live cells (green, calcein AM) and dead cells (red,
ethidium homodimer-1) for untreated dark control; PDT targeting mitochondria (BPD) and
lysosomes (NPe6) at dose of 45 mJ/cm2 each (III). Optical sections through the depth of 3D
structures were captured for 16 contiguous fields 24 hours after therapy and reconstructed in
3D; scale bar equals 80 microns. Intensities of red and green fluorescence were used to calculate
viability and plotted against treatment. Significance was calculated by one-way ANOVA: * p-
value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001; n=6-8, mean ± SD. 
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Table 4.6. Viability (% dark control) for combination PDT of SUM149 3D cultures 

Treatment Irradiation (nm) 
690nm-22.5 

mJ/cm2,660- 22.5 
mJ/cm2 

690nm-22.5 
mJ/cm2,660- 45 

mJ/cm2

690nm-45 
mJ/cm2,660- 45 

mJ/cm2

BPD 690 80 ± 8 89 ± 10 64 ± 9 

NPe6 660 95 ± 4 73 ± 22 56 ± 14 

BPD  and NPe6 690 »» 660 65 ± 16 40 ± 19 19 ± 13 

BPD and NPe6 660 »» 690 43 ± 9 40 ± 25 6 ± 4 

 

4.3.3 Changes in volume of IBC MAME structures indicate response to combination PDT 

A decrease in tumor burden is used as a standard measure of response to anti-tumor 

therapy.  In this respect, mathematical algorithms for 3D modeling of patient tumors and 

prediction of surgical volume better assess breast tumor stage and response to therapies (Guelfi, 

Masoni et al. 1994, Edgerton, Chuang et al. 2011).  Volume of nasopharyngeal carcinoma rather 

than their size is associated with poorer survival and faster recurrence (Mukherji, Schmalfuss et 

al. 2004, Lee, Huang et al. 2010, Mozley, Schwartz et al. 2010).  Here we measured the volume 

of MAME structures to determine if this parameter could be used to quantify response to 

combination PDT (Figure 4.12).  We observed an increase in size and volume of MAME 

structures over a period of 4 days for the dark controls.  In contrast, there was significant 

decrease in the size and volume of MAME structures over the 4 days following NPe6/BPD 

treatment at a dose of 22.5 mJ/cm2.  These data suggest that the volumetric measurement of 

MAME structures can be used as an indirect method to evaluate response to therapy.  
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Figure 4.12: SUM149 structure volume assesses phenotypic response to the sequential PDT
protocol. Schematic of events during the experiment (A). Representative 3D images of
SUM149-RFP cells in MAME cultures (red) treated with sequential PDT (NPe6 followed by
BPD at 22.5 mJ/cm2) (B); scale bars equal 80 microns. Volume of structures was calculated
using Volocity and is plotted against days post treatment (C); untreated dark control (black line),
NPe6/BPD-PDT (red line). Significance was calculated by two-way ANOVA: * p-value <
0.0001, n = 8, mean ± SD.   
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CHAPTER 5 

MECHANISM OF PHOTOKILLING OF TN-IBC CELLS IN MAME MODELS 

Rationale 

PDT targeting either mitochondria or lysosomes leads to the initiation of apoptosis, an 

irreversible route to cell death (Diamond, Granelli et al. 1972, Agarwal, Clay et al. 1991, 

Dougherty, Gomer et al. 1998, Kessel and Luo 1998, Dolmans, Fukumura et al. 2003, Kessel and 

Reiners 2007, Kessel and Oleinick 2010, Agostinis, Berg et al. 2011, Andrzejak, Price et al. 

2011).  PDT that targets mitochondria induces immediate release of cytochrome c thus activating 

the caspase cascade and apoptotic pathway (Granville, Carthy et al. 1998).  PDT that targets 

lysosomes induces release of lysosomal proteases into the cytoplasm and causes damage to other 

intracellular organelles resulting in activation of the caspase cascade and death via apoptosis 

(Kessel, Luo et al. 2000, Reiners, Caruso et al. 2002).  Combining the targeting of lysosomes by 

PDT with targeting of mitochondria by PDT has been shown to promote cell death.  Indeed, 

targeting lysosomes and mitochondria sequentially significantly increases photokilling by PDT 

of 1c1c7 murine hepatoma cells in monolayer cultures (Kessel and Reiners 2014).  The 

mechanism of photokilling by sequential targeting of lysosomes and mitochondria is under 

study. 

