
Wayne State University

Wayne State University Dissertations

1-1-2011

Artificial and natural nucleic acid self assembling
systems
Marcus Wood
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Biophysics Commons, Chemistry Commons, and the Nanoscience and
Nanotechnology Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Wood, Marcus, "Artificial and natural nucleic acid self assembling systems" (2011). Wayne State University Dissertations. Paper 298.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/298?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages


ARTIFICIAL AND NATURAL NUCLEIC ACID 
SELF-ASSEMBLING SYSTEMS 

 
by 
 

MARCUS WOOD 
 

DISSERTATION 
 

Submitted to the Graduate School 
 

of Wayne State University, 
 

Detroit, Michigan 
 

in partial fulfillment of the requirements  
 

for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

                                                                         2011 
 
                                                                         MAJOR: CHEMISTRY 
 
                                                                         ___________________________________ 
                                                                         Advisor                             Date 
                                                                         ___________________________________ 
                                                                         Advisor 
                                                                         ___________________________________ 
 
                                                                         ___________________________________ 
 
                                                                         ___________________________________ 

 



 ii  

 
DEDICATION 

To my family, friends, and teachers, throughout the years, without whom I never would 
have finished my degree.



 iii  

ACKNOWLEDGEMENTS 
 

 There are too many people that have helped me through the years to acknowledge 

individually. I am grateful to them all, and so my degree is the product of an intellectual 

community, and not solely one person. However, I would like to pick a few to single out. 

I would like to thank my committee, my co-advisors Drs. SantaLucia, and Rueda, and my 

other committee members, Dr. Cunningham, Dr. Poole, and Dr. Chernyak. I would like to 

thank Dr. SantaLucia for many stimulating scientific discussions, a good grounding in 

nucleic acid biophysics, guidance throughout my Ph.D. thesis, and editing this entire 

document. I would like to thank Dr. Rueda introducing me to the single molecule world, 

giving me an appreciation for publication quality presentations, and for providing the 

TRAP project and space in his laboratory so that I could have a publishable project and 

complete my degree. I would like to than Dr. Cunningham for keeping the biological side 

of my projects in balance with the physical, which had a tendency to become ascendant. I 

would like to thank Dr. Poole trying to impart to me the skills and attitudes a competent 

analytical chemist should possess; a deep respect for statistics, data reduction, and the 

importance of robust, precise, and accurate measurements and methods, topics that are 

often neglected by the other divisions in chemistry. I am very grateful to Dr. Chernyak 

for being willing to join my thesis committee at an extremely late date and with very little 

notice, and helpful career advice. 

 I would also like to acknowledge our various collaborators. Many thanks are due 

to Dr. Sergey Malinin for the development of the mathematics for the statistical model of 

TRAP binding, and many interesting and helpful discussions. Thanks to our collaborators 

Drs. Foster and Sachleben, for supplying the TRAP protein and encouragement. I am 



 iv 

grateful to Dr. Mao, Lei Wan, Yi Zou, and Sunxi Wang for the AFM imaging and 

entertaining conversations. Dr. Liu was invaluable for electron microscopy help. I also 

count the support personnel at Wayne state as part of our collaborators, for they helped 

immeasurably in getting the work done. I’d like to thank Nestor Ocampo for computer 

support and many good conversations. The Science Stores personnel did an exceptional 

job of obtaining anything needed promptly and for the best price. I’d also like to thank 

Sharon Kelly, and Melissa Barton for navigating me through the mess of paperwork and 

requirements that the degree requires. 

 I would also like to thank my family and friends. My family has been unfailing in 

their financial and emotional support, without this I would not have been able to finish 

graduate school. I would thank the Rueda postdocs, Elvin Aleman, Amanda Solem and 

Alfonso Brenlla; they have been exceedingly valuable resources in science and life. I’d 

like to thank Gayan Senavirathne for giving me my initial training in single molecule 

techniques. I enjoyed sharing half a desk with Zhuojun Guo. The cramped quarters could 

have been miserable if I was not sharing them with a friend. I would like to thank Rui 

Zhao for much commiseration and for feeding me when I really didn’t want to eat. 

Maybe sometime in the future we will be able to take that eating tour of China! I’d like to 

thank Rajan Lamichhane for listening to much late night complaining, and unfailing help. 

To Larry Clos, Raviprasad Aduri, Fred Sijenyi, and Norm Watkins, I am happy to have 

made the very best of lifelong friends of you all, now that I am done with my degree and 

have some time, I will be visiting! I’d like to apologize to Ravi for missing his wedding, I 

should have made the time and borrowed the money, and I am very sorry for that. I’d like 

to thank my girlfriend, Elena Schifirnet, for being a fierce source of strength, my best 



 v 

defender, and her great patience with the unreasonable amount of time my degree has 

taken. At last, I would like to say thanks to the entire complement of the Rueda and 

SantaLucia labs past and present; you have all been very good friends, and have helped to 

keep me from adding felonies to my resume. 

 Finally, I have found some comfort the in excellent poetry from World War One. 

The authors speak very movingly about hopelessness, abysmal leadership, broken ideals, 

heartbreaking naiveté, nationalism, misplaced trust, loyalty, honor, and duty, and the 

death of an entire generation of young men. An interesting coincidence between my work 

and the conflict is that I worked with mechlorethamine, a chemical derived from 

chemical weapons research on the mustard gas used in World War One. The effects of 

this chemical on lymphoid tissue suggested its use on cancer and success with this effort 

started the entire field of cancer chemotherapy. It is a horrifying irony that millions of 

lives have been saved by compounds similar to those that have caused so much suffering. 

Below are two examples that I have found particularly relevant. The authors of the 

poems, Siegfried Sassoon and Wilfred Owen, are some of the better poets in the English 

language and should be remembered during our current wars. 

 
Suicide in the Trenches 

 
I knew a simple soldier boy..... 
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With crumps and lice and lack of rum, 
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Who cheer when soldier lads march by, 
Sneak home and pray you'll never know 
The hell where youth and laughter go. 

 
Siegfried Sassoon - 1918 

 
 
 

DULCE ET DECORUM EST 
 

Bent double, like old beggars under sacks, 
Knock-kneed, coughing like hags, we cursed through sludge, 

Till on the haunting flares we turned our backs 
And towards our distant rest began to trudge. 

Men marched asleep. Many had lost their boots 
But limped on, blood-shod. All went lame; all blind; 

Drunk with fatigue; deaf even to the hoots 
Of gas-shells dropping softly behind. 

 
Gas! GAS! Quick, boys!—An ecstasy of fumbling 

Fitting the clumsy helmets just in time, 
But someone still was yelling out and stumbling 

And flound'ring like a man in fire or lime.— 
Dim, through the misty panes and thick green light, 

As under a green sea, I saw him drowning. 
 

In all my dreams before my helpless sight 
He plunges at me, guttering, choking, drowning. 

 
If in some smothering dreams you too could pace 

Behind the wagon that we flung him in, 
And watch the white eyes writhing in his face, 

His hanging face, like a devil's sick of sin, 
If you could hear, at every jolt, the blood 

Come gargling from the froth-corrupted lungs, 
Bitter as the cud 

Of vile, incurable sores on innocent tongues,— 
My friend, you would not tell with such high zest 

To children ardent for some desperate glory, 
The old Lie: Dulce et decorum est 

Pro patria mori. 
 

Wilfred Owen - 1920 
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Chapter 1. Introduction 

 Nucleic acids are good candidates for nanomachine construction. RNA, along 

with its close chemical cousin, DNA, participate in most of the processes necessary for 

life (information storage, catalysis, regulation, protein synthesis, etc.). Many of these 

processes are in effect, nanomachines, selected by evolution to perform a task important 

to the cell. The ribosome is a wonderful example. It is an exquisitely efficient and reliable 

molecular factory that takes information (from the DNA in the form of an RNA 

transcript) and produces the desired protein. This process is accomplished with an error 

rate that would be the envy of a modern intensive care unit (0.0006 errors per amino acid 

incorporated in a polypeptide chain vs. 0.01 errors per activity performed on a patient in 

the ICU!1). The catalytic center of the ribosome is RNA; the ribosome is a ribozyme (i.e. 

a nucleic acid playing a catalytic role). There are many other examples of nucleic acids 

acting as nanomachines by themselves or as part of larger architecture (e.g. group II 

introns2, chromatin3, siRNA4, etc.). With this inspiration from the natural world acting as 

goal and blueprint, it makes sense to use nucleic acids as the building blocks of 

nanomachines. This inspiration is not the sole reason for using nucleic acids as a 

framework for nanotechnology. The work of the past many years has given us a good 

understanding of nucleic acid synthesis and function. Short nucleic acids can be 

chemically synthesized by robots, and longer ones can be made using polymerases from 

DNA templates. Even longer strands can be pieced together with enzymes called ligases 

or recombination5. The thermodynamics of the association can be predicted, allowing us 

tune the association of the parts of a nanomachine6. Cellular replicative machinery can be 

adapted to replicate nucleic acids, allowing mass production of a particular nanomachine. 
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DNA is a relatively stable molecule, as evidenced by its use for genetic material, 

suggesting its use as a longer term construction material. RNA is relatively more 

unstable, suggesting its use as scaffolding material, or for degradable or recyclable 

nanomachines. Many enzymes that deal with processing RNA and DNA are known. They 

can make cuts in designated places, or bring pieces together. They can perhaps act as 

construction machinery for a designed nucleic acid nanomachine, saving the trouble of 

constructing the tools needed to build a nanomachine. 

 What is needed to actually bring complicated machines to reality? The necessary 

components are design, deep understanding of material properties, and dynamics. A 

complicated structure, or machine is no longer designed by hand, it is designed in a 

computer with purpose built software. This is due to the complexity of the product, and 

the process of creating a workable creation. The same holds for deigning using nucleic 

acids. While some useable design software exist7, there is a need in the community for a 

reliable software tool to help in the design process. An architect does not design a 

building without a deep understanding of the properties of the structural materials used 

and the design principles involved. A good understanding of nucleic acids has been 

wrested from nature by the work of countless molecular biologists, but mostly in the 

context of living systems. Some of this information is directly applicable to 

nanoconstruction, but more basic work must be done to understand nucleic acids as 

construction materials, so that the nanodesigner can have the same confidence that an 

architect has working with steel, concrete and the arch. Lastly, we are truly interested in 

nanomachines, not nanostructures or nanoarchitecture. This implies motion or action. The 

start of design may be static, but the end is an active machine that can accomplish work. 
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For this a better understanding of the dynamic nature of nucleic acid must be acquired. 

This work will try to address in a small way each of these questions, a better 

computational tool for design, a deeper fundamental understanding of the mechanical, 

structural and geometric properties of nucleic acids by attempting to construct a 

nanostructure, and finally, to start probing the dynamic properties of nucleic acids as 

inspiration for a dynamic machine. 
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Chapter 2. Nucleic Acid Force Field Development 

2.1 Introduction 

 To start, the details of nucleic acid structure still need to be better 

determined. There are far fewer crystal structures of nucleic acids than of proteins. The 

Protein Database (PDB) contains 60769 released structures for proteins, but only 4858 

released structures for nucleic acids alone and as complexes with proteins as of 6/14/10.  

Computational methods for predicting nucleic acid tertiary structure lag behind protein 

methods8, partly because RNA was experimentally harder to prepare than proteins, and 

partly because the biological role that RNA plays was not fully appreciated until recently. 

Complicating the matter, RNA has six backbone degrees of freedom per monomer, 

compared to only two for protein, making the challenge of structure prediction harder, as 

there is more inherent flexibility. The lack of interest is due to the historical 

misunderstanding of the large role of RNA in biology. The main interest in structural 

prediction was focused on the presumed functional machinery of the cell, composed of 

proteins. 

Our initial computational interest was mainly directed toward developing tools 

that could deal with poor structures. These would be useful for cleanup of poor geometry 

from various different sources, crystallography, de novo generation, homology modeling, 

NMR and others. The volume of structures that need processing also argued for 

developing algorithms that are rapid.  

Prediction of secondary structure is arguably easier for RNA than for protein9. 

There are strong base paring rules, and therefore, more completely determined 

thermodynamics, that allow better prediction to be made for the secondary structure10. 
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This gives a foothold into tertiary prediction; the current theory of folding progression in 

nucleic acids suggests that most of the secondary structures forms first, then the structure 

searches for its final 3D structure11. This is in contrast to protein structure that starts with 

an initial amorphous collapse, then a search for a final conformation. 

 

 

Figure 1: Folding pathway of the Tetrahymena ribozyme as determined by synchrotron hydroxyl 
radical footprinting 12. This experiment shows secondary structure forming before tertiary structure. 

 

Secondary structure prediction gives us a starting point for structural prediction12. 

Our goal was to develop better predictive tools, but to use the secondary structural 

information effectively for tertiary prediction we needed better understanding of the 

structural rules in RNA and DNA. This would give insight into how to search effectively. 

Since full quantum mechanical treatment of large molecules, like nucleic acids, is 

currently impossible, we decided to consider nucleic acids as geometrical constructs with 

classical mechanics. 

2.2 Torsion Angle Preference 

 So what is in a structure? A structure is represented as the x, y, z, Cartesian 

coordinates of all the atoms in a molecule. Alternatively, if the bond lengths and bond 

angles are held constant, the structure can be represented as the torsion or dihedral angles 
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for all the single bonds in the structure. On the timescales shorter than that of bond 

making and breaking, chemical bonds can be approximated as stiff rods; so we took for a 

starting point the dihedral angles in the backbone of the nucleic acid. Dihedral angles are 

defined as the angle between two planes, in the context of a molecule four atoms (or lone 

pairs) about a central bond can sufficiently define these two planes13. 

 

 

Figure 2: The dihedral angles present in the backbone of RNA14 
 

These torsion angles act as the joints about which nucleic acids can flex to fold 

into stable structures. This restriction to dihedral angle flexibility reduces the structural 

search space allowed to a molecule dramatically. For example, each residue in RNA has 

about thirty three atoms on average. This means that the number of coordinate parameters 

is approximately 3 * 30 * N, where N is the number of nucleotides. In dihedral space, the 

number of rotatable single bonds is 7 * N (six backbone and one side chain dihedral). We 

therefore explored the energetic landscape of allowed geometry by the dihedral angles in 

natural structures, and computationally the space of possible conformations. The 
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computational work was necessary due to the fact that the native structures are generally 

crystal structures, a snapshot in time of a dynamic structure, frozen in a crystal by 

neighboring molecules, perhaps with non-biological additives, and held at cryogenic 

temperatures (typically 77 K) to reduce radiation damage and slow molecular motion; all 

done to improve the resolution of x-ray methods, or allow them to be accomplished in the 

first place. These experimental constraints of the crystallographic process raise the 

question of the actual conformation in functional, biological conditions. Also, the vast 

majority of structure determinations are funded for biologically functional molecules; 

functional biomolecules are the end point of the folding process, which does not properly 

describe the conformational process required to reach the fully folded state15. 

The first part of our analysis of RNA structure was an assessment of 

conformations observed in functional nucleic acid structures. We hoped to reduce the size 

of the conformation space that our later design methods would have to search. Perhaps 

we could also find some underlying principal guiding nucleic acid assembly and function. 

