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CHAPTER 1 

 INTRODUCTION 

1.1 Statement of the Problem 

Injuries in motor vehicle accidents continue to be a serious and costly societal problem. 

Protecting occupants from cervical spine compressive injuries during rollover dynamics has 

been a significant challenge to automotive safety engineers. Since 2005, motor vehicle 

accidents have accounted for 42.1% of all reported spinal cord injuries in the United States 

(NSCISC Apr 09). The development of effective countermeasures to decrease the incidence of 

these spinal cord injuries must be guided by meaningful and reliable injury criteria.  

Rollover researchers have regularly used the Hybrid III anthropomorphic test device 

(ATD) as a tool in understanding the magnitude of neck forces and moments during rollover 

tests for assessment of injury causation and evaluation of the efficacy of various vehicle 

structural and restraint designs (Orlowski et al. 1985, Bahling et al. 1990, Hare et al. 2002, 

Moffatt et al. 2003, McCoy and Chou 2007, Raddin et al. 2009, and Viano et al. 2009). 

Investigators have observed noticeable lateral bending of the ATD neck prior to impact or in 

conjunction with head impact with the vehicle roof in rollover crash tests (Figure 1.1). Since 

there is scant data available about the effects of lateral bending on overall compressive 

tolerance of the human cervical spine, it is unknown if the presence of lateral bending is 

important to consider when interpreting the data from rollover testing. As the Hybrid III ATD 

continues to be used in automotive rollover applications, interpretation of measured neck loads 

in this testing mode would be aided by a better understanding of human cervical spine response 

and tolerance in compression dominated combined loading scenarios and their correlation to 

Hybrid III ATD neck responses. 
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Figure 1.1: ATD neck compressive loading with lateral bending present from (A) Raddin et 
al. (2009) and (B) McCoy and Chow (2007) 

 

1.2 Background 

The response of the human cervical spine to compressive loading has repeatedly been 

demonstrated to vary with the direction of the applied loading vector, head and neck constraint 

and initial head and neck posture (Nusholtz et al. 1983, Yoganandan et al. 1986, McElhaney et 

al. 1988, and Myers et al. 1991a). While sagittal plane human cervical spine compressive 

loading has been well explored, human cervical spine compressive loading combined with 

lateral bending remains largely unexplored other than in computational studies (Eggers et al. 

2005 and Hu et al. 2008). The influence of lateral bending on injury dynamics and tolerance has 

yet to be quantified in the human cervical spine.  

In the vehicle rollover environment, several potential loading scenarios are feasible 

consisting of a laterally angled impact surface, a laterally angled posture or a combination 

thereof. Yamaguchi et al. (2005) have demonstrated the response of human surrogates during 

vehicle dynamics leading up to the initiation of vehicle trip prior to rollover. Results indicated that 

people on the near side of vehicle, or side that first approaches the ground in a rollover, tend to 

move their heads’ away from the window opening against the lateral inertial loads of their heads’ 

creating a laterally bent neck posture (~20 degrees) in the process (Figure 1.2). Since the 
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influence of these effects is unknown, the significance of lateral bending phenomena previously 

identified by automotive researchers has not been fully addressed. 

 

 

Figure 1.2: Human surrogate response during vehicle kinematics leading up to near-side (A) 
and far-side (B) rollovers from Yamaguchi et al. (2005) 

 

Biomechanical investigations using post mortem human subjects (PMHS) have been an 

essential element in the current understanding of the complex dynamics of compressive cervical 

spine injury including cervical column buckling, injury timing with respect to head motion, and 

the effects of contact surface padding on neck injury risk (Nusholtz et al. 1983, Alem et al. 1984, 

Yoganandan et al. 1986, Pintar, Nightingale et al. 1996a, 1996b, Camacho et al. 2001). 

Compressive injury tolerance has historically been reported by identifying the peak axial force at 

injury measured at the base of the neck (Pintar et al. 1995 and Nightingale et al. 1997a). 

However, as an injury predictor, compressive force at failure exhibits variation and this has been 

attributed to the alignment of the cervical vertebra and the end conditions of test methodology 

used. Robust and sensitive injury metrics for human compressive cervical spine tolerance that 

can be applied to a wide range of initial test conditions and head-neck postures would be useful 

in evaluating and developing mechanically meaningful and robust anthropomorphic test devices 
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(ATDs) and their associated injury assessment reference values (IARVs). Previous PMHS 

studies that include the entire human head-neck complex and measure the dynamic forces and 

moments at the base of the neck include Pintar et al. (1995 and 1998a) and Nightingale et al. 

(1997a). By combining the available data sets from these previous studies with the data from 

the experiments conducted as part of this research, a more refined and statistically relevant 

tolerance was identified based on the underlying cervical spine mechanics. 

Repeatable and reliable ATDs are important for assessing the risk of injury during 

various impact loading events in automotive, motor sports or athletic sports environments. The 

current neck compressive injury assessment reference value (IARV) for the midsized male was 

originally based on reconstructions of injurious football impacts using the Hybrid III ATD (Mertz 

et al. 1978). The normalized neck injury criteria, or Nij, takes into account neck axial load and 

sagittal plane bending moment and was initially introduced to address the risk of neck injury due 

to airbag deployment (Eppinger et al. 1999). The current compressive Nij intercepts have been 

set equal to that of the derived tension intercepts. The tension intercepts were formulated from 

matched airbag deployment testing on porcine subjects and the Hybrid 3-year-old ATD (Mertz et 

al.1982a, Mertz et al. 1982b, Prasad and Daniel, 1984). Porcine tests resulting in tension–

extension cervical injury were correlated to the response of the Hybrid 3-year-old ATD and 

scaled up to the Hybrid III 50th male ATD. As the Hybrid III continues to be used in automotive 

rollover applications, the interpretation of measured neck loads and moments in the Hybrid III 

ATD neck during primarily compressive loading scenarios would be aided by a more complete 

understanding of the correlation between these mechanical responses and the risk of 

compressive injury in the human cervical spine.  

Similar to the approaches taken by Mertz et al. (1978) for football impacts and by Mertz 

et al. (1982a and 1982b) and Prasad and Daniel (1984) for primarily tension-extension 

combined loading scenarios, further understanding about the relationship between the Hybrid III 

ATD neck response and the risk of injury to the human cervical spine during primarily 
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compressive loading scenarios can be evaluated by performing matched tests of PMHSs and 

the ATD. A matched data set was created by reconstructing the PMHS tests of Nightingale et al. 

(1997a) and those performed as part of the current study with the Hybrid III head and neck 

assembly. Using the matched data set, the injury predictability of ATD neck dynamics was 

evaluated and refined injury probability relationships identified for evaluating compressive 

loading scenarios.  

 

1.3 Specific Aims 

The specific aims of the study are to: 

 

1. Investigate the effects of lateral bending on compressive cervical spine response and 

tolerance through the use of PMHS head-neck complex experimentation.  

 

2. Identify more robust injury metrics for human compressive cervical spine tolerance that can 

be applied to a wider range of initial test conditions and initial cervical spine postures by 

combining the data collected in Aim 1 with data from prior studies. 

 

3. Evaluate the Hybrid III ATD neck Injury Assessment Reference Values (IARVs) and new 

potential neck injury metrics under dynamic compressive loading conditions comparable to 

those of PMHS tests with known injury outcomes. 
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CHAPTER 2  

CERVICAL SPINE ANATOMY, EPIDEMIOLOGY, 

 INJURY CLASSIFICATION AND INJURY MECHANISM 

 
2.1 – Bony and Ligamentous Anatomy 
 

The cervical spine functions to connect the head to the torso and provide structure for 

controlled articulation of the head. It serves as a conduit for the spinal cord and the vertebral 

arteries, the major blood supply to the brain stem and posterior portions of the brain, and 

provides functional strength that protects the other soft tissue structures of the neck including 

the carotid arteries. The majority of this anatomical review is taken from McElhaney et al. 

(2002). Unless otherwise indicated, no explicit citing will be provided if the basis is taken from 

this reference. 

The ligamentous cervical spine consists of seven vertebral bodies connected by 

intervertebral discs and connective ligaments that form a total of eight motion segments (see 

Figure 2.1). The vertebrae are often separated into two categories, the upper and lower cervical 

spine. The upper cervical spine extends from the atlanto-occipital joint at the base of the skull to 

the C2-C3 junction. The morphology of C1 (atlas) and C2 (axis) are differentiated from the 

remaining cervical vertebrae. The atlas (C1) is comprised of an anterior and a posterior arch 

which connect to form a ring. At the junction of these arches are the lateral masses which form 

superior facets that articulate with the occipital condyles of the skull. The odontoid process (or 

dens) of C2 and the spinal cord pass through this ring separated by the transverse ligament. 

Laterally, on each side of the ring, the transverse processes connect and form the transverse 

foramen for the vertebral arteries to pass through. The axis (C2) is made up of a vertebral body 

and laminae which connect to similarly form a foramen for the spinal cord. At the posterior 

connection of the laminae, a spinous process is present. Superior to the axis body, the odontoid 

process projects into the atlas. Superior and inferior facets are present laterally on the axis body 
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for articulation with the atlas and C3 respectively. Both upper cervical spine vertebrae have 

transverse processes, albeit significantly smaller than those of the lower cervical spine. Based 

on this structural makeup, no intervertebral discs are present between the occiput and the atlas 

or the atlas and the axis. This structure allows for a large range of motion of the head.  

The lower cervical spine extends from the C2-C3 junction to the cervical spine 

connection with the thoracic spine at T1. Adjacent vertebral bodies are connected and articulate 

with each other through the intervertebral discs. The posterior elements of the vertebrae, 

including the laminae and pedicles, create the vertebral foramen through which the spinal cord 

passes. Lateral to each pedicle are the bony transverse process and posterior to the laminae is 

the spinous process. At each pedicle-lamina junction are the inferior and superior facets which 

serve as the articulating joints for the inferior and superior vertebrae respectively. The 

intervertebral discs are not discussed in detail because they do not contribute significantly to the 

structural stability of the cervical column. Additionally, in the absence of bony fracture, disc 

rupture has been shown to be a degenerative process that typically occurs over many loading 

cycles rather than a single impact event. Researchers have continually found that under 

compressive load, the vertebral body was always damaged prior to visible damage of the 

adjacent intervertebral disc (King, 2002). 
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Figure 2.1: Anterior and lateral views of the bony cervical column (from McElhaney et al. 
2002) 

 

In addition to the bony joints, several ligaments are present and serve as connective 

tissue for the various vertebrae and base of the skull. The cruciate ligament consists of the 

transverse ligament of C1 and a vertical portion that connects the anterior inferior aspect of the 

foramen magnum of the skull to the C2 body. The apical ligament connects the C2 dens directly 

to the skull and the alar ligaments connect the lateral aspects of the dens to the base of the 

skull. The anterior and posterior longitudinal ligaments and the flaval ligaments attach directly to 

the base of the skull and descend to the lower cervical spine (see Figure 2.2).  
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Figure 2.2: A posterior view of the upper cervical column ligaments (from Moore and Daley, 

1999) 

 

The anterior longitudinal ligament (ALL) connects the anterior surfaces of the vertebral 

bodies and the posterior longitudinal ligament (PLL) connects the posterior surfaces of the 

vertebral bodies. Additionally, the interspinous, supraspinous, and flaval ligaments connect 

adjacent vertebral spinous processes and laminae (see Figure 2.3).  

 

 

Figure 2.3: The ligaments of the cervical vertebrae (from White and Panjabi, 1990) 
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2.2 Cervical Spine Kinematics and Engineering Descriptions 

In order to discuss the complex motion and loading scenarios of the human cervical 

spine, it is important that there be clarity in the definition of the various head and neck motions, 

orientations and engineering loading polarities. Additionally, clarity is vital for accurate 

description of injury classifications and mechanisms. Medically, flexion is defined as bending of 

a part or decreasing the angle between body parts while extension means the inverse (Moore 

and Agur, 2002). With respect to the head and cervical spine, flexion is defined as forward 

rotation of the head about the lateral axis of the head as the chin moves closer to the chest, 

while extension is rotation in the opposite direction. The medical definition of compression is 

synonymous with that of engineering; however, engineering tension is often referred to as 

distraction medically. Figure 2.4 taken from Portnoy et al. (1972) depicts the various orientations 

of the entire head-neck complex. Figure 2.5, also from Portnoy et al., outlines the various 

modes of applying loads to a cervical spine segment. Bending moments and shear forces can 

be applied in either the anterior-posterior direction or the lateral direction.  

 

Figure 2.4: Descriptions of head / neck orientations (from Portnoy et al. 1972) 
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Figure 2.5: Descriptions of cervical loading modes (from Portnoy et al. 1972) 

 

The Society of Automotive Engineers (SAE) defines the three orthogonal axis and their 

polarities with respect to the human body or anthropomorphic test device (SAE Surface Vehicle 

Recommended Practice J211-1). The X-axis is positive in the anterior direction, the Y-axis is 

positive in the rightward direction, and the Z-axis is positive in the inferior direction (Figure 2.6). 

The resulting positive local cervical forces and moments for each of the three axes, defined in 

SAE sign conventions, are anterior shear force and a rightward lateral bending oriented 

moment, rightward shear force and extension oriented moment, and tensile axial force and, 

when viewed from above, clockwise oriented axial rotation moment. Confirming proper polarity 

with a PMHS test specimen or ATD can be confusing. Recommended practices outline the 

following dummy manipulation polarity checks to confirm positive polarity; head rearward, head 

leftward, head upward, left ear to left shoulder, chin to sternum and chin to left shoulder. These 

manipulations are opposite of the respective neck reactive forces which are consistent with the 

orthogonal SAE axes.  
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Figure 2.6: Standard SAE coordinate system and polarity (from SAE J211-1) 

 

2.3 Injury Epidemiology 

Approximately 12,000 spinal cord injuries occur each year in the United States, not 

including those who sustain fatal injuries at the scene. Fife and Kraus (1985) found 

approximately 42% of spinal cord injury were motor vehicle occupants and 68% of these lesions 

were in the cervical region. Since 2005, motor vehicle accidents have accounted for 42.1% of 

reported spinal cord injuries (NSCISC Apr 09). When considering cervical spinal cord injury 

only, McElhaney et al. (2002) reports that automobile accidents compromise the most frequent 

injury associated activity at 36.7% of reported cases. Most injury epidemiology studies are 

based on the Abbreviated Injury Scale (AIS). Miller (2001) has estimated medical costs alone 

for spinal cord injuries in vehicle accident survivors range from 330,000 dollars for AIS 3 injuries 

to over 1 million dollars for an AIS 5 injury on a per case basis. 

Cervical spine injuries in the automobile collision environment can be separated into two 

categories, those caused by direct head contact and those without. Non-head contact neck 

injures are rare, but can be sustained by lap-shoulder belted occupants as reported by Huelke 

et al. (1978, 1992). Portnoy et al. (1972) reported on 55 cervical spine injuries in the automotive 
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crash environment caused by head contact, and categorized them by three frequent injury 

mechanisms including tension-extension, compression-flexion, and compression-extension. The 

authors note that these basic groups are further delineated by lateral bending and rotation. As 

the focus of the current research is cervical spine response and tolerance in compression and 

the effect of lateral bending, the focus will be on cervical spine injuries that occur with head 

contact. 

Alker et al. (1975) reported on 146 fatal traffic accident victims and found that 21% had 

demonstrable neck injury most of which were localized to a single level at the cranio-cervical 

junction or the upper two cervical vertebrae. Similarly, Bucholz et al. (1979) looked at 100 fatal 

traffic accident victims and found incidence of cervical spine injury was 24% and all but 4 of the 

24 fractures and/or dislocations were localized between the occiput and the axis. Yoganandan 

et al. (1989a) conducted a clinical study as well as an analysis of cervical spine injury in the 

automotive environment through analysis of data in the National Automotive Sampling System 

(NASS) database. They found that cervical injuries were more prevalent than thoracolumber 

injuries and that 20% of the AIS 3+ neck injuries involved the spinal cord, while 65% involved 

the vertebrae. McElhaney et al. (2002) reported that estimates of neurological injury in 

compression related cervical fractures ranges between 40% and 75% with an increased risk of 

neurological injury with increased fracture severity. Similar to the findings of Alker et al. and 

Bucholz et al., Yoganandan et al. (1989a) found that  upper cervical spine injuries (occiput to 

C2) were predominant in fatal spinal injuries. In contrast, lower cervical spine injuries were more 

predominant in survivors, with the most common clinical fracture being flexion-compression 

related to and including vertebral body fractures and posterior element disruption. Other findings 

included a strong relationship between cranio-facial injury and serious cervical spine injury and 

that belted occupants were less frequently seriously injured. When the collision mode was taken 

into account, frontal collisions accounted for approximately 40% of the annual AIS 3+ cervical 

injuries, while rollovers accounted for only 25%. However, when the frequency of frontal 
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collisions and rollovers are taken into account, the rollover crash mode clearly had the highest 

incidence rate of AIS 3+ cervical injuries. 

Hu et al. (2007a, 2007b) used the NASS Crashworthiness Data System (CDS) database 

to look at head, face and neck injuries specifically in rollover collisions. The frequency of AIS 3+ 

neck injury in rollover, based on weighted estimates, was found to be 0.4%. They found that 

occupant age, weight, and the number of quarter turns during the rollover event correlated with 

neck injury (predominately fracture related) and that seat belted occupants had a statistically 

significant reduced risk of injury. Additionally, the authors postulated that lateral deformation of 

vehicle structure may be more crucial than vertical deformation for prediction of head, face and 

neck injury in rollovers but noted that these correlations did not show causality.   

 

2.4 Injury Classification and Mechanism 

Cervical spine injury classification, particularly fractures and dislocations, has not 

historically had a uniform reporting method. Several classifications have been proposed (Roaf 

1972, Babcock 1976, Allen 1982, Harris 1986, Myers and Winkelstein 1995, and Winkelstein 

and Myers (1997). Most early studies relied on a retrospective review of injured patient data. 

Roaf (1972) outlined this confusion, describing as an example that all cervical injuries in which 

the patient has facial or frontal injuries are depicted as “hyperextension” injuries regardless of 

the anatomical lesion created. He further commented on cervical injuries categorized as flexion 

injuries, stating that unless the cervical spine was pathologically stiff, hyperflexion could not 

occur without a broken mandible or manubrium sterni.  

Hyperextension and flexion as referenced above by Roaf refer to global head-neck 

motions. One of primary confusing factors related to cervical injury classification is that head 

motion associated with both contact and non-contact cervical spine injury is often used to 

describe the cervical fractures and dislocations identified. Nightingale et al. (1996a) have clearly 

demonstrated that in compressive cervical loading modes caused by impact to head, cervical 
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injury occurs prior to any substantial movement of the head. As early as 1972, Roaf advocated 

for describing cervical injuries by the displacing forces at the local level. Similarly, Portnoy et al. 

discussed that classification of injuries should result from dynamic analysis of forces applied to 

the spine. This idea was formalized by White and Panjabi (1978) as the Major Injury Vector or 

MIV. The MIV is defined as the internal injury producing load at a particular level in the spine. 

Winkelstein and Myers (1997) described a classification system based on the applied forces 

with experimental validation. This mechanistic classification system is based on the force and 

the eccentricity at which it is applied for a given damaged cervical motion segment. This system 

can be found in Figure 2.7. 

The current study is focused on primarily compressive cervical injuries with some 

contribution from combined lateral and anterior-posterior loading modes. Although rare, several 

cervical injuries have been previously associated with lateral bending dynamics in the literature. 

Roaf (1963) presented five cases of what he considered to be lateral flexion cervical spine 

injuries. There was often brachial plexus injury in addition to asymmetric separation between 

lower vertebrae (C5 to C7) but only one case included a compressive fracture. Babcock et al. 

(1976) opined that lateral forces can produce cervical injury but rarely occur as isolated injuries 

and are typically in combination with flexion or extension injuries. Allen et al. (1982) presented 

fives cases in which they classified as lateral flexion injuries. They are classified by an 

asymmetric compression fracture of the centrum plus vertebral arch fracture on the ipsilateral 

side. The authors went on to say that it is conceivable that compressive and distractive lateral 

flexion injuries may exist but that their case material is too limited to evaluate the probability. 

Harris et al. (1986) described lateral flexion as more commonly seen as modifying a primary 

vector force and presented an asymmetric fracture of the body of C2. The authors further 

describe an uncinate process fracture as the only discrete cervical fracture attributable to lateral 

flexion. When the scope is narrowed to include only compression driven cervical injuries, 
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asymmetric injury is the only injury class currently attributed to lateral bending in combined 

loading modes.  

 

 

 

Figure 2.7: Cervical spine injury classification based on applied forces with experimental 
validation (from Winkelstein and Myers, 1997) 

 

The mechanism of cervical injury at the local level can be caused by various head, neck 

and torso loading modes. During compressive loading events, the resultant force vector location 

(eccentricity) defines the local loading environment at each vertebral level based on the overall 
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geometry of the cervical spine. Additionally, buckling causes local geometry changes and adds 

local inertial loading which contributes the resultant loading at each level and often times 

produces several different classes of cervical spine injury at various vertebral levels for any 

single impact loading event. For the purposes of the current study, the actual applied loads will 

be described from an overall specimen stand point. Forces and moments will be measured 

globally at the impact point and at the base of the neck, not at each individual spinal segment; 

however, injuries will be classified by the forces at the local level required to create the 

observed damage. 
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CHAPTER 3 

LITERATURE REVIEW – CERVICAL SPINE RESPONSE AND TOLERANCE IN 

COMPRESSIVE LOADING MODES AND CERVICAL INJURY CRITERIA 

 
Published static and dynamic testing strategies using post mortem human subject 

cervical spine specimens can be grouped into three types based on the type of test specimen 

used: whole body cadaver, isolated head and neck and cervical spine motion segments. Human 

tissue, including bone and ligament, is viscoelastic or loading rate dependant (Mow and Hayes, 

1997). McElhaney et al. (1983, 1988) has reported on these mechanical properties specifically 

for the ligamentous cervical spine. As rollover crashes are dynamic events, the focus of this 

literature review is on cervical spine dynamic response under realistic loading scenarios. 

Additionally, the various effects of the applied loading vector, head and neck constraint and 

initial head and neck orientation on compressive response and tolerance and the likelihood of 

sustaining a bony cervical injury are also of interest. 

 

3.1 Whole Body PMHS Compressive Cervical Spine Experimentation 

In order to load the cervical spine in non-trivial compression loading scenarios, 

compression of the spine is achieved when load is applied either through the head or the torso 

and resisted by the other. Hence, all meaningful compression loading events are head contact 

events and can be divided into superior to inferior impacts by an impactor on the apex of the 

head or inverted drop tests in which the cervical spine is loaded by the torso in an inferior to 

superior direction. The use of whole body human cadaveric specimens allows for direct 

evaluation of various loading scenarios but is limited in that only applied loads at the specimen 

head can be easily measured. Several historical whole body cadaver studies have provided 

some insight into the magnitude of applied loads that cause damage in the PMHS cervical spine 
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and the general effects of various initial head, neck and torso orientations. These studies are 

briefly reviewed in the section below. 

 

3.1.1 Dynamic Whole Body PMHS Experimentation in Superior - Inferior Impacts  

Eleven unembalmed PMHS were subjected to dynamic superior – inferior impact by 

Culver et al. in 1978. The cervical spine was aligned vertically with a 9.9 kg padded impactor’s 

axis in order to maximize the load carrying capability of the cervical spine and increase the 

likelihood of basilar skull fracture. The authors reported that fractures began to occur at peak 

impact forces over 5.7 kN, impactor velocities over 7.5 m/s and initial impact energy values of 

380 J. The authors also observed compressive arching of the spine that followed the normal 

lordotic curvature and appeared to depend on the initial alignment of the spine. 

Hodgson and Thomas, 1980, applied static and dynamic loading to the heads of 

embalmed cadavers wearing helmets. Their results stated that the extent of head constraint 

imposed by the impactor’s surface, the impact location, and the impact force alignment with the 

spine were the most influential factors on the site of fracture and the level of strain measured. 

In 1981, Nusholtz et al. tested twelve unembalmed cadavers with a 56 kg impactor at 

impact speeds ranging form 4.6 to 5.6 m/s Each subject was instrumented to measure head, T8 

and sternum accelerations. The orientation of the head, cervical spine and torso was adjusted 

relative to the impactor axis in order to investigate the initial orientation effect on damage 

patterns. The peak forces produced during impacts ranged from 1.8 to 11.1 kN. The authors 

concluded that the initial orientation of the spine was a critical factor influencing spine response 

and damage produced. They also found that descriptive head motion relative to the torso was 

not a good indicator of neck damage and finally, that the complex nature of spinal kinematics 

and damage may preclude the determination of a single tolerance criterion such as force. 

Maiman et al. (1983) subjected three specimens, including the head, neck and intact 

torso, to compressive loading using a constant rate Materials Testing System (MTS) machine at 
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rates ranging from 1.12 to 1.42 m/s and measured the force applied by the MTS piston. The 

specimen torsos were oriented upright and supported under the arms with rigid yokes. Two 

specimens had their heads oriented horizontal with the Frankfort plane and one specimen head 

was extended 25 degrees. It is not clear what the head’s translational orientation was with 

respect to the base of the neck or torso. Loading to the vertex of the head resulted in upper 

cervical spine posterior ligament disruption at loads of 1,868 and 2,936 N, respectively, and 

large piston displacements of 72 mm and 92 mm at failure. The pre-extended specimen 

sustained an avulsion fracture at C4 and anterior longitudinal ligament disruption at C5 and C6 

at a load of 1,512 N and piston displacement of 36 mm. The authors emphasized the variety of 

injuries produced by specific force vector and the difficulty in retrospectively assigning forces 

given a specific lesion. 

Alem et al. subjected 19 unembalmed cadavers to superior – inferior impact in 1984. A 

10 kg impactor was utilized at impact speeds ranging from nominally 8 m/sec in five non-

injurious tests up to 11 m/sec. Measurements taken were similar to those by Nusholtz et al. 

(1981) but Alem et al. measured the acceleration responses at T1, T6 and T12 instead of at T8 

and the sternum. The authors found that impact force was not a reliable predictor of cervical 

injury, however, both the time integral of the impact force or impulse (impactor momentum) and 

the maximum head velocity correlated well with cervical spinal damage. 