Specific Aim 2: Identify mechanism(s) involved in photokilling by sequential targeting of 

lysosomes and mitochondria. 

Hypothesis: Sequential targeting of lysosomes and mitochondria causes cell death via apoptosis.  

Results 

5.1 Cysteine Cathepsins and Calpains are not Involved in Cell Death by Combination PDT 

The additive effect that was observed upon photodamage to lysosomes prior to 

mitochondria might be due to the release of lysosomal proteases (Figure 5.1). Yousefi et al. 
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(Yousefi, Perozzo et al. 2006) have reported that calpains cleave ATG5, an autophagy-related 

protein.  Truncated ATG5 amplifies the pro-apoptotic signal.  For PDT, we hypothesized that 

lysosomal proteases or calpains may alter ATG5 cleavage.  We tested Ca074Me, a selective 

inhibitor of lysosomal cysteine cathepsins B and L (Montaser, Lalmanach et al. 2002); E64d, an 

inhibitor of cysteine proteases including lysosomal cysteine cathepsins and calpains (Tamai, 

Matsumoto et al. 1986, McGowan, Becker et al. 1989); and PD150606, an inhibitor of calpains 

(Wang, Posner et al. 1996).  We did not observe any changes in viability.  This indicates that 

cysteine proteases including lysosomal cathepsins B and L and calpains do not contribute to cell 

death in our models. 

 
 

Our laboratory has previously shown that E64d, CA074Me, and PD150606 inhibitors do 

inhibit protease activities in breast cancer cell types (Victor, Anbalagan et al. 2011, Moin, 

Sameni et al. 2012, Mullins, Sameni et al. 2012).  However to demonstrate that these inhibitors 

are cell permeable and function to decrease protease activities in IBC MAME model, we 

performed a live-cell proteolysis assay.  We observed a significant reduction in the proteolytic 

activity as shown by the decrease in degradation of DQ collagen IV (Figure 5.2).  

Figure 5.1: Inhibitors of cysteine
cathepsins and calpains do not alter
response to combination PDT.
SUM149 cells were grown in MAME
cultures for 8 days followed by
combination PDT (NPe6 followed by
BPD at 22.5 mJ/cm2) in the presence
of cell permeable inhibitors: E64d
(cysteine proteases), CA074Me
(CTSB and L) and PD150606
(calpains). Significance was
calculated by multiple comparison t-
test: **** p-value < 0.0001; bars
represent mean ± SD from at least
four 16-field images. NPe6/BPD 
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5.2 Mechanism of Cell Death Following Combination PDT is Apoptosis 

PDT targeting either mitochondria or lysosomes results in initiation of apoptosis 

(Diamond, Granelli et al. 1972, Agarwal, Clay et al. 1991, Dougherty, Gomer et al. 1998, Kessel 

and Luo 1998, Dolmans, Fukumura et al. 2003, Kessel and Reiners 2007, Kessel and Oleinick 

2010, Agostinis, Berg et al. 2011, Andrzejak, Price et al. 2011).  Morphologic features associated 

with apoptosis include cell shrinkage, dense cytoplasm, chromatin condensation (pyknosis) and 

nuclear fragmentation (karyorrhexis) (Kerr, Wyllie et al. 1972, Wyllie, Kerr et al. 1980, Kerr 

2002).  The apoptotic process is very tightly regulated; however, once executioner caspases (i.e. 

caspases-3, 6 or 7) are activated, a cell is destined to undergo programmed cell death (Wyllie, 

Kerr et al. 1980, Granville, Carthy et al. 1998, Janicke, Sprengart et al. 1998, Porter and Janicke 

1999, Renehan, Booth et al. 2001).  We observed a time-dependent increase in activated caspase-

3 as a result of NPe6/BPD treatment at a dose of 22.5 mJ/cm2 (Figure 5.3 A, B).  By 24 hours 

post-PDT, nuclear fragmentation and chromatin condensation were present (Figure 5.3 C).  The 

activated caspase-3 and changes in nuclear morphology observed here in response to sequential 

