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CHAPTER 1 INTRODUCTION OF GRAPHENE 
 

Carbon materials widely exist in nature world. They have numerous allotropes 

and some of them are quite familiar to us. For instance, diamond is built through the sp
3
 

covalent bonds and graphite is known as a form of the sp
2 

bonds. Much smaller allotropes 

were found as a result of the development of nanoscience and nanotechnology. The 1D 

carbon nanotube[1] and 0D fullerenes [2] were discovered and extensively studied for 

their unique physical, electronic and chemical properties. The discovery of these new 

materials extends the variety of the allotropes of the carbon materials and inspires people 

to explore the fundamental of two-dimensional carbon atom network. 

In 2004, Andre Geim and Kostya Novoselov from Manchester University first 

published the strong electric field effect from an isolated atomic thick carbon film, which 

was known as graphene.[3] They proposed a simple mechanical exfoliation method to 

obtain a single layer graphene, which can be produced from raw graphite after breaking 

its interlayer van der waals force. The research of this sp
2
 hybridized carbon material 

rapidly becomes an exciting topic for studying its extraordinary electrical and mechanical 

features. The discovery of the graphene is a breakthrough of the two dimensional 

materials and thus was awarded as the Physics Nobel prize in 2010.[4]  

1.1 Properties of graphene 
  

1.1.1 Electronic property of graphene 

  

A pristine single layer graphene is a 2D crystal built by sp
2
 hybridized carbon 

atoms. It is known as the basic unit of other carbon allotropes as shown in figure 1.1. For 



2 
 
 

 
 

example, graphite can be seen as a stack of graphene layers. Graphene can be rolled to a 

carbon nanotube or wrapped into fullerenes. When graphene was discovered, it exhibits 

unique electronic properties. Intrinsic graphene is a semi-metal or non-band gap 

semiconductor. Its bandgap between the valence band and conduction band is zero. 

Graphene has a ambipolar electric field effect that has not been found in any other metal 

or semi-metal materials [3]. Because the graphene has a 2D honeycomb lattice,   

electrons of the atoms do not interact with each other. These special lattice structure was 

known to form a band structure (figure 1.2) that had been reported by Walace in 1947[5]. 

The valence band and conductance band of the carbon atoms in the single layer graphene 

systems touch at the neutrality point, also called Dirac point. At the region of low energy, 

a linear E-k relation is found close to the Dirac points near the Brillouin zone. The Dirac 

point can be seen as the lowest energy point of the carbon atom in a 2D graphene system. 

It is interesting that although the    state (valence band) and    
 state (conductance band) 

are symmetric about the Dirac point, the electrons are not allowed to spin like traditional 

fermions.[6] Indeed, the spin of electrons in a graphene system has a psudospin 

characteristic where electrons can only hop from one atom to its nearest neighbor 

atoms.[7] In this case, graphene has a Fermi velocity, vF = 1×10
6
 m/s and does not 

affected by the energy or momentum. In an ideal single layer graphene system, the 

effective mass of electron is zero. This unique characteristic brings in many attractive 

electronic properties to the graphene such as quantum Hall effect at room temperature, 

[8] ambipolar electric field effect, [3, 8] extremely high carrier mobility, [9] and near 

ballistic carrier transportation in integrated circuit (IC) device scale range.[10] 
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Figure 1.1 The structure of graphene (top left), graphite (top right), carbon nanotube 

(bottom left), and fullerenes. [11] 

 

Figure 1.2 The band structure of the graphene (Left) Electronic dispersion in the 

honeycomb lattice; (right) zoom in on the energy bands close to one of the Dirac points. 

[10] 

The electronic properties of graphene can also be affected by its defects. The 

defects of graphene can be introduced mainly be three methods: (1) crystal growth, (2) 

high energy irradiation such as electron beam or ion beam, and (3) chemical treatments. 

[12] The chemical vapor deposition (CVD) is a popular method to grow polycrystalline 

graphene. During the CVD process, defect lines are formed around the 2D domains as a 
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result of the coalesces of the grain boundaries of the two different types of crystals in a 

metal substrate.[13] These defect lines will reduce the charge carrier mobility and 

increase the sheet resistance of the graphene. The graphene defects can also be generated 

by using electron beam irradiation.[14, 15] When the electron beam energy is larger than 

18 eV, the carbon atoms in lattice can be ejected out of the graphene or attached to the 

graphene films as adatoms. Specially, the atoms on the edge have lower energy and are 

very easy to migrate. Using advanced TEM system (TEAM 0.5 for example, 1A 

resolution), Zettl et al observed in situ stone-wales defects (carbon rings with 5 or 7 

atoms) formation on a suspended graphene film with 80 KV electron beam irradiation. 