 

3.1.2 Dynamic Whole Body PMHS Inverted Drop Experimentation 

Inverted drops of whole body PMHSs allows for easier control of head and neck initial 

positioning. Additionally, with regard to the automobile rollover environment and other types of 

diving injury scenarios, inverted drop testing of PMHS replicates the loading mode of the torso 

continuing to move towards the head after head motion is arrested. In 1983, Nusholtz et al. 

conducted inverted drop tests of eight whole body PMHSs. The purpose of the study was to 

investigate the effect of head and spinal configuration on damage patterns. Injurious and non-
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injurious tests were conducted on either 6 mm or 25 mm of ensolite padding and divided into 

two series; the first which constrained the head in the mid-sagittal plane and the second which 

did not (included head, neck and torso lateral pre-positioning). Figure 3.1 depicts the 

experimental setup. Cervical damage was documented in tests with drop heights ranging from 

0.9 to 1.8 m. The authors reported that when the initial positioning was not in the mid-sagittal 

plane, flexion type damages to the PMHS were observed in the cervical spine. A review of the 

damage summary provided by the authors indicates only one of the four tests not constrained in 

the mid-sagittal plane resulted in cervical fractures biased to one lateral side. The authors also 

noted that the acceleration response and mechanical impedance at T1 was strongly dependant 

on the initial position of the head, neck and thorax. 

 

Figure 3.1: Schematic from Nusholtz et al. (1983) depicting setup of a sample test subject prior 

to release 

Yoganandan et al. reported on a similar study of inverted PMHS drop tests in 1986. The 

tests were divided between constrained and unconstrained groups. In eight specimens, the skull 

was fixed to a halo ring and flexible steel cables were used to flex the head forward 

approximately 15 degrees. The cables were adjusted to maintain cervical compression in the 70 
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to 110 N range and released upon contact. This setup was intended to simulate muscle tone. In 

the other seven specimens, the head was unconstrained. In six specimens (three from each 

group), the mid-sagittal portion of either C5 or C6 was surgically removed and a single axis 

force gauge was inserted. Despite adding a 12 mm thick ensolite pad to the steel impact surface 

in 6 of the 8 constrained tests, the peak forces on the head ranged from 10 to 14 kN (three skull 

fractures) versus 3 to 7 kN (one skull fracture) for the unconstrained tests with drop heights 

ranging between 0.9 and 1.5 m. During the unconstrained tests, the contact point was at or 

posterior to the vertex of the head, the head slid forward (flexion) and ultimately the chin made 

contact with the chest. Secondary contact with the load plate was made by the lower cervical / 

upper thoracic region. Cervical injuries were documented in 3 of the 7 tests. In the constrained 

test, contact was at the vertex of the head in all but one test and cervical injury was identified 

more frequently, 6 out of 8 tests. It was also observed that cervical vertebral body damage was 

observed most commonly when the PMHS remained in contact with the load surface without 

substantial rotation or rebound. 

 

3.2 Head-Neck Complex Compressive Cervical Spine Experimentation 

Isolated cervical PMHS testing has taken many forms and been conducted in various 

manners. PMHS head – neck complex (specimen includes head, cervical spine, and upper 

thoracic vertebrae) experimentation has been used extensively to understand cervical spine 

compressive kinematics and kinetics and serves as the primary method in which cervical 

tolerance has been investigated since loads can be measured directly at the base of the neck. 

Similar to whole body cadaver tests, head – neck complex experimentation has been conducted 

by impacting the apex of the head in a superior to inferior direction or by conducting inverted 

drops in which an effective torso mass was added to load the cervical spine.  
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3.2.1 Dynamic Head-Neck Complex Experimentation in Superior to Inferior Impacts 

Sances et al. (1981) conducted an extensive study on monkey and human cadaveric 

cervical spine tensile response and tolerance. For comparative purposes, two isolated fresh 

human cadaveric cervical columns were mounted at T1 / T2 and the skull and tested in 

compression. A MTS machine was used to apply a constant rate compressive displacement of 

1.2 to 1.3 m/s at the skull. A 4.50 kN load was applied to the first specimen and resulted in a C5 

burst fracture and anterior subluxation of C5 on to C6. The second specimen was applied a load 

of 4.41 kN which resulted in C5 vertebral fractures without subluxation. No other detail of 

specimen initial orientation was given. In addition to the three specimens with intact torsos 

tested by Maiman et al. (1983), ten isolated specimens were also evaluated and reported on by 

the authors. Two of the isolated specimens appear to be the same specimens reported by 

Sances et al. in 1981. Similar to the whole body cadaver testing, detail regarding initial 

orientation of the isolated specimens was lacking other than the initial skull orientation with 

respect to the Frankfort plane. The overall average failure load reported for “axial” tests in which 

the head angle was neutral, including whole body and isolated specimens, was 3,567 +/- 2,069 

N. However, when only specimens including the atlanto-occipital joint are considered and “slow 

rate” studies are excluded, the mean failure load for this head orientation is approximately 3,205 

+/- 1,203 N and mean piston displacement at failure was 62 +/- 25 mm. 

Similar to the methodology employed by Sances et al. and Maiman et al., Pintar et al. 

(1990) and Yoganandan et al. (1991) used an electro-hydraulic actuator to impact the vertex of 

the skull of ligamentous head – neck complexes, axially loading the cervical spine and creating 

clinically relevant damage. In addition to a better description of the methodology, including initial 

specimen orientation, these studies included measurement of the resulting distal load measured 

at the base of the neck. Peak axial loads and displacements for a total of nine unique 

specimens at loading rates ranging from 2.95 to 8.5 m/s were reported. The head-neck 

complexes were pre-flexed prior to loading in order to align the vertebral column. Head position 
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was maintained with simulated muscle tension through a system of pulleys, dead weights and 

spring tension. The pre-test anterior weights and posterior spring tension were approximately 40 

to 70 N and the posterior spring tension never exceeded 250 N during the loading event. Figure 

3.2 depicts the experimental setup. A comparison of the skull impact force time history and the 

lower neck distal force suggested a decoupling between the head and spinal column. 

Additionally, the inertia of the specimens’ heads continued to load the spinal column after the 

actuator piston began to rebound. Fractures were documented to occur in the first 2.5 to 6 

milliseconds (ms) after initial contact. 

 

Figure 3.2: Schematic from Pintar et al. (1990) depicting sample specimen test setup and 
orientation 

 

In a subsequent study, Pintar et al. (1995) reported cervical failure loads and 

displacements for 20 specimens tested using the same methodology. Pre-alignment of the 

specimen was documented in detail. The occipital condyles’ initial location ranged from 25 mm 

anterior to 5 mm posterior of the center of T1. Additionally, a force displacement response 

corridor was presented based on the distal neck load and the actuator displacement. Failure 
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loads ranged from 744 to 6,431 N with a mean of 3,326 N. Specimen donors ages ranged from 

29 to 95 years of age with a mean of 62 years. The average displacement at failure was 

reported as 18 +/- 3 mm. Figure 3.3 is the force displacement corridor derived by Pintar et al. 

The dashed line represents the mean response curve based on the mean force and deformation 

at failure and the mean stiffness. 

 

Figure 3.3: Derived human neck dynamic force-deflection corridor from Pintar et al. (1995) 

 

In follow up study, Pintar et al. (1998a) used the same test methodology described 

above but investigated cervical injury patterns and tolerance with increased forward pre-flexion 

of the cervical spine resulting in increased anterior head eccentricity. A total of ten additional 

PMHS were tested and analyzed with three of the previous experiments (Pintar et al. 1995) that 

included anterior head pre-positioning. The authors used logistic regression techniques and 

reported the 25% probability of major neck injury occurred at 1,850 N of axial force and 62 Nm 

of forward bending moment. 
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3.2.2 Head-Neck Complex Inverted Drop Experimentation 

 A series of publications by Nightingale et al. (1996a, 1996b, 1997a and 1997b) utilized a 

different methodology to investigate cervical spine compressive kinematics and mechanical 

response. Similar to the research by Pintar, ligamentous head-neck complexes were utilized 

and head contact and lower neck loads were measured, but the specimens were inverted and 

dropped head first onto various orientation and material contact surfaces. The distinct 

advantage of this methodology is the ability to investigate the effect of variable head constraints 

on the probability of cervical damage and the relative ease in which the resting lordosis of the 

cervical spine can be maintained. Another fundamental advantage is that the cervical spine 

response is driven by contact surface and specimen characteristics and not influenced by the 

prescribed displacement of a constant velocity electro-hydraulic actuator.  

 

The Nightingale methodology utilized a linear drop track apparatus that constrained the 

base of the neck to vertical translation while the head remained unconstrained. The effective 

torso mass was determined using Generator of Body Data (GEBOD) software to be 16 kg., the 

fraction of a 50th percentile male torso mass acting on the neck during dynamic injury. The 

nominal drop height chosen was 0.5 m resulting in impact speeds of approximately 3.1 m/s. The 

drop height was chosen based on swimming pool diving accident reconstructions performed by 

McElhaney et al. in 1979 and along with the effective torso mass, proved to be sufficient to 

achieve cervical fracture in the inverted head-neck complex drop tests. Figure 3.4 outlines the 

Nightingale experimental setup. 
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Figure 3.4: Diagram from Nightingale et al. (1996b) depicting the test setup and specimen 
orientation. The impact surface (F) material and angle in the sagittal plane was varied 

 

Numerous findings were reported based on the 21 specimens tested by Nightingale et 

al. (1996b and 1997a). Cervical damage was documented to occur early in the impact event, 

generally within the first 10 or 20 ms for rigid and padded impact surfaces respectively. This was 

prior to an appreciable translation or rotation of the head quantitatively confirming what many 

previous studies had inferred, that head motion was not indicative of compressive spinal injury. 

Similar to the finding of Pintar et al. (1990), the dynamic response of the head and spine 

indicated that the two are decoupled. During head impacts with rigid surfaces, the contact force 

on the head was documented to be bimodal in nature, an initial pulse that corresponded with 

arresting the motion of the head and a subsequent pulse corresponding with arresting the 

motion of the torso mass. The onset of load measured at the neck lagged that at the head and 

head rebound contributed significantly to measured neck loads. Several sagittal plane impact 

surface orientations were investigated. Head inertia provided enough constraint in rigid vertex 

impacts to result in cervical fracture. The frequency and severity of documented cervical fracture 

was greater for vertex and anterior impacts and decreased for posterior impacts. Posterior 

impacts resulted in the least amount of measured neck impulse or torso momentum managed 



 
28 

 
 

by the neck, indicating that the head was able to escape the following torso to some extent. The 

addition of padding to impact surfaces increased head constraint thereby increasing the 

frequency of documented fracture. The mean resultant neck failure load for male specimens 

was 2,243 +/- 572 N with a mean age of 61.8 +/- 11.9 years. Head and neck force responses 

were provided for each specimen (Nightingale et al. 1997a). 

 

3.3 PMHS Cervical Segment Level Experimentation 

Functional spinal units or segment level testing has also been conducted giving insight 

into cervical tolerance at the local vertebral level and differences between various regions of the 

cervical spine. However, it neglects complex spinal buckling kinematics and physiologic loading 

vectors. Since the current study is motivated by ATD neck loading in rollover scenarios and 

lateral bending effects on entire cervical column, only a brief review relevant finding will be 

conducted. 

Panjabi et al. (1991) impacted 13 upper cervical spine segments (occiput – C3) with a 

variable magnitude falling mass from 1.0 meter height (4.4 m/s impact speed). The tests were 

split into two groups, one in which the orientation of the segment was maintained in a neutral 

position, the second in which a 30 degree wedge was placed between the impactor and the 

specimen to force an extended orientation. Of the 13 tests, 10 sustained injury. Average axial 

failure loads and overall axial impulse were reported to be 3050 +/- 437 N and 34.9 +/- 8.3 Ns 

for the eight specimens in a neutral position and 2100 +/- 282 N and 17.6 +/- 1.8 Ns for the two 

specimens in an extended position. It should be noted that the authors indicated the failure 

loads were computed as the maximum compressive load. 

Qingan et al. (1999) impacted C2-C4 segments with a 3.3 kg mass at high impact 

velocities. The 14 specimens were split into two groups. Impact energy was specified for the two 

groups, the first group at 30 J and the second at 50 J. No injuries were documented in the lower 

impact energy group and every specimen was damaged in the higher energy group. Damage 
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ranged from vertical and wedge fractures to burst fractures. The average peak compressive 

force for the non-damaged group was 4.11 +/- 0.11 kN and the damaged group was 4.89 +/- 

0.38 kN.   

Carter et al. (2002) tested 24 lower cervical spine segments using an MTS machine with 

a loading rate of approximately 1 m/s. The specimens were split into three groups and loaded in 

compression-flexion, compression-extension or pure compression loading environments. They 

reported average axial failure loads and sagittal plane moments of 765.5 +/- 240 N and 21.4 +/- 

6.9 Nm for the compression-flexion group,  3472 +/- 684.4 N and -47.8 +/- 13.6 Nm for the 

compression-extension group and 3260.9 +/- 707.7 N and -15.0 +/- 5.7 Nm for the pure 

compression group. 

Nightingale et al. (2002) tested 52 cervical spine segments from 16 female spines in a 

test fixture that was designed to load segments in pure sagittal plane bending. The average 

donor age was 50.8 +/- 8.8 years. The segments were divided into four groups, O-C2, C3-C4, 

C5-C6 and C7-T1 and loaded until failure. Loading rates were dependant on specimen flexibility 

but were near 90 Nm/s. Upper cervical spine failure moments were 23.66 +/- 3.42 Nm and 

43.30 +/- 9.26 Nm in flexion and extension respectively. Lower cervical spine failure moments 

were 17.41 +/- 6.22 Nm and 21.22 +/- 7.61 Nm in flexion and extension respectively. This was 

followed up by a similar study by Nightingale et al. (2007) on 41 cervical segments from 16 male 

cervical spines. The average donor age was 66 +/- 7.2 years. In this study, the segments were 

divided into three groups, O-C2, C4-C5 and C6-C7. The authors reported failure moments for 

the upper cervical spine of 39.0 +/- 6.3 Nm and 49.5 +/- 17.5 Nm in flexion and extension 

respectively. The overall average failure moments for the lower cervical spinal segments were 

20.2 +/- 5.3 Nm and 17.1 +/- 4.5 Nm in flexion and extension respectively. 

Ching et al. (2004) evaluated the lateral bending tolerance of 27 lower cervical spinal 

segments from 9 cadaver cervical spines (6 male and 3 female). The average donor age was 

65.0 +/- 4.2 years. The segments were split into three regions, C3-C4, C5-6, and C7-T1 and 
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tested at an average angular displacement rate of 10.8 +/- 2.9 Nm/rad. An overall average 

failure moment of 26.3 +/- 5.5 Nm was reported. A statistical difference was reported for the 

tolerance of the C3-C4 segments (23.6 +/- 5.3 Nm) versus the C7-T1 segments (30.9 +/- 5.3 

Nm). 

 

3.4 Role of End Conditions, Applied Load Eccentricity and Musculature, Age and Gender 

on Cervical Spine Tolerance and Response in Compressive Loading Modes 

  

3.4.1 Effects of End Conditions / Constraint on Cervical Spine Compressive Response 

Yoganandan et al. (1986) devised one of the first studies that directly evaluated the 

influence of head constraint and initial head / neck orientation on cervical spine response. As 

discussed previously, half of the drop tested specimens’ skulls were fixed to a halo ring and 

flexible steel cables were used to flex the head forward approximately 15 degrees simulating the 

muscle tone necessary to maintain this pre-flexed orientation. The cables were adjusted to 

maintain cervical compression in the 70-110 N range and released upon contact. This pre-

flexed, constrained orientation resulted in much larger impact forces on the head and an 

increased frequency of documented cervical damage. 

McElhaney et al. (1988) reported on the change in cervical spine mechanical response, 

specifically bending stiffness, due to either pinned-pinned or fixed-pinned end conditions. The 

influence of end condition was evident across the test battery including relaxation, cyclic, and 

constant velocity tests. A small number of failure tests were also conducted and the axial load at 

failure was an order of magnitude larger for the fixed-pinned condition versus the pinned-pinned 

condition. Myers et al. (1991a) has demonstrated that changes in end conditions of the cervical 

spine during dynamic loading produces significant changes in axial stiffness and the type of 

injury produced in specimens that included the base of skull to T1. Axial displacement imposed 

on a fully constrained cervical spine resulted in wedge and compression fractures at an average 
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load of 4,810 +/- 1,286 N. Axial displacements applied to rotationally constrained specimens 

resulted in bilateral facet dislocations at an average load of 1,720 +/- 1,234 N and no injury was 

documented in the unconstrained specimens. The authors suggested that risk of cervical injury 

may be strongly dependant on the degree of head constraint imposed by the contact surface. 

This was confirmed by the studies of Nightingale et al. in which padded impact surfaces resulted 

in a higher frequency of cervical injury than rigid surfaces. 

Through the use of computer modeling, Camacho et al. (1999) demonstrated that it was 

increased friction between the head and contact surface, not necessarily the padding, which 

increased the head constraint resulting in increased resultant neck forces and moments in the 

Nightingale tests. Similarly, Eggers et al. (2005) found that increases friction also increased the 

risk of compressive injury to the neck during apex head impacts with laterally inclined contact 

surfaces. Eggers et al. (2005) also predicted higher loads in the vertebral facet joints than the 

intervertebral discs and an increased risk of injury for the upper cervical spine versus the lower 

cervical spine from these simulations. Subsequently, Hu et al. (2008) reported that for impact 

surface coefficients of friction greater than zero, lateral impact surface orientations less than 30 

degrees increased the average maximum principal strain in the vertebrae. 

 

3.4.2 Effects of Loading Vector Eccentricity on Cervical Spine Response  

The direction, magnitude and point of application of external load to either the apex of 

head or base of the neck are critical in determining whether compressive cervical spine injury is 

likely to occur. The more obliquely a load is applied with respect to the axis of the cervical 

column, the more likely that the head or torso will translate perpendicular to the cervical column 

and the applied load will not be resisted through the neck. The closer the applied load is to 

being parallel with spine, the greater the chance of compressive injury. This principle is 

demonstrated by results of tests presented by Nightingale et al. (1997a). The flat impact surface 

(0 degrees) and the 15 degree anteriorly biased impact surface (+15 degrees) are nearest to 



 
32 

 
 

perpendicular to a cervical column that has its resting lordosis maintained. Impacts with these 

surface orientations resulted in the highest frequency of unstable cervical injuries. 

When considering near parallel loads, the distance from the center of the vertebral 

column that the load is applied, or magnitude of eccentricity, has been demonstrated to 

influence the type of cervical damage and the magnitude of axial force necessary to create it. 

Eccentricity has long been considered important in whole cervical spine kinematics and injury 

outcomes but it has rarely been quantified. When discussing the cervical spine, magnitudes of 

eccentricity are typically referenced to the center of either the vertebral body or the inferior 

vertebral disc at the point of load measurement and can be assumed as such unless indicated 

otherwise. McElhaney et al. 1983 found that small changes in eccentricity (+/- 10 mm) in the 

load axis could change the buckling mode and fractures produced. The results of Myers et al. 

(1991a) demonstrated increased failure loads in fully constrained cervical columns (~30 mm 

eccentricity) versus those that were only rotationally constrained and able to translate anteriorly 

(~60 mm eccentricity). Finally, Carter et al. (2002) reported on anterior – posterior eccentricity 

effects on cervical spine segment level tolerance using an MTS machine with a loading rate of 

approximately 1 m/s. They found that applying the compressive load with 10 mm of anterior 

eccentricity reduced the average axial compressive tolerance of the specimens tested to 

approximately 765 N versus approximately 3,260 N for segments loaded through the center of 

the vertebral disc. 

Initial cervical column eccentricity has been quantified in the full head-neck complex 

tests and correlated with injury severity and mechanism by Maiman et al. (2002). The test 

methodology employed was that of Pintar et al. (1990, 1995) discussed previously in which the 

head was pre-flexed approximately 15 degrees to align the cervical column and load was 

applied by an MTS machine. Various eccentricities were achieved by translating the head 

anterior or posterior versus the center of T1 vertebral body and influenced the resulting injury 

produced and mechanism of injury. Winkelstein and Myers (1997) summarized the influence of 
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anterior eccentricity of the resultant force acting at the site of injury on the type of clinically 

recognized injuries that have been replicated in the laboratory (Figure 3.5). 

 

Figure 3.5: Influence of applied force eccentricity on the mechanism of cervical injury (from 
Winkelstein and Myers, 1997) 

 

Fracture loads for the cervical spine in full head-neck complex tests have varied 

dependant on the cervical column orientation and resulting column eccentricity used during 

testing. Pintar et al. 1995 pre-flexed the PMHS head about 15 degrees prior to testing in order 

to align the cervical column. In this orientation, mean axial failure loads were 3,326 N for all 

specimens, including men and women. In a subsequent study, Pintar et al. (1998b) reported 

that the 50% probability of failure for a 50 years old man at a 4.5 m/s loading rate was 3.9 kN. 

Conversely, Nightingale et al. (1997a) maintained the natural lordosis resulting in greater 

eccentricity of the column prior to impact and found an average axial failure load of 2,243 +/- 

572 N for male specimens. 

 

3.4.3 Effects of Musculature, Age and Gender in Cervical Spine Compressive Response 

A limitation of using the PMHS model as a surrogate for live humans is that muscle tone 

in cadaver specimens is absent. Active muscle response has been documented to occur at 50 

to 65 ms following head loading (Foust et al 1973, Schneider et al. 1975). Since the occurrence 
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of injuries in the past studies have been identified to occur 2.5 to 20 ms following head contact 

(Pintar et al. 1990, Yoganandan et al. 1991, Nightingale et al. 1997a), the influence of cervical 

muscle reaction would be absent at the time of injury. Passive muscle response has not been 

well characterized. Muscle activations largest role in compressive cervical spine injuries 

appears to be its influence on pre-impact head and neck orientation and according to 

McElhaney (2002), may have a limited effect on flexural rigidity and buckling pattern. Passive 

cervical spine muscle response has been shown to only slightly increase compressive cervical 

spine injury risk in finite element modeling (Hu et al. 2008). 

In 1971, McElhaney and Roberts found a correlation between test specimen age and 

vertebral cancellous bone ultimate strength in compression. The ultimate strength for specimens 

in their third decade was 70% greater than those in their sixth decade at the time of death. The 

effect of age on the difference in cortical bone ultimate strength for similar age groups has been 

reported to be closer to 10% (Keaveny and Hayes 1993). Riggs et al. (1981) studied the 

patterns of bone loss in osteoporotic and non-o osteoporotic men and women in the lumbar 

spine which is primarily trabecular (cancellous) bone. The authors reported unique linear 

relationships between bone mineral density and age for non- osteoporotic men and women. 

Women with osteoporosis and one ore more vertebral compression fractures had significantly 

lower bone mineral density on average than non- osteoporotic women of a similar age. Nuckley 

and Ching (2005) have reported a linear relationship between vertebral bone mineral density 

and yield strength. 

Pintar et al. (1998b) similarly reported that the cervical spine failure force for loading 

rates between 2 and 4 m/s decreases with age. They analyzed 25 head-neck complex 

specimens tested to failure using the methodology previously described in Section 3.2.1. 

Regression analysis shows that comparing the failure force for specimens aged in their third 

decade was approximately 20% and 40% greater than specimens aged in their sixth decade at 

loading rates of 2 m/s and 4 m/s respectively. This is similar to the estimated scaling factor of 
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1.2 to 1.3 reported by Nightingale et al. (1997a) when attempting to derive a tolerance for the 

younger population from his data set composed of older specimens. The same Pintar et al. and 

Nightingale et al. studies reported decreased fracture tolerance for female specimens versus 

male specimens. Pintar et al. reported that male specimens were consistently 600 N stronger 

when comparing between similar aged specimens and similar experimental loading rates. 

Nightingale et al. reported a tolerance of 1,061 +/- 273 N for female specimens (mean age 58.3 

+/- 14.1) and a tolerance of 2,243 +/- 573 N for male specimens (mean age 61.8 +/- 11.9 years).  

 

3.4.4 Summary of PMHS Whole Cervical Spine Tolerance 

Several different metrics can be defined to characterize human cervical spine tolerance 

to compressive injury. McElhaney et al. (1979) reconstructed swimming pool diving accidents 

resulting in cervical injury and determined head impact speeds of 3.11 m/s, approximately 0.5 m 

equivalent drop height, with a free following torso resulted in flexion-compression injuries. 

Subsequently, Nusholtz et al. (1983) and Yoganandan et al. (1986) documented cervical injury 

in the PMHS during inverted drop tests at heights ranging from 0.9 to 1.8 m. Viano and 

Parenteau (2008) analyzed the 33 PMHS inverted drop tests of Nusholtz et al. (1983) and 

Yoganandan et al. (1986) and 42 linear impactor or pendulum tests of Culver et al. (1978), 

Nusholtz et al. (1981) and Alem et al. (1984). Peak head velocity was used as a means to 

merge the data sets. A peak head velocity of 4.2 m/s corresponded to a 50% risk of serious 

injury. 

 

3.4.4.1 Neck Compressive Force and Moment Tolerance 

Existing cervical spine compressive force tolerance is largely influenced by experimental 

technique. When limiting the scope of studies to specimens that include the subject head and 

entire cervical spine and directly measure neck forces, average compressive failure forces 

range between approximately 2 and 4 kN (Pintar et al. 1995 and 1998a, Nightingale et al. 
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1997a). Nightingale et al. (1997a) averaged their reported failure loads with those of Pintar et al. 

and using a scale factor of 1.2 to 1.3 suggested a cervical tolerance for the young male of 3.64 

to 3.94 kN. Pintar et al. (1995) also reported an axial displacement tolerance for injury in the 

aligned cervical column of 18 +/- 3 mm. Neck shear forces and moments have not been 

correlated with injury in these compressive loading scenarios. 

Flexion and extension moment tolerance for the human cervical spine was originally 

based on volunteer and cadaver data of Mertz and Patrick (1971). During their experimentation, 

no flexion injuries were documented in cadaver studies so a flexion limit of 190 Nm was set 

based on the maximum measured moment that was sustained by a test subject. An extension 

moment limit of 57 Nm was derived for the 50th percentile male from ligamentous damage in a 

small cadaver. Later, Cheng et al. (1982) reported on cervical flexion injuries in PMHS frontal 

sled tests in which the subjects’ chest was decelerated by a pre-deployed airbag. Four of six 

specimens sustained cervical damage. The average peak flexion moment was 289 +/- 77 Nm 

and occurred simultaneously with significant tensile and shear forces. 