We also hoped to discover smaller structural units that would allow a modular building 

approach. This was started with a survey of the angles present in the 30S subunit of the 

ribosome. We chose the crystal structure of the Thermus thermophilus 30S ribosomal 

subunit (1J5E PDB identification number). For all dihedral angles a bin size of -0.499 to 

+0.500 degrees was used. We found that chi, zeta, epsilon, beta, and alpha have one area 

of dihedral angle space that is preferred, but that delta and gamma have two. This is in 

broad agreement with previous work 16. 
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Figure 3: Dihedral angle histograms calculated from the 1J5E crystal structure 
 

 

Figure 4: Dihedral angle histograms calculated by Westhof and Fritsch17. The histograms labeled 
with A are constructed from helical fragments, those labeled B are constructed from large RNA 
structures. All structures were from the Nucleic Acid Database circa 2000. To be comparable to our 
values, values higher than 180 degrees map to negative 180 and then down to zero degrees (i.e. 181 
here maps to –181 and 359 maps to -1)   
 

 The width of the angular space preferred depends upon the angle and the trend is 

chi, epsilon, beta, zeta, alpha, gamma, delta, from widest distribution to smallest. The 

angular freedom shown here roughly mirrors the number of atoms attached to atoms in 
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question. For example, epsilon and beta are the dihedral angles that involve oxygen 

atoms from the phosphate that have no other groups attached other than those continue 

the thread of the backbone. Zeta and alpha also include the same phosphate oxygens that 

have no other substituents, they are more restricted in flexibility than epsilon and beta 

since they have to contend with the oxygens (i.e. O1P and O2P) attached to the 

phosphorus. The two preferred delta angle positions reflect the two different low energy 

sugar pucker conformations possible for the five membered ring of the ribose16b. The 

conformational rigidity of the ring also is reflected in the narrowness of the distribution 

of the preferred angles. The chi angle is known to prefer two conformations, syn and anti. 

The low population of the syn conformation is partly due to the analysis being done on a 

highly structured RNA; normal base paring favors the anti conformation16c, 16e. Also, 

pyrimidines (i.e. C, U and T) are only rarely in the syn conformation due to the steric 

clash between O2 and H3’. The conformations of the alpha and zeta dihedral angles have 

three preferred minima, with gauche- the dominant observed dihedral, particularly in base 

paired regions. These angles are probably restricted by the phosphate that is part of the 

atoms that make up these dihedral angles. Epsilon and beta have more flexibility, as they 

are one bond away from the confining sugar. Gamma has two preferred geometries 

gauche+ and anti, and one rare geometry gauche-, and is restricted in flexibility by the 

presence of hydrogens on the ribose ring. The question is then, with few usually allowed 

angles in a RNA structure, how is the large amount of geometrical diversity obtained? 

One way is that small changes in an angle over a long distance can add up to a large 

distance in space. This is known as the lever arm effect18. The other mechanism for 

structural diversity is that infrequently found rare angles can add structural diversity. The 
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demonstrated preferences allowed us to proceed with some confidence in reducing the 

space to be searched in the first approximation to the preferred angles, and a sampling of 

a few rare angles (M. Kockhal and J. SantaLucia, Jr. unpublished results). 

2.3 Force Field Validation 

The choice of forcefields for energy calculation is important for classical 

molecular mechanics studies. Care in selection and validation of forcefields is necessary 

since we planned to use the calculated energy for a particular conformation as a metric to 

guide a structure to a folded state. An assumption is made that the lowest energy structure 

is the native, biologically relevant, form of the molecule19. Thus, if energy can be 

accurately calculated, it can guide a folding algorithm to the native, folded form of the 

molecule20. To guide our simulations, we needed a metric of structure quality. A metric is 

needed by the computer algorithm to deduce if a trial structural change is better or worse 

than the original structure. This metric will act as a guide to fold a structure. Usually this 

metric is some sort of energetic calculation for physics based approaches, or combination 

of “knowledge based” approaches. The assumption is that biologically relevant structures 

use thermodynamic minimization of energy to fold to a functioning structure. Since 

nature performs free energy minimization, a computer can mimic this process with a 

calculated energy. If the functions used to calculate in silico energies are close enough to 

real world thermodynamics, then the molecule will be guided to the natural structure. 

One obvious problem with this approach is that energetic barriers can prevent algorithms 

from finding the energy minimum conformation. Interestingly, this also seems to occur 

naturally in RNA; some structures can be kinetically trapped during transcription or 

translation 21. This problem may then be a real aspect of nucleic acid folding.  
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A force field for energy calculation usually has the general form of a sum of terms 

representing the various physical forces and principals that are thought to (semi-

classically) drive molecular and atomic association. These terms are usually partitioned 

into a harmonic bonding force (this represents the force of a covalent chemical bond in a 

distance dependant fashion), bond bending (this represents preferred bond angles defined 

by two adjacent chemical bonds), a dihedral angle component (due to atomic packing 

around most dihedral angles, there are preferred conformations in molecular dihedral 

angles, this term accounts for this observation) , electrostatics (this term is the classic 

columbic attraction or repulsion of charged bodies), and a Van der Waals term (this 

component represents induced dipole-dipole interactions, and Pauli repulsion when atoms 

are too close). The forcefield we used was slightly modified from this general 

description, as we added a hydrogen bonding term, as these interactions are very 

important to nucleic acid structure, and are not adequately represented22. 

 

 

 

 

 

 

Different portions of the potential function were screened for utility in guiding our 

folding and ranking work. Two common functions in use are the Buckingham potential23 

and the Lennard-Jones potential24. Both are to model the pair wise interaction terms that 

reflect the repulsion due to electronic orbital overlap when atoms become too close, and 

∑∑

∑∑∑∑

<<

<−−

+×











+−+












+−+−++−+−=

ji ijo

ji

ji
ij

ij

ij

ij

ij

ji
ij

ij

ij

ij

ij

dihedrals

n

anglesOP
eq

bondsOP
eqrtotal

RDpi

qq
termsangleF

R

E

R

D

C
R

B

R

A
n

V
KrrKE

****4
)_(

)]cos(1[
2

)()(

610

612
'3

22

'3

ε

γφθθθ

Figure 5: The Energy functions used in our simulations, referred to from here on as NA-FF (Nucleic Acid 
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the attraction due to Van der Waals forces (induced dipole dipole interactions). There are 

a few arguments for using either potential. The Lennard-Jones potential has steeper 

slopes than the Buckingham potential, goes to infinity as atoms become close, and is 

easier to calculate than the Buckingham potential. The Buckingham potential is “softer” 

than the Lennard-Jones potential, has a better basis in real physical phenomena (the 

exponential term mirrors the Pauli Exclusion Principle more closely), but is harder to 

calculate and can have relatively low energy values at very close atomic separation. The 

way that one decides what to use in an empirical force field is to see what functions and 

parameters work best for the purpose to which it is to be put. To see which potential 

would be more useful for the nucleic acid folding problem, we chose the small well 

defined RNA crystal structure as our testing goal (the sarcin-ricin domain from e. coli, 

PDB id 483D. At the time of the work it was the RNA structure with the best resolution, 

which still displayed a reasonable variety of structural motifs; see the Dickerson 

dodecamer for a higher resolution structure that shows less structural information, 

1DPN). To generate a test set of structures we adopted two strategies. The first was to 

randomly change the dihedrals in the structure with a certain amount of allowed angular 

change. The second was to alter the angles with a gaussian distribution. The first strategy 

would produce bad, and often non-physical structures, the second would mirror the error 

in experiment better, and produce higher quality decoy structure. We then ranked these 

test sets by the calculated energy and RMSD to the native crystal structure. We found that 

the energy function did not correspond well to coordinate closeness unless a round of 

energy minimization was done first to clean up gross structural problems, which made the 
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energy essentially random. After this step, both energy functions seemed to correspond to 

closeness to the native structure. 

 

 
 
Figure 6: The Buckingham potential 
 

 
Figure 7: The Lennard-Jones potential 
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Figure 8: Graph of the Lennard-Jones and Buckingham potential functions for Argon atoms in the 
gaseous state. The Lennard-Jones potential is curve II, the Buckingham potential is curve I (curve H 
is the Herzfeld interaction derived Herzfeld and Goeppert-Mayer’s  exact equation of state for 
argon25). R is the distance between two Neon atoms in angstroms, E is the energy of the interaction in 
ergs X 10-15 ( X10-22 joules, X 6.24*10-4 electron volts) The functions have their parameters fitted to 
replicate measured physical data. 
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 We decided to determine if our energy function could rank structures according 

to their distance from a native crystal structure. To generate structures that would be near 

a known structure we altered the dihedral angles of a well known structure, subject to a 

Gaussian distribution centered on the original angular values. This allowed us to generate 

“decoy” structures with a known folded structure. This also allowed us to have a 

secondary metric to judge the utility of our energy function, the root mean square 

deviation (RMSD) of the decoy structure from the original crystal structure. The amount 

of angular deviation introduced into the structure only corresponded weakly with the 

calculated energy and the RMSD. In terms of the energy, this is most likely to be caused 

by a crashing effect of one part of the structure into another. Only a small change in 

dihedral angle can create a non physical structure, where atoms are overlapped. A large 

energetic penalty for non physical structures is incorporated into the energy function to 

select against them, so these sort of nonphysical structures cloud the selectivity of the 

energy function. This clouding makes it is difficult to tell the difference between a 

structure that is geometrically close to the native structure, but has some non physical 

clashes, a completely unfolded structure, and one with many small problems. The 

magnitude of the calculated energy is often poorly correlated with the ‘quality’ of the 

structure. The solution to this problem was the addition of energy minimization before 

the energetic and Gaussian assessment. This step cleaned up these nonphysical structures 

to the point that the energy function, RMSD and the amount of angular deviation 

introduced generally trended in the same direction.  
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Figure 9 : Scatter plot of the NA-FF calculated energy versus the RMSD to the native crystal 
structure for gaussian generated decoy structures. The different colours correspond to the width of 
the standard deviation used to generate the structures. 
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Figure 10: Picture of the ensemble of structures generated with gaussian angle sampling. These 
structures were generated using a standard deviation of half of a degree. 
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Figure 11: Picture of the ensemble of structures generated with gaussian angle sampling. These 
structures were generated using a standard deviation of one degree. 
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Figure 12: Picture of the ensemble of structures generated with gaussian angle sampling. These 
structures were generated using random values for their dihedral angles. 
 

2.4 Comparison of NA-FF with AMBER 

 To further assess the use and application of our forcefield we decided to 

see if it could select correct, native structures from a larger set of incorrect decoy 

structures (i.e. to test the discrimination of the forcefield). The set of correct structures 

was twenty four different 8-mer RNA hairpins taken from various different crystal 

structures. Appendix 1 shows the sequences and origins of the hairpins used. Decoy 

structures for the correct structures were created by “threading” the sequence associated 

with a particular hairpin, through all the other hairpins in the sample. In practice, this 
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meant keeping the geometry of a particular structure, but replacing the native bases with 

those from the other structures (the chi dihedral angle of the base was preserved in the 

replacement process). This process generated 576 (twenty four structural motifs times the 

twenty four sequences that were native to each motif) structures in the set, from which 

the goal was to pick the 24 correct structures (the structures with the native nucleotide 

sequence in the native structural motif) by ranking these structures as the lowest in 

energy. As shown earlier, DSTA energy minimization was performed on the structures to 

reduce the number of gross structural problems. There were some problems with this 

approach. One was that the structures were in the context of larger macromolecules. 

Their isolated energy (or conformation) then may not correspond to the energy in the 

context of the whole native biomolecule. This is because long range and tertiary 

interactions can stabilize different folds than would be seen in isolation. Another problem 

may that some of the hairpins may be in extended conformations that show little 

selectivity for a particular sequence, as the bases are not in positions to interact with each 

other regardless of sequence. In vivo, an analogous process is mutational tolerance. 

Nevertheless, we had planned to use our energy function in homology modeling, where 

we envisioned a process much like this to be used to replace mutated portions of a known 

molecule. The same test set was also ranked with the AMBER forcefield 26, to see if a 

modern molecular mechanical forcefield would do a better job of discriminating between 

native and non native structures. As can be seen from figures thirteen and fourteen, the 

NA-FF (Nucleic Acids Force Field) does a better job of discriminating between decoy 

and native structures. AMBER, in fact does no better than random chance in picking the 

correct structure and sequence.  
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Figure 13: Amber prefers particular sequences (and motifs), no matter which structural motifs they 
are threaded through 

 

 

Figure 14:Ranking summary for hairpins of length 8. The data was generated by taking 18 different 
hairpins of length of eight from RNA crystal structures, and threaded every sequence from the 18 
into every structure, giving a set of 306 decoy structures with 18 correct structures. The resultant 
structures had their respective energy calculated with each forcefield and these were used to generate 
the rankings. 
 
 

From figure thirteen, the AMBER forcefield appears to have a preference for 

particular motifs and sequences regardless of the context. AMBER’s poor discrimination 

is probably due to the fact that the forcefield is designed to deal with physically plausible 
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structures, and not with the physically non-plausible structures that are often generated as 

decoy structures. The most obvious preference is that AMBER consistently ranks 

sequences rich in G’s and A’s as higher in energy. We hypothesize that the preference for 

particular sequences and structures that AMBER displays is probably due to poorer 

positioning of purines when they are in a crowded position. If the motif has a lot of space 

free space around the nucleobases AMBER rates it as low in energy regardless of 

sequence as there are fewer positions where the purines can be crowded. Conversely, if a 

sequence is rich in G’s and A’s AMBER rates it as higher in energy than the other 

sequences, as there is a good likelihood that one of the purines will be in a bad position. 

AMBER may perform poorly in this comparison as its energy minimization algorithm is 

taking steps with all atoms, and thus we implemented DSTA. This torsion angle sampling 

is more efficient computationally than simulating the trajectories of all atoms involved in 

the biomolecule; it may not get caught in some types of minima that a steepest descent 

procedure can be mislead into. 

2.5 Conclusion 

What was the result of our testing? We found for our purpose that the Van der 

Waals portion of the energy function made little difference in discriminatory power for 

native structures. We found that the energy function did correspond to closeness to a 

native structure (measured by RMSD) within a window of distance to the native 

structure. Also, our energy function appears to do a better job than a standard molecular 

dynamics package (AMBER) in finding a native structure obscured by non-native 

sequences. This gave us confidence to use the forcefield for guidance in the package of 
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programs that became RNA-123 and when licensed and much improved by DNA 

Software Inc., became Nucleic Acid CADTM (NA-CADTM), a commercial product. 
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3. DNA Nanostructural Design and Synthesis 

3.1 Introduction 

 With a basic forcefield for nucleic acid simulation developed, we continued on to 

the design and synthesis of nanostructures. The current state of the field involves tedious 

manual design of self assembling structures or truncated models of known 

thermodynamics. These approximations become less and less possible with the increasing 

complexity of the system. Also, because of the inefficiencies of design, a complicated 

structure can mean many rounds of purification and characterization. If a simple method 

for designing structures that would assemble in one pot in one step could be found, it 

would be very useful to the field. The SantaLucia lab has a history of successful 

computational thermodynamic prediction of nucleic acid association, and based on this 

previous work we developed prediction software that may allow the design of more 

complicated structures. We also experimented with light controlled “tack welding” of 

assembly or disassembly of a DNA structure which could add more precise 

controllability to the system and perhaps mechanical functionality. 

Nanotechnology promises to deliver new ‘smart’ materials with tunable 

properties, efficient catalysis, novel drug delivery mechanisms, and nanomachines 27. The 

control of materials of the nanoscale can be accomplished from two directions, bottom up 

or top down. The top down approach is to start with large objects and shrink them down 

in some way. A good example of this is the fabrication of integrated circuits. A large 

design is made into a nanoscale design with photo reduction. A large pattern is made into 

a nanoscale structure by optically focusing the design of the pattern to a smaller size on a 

photoactive substance. The area of the photoactive substance that has not been 
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illuminated by the pattern can be washed away with solvents leaving a replica of the 

larger pattern at a smaller size. The other direction for constructing a nanoscale structure 

is from the bottom up. This means that one starts with atoms and assembles them into 

large (on the atomic scale) structures. As chemists, we have good knowledge of the 

atomic level assembly of matter into small structures (in the angstrom size regime); 

however, making larger nanoscale structures is still challenging. With our experience in 

the chemistry of DNA folding and hybridization giving us atomic control, our choice of a 

bottom up approach is obvious. 