These defects restored to a normal hexagonal ring after the beam was turned off. It is 

noticed that with continuous radiation of electron-beam, the edge carbon atoms were 

gradually ejected from the graphene. Using this method, one may obtain arbitrary defects 

patterns with high resolution (< 5 nm). However, the method is not convenient because of 

the extremely high vacuum and long writing time of electron-beam. Another method is 

using ion beams to generate vacancies on suspended graphene. It is shown that the 

resolution of this method could achieve 10 nm with a focused ion beam.[16] Chemical 

induced graphene defects are normally done by oxidation treatments with acids such as 

nitric acid (HNO3) or sulfuric acid (H2SO4). After the treatment, hydroxyl and carboxyl 

groups will attach on graphene. These chemical groups will act as donors or acceptors, 

and affect electron transfer in graphene. It is also reported that by plasma treatment, the 

hydrogen atoms would attach to graphene surfaces and perturb graphene lattice, which 

leads to the generation of a bandgap in graphene.[17] 
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1.1.2 Mechanical property of graphene 

  

Graphene is known as one of the strongest materials in the world. A suspended 

graphene membrane has a Young‟s modulus of 0.5 TPa, and yield strength of 10
5
 

MPa.[18] Graphene is stiffer and tougher than silicon and other metals such as steel, 

aluminum.[19] Unlike traditional bulk materials, a nonlinear elastic response(

2E D    ) was observed in a suspended single layer graphene membrane which 

corresponds to the existence of both Young‟s modulus E and third-order elastic modulus 

D.[18] The mechanic properties of the 2D graphene membrane can be attributed to its 

strong sp
2
 bond energy toward its in-plane direction. Combined with extraordinary 

electronic and mechanical properties, graphene is suitable for flexible and highly 

conductive electrodes.[20] Also, the suspended graphene films have the potential to 

fabricate super sensitive nano-electromechanical system (NEMS) devices that can be 

used as single molecular sensors, pressure sensors, and RF resonators.[21] 

Frank Niklaus et al [22] from KTH demonstrate the piezoresistive effect in 

graphene using a graphene nano-electromechanical membrane configuration that 

provides direct electrical readout of pressure to strain transduction (figure 1.3). They 

compared the results with conventional pressure sensors and it shows that the graphene 

sensors have orders of magnitude higher sensitivity per unit area. They connected the 

suspended graphene film with the substrates as a gate electrode, and measured the device 

as a new type of GFET based strain gauge, which has a piezoelectric gauge factor under 

three. Xu et al [23] reported a radio-frequency driven graphene mechanical resonator, 

which has a resonant frequency of 34 MHz at 77K. A mechanical exfoliated graphene 

flake was bridged between as-prepared source-drain electrodes. The gate electrode was 
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defined on a trench between the source and drain and formed a capacitor with the 

graphene channel. The signal-to-background ratio was demonstrated over 20 dB. Because 

of the fast response time, graphene RF devices may have potential in the applications of 

filters and oscillators. The mechanical vibration of graphene sheets can also be visualized 

by scanning probe microscopy.[24] P.L. McEuen et al demonstrated that suspended 

graphene sheets could be vibrated by an electrostatic force using a RF driving voltage. 

They also found a nanoscale vibration mode, in which the maximum vibration amplitude 

happened around the free edges rather than the center of the sheet.  

 

Figure 1.3 A scanning electron microscope (SEM) image shows graphene strain gauge 

(black) in sharp contrast to the surrounding silicon dioxide (SiO2) layer (grey).[22] 

 

1.1.3 Optical property of graphene 

  

One of the most interesting properties of graphene is its opacity. It is found that a 

single layer graphene (~0.34nm) film can absorb a portion ( =2.3%) of light in the 

visible light range. Here,   is the fine-structure constant and equals to 0.0073. The 

experimental results also show that the opacity and the layer number N have a linear 

relationship.[25] The absorption spectrum shows a flat feature from 300nm to 2500nm. 