Lateral bending has primarily been investigated in lateral sled test scenarios that do not 

include head contact. Wismans and Spenny (1983) subjected volunteers to 5 to 10 g lateral 

deceleration in sled tests and reported no injuries during exposure to lateral bending moments 

ranging from 20 to 60 Nm. Several researchers used PMHSs to investigate neck injury in lateral 

impacts (Kallieris and Schmidt 1990, McIntosh et al. 2007, and Yoganandan et al. 2009). This 

loading method typically results in complex three dimensional loading that is dominated by the 

tensile response at C0-C1. McIntosh et al. reported that peak lateral bending moment and / or 

lateral shear force did not have the greatest correlation with injury outcomes. In impacts with a 

change of velocity ranging from 8.7 to 17.9 m/s and utilizing various restraint configurations, 

Yoganandan reported average peak lateral neck moments ranging between 17.4 and 61.5 Nm, 

similar to the peak values reported by Wismans and Spenny, and documented various cervical 

injuries ranging in severity from AIS 1 through 3. 
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The torsion tolerance of the cervical spine was investigated by Myers et al. (1989, 

1991b). Using six whole ligamentous cervical spines (Occiput – T1) and a loading rate of 500 

deg/s, an average failure load of 17.2 +/- 5.1 Nm was reported. In each case, failure was 

documented to occur at the atlantoaxial joint. The specimens were subsequently recast at the 

axis and loaded until failure was documented in the lower cervical spine. The average load to 

failure for the lower cervical spine was reported as 21.0 +/- 5.4 Nm. By extrapolating torsion 

stiffness data reported by Wismans and Spenny (1983), McElhaney et al. (2002) estimates a 

human torsional tolerance of 28 Nm including muscular effects. 

 

3.4.4.2 Neck Injury Metrics 

Several neck injury metrics that combine measured neck responses have been 

proposed as human cervical spine injury criteria. The focus of this review will be on easily 

measurable quantities such as force, moment and acceleration. The use of relative 

displacements has been proposed by some researchers as a cervical tolerance metric, 

however, in practice this typically requires film analysis and is subject to greater error. Several 

injury metrics are simple linear combinations of force and moment which is consistent with basic 

mechanics and practical in calculation and an interpretation of results. The most utilized 

example is the normalized neck injury criterion, Nij. It is a linear combination of the Hybrid III 

ATD upper neck axial force and sagittal plane bending moment, details of which follow in 

section 3.5.1. 

The beam criterion (BC) was proposed by Bass et al. (2006) for the lower human 

cervical spine in frontal collisions that do not include head contact. BC is the linear combination 

of the axial force and anterior-posterior moment measured at the center of the C7-T1 

intervertebral disc and takes the form: 

(Equation 3.1) 
Myc
My

Fzc
FzBC +=  
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The derived constants Fzc and Myc are 5,660 N, 5,430 N and 141 Nm in tension, compression 

and flexion respectively. A BC of 1.0 corresponded to a 50% risk of AIS 2 or greater human 

cervical spine injury. The neck anterior-posterior shear force was also considered in the BC but 

did not improve the predictive nature of the logistic regression curves. 

 A second neck injury metric applied the human cervical spine that uses a combination of 

measured neck responses is the neck injury index (NII) (ISO 1323-5:2005(E)). The NII was 

developed for the motorcycle ATD (MATD) upper neck and is based on the generalized stress 

ratio for the estimation of strength of materials and takes the form: 

(Equation 3.2) 
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FC and FT are the measured compressive and tensile forces and MFlex, MExt, MX, and MZ are the 

measured flexion, extension, lateral bending and torsion moments respectively. The respective 

force and moment constants are -6,530 N, 3,340 N, 204.2 Nm, -58 Nm, 62.66 Nm and 47.1 Nm. 

These constants and the probability of various AIS level neck injuries were derived by 

minimizing the difference between distributions of observed injuries in epidemiologic field 

databases and predicted injuries from computer simulations. The constant 3.1 found in the 

second term of Equation (3.2) was derived based on the 3% probability of an AIS 3 or greater 

injury when subjected to a 4.17 kN tensile force (Wilber 1998). Although the above metric was 

derived based on MATD simulations, subsequently, researchers have reformulated the 

probability function constants for AIS 3 or greater cervical spine injuries to be applicable to 

PMHS tests (Bass et al. 2010). Additionally, the axial loading constant in the second term of 

Equation (3.2) was reduced from 3.1 to 1.77 assuming a 50% risk of AIS 3 or greater injury to 
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the PMHS when subjected to a tensile load of 3,510 N (Bass et al. 2006) resulting in the NIIPMHS 

injury metric. 

Several other neck injury criteria have been formulated for loading conditions observed 

in low speed rear impacts to address whiplash injuries. These criteria include the Neck Injury 

Criterion (NIC), the Neck Protection Criterion (Nkm), the Lower Neck Load index (LNL) and the 

Whiplash Injury Criterion (WIC). The NIC, introduced by Bostrom et al. (1996), takes into 

account the head acceleration and velocity relative to T1 and takes the form: 

 

(Equation 3.3) 22.0 relrel vaNIC +∗=   

 

Eriksson and Kullgren (2006) have correlated a NIC of 15 m2/s2 with an 18% probability of AIS 1 

neck injury. The Nkm was introduced by Schmitt et al. (2002) and is the linear combination of 

anterior-posterior shear force and sagittal plane bending moment. It takes the form: 

 

(Equation 3.4) 
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where Fint equals 845 N and Mint equals 47.5 Nm and 88.1 Nm for flexion and extension 

respectively. The intercepts were chosen to correlate with the human tolerance levels for AIS 1 

injuries. Heitplatz et al. (2003) proposed the Lower Neck Load index as a predictor of lower 

neck soft tissue injury. LNL combines lower neck tensile force, shear forces, and anterior-

posterior and lateral bending moments. It takes the form: 

(Equation 3.5) 
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where the moment, shear and tension constants are 15 Nm, 250 N, and 900 N respectively. 

When LNL was calculated using the Rear Impact Dummy 2, the researchers reported qualitative 
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correlation to insurance claim frequency data. Finally, WIC was introduced by Munoz et al. 

(2005) and is simply the difference in sagittal plane moments measures at upper and lower neck 

load cells. This criterion has not been developed sufficiently to suggest an injury threshold level 

but is unique in that it incorporates measured loads and both the upper and lower neck load 

cells. 

  

3.5 Hybrid III Anthropomorphic Test Device and Associated Injury Criteria 

Reliable anthropomorphic test devices (ATDs) with meaningful injury assessment 

references values (IARVs) are important for assessing the risk of injury during various impact 

loading events and aiding in the design of effective injury mitigating devices. The Hybrid III ATD 

has been developed for and used extensively in automotive crashworthiness applications. The 

current Hybrid III neck evolved over several generations of ATDs developed by General Motors 

and has been validated to human flexion and extension moment corridors in dynamic sled tests 

(Foster et al. 1977). It is constructed out of rigid aluminum vertebral elements and molded butyl 

elastomer. 

 

3.5.1 Hybrid III ATD IARVs and Nij 

A summary of the Hybrid III upper neck IARVs were introduced by Mertz at General 

Motors in 1984. Upper neck peak flexion and extension moments, along with duration 

dependant peak tension, compression and fore-aft shear limits were proposed for the 50th 

percentile male ATD (Mertz, 1984). The current compressive neck injury assessment reference 

value of 4 kN was originally derived from reconstructions of injurious football head impacts using 

the Hybrid III test device (Mertz et al., 1978). An upper and lower compressive limit was 

developed that is dependant on the duration of the impulse and ranged from 4 kN to 6.67 kN for 

very short duration events. Flexion moment IARVs for the Hybrid III were originally based on 
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volunteer and cadaver data of Mertz and Patrick (1971) discussed above and defined as 190 

Nm.  

In the 1990’s, the National Highway Traffic Safety Administration (NHTSA) was 

upgrading Federal Motor Vehicle Safety Standard (FMVSS) 208 injury criteria for assessment of 

advanced restraint systems. It was during this time frame that both in-position and out-of-

position IARVs were introduced. Out-of-position (OOP) IARVs are more stringent than in-

position IARVs in tension and extension in order to decrease the risk of severe airbag induced 

injuries and due to the fact that in-position limits include an estimate for muscle activation in 

these loading modes. An extension, lateral bending and torsion moment IARV has been defined 

for both in-position and OOP occupants. The OOP extension moment IARV for the 50th male is 

based on injury risk curves derived from matched paired tests of airbag deployments into OOP 

fetal pigs and the 3-year old ATD of Mertz et al. (1982a, 1982b) and Prasad and Daniel (1984) 

and scaled to 96 Nm for an in-position occupant assuming 80% muscle tone. IARVs for lateral 

bending and torsion have been proposed with the rationale that based on neck muscle size and 

location, that the strength in lateral bending would lie between the flexion and extension 

strength (143 Nm) and the torsion strength would be similar to that of extension (96 Nm) (Lund, 

2003).   

 Prasad and Daniel (1984) proposed the first combined axial load and sagittal plane 

bending moment injury criteria. Injuries to porcine subjects from deploying airbags were 

correlated with measured three years old child ATD upper neck tension and extension response 

in a similar loading environment. It was suggested that the linear combination of tension and 

extension should be used as an injury metric. The concept of linearly combining axial load and 

sagittal plane bending moment was expanded to include compression and flexion and 

presented as Nij by Klinich et al. (1996). Nij is calculated using Equation (3.6) where the 

intercept values Fc and Mc vary for compression and tension, and flexion and extension 

respectively. 
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(Equation 3.6) 
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In the NHTSA’s second report on the development of improved injury criteria for the 

assessment of advanced automotive restraint systems, which included the addition of the Nij 

injury metric, the NHTSA proposed upper neck compressive force, flexion moment and 

extension moment intercept values of 4,500 N, 310 Nm and 125 Nm respectively for the Hybrid 

III 50th percentile male ATD (Eppinger et al., 1999). The compressive force limit was based on 

PMHS testing performed by Pintar et al. (1995) which the authors felt  best represented pure 

axial compression of the cervical spine. The extension moment critical intercept of 125 Nm was 

based on scaling of the three years old ATD extension limit proposed by Prasad and Daniel 

(1984). Separately, a scale factor between human and ATD neck extension moments of 2.4 was 

determined using MADYMO, and when applied to the 57 Nm human cervical tolerance in 

extension proposed by Mertz and Patrick (1971), yields roughly the same extension intercept 

value. Finally, the flexion moment intercept was determined by maintaining a ratio of 2.5 

between flexion and extension moment intercepts. The ratio of 2.5 between flexion and 

extension moment intercepts is the same as that proposed by the American Automobile 

Manufactures Association (AAMA) (190 Nm flexion / 78 Nm extension). The OOP upper neck 

Nij flexion and extension intercepts proposed as IARVs by Mertz et al. (2003) are 305 Nm and 

122 Nm respectively. The difference between these values and those originally proposed by 

NHTSA are accounted for in rounding differences during the scaling process. 

Lower neck IARVs have been reported by Mertz et al. (2003). The axial force limits and 

axial force Nij intercepts are identical to the upper neck. Prasad et al. (1997) recommended a 

lower neck extension IARV of 154 Nm based on rear impact sled tests. Using the ratio of this 

recommendation and the out of position upper neck extension IARVs (154 / 77 Nm) the in-
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position flexion and extension IARVs are double that of the upper neck or 380 Nm and 192 Nm 

respectively. The lower neck Nij flexion and extension intercepts are also double that of the 

upper neck or 610 Nm and 266 Nm respectively. Table 3.1 summarizes the Hybrid III 50th male 

ATD upper and lower neck IARVs and Nij intercepts. Recently, Raasch et al. (2010) performed 

reconstructions of past PMHS testing of Clemons and Burrow (1972) using the Hybrid III 50th 

percentile male ATD. The original PMHS tests conducted were rigid seat frontal and rear impact 

sled tests. Updating the lower neck flexion and extension moment IARVs for the Hybrid III was 

proposed. An extension limit of 149 Nm for in-position occupants and an in-position flexion 

moment of 200 Nm maximum were advocated.  

 

Table 3.1: Hybrid III 50th percentile male upper and lower neck IARVs proposed by Mertz et al. 
(2003)  

Fx & Fy Mx Mz
Shear (N) Tension (N) Comp (N) (Nm) Flex (Nm) Ext (Nm) (Nm) FT (N) FC (N) MF (Nm) ME (Nm)

Upper Neck IP 3100 4170 4000 143 190 96 96 6780 6200 305 133
Upper Neck OOP 3100 3290 4000 134 190 78 78 6200 6200 305 122
Lower Neck IP 3100 4170 4000 286 380 192 96 6780 6200 610 266
Lower Neck OOP 3100 3290 4000 268 380 156 78 6200 6200 610 244

Nij InterceptsMyFz

 

 

There are no currently utilized neck injury criteria for the 50th percentile male Hybrid III 

ATD that incorporate a combination of axial force and lateral bending or torsion moments. One 

study has been identified that has incorporated upper neck lateral bending in to the formulation 

of Nij for the 5th percentile female ATD (Duma et al. 2003). The authors evaluated small female 

neck interaction with a deploying side airbag and similar to the form of NII, adjusted Nij to 

include the square root of the sum of the squares of the measured anterior-posterior and lateral 

neck moments. The current 5th female Nij flexion moment intercept of 155 Nm for 5th female was 

utilized when evaluating the resultant moment. 
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3.5.2 Neck Injury Criteria Adopted as Legal Regulations 

 The upper neck Nij intercepts ultimately adopted by NHTSA and incorporated into 

FMVSS 208 for the Hybrid III 50th percentile male were published in a supplement to the 

aforementioned NHTSA report (Eppinger et al., 2000). The compression intercept was set at 

6,160 N, equal to the tension intercept derived from scaling the three years old ATD tension 

intercept based on the work on Prasad and Daniel. The extension intercept was similarly scaled 

from the child ATD criteria for OOP testing but was increased to 135 Nm for in-position testing 

based on the assumption that adult occupant neck muscles would be flexed at 80% of their 

static strength. The flexion intercept was maintained at 310 Nm. The increased value of the 

compression intercept was deemed appropriate for the proper linear combination of sagittal 

moment and axial compressive load but a peak compressive load limit of 4,000 N was also 

incorporated consistent with the earlier work done by Mertz (1978). Figure 3.6 depicts the 

original NHTSA Nij kite and the ultimate Nij boundaries incorporated into Federal Motor Vehicle 

Safety Standard 208 (CFR 49 part 572.208). An in-position Nij of 1.0 in tension and extension 

has been equated to a 5% injury risk of AIS 3 or greater (Mertz et al., 2003). The Nij intercepts 

and peak tension and compression force limits for all ATDs currently included in FMVSS 208 are 

listed in Table 3.2. 
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Figure 3.6: NHTSA proposed Nij kite corridor and AAMA proposed in-position hexagon corridor 
adopted as the FMVSS 208 final rule (from Eppinger et al. 2000) 

 

Table 3.2: FMVSS 208 Nij intercepts and peak tension and compression force limits for various 
In-Position (IP) or Out-of-Position (OOP) ATD testing scenarios (CFR 49 part 571.208) 

ATD - Position FT (N) FC (N) MF (Nm) ME (Nm) FT (N) FC (N)
50th Male - IP 6806 6160 310 135 4170 4000
5th Female - IP 4287 3880 155 67 2620 2520
5th Female - OOP 3880 3880 155 61 2070 2520
6yo - OOP 2800 2800 93 37 1490 1820
3yo - OOP 2120 2120 68 27 1130 1380
12mo - Crabi OOP 1460 1460 43 17 780 960

Nij Intercepts Peak Axial Load

 

 

 The United Nations Economic Commission for Europe (UNECE) Regulation No.94 

addresses uniform provisions concerning the approval of vehicles with regard to the protection 

of occupants in the event of a frontal collision. Within this regulation, neck injury criteria are 

specified for the 50th percentile Hybrid III ATD for axial tension, anterior-posterior shear and the 

sagittal plane extension bending moment. The force tolerances are time dependent and can be 

found in Figure 3.7. The maximum allowable extension bending moment is 57 Nm. The 

European New Car Assessment Program (Euro NCAP) also evaluates vehicles for frontal 

impact protection and whiplash protection in low speed rear impacts. The same ECE Regulation 
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94 neck criteria are used for the frontal impact protection evaluation and NIC and Nkm are part 

of the whiplash injury criteria considered. The Euro NCAP tests are not regulatory in nature but 

rate vehicle performance for consumers. 

 

 

Figure 3.7: UNECE Regulation No. 94 neck tensile and anterior-posterior shear force criteria for 
frontal impact protection (taken from UNECE Transport Regulation No. 94) 

 

3.5.3 Available Hybrid III Neck Data 

Several researchers have reported on the isolated Hybrid III 50th percentile male neck 

response in various loading modes and rates (Yoganandan et al., 1989b, Myers et al. 1991a 

and Pintar et al., 1990). In quasi - static loading environments, the Hybrid III head-neck complex 

has been reported to be 1.5 to 3.5 times stiffer in axial compression than the human head and 

cervical spine complex. The Hybrid III neck needs to be robust enough to maintain its structural 
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integrity and repeatability so must withstand more load than the human cervical spine. Frechede 

et al. (2009) conducted 26 inverted drop tests of the entire Hybrid III 50th percentile male ATD in 

which upper and lower neck forces and moments were measured and analyzed. The Hybrid III 

neck showed the ability to deform in an S-shape during some of the inverted drop tests where 

the upper neck was in a compression - extension loading mode and the lower neck in a 

compression-flexion loading mode. For a given impact velocity (drop height), measured 

biomechanical parameters were significantly influenced by the impact orientation. 
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CHAPTER 4 

INVESTIGATION OF THE EFFECT OF LATERAL BENDING ON THE CERVICAL 

SPINE COMPRESSION RESPONSE AND TOLERANCE IN PMHS HEAD-NECK 

COMPLEX TESTS 

 
4.1 Introduction 
 

Cervical spine compressive loading combined with lateral bending remains largely 

unexplored and the influence of lateral bending on injury dynamics, tolerance and injury 

classification has yet to be quantified. In crash tests of rollover type accidents, researchers have 

observed lateral bending of the dummy neck prior to head impact or in conjunction with head 

impact with the roof. Since the effects of lateral bending on compressive tolerance of the 

cervical spine are not well documented, the significance of this phenomenon cannot be 

addressed. 

This study seeks to investigate the effects of lateral bending on cervical spine 

compressive injury dynamics and gross kinematics. Automotive testing in the rollover collision 

environment with Hybrid III ATDs has resulted in near apex head impact loading events 

generating significant cervical compressive load combined with both noticeable neck lateral 

bending and measured lateral bending moments. Potential effects of either a laterally oriented 

impact plate or initial lateral bending postures on cervical spine response have not been 

investigated experimentally using the PMHS model. Investigation of these effects has been 

conducted through execution and analysis of inverted drop tests of head-neck complexes 

resulting in injurious, near vertex head impacts. Results including injury patterns, buckling 

modes, mechanical response and the axial force at failure are compared with prior 

investigations of purely sagittal plane compressive experimentation. Further, whether or not 

asymmetric loading patterns are equivalent to symmetric loading patterns with asymmetric 
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postures is addressed. Portions of this chapter have been published in the 2009 American 

Society of Mechanical Engineers (ASME) International Mechanical Engineering Congress and 

Exposition (IMECE). 

 
4.2 Methodology 

Historical testing strategies can be grouped into three types based on the type of test 

specimen used: whole body cadaver, isolated head and neck and cervical spine motion 

segments. The primary drawback of historical studies of head impacts using whole body 

cadavers is the difficulty in accurately quantifying neck loads and developing injury reference 

values. Whole body cadaver studies allow for direct application of real-world loading scenarios 

but do not allow for direct measurement of neck loads because of the invasiveness of load 

measuring instrumentation. In contrast, isolated cervical segment testing facilitates direct 

measurement of load on the local spine segments. A drawback of segment testing, however, is 

that reproducing the dynamic loading vector present in a real world loading scenario is 

experimentally intractable since the real world loading vector temporally varies in position, 

magnitude and orientation. Given the limitations of these test methods, the isolated head and 

neck specimen strategy represents a compromise between collecting accurate neck loading 

data while maintaining relatively accurate kinematics and dynamic loading of the entire head 

and neck complex. This investigation begins by applying the techniques used in isolated head 

and neck investigations and adapting them to include the effects of lateral bending. Specifically, 

the methodology reported by Nightingale et al. (1996b, 1997a) to study sagittal plane 

compressive neck injury and the effects of padding on neck injury risk is the foundation for the 

methods used in this study. This testing was conducted at the Wayne State University 

Bioengineering Center. 
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4.2.1 Test Apparatus 

A head and neck injury drop track apparatus was designed and fabricated to allow 

unconstrained head-first impacts on an adjustable oblique surface (Figure 4.1). Specimens were 

mounted to a cart attached to a vertical track with linear bearing sliders. The cart was weighted 

to 16.3 kg to simulate the effective mass of the torso. This value was reported by Nightingale et 

al. (1996a) and was estimated using GEBOD software to be the fraction of a 50th percentile 

male torso mass acting on the neck during dynamic injury.  

 

Figure 4.1: Schematic of drop test apparatus showing an initial 15-degree lateral impact 
angle 

4.2.2 Specimen Preparation 

Five unembalmed human cadaver heads and ligamentous cervical spine specimens 

including T2 were harvested, sealed in plastic bags and stored at -20 C. Pretest radiographs 

were taken of the specimens and were examined along with medical records to ensure that 

there were no unrecognized spinal pathologies. The inferior two vertebrae (T1 and T2) were 

cleaned of muscular tissue and cast into aluminum cups with reinforced polyester resin. Care 

was taken to ensure that the C7-T1 articulation was free of the casting and had unrestricted 
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range of motion. The C7-T1 intervertebral disc was oriented at approximately 25° to horizontal 

to preserve the resting lordosis of the cervical spine (Matsushita et al. 1994). Finally, 

photographic target pins (4.0 mm diameter) were inserted in the anterior vertebral bodies, the 

spinous processes and lateral masses of C2-C7. The mandible of specimen 1 was removed to 

allow better visualization of the C2-Occipital region during the test. Because of the possible 

influence this might have on the overall head inertia properties, the mandible was left in place 

on subsequent tests. 

 

Figure 4.2: Schematic demonstrating method of specimen preparation cast in cup while 
maintaining natural lordosis and free articulation of C7-T1. The cervical spine is represented by 

the red vertebrae 
 

Specimen anthropometry, age, and cause of death are given in Table 4.1. The average 

height of the specimens was 1.803 +/- 0.08 m and the average weight was 80.9 +/- 6.5 kg. The 

50th percentile male stands 1.75 m tall and weighs 78.4 kg (Tilley 1993). 
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Table 4.1: Specimen anthropometry, age, and cause of death 

1 male 76 1.78 79.5 Congestive heart failure
2 male 80 1.93 90.9 Cardiac arrhythmia
3 male 77 1.73 72.7 Bacterial sepsis
4 male 81 1.83 81.8 Cardio respiratory failure
5 male 55 1.75 79.5 Carbon monoxide intox

Weight 
(kg)Test ID Gender Age Cause of Death

Height 
(m)

 

4.2.3 Experimental Setup 

Test specimens were inverted and mounted to the carriage of the drop track. Two 

different specimen/impact plate configurations were used during these tests, as shown in Figure 

4.3. In Configuration 1, the initial position of the head and neck was in a neutral posture but the 

impact plate was inclined laterally at 15 degrees from horizontal. This is roughly comparable to 

a rollover event with a neck maintaining its initial posture and either the body rotating with 

respect to the vehicle prior to head impact or an impact with an upright torso and head into an 

angled roof structure. In Configuration 2 the head was pre-positioned with 15 degrees of lateral 

bending and the impact plate remained horizontal. The angle was defined by the head angle 

with respect to the neck load cell reference frame. This is roughly comparable to a rollover event 

with a flexible neck allowing the head and neck to be in a lateral bending posture at the time of 

head impact. Both configurations result in asymmetric compressive loading of the cervical spine. 

Figure 4.4 depicts test specimen 3 mounted to the drop track test apparatus prior to raising the 

cart and executing the test. 
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Figure 4.3: Two different initial positions were used in these tests 

 

 

Figure 4.4: Test PMHS 3 mounted to the drop track test apparatus  

After mounting, the specimen was raised into drop position and preconditioned by 

manually exercising the head and neck through 60° of combined flexion and extension and 20 

degrees of lateral bending for 50 cycles (McElhaney et al. 1983). The initial position of the head 
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and neck posture in Configuration 2 was achieved using breakaway sutures attached through 

the skin. Drop heights of 0.45 m for tests 1, 2 and 4 and 0.53 m for tests 3 and 5 were used 

based on head impact velocities in diving accident reconstructions performed by McElhaney et 

al. (1979) and to be consistent with the study of Nightingale et al. (1997a). These heights have 

been shown to produce sufficient energy to cause cervical spine injury without producing skull 

fractures.  

4.2.4 Instrumentation and High Speed Digital Video 

Head impact forces were measured using a six-axis load cell located directly below a 

Teflon® impact surface. Lower neck forces and moments at the T1 level were measured using a 

six-axis load cell located between the neck and the carriage. T1/cart vertical acceleration 

response was measured with a linear accelerometer attached to the cart. Impact speed was 

calculated from cart displacement measured using a laser CCD displacement sensor. All 

transducer data were acquired in accordance to the SAE J211 standard. Two 1,000-fps digital 

cameras were synchronized with the data acquisition and used to record each test; one from the 

frontal perspective and one from the left lateral perspective. The impact surface provided 

variation of the impact angle to produce laterally oblique impacts. 

