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An Empirical Demonstration of the Need for 
Exact Tests 

Vance W. Berger 
National Cancer Institute 

Rockville, MD 

 

 
The robustness of parametric analyses is rarely questioned or qualified. Robustness, 
generally understood, means the exact and approximate p-values will lie on the same side 
of alpha for any reasonable data set; and 1) any data set would qualify as reasonable and 
2) robustness holds universally, for all alpha levels and approximations. For this to be 

true, the approximation would need to be perfect all of the time. Any discrepancy 
between the approximation and the exact p-value, for any combination of alpha level and 
data set, would constitute a violation. Clearly, this is not true, and when confronted with 
this reality, the “No True Scotsman” fallacy is often invoked with the declaration it must 
have been a pathological data set, as if this would obviate the responsibility to select an 
appropriate research method. Ideally, a method would be selected because it is optimal, 
or at least appropriate, without needing special pleading, but judging by how often 

approximations are used when the exact values they are trying to approximate are readily 
available, current trends do not come close to this ideal. One possible explanation might 
be that there is not much information available on data sets for which the approximations 
fail miserably. Examples are presented in an effort to clarify the need for exact analyses. 
 
Keywords: Chi-square test, normality, permutation tests, robustness, t-test 

 

Introduction 

Approximations are used rather often, in all sorts of contexts. Sometimes this is 

because the exact value is not available, or because it could be made available but 

only at a prohibitive cost. In no case is the approximation ever actually preferred 

to the exact value it is trying to approximate, for if this indeed is the case, then the 

approximation is not an approximation. Rather, it would then be calculated for its 

inherent interest. 

This raises the issue of whether parametric analyses are conducted because 

they are of interest in their own right, or merely as approximations to exact 

https://doi.org/10.22237/jmasm/1493596920
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analyses. Though it is conceivable that in certain limited cases there is interest in 

a parametric analysis, it is clear, when one considers the pre-testing that generally 

occurs to ensure that the conditions are met to ensure the integrity of the 

approximation, that the parametric analyses are, in general, just approximations, 

nothing more. For example, if one were to test the data for normality by any 

method, even an informal one such as appeal to the fact that we have always just 

assumed normality, prior to conducting a t-test, then this undermines the notion 

that the t-test is conducted for inherent interest. There is interest only 

conditionally on the finding that the data are normal enough to merit such interest. 

Along these lines, Bradley (1968) noted that “A corresponding parametric test is 

valid only to the extent that it results in the same statistical decision [as the exact 

test]” (p. 85). 

We must distinguish two cases here. In one case, the choice is to 

approximate or not to approximate; but if one does, then one cannot know how 

well the approximation performed since the exact value cannot be computed. In 

the other case, the exact value is readily available, so here the choice is to use it or 

the approximation. Berger (2000) pointed out the folly, in this case, of ever using 

the approximation. After all, how compelling is a test of normality in allowing for 

the use of an approximation when one can instead simply compare the two values 

to see how close they actually are (as opposed to how close they should tend to be 

on average)? But for that matter, given that one already has the exact value, why 

even consider replacing it with the approximation? 

The lapse in logic that would allow a researcher to use an approximation 

when the very quantity it is trying to approximate is readily available is staggering, 

and yet this exact situation plays out in a huge number of randomized clinical 

trials, Bradley’s aforementioned sage wisdom notwithstanding. The 

randomization itself allows for exact comparisons of the treatment groups by way 

of permutation tests (see, e.g., Fisher, 1935; Rigdon & Hudgens, 2015; Lu, Ding, 

& Dasgupta, 2015), and yet it is the inexact parametric tests that are used far more 

often, generally after going through the motions of justifying this choice by first 

conducting a test of the assumptions that allegedly support the use of the 

parametric test in question. 

The only saving grace would be if it just didn’t matter. Sure, the exact 

analyses are preferable, but given how robust the parametric analyses are, there is 

very little to gain and much to lose in terms of computing time. This argument 

may have been compelling decades ago, when it actually would have been 

difficult to conduct a permutation test, but today this is no longer the case.  It is 

just as easy to do it right as it is to do it wrong. So this leaves us at the other 
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aspect of this argument, it just doesn’t matter (and all the variations of this theme, 

including the assertion that there are more important issues for statisticians to 

concern themselves with, as if the choice of an appropriate analysis is somehow 

beneath the dignity of the very party charged with doing so). Moreover, even if it 

did not matter (at least numerically), that still would not provide a compelling 

argument in favor of a theoretically unsound analysis. 