PDT protocol are consistent with cell death occurring by apoptosis.   
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are functionally active. 3D cultures
were grown in presence of DQ
Collagen IV for 8 days with treatment
with inhibitors as indicated for 24
hours. Images through the depth of
structures were captured for 16
contiguous fields and fluorescence
intensity from images was measured
using Volocity and plotted against
treatment. Significance was calculated
by an unpaired Student’s t-test, p-
value < 0.0001, n=4-8, mean ± SD. 
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Figure 5.3 Mechanism of cell death following sequential PDT protocol is apoptosis. Panel A
shows representative images of expression of cleaved caspase-3 in response to the sequential
PDT protocol PDT or a dark control. Images through the depth of structures were captured at 6
hours, 12 hours and 24 hours after treatment and images were reconstructed in 3D using
Volocity; each square unit equals 22.59 microns. Green florescence represents cleaved caspase-3
and purple represents nuclei (pseudocolored, Hoechst). Fluorescent intensity was quantified
using Volocity and plotted against treatment (B); significance was calculated by one-way
ANOVA: **** p-value < 0.0001, n=20, mean ± SD. Representative images showing fragmented
nuclei (yellow arrows) stained with Hoechst (gray scale) 24 hours after sequential PDT protocol
compared to intact nuclei for dark control (C); images show an en face view of single 3D
structure and scale bars equal 22 microns. 
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5.3 MAME Structures of IBC Cells do not Show a Bystander Effect to Combination PDT 

In a recent study in which much higher PDT doses were used for combination PDT in 

2D, the tumor cells (HeLa, HaCaT and MCF-7 cell lines) were found to be photokilled by 

necrosis (Acedo, Stockert et al. 2014).  Calcium and metabolic byproducts such as cytokines that 

are released by necrotic cells can damage neighboring cells due to a bystander effect (Henderson 

and Donovan 1989, Dahle, Kaalhus et al. 1997, Dahle, Bagdonas et al. 2000, Ding, Xu et al. 

2004).  In contrast, apoptosis initiated by low dose PDT does not induce a bystander effect or 

immune response because toxic metabolites are not leaked from apoptotic cells (Dahle, Kaalhus 

et al. 1997, Dahle, Bagdonas et al. 2000).  Here we evaluated whether there was a bystander 

response to low dose PDT in the IBC MAME models.  A PDT dose of 45 mJ/cm2 photokilled all 

3D MAME structures within 24 hours following treatment (Figure 5.4).  To test for a bystander 

effect we used a lower PDT dose, i.e., 22.5 mJ/cm2.  We observed that photokilling was 

comparable on days 1 and 2 post combination PDT, which is consistent with the absence of a 

bystander effect.  
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Figure 5.4: A bystander effect
is not induced by sequential
PDT protocol. Optical sections
through the depth of 3D
structures were captured for 16
contiguous fields and
reconstructed in 3D. Images were
taken on day 1 (A-C) and day 2
(A’-C’) after combination PDT
for 22.5 mJ/cm2 each with 1.5
µM BPD and 40µM NPe6 and
show live cells (green, calcein
AM) and dead cells (red,
ethidium homodimer-1) for
untreated dark control (A, A’);
sequential light irradiation
targeting mitochondria then
lysosomes (B, B’); and sequential
light irradiation targeting
lysosomes then mitochondria (C,
C’); scale bars equal 40 microns.
Intensities of red and green
fluorescence were used to
calculate viability and plotted
against days post-PDT (D);
Significance was calculated by
ANOVA: **** p-value < 0.0001,
n=8-10, mean ± SD. 
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CHAPTER 6 

DISCUSSION  

Initial site for metastasis of breast cancer is lymphatics.  TNBC often recurs with chest 

wall metastases.  IBC is a subtype of breast cancer that spreads rapidly.  By the time a correct 

diagnosis is made, the prognosis is poor because the cancer has already metastasized to dermal 

lymphatics.  PDT, a FDA approved therapy for some cancers, can shut down lymphatic 

vasculature (Henderson and Dougherty 1992, Dougherty, Gomer et al. 1998, Dolmans, 

Fukumura et al. 2003, Tammela, Saaristo et al. 2011).  Thus, we hypothesize that PDT could be 

a valid modality for treating breast cancer metastases.  Indeed, PDT has offered excellent clinical 

response in treating chest wall metastases of breast cancer (Allison, Mang et al. 2001, Allison, 

Sibata et al. 2004, Rogers 2012).   