Data processing was conducted in accordance was SAE J211. All head and neck forces 

were digitally filtered at SAE channel filter class 1000 (CFC 1000) and neck moments at CFC 

600. The SAE coordinate system outlined in J211 was used. The neck vertical load and sagittal 

and frontal plane moments measured at the load cell were transformed to the center of the C7-

T1 intervertebral disc. The actual vertical load at the center of C7/T1 was calculated by adding 

the measured load at the load cell to the product of the acceleration measured at C7/T1 and the 

mass of the casting cup, casting material, adapter plates, attachment hardware and the mass of 

the load cell between the sensitive axis of the load cell and the center of the C7-T1 

intervertebral disc. The measured neck forces were filtered at CFC 600 for the sagittal and 
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frontal plane moment transformation process. The location of the C7-T1 intervertebral disc was 

determined using pre-test radiographs. Equations (4.1) and (4.2) were used to transform the 

measured moments and are depicted in Figure 4.5. 

 

Figure 4.5: Transformation of flexion/extension moment (My) and lateral bending (Mx) 
moments to the center of C7-T1 intervertebral disc 

 

(Equation 4.1)  )()( xFzzFxMyMy LC ×+×+=  

 (Equation 4.2) )()( yFzzFyMxMx LC ×−×−=  

In head-neck complex experimentation, the C7-T1 intervertebral disc represents a 

convenient and repeatable anatomical landmark nearest the tested specimen that does not 

move relative to the load cell sensitive axis. Combined with the relative ease in which the center 

of the disc can be defined in a radiograph, this ensures accurate moment transformation. There 

is flexibility in this approach in that alternate identifiable anatomical landmarks that may 

correlate better with the sensitive axes of ATD load cells can be used to report the moment 

response. 

The head impact plate load cell was always aligned with the impact surface. The 

measured axial and lateral head contact forces in Configuration 1 tests were therefore 
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transformed so that the vertical axis aligned with the cervical spine vertical axis and was 

consistent with measured loads in Configuration 2 tests. The head and lower neck vertical 

impulse was calculated for each specimen by integrating the vertical force time history. 

4.2.5 Injury Documentation 

The presence of damage to the cervical vertebral column was documented through post 

test radiographs and dissection of the specimens. Antero-posterior and lateral radiographs were 

taken of each specimen preparation. Both the heads and cervical spines were then dissected 

and all damage was documented. For the three tests in which vertebral fractures were 

identified, the load at fracture was determined based on the measured neck load responses and 

the associated high speed video. Traditionally, compressive failure has been defined as a 

decrease in axial load while displacement is still increasing. In the case of the cervical spine, a 

change in geometry due to neck buckling or a change in end conditions (head translation on the 

impact surface) can also lead to a decrease in axial load on the spine. The fracture loads 

identified are the first decrease in axial load that could not be attributed to another cause. 

Similar approaches to identifying cervical vertebral failure loads have been used by other 

researchers (Nightingale et al. 1996b and Carter et al. 2002).  

The Abbreviated Injury Scale (AIS) is widely used in automotive safety. The severity of 

cervical injuries in the AIS scaling system is highly dependent on neurological dysfunction and 

the magnitude of spinal cord involvement. Testing with PMHS limits the ability to determine 

neurological dysfunction, therefore cervical damage documented was limited to clinically 

recognized orthopedic injuries. The clinical stability of the orthopedic damage sustained by the 

PMHS specimens was documented. Damaged spinal segments were assessed manually and 

adjacent segments that were able to be manipulated beyond a typical physiologic range of 

motion were defined as unstable (White and Panjabi, 1990). 
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4.3 Results 
 

Five tests were conducted in which PMHS were dropped from either 0.45 or 0.53 m, with 

resulting impact speeds ranging from 2.9 to 3.25 m/s. Three of the five specimens sustained 

compressive cervical vertebral fractures at lower neck loads ranging between 1,518 N and 

3,472 N. Fracture patterns did suggest that the asymmetric postures and loading resulted in 

asymmetric fracture patterns. Overall compressive neck injury dynamics and tolerances appear 

similar to previous studies of purely sagittal plane dynamics based on these initial results.  

 
4.3.1 General Kinetics and Kinematics 
 

Typical plots of the head and neck vertical loads are shown in Figure 4.6. Figure 4.6 (A) 

represents a test in which no fracture occurred while Figure 4.6 (B) represents a test in which a 

fracture was identified. In both cases, the neck load initially lagged the head load due to 

decoupling of the head and neck. The head contacted the impact plate and began to rebound 

before the neck began to experience significant loading. The neck load increased rapidly 

initially, then the neck buckled or fractured and the load began to decline. The average peak 

axial neck force due to head rebound was 2,122 +/- 1,331 N or 59 +/- 25% of the overall neck 

axial force at that time. The neck impulse ended once the torso was arrested or the head moved 

out of the path of the torso. A primarily bi-model head response was observed in Tests 1-4, 

similar to previous findings (Nucholtz et al. 1981 and 1983 and Nightingale et al. 1996b and 

1997a). In Test 5, a tri-modal head response was observed. Peak head and neck loads, head 

and neck impulse and the lag in neck force response are summarized in Table 4.2. 
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Figure 4.6: Test 2 head (dashed line) and neck (solid line) vertical loads for a non-fracture 
case (A) and Test 3 for a fracture case (B) 

 

Cervical spine buckling modes do not appear to be a function of lateral bending and 

appear similar to sagittal plane tests reported by Nightingale et al. (1996b, 1997a). Based on 

high speed video, no observable high-order lateral bending mode was present in any of the 

tests. Buckling was observed after the rapid onset of compressive load. Relative anterior-

posterior motion at individual cervical spine motion segments was visualized at approximately 4 

ms after impact. This was consistent with a sizeable decrease in the measured axial load. In all 

five tests, the lower cervical spine (C6-C7) was flexed locally while the remaining vertebrae 

appeared to be in extension. The velocity of the anterior snap through of the cervical spine 

buckle was qualitatively greatest in Tests 4 and 5 which were tested in Configuration 2. 

 

Table 4.2: Summary of peak head and neck kinetics 
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The vertical impulses and the momentum at impact were calculated for both the head 

and torso in each of the tests. The head impulse presented in Table 4.2 is the integration of the 

first mode of the head force response. The impulse calculated at the base of the neck is 

equivalent to the effective torso impulse or change in torso momentum. The torso impulse at the 

end of the first mode of the head response was approximately 25 +/- 4% of the head impulse, 

indicating torso inertial forces are contributing slightly to the head load during mode 1, but that 

the primary work that was being done during the first mode of the head response was the 

stopping and subsequent rebounding of the head. Since impulse is equivalent to change in 

momentum, comparing the calculated impulses to the momentum of the head and torso at 

impact gives some insight into the ability or inability of the head to escape out from underneath 

the falling torso and the extent to which the torso is arrested. Table 4.2 lists the calculated 

impulses as well as the momentum at impact for the head and torso. The head and torso 

impulses were greatest for Configuration 2 indicating that the head was less likely to escape the 

ensuing torso in this configuration. This is likely primarily due to the cervical spine being 

oriented nearly perpendicular to the impact surface. 

 
4.3.2 Cervical Spine Response  
 

Unlike primarily sagittal plane cervical spine response to near vertex head impacts, the 

two test configurations evaluated elicited a complex three-dimensional response dominated by 

the compressive axial load. The maximum response of all lower neck forces and moments was 

observed during the initial 30 to 40 ms after head contact. Following this initial impulse, the 

general head kinematics included forward and left translation and forward flexion, left lateral 

bending, and a small degree of head clockwise axial rotation when viewed in the superior to 

inferior direction. Test 4 was an exception in that primary post impact head motion was rearward 

rotation or extension with very little head translation. The torso impulse in this test was the 

largest observed and the vertical rebound of the torso was evident in the high speed video. In 
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Test 5, the head of the specimen briefly began to go into extension but reversed into forward 

flexion.  

The following detailed descriptions of spinal responses are grouped by test configuration 

and only include the initial primarily compressive phase of the response which occurred prior 

significant head motion. Figures 4.7 – 4.11 are individual plots of the axial (Fz), anterior-

posterior shear (Fx), sagittal plane moment (My), lateral shear and bending (Fy, Mx) and axial 

twist (Mz) responses at the base of the neck respectively. The lateral shear force channel was 

corrupt for tests 1, 2, and 4 so the lateral bending moment could not be transformed to C7/T1, 

therefore, Figure 4.10 does not include these tests. 

 
. 
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Figure 4.7: Axial force response of the cervical spine in tests 1 (A) – 5 (E). A negative axial force 

indicates compression 
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Figure 4.8: Anterior-posterior shear force (Fx) response of the cervical spine in tests 2 (A) – 5 

(D) 

 
Figure 4.9: Sagittal plane moment (My) response of the cervical spine in tests 2 (A) – 5 (D) 
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Figure 4.10: Lateral shear force (Fy) and moment (Mx) response for test 3 (A and C) and 5 (B 

and D) 
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Figure 4.11: Axial twist moment (Mz) response for tests 1 (A) – 5 (E) 

 
 

Test Configuration 1 consisted of a neutral neck impacting a fifteen degree laterally 

inclined plate. Each of the six neck load channels, including axial force to some extent, 

experience high frequency oscillation and in some cases polarity reversals at the specified SAE 

filter classes. Due to the overall geometry of the head-neck complex when the natural lordosis 

of the spine is maintained, the sagittal plane reaction forces were similar for both test 

configurations. The vertical head force is applied anterior to the base of the neck resulting in a 
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primarily positive moment around the lateral (Y) axis. Initially, a posterior shear force with a 

magnitude significantly less than that of the axial compression is applied at the head which 

subsequently dissipates with the decrease in axial load. The posterior shear force applied to the 

head acts to generate a negative moment around the lateral (Y) axis but is significantly less 

than the contribution of the axial force. Figure 4.12 depicts the primary forces applied to the 

head (blue arrows) and the cervical spine reaction forces and moments (black arrows) in each 

of the three orthogonal perspectives.  

 
Figure 4.12: Primary force and moments in cervical spine in test Configuration 1 

 
 

The lateral shear force reaction was small in magnitude compared to the axial force and 

the anterior-posterior shear force for test Configuration 1. The lateral bending moment (Mx) is 

primarily driven by the lateral shear force, not the axial compressive force because the lateral 

shear force moment arm is large whereas the axial force is being applied near to the lateral 

center line of spine. The direction of lateral shear and bending depicted in Figure 4.12 holds true 

for the majority of the compressive phase of the spinal response. Finally, Figure 4.12 depicts the 

anterior-posterior and lateral shear forces effect on the axial twist or torsional moment (Mz). In 

this configuration, the greater magnitude of the shear force applied in the posterior direction 
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versus the leftward direction results in a negative twist moment reaction at the base of the 

cervical spine. 

Test Configuration 2 consisted of a pre-laterally flexed head and neck impacting a flat 

impact surface. The sagittal plane response is very similar to that of Configuration 1 but the 

magnitude of the pre-buckle axial response in this configuration is generally greater. The 

decrease in load due to buckling is very large and rapid and easily identified in the plot in Figure 

4.7 beginning near 4 ms. The lateral shear response has a larger magnitude and lateral shear 

and bending moment responses are primarily in the opposite direction of that in Configuration 1. 

An initial left lateral bending posture resulted in an initial right lateral bending response due the 

location and direction of the applied force on the head. The lateral shear force and the moment 

arm at which it is applied, again exceed the contribution of the axial load due to it acting near 

the centerline of the cervical column. The magnitudes of both lateral shear and bending 

responses are larger than observed in Configuration 1 and approach the magnitudes of shear 

and bending in the sagittal plane (Fx, My). Figure 4.13 outlines the primary forces applied to the 

head and the respective neck reaction forces and moments.  

 
Figure 4.13: Primary forces and moments in cervical spine in test Configuration 2 
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Similar to Configuration 1, the torsional moment reaction was again negative or counter-

clockwise when viewed from above. The torsional responses presented for both configurations 

in Figure 4.11 is oscillatory in nature but includes a more continuously applied and slightly 

greater magnitude response in Configuration 2, consistent with being driven by both anterior-

posterior and lateral shear force components. 

 
4.3.3 Cervical Spine Tolerance 

 
Documented cervical damage is shown in Table 4.3. For Tests 1, 2 and 4, where impact 

speeds were below 3.1 m/s, the documented damage was less severe than for Tests 3 and 5 

where the impact speed was 3.25 m/s or greater. This is consistent with the previous findings of 

Nightingale where the average impact speed for injurious rigid impacts was approximately 3.23 

m/s (Nightingale et al. 1997a). The fractures observed were consistent with cervical spine 

injuries presenting clinically. In addition, in the more severe impacts of Test 3 and 5, the injuries 

showed a bias to the left side consistent with leftward asymmetric loading. The only unstable 

injury identified was at C4-C5 in Test 3. No fractures were identified in Test 1, however, 

increased laxity of the left facet capsule at C4-C5 was easily identifiable post-test compared to 

its pre-test range of motion. Note that the casting failure related fracture/dislocation of Test 2 

occurred late in the event and was an artifact of the test method. 
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Table 4.3: Documented fractures during post-test dissection 

 

 

 

 

 

 

 

 

 

 

 

Neck compressive fracture loads, timing and concurrent shear forces and bending 

moments are summarized in Table 4.4. The average fracture load was 2,795 +/- 1,107 N. The 

fracture loads for pre-laterally bent necks (Test 4 and 5) were similar to each other and larger 

than the single fracture in the neutrally oriented neck. The average time to fracture was 3.3 +/- 

1.2 ms.   

Table 4.4: Cervical spine forces and moments at the time of fracture 

 
 

Axial force dominated the kinetic response at the time of fracture. In all 5 tests, the 

sagittal plane moment was primarily forward flexion at the base of the neck during the 

compressive phase, or first 30 to 40 milliseconds, of the response. However, the response in 

each test began with a 4 to 5 millisecond period of rearward extension. The initial point of failure 

from the axial load was identified during this period for test 3 through 5 and the injury pattern 

was consistent with compression-extension type injuries including posterior element fractures 

Test ID Left Side Right Side

2

3

C1 lateral mass, C4 inf 
facet, C5 pedicle, C5 sup 

facet, C6 pedicle and 
lamina

C5 lamina, inf facet

4

5 C5 inf facet, C6 pedicle 
and lamina C6 lamina

C3-C4 ALL rupture, C4 – ant sup tear drop, C4 
spinous process

1

Casting Failure: T1-T2 dislocation, fracture through 
T1 body

No fractures identified
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and anterior longitudinal ligament rupture. Lateral shear force and lateral bending moments 

contributed the least to the mechanical response at the time of fracture.  

In the current study, with a limited number of samples, overall torso and the first mode of 

head impulse served to accurately delineate the presence of fracture across test methods. A 

head impulse at or above 16.7 N·s. and a torso impulse at or above 42.6 N·s. correlated with the 

presence of cervical fracture. A head impulse at or below 14.0 N·s. and a torso impulse at or 

below 38.8 N·s. correlated with the lack of cervical fracture. 

 
4.4 Discussion 

This study provides a preliminary examination of the effects of asymmetric postures and 

asymmetric loading on cervical spine kinetics and kinematics. The results of these tests were 

compared to the sagittal plane dynamic responses of Nightingale et al. (1997a). The results 

indicate that moderate amounts of lateral bending resulting from asymmetric loading were 

similar to previous neutral posture sagittal plane compressive loading results. Impact speeds 

resulting in catastrophic injury in Tests 3 and 5 were approximately 3.25 m/s. A laterally pre-

positioned posture increased the magnitude of the initial compressive force response and the 

axial force to failure. This is due to a pre-stiffening of the facet joints on the laterally compressed 

side of the cervical column. In Test 3 and Test 5 in which lateral shear force and bending 

moment at failure could be determined, the magnitude of these loads are small in comparison to 

sagittal plane shear and bending responses, however , the laterally eccentric loading caused 

increased loading through the facet joints which are lateral and posterior the vertebral body. 

This resulted in initial loading posterior to the center of the C7/T1 intervertebral disc and is 

consistent with the documented injury patterns. 
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4.4.1 Cervical Spine Response 
Impact speeds in the current study that caused injury were consistent with previous 

findings, however, the overall head and neck kinetics varied, particularly between test 

configurations. In Configuration 1 (Tests 1 to 3), peak head impact forces and the resulting 

impulses were very similar to those reported in the past (Nightingale et al. 1997a). The average 

impulses due to the torso mass loading the cervical spine as well as the lag in the response at 

the base of the neck are consistent with previous research.  

Corridors for head and neck load for the Nightingale data were reported by Camacho et 

al. (1999) and are presented in Figure 4.14 with the current data overlaid. Figures 4.14 (A) and 

(B) represent the current resultant head and neck test data from Configuration 1 (neutral neck 

with laterally inclined impact plate) and Figures 4.14 (C) and (D) contain the head and neck data 

from Configuration 2 (pre-positioned laterally flexed neck with horizontal impact plate). The data 

for the angled plate impacts are very similar to those found for neutral neck loading. Only one of 

the three tests is substantially above the upper limit of the corridor in Figure 4.14 (B). Figure 

4.14 (A) and (B) also indicate that the overall head and neck loading duration is shorter than the 

respective corridors by approximately 5 ms.  
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Figure 4.14: Resultant head force (A and C) and neck force (B and D) response comparison to 
previously published (Camacho et al. 1999) neutral neck / flat plate corridors for tests 

1(magenta), 2 (blue) and 3 (green) (A and B) and 4 (blue) and 5 (green) (C and D)  
 

   
Head contact loads for the lateral bending posture tests (Configuration 2) showed a 

trend for being substantially higher than head loads for tests with an angled impact plate. The 

head impulses measured for Configuration 2 were over 40% greater on average than those 

measured in Configuration 1 and presented in past studies. The contribution of inertial torso 

forces early in the event might be affecting the response of the neck. The impulses due to the 

torso mass were approximately 25 +/- 4% of the head impulse after the first mode of the head 

response which is substantially greater than the 2-10% reported previously (Nightingale et al. 

1996b).  
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The increased head impulse in test Configuration 2 in comparison to the head 

momentum at impact indicates a more substantial rebound velocity and less of a an opportunity 

for the head to escape the following torso. In the lateral bending posture tests, the neck is 

preloaded resulting in stiffening the joints and more directly coupling the mass of the torso to the 

head. This would likely result in an increase in the effective mass of the head at initial contact. 

This may be one of the factors resulting in increased head loads in test Configuration 2. In 

addition, the lag between the head and neck loads is shorter for the pre-lateral bent tests 

consistent with a tighter couple between the head and the torso. Additionally, the torso impulse, 

or magnitude of torso momentum arrested, was greater for Configuration 2. Test 4 was the only 

case in which the torso impulse was greater than the torso momentum at contact. This is 

consistent with the observation from the test video that Test 4 was the only case in which the 

torso was fully arrested and rebounded slightly. 

The sagittal plane bending moment was also compared to work previously conducted by 

Nightingale et al. (1997a). The moment responses for neutral neck / rigid flat plate tests were 

averaged and corridors defined by one standard deviation greater than and less than the mean 

response. Figure 4.15 displays the current experimental results overlaid on the calculated 

corridors. Similar to the axial neck load response, Figure 4.15 (A) shows that Configuration 1 

tests follow the flat plate corridors well. Since the moment response is being driven by the axial 

load, it is not surprising that similar to Figure 4.14 (B), the overall duration is shorter than the 

respective corridors by approximately 5 ms. The response of the pre-laterally flexed necks are 

shown in Figure 4.15 (B). In general, the experimental moment response again fits reasonably 

well in the corridors. The peak magnitude response for Configuration 2 is slightly greater than 

the previous testing. 
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Figure 4.15: Sagittal plane bending moment response for tests 2 (blue) and 3 (green) (A) 
and 4 (blue) and 5 (green) (B) compared to previously neutral neck / flat plate tests 

(Nightingale et al. 1997a). A positive sagittal moment (My) indicates forward flexion at the 
base of the neck 

 

4.4.2 Cervical Spine Tolerance 
The failure load of 1,518 N in Test 3 with a neutrally oriented cervical spine is similar to 

reported tolerances by Nightingale et al. (1997a). The failure loads in Tests 4 and 5 using a pre-

laterally flexed cervical spine were higher than one standard deviation above this same injury 

tolerance. The higher failure force is consistent with reported results from Pintar et al. (1995) 

who found mean failure loads of 3,326 N for the cervical spine in compression. The major 

difference in the test setup of Pintar compared to Nightingale and the current study was a pre-

flexion of the head and neck that removed the resting lordosis of the cervical spine and aligned 

the vertebral column. Results indicate that pre-lateral flexion of the neck, while maintaining the 

resting lordosis of the spine, has a similar effect of increasing the compressive axial force 

tolerance. Figure 4.16 compares the failure loads in the current study to those reported by 

Nightingale et al. and Pintar et al. The increased axial force response in Tests 4 and 5 is due to 

a pre-stiffening of the facet joints on the laterally compressed side of the cervical column. 

 

 

A BA B



 
74 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Average failure force reported by Nightingale et al. 1997a and Pintar et al. 1995 
compared to the failure forces in Test 3, 4, and 5 

 

Anterior – posterior shear force, lateral shear force and lateral bending moment do not 

contribute significantly to the kinetics at the time compressive failure of the cervical spine. The 

sagittal plane bending moment was primarily forward flexion at the base of the neck. However, 

this response began with a 4 to 5 millisecond period of rearward extension moment prior to 

buckling of the cervical spine. The initial point of failure was identified during this period of time. 

The negative sagittal plane moment, or posterior eccentricity, is consistent with the identified 

cervical damage and the geometry of a vertebra. Even though the lateral shear force and lateral 

bending moments contributed the least to the mechanical response at the time of initial failure, 

any degree of lateral eccentricity increases the loading through the facet joints, and 

consequently the posterior elements, which are lateral to the vertebral bodies. It is this loading 

through the facet joints that also explains the fairly significant torsional moments at failure as the 

facet joints are obliquely angled inferiorly as the joint extends posteriorly. The influence of these 

torsional moments on cervical tolerance is not currently well defined. 
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The numbers of specimens tested serve as limitation in drawing conclusions on a 

statistical basis. This preliminary investigation outlines general findings and trends that might 

help guide further research. Another limitation of the current study is lack of passive or active 

muscle contribution during the testing. Passive cervical spine muscle response has been shown 

to only slightly increase compressive cervical spine injury risk in finite element modeling (Hu et 

al. 2008). Active muscle response has been documented to occur 50 to 65 ms following head 

loading (Foust et al 1973, Schneider et al. 1975). Since the injuries in the current study have 

been identified to occur at 3.2 +/- 1.2 ms following head contact, the influence of cervical muscle 

reaction would be absent at the time of injury. Finally, four of the five test subjects utilized in the 

current study were 76 years of age or older. Test specimen number 5 was 55 years of age. 

Pintar et al. (1998b) has reported that the cervical spine failure force for loading rates between 2 

m/s and 4 m/s decreases with age. The failure loads reported in the current study likely 

underestimate the failure loads for younger individuals. 

4.5 Conclusions 
Overall compressive neck injury dynamics and tolerances are similar to previous studies 

of purely sagittal plane dynamics based on these test results. Impact speeds for the five tests 

ranged from 2.9 to 3.25 m/s. Three of the five PMHS sustained compressive cervical vertebral 

fractures at loads ranging between 1,518 N and 3,472 N. The asymmetric postures and loading 

resulted in asymmetric fracture patterns. The pre-laterally flexed neck affected the neck axial 

force response and the average failure load in the current study. The initial axial response 

indicated a better coupling between the head and torso and the average failure load was 

approximately 50% greater than the average failure load reported for males in the past 

(Nightingale et al. 1997a). Although lateral pre-positioning of the head-neck complex influenced 

axial response, shear forces and the lateral bending moment magnitudes at failure were small in 

comparison to sagittal plane responses in both test configurations. These secondary kinetics 

primarily act to modify the location of the applied axial force relative to the cervical column and 
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in doing so, influence the magnitude of the axial response and specific injury outcomes. Based 

on the small sample of experiments conducted, Configuration 1 axial response and failure load 

appears consistent with the neutral posture sagittal plane studies of Nightingale et al. (1997a) 

while Configuration 2 failure loads appear consistent with the pre-flexed posture sagittal plane 

studies of Pintar et al. (1995). 
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CHAPTER 5 

FURTHER INVESTIGATION INTO PMHS CERVICAL SPINE COMPERSSION 

TOLERANCE THROUGH COMBINATION OF MULTIPLE DATA SETS 

 
5.1 – Introduction 
 

Biomechanical investigations using PMHS have been an essential element in the current 

understanding of the complex dynamics of compressive cervical spine injury including cervical 

column buckling, injury timing with respect to head motion, and the effects of contact surface 

padding on neck injury risk (Nusholtz et al. 1983, Alem et al. 1984, Yoganandan et al. 1986, 

Pintar, Nightingale et al. 1996a, 1996b, Camacho et al. 2001). Compressive injury tolerance has 

historically been reported by identifying the peak axial force at injury measured at the base of 

the neck (Pintar et al. 1995 and Nightingale et al. 1997a). However, as an injury predictor, 

compressive force at failure exhibits wide variation and this has been attributed to the alignment 

of the cervical vertebra and the end conditions of test methodology used. Results from the 

previous chapter on the effects of lateral bending on compressive neck response and tolerance 

resulted in fracture loads consistent with the range of failure loads reported by Nightingale et al. 

(1997a) when the cervical spine’s natural lordosis was maintained and Pintar et al. (1995) when 

the neck was pre-laterally flexed. Development and refinement of an injury criterion that 

incorporates the effects of compressive load eccentricity across the range of studies performed 

to date has the potential to lead to a more sensitive and robust injury predictor than axial force 

alone. Portions of the this chapter have been published in Traffic Injury Prevention. 

 
5.1.1 Mechanistically Relevant Injury Criteria 
 

Several composite neck injury tolerance criteria for compressive loading events have 

been proposed for both the upper and lower cervical spine that incorporate the effects of 

combined compressive loading modes including Nij. The linear combination of axial force and 



 
78 

 
 

bending moment has a basis in generalized mechanics. The upper neck Nij intercepts for 

combined tension and extension loading were derived by calculating the approximate maximum 

normal stress in the anterior longitudinal ligament (ALL) at the level of the occipital condyles 

(Mertz and Prasad 2000). In compressive loading, the maximum normal stress in a structural 

member (or strut), takes the form: 

 

(Equation 5.1) 
I

Pey
A
P

I
My

A
P maxmax

max +=+=σ  

 
where P is the axial force, M is the moment, A is the cross sectional area of the strut, I is the 

second moment of the area, e is the distance from the central axis that the load is applied 

(eccentricity) and y is the distance from central axis for the location the stress is being 

calculated (see Figure 5.1A). 