This much is clear, and should already suffice to eradicate parametric 

analyses from actual clinical trials, at least when comparing treatments. Sadly, it 

has not, and the widespread delinquency of researchers who simply cannot be 

bothered to concern themselves with the relative merits of various analyses is 

matched by a commensurate delinquency on the part of those authorities who 

could impose the need for rigor, yet somehow choose not to. And they do this 

while assuring patients and funding bodies that only the best research methods 

will be used. But at least we can fall back on robustness. 

Everybody knows that parametric analyses are robust, but how many can 

actually provide a precise formulation of what that means, operationally? How 

good is good enough? What does “good enough” even mean in this case?  What 

does convergence as the sample size increases without bound say about the 

discrepancy for this particular data set with its very finite sample size? These are 

uncomfortable questions for those who continue to embrace robustness as a 

justification for using approximations when in fact the exact values should be 

used instead. One theorem that would be useful in supporting this case would be 

along the lines of |p1 – p2| < k/n, where k is some universal constant, n is the 

sample size, and k/n bounds the absolute difference between the two p-values. 

Even if this statement were true, it would still be hard to see how that would 

justify the substitution of the one for the other. After all, enlightened researchers 

recognize that each party may apply his or her own personal alpha level to the 

results of any clinical trial (Berger, 2004). This being the case, how much error is 

acceptable when, with a different choice, we can attain the ideal of no error at all?  

Moreover, is such a bound of the discrepancy even true? The remainder of this 

paper will illustrate that in fact it is not true for any reasonable value of k. We will 

consider the chi-square approximation to Fisher’s exact test, the Smirnov test 

(both exact and approximate), and the t-test in the sections to follow. 

Examples of the Chi-Square Test Failing 

When dealing with a single 2 × 2 contingency table, the two most common tests 

seem to be Fisher’s exact test and the chi-square test. Of course, the chi-square 
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test is used in other situations as well, and sometimes the exact test to which it is 

compared is not Fisher’s exact test, and in some cases this test may not even have 

a name (but is easily defined in terms of a test statistic and a permutation mode of 

inference). Table 1 presents six data sets for which the chi-square p-value differs 

markedly from its exact counterpart. In Example C1, the comparison was the chi-

square test to Fisher’s exact test. Little (1989) pointed out that each expected cell 

count was over five, so the usual rule of thumb would have led one to use the chi-

square test and find significance at the 0.05 level (note that the p-values in the 

table are one-sided, so Fisher’s exact test is not significant). 
 
Table 1. Data sets for which the chi-square test fails badly 

 

N References Data Set* p-values** 

C1. Little (1989) {(170,2);(162,9)} 0.0299, 0.0162 

C2. Zelterman et al. (1995) 
 

0.0424, 0.119 

C3. Cytel Software (1995, p. 11) 
 

0.0013, 0.1342 

C4. Cytel Software (1995, p. 17) {(3,1);(1,3)} 0.243, 0.0786 

C5. Berger and Lachenbruch (1998) {(20,230);(35,225)} 0.063, 0.047 

C6. Hewett et al. (1999); Clancy (2000) {(10,453);(2,364)} NS***, 0.02 
 

Note: Citations abbreviated for space; see Reference section below for full reference 

 * Data set provided only for a single 2 × 2 contingency table 
** Exact p-value first, then chi-square p-value 
*** Actual p-value not reported, nor is the full data set available 

 
 
Table 2. Data from StatXact (Cytel Software, 1995) 

 
0 7 0 0 0 0 0 1 1 

 1 1 1 1 1 1 1 0 0 
 0 8 0 0 0 0 0 0 0 

 
 