3.2 Computational Design of a Nanostructural DNA Triangle 

 DNA is a good candidate as a nanotech building block because of its stability, the 

ability to encode into the molecule specific associations via the Watson-Crick base 

pairing rules, the multitude of molecular biology tools for specific molecular 

manipulations, and the ability to reliably replicate and synthesize a molecule or large 

quantities. DNA was selected over RNA for our experiments to reduce the initial 

experimental complexity (DNA is more chemically stable than RNA, can be more 

cheaply synthesized, and more enzymes are available for processing.). DNA in biological 

systems also is known to assemble into nanoscale structures with exquisite control of its 

conformation and function (e.g., packing of DNA into viral nuclei or the chromatin 

structures in the nucleus of a eukaryotic cell).  

 The task of specifying the sequence for a DNA strand so that it associates in a 

specific manner with other strands has generally been done by hand in the past. This 

approach has a considerable drawback. It is very difficult for a human to go through a 

long sequence, or many shorter sequences, and eliminate all the possible competing 



29 

 

interactions that a particular sequence, or sequences, may have. These competing 

interactions seriously reduce the yields for assembly and require many purification and 

assembly steps 28. More recent computational algorithms have typically used a truncated 

interpretation of the known thermodynamic complexity in nucleic acids. While the 

computational methods have met with much success, we believe the same problems as 

with manual design will be found for more complicated structures; that the computational 

algorithms will not scale well, or be robust, due to incorrect thermodynamic modeling.  

To alleviate this problem, the SantaLucia lab created a computer algorithm to 

automatically design a set of DNA sequences that assemble in a specified manner. Using 

the thermodynamic nearest neighbor model, the rules of an expert in the field, positive 

and negative design features, and a evolutionary search strategy, the program mutates a 

starting set of sequences to give a final set, that assemble in a  programmed manner (see 

figure fifteen for the block diagram of the program). The program redesigns any 

sequences created that form undesired structures, individually or for any pair of 

sequences in a group. Using the program, we designed an equilateral DNA triangle; 

approximately 16 nanometers on a side, comprised of nine different strands that should 

assembly correctly in one pot, in one step (see figure sixteen for the predicted secondary 

structure of the triangle, and figure seventeen for the predicted 3D structure of the 

triangle). We attempted to use an enzyme called T4 DNA ligase to seal the junctions 

between the strands, giving a stable structure that is resistant to disassembly. Ligase will 

catalyze the formation of a covalent bond between the 5’ phosphate of one strand and the 

3’ hydroxyl of another strand, if they are held next to each other via base pairing by a 

strand that is complementary to the strands to be ligated. For example, planned in our 
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design, if the ligation is successful, sequence 1 and sequence 2 (a 39mer and a 41mer) 

will be joined into one 80 base long piece of DNA. Sequences 1 and 2 are held together 

for the ligation by sequence 7 (see figure 16 for the specific base pairing).  If all the 

designed ligations are successful there will be 3 different 80 nucleotide pieces (sequence 

1 joined to sequence 2, sequence 3 joined to sequence 4, sequence 5 joined to sequence 9) 

and one circular 117 nucleotide central piece (sequence 7 joined to sequence 6 and to 

sequence 8).  The creation of these larger pieces can be used, in part, to show the correct 

assembly of our designed structure. The initial triangle was to be used a proof of principle 

and a building block for more complicated structures. 

Figure 15: Block diagram for the DNA design program 
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Figure 16: Secondary structure of the initial triangle design 
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Figure 17: Predicted 3D structure of the initial DNA design 

 

3.3 Synthesis and Characterization of the Triangle 

3.3.1 Ligation 

 The designed strands were chemically synthesized by Sigma Genosys, and 

ligation was attempted with T4 ligase and Taq ligase using various conditions (see 

figures 18, 19 and 20). Two different ligases were used to determine which was more 

effective in the assembly process. T4 DNA ligase is very active, but somewhat 

nonspecific and unstable at the temperatures simulated in our design algorithm(i.e. 

55oC)29. Taq ligase is very stable and specific30 at temperatures up to 85oC. We used 

polyacrylamide gel electrophoresis to assess the ligation reactions. Native gels should 

24 nanometers 
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preserve any assembled triangles; denaturing gels should break the triangle into single 

stranded pieces. 

 

Figure 18: Native and Denaturing Polyacrylamide Gels showing T4 ligation Studies. Note the absence 
of a clean band of triangular product, which should be near 117 bp. Also see that ligation has 
occurred, indicated by the presence of large pieces of DNA (greater in size than the starting 40mers) 
on the denaturing gel.  



34 

 

 
 
Figure 19: Native Agarose Gel of Taq ligation. Note the absence of triangular product bands, which 
should be near 117 bp. Lane one contains dye markers (xylene cyanol and bromophenol blue). Lane 
two contains a one kilobase DNA marker ladder. Lane three and twenty two contain a hundred base 
DNA marker ladder. Lanes four through six and eight show the ligation conducted 65° C, sampled at 
4.5 hours, 4 hours, 1.5 hours, and 0.5 hours, respectively. Lane seven is a no ligase control at 65° C 
sampled at 1.5 hours. Lanes eight through eleven and thirteen show the ligation conducted 50° C, 
sampled at 4.5 hours, 4 hours, 1.5 hours, and 0.5 hours, respectively. Lane twelve is a no ligase 
control at 50° C sampled at 1.5 hours. Lanes fourteen through sixteen and eighteen show the ligation 
conducted 16° C, sampled at 4.5 hours, 4 hours, 1.5 hours, and 0.5 hours, respectively. Lane 
seventeen is a no ligase control at 16° C sampled at 1.5 hours. Lanes nineteen and twenty are two 
different ligation experiments with T4 ligase for comparison with Taq. Lane twenty one is a no DNA 
control, i.e. the Taq ligase and buffer without DNA. 
 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
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Figure 20: Denaturing Agarose Gel of Taq ligation. Note the absence of clean triangular product 
bands, which should be near 117 bp. Also note that some of the strands have been ligated (the bands 
greater in size than a 40mer). The lane identification is identical to figure 19. The denaturing is 
acomplished by alkaline conditions (50 mM NaOH, 1 mM EDTA) 

 

Our interpretation of these gels is that while the desired association is taking place 

at the level of one side of the designed triangle (i.e. an 80 bp long piece), the whole 

structure is not forming effectively (this would be indicated by a 117 bp piece). The 

larger structures seen in the ligation involving the T4 ligase, as opposed to the Taq ligase, 

are due to the promiscuity of the ligase and the cool reaction temperature used (16oC) 

which favor incorrect association. The problem may lie with the three way junctions that 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
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we have engineered into the structure. If they do not have the assumed 60 degree angle, 

they will prevent the correct association instead of encouraging it. This is not a ligase 

dependent problem, as the strands do not associate correctly in the absence of ligase. One 

problem with the association could be a few problems with the base pairing design 

discovered after the assembly attempt. Some of our sequences have small areas of self 

complementary sequence, and portions which can base pair in a manner that can 

encourage T4 ligase to ligate the incorrect strands together. This was the reason for 

experimentation with Taq ligase. The Taq ligase experiments had no bands corresponding 

to fully ligated triangles. This eventually drove us to our experiments with chemical 

crosslinking. The problems in assembly shown by the gel electrophoresis data are 

reinforced by our AFM (Atomic Force Microscopy) data presented below in figures 21, 

22, and 23.  

AFM is a flexible technique that allows imaging on the nanoscale. At its simplest, 

AFM is a measurement of the height of a point on a surface. A very sharp point (the 

AFM tip) probes the surface and this point is scanned across the surface acquiring height 

information. The extremely small deflections of the AFM tip are measured by reflecting a 

laser beam off the reflective back of the tip. The reflected light is allowed to travel along 

a long path amplifying the angular deflection; much like a lever. Usually, a lever is used 

to transform a small force applied along a large distance, to a large force applied to a 

small distance. Using this principle in reverse, a lever can amplify motion. The amplified 

displacement of the beam is detected by a photodiode array. The position of the tip (x and 

y coordinates) and the height (the z coordinate) measured at that position are combined in 

a computer program to produce a topographical map of the area scanned by the AFM tip. 
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If the surface is very flat, and a nanostructure is attached to the surface, an image of the 

attached nanostructure can be obtained. For nanostructures as small as DNA, a very flat 

surface is required, so that the structure of interest is not lost in the background surface 

roughness. Luckily, a natural mineral, mica, has the interesting property of cleaving with 

atomically flat surfaces31, and can be obtained cheaply in large enough pieces to be useful 

experimentally. The atomically flat surface of a cleaved piece of mica can then be used as 

a substrate for imaging DNA. As can be seen from the pictures, there are structures that, 

with imagination, are similar to our designed structure. However, they are the exception, 

and not the rule. Generally, amorphous structures are seen, indicating that our synthetic 

effort with ligase was inefficient.  

 

 

Figure 21: AFM Image of the Original Triangle Synthesis with T4, Unpurified by Gel 
Electrophoresis. Note the wide variety in sizes of the structures imaged, indicating heterogeneity of 
the sample. 
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Figure 22: Image of the Purified 117mer Band, T4 Ligation. Note the wide variety in sizes of the 

structures imaged. 
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Figure 23: Image of the Purified 468mer Band, T4 Ligation. Note the wide variety in sizes of the 

structures imaged. 

 

3.3.2 Crosslinking 

 The problems found with our design for ligase assembly, drove us to look for 

other ways to construct the triangle. Our attention turned to different methods of locking 

our strands together. Chemical crosslinking appeared a good choice. If the crosslinking 

was controllable and reversible it could be used much like “tack” welding in assembling 

steel structures. It would act as temporary glue to hold pieces together, to allow piecewise 

assembly, and when the structure was complete they could be taken out. This would also 

allow purification in intermediate steps (not our original goal, but would allow 

optimization, where our previous results, i.e. no positive result, would not). Our first 

choice was the crosslinker mechlorethamine. Mechlorethamine can crosslink DNA at the 
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N7 position in guanine, preferentially in 5’ GNC regions32. It is a relatively small 

crosslinking agent and introduces minimal distortion into B-form DNA32-33. 5’ GNC 

regions in our design were found in all strands, save one. In our hands, (see figure 24) 

mechlorethamine proved to be an inefficient crosslinker, is not easily reversible, and 

safety and handling proved onerous (Mechlorethamine is a vesicant, derived from sulfur 

mustard chemical warfare agents, and due to its cytotoxic properties is sometimes used 

for chemotherapy). 

 

Figure 24: Denaturing polyacrylamide gel of mechlorethamine addition to annealed triangle 
components. Note the lack of full sized triangle. 
 
Mechlorethamine was then abandoned in favor of psoralen.   

Controls 

Various interactions in 
the triangle 

Very small quantity of 
cross linked material 
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Figure 25: The structure of 8-methoxypsoralen34, and the cyclobutane linkages created between the 
thymines in the preferred AT steps. 
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Figure 26: The junctions in the DNA triangle that are cross-linkable with psoralen 
 

 Psoralen, a chemical derived from diseased celery35, seemed to be a superior 

choice as a crosslinker. 8-methoxypsoralen (one of the many psoralen derivatives 

available),or 8-MOP, was chosen as it was a photosensitive crosslinker, reversible, is still 

used in clinical practice to treat intractable skin conditions, is available cheaply, and had 

sequence specificity for AT repeats. It is, conveniently, safer to handle than 

mechlorethamine. The psoralen intercalates between base pairs in the double helix. There 

is then a stronger driving force for association of crosslinker and nucleic acid, unlike the 
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case of mechlorethamine, which is probably depends on weak, nonspecific electrostatic 

interactions to bring it to crosslinkable positions36. We had reason to expect that this 

association, before the crosslinking step, would improve crosslinking efficiency. Also 

arguing for its selection was that AT repeats exist in all of the overlaps between the 

strands that connect the triangle together, save one (see figure 26). After association, 8-

MOP forms crosslinks between the two strands of double helical DNA via  pyrimidine 

bases under the illumination of UV light in the 340 nm range37. UV light in the 240-313 

nm range38 will break the crosslink.  

 We decided to start with a piecewise “tack-welding” assembly of our structure 

with psoralen (see figure 27). 

 

Figure 27: The vertices that were cross linked in the first step of an assembly plan with 8-MOP 
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 This was done because our one pot synthesis with ligase or mechlorethamine had many 

unwanted products, and did not assemble into the desired structure. The stepwise 

synthesis and purification would allow dissection and diagnosis of the problems, and 

complete the assembly.  

 We started with the three way junctions or vertices in the planned triangle. On 

denaturing polyacrylamide gels, we could identify the desired product bands, as well as 

unexpected undesired products. Sequence seven in the triangle had a small area of self 

complementary base pairing, and importantly, the AT step preferred by 8-MOP. The 

thermodynamics for association for this small amount of base paring are very low in 

energy, but do happen transiently. This transient association seemed to be enough to 

crosslink the 2-3-7 junction to itself through strand seven forming a dimer of the vertex. 

We theorize that 8-MOP intercalation can stabilize the AT steps, before crosslinking 

making the transient association longer lived, allowing more time for crosslinking. 
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Figure 28: Denaturing PAGE gel of the vertices in the triangle. The unassociated strands have been 
run off the bottom of the gel. The proposed interactions for each band are labeled.  
 

The size of the vertices was verified with matrix assisted laser desorption ionization mass 

spectrometry (MALDI-MS). MALDI-MS employs a solid matrix that can be partially 

ionized, and converted to a gas by a UV laser. The molecule of interest is embedded in 

the matrix, and with the matrix support changed in phase from solid to gas, is swept into 

the gas phase by the matrix plume, and then the mass spectrometer. Charge transfer from 

the matrix to analyte allows separation in the mass spectrometer. This is a relatively 

gentle ionization technique. Mass spectrometry of large nucleic acids however is a 

challenge. Charged in the gas phase, they tend to depurineate, fragment, and form 

phosphate salts, creating wide mass distributions and reducing the reliability of mass 

determinations39. Reliably determining the mass of nucleic acids longer than 100 base 

Junction 2,3,7 Dimer 

Junction 2,3,7 Monomer 

Junction 1,8,9 

Junction 4,5 
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pairs has not been successful to date. Our fully assembled triangle is larger than this limit. 

This explains our poor mass spectra displayed in figure 34. We did obtain reliable masses 

for the junctions and suggestive data for posited larger assemblies. 

 

 

Figure 29: MALDI-MS of strands 2, 3 and 7, crosslinked with 8-MOP, the posited dimer band 
excised from denaturing PAGE gel. . The calculated mass for the assembled parts are boxed, and the 
measured masses are underlined. 
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Figure 30: MALDI-MS of strands 2, 3 and 7, crosslinked with 8-MOP, the posited monomer band 
excised from denaturing PAGE gel. . The calculated mass for the assembled parts are boxed, and the 
measured masses are underlined. 
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Figure 31: MALDI-MS of strands 1, 8 and 9, crosslinked with 8-MOP. . The calculated mass for the 
assembled parts are boxed, and the measured masses are underlined. 
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Figure 32: MALDI-MS of strands 4 and 5, crosslinked with 8-MOP. . The calculated mass for the 
assembled parts are boxed, and the measured masses are underlined. 
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Figure 33: MALDI-MS of strands 1 and 9, crosslinked with 8-MOP. . The calculated mass for the 
assembled parts are boxed, and the measured masses are underlined. 
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Figure 34: MALDI Mass spectra of assembly of the triangle from junctions. Masses corresponding to 
single strands rather than the junctions are most likely due to the crosslink breaking in the ionization 
process. The calculated mass for the assembled parts are boxed, and the measured masses are 
underlined. The analyzed sample, in all likelihood, is made up of junction sized pieces, and larger 
assemblies; the measured intensities correspond more directly to stability of pieces of that mass to 
charge ratio. 
 

  

The next step was the assembly and crosslinking of the proposed full size triangle. 