 

 
 

Figure 5.1: Generalized eccentric loading condition of a compressive strut (A) and a slender 
column (B) 

 
 

As the cross sectional geometry of a compressive strut decreases while holding the 

length the same, the likelihood of buckling increases. In this case of a slender column as shown 

in Figure 5.1B, the maximum moment in Equation (5.1) is a function of not only the axial load 
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and its eccentricity but also the transverse deflection, δ, of the column (Equation 5.2). After 

solving for this deflection, the maximum normal stress is represented by Equation (5.3) known 

as the secant column formula (Shigley and Mischke, 1989). Regardless of whether the cervical 

spine is thought of as a compressive strut or slender column, the combination of axial force and 

the eccentricity at which it is applied has merit as a potential injury criteria based on 

fundamental mechanics. 

 
(Equation 5.3)  )(max δ+−= ePM  

 

(Equation 5.4) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

EA
P

k
l

k
ec

A
P

n 2
sec1 2σ  

 
 

5.1.2 PMHS Data Available for Consideration 
 

In order to account for a range of applied loading vectors and cervical postures, a 

combined data set of relevant cervical spine tolerance data needs to include studies of whole 

cervical spine kinematics and inertial loading by the head. The minimum number of quantified 

parameters includes; known end conditions, spinal posture, injury outcomes and the kinetics at 

the base of the neck. Research conducted by three investigating groups meet the above criteria. 

They include Pintar et al. (1995 and 1998a), Nightingale et al. (1997a) and the experimentation 

conducted as part of this research. Amongst these three groups, two primary test 

methodologies have been used. Pintar et al. aligned the cervical column of a PMHS head-neck 

complex by pre-straitening the neck and impacted the apex of the head using an MTS machine 

and Nightingale et al. designed an inverted drop track with a simulated torso mass and mounted 

a head-neck complex with the cervical spine resting lordosis maintained. The current research 

adopted the general methodology of Nightingale at al. but investigated laterally oriented impact 

surfaces and pre-laterally positioned cervical spines. 
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The purpose of the following research is to attempt to identify a more sensitive and 

robust predictor of compressive injury in the PMHS cervical spine than the range of currently 

reported axial force tolerances. By including multiple data sets, a variety of conditions including 

head constraint, head-neck posture and test methodology can be evaluated while increasing to 

the overall number of test specimens considered for statistical analysis. A PMHS lower neck Nij, 

a combination of sagittal plane resultant force and its applied anterior-posterior eccentricity at 

the C7/T1 intervertebral disc, and axial impulse were evaluated for their ability to predict the 

presence of cervical damage in the PMHS. 

 
5.2 Methodology 

Combining the experiments of the studies outlined above results in a total of 57 

experiments in which electronic data was available, 56 of which include the necessary 

information to transform the bending moments to the center of the C7/T1 disc. The data set of 

Nightingale et al. (1997a) includes 22 experiments of 21 PMHS, 16 of which resulted in cervical 

damage that was reported in detail. Pintar et al. (1995) conducted 20 PMHS experiments, all of 

which resulted in some form of documented injury. The 1998a study by Pintar et al. included an 

additional 10 PMHS experiments. Each experiment resulted in an injury outcome that was put 

into one of two groups of general injury descriptions, but injury specifics for each experiment 

were not available. Finally, the current research included 5 PMHS experiments, 3 of which 

resulted in cervical damage. 

 
5.2.1 Data Processing 

 The data from each experiment was digitally filtered per SAE J211-1. Moment 

transformations were conducted as described in Chapter 4.2.4. The lower neck axial impulse 

was calculated by integrating the axial force at the center of the C7-T1 intervertebral disc. 

Integration was performed numerically using the trapezoidal rule. Integration began at the time 

of head contact and ended after the compression force returned to zero. In the case of impact 
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with a padded surface, the compressive load in the neck often did not return to zero and instead 

reached a steady state load approximately equal to the static force of the torso mass. In these 

cases, the integration was ended once the axial force reached a local minimum. 

During impacts to the apex of the head, the location, magnitude and direction of the 

resultant load applied to the head directly influence the magnitude and direction of the lower 

neck reaction force and moment response. Figure 5.2 shows three equivalent depictions of a 

general loading scenario. The use of sagittal plane resultant force combined with eccentricity of 

the applied force relative to the center of the C7/T1 intervertebral disc allows for comparison of 

a range of initial neck orientations. The sagittal plane eccentricity (Exz) relative to the center of 

the C7-T1 intervertebral disc can be calculated using Equation (5.4) which only incorporates the 

neck reaction forces and moments. Eccentricity is fundamentally the perpendicular distance 

between the force line of action and center of the intervertebral disc. 

 

(Equation 5.4) 
22 FzFx

My
Fxz
MyExz

+
==  

 
 

 
Figure 5.2: Equivalent representations of a generalized two-dimensional loading scenario 
depicting the relationship between sagittal plane kinetics and resultant sagittal plane force 

eccentricity 
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5.2.2 Injury Severity 

The severity of cervical injuries in the AIS injury scaling system is highly dependent on 

neurological dysfunction and the magnitude of spinal cord involvement. Testing with PMHS 

limits the cervical damage documentation to clinically recognized orthopedic injuries. Each of 

the research groups whose studies are included in this combined data set utilized slightly 

different injury severity descriptions.  

The experiments conducted as part of the current study and those conducted by 

Nightingale et al. used the clinical stability of the orthopedic damage sustained by the PMHS as 

an indication of cervical spine injury severity. Unstable injuries are more likely to involve the 

spinal cord and require surgical intervention (White and Panjabi, 1990). Pintar et al. used two 

similar injury severity scales in each of their studies. In the 1995 study, cervical damage was 

classified as either minor, moderate, or severe. Minor injuries were defined as trauma not 

requiring appreciable clinical intervention, moderate injuries were defined as trauma requiring 

moderate intervention with external and possibly internal (surgical) intervention and severe 

injuries were defined as trauma requiring appreciable internal (surgical) and external 

intervention. Finally, the 1998a Pintar et al. study defined injuries as either minor or major. Minor 

injuries included mainly disruption of lower cervical spine posterior ligaments at one level and 

major injuries included extensive liagamentous injury usually with vertebral fracture and/or 

complete dislocation. Spinal cord pressures were monitored and major injuries resulted in 

higher local cord pressure at the site of injury, increasing the risk for acute spinal cord trauma. 

Based on the injury definitions from the various studies, stable and minor both describe 

injuries that do not likely require surgical intervention. Unstable, severe, and major describe 

injuries that likely require surgical intervention. The last category of injury severity is moderate 

from Pintar et al. (1995) which describes injuries that possibly require surgical intervention. 

Using the three column concept of spine stability, the classification of major and unstable 

groups can be interpreted to involve at least two columns and minor injuries one of the three 
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columns (Denis, 1984). The involvement of at least two of three columns often times leads to a 

more aggressive treatment regimen. The 10 experiments with documented injuries in the 

moderate category include complete posterior ligament rupture, anterior and posterior damage 

at the same cervical level, vertebral body fractures at multiple levels, and single vertebral body 

fractures including wedge and compression fractures. Two of the experiments with moderate 

injuries were subsequently included in the Pintar et al. 1998a study where they were classified 

in the major injury category. Based on the available injury descriptions, 7 of 10 experiments can 

reasonably be classified as more likely than not requiring surgical intervention due to 

involvement of two columns. Therefore, all 10 experiments were included with the unstable, 

severe and major group of injuries for purposes of statistical analysis.  

 
5.2.3 Derivation of Injury Metrics 

A two-dimensional plot of axial forces versus sagittal plane moment at failure was 

created using each experiment with an identified injury. A second two-dimensional plot was 

created using sagittal plane resultant force versus and its applied eccentricity at the time of 

identified failure. Linear regressions were conducted for both anterior and posterior moment and 

eccentricity to evaluate the presence or absence of a relationship between these variables. 

In order to better define potential relationships between these variables, the data were 

categorized by gender, injury type and injury location and further analyzed using linear 

regression. The injury types included the presence of bony fracture or ligamentous only. 

Vertebral avulsion “fractures” were categorized as ligamentous damage. The injury locations 

included upper or lower cervical spine and anterior or posterior based on the mechanistic injury 

causing load eccentricity as defined by Winkelstein and Myers (1997) (see Figure 3.5). For 

example, wedge fractures and bilateral facet dislocations were identified as anterior injuries and 

pedicle or lamina fractures and anterior longitudinal ligament tears were categorized as 

posterior injuries. 
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Linear regressions were performed for anterior and posterior moment and eccentricity 

injuries. The linear regressions intercept values were constrained to be equal for both anterior 

and posterior regressions of a give two-dimensional plot. This was accomplished using 

Microsoft Excel solver to determine the three unknowns, the y-intercept (force), the anterior 

regression slope, and the posterior regression slope, while maximizing the coefficient of 

determination (R2) for the combined regressions. 

  
5.2.4 Consideration of Donor Age 

The peak force and failure force were scaled to account for PMHS donor age for each 

experiment. Riggs et al. (1981) reported unique linear relationships between bone mineral 

density and age for non-osteoporotic men and women (Figure 5.3). The reported linear 

regression equations for men and women are: 

(Equation 5.5) ageBM MEN *0021.033.1 −=
 

(Equation 5.6 ageBMWOMEN *0092.059.1 −=  

 

Nuckley and Ching (2005) have reported a linear relationship between vertebral bone mineral 

density and yield strength. Based on this relationship, the peak and failure loads for each PMHS 

were scaled to the age of 61, which is the average donor age of all PMHS included the 

combined cervical spine compressive data set. The linear regressions conducted as described 

in section 5.2.3 were repeated with the scaled loads to evaluate the influence of donor age on 

the regressions. 
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Figure 5.3: Linear regression of normal (no osteoporosis) men (A) and women (B) bone mineral 

density versus age taken directly from Riggs et al. (1981) 
 

5.2.5 Statistical Methods and Distribution Analysis 

Two statistical methods were used to evaluate the significance of differences between 

the means of two populations. The first method is the parametric t-test for unequal samples and 

unknown variances which assumes a t distribution. The second is the non-parametric Wilcoxon 

Rank-Sum test which is particularly useful when sample sizes are small and variances are 

unknown or unequal (Milton and Arnold, 1995). Significance levels were set at p < 0.05. When 

multiple qualitative independent variables exist in the two groups being compared, such as the 

test method utilized, the type of injury sustained, and the severity of the injury sustained, 

analysis of variance (ANOVA) was also conducted using XLSTAT Pro. 

In physical experimentation, the mechanical stimulus at failure is traditionally used to 

define injury tolerance. Since PMHS without documented cervical damage has not yet failed, a 

direct comparison of mechanical responses between damaged and undamaged PMHS is 

problematic. These undamaged PMHS are right censored data as the mechanical stimulus 

necessary to cause a material failure is greater than what was applied during the experiment. 

Taking into account stronger or non-failed PMHS experiments that have been conducted is 
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necessary for a complete understanding of the probability of compressive cervical injury 

tolerance. Survival or reliability analysis allows for the analysis of a dichotomous dependant 

variable (injury or no injury) using censored data.  

Survival analysis can be conducted with assumed parametric distributions or with a non-

parametric distribution. Generally, non-parametric analyses more accurately represent the 

underlying data set so are better suited for comparison of two survival (failure) curves. A 

sensitive injury metric has the ability to predict the severity of an injury outcome based on the 

mechanical stimulus. The current study evaluates multiple injury predictors’ ability to delineate 

the severity of injury using non-parametric distribution survival analysis techniques. The 

probability curve for sustaining a stable compressive cervical spine injury was constructed by 

using mechanical stimulus at the time of documented stable injury (uncensored) and the 

maximum stimulus for non-injured (right censored) PMHS experiments. Similarly, the probability 

curve for sustaining an unstable injury was developed using the mechanical stimulus at the time 

of documented unstable injury (uncensored) and the maximum stimulus in non-injured and 

stably injured (right censored) PMHS experiments. The primary assumption is that with more 

mechanical stimulus (regardless of which injury metric is used) the severity of orthopedic 

damage and thus risk of spinal cord involvement will increase. The Kaplan-Meier method was 

used to develop non-parametric survival curves (Kaplan and Meier, 1958). Log-Rank and 

Wilcoxon test methods were applied to stably and unstably injured PMHS failure curves to test 

for differences between them. The null hypothesis is that there is no difference between the two 

populations in the probability of a failure at any point in time. The Log-Rank test is more likely to 

detect a difference between groups when the risk of failure is consistently greater for one group 

versus the other and is most sensitive to differences at higher stimulus. The Wilcoxon test is 

more sensitive at detecting differences at low stimulus (Allison, 1995 and Maller and Zhou, 

1996). 
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When ultimately creating an injury risk curve, parametric distributions are advantageous 

because the tails or extents of the injury curve are likely a better representation of the true injury 

risk at very low and very high stimuli where there is little experimental data. Multiple parametric 

distributions were evaluated using maximum likelihood methods and the goodness-of-fit of the 

data to assumed distributions was evaluated for each injury metric. The adjusted Anderson-

Darling (A-D) statistic was used to assess the fit of the data. A smaller A-D statistic indicates the 

distribution fits the data better (Kent and Funk, 2004). In addition to assessing a given injury 

metrics ability to delineate the severity of injury using non-parametric methods, good fit of a 

parametric distribution increases the overall confidence that the derived injury risk, including at 

the extents of the risk curve, is accurate and appropriate. Minitab Version 16.2.2 was used for 

all parametric and non-parametric distribution analyses. 

 
5.3 Results 

 A summary of the sagittal plane mechanical responses at the time of documented failure 

and at the time of peak axial force are summarized in Tables 5.1 for the inverted drop tests and 

in Table 5.2 for the superior to inferior impacts with an MTS machine. The results tables include 

PMHS gender, age and test conditions including impact velocity and either impact orientation or 

posture. Sagittal plane kinetics at the time of failure and peak load as well as the scaled kinetics 

at failure based on Riggs bone mineral density regressions are listed. The drop cart (torso) and 

impactor displacements at the point of failure and peak load are included. Finally, the calculated 

impulse from the base of the neck axial force and documented injury information is listed. 
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Table 5.1: Inverted drop test data from current study and Nightingale et al. 1997a 
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-2416

2612
-0.8

-0.3
11.9

-2490
2691

-0.8
2.8

-2905
2921

58.3
20.0

8.9
40.6

stable
C

5-C
6 disc / A

LL / L capsular lig
N

26
65

M
0

2.43
 -

 -
 -

-
-

-
-

-
-

8.9
-3877

4189
-19

-4.5
18.2

48.3
N

I
N

24
62

M
0

3.2
2.2

-1845
1975

15.5
7.8

-
-1848

1978
15.5

8.5
-2308

2414
71.7

29.7
-

40.9
stable

C
1 2 part posterior arch, C

2 hangm
an

N
22

71
M

0
3.26

6.5
-1966

2105
63.7

30.3
-

-2001
2142

64.8
14.1

-2814
2870

77.7
27.1

-
48.3

unstable
C

1 3 part com
m

inuted
N

11
55

M
-15

3.14
 -

 -
 -

-
-

-
-

-
-

6.6
-2539

2891
22.1

7.6
19.7

24.6
N

I
N

13
35

F
-15

3.28
 -

 -
 -

-
-

-
-

-
-

9.1
-1987

2087
47.5

22.8
27.7

22.6
N

I
U

K
3

62
F

-15
3.13

 -
 -

 -
 -

 -
 -

 -
 -

 -
4.8

-3898
3977

-13.5
-3.4

14.6
37.3

N
I

N
21

61
M

30
3.13

14.8
-1635

1662
19.7

11.9
45.6

-1635
1662

19.7
20.9

-1757
1760

9.6
5.5

61.2
44.3

stable
C

5-C
6 disc / A

LL / L capsular lig
stable

C
4 spinous fx

stable
C

5 spinous fx
stable

C
1 ant ring fx

N
23A

46
M

30
3.03

 -
 -

 -
-

-
-

-
-

-
22

-2052
2096

-23.8
-11.4

64.1
41.9

N
I

N
23B

46
M

30
3.51

18.7
-2241

2350
-36.8

-15.7
62.2

-2183
2289

-35.9
18.7

-2241
2350

-36.8
-15.7

62.2
40.5

stable
C

4-C
5 disc / A

LL
stable

C
3-C

4 disc / A
LL

stable
C

1 2 part right fx
I08

80
M

15
3.15

30.5
-2915

2918
42.2

14.5
74.5

-3015
3018

43.6
18.1

-4273
4309

50.8
11.8

55.2
78.6

unstable
C

2 hangm
an and burst

I11
63

F
15

3.2
14

-967
972

19.5
20.1

-
-985

990
19.9

20.8
-2085

2096
26.3

12.5
-

71.8
unstable

C
2 typeIII dens + com

m
inution

stable
C

4 body and R
 lam

ina
I04

63
M

15
3.19

18
-1675

1698
39.1

23.0
56.3

-1681
1704

39.2
22.1

-2218
2260

49.4
21.9

67.3
74.1
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C

2 hangm
an, C

2-C
3 dis A

LL
stable

C
1 2 part pos arch

stable
C

7-T1 pos ligs
N

03
75

M
0

3.08
18.2

-3473
3509

30.4
8.7

53.2
-3560

3596
31.2

21.3
-3937

4011
56.8

14.2
59.2

62.7
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C
6-C

7 B
FD
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C

5-C
6 disc
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C

4-C
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N
02
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F

0
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45.9
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14.1
34.4
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9.4
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76
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stable

C
6 R
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C
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D

40
53

F
0
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16.7

-1438
1440

6.2
4.3
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-1342
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5.8

38.7
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8.9
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m

inuted
N
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F
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18.8
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-1.1

24.9
-1120

1221
-26.3
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Table 5.2: MTS impactor test data from Pintar et al. (1995 and 1998a) 
 

Test
Initial

Vel.
Tim

e
Fz

Fxz
M

y
Ecc

D
isp

Fz*
Fxz*

M
y*

Tim
e

Fz
Fxz

M
y

Ecc
D

isp
Im

pulse
Injury 

Injury D
escription

ID
Ecc.

(m
/s)

(m
sec.)

(N
)

(N
)

(N
m

)
(m

m
)

(m
m

)
(N

)
(N

)
(N

m
)

(m
sec.)

(N
)

(N
)

(N
m

)
(m

m
)

(m
m

)
(N

·s)
Stability

1
67

F
-0.5

3.13
7.0

-1186
1197

-0.3
-0.3

-
-1253

1265
-0.3

13.4
-1588

1597
13.2

8.3
-

21.1
m

inor
vertical frx C

3 body
2

62
F

0
5.57

4.1
-3680

3682
4.5

1.2
20.5

-3713
3715

4.5
4.1

-3680
3682

4.5
1.2

20.5
25.6

severe
burst frx C

5 body
3

77
F

0
6.36

3.9
-766

778
1.3

1.7
22.9

-893
908

1.5
7.7

-1179
1179

-9.8
-8.3

38.7
16

severe
w

edge frx C
4, com

p frxs C
2,C

3
4

50
M

0
8.37

4.2
-5010

5011
-13.4

-2.7
24.6

-4915
4916

-13.1
4.2

-5010
5011

-13.4
-2.7

24.6
26.1

m
od

w
edge frx C

6 body
5

38
F

0.5
7.99

3.5
-5857

6192
127.5

20.6
25.1

-4858
5135

105.7
3.5

-5857
6192

127.5
20.6

25.1
42.1

m
od

C
3-C

4 A
LL w

. C
3 avulsion

6
68

F
0.5

7.77
4.2

-3440
3442

22.9
6.7

27.1
-3669

3671
24.4

4.2
-3440

3442
22.9

6.7
27.1

26.5
severe

C
2-C

3 dislocation w
. ligam

entous rupture
7

67
M

0.5
-8.06

3.8
-4567

4970
77.6

15.6
25

-4615
5023

78.4
3.8

-4567
4970

77.6
15.6

25
29.4

m
od

C
4 frx ant body

8
48

M
0

-5.56
5.6

-3912
3925

14.4
3.7

26.6
-3825

3838
14.1

6.6
-4920

4937
0.4

0.1
29.6

41
m

od
vertical frx C

3 body w
. lam

ina frx
9

50
M

0
-6

4.7
-5172

5221
-1.8

-0.3
24.6

-5074
5122

-1.8
6.2

-5638
5638

-20.2
-3.6

29.4
41

m
inor

ant-sup chip frx C
3 body

10
59

M
0

-5.62
4.6

-3713
3778

15.8
4.2

25.4
-3700

3765
15.7

4.6
-3713

3778
15.8

4.2
25.4

34.1
m

od
com

p frxs C
4 / C

7 bodies
11

59
M

-0.5
-6.22

4.8
-4805

4824
-64.1

-13.3
26.7

-4788
4807

-63.9
4.8

-4805
4824

-64.1
-13.3

26.7
46.7

m
od

C
3-C

4 A
LL and C

4, C
5 spinous proc frx

13
82

M
2.5

-6.01
5.2

-2281
2372

12.6
5.3

23.5
-2368

2462
13.1

5.2
-2281

2372
12.6

5.3
23.5

17
m

inor
C

6-C
7 interspinous lig tear

14
60

F
0

-5.97
4.6

-3052
3073

107.5
35.0

26.7
-3025

3046
106.5

7.3
-3596

3603
132.8

36.9
36.3

27.1
severe

burst frx C
5 body

15
95

F
-0.5

-3.08
11.8

-1336
1336

10.7
8.0

29.8
-1919

1920
15.4

14.9
-1645

1645
14.7

8.9
37.1

26.5
m

od
C

6-C
7 A

LL w
. C

6, C
7 lam

ina frx
16

64
F

3
-6.07

5.4
-2554

3063
155

50.6
29.3

-2624
3147

159.3
5.4

-2554
3063

155
50.6

29.3
12.5

m
od

C
6-C

7 posterior ligam
ents

17
66

M
0

-5.97
4.4

-2901
2902

88.7
30.6

22.8
-2927

2927
89.5

4.4
-2901

2902
88.7

30.6
22.8

22.9
m

od
com

p frx C
5 body

18
54

M
0.5

-6.13
5.1

-2697
2732

97.5
35.7

27.1
-2664

2698
96.3

5.1
-2697

2732
97.5

35.7
27.1

31.7
m

inor
m

ild com
p C

7 body
19

76
M

2
-3.1

9.3
-2718

2846
-8.7

-3.1
23.2

-2792
2922

-8.9
15.1

-2927
3088

17.3
5.6

36.4
38.8

m
od

C
7-T1 posterior ligam

ents
20

29
F

1
-3.2

10.5
-2387

2422
-12.8

-5.3
26.1

-1856
1883

-10.0
11

-2462
2510

-13.6
-5.4

27.3
28.6

severe
burst frx C

5 body w
. C

5-C
6 posterior ligam

ents
21

76
M

0.5
-3.08

11.2
-3666

3690
-4.5

-1.2
27.7

-3764
3789

-4.6
11.2

-3666
3690

-4.5
-1.2

27.7
37.2

severe
burst frx C

4 w
. C

3-C
4 posterior ligam

ents
1

50
M

 -
-5.14

2.0
-3521

3611
155

42.9
9.7

-3616
3708

159.2
2

-3521
3611

155
42.9

9.7
38.1

m
ajor

extensive lig w
. fx and/or dislocation

2
46

M
 -

-5.3
3.9

-4345
4600

8.7
1.9

20.5
-4462

4724
8.9

6.3
-4702

5120
42.2

8.2
30

39.9
m

ajor
extensive lig w

. fx and/or dislocation
3

56
M

 -
-3.6

5.4
-1915

2136
32.6

15.3
17.9

-1967
2193

33.5
9.1

-2177
2526

65.9
26.1

27.1
27.5

m
inor

low
er cervical spine posterior ligam

ent disruption
4

39
F

 -
-3.6

10.9
-2386

2715
-21.6

-8.0
30.1

-2450
2788

-22.2
10.9

-2386
2715

-21.6
-8.0

30.1
38.2

m
ajor

extensive lig w
. fx and/or dislocation

5
61

M
 -

-3.26
7.1

-999
1109

12.6
11.4

18.4
-1026

1138
12.9

7.1
-999

1109
12.6

11.4
18.4

20
m

inor
low

er cervical spine posterior ligam
ent disruption

6*
76

F
 -

-3.7
56.1

-591
591

37.9
64.1

-8.7
-607

607
38.9

-
-

-
-

 -
-

-
m

inor
low

er cervical spine posterior ligam
ent disruption

7
58

F
 -

-3.6
7.6

-1467
1521

53.4
35.1

23
-1506

1562
54.8

7.6
-1467

1521
53.4

35.1
23

16.1
m

inor
low

er cervical spine posterior ligam
ent disruption

9
49

M
 -

-2.7
7.1

-640
754

43.6
57.8

17.9
-657

774
44.8

7.1
-640

754
43.6

57.8
17.9

7.6
m

inor
low

er cervical spine posterior ligam
ent disruption

10
43

M
 -

-2.7
5.6

-2256
2377

11.5
4.8

15.1
-2317

2441
11.8

5.6
-2256

2377
11.5

4.8
15.1

35.6
m

ajor
extensive lig w

. fx and/or dislocation
12

69
M

 -
-5.7

3.6
-3258

3605
10.6

2.9
21.4

-3346
3702

10.9
3.6

-3258
3605

10.6
2.9

21.4
31.5

m
ajor

extensive lig w
. fx and/or dislocation

* Short duration peak force present in the m
iddle of the data trace that does not apear related to PM

H
S - reported failure kinetics are not reliable
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5.3.1 Injury Metric Derivation 

Experimental variables that describe the overall severity of impact, such as impact 

velocity, are often used to describe tolerance to injury. Impact velocity is not appropriate for 

combining the two different test methods based on their different initial conditions. For a given 

impact velocity, the inverted drop test methodology results in more severe impacts due to the 

greater mass and momentum subjected to the cervical spine. The torso cart and impactor 

displacement at the time of injury were also considered as potential injury indicators. However, 

these displacements are greatly influenced by the impact surface padding and are not true 

representations of the magnitude of the actual cervical spine compression. 