Example C2 is from Table 1 of Zelterman, Chan, and Mielke (1995), which 

is hypothetical data in the form of two stratified 2 × 2 contingency tables. These 

were {(1, 0); (3, 9)} and {(0, 0); (9, 5)}. Not only do the p-values differ 

dramatically (the exact p-value is 0.0424 and the approximate chi-square p-value 

is 0.119), but in fact it is the exact one that is lower. This example flies in the face 

of the conventional wisdom that states that permutation tests are always 

conservative so therefore exact p-values are always larger than their approximate 

counterparts. Zelterman et al. (1995) note “The lesson we learn ... is that the 

behavior of test statistics, such as Pearson’s chi-square, may or may not agree 

with their asymptotic approximations. The only certain methods for accurate 

analysis of tables with small counts is to perform exact methods based on the 
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likelihood function” (p. 358) Example C3 is based on a sparse 3 × 9 contingency 

table presented in the StatXact manual (Cytel Software, 1995, p. 11), which is 

reproduced in Table 2. 

Pearson’s chi-square test of an interaction between rows and columns has a 

test statistic value of 22.29 with (3 – 1)(9 – 1) = 16 degrees of freedom, for a p-

value of 0.1342. Using the same test statistic, specifically the chi-square test 

statistic, but using its exact distribution instead of the distributional assumption 

results in an exact p-value of 0.0013. As in Example C2, not only are the p-values 

(and the interpretations one would arrive at) grossly different from each other, but 

in fact it is the exact one that would demonstrate a true treatment effect (assuming 

that rows are treatments), whereas the approximate one would miss it. The 

StatXact manual notes “the need to compute the exact p-value, rather than relying 

on asymptotic results, whenever the data set is small, sparse, unbalanced, or 

heavily tied. The trouble is that it is difficult to identify, a priori, that a given data 

set suffers from these obstacles to asymptotic inference” (Cytel Software, 1995, p. 

11). 

Example C4 is also from the StatXact manual (Cytel Software, 1995, p. 17), 

and is Fisher’s famous original tea-tasting experiment which led to the 

development of Fisher’s exact test. As is well known, the experiment involved 

testing the claim of a British woman that she was able to distinguish between the 

two possible orders, milk first and then tea, or tea first and then milk, being 

poured into a cup. This woman was presented with eight cups of tea, in which 

four were of each order (and she was told this key fact). The order in which the 

cups were given to her was randomized. Of the four cups with milk poured first, 

she guessed right three times. Likewise, of the four cups with tea poured first, she 

guessed right three times. The chi-square test yields a p-value of 0.1573 two-sided 

or 0.0786 one-sided. The Fisher exact p-value is 0.243, which is not even close. 

Example C5 regards data presented at the December 15, 1995 FDA Blood 

Products Advisory Committee meeting. Hospitalization due to a targeted 

respiratory disease was required by 20/250 (8.0%) patients on a biological 

treatment arm and 35/260 (13.5%) patients on the control arm. Pearson’s 

uncorrected chi-square test yielded p = 0.047 two-sided, and significance was 

declared at the prospectively specified 0.05 alpha level (two-sided). But the 

nominal 0.05 alpha level is preserved only if the true probability of a Type-I error 

is no greater than 0.05. A fair question, then, is how likely one would be to obtain 

data at least as significant (p < 0.047), by using this chi-square test, assuming 

nothing more than random allocation of patients to treatment groups. The answer, 

p = 0.063, is provided by Fisher’s exact test, which of course does not attain 
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statistical significance at the 0.05 alpha level. The StatXact manual points out that 

“The term ‘asymptotically’ means ‘given a sufficient sample size’, though it is not 

easy to describe the sample size needed for the chi-square distribution to 

approximate well the exact distribution of the Pearson statistic” (Cytel Software, 

1995, p. 12). 

Example C6 is based on Clancy’s (2000) letter to the editor regarding 

Hewett, Lindenfeld, Riccobene, and Noyes’ (1999) paper, in which the authors 

evaluated the effect of neuromuscular training on the incidence of knee injury in 

female athletes. There were ten injuries among 463 untrained athletes and two 

injuries among 366 trained athletes. The chi-square test was reported to yield 

p = 0.02. Clancy reported a non-significant p-value with Fisher’s exact test, and 

also pointed out that one cell had both an actual and an expected cell count under 

five, so that Fisher’s exact test would be the more reliable of the two, in keeping 

with conventional wisdom. Notably, Hewett, Levy, and Noyes (2000) responded 

to the letter by resorting to appeal to credentials, stating essentially that they used 

an “excellent” statistician, so therefore whatever he came up with must be correct 

by virtue of his coming up with it. A second “unbiased” statistician confirmed this.  