TNBCs and IBCs are the most lethal subtypes of breast cancers. TNBC accounts for 

about 20-40% of IBC cases and 15-20% of non-IBC breast cancers (Lehmann, Bauer et al. 2011, 

Dawood, Ueno et al. 2012).  Experiments in this study have been done using two highly invasive 

TNBC cell lines (MDA-MB-231 and Hs578T) and one IBC cell line that is also triple negative 

(SUM149) (Lehmann, Bauer et al. 2011, Victor, Anbalagan et al. 2011, Barnabas and Cohen 

2013).  Recently, TNBCs were subtyped into 6 categories based on cluster analysis following 

gene expression profiling of 587 TNBC cases (Lehmann, Bauer et al. 2011).  Based on this 

classification, MDA-MB-231 and Hs578T lines belong to the mesenchymal-stem like (MSL) 

subtype, a subtype that has a higher expression of genes involved in the epithelial-mesenchymal 

transition and responds to mTOR and src inhibitors.  SUM149 belongs to the basal like 2 (BL2) 

subtype, a subtype that has a higher expression of cell cycle and DNA damage response genes 

and responds to cisplatin treatment.  There are not presently targeted therapies for use in clinics 

for either IBC or TNBC.  Our data demonstrate that PDT is an effective modality for 
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photokilling of 3D MAME structures of TNBC and IBC providing support for use in clinics. 

PDT that targets mitochondria can induce release of cytochrome c, a known trigger for 

apoptosis (Granville, Carthy et al. 1998).  Lysosomal photodamage results in release of 

lysosomal proteases into the cytoplasm leading to cleavage (activation) of the pro-apoptotic 

protein Bid, cytochrome c release and apoptosis (Kessel and Poretz 2000, Reiners, Caruso et al. 

2002).  Targeting lysosomes before mitochondria promotes cell death by PDT in 2D models 

(Kessel and Reiners 2014).  In our study, such a sequential PDT protocol eradicated IBC 

structures.  To our knowledge this is the first study to show using an IBC MAME model that 

combinatorial targeting of lysosomes and mitochondria with PDT is significantly more 

efficacious than targeting mitochondria alone. Our studies do, however, suggest that before a 

sequential protocol is taken to the clinic one should also consider the potential effects of varying 

the PDT dose.  A serious side effect of PDT at higher doses is skin ulceration and necrosis 

(Oleinick and Evans 1998, Allison and Moghissi 2013).  We surmise that these side effects could 

be reduced or eliminated by using combination PDT. 

Mechanistically, PDT photokills cells via apoptosis, necrosis or autophagy.  To our 

knowledge our studies are the first to show that sequential targeting of lysosomes before 

mitochondria leads to cell death by apoptosis.  This was shown by the presence of cleaved 

caspase-3 and the condensation and fragmentation of nuclei.  Inhibiting cysteine proteases (both 

lysosomal and cytosolic) did not alter cell death in our 3D MAME models suggesting that 

cysteine proteases do not play a role in photokilling of the IBC structures.  We did not observe a 

bystander effect as has also been shown for apoptotic cell death induced by PDT and treatments 

other than PDT (Dahle, Kaalhus et al. 1997, Dahle, Bagdonas et al. 2000, Staudacher, Blyth et al. 

2010, Blyth and Sykes 2011).  Our study suggests that use of PDT and in particular the lower 

doses possible with combination PDT should be explored for the treatment of IBC and TNBC. 
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PDT has not been evaluated for treatment of IBC dermal metastases.  Nonetheless, the success of 

PDT against chest wall recurrences of breast cancer (Allison, Mang et al. 2001, Allison, Sibata et 

al. 2004) suggests that PDT may be an efficacious therapeutic approach for IBC and TNBC.  
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CHAPTER 7 

ADDITIONAL STUDIES 

Effects of cellular components of tumor microenvironment on photokilling by PDT 

I. Develop and optimize coculture model of SUM149 cells and carcinoma associated 

fibroblasts (CAFs).  Use different PDT doses and sequential PDT to treat cells in the 

coculture and quantify dose response of respective cell types to photokilling. 