Results for male PMHS with documented injuries in Tables 5.1 and 5.2 are plotted in 

Figure 5.4. The compressive axial force at failure was plotted against the sagittal plane moment 

at failure in Figure 5.4(A) and the sagittal plane resultant force at failure is plotted against the 

eccentricity at which it is applied at the time of failure in Figure 5.4(B). The experiments resulting 

in injury are separated into two groups by the direction of sagittal plane moment (flexion or 

extension) or the location of the load relative to the center of the C7-T1 disc (anterior or 

posterior). Linear regressions were performed and are drawn in Figure 5.4. There is no 

apparent relationship between compressive force and sagittal plane moment in Figure 5.4(A) 

and a weak relationship between sagittal plane resultant force and eccentricity in Figure 5.4(B). 
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Figure 5.4: Male PMHS compressive force and sagittal plane moment (A) and sagittal plane 
resultant force and eccentricity (B) at the time of failure 

  

To better define potential relationships between force and either moment or eccentricity, 

the data in Figure 5.4 was further analyzed and organized by both type of injury and mechanism 

of injury. The type of injury was defined as either including a bony fracture or being ligamentous 

only. Avulsion fractures were categorized as ligamentous only injuries. The mechanism of injury 

was defined as either being the result of anterior or posterior compressive load relative to the 

center of the nearest intervertebral disc to the site of injury (Winkelstein and Myers, 1997). Only 

experiments that could be confirmed to include documented lower cervical spine injuries are 

included in Table 5.3. 
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Table 5.3: Male PMHS experiments with documented lower cervical spine injuries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The experiments in Table 5.3 are listed in increasing order of the eccentricity of the force 

at failure. The failure kinetics are plotted in Figure 5.5(A) and 5.6(A). Bony fractures are 

represented by blue points if the injury is consistent with a posterior oriented load and green 

points for anterior oriented loads. Ligamentous only injuries with mechanisms of injury 

consistent with anterior oriented loads are represented by magenta data points. Only three 

experiments did not include a bony fracture and were consistent with a posterior eccentric load. 

These experiments are not plotted in Figures 5.5 and 5.6. Generally, the measured loads are 

consistent with the mechanism of the injury identified. In four cases, a measured posterior 

oriented load resulted in an injury whose mechanism is consistent with an anterior oriented load 

and in one case an anterior oriented load resulted in an injury whose mechanism is consistent 

with a posterior oriented load. In each of the cases in which the measured eccentricity at the 

C7-T1 intervertebral disc was inconsistent with the local injury mechanism, the magnitude of the 

Study ID Fz Fxz My Ecc Type Mech Description
(N) (N) (Nm) (mm) Ecc

Nightingale N05 -1552 1593 -27 -17.0 B P C3 burst fx, C3-C4 disc/ALL, C4-C5 ALL
Nightingale N23B -2241 2350 -36.8 -15.7 L P C3-C4 disc/ALL, C4-C5 disc ALL

Current 3 -1518 1548 -21.8 -14.1 B P C5 lamina/ped/up&low facets, C6 lamina/ped
Pintar 11 -4805 4824 -64.1 -13.3 B P C4, C5 spinous proc frx, C3-C4 ALL

Current 4 -3396 3433 -30.1 -8.8 B P C4 spinous, C4 ant sup tear drop, C3-C4 ALL
Current 5 -3472 3502 -17.2 -4.9 B P C5 inf facet, C6 pedicle/lamina
Pintar 19 -2718 2846 -8.7 -3.1 L A C7-T1 posterior ligaments
Pintar 4 -5010 5011 -13.4 -2.7 B A wedge frx C6 body
Pintar 21 -3666 3690 -4.5 -1.2 B A burst frx C4, C3-C4 pos ligs
Pintar 9 -5172 5221 -1.8 -0.3 B A ant-sup chip frx C3 body

Nightingale I32 -2416 2612 -0.8 -0.3 L P C5-C6 disc / ALL / L capsular ligament
Pintar 8 -3912 3925 14.4 3.7 B A-P vertical frx C3 body, C3 lamina frx
Pintar 10 -3713 3778 15.8 4.2 B A comp frxs C4 body & C7 body
Pintar 13 -2281 2372 12.6 5.3 L A C6-C7 interspinous lig tear

Nightingale N18 -1871 1895 13.2 7.0 L A C6-C7 BFD
Nightingale N03 -3473 3509 30.4 8.7 L A C6-C7 BFD
Pintar 98 5 -999 1109 12.6 11.4 L A pos ligs

Nightingale I25 -2565 2585 30.9 12.0 L A-P C3-4 disc/ ALL /PLL/ L capsular lig
Pintar 98 3 -1915 2136 32.6 15.3 L A pos ligs

Pintar 7 -4567 4970 77.6 15.6 B A C4 frx ant body
Nightingale NA2 -1969 2091 45.2 21.6 L P C3-4 disc/ALL/ L capsular lig
Nightingale I04 -1675 1698 39.1 23.0 L A C7-T1 pos ligs

Pintar 17 -2901 2902 88.7 30.6 B A comp frx C5 body
Pintar 18 -2697 2732 97.5 35.7 B A mild comp C7 body

Pintar 98 9 -640 754 43.6 57.8 L A pos ligs

InjuryKineticsTest
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measured eccentricity was less than 5 mm. It is reasonable that there is not a clearly defined 

point at which the measured load’s orientation will always correlate with the identified injuries’ 

mechanism. Instead, there is a small area near the center of the vertebral body in which an 

injury can occur whose mechanism is consistent with either a posterior or anterior oriented load. 

This overlapping area is depicted by the gray box in Figures 5.5(A) and 5.6(A). The linear 

regressions conducted for the three injury type and mechanism combinations are depicted 

Figures 5.5(B) and 5.6(B). The data points in the overlapping area were used in both the 

anterior and posterior bony fracture injury regressions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.5: Male PMHS axial force and sagittal plane moment at failure for anterior-bony (green) 
posterior-bony (blue) and anterior-ligamentous only (magenta) injuries (A) and the linear 

regressions for the three injury mechanism-types (B) 
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Figure 5.6: Male PMHS sagittal plane resultant force and eccentricity at failure for anterior-bony 
(green) posterior-bony (blue) and anterior-ligamentous only (magenta) injuries (A) and the linear 

regressions for the three injury mechanism-types (B) 
 

The coefficient of determination (R2) for the bony fracture injury regression using axial 

force and sagittal plane moment in Figure 5.5(B) is only 0.14 compared to 0.43 in Figure 5.6(B) 

when sagittal plane resultant force and eccentricity at failure is used. The y-axis intercept for 

axial force is -4,171 N and sagittal plane moment intercepts are 405.6 Nm and -265.5 Nm for 

flexion and extension respectively. The y-axis intercept for sagittal plane resultant force is 4,472 

N and eccentricity intercepts are 122.8 mm and -43.3 mm in the anterior and posterior direction 

respectively. The difference in kinetics at failure between injuries that include bony fracture and 

those that do not is apparent in Figures 5.5 and 5.6. The slope of the regressions for non-bony 

injuries is very similar to that of bony injuries suggesting the relative contribution of force and 

either moment or eccentricity is comparable for both injury types but the magnitudes are less. 

Similar to the regressions of bony fracture type injuries, the R2 for ligamentous only injury was 

0.08 and 0.47 in Figures 5.5(B) and 5.6(B) respectively. 

The addition of eccentricity to sagittal plane resultant force at failure resulted in a 

coefficient of determination greater than zero for bony fracture injuries, signifying that the 

addition of the eccentricity variable to resultant force better defined the failure data. The addition 

of sagittal plane moment to axial force at failure resulted in R2 nominally greater than zero 
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(0.14) indicating that the addition of moment to axial force at failure had a very small effect on 

the ability to characterize the failure data. This can be seen graphically in Figures 5.7(A) and 

5.7(B). Figure 5.7 is a plot of the failure data with bony fracture linear regressions depicted all 

the way to their x-intercepts. Figure 5.7(A) depicts why addition of sagittal plane moment does 

little to improve the injury definition as all failure data is clustered near the y-axis at low 

magnitude moment values when compared to the moment intercepts. In Figure 5.7(B) the data 

is better distributed around the linear regression lines. However, all of the failure data lies at 

resultant forces greater than 750 N and eccentricities between 60 mm and -20 mm. 

 

 

 

 

 

 

 

 

Figure 5.7: Male PMHS axial force and sagittal plane moment bony fracture linear regressions 
(A) and sagittal plane resultant force and eccentricity bony fracture linear regressions (B) at the 

time of failure 
 

Since sagittal plane moment does not significantly improve the definition of injury for 

PMHS compared to axial force alone, the remainder of the analysis of PMHS compressive 

cervical spine tolerance will focus on the ability of axial force and the linear combination of 

resultant force and eccentricity to be predictive of cervical injury. The new metric, NECC, is 

defined as: 

(Equation 5.7) 
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Where Fint equal 4,472 N and Eint equals 122.8 mm and -43.3 mm for anterior and posterior 

oriented loads respectively. When calculating a peak NECC, only forces greater than 500 N and 

eccentricities between 75 mm and -25mm where considered. When the maximum NECC was 

calculated over the time interval between the start of the experiment and the identified point of 

failure, the maximum value generally occurred at the point of failure. In two cases, the maximum 

axial force and NECC over this time interval occurred prior to the time of documented failure. In 

both of these cases, the PMHS avoided bony fracture at the peak mechanical stimuli and 

instead sustained ligamentous only injury as local bending moments and eccentricities 

increased due to local geometry changes. 

 

5.3.2 Consideration Gender, Donor Age and Three-Dimensional Kinetic Responses 

The same analysis conducted for male PMHS was also conducted for female PMHS. Of 

the 57 total experiments in the combined data set, only 18 were conducted with female PMHS. 

No meaningful trends were able to be identified when evaluating the combined kinetics at failure 

for the female PMHS. Therefore, no female specific injury criteria have been developed and the 

remainder of the analysis was conducted using only the 39 male PMHS experiments. 

The derivation of injury criteria conducted for male PMHS was repeated with the scaled 

failure kinetics listed in Table 5.1 and 5.2 based on the finding of Riggs et al. (1981). The 

resulting R2 for the linear regressions are 0.43 for the combination of resultant force and 

eccentricity and 0.13 for the combination of axial force and sagittal plane moment. The resultant 

force and eccentricity intercepts are 4,449 N, 104.7 mm and -36.8 mm. The axial force and 

sagittal plane moment intercepts are -4,142 N, 423.4 Nm and -288.5 Nm. Since the donor age 

scaled findings are not appreciably different than the original findings, the remainder of the 

analysis has been conducted without consideration for donor age. 

The majority of PMHS test results available for analysis are limited to sagittal plane 

forces and moments, thereby limiting the ability to evaluate potential injury metrics that include 
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three-dimensional kinetics such as the Neck Injury Index (NII). For the three experiments 

conducted as part of this study in which three dimensional failure kinetic data is available, the 

inclusion of the three-dimensional kinetics was considered. The resultant bending moment and 

eccentricity of the applied force was calculated by including the lateral bending moment. The 

nominally larger responses for these three experiments did not improve the linear regressions in 

Figures 5.5 and 5.6. There are multiple ways in which axial twist moment can be added to a 

mechanistically relevant injury criteria for a cylindrical structure (Bruhn, 1973). Without 

additional data beyond the three failure data points available, the best approach to include axial 

twist moment cannot be evaluated. The remainder of the analysis has been conducted using 

only sagittal plane kinetics. 

 
5.3.3 Comparison of Injured Groups 

The axial impulse at the base of the neck, axial force at failure and Necc at failure were 

considered as potential predictors of injury and compared across experiments that resulted in 

injury. Each of the three predictors was evaluated independently for its ability to delineate injury 

severity, injury type and whether the test methodology employed affected the predictor variable. 

Using both parametric and non-parametric test methods, it was found that impulse is 

significantly influenced by the test methodology employed (p< 0.001 parametric test, p< 0.05 

non-parametric test). As cervical spine failure occurs before the end of the loading event, failure 

occurs before the peak impulse is reached. In the MTS method of experimentation employed by 

Pintar et al. (1995, 1998a), the stroke of the impactor is arrested by a hard stop, thus preventing 

the PMHS from resisting all of the initial inertia of the impactor. For this reason, impulse at the 

base of the neck was determined to not be an appropriate injury predictor variable across test 

methods. 

The axial force at failure was able to distinguish between bony fracture injuries and 

ligamentous only injuries (p = 0.023 parametric test, p< 0.05 non-parametric test) but not 
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between stable and unstable injuries when only considering failure data. Similarly, NECC failure 

date was able to distinguish between bony fracture injuries and ligamentous only injuries (p = 

0.006 parametric test, p< 0.05 non-parametric test) but not between stable and unstable 

injuries. 

 

5.3.4 Survival Analysis 

In order to evaluate to the ability of axial force and NECC to distinguish between less 

severe stable cervical orthopedic injuries and more severe unstable cervical orthopedic injuries, 

analysis of censored data, including non-injured PMHS experiments, was conducted. Table 5.4 

includes the experiments used for this evaluation. All available male PMHS experiments that 

resulted in either lower cervical spine injury or no injury were included. The peak and failure 

axial force and NECC values are listed. 
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Table 5.4: PMHS data used in survival analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The non-parametric probability curves for sustaining cervical injury using axial force and 

NECC as the mechanical stimuli are presented in Figure 5.8. Right censored data for stable injury 

curves included the peak responses in experiments in which no injury was documented. The 

right censored data for the unstable injury curves was comprised of the peak responses in 

experiments with both stable injury and no injury outcomes. 

Study Test Time Fz NECC Time Fz Time NECC
ID (msec.) (N) (msec.) (N) (msec.) Stability Type

Current 1 - - - 8.2 -5122.4 -  - NI  -
Current 2  - -  - 10.6 -3643.3 10.6 0.93 NI  -
Current 3 4.5 -1517.5 0.73 8.7 -4371.4 8.6 1.07 unstable B
Current 4 3 -3396 1.01 9.1 -4693.6 9.1 1.32 stable B
Current 5 2.2 -3472 0.92 3.8 -4669 8.6 1.20 stable B
Nightingale N05 8.3 -1551.7 0.82 16.3 -1857.7 8.1 1.04 unstable B
Nightingale N18 6.4 -1871.3 0.49 11.7 -2493.9 2.0 0.74 unstable L
Nightingale D41  - -  - 5.7 -3838.8 5.2 0.95 NI  -
Nightingale I32 3.9 -2416.2 0.59 2.8 -2904.7 21.2 0.87 stable L
Nightingale N26  - -  - 8.9 -3877 2.0 1.23 NI  -
Nightingale N11  -  -  - 6.6 -2539.3 17.9 0.84 NI  -
Nightingale N21 14.8 -1635.3 0.49 20.9 -1757.1 33.5 0.92 stable B
Nightingale N23A  -  -  - 22.0 -2051.6 29.9 0.91 NI  -
Nightingale N23B 18.7 -2240.5 0.96 18.7 -2240.5 30.2 1.14 stable L
Nightingale N03 18.2 -3473 0.87 21.3 -3937.4 21.3 1.03 unstable L
Nightingale NA2 15.6 -1968.7 0.68 15.6 -1968.7 16.3 0.76 stable L
Nightingale I25 18.4 -2565.2 0.69 17.5 -3443.4 17.5 0.87 unstable L
Pintar 4 4.2 -5009.9 1.19 4.2 -5009.9 4.5 1.28 unstable B
Pintar 7 3.8 -4567.1 1.26 3.8 -4567.1 4.5 1.32 unstable B
Pintar 8 5.6 -3912.2 0.91 6.6 -4919.5 6.0 1.17 unstable B
Pintar 9 4.7 -5171.6 1.18 6.2 -5637.6 6.2 1.36 stable B
Pintar 10 4.6 -3713.1 0.89 4.6 -3713.1 5.3 0.91 unstable B
Pintar 11 4.8 -4805 1.44 4.8 -4805 4.6 1.50 unstable B
Pintar 13 5.2 -2281.1 0.58 5.2 -2281.1 7.0 0.59 stable L
Pintar 17 4.4 -2901.3 0.95 4.4 -2901.3 4.4 0.95 unstable B
Pintar 18 5.1 -2696.5 0.96 5.1 -2696.5 8.3 0.97 stable B
Pintar 19 9.3 -2718.4 0.72 15.1 -2926.9 15.3 0.76 unstable L
Pintar 21 11.2 -3665.8 0.86 11.2 -3665.8 15.8 0.97 unstable B
Pintar 98 1 2.0 -3521.1 1.22 2.0 -3521.1 2.0 1.22 unstable  -
Pintar 98 2 3.9 -4345.1 1.05 6.3 -4701.7 6.3 1.24 unstable  -
Pintar 98 3 5.4 -1915.1 0.63 9.1 -2176.7 39.1 0.85 stable L
Pintar 98 5 7.1 -999 0.36 7.1 -999 26.6 0.87 stable L
Pintar 98 9 7.1 -639.8 0.73 7.1 -639.8 9.5 0.85 stable L
Pintar 98 10 5.6 -2256.4 0.58 5.6 -2256.4 53.5 0.60 unstable  -
Pintar 98 12 3.6 -3258.1 0.83 3.6 -3258.1 20.4 1.06 unstable  -

Injury General Info Documented Failure Peak Injury Metrics
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Figure 5.8: Probability of male PMHS stable and unstable cervical orthopedic injuries due to 
lower neck axial compressive force (A) and NECC (B) with 95th percentile confidence intervals 

 

The stable and unstable injury curves in Figure 5.8 were tested for statistical difference 

between each other and the results are presented in Table 5.5. The Log-Rank p-value of 0.172 

indicates that at higher stimulus, axial force does not differentiate the severity of injury well. In 

addition, the axial force stable and unstable curves cross prior to reaching 5 kN of force. Across 

the continuum of injury probabilities, NECC better delineates the severity of cervical spine 

compressive injuries. 

Table 5.5: Results of tests comparing stable and unstable injury curves 
 
 
 
 
 
 

 
Injury probability curves based on the injury type were not created. Regardless of the 

type of injury, the most important factor in injury outcome is the level of spinal cord involvement 

which can occur with or without bony fracture. Additionally, data censoring assumptions are 

problematic when considering the type of injury. Unlike the assumption that an increase in 

mechanical stimulus will increase the risk of greater orthopedic damage, thus the risk of spinal 

cord involvement, the influence of increased mechanical stimulus on injury type is not clear. 

Comparison of Survival Curves Test Chi-Square P-Value
Fz - Stable vs. Unstable Log-Rank 1.86748 0.172

Wilcoxon 4.5312 0.033
NECC - Stable vs. Unstable Log-Rank 3.96625 0.046

Wilcoxon 3.46543 0.063
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5.3.5 Parametric Distribution 

Axial force and NECC both showed promise in delineating the severity of orthopedic 

cervical damage depending on the statistical test method used, so both injury predictor data 

sets were evaluated using parametric distribution techniques. A total of eleven different 

distributions were evaluated for each the stable, unstable, and both stable and unstable injury 

outcomes. The adjusted Anderson-Darling statistic was used to assess the fit of the data to 

each assumed distribution. A smaller statistic indicates the distribution fits the data better. The 

results are presented in Table 5.6. 

Table 5.6: Adjusted Anderson-Darling statistic for the parametric distributions evaluated 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In almost all cases, NECC showed better fit to the underlying distribution than axial force 

alone. For both axial force and NECC across the various injury severities, the 3-Parameter 

Lognormal distribution fit the data well and was used to construct parametric injury probability 

curves. Figure 5.9 displays the probability of a male PMHS sustaining any injury due to axial 

force and NECC as mechanical stimuli. The black data points indicate uncensored PMHS failure 

data while the gray data points indicate right censored data in which no PMHS cervical damage 

was identified. Figures 5.10 and 5.11 display the probability of a male PMHS sustaining stable 

(5.10) and unstable (5.11) orthopedic damage due to axial force and NECC as mechanical 

stimuli. Dark green and blue data points indicate uncensored PMHS failure data while light 

Distribution
Fz NECC Fz NECC Fz NECC

Weibull  2.183 1.506 9.761 8.659 20.921 10.949
Lognormal     2.297 1.403 9.61 8.663 20.99 10.69
Exponential 5.35 6.389 10.054 9.844 22.17 12.34
Loglogistic 2.167 1.347 9.614 8.654 20.944 10.74
3-Parameter Weibull 2.177 1.414 9.662 8.656 20.967 10.735
3-Parameter Lognormal 2.193 1.409 9.633 8.66 20.949 10.72
2-Parameter Exponential 4.221 3.711 9.814 9.088 21.369 11.176
3-Parameter Loglogistic 2.174 1.373 9.595 8.652 20.944 10.666
Smallest Extreme Value 2.569 1.977 10.308 8.715 20.961 11.344
Normal  2.277 1.51 10.071 8.678 20.935 10.982
Logistic 2.314 1.511 10.119 8.695 20.965 11.031

Any Injury Stable Injury Unstable Injury
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green and blue data points indicate right censored data. Figure 5.12 is a comparison of the 

stable and unstable injury probability curves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: Probability of male PMHS sustaining cervical orthopedic injuries due to lower neck 
axial compressive force (A) and NECC (B) with 95th percentile confidence intervals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10: Probability of male PMHS sustaining stable cervical orthopedic injuries due to lower 

neck axial compressive force (A) and NECC (B) with 95th percentile confidence intervals 
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Figure 5.11: Probability of male PMHS sustaining unstable cervical orthopedic injuries due to 
lower neck axial compressive force (A) and NECC (B) with 95th percentile confidence intervals 

 
 

 

 

 

 

 

 

 

Figure 5.12: Comparison of the probability of male PMHS sustaining stable and unstable 
cervical orthopedic injuries due to lower neck axial compressive force (A) and NECC (B) with 95th 

percentile confidence intervals 
 

Similar to the non-parametric probability of injury curves, the axial force stable and 

unstable injury curves cross at high stimulus in Figure 5.12(A). In general, the amount and 

distribution of the experimental data available limits the confidence level at both high and very 

low mechanical stimulus when stable and unstable injuries are evaluated separately. The 

probability curves for stable and unstable injury using NECC as the stimulus are similar in shape 
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and slope in Figure 5.12(B). The 5, 50, and 95 percent probability of injury for stable, unstable 

and any orthopedic injury of the cervical spine in compressive loading events are presented in 

Table 5.7. 

 
Table 5.7: The 5, 50 and 95 percent probability of injury for axial force and NECC 

 
 
 
 
 
 
 
 

 The axial force that corresponds to a 95 percent probability of stable injury is greater 

than the force that corresponds to a 95 percent probability of unstable injury. This is due to the 

axial force probability curves crossing at high stimulus. In order to more accurately define the 

probability of injury in this region, more experimental data at high stimulus is necessary.  

 All of the male PMHS failure data has been plotted in Figure 5.13 with the 5 percent 

probability of stable and unstable boundaries defined in Table 5.7. Red data points represent 

unstable injury and green data points represent stable injury. In addition to the lower neck failure 

data represented by solid circles, the upper neck failure data is also included and is depicted by 

the hollow circles. For both the axial force stable injury boundary (Figure 5.13(A)) and the NECC 

stable injury boundary (Figure 5.13(B)), one stable injury lies within the boundary. Each of these 

experiments was part of the Pintar et al. (1998a) study and resulted in minor posterior ligament 

damage. With respect to the unstable injury boundaries, two experiments, one resulting in a 

upper cervical spine unstable injury another in a bilateral facet dislocation, are within the 

unstable boundary for both axial force and NECC. Additionally, the axial force boundary does not 

delineate two unstable injuries that occurred at approximately 1,500 N of posteriorly oriented 

compressive force. 

 
 
 

Probability Fz (N) NECC Fz (N) NECC Fz (N) NECC
5 1,167 0.48 940 0.43 1,873 0.62

50 3,109 0.88 2,956 0.86 3,938 1.09
95 5,595 1.38 8,078 1.55 7,074 1.83

Any Injury Stable Injury Unstable Injury
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Figure 5.13: Male PMHS lower neck (solid circles) and upper neck (hollow circles), stable 

(green) and unstable (red) failure kinetics at the base of the neck. The 5 percent probability of 
stable and unstable injury is depicted for axial force (A) and NECC (B) 

 
 
5.4 Discussion 

Cervical spine compressive tolerance has traditionally been reported as an average axial 

force at failure. The current study combined all of the identifiable and available dynamic PMHS 

experimentation that included defined end conditions and kinetics at the base of the neck. 

Probability of injury curves were derived for all injuries, as well as by injury severity, further 

refining the PMHS cervical spine compressive force tolerance to injury. Based on fundamental 

compressive mechanics, a new injury metric, NECC, which takes into account the eccentricity at 

which the load is applied relative to the center of the C7/T1 intervertebral disc, was derived. 

NECC improves the ability to delineate between stable and unstable compressive cervical 

injuries. Additionally, by defining the location of the applied load, the type of injury likely to be 

sustained can also be estimated. 

The current study did not address compressive cervical spine tolerance for female 

PMHS. A smaller number of experiments were available for analysis and the kinetics at failure 

exhibited significant scatter and did not follow an identifiable trend. A likely reason for this 

scatter is the wide range of bone mineral density in female PMHS of advanced age which is 

highly dependant on whether the donor experienced osteoporosis (Riggs et al. 1981). Since 
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bone mineral density for the PMHS used in experimentation were not available, variability due to 

this reason could not be accounted for. Similarly, donor age was also considered but did not 

have a large effect on male PMHS results. This is likely due to the fact that most of the donors 

were similarly advanced in age and male bone mineral density does not vary as significantly as 

female bone mineral density with age. 

Nightingale et al. (1997a) averaged the cervical spine compressive failure loads in their 

study with those of Pintar et al. (1995) and determined the average failure load for a 61 year old 

PMHS male was 3,030 N. This is consistent with the distribution analysis in the current study 

which resulted in a 50 percent probability of a male PMHS sustaining any compressive 

orthopedic cervical spine injury at 3,109 N. Nightingale et al. (1997a) reported an average 

failure tolerance of 2,243 N when the resting lordosis of the spine was maintained while Pintar 

et al. (1998b) reported a tolerance of 3,900 N for a 50 year old PMHS male when the spine was 

pre-straightened. Pintar et al. (1998a) also reported a 50% probability of compressive cervical 

injury at 2,200 N when larger amounts of flexion were present due to the PMHS head being 

oriented anterior to the base of the neck at the onset of the experiment. By evaluating the 

primarily compressive load and its eccentricity, the range of failure loads and various injury 

outcomes in PMHS experimentation can be taken into consideration. 