The denaturing PAGE gel indicates larger products that are consistent in size with the 

designed triangle. Interestingly, a dimer product is also shown. This is probably through 

self-complementary portion of strand 7, shown to associate and crosslink by our vertex 

experiments. As the mass spectra for the larger assemblies is inconclusive we turned to 

another technique, dynamic light scattering. DLS relies on the fact that particles of any 

size scatter light. If the intensity of scattered light over time is monitored over time, for a 
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small illuminated volume, the intensity of scattered light is seen to fluctuate. The 

fluctuation is due to particles drifting in and out of the measurement volume. The Stokes-

Einstein equation can describe how spherical particles diffuse dependent on their size. If 

this equation is used to fit the autocorrelation function of the fluctuations in intensity over 

time, the size of diffusing particles can be deduced. The general idea is that smaller 

particles diffuse faster, so the intensity of scattered light from the measurement volume is 

autocorrelated for a smaller period of time than that of larger, more slowly diffusing 

particles. This means that the measured “size” is dependent on the hydrodynamic radius. 

This procedure works well for spherical or ellipsoidal particles, but the theory for other 

geometries is still being developed. For our triangular designs, there is some indication 

that we would see two distributions, corresponding to the edge or face of the triangular 

structure. 

 

Figure 35: DLS intensity distribution for the 2, 3, 7 junction 
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Figure 36: DLS intensity distribution for the 4, 5 junction 
 

 
 
Figure 37: DLS intensity distribution for the 1, 8, 9 junction 
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Figure 38: DLS intensity distribution for synthesis of the whole triangle, from junctions 
 

 
 
Figure 39: DLS intensity distribution for the proposed dimer triangle band from denaturing PAGE 
of the complete synthesis. 
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Figure 40: DLS intensity distribution for the proposed monomer triangle band, missing one strand, 
from denaturing PAGE of the complete synthesis. 
 

 
 
Figure 41: DLS intensity distribution for the proposed monomer triangle band from denaturing 
PAGE of the complete synthesis. 
 

 As can be seen from the measured sizes from DLS, they corresponded well to the 

predicted dimensions for the triangle. The larger measured size may correspond to the 

scattering for the face of the triangle as opposed to the edge. The largest species probably 

corresponds to bubbles forming in the solution during observation. With this 

encouragement, we again employed AFM for structural detail. 

24 nm 295 nm 5560 nm 
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Figure 42: AFM image of psoralen cross linked, gel purified sample corresponding to the designed 
triangle. The dimensions and geometry correspond to the model.  
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Figure 43: Another example AFM image of psoralen cross linked, gel purified sample corresponding 
to the designed triangle. The dimensions generally correspond to the model, but the geometry does 
not. 

 

3.4 Conclusion 

As seen in figures 42 and 43, much like our work with the ligase, we only found a 

few (3-4 examples, depending on what one considers a triangle) examples of structures 

that agreed with our design. While our gel and light scattering data are consistent with the 

designed structure, we do not see enough of the desired structure with AFM to draw any 

conclusions, except for perhaps failure in design. When one looks long enough at the 

molecular level, one can see structures that look like almost anything. To fairly determine 

if what is observed is different from these imaging artifacts; many hundreds of examples 
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in close proximity are needed. This very small population of structures that correspond to 

the design may be due to the one connection that is not crosslinkable, and because of this 

the structure was unstable in the relatively harsh conditions employed in our AFM 

imaging (The RNA is desalted, and dried on a mica surface, this can subject a sample to 

large forces40). The larger structures would be then due to oligomerization through this 

open connection. Another possible explanation is that AFM imaging on a mica surface is 

an extractive technique41. We may have inadvertently employed conditions that selected 

aggregates, and incorrectly assembled structures, or single stranded structures42. This 

may not have been detected in MALDI due selection of smaller species and the 

possibility of the MALDI ionization process breaking up aggregates. Another problem 

may be that small quantities of incorrectly assembled structures may act as catalysts to 

nucleate large scale aggregation and misassembly (most probably through the non-

crosslinkable junction). This nucleation would make sense if other structural concerns 

prevent correct association. The phase of the helix or the angle of the junctions, while 

designed to be compatible for association (and to prevent oligomerization), may not be 

correct for complete triangle formation. These issues warrant further exploration by other 

researchers, as our thermodynamic calculations are known to be reliable, and if our 

methodology could be made to work would allow much more freedom in DNA 

nanostructural design. In the end, the question of success of our design methodology is 

unanswered. We found that we had to give up our original motivation of one pot 

synthesis, efficiency and good yields to make any progress with the assembly. The gel 

and light scattering data are encouraging, but the AFM data is not. Perhaps a new design, 
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informed by the problems encountered with this first design could meet with more 

success or the use of different imaging strategies (x-ray crystallography, SAXS, etc.).  
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4. RNA Regulatory Dynamics 

4.1 Introduction 

 Setting aside our work in accurate structural design and synthesis, dynamics are 

also necessary to construct functional nanomachines. To gain some understanding of how 

nucleic acids interact dynamically with other cellular components we chose the TRAP 

protein. The TRAP protein is a classic example of a protein nucleic acid interaction, and 

can undergo many different types of interactions. We hoped to use this as inspiration for 

dynamic machinery based on nucleic acids. 

4.2 The TRAP/Tryptophan/RNA Regulatory System 

 The tryptophan regulatory attenuation protein or TRAP regulates tryptophan 

synthesis in many Bacilli43. The TRAP protein is involved in regulation of the tryptophan 

biosynthetic genes at least four different points 44. Three of these regulatory points 

involve only the protein, mRNA and tryptophan 44a, b, 45 at the transcriptional and 

translational level. The last involves another protein (the anti-TRAP protein) and couples 

the system to not only tryptophan levels, but the levels of charged tRNAtrp44e, 46. The 

TRAP protein regulates the expression of the trp operon transcriptionally by binding to 

the leader element of the operon in a tryptophan dependent manner. The binding of the 

protein causes a restructuring of a large secondary structure formed by the leader 

element. After restructuring, a normally occluded terminator hairpin forms and signals 

the polymerase to stop transcription. Alternatively the first gene in the trp operon, trpE, 

contains another structure that, upon TRAP binding, hides the Shine-Delgarno sequence, 

preventing transcription44a. The TRAP protein can also directly compete with ribosome 

binding in the case of the trpP45 (a postulated tryptophan transporter)and trpG44b (a 
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glutamine amidotransferase common to both the folic acid and tryptophan pathways) 

genes (also ycbK,47 postulated to be an efflux protein) The fourth way in which the TRAP 

protein is coupled to the tryptophan system in the cell, is if charged tRNAtrp levels drop 

sufficiently, the anti-TRAP protein is expressed. This protein can bind to TRAP, 

preventing it from binding RNA, regardless of tryptophan levels44e, 46a-c.  

 

Figure 44:Transcriptional regulation by the TRAP protein48. In the absence of tryptophan, the leader 
RNA forms a RNA structure called the antiterminator. This structure does not interfere with the 
progression of transcription and the tryptophan bio-synthetic proteins encoded in the trp operon are 
completely transcribed. In the presence of high tryptophan concentrations, the TRAP protein binds 
to the leader element rapidly, before the polymerase progresses to the protein encoding regions of the 
operon. The binding causes a restructuring of the antiterminator, allowing a standard terminator 
hairpin to form. The terminator signals to the polymerase to stop translation and disassociate from 
the DNA, never having transcribed the protein encoding regions of the operon. Thus, tryptophan 
levels in the cell decrease, due to lower levels of tryptophan synthesizing proteins. 
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Figure 45: Translational regulation by the TRAP protein48. The TRAP protein has a second chance 
to interfere with the synthesis of protein if the complete mRNA is transcribed. If tryptophan levels 
are low, another larger RNA structure is formed in the leader area of the mRNA. This structure has 
an exposed Shine-Delgarno sequence;  the ribosome can bind to the Shine-Delgarno sequence and 
initiate translation normally. In the presence of high tryptophan levels, the TRAP protein can again 
bind and reorganize this structure. In this case, the reorganization sequesters the Shine-Delgarno 
sequence in a hairpin structure. The ribosome can no longer bind and translation of the operon does 
not occur. Again, lower levels of tryptophan synthesizing proteins, lead to lower cellular levels of 
tryptophan. This secondary regulatory function may be because tryptophan levels can change 
between transcription and translation, or perhaps because the translational regulation is imperfect. 
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Figure 46: The crystal structure of the TRAP protein (represented by the rainbow coloured ribbons), 
fully saturated with tryptophan(represented by the CPK coloured spheres), with RNA 
bound(represented by the CPK coloured ball and stick model).48-49 
 

 The TRAP protein, itself, is composed of eleven identical subunits, which assume 

a toroidal or ring shaped structure, of total molecular weight of approximately 91,00049-

50. Each subunit in the TRAP protein binds to UAG or GAG repeats separated by two 

nucleotide spacers51 if activated by tryptophan binding. An interesting property of the 

system is that tryptophan binding to the protein is non-cooperative52 to weakly 

cooperative53, depending on the species of origin (TRAP from B. subtilis seems to bind 

cooperatively, but TRAP from B. stearothermophilus seems to be non-cooperative) but 

protein binding to the RNA seems very cooperative49. Also, there is a preference for 4-6 
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units of the RNA binding motif54. After approximately this number of repeats the protein 

shows little increase in affinity54. The TRAP protein also seems to not undergo large 

scale concerted conformational changes55. Cooperative systems offer organisms a method 

of generating tunable and switch like effects in regulation and binding and so are 

advantageous. However the details of how a weakly cooperative to non-cooperative 

process in tryptophan binding to the TRAP protein results in a very cooperative process 

in protein binding to RNA have not been explained. We have performed single molecule 

FRET experiments to probe this interaction. We believe that our data suggests an 

explanation for this effect. The data, qualitative pictures of the interaction, and a 

mathematical model are presented. Our models elaborate on an evolutionary pathway for 

multimeric allosteric proteins. By following our suggested pathway backward with retro-

mutations, we suggest that an effort in “mutational archeology” may be an interesting 

avenue of research. Finally, this evolutionary path suggests a strategy for nanomachine 

design. 

4.3 Experimental Design 

 As bulk experiments have not sufficiently explained the behaviour of the TRAP 

system, a single molecule approach was taken. Single molecule experiments can provide 

detailed information on dynamics, show transient intermediates, and give information on 

the temporal ordering of required states56. This information is often not available or 

obscured in bulk measurements. We chose FRET to report on the state of the single 

molecules. Florescence or Förster resonance energy transfer is a powerful spectroscopic 

technique used to measure distances in biomolecules. This distance measurement relies 

on the non-resonant energy transfer from one fluorescent molecule to another. This 
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transfer can happen if the emission spectrum of one molecule overlaps with the 

absorption spectrum of another molecule. This is a sign that the energy levels in the 

respective molecules are matched, i.e. the energy difference between the ground state and 

the excited state in the donor molecule after vibrational and rotational relaxation is equal 

to the gap in the acceptor molecule. The efficiency of energy transfer is strongly 

dependent on distance, and so can be used as a “molecular ruler”. The energy transfer 

efficiency depends on distance in a one over the distance to the sixth power manner, 

giving good sensitivity between 2.5nm to 10 nm. To use FRET in our system, we 

installed two fluorophores that were FRET paired into a synthetic mimic of the leader 

element of the trp mRNA (the site of TRAP protein binding for transcriptional 

regulation). The fluorescent labels were on either end of the leader RNA so that they 

could monitor the length of the RNA during binding by the TRAP protein. In the 

unbound state there would be a low FRET intensity due to the large distance between the 

fluorophores. In the bound state, there would be a high FRET intensity as the TRAP 

protein brings the ends of the RNA (and the fluorophores) together. Finally, the RNA 

construct was also biotin labeled, to allow surface immobilization and single molecule 

observation. 

 

Figure 47: The RNA construct used in the experiments. FRET paired fluorophores (Cy3 as the donor 
and Cy5 as the acceptor) are attached to each end of a synthetic RNA construct designed to mimic 
the TRAP binding site. We expect a low FRET efficiency when the construct is unbound and the ends 
of the RNA are far apart. When the TRAP protein binds, it will bring the ends of construct together, 
resulting in a high FRET efficiency (see figure 46 for the crystal structure of the TRAP protein 
bound to RNA, and figure 48 for diagrams of the different states).Biotin is attached to the 3’ end (the 
right side of the construct) to allow for surface immobilization. Surface immobilization allows long 
observation of individual molecules (see figure 48) 
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Figure 48: Experimental design, surface immobilization, and expected FRET values for our system. 
The RNA construct is immobilized on the quartz surface of a microscope slide through the biotin-
streptavidin interaction. First, bovine serum albumin (BSA) with covalently attached biotin is 
introduced to the slide. The BSA non-specifically absorbs to the surface of the slide. Streptavidin is 
then introduced and binds to the biotin. Then our construct is added to the slide. As streptavidin has 
four binding sites for biotin, our biotin labeled RNA can bind to the streptavidin, and through this be 
tethered to the surface. The left cartoon depicts the immobilized RNA without bound TRAP protein, 
giving a weak FRET signal (low energy transfer efficiency, therefore low acceptor emission 
intensity). The right cartoon depicts the immobilized RNA with bound TRAP protein, giving a strong 
FRET signal (high energy transfer efficiency, therefore high acceptor emission intensity). The 
surface immobilization serves two important purposes. Firstly, it allows observation of the molecules 
over long periods of time. Secondly, it allows excitation of a very small portion of the sample 
compartment by TIRF (total internal reflectance fluorescence). In fluorescence experiments, 
background fluorescence is usually a problem, more so in single molecule experiments where the 
desired signal is weak. The excitation laser is totally internally reflected off the top of the slide. This 
generates an evanescent wave in the solution at the interface. This wave rapidly decays, (the intensity 
is negligible a few hundred nanometers from the interface) but can excite donor molecules that are 
near the interface, like our surface immobilized construct. In this way most of the solution is never 
illuminated by the excitation laser, strongly reducing background fluorescence. 
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 Generally, experiments were conducted and data was collected as outlined in 

figures 48 and 49. Our construct was immobilized to a quartz microscope slide by a three 

step process. First, biotin labeled bovine serum albumin (BSA) was non-specifically 

absorbed to the surface of the slide. Second, the immobilized BSA was bound by 

streptavidin. As streptavidin has four binding sites available, there are free sites for more 

biotin to bind. In the last step our biotin labeled RNA construct was bound to the 

streptavidin, linking it to the slide surface through the streptavidin and BSA. After this 

immobilization step, the RNA construct was exposed to the various conditions in the 

experiment (figures 50-55). The slide was illuminated with a 532 nm laser (this 

wavelength is absorbed by Cy3, but not by Cy5), and the resulting fluorescence from the 

two fluorophores was recorded by a CCD camera (see figure 48). The motion picture 

recorded by the camera was processed with custom computer code in the IDL 

programming language. These IDL programs extracted out the fluorescence intensity data 

for individual molecules from the movie, and as both the Cy3 and Cy5 wavelengths were 

recorded simultaneously, but spatially separated, and also matched these together. After 

this extraction process, the individual single molecule traces were analyzed for relevance 

with custom computer code written in the Matlab programming language. This included, 

making sure that the purported single molecule trace was only a single molecule (by one 

step photobleaching), and that artifacts were not incorrectly identified as molecules. Once 

this was completed the single molecule traces were summed into a histogram to display 

the overall behaviour of the observed molecules. The summing process was done with in 

house software written for the IGOR pro57 computer program. 
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Figure 49: General single molecule workflow. First, (1) fluorescence data is collected from 
immobilized molecules on slide by a microscope and camera. Second, (2) from the movie file 
recorded by the camera, individual single molecule fluorescence intensity traces are extracted and 
the two different wavelengths recorded (for each molecule) are matched together custom IDL 
computer code. Third (3) the extracted traces are analyzed for relevance to the experiment with 
custom Matlab computer code. Fourth (4) the traces are summed together to finally create a 
histogram (5) of the overall behaviour of the single molecules. This summing is done with custom 
IGOR pro computer code.  
 