To study the effects of cellular components, we performed some preliminary studies; the 

results of those are shown and discussed below:  

Carcinoma Associated Fibroblasts (CAFs) are a predominant cell type in the tumor 

microenvironment that can promote malignant progression (Campbell, Polyak et al. 2009, 

Madar, Goldstein et al. 2013, Augsten 2014).  Our lab has previously designed and optimized 

MAME culture models to mimic breast tumors in context of their cellular and (Jedeszko, Victor 

et al. 2009, Sameni, Anbalagan et al. 2012).  Previous studies from the Sloane laboratory have 

shown that when TNBC cells are cultured with CAFs, the tumor cells become more invasive, 

exhibit increased degradation of extracellular matrix proteins and form larger stellate structures 

with multicellular outgrowths (Jedeszko, Victor et al. 2009, Sameni, Anbalagan et al. 2012).  

Similar coculture experiments would allow us to determine whether interactions between IBC 

cells and CAFs affect malignant phenotype. 

An association of IBC tumors with CAFs clinically is yet to be established.  Therefore, 

we performed immunohistochemistry (IHC) on IBC patient samples obtained from Dr. Mona 

Mohamed (Cairo University, Egypt).  The samples were stained using an antibody to vimentin 

that will label all fibroblasts and an antibody to fibroblast activation protein (FAP) to selectively 

label active (carcinoma associated) fibroblasts.  Here, we show that there are CAFs in human 

IBC tissue samples (Figure 7.1).  These preliminary studies need to be confirmed with tissue 
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Figure 7.1 Fibroblasts are associated with IBC tumors. Representative images of IBC patient
tissue samples stained with IgG (control antibody), Vimentin and Fibroblast Activation Protein
(FAP). Magnification: 20X  

microarrays containing normal, non-IBC and IBC tissue samples, preferentially microarrays 

annotated for breast cancer subtypes.    

We adapted the MAME coculture model (Sameni, Cavallo-Medved et al. 2009, Sameni, 

Anbalagan et al. 2012, Osuala, Sameni et al. in press).  We seeded 5000 SUM149-RFP cells and 

1600 CAF40TKi cells (a human breast fibroblast line that has been immortalized by Dr. 

Kingsley Osuala (Osuala, Sameni et al. in press) that were stained with CFSE (green).  Images 

were captured on days 2 and 6 through the entire depth of 3D structures for 16 contiguous fields 

using LSM 510 confocal microscope. Interactions among the two cell types were observed: 

CAFs (green) infiltrated into SUM149 structures (red) (Figure 7.2). 
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We determined whether PDT could photokill tumor cells and CAFs in these coculture 

models.  Limitations for these experiments were availability of dyes to maintain staining of cells 

over time needed for long-term cultures and the need to perform live-dead assays that require 

fluorophores that emit in red and green regions.  ToPro-3 is a nuclear dye that labels dead cells 

and fluoresces in the far-red region so we used ToPro-3 along with the RFP (red)- labeled 

SUM149 cells and CFSE (green)- labeled CAF40TKi cells.  In Figure 7.3 we show that a 

majority of cells were photokilled after treatment with NPe6/BPD-PDT (45 mJ/cm2) as indicated 

by the magenta staining (TopPro3).  These experiments were done to optimize conditions and as 

proof of principle that PDT could be effectively used in coculture models.  We have yet to prove 

whether both cell types are photokilled by PDT and what dose of PDT would be more 

Figure 7.2: MAME coculture model of SUM149-RFP cells (red) and CAFs (green). Tiled 16-
panel images and z-stacks through the depth of structures were captured and reconstructed in 3D
to show an en face view and show cells in coculture growing over time (2 day culture compared to
6 day culture); scale bar= 350 microns.  
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efficacious.  In addition, we cannot quantify viability due to lack of a live cell marker that 

fluoresces in range other than red, green and far red. 

 

 
II. Develop and optimize coculture model of SUM149 cells and lymphatic endothelial cells.  

Use different PDT doses and sequential PDT to treat cells in the coculture and quantify 

the dose response of respective cell types to photokilling. 