The eccentricity of the measured load at the base of the neck was generally consistent 

with lower neck injury mechanisms. As the eccentricity of the load increased, the magnitude of 

the sagittal plane resultant force generally decreased. This is consistent with the decreased 

compressive tolerances reported by Nightingale et al. (1997a) and Pintar et al. (1998a). The y-

intercept derived for NECC, 4,472 N, is consistent with the initial Nij compression intercept 

advocated by NHTSA based on close to pure compression tests conducted by Pintar et al. 

(1990) which are not considered in this data set due to the lack of reported data other than force 

at failure. The 4,472 N intercept is also supported by results of Qingan et al. (1999) who 

impacted C2-C4 segments and found average peak compressive force for the non-damaged 
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segments was 4.11 +/- 0.11 kN and the average peak compressive force for the damaged 

specimens was 4.89 +/- 0.38 kN.  

 The coefficients of determination (R2) for the linear regressions of anterior oriented 

loads were consistently greater than for posterior oriented loads. This is likely due to the 

geometry of the vertebrae and the complexity of the interaction between facet joints during 

rearward extension or posterior oriented loading. The current study derived the relationship 

between sagittal plane resultant force and eccentricity using linear regression, however, based 

on fundamental mechanics of a slender column, it is likely that this relationship is non-linear. If 

more experimental data becomes available, various non-linear relationships can be evaluated.  

Finally, the role of lateral bending moments and axial twist moments, which have been 

identified in the limited number of experiments not constrained to the sagittal plane, can also be 

further evaluated if more experiments including the three-dimensional dynamics become 

available for analysis. These five experiments were included in the combined data set because 

the lateral eccentricity magnitudes at failure did not add appreciably to the resultant eccentricity. 

Inclusion of lateral eccentricity at which the resultant force is applied increases the overall 

eccentricity relative to the center of the C7/T1 intervertebral disc by less than 2% in each of the 

failure cases. 

 
5.5 Conclusions 
 
 A more refined PMHS cervical spine compressive injury tolerance was derived by 

combining the available dynamic PMHS experimentation including measured neck kinetics 

conducted by different laboratories using various test methodologies. The compressive force 

measured at the base of the neck associated with a 50% probability of stable and unstable 

orthopedic damage is 2,956 N and 3,938 N respectively. A new injury metric, NECC, was derived 

based on the kinetics of PMHS experimentation at the point of documented failure. NECC 

improves the ability to delineate between stable and unstable compressive cervical injuries and 
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by defining the location of the applied load, the type of injury likely to be sustained can be 

estimated. The NECC measured at the base of the neck associated with a 50% probability of 

stable and unstable orthopedic damage is 0.86 and 1.09 respectively. 
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CHAPTER 6 

EVALUATION OF THE HYBRID III ATD NECK AND POTENTIAL LOWER NECK 

INJURY METRICS FOR DYNAMIC COMPRESSIVE LOADING SCENARIOS 

 
6.1 Introduction 

Physical biomechanical surrogates are critical for testing the efficacy of injury mitigating 

safety devices. Catastrophic cervical spinal cord injuries are most often associated with 

compression mechanisms of the cervical column (Roaf. 1972, Torg et al. 1990, Yogananadan et 

al. 1989, McElhaney et al. 2002). This can occur in any environment in which the apex of the 

head is loaded in a direction nearly parallel to the alignment of the cervical column including 

automobile crashes, swimming and diving, football, hockey, and motor sports. The Hybrid III 

family of ATDs has been used extensively in the automotive collision environment, including 

rollover applications (Orlowski et al. 1985, Bahling et al. 1990, Hare et al. 2002, Moffatt et al. 

2003, McCoy and Chou 2007, Raddin et al. 2009, and Viano et al. 2009). In addition to the 

automobile crash environment, researchers evaluating devices intended to decrease the risk of 

cervical spine injury during athletic and motor sports often use the Hybrid III ATD to evaluate 

device performance (http://www.leatt-brace.com/company/leatt-lab/). The interpretation of 

measured neck loads and moments in these test scenarios would be aided by a better 

understanding of the correlation between the mechanical responses in the Hybrid III ATD and 

the probability of injury in the human cervical spine.  

The current Hybrid III 50th male neck compressive IARV of 4,000 N was originally based 

on a reconstruction of a football injury sustained due to impact on the apex of the head with a 

talking block using the Hybrid III ATD (Mertz et al., 1978). The current compressive Nij intercepts 

were formulated by correlating Hybrid 3-years-old ATD responses to porcine tension – extension 

cervical injury through reconstruction of the porcine test conditions with the 3-years old ATD. 

The intercepts were subsequently scaled to the Hybrid III 50th male ATD. The compressive Nij 
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intercept was set equal to that of tension (Eppinger et al., 2000). The purpose of the following 

research is to evaluate the Hybrid III ATD neck response and potential neck injury metrics under 

dynamic compressive loading conditions comparable to those of PMHS tests with known injury 

outcomes to better define the correlation between measured neck responses in Hybrid III ATD 

and the risk of injury in the human cervical spine. This was accomplished by reconstructing the 

PMHS tests conducted as part of the current study and those conducted by Nightingale et al. 

(1997a) with the Hybrid III ATD head and neck assembly. Using this newly created matched 

data set, the injury predictability of ATD neck dynamics was evaluated and a refined injury risk 

relationship identified for evaluating neck compressive loading scenarios. In addition to current 

IARVs, neck injury metrics evaluated in the previous analysis of PMHS tests such as axial 

impulse and a combination of axial force and eccentricity (NECC) were also assessed. 

 

6.2 Methodology  

Male PMHS experiments from the current study and Nightingale et al. (1997a) were 

reconstructed with the Hybrid III 50th percentile head and neck. A total of 20 male PMHS 

experiments were evaluated, 5 impacts onto lubricated Teflon in lateral configurations from the 

current study and 15 experiments from Nightingale et al., 8 onto a lubricated Teflon impact 

surface and 7 onto 5 centimeters of open cell polyurethane foam. 

 

6.2.1 Test Apparatus 

A head and neck injury drop track apparatus, similar to that used for the PMHS tests, 

was designed to allow head-first impacts on an adjustable oblique surface (Figure 6.1). The 

Hybrid III 50th percentile male head and neck was mounted to a cart attached to a vertical track 

with linear sliders. The cart was weighted to 16 kg to simulate the effective mass of the torso, 

consistent with the PMHS tests. 
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Figure 6.1: Lateral (A) and frontal (B) view of a Hybrid III 50th male head-neck mounted to the 

drop cart 
 

6.2.2 Experimental Setup 

The ATD head and neck assembly was inverted and mounted to the carriage on the 

drop track. Six different impact plate orientations were evaluated. The four anterior-posterior 

impact plate angles used by Nightingale et al. (1997a) (30, 15, 0 and -15 degrees) as well as 

the 15 degrees laterally inclined impact plate and pre-laterally flexed posture from the current 

study were evaluated. In addition to a lubricated Teflon impact surface, padded impact surface 

experiments in each of the Nightingale et al. impact plate orientations were also conducted. The 

closest match to the foam reportedly used by Nightingale et al. (1997b) was obtained. Open cell 

polyurethane foam with a density of 0.028 g/cm3 was cut 5 cm thick and sized to cover the 

impact surface. Two sided carpet tape was used to keep the foam affixed and prevented 
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movement relative to the impact plate. The drop height for each experiment was defined by the 

drop heights used in the PMHS experiments.  

Federal Motor Vehicle Safety Standard (FMVSS) 208 (CFR 49 part 572.208) dummy 

positioning procedures require the ATD head to be level (+/- 0.5 degrees) at the onset of frontal 

crash testing. When the ATD head is level, or perpendicular to the drop track motion, the neck 

angle is approximately 6 degrees from vertical (see Figure 6.2). The initial neck angles of the 

five PMHS conducted as part of the current study were identified in pre-test photographs. The 

initial neck angle, defined as the angle between a line drawn from the center of the C7/T1 

intervertebral disc to the occipital condyles and vertical, ranged from 10 to 25 degrees. A 17.5 

degree neck angle with respect to vertical was chosen to represent the mid point of the range of 

initial PMHS neck angles. The neck chord angle measured in human surrogates in an 

automotive driving position has previously been identified as 79 degrees or 11 degrees from 

vertical (Klinich et al. 2004). This is approximately halfway between the 6 and 17.5 degree neck 

angles chosen for the current study. Figure 6.2 compares the initial ATD neck angles to a 

sample PMHS pre-test photograph. 

 

Figure 6.2: Lateral views of a Hybrid III 50th male head-neck mounted to the drop at neck angles 
of 6 degrees (A) and 17.5 degrees (B) compared to a sample PMHS pre-test orientation 
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The test matrix of the 26 ATD experiments conducted is listed in Table 6.1. The matrix 

consists of 13 tests conducted for each the 6 and 17.5 degrees neck angle. The current study 

evaluated PMHS response in two different lateral configurations, each from two different drop 

heights for a total of four test conditions. The Nightingale et al. (1997a) experiments included 

four different impact plate configurations with two different impact surface materials. One test 

condition, 0 degree impact onto lubricated Teflon, was conducted at two different drop heights 

for a total a nine different test conditions. 

Table 6.1: PMHS test conditions reconstructed with the Hybrid III head and neck 
. 

 
 

6.2.3 Instrumentation and High Speed Digital Video 

Upper and lower neck forces and moments were measured using the standard Denton 

1716A six-axis upper neck load cell and the Denton 7992JTF adjustable six-axis lower neck 
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load cell. Drop cart vertical acceleration response was measured with a linear accelerometer. 

Drop cart displacement was measured using a laser CCD displacement sensor. All transducer 

data was acquired in accordance to the SAE J211 standard. Two Red Lake HG LE high-speed 

digital cameras were synchronized with the data acquisition and used to record each test at 

1000 frames per second; one from the frontal perspective and one from the left lateral 

perspective.  

The measurement range of the sagittal plane moment channel of the Denton 7992JTF 

adjustable lower neck load cell is +/- 340 Nm. It was determined at the onset of testing that the 

sagittal plane moment at the lower neck load cell sensitive axis would easily be exceeded 

during execution of the test matrix. Additionally, in rare circumstances, the axial load limit of 

8,900 N could also be exceeded. Since a high capacity adjustable lower neck load cell 

(Humanetics model IF-219-HC) was not available for use, a six-axis Denton WSU-NMN-01 load 

cell was placed between the carriage and the lower neck load cell and positioned relative to the 

ATD head and neck so its operational range would not be exceed (Figure 6.3). The mass of the 

drop cart was decreased to accommodate the additional mass of this load cell. In the rare case 

that the lower neck load cell vertical force capacity was exceeded, the vertical force at the lower 

neck load cell sensitive axis was calculated by adding the product of the effective mass between 

the additional WSU-NMN-01 load cell and the lower neck load cell sensitive axes and the cart 

acceleration to the measured additional WSU-NMN-01 load cell vertical force (Equation 6.1). 

The sagittal plane moment at the lower neck load cell sensitive axis was determined by 

transforming the additional WSU-NMN-01 load cell sagittal plane moment using Equation 6.2. 

Validation of both transformation methods are shown in Figure 6.4. 

(Equation 6.1) )( CartEffectiveLCAdditionalNeckLC AMFzFz ∗+=   

 (Equation 6.1) )()( XFzZFxMyMy LCAdditionalNeckLC ∗−∗+=   
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Figure 6.3: Load cell arrangement with approximate impact line-of-force drawn relative to the 

load cells sensitive axes and the base of the ATD neck 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4:  Comparison between measured lower neck load cell axial force and sagittal plane 
moment (black) channels with calculated lower neck force and moment (gray) from the 

additional Denton WSU-NMN-01 load cell for a 6 º  neck impacting a 30 º Teflon surface (A and 
C) and a 17.5º neck impacting a 0 º padded surface (B and D) 

-8

-6

-4

-2

C
om

pr
es

si
ve

 A
xi

al
 F

or
ce

 (k
N

)

15 205
0

Time (msec.)
10

-8

-6

-4

-2

C
om

pr
es

si
ve

 A
xi

al
 F

or
ce

 (k
N

)

30 4010
0

Time (msec.)
20 50

30 4010
Time (msec.)
20 50015 205

Time (msec.)
10

-200

600

400

200

0

-200

600

400

200

0

Sa
gi

tta
lP

la
ne

 M
om

en
t (

N
-m

)

Sa
gi

tta
lP

la
ne

 M
om

en
t (

N
-m

)

A B

C D

-8

-6

-4

-2

C
om

pr
es

si
ve

 A
xi

al
 F

or
ce

 (k
N

)

15 205
0

Time (msec.)
10

-8

-6

-4

-2

C
om

pr
es

si
ve

 A
xi

al
 F

or
ce

 (k
N

)

30 4010
0

Time (msec.)
20 50

30 4010
Time (msec.)
20 50015 205

Time (msec.)
10

-200

600

400

200

0

-200

600

400

200

0

Sa
gi

tta
lP

la
ne

 M
om

en
t (

N
-m

)

Sa
gi

tta
lP

la
ne

 M
om

en
t (

N
-m

)

-8

-6

-4

-2

C
om

pr
es

si
ve

 A
xi

al
 F

or
ce

 (k
N

)

15 205
0

Time (msec.)
10

-8

-6

-4

-2

C
om

pr
es

si
ve

 A
xi

al
 F

or
ce

 (k
N

)

30 4010
0

Time (msec.)
20 50

30 4010
Time (msec.)
20 50015 205

Time (msec.)
10

-200

600

400

200

0

-200

600

400

200

0

Sa
gi

tta
lP

la
ne

 M
om

en
t (

N
-m

)

Sa
gi

tta
lP

la
ne

 M
om

en
t (

N
-m

)

A B

C D



 
116 

 
 

Once the six axes loads were accurately defined at the adjustable lower neck load cell 

neutral axis, a final coordinate transformation was conducted so that the loads are reported 

aligned with the ATD neck orientation at the centerline of the base of the neck. Figure 6.5 

depicts the transformation geometry of the adjustable lower neck load cell. The transformation 

equations are as follows: 

(Equation 6.3) )sin()cos( θθ ∗+∗= LCLCNeck FzFxFx   

(Equation 6.4) LCNeck FyFy =   

(Equation 6.5) )sin()cos( θθ ∗+∗= LCLCNeck FxFzFz   

(Equation 6.6) θφ sin)*5.2(cos)*72.1( FyMzFyMxMx LCLCNeck −+−=   

(Equation 6.7) FzFxMyMy LCNeck *5.2*72.1 ++=   

(Equation 6.8) θφ sin)*72.1(cos)*5.2( FyMxFyMzMz LCLCNeck −+−=   

 

Figure 6.5: Drawing of the Denton 7992 adjustable lower neck six-axis load cell including 
dimension between the sensitive axis and the base of the ATD lower neck 
 

Data processing was conducted in accordance was SAE J211-1. All head and neck 

forces were digitally filtered at SAE channel filter class 1000 Hz (CFC 1000 Hz) and neck 

moments at CFC 600. The SAE coordinate system outlined in J211 was utilized. The measured 
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neck forces were filtered at CFC 600 when Nij was calculated for the upper and lower neck load 

cells per the currently defined IARVs. Additionally, the axial force impulse was calculated for 

lower neck load cells by integrated the axial force channel. 

 
6.2.4 Analysis of ATD Kinetic Responses and IARV Evaluation 

The lower neck axial force versus time response of the Hybrid III 50th percentile ATD 

was compared to the responses of the male PMHS experiments whose injury outcomes the 

ATD responses are being matched. The 20 PMHS tests were divided into four groups: 3 

experiments conducted with a laterally inclined plate, 2 experiments conducted with a pre-

laterally flexed neck, 8 experiments constrained to sagittal plane motion on a Teflon impact 

surface and 7 experiments constrained to the sagittal plane conducted with a padded impact 

surface. For a given group of experiments’ test conditions, the ATD axial response is presented 

as a corridor that represents the upper and lower extent of the response. Additionally, axial 

force versus the drop cart displacement response was evaluated. Head and neck axial 

deflection was not directly measured in the experiments. The cart displacement was measured 

in both the PMHS and ATD experiments and is a direct comparison of the combined response 

of the head and neck. 

The current compressive neck injury assessment reference value of 4 kN was originally 

derived from reconstruction of an injurious football head impacts using the Hybrid III test device 

(Mertz et al., 1978). Due to their viscoelastic properties, the load carrying capability of biologic 

tissues often increase as the duration of loading decreases, Mertz et al. characterized a given 

axial loading event by the force maintained over prescribed durations (Figure 6.6). An upper and 

lower compressive limit was developed that is dependent on the duration of the force pulse and 

ranged from 4,000 N to 6,670 N for very short duration events. Loads above the upper limit 

(blue region) are defined as having the potential to cause serious neck injury. If the load falls in 
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the middle area (white region) the potential for injury is considered less likely and below the 

lower limit (green region) the probability of injury is considered remote. 

  
Figure 6.6: Axial compressive force IARV definition from Mertz et al. (1978) 

 

The upper neck compression Nij intercepts adopted by NHTSA  and incorporated into 

FMVSS 208 (CFR 49 part 571.208) for the Hybrid III 50th percentile male was set at 6,160 N, 

equal to the tension intercept derived from scaling the three-years-old ATD tension intercept 

based on the work of Mertz et al. (1997). The value of the compression intercept was deemed 

appropriate for the proper linear combination of sagittal moment and axial compressive load, 

however, a peak compressive load limit of 4,000 N was also maintained as an injury criteria limit 

consistent with the earlier work done by Mertz (1978). Lower neck IARVs have been reported by 

Mertz et al. (2003). The axial force limits and axial force Nij intercepts are identical to the upper 

neck. In addition to evaluating the peak axial forces in the current set of ATD experiments, the 

loading events were also characterized by the maximum compressive force maintained over 

durations of 1, 2.5, 5, 10, 15, and 20 milliseconds for direct comparison to the findings of Mertz 

et al. (1978). 
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Nij was evaluated to determine how effectively it could delineate ATD neck responses in 

test conditions of various PMHS injury outcomes. Nij is the linear combination of ATD neck axial 

force and sagittal plane moment and takes the form: 

(Equation 6.9) 
CC M
tMy

F
tFzNij )()(
+=  

The upper and lower neck out-of-position Nij intercepts (Fc, Mc) were utilized. Impacts near the 

apex of the head were not one of the loading conditions used in the formulation of these 

intercepts. The historical derivation of these intercepts was presented in Chapter 3.5. 

The sagittal plane eccentricity (Exz) relative to the center of the lower ATD neck and the 

occipital condyles of the upper ATD neck can be calculated using Equation (6.10), which only 

incorporates the neck reaction forces and moments. Eccentricity is fundamentally the 

perpendicular distance between the force line of action and a defined reference location. 

(Equation 6.10) 
22 FzFx

My
Fxz
MyExz

+
==  

 

The linear combination of lower neck sagittal plane resultant force and the eccentricity at which 

it is applied relative to the center of the C7/T1 intervertebral disc (NECC) has been shown to be a 

capable metric at delineating the severity of PMHS cervical spine orthopedic damage (Chapter 

5). The mechanistically based criterion is evaluated using the Hybrid III 50th percentile head and 

neck response. 
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6.2.5 Statistical Methods 
 

The mean peak ATD response or injury metric was compared across injury groups. 

Results were grouped to evaluate the responses that correlated with the presence of any PMHS 

injury outcome and unstable PMHS injury outcomes. Two statistical methods were used to 

evaluate the significance of the differences between the means of two populations. The first 

method is the parametric t-test for unequal samples and unknown variances which assumes a t 

distribution. The second is the non-parametric Wilcoxon Rank-Sum test which is particularly 

useful when sample sizes are small and variances are unknown or unequal (Milton and Arnold, 

1995). Significance levels p < 0.05 and p < 0.10 were both evaluated using the non-parametric 

method. 

 In cases where a difference in the mean ATD response was identified between PMHS 

injury groups, binary logistic regressions were conducted in order to assess the relationship 

between biomechanical responses and the various injury outcomes. The logistic regression 

model takes the form of Equation 6.9. 

(Equation 6.9) ( )xe
P βα++
=

1
1  

The constants α and β represent the coefficients associated with the independent variable. 

These coefficients were determined using the Maximum Likelihood method. The -2 log 

likelihood (-2LL) statistic was used to assess the fit of the model to the data using the Chi-

squared distribution. The Wald statistic was used to assess the independent variables 

significance by testing the null hypothesis that there was no association between the 

independent variable and the injury outcome and compared to a chi-squared distribution. P 

values less than 0.05 were rarely achieved based on the matched data set of only 20 PMHS 

experiments, however, probability of injury curves for the upper and lower neck compressive 

force for injury definitions with the highest significance levels are presented for the purpose of 

comparison to the currently defined Hybrid III 50th percentile neck compressive IARVs. Finally, 
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the overall percent of accurately predicted outcomes for the various regressions are reported for 

the underlying data set along with the specificity and sensitivity of the regression model. 

 
6.3 Results 

6.3.1 General ATD Kinetics and Kinematics 

A summary of the ATD sagittal plane upper and lower neck peak mechanical responses 

are summarized in Tables 6.1. The results tables include the impact surface material and 

orientation and the ATD neck angle. Upper and lower neck peak axial force and Nij, as well as 

the sagittal plane moment and eccentricity at the time of peak Nij are listed. The drop cart 

(torso) displacements at the point peak load and the calculated impulse from the lower neck 

axial force are included. 

The response for the Hybrid III ATD head and neck was found to be extremely 

repeatable. Figure 6.7 depicts the lower neck axial force response in three experiments 

conducted from the same drop height onto a lubricated Teflon impact surface oriented laterally 

at 15 degrees. The traces are nearly indistinguishable from one another. The peak loads in this 

test condition are within approximately 1%. 
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Table 6.2: Kinetic results for 26 ATD experiments conducted 
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Figure 6.7: Lower neck axial force response for three experiments conducted using a 15º 
laterally inclined lubricated Teflon impact surface 

 
 

 The ATD neck angle with respect to vertical influenced the peak load measured at the 

upper and lower neck and polarity of the upper neck sagittal plane moment for a given impact 

plate orientation. In general, as the neck angle and impact plate become more perpendicular to 

one another, the neck loads increase. Thus, the highest loads with the 6 degree angle neck 

were measured with a 0 degree impact surface and highest loads for the 17.5 degree angle 

neck were measured in the 15 degree impact surface tests. This is generally consistent with 

PMHS testing in that the more perpendicular the axis of the spine is to the applied load, the 

higher the risk of injury. For flat surface impacts, the 6 degree neck angle results in flexion at the 

upper neck and the 17.5 degree neck results in extension, however in all cases, the upper neck 

moments were low in magnitude. Finally, peak loads were always anterior of the centerline of 

the base of the lower neck. This is consistent with peak loads in PMHS testing except for the 30 

degree impact plate in which peak loads are generally posterior to the C7/T1 intervertebral disc 

in the PMHS. Figure 6.8 depicts the orientation of the ATD head and neck relative to the impact 

surface and the approximate line of action of the peak load for each sagittal plane impact plate 

orientation.  
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Figure 6.8: The line of force at peak load (blue) compared to the ATD neck centerline (yellow) 

for the 6 and 17.5 degree neck orientations for each the -15, 0, 15 and 30 impact plates 
 

The ability of the ATD head to escape the following torso mass varied depending on 

impact plate orientation and surface material. The ATD head and neck kinematics at the 

approximate furthest extent of drop cart travel before either rebounding or coming to rest during 

the Nightingale et al. (1997a) impact conditions are depicted in Figures 6.9. In both the -15 

degrees posterior oriented impact and the +30 degree anterior oriented impacted the ATD head 

escaped the following torso mass on lubricated Teflon, but not with the increased constraint 

caused by adding padding to the surface. During the 0 deg and +15 degree anterior oriented 

impacts, the ATD head was not able to escape with either a padded surface or a lubricated 

Teflon surface. In each of the lateral configurations, the head was able to escape whether it was 

a 15 degree laterally inclined surface or a 15 degree pre-laterally flexed ATD head-neck (Figure 

6.10). Upper neck peak force ranged from 4 to 13 % greater than lower neck peak force across 

tests conditions due to the additional effective mass of the neck. 
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Figure 6.9: ATD kinematics for 6º neck angle in Nightingale et al. (1997a) impact surface and 

orientation conditions 
I 

 
Figure 6.10: ATD kinematics for 6º neck angle in lateral Configurations 1 and 2 from the current 

study 
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In PMHS experimentation, increased head constraint increases the risk of cervical spine 

injury. If the head cannot escape the following torso, the torso is decelerated by forces 

transferred through the neck. Direct comparison between the ATD neck loads of lubricated 

Teflon and padded surface impacts shows that in the -15, 0, and 15 degree impact plate 

scenarios, the peak ATD upper and lower neck axial loads were reduced by approximately 2-

7% by the introduction of padding. The exception is the 6 degree angle lower neck load on the 

15 degree surfaces in which the loads were within 1%. In contrast, padding increased the ATD 

upper and lower neck loads in the 30 degree impact surface test condition. In the current set of 

experiments, once the angle between the axis of the ATD neck and the impact surface reached 

approximately 20 degrees, the increased constraint imposed on the ATD by padding resulted in 

higher neck loads.  

The lower neck axial force impulse was also compared between lubricated Teflon and 

padded impacts. In every impact orientation, padding increased the impulse calculated from the 

lower neck axial force. The average increase was approximately 5% in 0 and 15 degree impacts 

and over 75% in 30 and -15 degree impacts. Unlike axial force, the axial impulse calculated at 

the lower neck increases with head constraint in all test condition and by a large margin in -15 

degree posterior and 30 degree anterior impacts.  