Even in the absence of a reason for suspicion, suspicion must still arise 

when an argument is defended by appeal to credentials. This is, after all, 

tantamount to an admission that there is no better defense for the argument than 

credentials. One has to wonder just how “unbiased” the second statistician truly 

was, and also how many competent statisticians (with the fortitude to refuse to 

sign off on an analysis so poorly planned) were also contacted. Competent 

statisticians know to use Fisher’s exact test when the expected cell counts, or any 

one of them, is less than five; even better statisticians would recognize the 

irrelevance of the expected cell counts and instead use Fisher’s exact test any time 

it differs substantially from the chi-square test. And still better statisticians would 

recognize that they are not in a position to determine how close an approximation 

needs to be in order that it be preferred to the quantity it is trying to approximate, 

so they would simply use Fisher’s exact test routinely. 

Examples of the Approximate Smirnov Test Failing 

When dealing with a single ordered 2 × J table, the best test that is offered as a 

routine option (no programming required) in commercially available software 

packages is the exact Smirnov test, a standard feature of StatXact. See Section 

10.1 of Hollander and Wolfe (1973) and Section 1.6 of Lehmann (1975). Note 

that while it is customary to speak of the Smirnov test as a two-sided approximate 
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test, we use this term to denote the exact one-sided version. Essentially, the only 

difference between the one-sided and the two-sided version is the absence or 

presence, respectively, of absolute values around the directed difference of CDFs 

to be maximized. Whether one-sided or two-sided, the approximate test that bears 

the same name often gives strikingly different p-values from the exact version for 

the same data set, as we will demonstrate in Table 3. Note that the exact Smirnov 

test p-values (but not the approximate ones) for these data sets appeared in Table 

2 of Berger (2002), and some of them seem to contradict what we are presenting 

now in our Table 3. The reason for this is the newfound ability of StatXact to 

compute exact Smirnov p-values immediately for such large data sets, whereas 

only a few years ago only Monte Carlo approximations were feasible. 
 
Table 3. Ordered 2 × J tables for which the approximate Smirnov test fails badly 

 

N References Data Set p-values* 

S1. Fentiman et al. (1983) {(6,8,4,2,3);(3,2,8,0,10)} 0.0138, 0.0296 

S2. Fox et al. (1993) {(1,5,16);(0,0,22)} 0.0106, 0.1947 

S3. Fox et al. (1993) {(12,3,7);(3,7,12)} 0.0108, 0.0252 

S4. Elwood (1998) {(33,5,545);(29,8,836)} 0.0258, 0.6823 

S5. TOAST (1998) {(291,168,176);(270,161,215)} 0.0379, 0.1376 

S6. Clark et al. (1999) {(207,19,80);(181,25,101)} 0.0209, 0.0988 

S7. Clark et al. (1999) {(187,15,104);(169,32,106)} 0.0938, 0.3242 

S8. Shelton et al. (2001) {(83,14,5);(72,12,14)} 0.0766, 0.4147 

S9. Staszewski et al. (2001) {(149,29,104);(144,15,121)} 0.1051, 0.3238 
 

Note: Citations abbreviated for space; see Reference section below for full reference 
 * Exact one-sided Smirnov p-value first, then the approximate one-sided Smirnov p-value 

 
 

Notice that in each case the approximate p-value is much larger than its 

exact counterpart. This refutes the common misunderstanding that exact p-values 

are always overly-conservative and therefore larger than the approximate p-values 

they would (and should) replace. Example S1 comes from a study of talc for 

malignant pleural effusions. There were 46 patients, and 23 were randomized to 

each group: talc and mustine. Some patients were considered to be “not assessable” 

because they died within a month of pleurodesis. Among the other patients (who 

were assessed), success or failure was defined in terms of radiologic criteria of 

effusion control. In addition to this binary success endpoint, patients were also 

classified as being alive or dead at the time the article was written, and as having 

had or not had evidence of recurrent effusion. So all in all we have four binary 

endpoints: 
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1. Died prior to assessment or not; 

2. Dead or alive at the end of the study; 

3. Success or not; 

4. Recurrence or not. 

 