4.4 Results 

4.4.1 RNA alone condenses with increasing divalent concentration 

 Our first experiment was to assess the response of the RNA construct alone. 

Along with determining the behaviour of RNA without protein, divalent cations are 

known to cause tertiary structural formation58. Our construct was designed to mimic the 

natural leader element of the trp operon and while there is no published information 

showing structural formation in this area alone, with the large role RNA restructuring 

plays in the TRAP regulatory system, it was necessary to test this possibility. These two 

goals were accomplished by observing the behaviour of the RNA alone with various 

Mg2+ concentrations (from zero to sixteen mM). 

Σ 
80

60

40

20

0

x1
0-3

 

1.00.80.60.40.20.0

1 
2 

3 

4 
5 



69 

 

 

Figure 50: Histogram showing the behaviour of the RNA construct in the absence of the TRAP 
protein and magnesium. These experiments were conducted in 50 mM MOPS, pH 7.5, 100 mM NaCl, 
PCD/PCA59 as the oxygen scavenging system, and 2 mM Trolox60 as a antioxidant and triplet state 
quencher. 
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Figure 51: Binding curve for the RNA construct in the absence of the TRAP protein and magnesium. 
These experiments were conducted in 50 mM MOPS, pH 7.5, 100 mM NaCl, PCD/PCA59 as the 
oxygen scavenging system, and 2 mM Trolox60 as a antioxidant and triplet state quencher. 
 

 As seen in figures 50 and 51 the RNA construct in the absence of the TRAP 

protein responds to increasing Mg2+ concentration. This response takes the form of a 

gradual increase in the apparent FRET state dependent on magnesium concentration. We 

did not detect discrete individual states or shifting between different states in the single 

molecule traces used to make up the histograms. We suggest that magnesium is 

stabilizing normally unstable secondary or tertiary structural interactions in a nonspecific 

manner. These could take the form of reducing the random coil size by more effective 

charge screening of the backbone phosphates. As reported by Mfold7e, calculated possible 

secondary structure for our leader mimic had low energy and few canonical base pairs. 

Future experiments were done with no added magnesium, as the TRAP protein is already 

known to bind effectively without added divalent metals61. This allowed us to disentangle 

any changes in apparent FRET from the condensing effect of magnesium. The measured 

Mg1/2 concentration and lack of obvious cooperativity is similar to that measured for 

other unstructured RNAs of this size and consistent with nonspecific binding. The 

dynamics of individual traces for the 4 mM concentration seemed higher than at other 

concentrations. The resampled standard deviation of this concentration reflects this. This 

may be an experimental artifact, or an intermediate stabilization regime between two 

groups of undetected microstates.  

4.4.2 Tryptophan saturated TRAP protein displays a Kdapp similar to 

other measurements at the single molecule level 



71 

 

 The next property of the TRAP protein to be tested was the binding behaviour 

when the protein was completely saturated with tryptophan. This would allow us to probe 

the behaviour of fully activated protein binding to RNA without the added complexity of 

tryptophan also incompletely binding to the protein. In terms of what is already known 

about the protein, information for the saturated binding behaviour is plentiful, giving us a 

valid point of comparison to other researchers working with bulk techniques. This 

comparison would allow us to validate our method, and see the lowest protein 

concentration at which we could detect binding and check that this concentration was 

biologically relevant. 

 

Figure 52: Histogram showing the behaviour of the RNA construct in the presence of the TRAP 
protein in a saturating concentration of tryptophan with varying protein concentrations. These 
experiments were conducted in 500 nM tryptophan, 50 mM MOPS, pH 7.5, 100 mM NaCl, 
PCD/PCA59 as the oxygen scavenging system, and 2 mM Trolox60 as a antioxidant and triplet state 
quencher. The protein concentrations are given in terms of the holo enzyme, not the subunit 
concentration (which would be eleven times greater). 
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Figure 53: Binding curve for the RNA construct, in the presence of the TRAP protein, in a saturating 
concentration of tryptophan with varying protein concentrations. These experiments were conducted 
in 500 nM tryptophan, 50 mM MOPS, pH 7.5, 100 mM NaCl, PCD/PCA59 as the oxygen scavenging 
system, and 2 mM Trolox60 as a antioxidant and triplet state quencher. The protein concentrations 
are given in terms of the holo enzyme, not the subunit concentration (which would be eleven times 
greater). 
 

 Upon the addition of tryptophan saturated TRAP to the system, the response of 

the system changed in definite ways (see figures 52 and 53). We found two main 

apparent FRET states, a low fret state (approximately .3 FRET) and a high FRET state 

(approximately .9). We detected very little shifting from state in individual single 

molecule traces (3 molecules out of 500 analyzed). The amount of high FRET state found 

increased with increasing protein concentration. This is consistent with a fast on rate and 

a slow off rate. When fitted to the Hill equation we determined a Kdapp of 1.9 nM and a n 

of 2.8. Theses Kdapp and n values are consistent with values determined by other 

researchers54. The cooperativity is unexplained, but perhaps the TRAP protein is binding 

as a dimer. There is some evidence for dimerization from the crystal structure of Anston 

et al.49 and the mass spectral work of McCammon et al.62 and the work of Baumann et 
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al.61. However, gradient centrifugation, and gel electrophoresis data do not show the 

dimer forming in appreciable concentrations61. The actual state of TRAP oligomerization 

in the cell is then currently undecided. Our measured Kdapp and n values show that this 

single molecule system can accomplish monitoring of the TRAP protein binding to RNA, 

at concentrations that are close to cellular levels of the TRAP protein (estimated at 80 

nM63). 

4.4.3 Increasing tryptophan levels alters the amount of bound protein in 

unexpected ways 

 Finally, the most exciting experiment to be done with the TRAP protein was to 

see the behaviour of the system in the natural regulatory context; namely what would 

happen to the binding properties of the protein as the external tryptophan concentration 

was altered. Previous work has found binding constants to be on the low nanomolar scale. 

We would like to see if our single molecule system reproduces these results, and if it will 

explain some of the other interesting properties of the TRAP protein. These include the 

seeming paradox of highly cooperative binding of the protein to RNA and the weakly 

cooperative binding of tryptophan to the protein and the requirement of 4-5 RNA binding 

motifs for protein binding to the RNA. We would also like to be able to detect the correct 

stoichiometry (i.e. one trap protein should bind eleven tryptophan molecules). Finally 

perhaps we can detect intermediate states or dynamics that have not previously been 

reported.  
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Figure 54: Histogram showing the behaviour of the RNA construct, in the presence of the TRAP 
protein, with different concentrations of tryptophan. These experiments were conducted in 50 mM 
MOPS, pH 7.5, 100 mM NaCl, PCD/PCA59 as the oxygen scavenging system, and 2 mM Trolox60 as a 
antioxidant and triplet state quencher. The protein concentration was 10 nM, in terms of the holo 
enzyme, not the subunit concentration (which would be eleven times greater).  
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Figure 55: Binding curve for the RNA construct, in the presence of the TRAP protein, with different 
concentrations of tryptophan. The curve plotted is the best fit of the Hill equation. This is 
inappropriate to use in this case as there are at least two different equilibria (tryptophan binding to 
the TRAP protein, and the TRAP protein binding to RNA), but gives some rough values for 
comparison to other work. These experiments were conducted in 50 mM MOPS, pH 7.5, 100 mM 
NaCl, PCD/PCA59 as the oxygen scavenging system, and 2 mM Trolox60 as a antioxidant and triplet 
state quencher. The protein concentration was 10 nM, in terms of the holo enzyme, not the subunit 
concentration (which would be eleven times greater). 
 
 Inspecting the titration of fixed RNA and TRAP protein concentrations with 

tryptophan (figures 54 and 55), we detect the high FRET state (that we associate with the 

binding of the protein to the RNA), with no added tryptophan. This is in conflict with 

other authors which have reported that there is no appreciable binding in the absence of 

tryptophan64. We suggest that our single molecule assay may be selecting binding 

competent TRAP proteins from the pool of excess protein (the RNA is applied to the 

slide surface at 25 pM concentration; the protein concentration of the holo enzyme is 10 

nM). This effect will be explained in more detail in the discussion section. After the 

initial binding event there is a small increase in the amount of binding from zero to one 

nM tryptophan. After this increase there is a drop in the amount bound, reaching a 

maximum at 40 nM. Then a very sharp increase is seen from 40nM with saturation at 100 

nM tryptophan. This sharp increase is consistent with a cooperative binding event65. After 

this increase there may be a small drop in binding, from 100 nM to final saturation at 

10000 nM tryptophan concentration, but this is not distinguishable from experimental 

error. This dual phase binding curve is unusual for regulatory proteins. As with the 

protein saturated with tryptophan, there were no detectable dynamics. Extending the 

observation time from 5.5 minutes to 30 minutes had no effect on this conclusion. 

4.5 Discussion 

4.5.1 Tryptophan Group Binding Model 
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 To explain these interesting effects in the TRAP/RNA/tryptophan system, we 

offer two models. We suggest, as a first approximation, that each subunit of the TRAP 

protein has two conformational states, a tryptophan binding state, and a RNA binding 

state. These states are in equilibrium with each other. With no added tryptophan, some of 

the TRAP proteins have enough of the subunits in the RNA binding conformation to bind 

and give the basal level of binding seen.  

 
 
 
 

                                                  
 
Figure 56: Basal binding configuration for the group tryptophan binding model (red indicates the 
RNA binding conformation, green indicates the tryptophan binding conformation) 
 
As low levels of tryptophan are added and bind, the binding event induces a 

conformational change in one or two subunits (as the tryptophan binds at the interface of 

two subunits49) to the RNA binding conformation. This change biases neighboring 

subunits away from the RNA binding conformation to the tryptophan binding 

conformation. This would result in a drop in the number of subunits in the RNA binding 
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conformation, for low tryptophan levels. Thus, small amounts of bound tryptophan would 

stabilize one subunit in an RNA binding conformation, but would destabilize that 

conformation in the neighbors. The net effect would be to reduce the total amount of 

bound protein. This biasing effect may or may not be detectably coupled to tryptophan 

cooperativity (we do not detect tryptophan binding; our assay is only sensitive to protein 

binding to RNA). Also, this effect on the neighboring subunits, may not be strongly 

coupled to overall tryptophan affinity, explaining the diversity in measured cooperativity 

in tryptophan binding to TRAP proteins from different species52. 

 

Figure 57: Low levels of tryptophan lead to a drop in binding for the group tryptophan binding 
model (red indicates the RNA binding conformation, green indicates the tryptophan binding 
conformation). 
 

 The large cooperative effect in binding RNA, as the tryptophan concentration 

increases, is due to the selection of particular states from the ensemble of possible 

Initial bound state Tryptophan binding induces a conformational change 

The conformational change results in disassociation 
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arrangements for bound tryptophan. It seems that for binding the TRAP protein requires 

something on the order of 4-6 of the RNA motifs (that the individual subunits recognize 

and bind) to bind effectively54. If instead, the arrangement of 4-6 tryptophan bound next 

to one another in the protein is the actual requirement, selection of the states where this is 

the case can result in the appearance of very cooperative effects. This sort of effect is 

seen in large ligand binding to one dimensional lattices, and our explanation draws much 

inspiration from the models proposed to explain these without allosteric conformational 

changes 66. As an illustrative example, consider the case of 9 tryptophans bound to the 

11mer TRAP protein. There are no possible arrangements of tryptophans in the protein 

where there are less than 5 tryptophans bound next to each other. The number of possible 

arrangements where this is the case, as the number tryptophans in the protein increases 

displays a trend that would result in cooperative binding. This selection of particular 

configurations would explain the lack of a decrease in free energy for greater numbers of 

RNA binding motifs past approximately 654. As this state is sufficient for binding, 

increasing tryptophan concentration (and the number of tryptophans bound to the protein) 

would result in more proteins with the required distribution of tryptophan, and more 

bound (more than 6) tryptophan would have little effect on binding. Looking at this in a 

different way, as tryptophan binds to the protein it is more likely that another tryptophan 

binds to the protein in a site not adjacent to a previously bound tryptophan, until 

sufficient sites are filled (e.g. if one tryptophan is bound to the protein, there are two 

neighboring sites, but 7 sites that are not neighbors; it is more likely a new tryptophan 

binds to a non neighboring site if there are not strong cooperative effects). 
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Figure 58: Origin of the cooperative effect in RNA/TRAP/Tryptophan system for the group 
tryptophan binding model (red indicates the RNA binding conformation, green indicates the 
tryptophan binding conformation). 
 

The mechanism for this selection of 4-6 units grouped together is not determined, but 

could be due to the physics of initial interaction, as 4-6 subunits may be the number of 

subunits that initially interact and “stick” to the RNA. This amount of binding 

(approximately half the circumference of the protein) would be sufficient to bring the 

ends of the RNA together. We do not think the MWC model of a concerted 

conformational change describes this system (as is the case in hemoglobin), as NMR data 

does suggest this type of structural change55. Finally, the peak of low FRET state shifts 

with increasing tryptophan concentration. This could be due to transient interactions, with 

the RNA, that break up weak secondary structure or stretch out the initial random coil 

conformation. 
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Figure 59: The origin of the shift in low FRET state for the group tryptophan binding model (red 
indicates the RNA binding conformation, green indicates the tryptophan binding conformation). 
Increasing interaction extends the random coil. 
 
4.5.2 Distributed Tryptophan Binding Model 

 A different preference for the arrangement of bound tryptophan while preserving 

the statistical and selection aspects of the above model could also lead to cooperative 

effects. Li et al.53c have shown that synthetic trap protein assemblies composed of mutant 

nonbinding subunits and wild type binding competent subunits can have high affinity for 

RNA. They show there is evidence for strong binding to RNA with only one binding 

competent subunit. In view of this, our system could be monitoring the behaviour of the 

TRAP protein after it is already bound to the RNA. In this interpretation of our data, the 

protein is bound from the beginning of the titration; this would result from the high 

relative concentration of protein to RNA (the protein concentration in the titrations is 10 

nM, the RNA concentration is 25 pM as applied to the single molecule slide; the effective 

concentration is much lower as only a portion of this is surface immobilized). This would 

offer enough different TRAP proteins (differing in the number of subunits in the RNA 

binding conformation) to the RNA to allow those with subunits in the RNA binding 

conformation to bind. If enough subunits are in the RNA binding conformation, the RNA 

No tryptophan 
Increasing tryptophan 

concentration 
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would wrap completely around the protein and give the detected high FRET state (for 

initial binding without tryptophan). Our assay would not detect protein that is bound to 

only a single subunit as this would not bring the ends of the RNA together. 

 

Figure 60: The cause of the low FRET peak shifting in the distributed binding model (red indicates 
the RNA binding conformation, green indicates the tryptophan binding conformation). 
 
This single subunit binding could even extend the length of the RNA from the random 

coil length, or disrupt transient secondary structure (folding induced by secondary 

Initially bound, but undetected protein 

Increasing bound tryptophan extends the random coil 
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structure formation would reduce the length of the RNA). This effect may be seen in the 

decrease of the FRET value for the low fret state in the 0 to 40 nM tryptophan. The high 

FRET state found initially (with no added tryptophan) is then due to a subset of the 

TRAP proteins that have enough subunits in the RNA binding conformation to bring the 

two ends of the RNA together. 

                                                  

Figure 61: Basal binding configuration for the distributed tryptophan binding model (red indicates 
the RNA binding conformation, green indicates the tryptophan binding conformation). 
 