Preliminary studies are shown below:  

IBC spreads via the dermal lymphatic vasculature.  Hence a coculture of the two types 

would provide a better insight of cell-cell interactions and how these interactions might affect 

PDT.  We adapted the MAME coculture model (Sameni, Cavallo-Medved et al. 2009, Sameni, 

Anbalagan et al. 2012, Osuala, Sameni et al. in press).  We seeded 5000 SUM149 cells and 

20,000 human dermal lymphatic endothelial cells (HDLEC).  The 3D MAME structures were 

allowed to form for 4 days.  PDT was then performed and a live/dead assay was done for 

analysis of photokilling (Figure 7.4).  We observed that PDT could photokill tumor cells and 

HDLECs in these coculture models.  A limitation for these experiments was ability the to 

maintain HDLEC cells in culture for long-term cultures.  The other limitation was availability of 

dyes to maintain staining of live cells over long periods of time and the need to perform live-

Figure 7.3: PDT is effective in killing cocultures
of SUM149-RFP cells (red) and CAFs (stained
with CFSE; green). The image was captured for
4 contiguous fields, through the depth of
structures and shows effect of combination PDT
(sequential NPe6/BPD-PDT at dose of 45 mJ/cm2)
on the coculture where magenta (pseudocolored
ToPro3) represents dead cells; scale bar = 180
microns.  
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dead assays that requires fluorophores that emit in red and green region.  

 
Figure 7.4: PDT is effective in killing cocultures of SUM149 cells and HDLECs. Optical 
sections. through the depth of structures were captured for 16 contiguous fields. Images show 
effect of BPD-PDT on the coculture where red (Ethidium Homodimer 1) represents dead cells 
and green (Calcein AM) represents live cells; scale bar = 180 microns. 
 

Effects of non-cellular components of tumor microenvironment on photokilling by PDT 

I. Optimize the MAME model of SUM149 cells to study the effects of pH on photokilling by 

PDT. 

Previous studies from the Sloane laboratory have shown that the acidic pH found in the 

breast tumor microenvironment enhances the activity of secreted cysteine cathepsins (e.g. 

cathepsin B) thus contributing to increased malignancy of breast tumors (Rothberg, Bailey et al. 

2013).  We would like to study if PDT would is affected by an acidic tumor microenvironment. 
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II. Optimize the MAME model of SUM149 cells to study the effects of hypoxia on 

photokilling by PDT. 

One of the important components for an effective PDT is availability of oxygen. Solid 

tumors such as those of the breast often have hypoxic cores, which might decrease the efficacy 

of therapy.  We would like to study in future the effect of PDT on MAME structures when 

availability of oxygen is limited.   
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ABSTRACT 

PHOTODYNAMIC THERAPY AS AN EFFECTIVE THERAPEUTIC APPROACH IN 
MAME MODELS OF TRIPLE NEGATIVE AND INFLAMMATORY BREAST 

CANCERS 

by 

NEHA AGGARWAL 

August 2015 

Advisor: Bonnie Sloane, Ph.D., and Douglas R. Yingst, Ph.D. 

Major: Physiology  

Degree: Doctor of Philosophy 

Introduction: Photodynamic therapy (PDT) is a minimally invasive, FDA approved therapy for 

treatment of several indications including endobronchial and esophageal cancers that are 

accessible to light.  Triple negative breast cancer (TNBC) and inflammatory breast cancer (IBC) 

are aggressive and lethal subtypes of breast cancer that spread to chest wall and dermal 

lymphatics, respectively, sites that would be accessible to light.  Both TNBC and IBC patients 

have a relatively poor survival rate due to lack of targeted therapies.  Use of PDT is 

underexplored for breast cancers but has been proposed for treatment of subtypes for which a 

targeted therapy is unavailable.  

Methods: We optimized and used a mammary architecture and microenvironment engineering 

(MAME) model of IBC to examine the effects of PDT using two treatment protocols.  The first 

protocol used the benzoporphyrin derivative monoacid A (BPD) activated at doses ranging from 

45 mJ/cm2 to 540 mJ/cm2.  The second PDT protocol used two photosensitizers: BPD and mono-

L-aspartyl chlorin e6 (NPe6), which were sequentially activated.  Effects of PDT were assessed 

by live-dead assays.  