This would appear to give 2 × 2 × 2 × 2 = 16 outcomes, but in fact the first 

two binary endpoints are fusible, because being alive at the end of the study 

necessarily entails also being alive long enough to be assessed. So instead of 

2 × 2 = 4 outcomes for the first two binary endpoints above, we recognize the 

structural zero (one cannot die prior to being assessed and also be alive at the end 

of the study), and remove it to create a trichotomous information preserving 

composite endpoint, or IPCE, (died prior to assessment, assessed but dead at 

study end, alive at study end). See Berger (2002) for more information on the 

construction of the IPCE. We also note that the two binary endpoints success 

(yes/no) and recurrence (yes/no) are fusible, because recurrence is possible only if 

success was achieved in the first place, so we again have a structural zero (one 

cannot recur without having succeeded in the first place). Removing it gives the 

IPCE (no success, success then recurrence, success without recurrence). We have 

gone from 2 × 2 × 2 × 2 = 16 possible outcomes to only 3 × 3 = 9. But in fact 

further savings is possible too, as becomes evident from inspection of Table 4. 

Dying before assessment precludes the possibility of a success, so the two 

lower left cells, labeled “SZ” in Table 4, are structural zeros. We make the 

simplifying assumption that death supersedes recurrence, and so we equate the 

two cells labeled “3" in Table 4. The upper right cell labeled “RZ” was a random 

zero; that is, there could have been patients surviving without success, but as it 

turned out, none did. This leaves only five active outcomes, labeled 1-5 in Table 

4: 

 

1. Died prior to being assessed; 

2. Died after being assessed but without success; 

3. Died after success; 

4. Alive at study end but recurred; 

5. Alive at study end without recurrence. 

 

These outcomes are, of course, in order of increasing clinical benefit, and the data, 

as presented in Table 3, were (6, 8, 4, 2, 3) in the mustine group and 

(3, 2, 8, 0, 10) in the talc group, and the one-sided (to show a benefit of talc in 

shifting to more favorable outcomes) Smirnov p-values were 0.0138 (exact) and 



AN EMPIRICAL DEMONSTRATION OF THE NEED FOR EXACT TESTS 

42 

0.02955 (approximate). If one were to use the two-sided 0.05 alpha level and then 

cut it in half for a 0.025 one-sided alpha level (which seems to be lacking in any 

real basis, yet is still used quite often as a policy), then only the exact Smirnov 

test would show a statistically significant improvement in outcomes associated 

with talc. 
 
 
Table 4. The construction of the IPCE for example S1 

 

  
Died Before 

Assessment 
Assessed, 
then Died 

Alive at 
Study End 

No Success 1 2 RZ 

Success, then Recurrence SZ 3 4 

Success, no Recurrence SZ 3 5 

 
 

Examples S2 and S3 both represent the same patients, with the same 

endpoint, with the same treatments. All that varies is the timing of the 

measurement. Specifically, Example S2 is Day 2 and Example S3 is Days 1-5, 

and both come from a study of combination therapy for nausea (Fox, Einhorn, 

Cox, Powell, & Abdy, 1993). What is so amazing is the complete reversal in the 

direction of the shift. The endpoint we consider is response, which is scored as 

complete, major, or none. Note that this endpoint is the IPCE of two component 

binary response endpoints presented by Fox et al., specifically the response rate 

and the complete response rate. Clearly, the two endpoints are fusible, since a 

complete response implies also a response. 

At Day 2, the data were (1, 5, 16) in the ondansetron group and (0, 0, 22) in 

the combination (ondansetron plus dexamethasone plus chlorpromazine) group. In 

other words, there was absolutely no effect of the combination therapy for the 

response rate (22/22 vs. 21/22), but a fairly strong effect on the complete response 

rate (22/22 vs. 16/22). At the Days 1-5 assessment, the situation was reversed, 

with (12, 3, 7) in the ondansetron group and (3, 7, 12) in the combination group. 