 As small amounts of tryptophan are added, a certain distribution of RNA binding 

conformations in the ring is required for “productive binding”, i.e. binding that will bring 

RNA completely around the ring. Biologically, this would correspond to enough force to 

unfold the anti-terminator hairpin and allow the terminator hairpin to form. The drop in 

binding from one nM tryptophan to 40 nM tryptophan would be attributable to more 

RNA binding conformations near the initial site of binding. This would extend the RNA 

chain even further from the random coil length than a single bound subunit, changing the 

FRET value of the low FRET state. The reduction in the amount of high FRET state 
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would then be due to the effect of tryptophan bound in protein away from the initial 

binding site, which would bias unbound neighbors away from the RNA binding state, to 

levels below that seen with no tryptophan bound. This process is similar to the argument 

in the group binding model.  

 

Figure 62: Low levels of tryptophan lead to a drop in binding for the distributed tryptophan binding 
model (red indicates the RNA binding conformation, green indicates the tryptophan binding 
conformation). 
 

The strongly cooperative effect is, as in the group tryptophan binding model, due to a 

collapse in the number of states or arrangements that do not have tryptophan distributed 

around the ring. In essence, the states selected would be opposite to those in the first 

model. A slightly different way of restating this is that the RNA binds completely if there 

are no more than 2 subunits in the tryptophan binding conformation in a row. 

Initial bound state Tryptophan binding induces a conformational change 

The conformational change results in disassociation 
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Figure 63: Origin of the cooperative effect in RNA/TRAP/Tryptophan system for the distributed 
tryptophan binding model (red indicates the RNA binding conformation, green indicates the 
tryptophan binding conformation). 
 

 An interesting feature of our modeling is that the small drop in binding from 100 nM 

tryptophan to 10000 nM tryptophan could be seen as a preference (over that of states that 

have neighboring RNA binding states) for states that have alternating RNA binding 

conformation and tryptophan binding conformations. If this drop is real, it could hint at a 

larger set of preferred conformations. 

4.5.3 Mathematical Modeling 

 To determine if our qualitative models for binding were possible mathematically, 

a probabilistic equation reflecting the models was constructed. This mathematical model 

had a few basic constraints. Firstly, that each subunit could have only two states, an RNA 

binding state (this is a tryptophan bound state), and a tryptophan binding state (the 

subunit in this case would have no tryptophan bound). Secondly, that tryptophan binding 
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to a subunit induces a conformational switch from a tryptophan binding conformation to 

an RNA binding conformation. Said another way, this constraint meant that if tryptophan 

binds to a subunit, it instantaneously changes to the RNA binding conformation (this also 

means that if tryptophan leaves a subunit, it also undergoes a conformational shift back to 

the tryptophan binding conformation). Thirdly, that tryptophan binding to the protein 

could change the affinity of the subunit for RNA, but that RNA binding did not change 

the affinity for tryptophan. Finally, our fourth constraint was that the affinity of a subunit 

for RNA could depend on the conformation of the neighboring subunits (i.e. one subunit 

on either side). We decided to not include in the model conformations that are in the 

RNA binding state, but have no tryptophan bound, to simplify the expression somewhat. 

These constraints meant that there were six different probabilities for a subunit to bind 

RNA (depending on the conformation of the neighboring subunits, see figure 64) and two 

probabilities for tryptophan binding a subunit. 

 

Figure 64: Pictorial representation of the configurations for a site and its nearest neighbors. There 
are two different degenerate arrangements for a site with one neighbor, and so are grouped together. 
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 Since we are limiting our analysis to effects on RNA binding for subunits that are 

directly in contact, for each subunit the RNA binding probability is dependent on the 

conformation of the subunit and its two neighbors (one on each side, as there is a hole in 

the center of the 11mer TRAP holoenzyme; these are the only direct contacts for a 

particular subunit). There are then six different non redundant configurations for a site 

and the neighboring sites. These are: (1) The site is unoccupied (the site is in the 

tryptophan binding conformation) and the neighboring sites are unoccupied (in the 

tryptophan binding conformations); (2) the site is unoccupied and has one neighbor that 

is occupied (and therefore in the RNA binding conformation); (3) The site is unoccupied 

and both neighbors are occupied with tryptophan; (4) The site is occupied (and in the 

RNA binding conformation) and the neighboring sites are not occupied; (5) the site is 

occupied and one neighbor is occupied, and (6) the site is occupied and both neighbors 

are occupied (see figure 64). The two states that have one neighbor could have this 

neighbor positioned on either side, but as these states are degenerate they are considered 

together. The first tryptophan binding probability was dependent on the bulk 

concentration of tryptophan and the second was a parameter to account for tryptophan 

cooperativity (or anti-cooperativity). This second tryptophan probability was used if a 

neighboring subunit of the protein had already had tryptophan bound (i.e. this probability 

could be used to encourage or discourage tryptophan binding next to already bound 

tryptophan, mimicking cooperative binding). This allows separation of cooperativity in 

tryptophan binding from cooperativity in RNA binding. The probabilities for RNA 

binding for the different possibilities for nearest neighbor occupancy were set to be 

relative to the binding probability for the unoccupied site with no occupied neighbors 
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which was arbitrarily set to one. All possible arrangements of the subunits and neighbors 

in the context of the 11 subunit ring (2048 different configurations of subunits) were 

calculated and weighted by probabilities for the different neighbor possibilities using the 

computer program Mathematica67. The probabilities were introduced as changeable 

constants to allow fitting to experimental data. This was used to generate a final binding 

polynomial (or generally, a partition function). The Mathematica code and the final 

binding equation (binding to RNA) are shown in appendix B and an approximate 

pictorial representation is shown in figure 65.  

 

 

Figure 65: Approximate graphical representation of the Mathematica code used to generate the 
binding polynomial 
 

The tryptophan binding probability in this equation shifts the participation of the different 

configurations (of the holoenzyme) from those with few tryptophans bound to those with 

many tryptophans bound. This means that that at higher concentrations it is more likely 

that a configuration with more bound tryptophan is present and is participating in 

binding. From this equation one can calculate a binding curve by plotting the amount 
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bound versus concentration (by using a correction constant for concentration to convert 

from probability to concentration,). The equations parameters were then be fitted to the 

measured data using the computer program IGOR pro 57 (Igor employs the Levenberg-

Marquardt algorithm; this algorithm finds a local minimum for the fitted parameters.). 

While the many parameters in the model allow fitting to infinitely numerous curves, 

parameters can be found that embody the qualitative models (see figures 66 through 70). 
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Figure 66: Statistical model plotted with the measured data from tryptophan titration. The red curve 
is that obtained substituting the statistical model with empirical parameters. The blue curve is the 
measured data fitted to the Hill model for cooperative binding. This model is plotted for qualitative 
comparison only as is not applicable to the TRAP/tryptophan/RNA system. The error bars are twice 
the standard error from resampling analysis (see Appendix A). 
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Figure 67: Statistical model plotted with the measured data from tryptophan titration. The red curve 
is that obtained by substituting empirical parameters into our statistical model. The blue curve is the 
experimental data fitted to the Hill model for cooperative binding. This model is plotted for 
qualitative comparison only as is not applicable to the TRAP/tryptophan/RNA system. The green 
curve is the best fit to the measured data when the fitting algorithm is started with the empirical 
parameters. The error bars are twice the standard error from resampling analysis (see Appendix A). 
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Figure 68: Statistical model plotted with the measured data from tryptophan titration. The blue 
curve is that obtained with experimentally fixed parameters. The red curve is the best fit curve 
generated by empirical parameters. The error bars are twice the standard error from resampling 
analysis (see Appendix A). 
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Figure 69: Statistical model plotted with the measured data from tryptophan titration. The red curve 
is that obtained with experimentally fixed parameters. The blue curve is generated using the 
estimated measured parameters, and fixing the tryptophan cooperativity (pTrpTrp) to an arbitrary 
low value. The green curve is generated using the estimated measured parameters, and fixing the 
tryptophan cooperativity (pTrpTrp) to an arbitrary high value. The error bars are twice the 
standard error from resampling analysis (see Appendix A). 
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Figure 70: Statistical model plotted with the measured data from tryptophan titration. The red curve 
is the best fit obtained with experimentally fixed parameters. The blue curve is generated using the 
estimated measured parameters, and fixing the binding probability for an occupied site with one 
neighbor (site1neighbor1) to an arbitrary high value. The error bars are twice the standard error 
from resampling analysis (see Appendix A). 
 

 These model parameters indicate probabilities (relative to a site that is unbound 

with no bound neighbors) that a site with its nearest neighbors in a defined configuration 

will bind RNA, and so can be easily interpreted in the context of the models. Initially, we 

empirically assigned parameters to give a curve that mirrored the experimental data. 

These empirical parameters show that a process that is cooperative in tryptophan binding 

(the probability for tryptophan binding next to another tryptophan binding is greater than 

one) can mimic our data. The probability for binding to an unoccupied site with one or 

two neighbors is less than that for an unbound site with no neighbors. Also, the 

probability for binding to a site which is in the RNA binding configuration (tryptophan 

bound) with no neighbors bound is less than that for the completely unbound situation. 

This could because we are setting our probabilities relative to a state that can bind RNA 
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(the unoccupied site with no occupied neighbors is in conformational equilibrium with 

the RNA binding conformation, we see this as a basal level of RNA binding). This is in 

line with our model, in that we propose that small amounts of bound tryptophan can 

produce a drop in affinity from that seen with the tryptophan free form of the protein 

(creating more configurations where states exist with neighbors). The numbers of states 

found with only a few bound tryptophans would be heavily weighted towards those 

without neighbors, as each bound tryptophan without neighbors creates two neighbors 

with a bound neighbor. Interestingly, the first probability that is greater than that of the 

completely unbound configuration is that for the occupied state with fully occupied 

neighbor sites. Taken all together, these weights correspond to a preference (in RNA 

binding) for tryptophan bound in groups, as proposed in the group binding model. This 

group binding preference in combination with positive tryptophan cooperativity can 

result in the highly cooperative RNA binding process in the TRAP system.  

 To refine our empirically assigned parameters we imported our binding equation 

to the computer program IGOR pro57 to fit the parameters to our measured data. After 

fitting by IGOR pro57, two of our empirically defined parameters were found to have 

changed. The probability to bind RNA by an occupied site with no neighbors 

(site1neighbor0) increased by more than five times, and that of a bound site with one 

neighbor (site1neighbor1) dropped dramatically. These changes did not however have a 

large effect on the calculated binding curve. A reasonable interpretation for this is that 

with the number of parameters involved in the model, the calculated binding curve is 

only weakly dependent on any of them and that some parameters can substitute for others 

in terms of replicating our experimental data (cross correlation, and covariance, e.g. the 
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parameters do not have independent effects on the shape of the function). An obvious 

example of this effect is that the tryptophan cooperativity parameter and the site neighbor 

parameters are linked. In terms of final RNA binding, a high likelihood for tryptophan to 

bind next to another tryptophan can be offset by a low likelihood for a site with bound 

neighbors to bind RNA or vice versa (this effect can be seen in figures 69 and 70). 

Keeping these caveats in mind, a possible physical rationale for the fitted parameters can 

be attempted. This weighting for the parameters indicates that combination of the RNA 

binding conformation alone (with no neighbors) binding RNA strongly, combined with 

weak binding for an occupied site can also mimic our data. In terms of our models, this 

would correspond with distributed binding, where there is a preference for a staggered 

arrangement of bound tryptophan. The other parameters show disinclination in binding to 

unoccupied sites, consistent with the distributed model. These two parameter sets show 

that both of our proposed models are qualitatively consistent with our mathematical 

model. 

 This model is weak in that there are very many parameters (eight in total). This 

flexibility in parameter space allows many other qualitative models to also be 

interpretable in the framework of our mathematical model. In order to reduce the number 

of flexible parameters, and therefore reduce this flexibility in fitting, we made an attempt 

to assign some of the parameters to measured values for the TRAP/RNA/tryptophan 

system. To make this guess at the real physical values, we employed the work of Li et al 

53c. This was possible as these workers measured Kd values for holo TRAP proteins (the 

11mer assembly) that were composed of mixtures of mutant and wild-type subunits. The 

mutant subunits were selected to be RNA binding incompetent. The final composition of 
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the assembled TRAP holoenzymes was controlled statistically (by the initial 

concentrations of wild-type and mutant subunits mixed together and allowed to form the 

holoenzyme). The authors claim that for some percentages of mixture (low amounts of 

wild-type subunit) that there is high probability that only one subunit in the ring is wild-

type. For increasing percentages of wild-type in the initial mixture the number of subunits 

found increased. Also, these authors were also able to determine a Kd for a holo TRAP 

protein made of their binding incompetent subunits, saturated with tryptophan68. These 

Kd values give us some general reference points for the binding affinity for the unbound 

case with no neighbors (site0neighbor0), that of a site that is bound with no neighbors 

(site1neighbor0), and for a site that is bound with two neighbors (site1neighbor2). 

Substituting these derived parameters into our binding equation and fitting, we can also 

find curves that seem to fit the data (see figures 69-70). For these parameters we can also 

find parameter sets that correspond to both of our proposed models. Also, there are values 

for the parameters that can support anti-cooperative to highly cooperative tryptophan 

binding. This flexibility in parameters demonstrates that even with two of the parameters 

fixed, those remaining are sufficient for a multitude of different models. Setting this 

overabundance of parameters aside, this could be an explanation for the reported 

diversity in tryptophan cooperativity for TRAP proteins from different species. The 

underlying system creating the cooperative effect in binding may not be very sensitive to 

tryptophan cooperativity, and that the other binding parameters can compensate for 

changes. The important parameters may be the relative binding probabilities between the 

postulated states. In both the empirically derived parameters, and the ones guessed from 

measured parameters the binding probability for the unbound states, (excepting the 



95 

 

unbound state with no bound neighbors, site0neighbor0) are generally low. The 

probabilities for states have bound tryptophan are higher than those without. This 

difference in probabilities between bound and unbound states seems to be sufficient to 

reproduce our experimental data (roughly two to twenty times greater). These 

probabilities are consistent with expectations from our qualitative models, but 

unfortunately not sufficient to rule out either of them as possibilities. We can say that a 

mathematical model based on statistical thermodynamics that reflects our qualitative 

models is reasonable. If we can obtain more fixed values for the parameters in the model, 

we may be able to come to solid conclusions about its validity as the currently fixed 

parameters are not sufficient. 
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Figure 72: The minimal binding equation. It consists of an initial bound ratio (f0), a cooperative 
transition to an intermediate bound state (f1), and a cooperative transition to a final fully bound state 
(f2). 
 
 Due to the problems inherent in a complicated model with many parameters we 

also explored a minimal model. This was to simplify the mathematics to the least 

complicated to adequately fit the data. This model consists of three characteristic ratio 

parameters and two cooperative processes. This is a minimal interpretation of our more 

complicated qualitative and statistical models. In short, we assume an initial state for the 

apo-protein that has some propensity to bind RNA (this would correspond to the initial 

random fluctuation of the subunits into a binding conformation). This initial state gives a 

characteristic ratio that corresponds to the initially bound parameter f0. After this initial 

state, as more tryptophan binds, there is an intermediate state, which is an aggregate of 

many microstates that binds less RNA (this would be the states in which some of subunits 

have biased their neighbors to tryptophan binding conformations, away from the RNA 

binding conformation). This corresponds to the second ratio parameter f1. Finally there is 

a highly cooperative transition to the final tryptophan saturated state that corresponds to 

the parameter f2. This model can also adequately fit the data. It gives parameters near to 

those measured by other groups except for that of the initial binding affinity. This may be 

an effect of the surface immobilization. This model shows that even without resort to an 

arguably over parameterized model, our basic qualitative model reflects the data. 

 There are many interesting questions still left open in the TRAP regulatory 

system. Why does the system need regulation at both the translational and transcriptional 

levels? With the presence of regulation at these levels, why is the system also coupled to 
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charged tRNA levels? How does a non cooperative process result in cooperative binding? 