Results: Using a MAME model of TNBC and IBC, we demonstrate a significant dose-response 
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in photokilling by BPD-PDT.  We found that sequential activation of NPe6 followed by BPD is 

more effective in photokilling of tumor cells than is BPD alone.  Sequential activation at a dose 

of 45 mJ/cm2 each resulted in >90% cell death, a response only achieved by BPD-PDT at a dose 

of 360 mJ/cm2.  Furthermore, our data show that volumetric measurement of 3D MAME 

structures reflect efficacy of PDT treatment.  We also show that the mechanism of cell death 

after sequential activation of NPe6 followed by BPD is apoptosis.  

Conclusion: Our study is the first to demonstrate the potential of PDT in treating MAME 

structures of TNBC and IBC.  

  



94 

	

AUTOBIOGRAPHICAL STATEMENT 
 

Neha Aggarwal 
 

Education 

Ph.D. (Physiology),         2010- 2015 
       Wayne State University School of Medicine (WSU SOM), Detroit, MI, USA 

Mentors: Dr. Bonnie F. Sloane and Dr. Douglas Yingst 
Dissertation topic: Effects of photodynamic therapy on 3D models of triple negative and 
inflammatory breast cancers   

MS (Thesis option- Biology),           2007- 2010 
      Cleveland State University (CSU), Cleveland, Ohio, USA.  

Mentor: Dr. Girish Shukla 
Thesis title: Characterization of a microRNA harboring intron for pre-mRNA splicing and 
microRNA processing 

Master of Science (Honors- Thesis option), Biochemistry,    2005-2007  
      Panjab University, Chandigarh – INDIA.     GPA: 3.8 distinction  

Mentor: Dr. Sanjeev Puri 
Thesis title: Molecular studies on stem cell differentiation: Paradigm for adipogenesis & 
nephrogenesis 

Bachelor of Science (Honors), Biochemistry,      2002-2005  
      Panjab University, Chandigarh – INDIA.     GPA: 3.8  
 
Peer Reviewed Publications 

1. Aggarwal, N., Kessel, D., and Sloane, B.F.: Photodynamic therapy as a therapeutic approach for 
inflammatory breast cancer cells grown in 3D models, 2015, (Submitted) 

2. Osuala, K.O., Sameni, M., Shah, S., Aggarwal, N., et.al.: Il-6 signaling between ductal carcinoma in 
situ cells and carcinoma-associated fibroblasts mediates tumor cell migration, 2015, (In Press) 

3. Ramalho, S., Sharma, R., Aggarwal, N., et.al.: Visualizing inhibition of proteolysis by a light-activated 
ruthenium compound in live breast cancer cells, 2015, (Submitted) 

4. Aggarwal, N. and Sloane, B.F.: Cathepsin B: multiple roles in cancer, Proteomics Clin. Appl., 2014, 
PMID: 24677670 

5. Kessel, D., Aggarwal, N. and Sloane, B.F.: Increased efficacy of photodynamic therapy via sequential 
targeting. SPIE (the international society for optics and photonics), 2014, doi: 10.1117/12.2042421 

 
Awards and Honors 

 Marion I. Barnhart Graduate Student Award, Department of Physiology- 2014 
 American Society for Photobiology’s Frederick Urbach Memorial Student Award- 2014 
 Third position award for poster presentation at Graduate Research Exhibition- 2014 
 Graduate School Travel Award- 2014, 2012 
 Department of Physiology Travel Award- 2014, 2012 
 Department of Pharmacology Travel Award- 2014, 2012 
 Thomas C. Rumble Fellowship, WSU SOM- 2013-2014 
 GRA Fellowship from Graduate school, WSU SOM- 2012-2013 
 IBS fellowship from Graduate school, WSU SOM- 2010-2012 


	Wayne State University
	1-1-2015
	Photodynamic Therapy As An Effective Therapeutic Approach In Mame Models Of Triple Negative And Inflammatory Breast Cancers
	Neha Aggarwal
	Recommended Citation


	Microsoft Word - Aggarwal Dissertation Final Draft