Now there was not much of an effect of the combination therapy for the complete 

response rate (12/22 vs. 7/22), but a fairly strong effect on the overall response 

rate (19/22 vs. 10/22). Either binary endpoint would show significance at the 5% 

alpha level at one time point but not at the other, with one-sided Fisher’s exact 

test p-values of 0.5000 for the Day 2 overall response rate, 0.0106 for the Day 2 

complete response rate, 0.0049 for the Days 1-5 overall response rate, and 0.1116 

for the Days 1-5 complete response rate. The exact Smirnov test yields one-sided 

p-values of 0.0106 (Day 2) and 0.0108 (Days 1-5). The approximate test yields 
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one-sided p-values of 0.1947 and 0.02518. Once again, only the exact Smirnov 

test shows statistical significance at the customary 0.025 one-sided level of 

significance. 

Example S4 is reinfarction data, in which the reinfarction could be 

confirmed or not, or there could be no reinfarction at all. Each patient can be 

scored on an ordered categorical scale with three categories, (confirmed 

reinfarction, reinfarction not confirmed, no reinfarction). Note that once again this 

is the IPCE for two binary endpoints originally presented. The data for the two 

treatment groups (placebo, then sotalol) are presented in Table 3, and the Smirnov 

test was used to compare the groups. As can be seen, the asymptotic version of 

the test was way off, to the point of being almost unbelievable, relative to the 

exact Smirnov test. The exact and approximate one-sided p-values were 0.0258 

and 0.6823. Note that a one-sided p-value is not, in general, half the 

corresponding two-sided p-value, and also that a one-sided p-value can exceed 0.5 

if the trend is in the “wrong” direction. Of course, that is not the case with the 

data at hand, as we tested for the direction of sotalol being superior, and the data 

do trend in this direction. So it is unclear why the asymptotic test would behave 

this way. One must ask if the data themselves might suggest the need for the exact 

version of the test. Berger (2000) reports that “It is unclear how one would 

determine the advisability of the approximate test, but if one were to ‘think 

unconditionally’ then the small middle margin would not be a concern.  The large 

sample sizes (over 500 per group), coupled with expected cell counts that all 

exceed five, would certainly be reassuring” (p. 1322). 

Example S5 concerns danaparoid for acute ischemic stroke. The TOAST 

Investigators (The Publications Committee for the Trial of ORG 10172 in Acute 

Stroke Treatment Investigators [TOAST], 1998) presented two binary endpoints, 

favorable outcomes (yes or no) and very favorable outcomes (yes or no), but 

again these two binary endpoints are clearly fusible, since a very favorable 

outcome implies also a favorable outcome. The IPCE is an ordered categorical 

outcome variable with categories for (unfavorable, favorable, very favorable). The 

TOAST Investigators inexplicably and indefensibly excluded some randomized 

patients from the analysis they called “intent-to-treat”, but of course the correct 

intent-to-treat analysis would include all patients randomized. For now, we note 

that this set of patients can be classified by favorable outcomes at Day 7 as 

(291, 168, 176) in the placebo arm and (270, 161, 215) in the danaparoid group. 

The one-sided Smirnov p-values are 0.0379 (exact) and 0.1376 (approximate). 

Examples S6 and S7 both come from the study of Clark et al. (1999) 

comparing rt-PA to placebo for ischemic stroke. The primary endpoint was a 
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complete recovery, defined as an NIHSS score of 0 or 1, at Day 90. A second 

binary endpoint was clinical improvement, defined as either a complete recovery 

(inexplicably now defined as an NIHSS score of 0, in contrast to the earlier 

definition which included also an NIHSS score of 1) or a change from baseline of 

at least 11 points. If we ignore the inconsistency in how “complete recovery” is 

defined (first as an NIHSS score of 0 or 1, then as just 0), then clearly a complete 

recovery implies a clinical improvement, so the two endpoints are fusible, and we 

really have a single trichotomous endpoint, (no improvement, clinical 

improvement, complete recovery), where “no improvement” is short hand for 

either no improvement or improvement not reaching the threshold for clinical 

improvement. With this endpoint, the data appear to be (we cannot be sure, since 

only proportions, and not actual patient counts, were presented in the original 

report) (207, 19, 80) at Day 30 for the placebo arm and (181, 25, 101) at Day 30 

for the rt-PA arm. The one-sided Smirnov test yields p-values of 0.02094 (exact) 

and 0.09884 (approximate). At Day 90 the data were (187, 15, 104) in the placebo 

group and (169, 32, 106) in the rt-PA group, with corresponding one-sided p-

values of 0.0938 (exact) and 0.3242 (approximate). 