Our models offer an explanatory framework for these processes, as well a suggesting 

some interesting evolutionary themes. The TRAP protein seems to have a basal level of 

binding to the leader element. This may be due to unrestrained transcription and 

translation resulting in too much tryptophan. This low level of repression may not be 

tolerable when the cell is stressed to the point where charged tRNAtrp levels have 

dropped, stopping protein synthesis. The anti-TRAP protein is then needed to completely 

shut down TRAP binding, allowing quick recovery. Regulation of tryptophan system at 

the transcriptional and translational level may be an effect of the stochastic nature of state 

selection. If a particular protein bound to the mRNA, or in the local neighborhood, never 

happens to display the required states, or in the appropriate transcriptional timeframe, a 

backup method is needed; explaining the presence of translational regulation in the same 

protein. Finally, our models suggest that purely statistical and physical considerations can 

result in very cooperative effects. These types of effects have been seen before in large 

ligands binding to one dimensional lattices (e.g. RNA and DNA66) and postulated to 

occur in regulatory protein binding to nucleosomal DNA69. The drop in binding at 

approximately 40 nM tryptophan has three biological effects. One, this results in a 

sharper transition to full binding, giving effectively switch like behaviour when toxic 

levels of tryptophan have the possibility of being produced. Two, this reduction in 

binding would allow rapid tryptophan production in times of cellular plenty, for quick 

growth and division. Three, combined with the higher basal level of binding, allows 

another regulatory regime. This regime would slow production of tryptophan with low 

non optimum cellular conditions, allowing redirection of cellular efforts the synthesis of 
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more common amino acids. As tryptophan is a comparatively infrequently used amino 

acid this would allow near normal function in times of moderate stress. When stressed to 

the point that there are low levels of charged tRNAtrp that interfere with normal protein 

synthesis, the anti-TRAP protein takes over, allowing unrestrained emergency production 

of tryptophan. As with our postulated statistical cooperativity this subtle three response 

system may be useful for other cellular processes and should be looked for. 

4.6 Evolutionary and Nanotechnological Speculation 

 We posit that these types of effects can offer an evolutionary path to true 

allosteric cooperativity while still allowing a functional regulatory system. In an ancestral 

organism, many of the regulatory processes may have been tuned by the number of 

subunits in a regulatory protein, or through physical means the type or number of states in 

the ensemble of bound states (this may tune the affinity or the apparent cooperativity). 

The number of subunits could be increased or decreased by expression level or repetition 

of genes. After this a slower process of mutation of individual residues in the protein 

could slowly create true allosteric changes in the multimeric assembly, and efficiency in 

binding. 

 

Figure 73: Proposed evolution of an allosteric protein. 
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Also if the protein has multiple instances of its gene, this allows segment swapping, 

duplication, and mutation in the whole structure without loosing all function. As the 

allosteric effects become greater, the need for many subunits becomes less, allowing their 

elimination and metabolic savings. This process would give an organism a functional 

regulatory system while the elaborate interdependent interactions required for concerted 

allosteric changes could slowly evolve. Seen in this light, the TRAP protein could be a 

molecular fossil displaying a once much more prevalent binding and regulatory plan. The 

TRAP protein may have been caught in a highly oligimeric state because of the number 

of the number of places in which it conducts a regulatory role. In the case of the TRAP 

protein, these multiple sites would have to mutate in a concerted manner to preserve the 

multiple functions. For others, this may explain the presence of the large number of 

multimeric allosteric proteins, as leftovers from a non-allosteric past with greater 

numbers of subunits. Interestingly, if this hypothesis is correct, this might allow the 

attempt at mutational archeology. It might be possible to mutate current multimeric 

allosteric proteins to preserve much of their regulatory or catalytic function, by increasing 

the number of subunits, and reducing the amount of allosteric cooperativity. There may 

even be a deducible ordered pathway of single mutations, or contiguous chunks of protein 

(swapped during recombination). Non-homologous recombination has been proposed as 

an efficient method of generating folded functional proteins70. When this process is with 

mimicked experimentally with exons to generate proteins, many of the proteins found are 

oligimers, sometimes of high order (stable tetramers have been found70c). This could also 

be seen as leftovers from a less allosteric and more oligimeric past, i.e. the mutation 

process has taken the first backward step by using pieces that have not been selected as 
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strongly for improved function or by eliminating improvements that reduced 

oligomerization. There is also evidence for the first step, that random protein sequences 

have a preference for oligomerization71. When random peptide libraries are constructed 

with a reduced amino acid set (chosen in such a way as to mimic historical conditions) 

the produced, soluble, proteins have a tendency to be multimers71. This retro-mutational 

process could allow stepping backwards to a hypothetical progenitor with only a single 

subunit, and perhaps multiple binding affinities. This type of analysis might also show a 

new way for proteins to be related to one another; there may be families related by this 

process that are not obvious from the sequence or structure. Oligomerization during 

protein mutation has been ignored in many experiments, as this is often seen as 

undesirable and ignored (i.e. the original protein is a monomer, mutations that encourage 

oligomerization are undesirable as they causing too much structural change to be useful 

for the rationale of the study), and so this theme may have been ignored. With modern 

mutational techniques, we suggest this retro-mutation is a feasible project. We 

recommend this sort of effort as a way to peer into the past of life, and illuminate central 

themes of cellular organization, and to see the progress from simple to more complex. It 

may be possible to reverse engineer to ancestral proteins that possess only one unit, 

which then evolved to multimers, then branched to other functions, and became allosteric 

and specific. A summary of the hypothesis from progenitor protein to the current day 

might look something like this: an ancestral protein randomly has some sort of effect on 

catalysis or RNA or DNA expression. It is poorly folded and not very functional. 

Nonspecific aggregation binds two or more of the proteins together, and function 

improves. Evolution selects for improved function and improved association. The initial 
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progenitor protein may start with many functions, or the mutational process may create 

them. The selection for multiple copies is much more rapid than point mutations (through 

recombination). A stable number of subunits are found. Point mutations select for 

improved function. This improvement in function may be seen in allosteric changes or 

improved binding or catalytic pockets. This improvement in function allows appropriate 

function with fewer numbers of subunits. Lack of evolutionary pressure for larger 

numbers of subunits allows the protein to eliminate subunits, eventually giving highly 

allosteric proteins with few identical subunits. This pathway, if correct, would suggest 

metrics for back mutation towards ancestral proteins, i.e. a decrease in allosteric 

cooperativity, an increase in the number of subunits, with general preservation of the 

function in question. We strongly encourage other research groups to start mutationally 

(or perhaps structurally/computationally) digging for molecular artifacts. 

 Aside from the fundamental interest in cooperativity and regulation, these models 

have implications for the design and function of nanostructures. Our model suggests that 

mechanical action (and the tuning of the action to respond to an external stimulus) can be 

performed by assemblies of identical subunits that do not interact with each other in a 

very integrated fashion (e.g. allosteric cooperativity), and that these assemblies could be a 

stepping stone to more efficient function. The amount of mechanical force or the 

magnitude and timing of the response may be able to be tuned by the amount of 

oligomerization, or interactions of a single subunit. This would allow an easier design 

path as the intricate intermeshing and coordination of an allosteric conformational change 

would not have to be created for useful function. Also, our evolutionary speculation 

could offer another path for the design of an optimized nanomachine. A search could be 
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conducted in the exon space (or through random sequence space) of a genome for small 

peptide units that accomplish a desired task. These could then be mutated and selected to 

find more efficient derivatives, and a signal for a productive mutational pathway would 

be the increase in oligomerization. After this oligomerization, the next signal would be a 

decrease in the number of subunits and an increase in function. 

4.7 Conclusions 

 We have developed a single molecule assay for the tryptophan/TRAP/RNA 

system that mimics cellular changes and agrees well with previous work. Several novel 

models are offered to explain the behaviour of the system, with an underlying statistical 

interpretation of cooperative effects tying the models together. The evolutionary 

implications of the models have been explored. A broad suggestion for a different design 

paradigm for nanostructures based on the insights from the TRAP system has been put 

forth. As seen, our experiences with the TRAP system have been quite productive and 

leave open many avenues for others to explore.  
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5. Final Conclusions and Future Experiments 

 These three projects in self assembling nucleic acid design and synthesis have left 

many opportunities for others to build on them. The first project has been much built 

upon by DNA Software Inc. and will be soon released as a full fledged program, RNA-

123, to simulate and predict the 3D structure of nucleic acids. This aims to be a 

transformational technology in terms of a researcher’s ability to make reasonable designs 

and predictions of structure de novo from sequence information, or by leveraging 

homology information from related structures. 

 The second project designing and synthesizing a DNA nanostructure leaves the 

most to be done. Our work indicates that we designed and synthesized structures of the 

correct molecular weight and size. Much more remains to be done in insuring that the 

correct geometry was achieved. Also, as only one designed sequence (and 

correspondingly, structure) was tried the methodology has not been fully vetted in terms 

of general application. We suggest that future researcher use our methods but try many 

more different sequences and employ more effectively molecular imaging techniques. 

This may allow our initial goals to be realized, the easy synthesis of a complicated 

structure, in one pot, with minimal purification. 

 Our last project with the TRAP protein was our most successful and has the most 

potential for fundamental advancement in of the basic principles of nucleic acid design 

and the biophysics of a dynamic nucleic acid regulatory system. This sort of statistical 

cooperative process in binding for regulation of a cellular process that we propose has not 

before been used to explain how a single ligand can act as an antagonist and an agonist at 

different concentrations. If this hypothesis proves correct, it is probably a larger theme in 
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terms of regulation in biological systems, and should be looked for in other organisms 

and regulatory systems. This then can be used as biological inspiration for nanomachine 

design and construction. This also argues for the employment of single molecule 

techniques on a broad basis in biochemistry to uncover more previously unknown 

processes. 

 In terms of the TRAP protein system there are interesting questions that the 

present work does not address. One question is the role of physiological magnesium 

concentrations. We have had an interesting hint of this in our magnesium titration at 4 

mM, in that our resampled standard deviation is much larger than with the other points. 

This could be experimental error, but also might indicate different dynamic processes 

occur at this concentration, and this may change the behaviour of the regulatory system. 

The experiment should be repeated with differing magnesium concentrations to answer 

this question. Our experiments were done with only one type of TRAP protein (from B. 

stearothermophilus), there are many other known TRAP proteins from different Bacilli 

species. We argue that this statistical cooperativity may be a larger theme in binding, so 

can we the same results in related TRAP proteins? We propose the role of the anti-TRAP 

protein is to shut down the baseline down regulation of the trp operon (the basal level of 

binding we detected in the absence of tryptophan). If similar experiments are conducted 

in the presence of the anti-TRAP protein will we see the absence of this basal binding? 

Finally, the 5’ hairpin of the leader element of the trp operon has been postulated to play 

a role in helping the TRAP protein more effectively bind to the RNA, or perhaps 

preloading the protein onto the RNA, before its binding site has been transcribed, in 

preparation for regulation. It would be interesting to try to detect any evidence for this 



105 

 

preloading with a new construct that includes the 5’ hairpin structure. Finally, the TRAP 

protein has been reported have a directional preference in binding (from the 5’ to 3’ end). 

Our construct leaves only the 5’ end free for binding. If we reverse the sense of the RNA 

(immobilizing the 5’ end or reversing the sequence) can we see a difference in binding? 

The TRAP protein has been known for more than 20 years, but there are still these 

important unanswered questions in its function; with single molecule techniques many of 

these can now, be addressed. 

 In sum, we have contributed in a small way to all of the necessary components of 

the design and construction of future self assembling nucleic acid nanomachines. Design, 

with our forcefield development, experience in the attempt to build a nanostructure, and 

finally dynamics, with our TRAP studies which may indicate a new method of regulatory 

interaction. There are still many unanswered questions, but this is the purpose and 

meaning of scientific inquiry. 
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Appendix A: Resampling Error Analysis 

 Resampling is a powerful non-parametric statistical technique72. The fundamental 

insight is to use the data that has been collected to recreate the underlying distribution 

from which the data was derived. This is possible by repetitively resampling the data 

from previous experiments to mimic what would be collected if more experiments had 

been done. If the original data is a fair sample of the parent distribution (e.g. the 

experimental data samples the full range of values in the underlying distribution), reuse 

of it will allow assessment of how well the experiment has defined the distribution, and 

what comprises the real physical distribution. The advantage of this methodology is that 

the resampled error can be found for any function of the data and so analytical 

propagation of error is not necessary, the resampling is done on the final metric of 

interest. Another advantage is that the methodology makes no assumptions about the 

underlying distribution and so performs better in terms of error assessment on 

distributions that are not Gaussian, and as well as parametric statistics on normal 

distributions. The drawback is that typically more data is needed for reliable statistical 

inference as the only information is the data itself (parametric statistics be used on 

smaller data sets by assuming the distribution is Gaussian), and the computational burden 

can be very high. These advantages are useful in single molecule work where the amount 

of data generated is large but the underlying distribution is unknown and propagation of 

error from measured quantities would be difficult or impossible. There are different ways 

of implementing the resampling philosophy; the one chosen for this work is the bootstrap 

method, first introduced by Bradley Efron in 1979 73. To conduct this resampling method, 

one simply makes synthetic data sets from the original data by randomly selecting the 
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same number of data points with replacement from the original data set. If this is done 

many times, and the resulting distribution (i.e. the distribution created from all of the 

resampled data sets) will mirror the underlying real distribution (Efron suggests that 25-

200 replicates are sufficient for most data sets for statistics on the measure of interest72).  

The standard error of the data set is then estimated by the standard deviation of the 

resampled sets. If one wants to construct and use confidence intervals for hypothesis 

testing more sampling is required (usually on the order of 500-1000 samples72). This is 

due to the dependence on the tails of the distribution where there is less sampled data. 

One suggested measure of when to stop resampling is when the standard error is stable 

(the coefficient of variation of the standard error reaches a minimum where more 

sampling makes no improvements).  

 We implemented a resampling algorithm in IGOR pro to resample our measure of 

interest, the ratio of the high fret state in the TRAP/tryptophan/RNA titration. In the case 

of titrations that did not have a ratio, the mean value for the histogram was the measure of 

interest. The resampling was found to be stable in terms of the standard error with 1000 

samples. This was confirmed by comparison of selected points to resampled distributions 

of 10,000 samples. The error bars present in the graphs are plus and minus the standard 

error, centered on the point of interest. 