 
6.3.2 – Comparison to PMHS Response 

The 20 PMHS tests reconstructed with the Hybrid III ATD were divided into four groups 

for comparison to ATD lower neck axial force response. The four groups include 3 experiments 

conducted with a laterally inclined plate, 2 experiments conducted with a pre-laterally flexed 

neck, 8 constrained to sagittal plane motion on a Teflon impact surface and 7 experiments 

constrained to the sagittal plane conducted with a padded impact surface. The range in the axial 

force responses for the ATD are depicted by the gray corridors and each PMHS experiment is 

plotted and depicted by the black lines in Figure 6.11. 
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Figure 6.11: Comparison of PMHS and ATD lower neck axial force responses for 15 degree 
laterally inclined surface tests (A), 15 degree pre-laterally flexed head-neck  tests (B) 

Nightingale et al. (1997a) lubricated Teflon tests (C) and Nightingale et al (1997a) padded tests 
(D) 

 
 The lower neck axial force response of the PMHS and ATD compares favorably for each 

of the groups of experiments during the initial loading. The rate of axial load onset is similar and 

does not begin to diverge until the PMHS fails or the cervical column buckles. Because the 

PMHS is force limited due to either material or structural failure, the peak forces cannot be 

directly compared. Across all 14 PMHS test conditions that resulted in a documented injury, the 

ATD peak load occurred, on average, within 2 milliseconds after the time of documented PMHS 

failure load. When evaluating rigid and padded impacts separately, the ATD peak load was 

measured, on average, approximately 1 and 2 milliseconds after the time of PMHS failure load 

respectively. 
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 Similarly, the lower neck axial force versus cart displacement responses of the PMHS 

and ATD experiments compare favorably during the initial loading phase. The rate of axial load 

onset is similar and doesn’t begin to diverge until the PMHS fails or the cervical column buckles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Comparison of PMHS and ATD lower neck axial force versus drop cart 
displacement for 15 degree laterally inclined surface tests (A), 15 degree pre-laterally flexed 

head-neck  tests (B) Nightingale et al. (1997a) lubricated Teflon tests (C) and Nightingale et al 
(1997a) padded tests (D) 

 

Across all 12 PMHS test conditions that resulted in a documented injury in which cart 

displacement data was available, the ATD peak load occurred with in approximately 4 

millimeters of additional cart displacement, on average, compared to the documented PMHS 

failure cart displacement. When evaluating rigid and padded impacts separately, the ATD peak 

load occurred, on average, at less than 1 and 8 millimeters more displacement than the cart 

displacement at PMHS failure respectively. The greater variance in padded impacts can be 

explained by the onset of ATD load occurring later in padded impacts in Figure 6.12 (D). This 
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suggests the stiffness of the padding used in the PMHS and ATD tests was not exactly the 

same and highlights the influence of padding characteristics on the axial force response of the 

ATD neck. 

 
6.3.3 ATD Neck Compressive Injury Metrics 

Since PMHS are force limited by either structural (buckling) or material (fracture or 

ligament rupture) failure, direct comparison of PMHS loads to those measured in the ATD neck 

must be made carefully. In order for an injury criterion to be easily calculated and interpreted 

from the response of an ATD, peak loads are typically used. The peak kinetics measured in the 

ATD neck during test conditions that result in an increased risk of PMHS were generally greater 

in magnitude. The exception is the 0 and 15 degree anterior impacts on lubricated Teflon. The 

lower coefficient of friction in these impacts results in fewer and less severe injuries in the 

PMHS compared to impacts with a padded surface which have an increased probability of 

PMHS injury. In the 0 and 15 degree lubricated Teflon test conditions, the ATD head-neck is 

unable to escape the following torso mass and the loads measured exceed those in padded 

surface impacts. The head constraint present in the ATD reconstruction of these test conditions 

exceeds that of the PMHS and correlating to the respective injury outcomes may result in 

underestimation of the probability of injury. Analysis was conducted using two groups of 

matched ATD responses with PMHS outcomes. The first included all 20 experiments with 

known PMHS injury outcomes and second excluded the 0 and 15 degree Teflon impacts 

resulting in only 14 experiments with known PMHS injury outcomes.  

The resulting p-values from comparison of upper and lower neck ATD peak axial forces 

across injury groups are presented in Table 6.3. The peak ATD lower neck axial force was 

found to delineate test conditions resulting in non-injury and stable injury from unstable injury 

when the 0 and 15 degree rigid impacts were excluded in both the 6 and 17.5 degree neck 

angle test conditions. The peak upper neck axial force delineates test conditions resulting in 



 
130 

 
 

non-injury from stable and unstable injury when all the test conditions were included for both the 

6 and 17.5 degree neck angles. Equally important are the test conditions under which the lowest 

axial force was measured in a test condition that resulted in an unstable injury in the PMHS. 

These tests are the 30 degree lubricated Teflon impact surface for the 6 degree angle neck and 

the -15 degree padded impact surface for the 17.5 degree angle neck. The resulting upper neck 

axial compressive force for each test condition is -6,482 N and -6,613 N respectively. The 

resulting lower neck axial compressive force for each test condition is -6,290 N and -6,503 N 

respectively. These values are consistent with both the Nij compressive intercept and 

compressive IARV derived by Mertz et al. (1978). 

Table 6.3: Comparison of peak ATD neck axial force across PMHS injury groups 

 
  

The peak lower neck axial force in each test condition maintained for various length 

pulse durations are plotted in Figure 6.13. Each line on the plot represents a single test 

condition with multiple PMHS injury outcomes. Green lines represent test conditions in which no 

unstable injuries occurred, whereas red lines represent the presence of unstable injuries. 

Generally, the frequency of unstable injuries increases as the magnitude and duration of the 

axial neck load increases. The slope of the plotted lines is steeper than the results of Mertz et 

al. (1978) when the ATD impacted a football tackling block. The characteristics of the padding 

used in experimentation will have a significant influence on the overall pulse shape and duration 

measured by the ATD neck load cell. Based on Figure 6.13, in either the current test conditions 
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or those of Mertz et al., a peak ATD neck load of 6,000 N sustained for approximately 5 

milliseconds results the “potential for serious neck injury” as defined by Mertz et al.  

 

 

 

 

 

 

 

Figure 6.13: Comparison of the Hybrid III ATD reconstructions of Mertz et al. (1978) to the 
current study using a 6 degree (A) and 17.5 degree (B) neck 

 

The lower neck axial impulse was sensitive to the additional head constraint from 

padding, however, the overall average magnitude of axial impulse between injury groups did not 

differ by a wide margin. The significance of the difference between injury groups was strongly 

influenced by the initial neck angle (Table 6.3). P values for differences in both the any injury 

and the unstable injury groups ranged between 0.2 and 0.25 for the 17.5 degree neck but 

ranged from 0.45 to 0.55 for the 6 degree neck. 

The lower and upper neck Nij values were calculated. Similar to PMHS experimentation, 

the sagittal plane moment measured in the ATD neck did not add significantly to the ability to 

predict PMHS injury outcomes. The contribution of the sagittal plane moment to the Nij 

magnitude varied little between test conditions and was unable to delineate between test 

conditions that caused PMHS injury. The lower neck sagittal plane moment contributed 10.1 +/- 

3.1% and 14.6 +/- 2.5% of the total lower neck Nij for the 6 degree and 17.5 degree neck 

orientations respectively. The upper neck sagittal plane moment contributed 4.1 +/- 4.1% and 

4.9 +/- 3.7% of the total upper neck Nij for the 6 degree and 17.5 degree neck orientations 

respectively. The relatively small contributions are explained by how closely the force is applied 
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to the centerline of ATD neck in the loading scenarios investigated in the current study (Figure 

6.8). Additionally, based on the geometry of the ATD head-neck complex, when the moments 

are calculated at the centerline of the base of the neck in these test conditions, they are almost 

exclusively of a positive polarity or forward flexion. 

 The eccentricity of the applied sagittal plane resultant force was calculated for each test 

condition in order to evaluate the possibility of defining an NECC injury metric for the ATD neck. 

The overall range of eccentricities was smaller than PMHS experiments. The magnitude of the 

lower neck eccentricities was 11.2 +/- 3.8 mm and 16.9 +/- 3.2 mm for the 6 and 17.5 degree 

neck orientations respectively for each of the test conditions evaluated. The magnitude of the 

upper neck eccentricities was 4.8 +/- 5.3 mm and 6.7 +/- 5.2 mm for the 6 and 17.5 degree neck 

orientations respectively. The ATD lower neck sagittal plane peak resultant force is plotted 

against the eccentricity from center of the base of the neck for each of the 17.5 degree neck 

angle test conditions evaluated in Figure 6.14.  

 

 

 

 

 

 

 

 

 

 

 
Figure 6.14: ATD peak lower neck sagittal plane resultant force versus eccentricity from the 

neck centerline for each of the test conditions evaluated 
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As the ATD neck and impact surface angle becomes more oblique, the peak force 

decreases and the eccentricity increases. During PMHS testing, the peak resultant load 

occurred at a positive (anterior) eccentricity for each test condition except for the 30 degree 

anterior oriented impacts which resulted in 5 to 10 millimeters of negative (posterior) 

eccentricity. For the 17.5 degree angled ATD neck, an eccentricity of approximately 15 

millimeters appears to correlate with the center of the PMHS C7/T1 intervertebral disc. A similar 

analysis was conducted for the 6 degree neck angle and approximately 10 millimeters of 

eccentricity correlates with the center of the PMHS C7/T1 intervertebral disc. This is depicted in 

Figure 6.15 in which cervical vertebrae have been overlaid on the ATD neck. ATD lower neck 

kinetics are generally reported at the centerline of the base of the neck where the yellow lines 

intersect. Based on the measured responses in the current testing, this appears to be 

approximately 10 to 15 millimeter posterior of the point that would correlate to the kinetics of the 

center of the C7/T1 PMHS intervertebral disc. 

 

 
Figure 6.15: Cervical vertebrae overlaid on Hybrid III 50th percentile ATD neck 
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The point at which the lower neck forces and moments are reported is critical to deriving 

a NECC injury criteria based on the ATD neck response. This location varies depending on the 

neck angle used in the current study. Additionally, the derivation of a PMHS NECC was aided by 

a wider range of kinetic responses, some of which included eccentricities approaching 60 mm at 

failure. The Hybrid III ATD has a very narrow range of measured eccentricities in the test 

conditions evaluated in this study. Finally, the experiments reconstructed with the Hybrid III ATD 

head and neck are conducted very near the threshold for PMHS injury. A single test condition 

results in multiple PMHS injury outcomes with very little variation in the NEEE CCC CCC. A wider range of 

test conditions with known PMHS injury outcomes is necessary to fully develop a NECC criterion 

for the Hybrid III ATD neck.  

 
6.3.4 Logistic Regression 

The limited number of male PMHS experiments able to be reconstructed limits the 

statistical significance of the findings. Analysis of the matched data set of Hybrid III ATD neck 

response and PMHS injury outcomes in the same test conditions resulted in only two 

correlations with significance levels better than p < 0.1. The peak ATD lower neck axial force 

was found to delineate test conditions resulting in non-injury and stable injury from unstable 

injury when the 0 and 15 degree rigid impacts were excluded. The peak upper neck axial force 

delineates the test conditions resulting in non-injury from stable and unstable injury when all the 

test conditions were included. Probability of injury curves for the injury definitions with the 

highest significance levels based on upper and lower neck compressive force are presented for 

the purpose of comparison to the currently defined Hybrid III 50th percentile neck compressive  

IARVs. The 6 and 17.5 degree ATD neck angle are evaluated separately. Table 6.4 contains the 

matched data set of ATD upper and lower neck response and PMHS injury outcome. 
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Table 6.4: Matched ATD neck response and PMHS injury outcome data set 
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 Logistic regressions were conducted for both the upper and lower neck axial force 

responses in test conditions matched to PMHS human subject injury outcomes. Based on 

previous comparison between injury groups, the lower neck response data was used to 

generate the probability of unstable PMHS cervical damage whereas the upper neck data was 

used to evaluate the probability of any PMHS cervical damage.  In both scenarios, the entire set 

of 20 experiments was evaluated as well as the set of experiments excluding 0 and 15 degree 

impacts on lubricated Teflon for the aforementioned reasons. The regression model and 

independent variable (axial force) statistics are presented in Table 6.5. Additionally, the percent 

of the time that the model accurately predicted the injury outcome based on the underlying data 

set is presented. The specificity (correctly predicted the lack of an injury outcome), sensitivity 

(correctly predicted the presence of injury outcome) and total percentages are listed. 

 

Table 6.5: Logistic regression model and variable statistics 

 

 Similar to the previous comparison of means between injury groupings, model and 

variable significance levels are highest when evaluating the entire data set for the upper neck 

loads and excluding the 0 and 15 degree lubricated Teflon impacts when evaluating the lower 

neck loads. Additionally, when attempting to delineate unstable injury with lower neck loads the 

specificity of the model is greater but upper neck loads are more sensitive at detecting the 

likelihood any cervical injury. Figure 6.16 depicts the probability of unstable injury based on 

lower neck loads and Figure 6.17 the probability of any injury based on upper neck loads. 
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Figure 6.16: Probability of PMHS unstable orthopedic cervical damage based on the Hybrid III 
50th percentile lower neck compressive force for a 6 degree (A) and 17.5 degree (B) neck angle 
  

 

 

 

 

 

 

 

Figure 6.17: Probability of any PMHS orthopedic cervical damage based on the Hybrid III 50th 
percentile upper neck compressive force for a 6 degree (A) and 17.5 degree (B) neck angle 

 
The 95% confidence intervals depicted in Figures 6.15 and 6.16 are very wide. The test 

conditions evaluated were all very near the threshold for PMHS injury. For a given test 

condition, in many cases multiple different PMHS injury outcomes were observed. Combined 

with the fact that the data set is relatively small, this likely is the major influence on the size of 

the confidence intervals. Although the confidence intervals are large, the underlying data are a 

good representation of outcomes in test conditions that are very near the PMHS injury threshold 

in the test methodology utilized.  
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The 5 and 50% probability of any injury ranged from approximately 3,340 to 4,710 N and 

7,170 to 7,660 N of upper neck axial force depending on ATD neck angle. The wide range at 

low probability of injury is due to the limited underlying data near the tail of the probability curve. 

The 5 and 50% probability of unstable injury ranged from approximately 5,950 to 6,160 N and 

7,770 to 7,910 N of lower neck axial force depending on ATD neck angle. 

 
6.4 Discussion 

The Hybrid III family of ATDs is often used to evaluate the potential for catastrophic 

compressive cervical spine injury. A limited number of direct correlations between the Hybrid III 

ATD response and human injury outcomes are available in the literature. The interpretation of 

measured neck loads and moments in various loading scenarios would be aided by a better 

understanding of the correlation between the mechanical responses in the Hybrid III ATD and 

the risk of injury in the human cervical spine. This was accomplished by creating a matched 

data set of ATD response and PMHS injury outcomes through experimental reconstruction of 20 

PMHS experiments with the Hybrid III ATD head and neck. 

The Hybrid III ATD head and neck assembly was found to be robust and extremely 

repeatable in severe impact scenarios. The initial axial force response of the ATD head-neck is 

very comparable to PMHS experiments up to the point of PMHS cervical column buckle or 

material failure. The time and displacement of the drop cart at the peak ATD response occurred 

very close to the time and displacement of the drop cart at documented PMHS failure. The 

Hybrid III ATD head and neck best matched the response of PMHS experiments with a pre-

laterally flexed posture which better couples the head to the torso (Figures 6.10(B) and 6.11(B)). 

Based on the geometry and construction of the Hybrid III ATD neck, it is expected that its 

response would even closer match dynamic PMHS experiments with pre-forward flexed 

resulting in an aligned cervical column (Pintar et al. 1995). 
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In most of the impact scenarios evaluated, the overall head kinematics of the ATD were 

similar to the PMHS. The exception was the 0 and 15 degree lubricated Teflon impacts. Several 

factors may contribute to this difference including greater coupling of the ATD head to the drop 

cart torso mass, the straighter geometry of the ATD neck and increased scalp friction of the 

ATD resulting in greater head constraint of the ATD in these scenarios then a PMHS. The 

practical result of this increased effective constraint is to make the response of Hybrid III head 

and neck a conservative predictor of injury in these impact conditions. However, there is not a 

high likelihood of interacting with a surface with a similar coefficient of friction as lubricated 

Teflon in real-world impact scenarios. As the friction in a real-world impact scenario increase, 

the ATD response and correlation to PMHS injury outcomes in padded impacts will better 

predict the probability of sustaining a cervical injury. 

 Two ATD neck angles with respect to vertical were chosen to evaluate a reasonable 

range of potential ATD head-neck orientations with the impact surfaces. A 6 degree neck angle 

was chosen as a representation of ATD neck head-neck orientations at the onset of automotive 

crash testing and 17.5 degree neck angle was chosen to more closely represent the orientation 

of the PMHS experiments being reconstructed. The neck angle relative to vertical used in the 

experiments did not have a large influence on the 50% probability of sustaining a cervical injury. 

It did have more influence on the range of loads estimated for probabilities of injury near the 

tails of the regression curves. Since the different neck angles evaluated changes the overall 

geometry of the ATD head-neck complex relative to the impact surface, neck angle did influence 

which impact conditions were associated with the highest or lowest loads and subsequently 

highest or lowest probability of injury. The 6 degree neck is least likely to result in a predicted 

injury in a 30 degree anterior impact on lubricated Teflon and the 17.5 degree neck is least likely 

to result in a predicted injury in a – 15 degree posterior impact on a padded surface. One PMHS 

unstable injury was documented in both of these scenarios resulting in a minimum range of 
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peak ATD lower neck axial force associated with unstable injury of 6,270 to 6,502 N for the 

current data set. 

The number of experiments in the matched data set limits the statistical significance of 

the injury probability curves generated. The presented probability of injury curves are not 

recommended as definitive risk assessment, however, the logistic regressions are valuable for 

comparison to the currently defined neck compressive load IARVs and strengthen the basis for 

the IARVs by adding to the number of PMHS injury outcomes that the Hybrid III ATD has been 

correlated to. As more data becomes available, the ATD response and probability of human 

cervical injury relationship can be improved and potentially expanded to include additional injury 

criteria. 

The average of the 6 and 17.5 degree neck angle peak ATD upper neck load associated 

with a 5% probability of any injury in a PMHS was found to be 4,025 N which is nearly equal to 

the current upper neck compressive force IARV. The average of the 6 and 17.5 degree neck 

angle peak ATD lower neck load associated with a 5% probability of an unstable injury in a 

PMHS was found to be 6,055 N. The lowest lower neck compressive force associated with a 

PMHS unstable injury producing test condition ranged from 6,290 N to 6,503 N depending on 

the initial neck angle of the ATD used in the experiment. Each of these values is consistent with 

both the Nij compressive intercept (6,200 N) and the upper compressive force threshold (6,670 

N) above which there is a potential to cause serious neck injury as defined by Mertz et al. 

(1978). In the loading environment evaluated as part of the current study, where ATD head, 

neck and torso mass impact speeds are at the threshold for causing catastrophic cervical injury 

in the PMHS, the difference between 4,000 N and 6,000 N in the ATD neck is a matter of 

approximately 2 to 3 millimeters of additional torso cart displacement.  
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6.5 Conclusions 

The Hybrid III ATD head and neck assembly was found to be robust and extremely 

repeatable in severe impact scenarios. The initial axial force response of the ATD head-neck is 

very comparable to PMHS experiments up to the point of PMHS cervical column buckle or 

material failure. AIS injury scaling of the cervical spine is highly dependant on the magnitude of 

spinal cord involvement. Unstable cervical orthopedic injuries have a greater risk of spinal cord 

injury and the need for surgical intervention. The smallest lower neck peak compressive force 

measured using the current set of PMHS test conditions with known injury outcomes that was 

associated with a PMHS unstable injury ranged from 6,290 N to 6,503 N depending on the initial 

neck angle of the ATD used in the experiment. The 5% probability of unstable injury ranged 

from approximately 5,950 to 6,160 N of lower neck axial force depending on ATD neck angle. 

These values are consistent with the both the reported finding of Mertz et al. (1978) and the 

current Nij compressive force intercept. The 5% probability of any injury ranged from 

approximately 3,340 to 4,710 N of upper neck axial force depending on ATD neck angle. This is 

consistent with the current FMVSS 208 compressive axial force limit of 4,000 N. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

Overall compressive neck injury dynamics and tolerances in laterally inclined impacts 

and postures are similar to previous studies of purely sagittal plane dynamics based on these 

test results. Impact speeds for the five tests ranged from 2.9 to 3.25 m/s. Three of the five 

PMHS sustained compressive cervical vertebral fractures at loads ranging between 1,518 N and 

3,472 N. The asymmetric postures and loading resulted in asymmetric fracture patterns. The 

pre-laterally flexed neck affected the neck axial force response and the average failure load in 

the current study. The initial axial response indicated a better coupling between the head and 

torso and the average failure load was approximately 50% greater than the average failure load 

reported for males by Nightingale et al. (1997a). Although lateral pre-flexion of the head-neck 

complex influenced axial response, shear forces and the lateral bending moment magnitudes at 

failure were small in comparison to sagittal plane responses in both test configurations. These 

secondary kinetics primarily act to modify the location of the applied axial force relative to the 

cervical column and in doing so, influence the magnitude of the axial response and specific 

injury outcomes. The axial response and failure load of a neutrally oriented neck against a 

laterally inclined impact plate is consistent with the neutral posture sagittal plane studies of 

Nightingale et al. (1997a). The failure loads of the pre-laterally flexed necks impacted onto a flat 

surface are consistent sagittal plane studies of Pintar et al. (1995) in which the cervical column 

was aligned through anterior pre-flexion. 

A more refined PMHS cervical spine compressive injury tolerance was derived by 

combining the available dynamic PMHS experimentation including measured neck kinetics 

conducted by different laboratories using various test methodologies. The compressive force 

measured at the base of the neck associated with a 50% probability of stable and unstable 

orthopedic damage is 2,956 N and 3,938 N respectively. A new injury metric, NECC, was derived 
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based on the kinetics of PMHS experimentation at the time of documented failure. NECC 

improves the ability to delineate between stable and unstable compressive cervical injuries and 

by defining the location of the applied load, the type of injury likely to be sustained can be 

anticipated. The NECC measured at the base of the neck associated with a 50% probability of 

stable and unstable orthopedic damage is 0.86 and 1.09 respectively. 

The Hybrid III ATD head and neck assembly was found to be robust and extremely 

repeatable in severe impact scenarios. The initial axial force response of the ATD head-neck is 

very comparable to the PMHS experiments up to the point of PMHS cervical column buckle or 

material failure. AIS injury scaling of cervical injury above AIS level 1 and 2 is highly dependent 

on the magnitude of spinal cord involvement. Unstable cervical orthopedic injuries have a 

greater risk of spinal cord injury and the need for surgical intervention. The smallest lower neck 

peak compressive force measured using the current set of PMHS test conditions with known 

injury outcomes that was associated with a PMHS unstable injury ranged from 6,290 N to 6,503 

N depending on the initial neck angle of the ATD used in the experiment. The 5% probability of 

unstable injury ranged from approximately 5,950 to 6,160 N of lower neck axial force depending 

on ATD neck angle. These values are consistent with the both the reported finding of Mertz et 

al. (1978) and the current Nij compressive force intercept. The 5% probability of any injury 

ranged from approximately 3,340 to 4,710 N of upper neck axial force depending on ATD neck 

angle. This is consistent with the current FMVSS 208 compressive axial force limit of 4,000 N. 

 The test methodologies used by Pintar et al. (1995) and Nightingale et al. (1997a) are 

limited in their ability to define local kinetics at the site of injury and their ability to delineate 

injuries sustained at multiple vertebral levels in a single test. Analysis of individual cervical 

motion segment kinematics is limited to high speed video which is heavily dependent on the 

visible anatomical landmarks and the light necessary for clear depiction of motion at high frame 

rates. Use of advanced instrumentation techniques such as high speed bi-planar x-ray and 

acoustic sensors would aid in the definition of the local kinematics and kinetics at the site of 
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injury. These dynamics are especially important to injuries that result during the cervical spine’s 

post-buckled orientation. Once these dynamics are more accurately defined, further 

investigation of oblique or three-dimensional cervical spinal response can be conducted. 

Currently, it is difficult to assess the influence of the fairly large axial twist moments measured in 

lateral test configurations. The quantification of PMHS bone mineral density used in 

experimentation is important in order to better define female cervical spine compressive injury 

tolerance and to more accurately assess the influence of donor age.  

Additional PMHS experiments conducted over a wider range of impact conditions, 

including more test conditions that do not result in PMHS material failure, are necessary for a 

more rigorous statistical analysis of injury outcomes and their relationship to physical 

biomechanical surrogates’ responses. The potential to include the natural lordosis of the human 

cervical spine in future physical surrogates should be evaluated, but a repeatable mechanical 

response must be maintained for consistency of results between laboratories.  
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Injuries in motor vehicle accidents continue to be a serious and costly societal 

problem. Automotive safety researchers have observed noticeable lateral bending of the 

anthropomorphic test device (ATD) neck prior to or in conjunction with head impact with the 

vehicle roof in rollover crash tests. Since there is scant data available about the effects of 

lateral bending on overall compressive tolerance of the human cervical spine, it is unknown 

if the presence of lateral bending is important to consider during impacts with the apex of the 

head. Compressive injury tolerance has historically been reported by identifying the axial 

force at the time of injury measured at the base of the neck, however, axial force at failure 

exhibits variation and this has been attributed to the alignment of the cervical vertebra and 

the end conditions of test methodology used. Robust and sensitive injury metrics for human 

compressive cervical spine tolerance that can be applied to a wide range of loading 

conditions and head-neck postures would be useful in evaluating and developing 

mechanically meaningful and robust anthropomorphic test devices (ATDs) and their 

associated injury assessment reference values (IARVs). As the Hybrid III ATD continues to 

be used in automotive rollover applications, interpretation of measured neck loads in this 
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testing mode would be aided by a better understanding of human cervical spine response 

and tolerance in compression dominated combined loading scenarios and their correlation to 

Hybrid III ATD neck responses. 

The effects of lateral bending on the compressive cervical spine dynamic response 

and tolerance was investigated through post mortem human subject (PMHS) head-neck 

complex experimentation. Similar to findings of previous researchers, the initial cervical 

posture influenced the mechanical response of the spine and the loads at failure. The 

results were combined with available historical compressive cervical spine tolerance studies 

that include head and neck dynamics, cervical kinetics and known end conditions. A re-

evaluation of the axial force tolerance of the PMHS cervical spine as well as derivation of a 

mechanistically relevant eccentricity based injury tolerance metric that can be applied to a 

wider range of loading vectors and initial cervical spine postures were conducted. Finally, 

the Hybrid III ATD neck compressive injury assessment reference values (IARVs) were 

evaluated through reconstruction of PMHS experiments with known injury outcomes using 

the Hybrid III head and neck assembly. Results are consistent with the currently defined 

IARVs and provide additional experimental support of the IARVs in loading modes that are 

known to result in PMHS compressive cervical injuries. 
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