Example S8 comes from a study of St. John’s wort for major depression. 

Shelton et al. (2001) measured depression with two binary endpoints, specifically 

remission and response. Remission is defined as HAM-D ≤ 7 and CGI-I 1 or 2, 

whereas response is defined as HAM-D ≤ 12 and CGI-I 1 or 2. Clearly these two 

endpoints are fusible, because a remission implies a response, so the IPCE would 

be (no response, response without remission, remission), and the data were 

(83, 14, 5) in the placebo group (n = 102) and (72, 12, 14) in the St. John’s wort 

group (n = 98). The Smirnov p-values were 0.0766 (exact) and 0.4147 

(approximate). 

Example S9 comes from a study of combination therapy in adults with HIV. 

Staszewski et al. (2001) presented two binary outcomes, HIV RNA levels of 50 

copies per mL or less and HIV RNA levels of 400 copies per mL or less.  

Obviously, the former implies the latter, so we again have a trichotomous IPCE of 

fusible endpoints, copies (> 400, 50-400, < 50). What was called the intent-to-

treat population was certainly not that, as it excluded 35 of the 562 patients 

randomized. The true data set, as best as it can be reconstructed from the 

incomplete presentation published, is (149, 29, 104) in the abacavir arm and 

(144, 15, 121) in the indinavir arm, each in the presence of lamivudine and 

zidovudine (hence combination therapy). The Smirnov p-values were 0.1051 

(exact) and 0.3238 (approximate). 
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Several recurrent themes emerge from the examples in this section. First, 

and most obvious, notice that the exact Smirnov test always provides a lower p-

value than the approximate Smirnov test does, and notice also that in most cases, 

the approximate one is not even close. It seems reasonable, then, to suggest that 

the approximate Smirnov test never be used in practice, even if other 

approximations are accepted. 

Examples of the t-Test Failing 

The t-test is often used for continuous outcomes when the variance is not known. 

It is somewhat ironic that, while we are up front about not knowing the variance, 

we still wish to cling to this notion that we can somehow know that the data are 

normally distributed, despite Geary (1947) stating clearly that no data are 

normally distributed. Table 5 presents four examples in which the t-test gave 

results that differed markedly from corresponding exact results. 
 
 
 
Table 5. Data sets for which the t-test fails badly 

 

N References p-values* 

T1. Williams et al. (2000); Barber and Thompson (2000) 0.01, 0.79 

T2. Chaudhry et al. (2002); Jacobs (2003) 0.054, 0.004 

T3. Chaudhry et al. (2002); Jacobs (2003) 0.21, 0.016 

T4. Chaudhry et al. (2002); Jacobs (2003) 0.054, 0.006 
 

Note: Citations abbreviated for space; see Reference section below for full reference 

 
 

Example T1 bears some similarity to Example C6, in that one set of authors 

argued that an approximate test should be used after it was already established 

that an exact method was needed. In this case, the context was open access 

follow-up for inflammatory bowel disease, and its effect on costs. One particular 

endpoint was secondary care costs. Williams et al. (2000) correctly pointed out 

that: 

 

“Because data on use of resources tend to be highly skewed, routine 

parametric statistics are not appropriate. We therefore assessed 

significance by the Mann-Whitney U-test.” (p. 545) 
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Using this proper analysis, the between-group p-value for secondary care costs is 

presented in Table 4 of the original article as 0.01, based on a mean cost of 582 

(SD = 808) in the open access arm and 611 (SD = 475) in the routine care arm 

(the units are not provided in the table). Barber and Thompson (2000) argued that 

the means are most relevant, and: 

 

“[T]he most appropriate simple method for comparing mean costs is 

the ordinary t-test. By using the means and standard deviations in each 

group reported by the authors, we have calculated p-values from t-

tests ... one of the authors’ main conclusions – that open access follow-

up used fewer resources in secondary care – is not supported: The p-

value from the t-test is 0.79.” (p. 1730) 

 

Berger (2002) noted that there are two issues here, specifically the choice of 

test statistic (difference of means, difference of mean ranks, difference of Van der 

Waerden normal scores, or something entirely different) and the mode of 

generating a reference distribution. Differences in means can be accompanied by 

differences in shape and/or spread, so the t-test certainly is not always the most 

powerful test, even to detect the difference in means. But aside from this, even if 

we were to decide upon the difference of means as the test statistic, this certainly 

should not imply that we also use an approximation instead of an exact analysis.  