 

 

 

IGOR pro Code for Resampling Single Molecule Data 

 
Function resample() 
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 String fileName 
 Variable filecount 
 String pathName 
 String listresamplevalues 
 Variable indexm 
 Variable FreqTot 
 Variable i 
 Variable j 
 Variable randomnum 
 Variable numresamples 
 Variable resamplevaluebuffer 
 Wave Freq,load0 
 numresamples=10000 
 Make/D/O/N=(numresamples) resamplevalues 
  
 NewPath/O marcus_path, "G:080610:slide1:resample:" 
 indexm=0 
  do  
   
   fileName = IndexedFile(marcus_path, indexm, ".dat") 
   indexm += 1 
    
  while(strlen(fileName) ) 
 filecount=indexm-1 
 print "there are ",filecount,"files" 
 indexm = 0 
  
 for(j=0;j<numresamples;j+=1) 
  for(i=0;i<filecount;i+=1) 
   randomnum=round(abs(enoise(filecount-1))) 
   // print randomnum 
   fileName = IndexedFile(marcus_path, randomnum, ".dat") 
   // print fileName 
   LoadWave/J/Q/D/N=load/G/K=0/L={0,0,0,1,1}/P=marcus_path 
fileName 
   Freq+=load0 
  
  endfor 
 SetScale/I x -0.1,1.1,"", Freq 
 FreqTot=sum(Freq) 
 Freq/=FreqTot 
 Halfit(Freq,Freq2) 
 resamplevaluebuffer=sum(Freq2, .6,1.1)/(sum(Freq2, -.1,1.1)) 
 // print resamplevaluebuffer 
 resamplevalues[j] = resamplevaluebuffer 
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 endfor  
End 
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Appendix B: Mathematica Code for the Probabilistic Binding Model 

 Calculation of the Trp configuration probabilities and corresponding RNA 

binding "probabilities"(*"probabilities" (= exponentials of minus binding energy divided 

by the temperature) of the RNA binding to a TRAP site depending on the local Trp 

configurations (with respect to a configuration without Trps): no Trps, a Trp on a 

neighboring site, two Trps on two neighboring sites, a Trp on the site, Trps on the site 

and on the neighboring site, Trps on the site and two neighboring sites*) 

 v={1,site0neighbor1,site0neighbor2,site1neighbor0,site1neighbor1,site1neighbor

2};nSites=11;stateProb=Table[1,{2^nSites}];RNABindProb=Table[1,{2^nSites}];pRNA

BindArray=Table[0,{nSites}]; 

 Do[(*trpconfig is the Trp configuration represented as an array (Table) of length 

nSites whose elements are 0 or 1 (no Trp and a Trp on the site, 

respectively)*)trpconfig=IntegerDigits[Trpstate,2,nSites];(**)TrpPairsNr=0; 

 Do[x=0;(*counting the number of Trp pairs on neighboring 

sites*)If[trpconfig[[j]]*trpconfig[[Mod[j,nSites]+1]]==1,TrpPairsNr++]; 

 (*"probability" (equilibrium constant) of RNA binding to the site j in the Trp 

configuration represented by Trpstate or trpconfig*) (*this "probability" depends on the 

presence of Trps on the sites j, j-1, and j+1; Mod[] is necessary because sites 0 and nSites 

are equivalent*) 

 pRNABindArray[[j]]=v[[1+3*trpconfig[[j]]+(trpconfi g[[Mod[j-

2,nSites]+1]]+trpconfig[[Mod[j,nSites]+1]])]],{j,1,nSites}]; 

 (*total "probability" to bind an RNA to the configuration Trpstate "*) 

RNABindProb[[Trpstate+1]]=Product[pRNABindArray[[j]],{j,1,nSites}]; 
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 (*probability of the Trp state if pTrp is probability that a site is occupied by the 

Trp, and pTrpTrp measures Trp-Trp 

cooperativity*)stateProb[[Trpstate+1]]=pTrp^Total[trpconfig]*(1-pTrp)^(nSites-

Total[trpconfig])*pTrpTrp^TrpPairsNr,{Trpstate,0,2^nSites-1}]; 

 Result for the RNA binding probability (stateProb was not normalized!) , a long 

analytical expression  

 result=Simplify[Sum[stateProb[[Trpstate+1]]*RNABindProb[[Trpstate+1]],{Trps

tate,0,2^nSites-1}]]/Simplify[Total[stateProb]] 

 ((1-pTrp)^11+11 (-1+pTrp)^10 pTrp site0neighbor1^2 site1neighbor0-33 (-

1+pTrp)^9 pTrp^2 site0neighbor1^4 site1neighbor0^2-11 (-1+pTrp)^9 pTrp^2 

site0neighbor1^2 site0neighbor2 site1neighbor0^2+22 (-1+pTrp)^8 pTrp^3 

site0neighbor1^6 site1neighbor0^3+44 (-1+pTrp)^8 pTrp^3 site0neighbor1^4 

site0neighbor2 site1neighbor0^3+11 (-1+pTrp)^8 pTrp^3 site0neighbor1^2 

site0neighbor2^2 site1neighbor0^3-11 (-1+pTrp)^7 pTrp^4 site0neighbor1^6 

site0neighbor2 site1neighbor0^4-33 (-1+pTrp)^7 pTrp^4 site0neighbor1^4 

site0neighbor2^2 site1neighbor0^4-11 (-1+pTrp)^7 pTrp^4 site0neighbor1^2 

site0neighbor2^3 site1neighbor0^4+11 (-1+pTrp)^6 pTrp^5 site0neighbor1^2 

site0neighbor2^4 site1neighbor0^5-11 (-1+pTrp)^9 pTrp^2 pTrpTrp site0neighbor1^2 

site1neighbor1^2+55 (-1+pTrp)^8 pTrp^3 pTrpTrp site0neighbor1^4 site1neighbor0 

site1neighbor1^2+22 (-1+pTrp)^8 pTrp^3 pTrpTrp site0neighbor1^2 site0neighbor2 

site1neighbor0 site1neighbor1^2-33 (-1+pTrp)^7 pTrp^4 pTrpTrp site0neighbor1^6 

site1neighbor0^2 site1neighbor1^2-99 (-1+pTrp)^7 pTrp^4 pTrpTrp site0neighbor1^4 

site0neighbor2 site1neighbor0^2 site1neighbor1^2-33 (-1+pTrp)^7 pTrp^4 pTrpTrp 
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site0neighbor1^2 site0neighbor2^2 site1neighbor0^2 site1neighbor1^2+66 (-1+pTrp)^6 

pTrp^5 pTrpTrp site0neighbor1^4 site0neighbor2^2 site1neighbor0^3 

site1neighbor1^2+44 (-1+pTrp)^6 pTrp^5 pTrpTrp site0neighbor1^2 site0neighbor2^3 

site1neighbor0^3 site1neighbor1^2-11 (-1+pTrp)^5 pTrp^6 pTrpTrp site0neighbor2^5 

site1neighbor0^4 site1neighbor1^2-22 (-1+pTrp)^7 pTrp^4 pTrpTrp^2 site0neighbor1^4 

site1neighbor1^4-11 (-1+pTrp)^7 pTrp^4 pTrpTrp^2 site0neighbor1^2 site0neighbor2 

site1neighbor1^4+11 (-1+pTrp)^6 pTrp^5 pTrpTrp^2 site0neighbor1^6 site1neighbor0 

site1neighbor1^4+66 (-1+pTrp)^6 pTrp^5 pTrpTrp^2 site0neighbor1^4 site0neighbor2 

site1neighbor0 site1neighbor1^4+33 (-1+pTrp)^6 pTrp^5 pTrpTrp^2 site0neighbor1^2 

site0neighbor2^2 site1neighbor0 site1neighbor1^4-66 (-1+pTrp)^5 pTrp^6 pTrpTrp^2 

site0neighbor1^2 site0neighbor2^3 site1neighbor0^2 site1neighbor1^4-11 (-1+pTrp)^5 

pTrp^6 pTrpTrp^3 site0neighbor1^4 site0neighbor2 site1neighbor1^6-11 (-1+pTrp)^5 

pTrp^6 pTrpTrp^3 site0neighbor1^2 site0neighbor2^2 site1neighbor1^6+11 (-1+pTrp)^4 

pTrp^7 pTrpTrp^3 site0neighbor2^4 site1neighbor0 site1neighbor1^6+11 (-1+pTrp)^8 

pTrp^3 pTrpTrp^2 site0neighbor1^2 site1neighbor1^2 site1neighbor2-44 (-1+pTrp)^7 

pTrp^4 pTrpTrp^2 site0neighbor1^4 site1neighbor0 site1neighbor1^2 site1neighbor2-22 

(-1+pTrp)^7 pTrp^4 pTrpTrp^2 site0neighbor1^2 site0neighbor2 site1neighbor0 

site1neighbor1^2 site1neighbor2+11 (-1+pTrp)^6 pTrp^5 pTrpTrp^2 site0neighbor1^6 

site1neighbor0^2 site1neighbor1^2 site1neighbor2+66 (-1+pTrp)^6 pTrp^5 pTrpTrp^2 

site0neighbor1^4 site0neighbor2 site1neighbor0^2 site1neighbor1^2 site1neighbor2+33 

(-1+pTrp)^6 pTrp^5 pTrpTrp^2 site0neighbor1^2 site0neighbor2^2 site1neighbor0^2 

site1neighbor1^2 site1neighbor2-44 (-1+pTrp)^5 pTrp^6 pTrpTrp^2 site0neighbor1^2 

site0neighbor2^3 site1neighbor0^3 site1neighbor1^2 site1neighbor2+33 (-1+pTrp)^6 
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pTrp^5 pTrpTrp^3 site0neighbor1^4 site1neighbor1^4 site1neighbor2+22 (-1+pTrp)^6 

pTrp^5 pTrpTrp^3 site0neighbor1^2 site0neighbor2 site1neighbor1^4 site1neighbor2-66 

(-1+pTrp)^5 pTrp^6 pTrpTrp^3 site0neighbor1^4 site0neighbor2 site1neighbor0 

site1neighbor1^4 site1neighbor2-66 (-1+pTrp)^5 pTrp^6 pTrpTrp^3 site0neighbor1^2 

site0neighbor2^2 site1neighbor0 site1neighbor1^4 site1neighbor2+33 (-1+pTrp)^4 

pTrp^7 pTrpTrp^3 site0neighbor2^4 site1neighbor0^2 site1neighbor1^4 

site1neighbor2+33 (-1+pTrp)^4 pTrp^7 pTrpTrp^4 site0neighbor1^2 site0neighbor2^2 

site1neighbor1^6 site1neighbor2-11 (-1+pTrp)^7 pTrp^4 pTrpTrp^3 site0neighbor1^2 

site1neighbor1^2 site1neighbor2^2+33 (-1+pTrp)^6 pTrp^5 pTrpTrp^3 site0neighbor1^4 

site1neighbor0 site1neighbor1^2 site1neighbor2^2+22 (-1+pTrp)^6 pTrp^5 pTrpTrp^3 

site0neighbor1^2 site0neighbor2 site1neighbor0 site1neighbor1^2 site1neighbor2^2-33 (-

1+pTrp)^5 pTrp^6 pTrpTrp^3 site0neighbor1^4 site0neighbor2 site1neighbor0^2 

site1neighbor1^2 site1neighbor2^2-33 (-1+pTrp)^5 pTrp^6 pTrpTrp^3 site0neighbor1^2 

site0neighbor2^2 site1neighbor0^2 site1neighbor1^2 site1neighbor2^2+11 (-1+pTrp)^4 

pTrp^7 pTrpTrp^3 site0neighbor2^4 site1neighbor0^3 site1neighbor1^2 

site1neighbor2^2-33 (-1+pTrp)^5 pTrp^6 pTrpTrp^4 site0neighbor1^4 site1neighbor1^4 

site1neighbor2^2-33 (-1+pTrp)^5 pTrp^6 pTrpTrp^4 site0neighbor1^2 site0neighbor2 

site1neighbor1^4 site1neighbor2^2+99 (-1+pTrp)^4 pTrp^7 pTrpTrp^4 site0neighbor1^2 

site0neighbor2^2 site1neighbor0 site1neighbor1^4 site1neighbor2^2-22 (-1+pTrp)^3 

pTrp^8 pTrpTrp^5 site0neighbor2^3 site1neighbor1^6 site1neighbor2^2+11 (-1+pTrp)^6 

pTrp^5 pTrpTrp^4 site0neighbor1^2 site1neighbor1^2 site1neighbor2^3-22 (-1+pTrp)^5 

pTrp^6 pTrpTrp^4 site0neighbor1^4 site1neighbor0 site1neighbor1^2 site1neighbor2^3-

22 (-1+pTrp)^5 pTrp^6 pTrpTrp^4 site0neighbor1^2 site0neighbor2 site1neighbor0 
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site1neighbor1^2 site1neighbor2^3+33 (-1+pTrp)^4 pTrp^7 pTrpTrp^4 site0neighbor1^2 

site0neighbor2^2 site1neighbor0^2 site1neighbor1^2 site1neighbor2^3+22 (-1+pTrp)^4 

pTrp^7 pTrpTrp^5 site0neighbor1^4 site1neighbor1^4 site1neighbor2^3+44 (-1+pTrp)^4 

pTrp^7 pTrpTrp^5 site0neighbor1^2 site0neighbor2 site1neighbor1^4 site1neighbor2^3-

44 (-1+pTrp)^3 pTrp^8 pTrpTrp^5 site0neighbor2^3 site1neighbor0 site1neighbor1^4 

site1neighbor2^3-11 (-1+pTrp)^5 pTrp^6 pTrpTrp^5 site0neighbor1^2 site1neighbor1^2 

site1neighbor2^4+11 (-1+pTrp)^4 pTrp^7 pTrpTrp^5 site0neighbor1^4 site1neighbor0 

site1neighbor1^2 site1neighbor2^4+22 (-1+pTrp)^4 pTrp^7 pTrpTrp^5 site0neighbor1^2 

site0neighbor2 site1neighbor0 site1neighbor1^2 site1neighbor2^4-11 (-1+pTrp)^3 

pTrp^8 pTrpTrp^5 site0neighbor2^3 site1neighbor0^2 site1neighbor1^2 

site1neighbor2^4-55 (-1+pTrp)^3 pTrp^8 pTrpTrp^6 site0neighbor1^2 site0neighbor2 

site1neighbor1^4 site1neighbor2^4+11 (-1+pTrp)^4 pTrp^7 pTrpTrp^6 site0neighbor1^2 

site1neighbor1^2 site1neighbor2^5-22 (-1+pTrp)^3 pTrp^8 pTrpTrp^6 site0neighbor1^2 

site0neighbor2 site1neighbor0 site1neighbor1^2 site1neighbor2^5+33 (-1+pTrp)^2 

pTrp^9 pTrpTrp^7 site0neighbor2^2 site1neighbor1^4 site1neighbor2^5-11 (-1+pTrp)^3 

pTrp^8 pTrpTrp^7 site0neighbor1^2 site1neighbor1^2 site1neighbor2^6+11 (-1+pTrp)^2 

pTrp^9 pTrpTrp^7 site0neighbor2^2 site1neighbor0 site1neighbor1^2 

site1neighbor2^6+11 (-1+pTrp)^2 pTrp^9 pTrpTrp^8 site0neighbor1^2 site1neighbor1^2 

site1neighbor2^7-11 (-1+pTrp) pTrp^10 pTrpTrp^9 site0neighbor2 site1neighbor1^2 

site1neighbor2^8+pTrp^11 pTrpTrp^11 site1neighbor2^11)/(1+11 pTrp^2 (-

1+pTrpTrp)+11 pTrp^3 (-1+pTrpTrp)^2+11 pTrp^4 (-1+pTrpTrp)^2 (3+pTrpTrp)+11 

pTrp^5 (-1+pTrpTrp)^3 (6+pTrpTrp)+11 pTrp^6 (-1+pTrpTrp)^3 (-1+7 

pTrpTrp+pTrpTrp^2)+11 pTrp^7 (-1+pTrpTrp)^4 (6+8 pTrpTrp+pTrpTrp^2)+11 
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pTrp^10 (-1+pTrpTrp)^5 pTrpTrp (-3+3 pTrpTrp^2+pTrpTrp^3)+11 pTrp^9 (-

1+pTrpTrp)^5 (-2+5 pTrpTrp+6 pTrpTrp^2+pTrpTrp^3)+11 pTrp^8 (-1+pTrpTrp)^4 (-

6+3 pTrpTrp+7 pTrpTrp^2+pTrpTrp^3)+pTrp^11 (-1+pTrpTrp)^6 (-1-6 

pTrpTrp+pTrpTrp^2+10 pTrpTrp^3+6 pTrpTrp^4+pTrpTrp^5)) 
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 Nucleic acids are good candidates for nanomachine construction. They participate 

in all the processes of life, and so can function as structural building blocks and dynamic 

catalysts. However, to use nucleic acids as nanomachines, a better understanding of their 

material properties, how to design structures using them, and their dynamics is needed. 

We have tried to address these issues, in a small way, with nucleic acid force field 

development, an attempt at nanostructural design and synthesis using DNA, and a study 

of the RNA/protein regulatory dynamics of the tryptophan regulatory attenuation protein. 
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