One can easily conduct an exact t-test, using the difference of means as the test 

statistic, and the permutation reference distribution to evaluate statistical 

significance. 

Examples T2-T4 all come from the same study. Specifically, Chaudhry, 

Schroter, Smith, and Morris (2002) used the approximate t-test for five measures 

of readers’ perceptions of papers with and without declarations of competing 

interests. These measures were interest, importance, relevance, validity, and 

believability, and the corresponding p-values for the five measures were 0.004, 

0.016, 0.006, 0.001, and < 0.001. Jacobs (2003) re-analyzed the data with exact 

methods, after pointing out the flaws in using approximate methods for the data at 

hand. Three of the p-values became non-significant, specifically interest 

(p = 0.054), importance (p = 0.21), and relevance (p = 0.054). Of course, 0.054 is 

close to 0.05, so one might be tempted to declare it close enough. This is bad 

policy, and bad statistics, and not to be confused with selecting an alpha level 

other than 0.05. While it is perfectly reasonable to select an alpha level other than 

0.05, maybe even 0.055, this selection needs to be made prior to viewing the data 

(and the p-value). Otherwise, one is left wondering just how broad this fuzzy 
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inclusion region actually is. Would 0.06 have been OK? What about 0.07? Where 

is the line drawn? In other words, what is alpha? And if alpha is not what we said 

it was up front, then we have a problem with the usage of alpha, and we are 

drawing the bull’s eye around where the dart happened to hit. 

Moreover, notice that the p-value for importance went from 0.016 to 0.21 

when the analysis went from approximate to exact. This, as well as some of the 

other examples in Table 1, may well surprise those who consider the choice of an 

exact or an approximate test to be a “fourth decimal problem” that hardly 

warrants the attention of today’s modern statistician. The StatXact manual states 

that “It is wise to never report an asymptotical p-value without first checking its 

accuracy against the corresponding exact or Monte Carlo p-value. One cannot 

easily predict a priori when the asymptotic p-value will be sufficiently accurate” 

(Cytel Software, 1995, p. 21). This is certainly excellent advice, but we can go a 

step further and ask why one would then discard the gold standard, the exact 

permutation p-value, once it is in hand, to use instead an approximation to it? 

Summary and Conclusions 

“Robustness procedures are generally considered to be statistical methods which 

are insensitive to small deviations from the underlying assumptions” (Prescott, 

1998, p. 3864), and often this vagueness regarding how insensitive and how small 

the deviations must be allows for excessive discretion in filling in the blanks. That 

is to say that many researchers operate as if this robustness is absolute, so that 

there is no sensitivity at all no matter the magnitude of the deviation or how it is 

quantified. In point of fact, there seems to be no reliable method for imputing an 

exact p-value based on only the combination of knowledge of the approximate p-

value and appeal to this alleged robustness. The fact that an exact p-value can fall 

anywhere on the unit interval even once we know the value of the approximate p-

value should serve as ample demonstration that any notion of robustness being 

absolute is an illusion. 

There might still be a value in computing approximate p-values anyway, if 

there were some added cost or difficulty involved in computing the exact p-value. 

In some applications this in fact is the case, but certainly not in all, and it is worth 

the effort to determine which case we are in. If an exact p-value can be computed 

relatively easily, with no prohibitive cost, then it is difficult to imagine any valid 

argument for not doing so. This remains the case even if one can put forth a 

compelling argument in favor of presenting an approximate p-value. For example, 

it may be the case that precedent favors the approximate p-value, which has 
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always been computed in the past. We want to see how the present data compare 

to past data sets, and those older ones were summarized, for example, with t-tests, 

and we do not have access to the complete data that would enable us to conduct 

exact analyses of those older data sets. In this case, it seems reasonable to 

compute the t-test on the new data set for the sake of comparing apples to apples 

and oranges to oranges, but this does not preclude the possibility of also 

computing an exact p-value in addition to the approximate one. Under no 

circumstances should we ever pretend to know the exact p-value without actually 

computing it. 
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