The light reflection ability of graphene can be neglected for R<0.1%. The refractive 
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index of graphene was also reported as n=2.0-1.1i by matching the optical contrast with 

Fresnel‟s equation.[20] All of these optical properties of graphene can be attributed to the 

special conical band gap structure close to the direct point. The graphene itself has no 

luminescence. However, via bandgap engineering by either size reducing (like 

nanoribbons) or chemical and physical doping, luminescence has been observed in 

graphene.[26, 27] The plasmonics of the graphene show unusual behavior that can be 

used as a tunable terahertz material and a far-infrared detector. [28] 

 

Figure 1.4 The optical properties of graphene. [29] 

1.1.4 Electrochemical property 
 

Graphene is known as a promising next-generation material of electrochemical 

sensing.[30-34] Graphene has similar electrochemistry properties with highly oriented 

pyrolytic graphite (HOPG) and carbon nanotube materials.[30] The heterogeneous 

electron transfer in the 2D graphene sheet happens at the edge of graphene rather than the 
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graphene basal plan [32]. This is because the electron transfer-rate constant on the edges 

is ke=0.01cm/s compared to that on the basal planes kb=10
-9

 cm/s.[35] In a defect-free 

graphene sheet, the sensitivity is actually low. The electrochemistry sensing of the 

graphene is also affected by oxygen-containing groups at the edges. Reports show that 

these functional groups will enhance or reduce the sensitivity of the carbon materials.[30] 

Chou et al showed that the electron transfer rate of single-well carbon nanotubes was 

increased by  carboxylic groups.[36] Ji et al showed that oxygenated species would 

decrease the electron transfer rate at the edge of the pyrolytic graphite electrodes. [37] 

The electron transfer rate can also be affected by the adsorption and desorption of 

molecules. Advantages of graphene electrochemical sensing are summarized. First, the 

graphene has excellent electrical conductivity even at a very low doping concentration. 

Second, compared to other materials such as carbon nanotubes, the 2D structure of 

graphene provides a larger surface to volume ratio for sensing.  And finally, the 

electrochemical sensing of carbon nanotubes is influenced by metallic impurities because 

the metal catalysts are typically required in synthesis.[38] Graphene can be fabricated in a 

simple way such as mechanical exfoliation. It is cheap and can also avoid unexpected 

contaminations. The graphene-based electrochemical sensor has shown successful 

detection of cadmium and lead, [39] influenza A H1N1,[35] dopamine,[39] and glucose 

[40] with enhanced functions by nanoparticles or oxidation. 

1.2 Fabrication of graphene 
 

Uniform, high quality and large area graphene films are fundamental for their 

basic researches and applications. The graphene sheet can be obtained by mechanical 



9 
 
 

 
 

exfoliation,[3] epitaxial growth on SiC,[41, 42] CVD growth on Ni and Copper [43, 

44]and chemical reduction of graphite oxide.[45] In our experiment, the first two 

methods are used to produce graphene samples. 

1.2.1 Mechanical exfoliation method   

  

A mechanical-exfoliation method was first introduced by the group from 

Manchester University.[3] This method is the simplest way to obtain high quality 

graphene. By peeling off a piece of graphite using a scotch tape and then folding the tape 

for several times carefully (to break the van der waals forces between the graphene layers 

in graphite), one can get small pieces of graphene on the tapes. To transfer the graphene 

flakes onto substrates such as SiO2/Si, one needs to press the tape gently to stamp the 

graphene onto the substrates. Both graphene and graphite flakes will be attached to the 

substrates during this procedure. Thus it requires a lot of patience and skills. Sometime 

one may get nothing on the substrate or thick graphite (many layers of graphene).  The 

limitations of the mechanical method include low yield and uncontrollable size of the 

graphene flakes. Thus the method is not suitable for mass production of large quantity of 

graphene samples.  

1.2.2 Chemical Vapor Deposition (CVD) method 

  

Graphene made by a CVD method using nickel (Ni) and copper (Cu) as the 

catalyst materials have been reported by several groups.[20, 46, 47] For Ni catalyst, when 

the growth temperature is ramping up to 1000°C, carbon atoms are thermally 

decomposed on the Ni surface and partially dissolved into Ni. The precursors are 

hydrocarbon gases such as methane. Then during the cooling-down process, the carbon 
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atoms precipitate back onto the Ni surface and form graphene or graphite structure. 

Nickel has a relatively high solubility to carbon. The cooling-down rate will affect the 

thickness of graphene, and thus it is hard to achieve single-layer graphene. Ni has a small 

grain size, which makes it unsuitable to obtain large-area and uniform graphene films 

with high carrier mobility and conductivity. Compared to Ni, Cu has almost zero 

solubility to carbon and larger grain sizes.[48] The graphene can form directly on copper 

surfaces and the thickness is not affected by cooling down rate of the precipitation 

process of carbon atoms. There are two main advantages of the CVD graphene. First, the 

method is inexpensive by using methane gas as reaction gases. Second, large area of 

graphene can be grown by using a CVD method. Currently, the quality of the CVD 

graphene is not as good as the one made by mechanical exfoliation method because of 

defects introduced during the fabrication process in CVD growth. After growth of 

graphene, the underneath metal needs to be etched. Chemical groups from water and 

organic solvent may cause the doping in graphene during this process. There is a 

challenge to achieve intrinsic graphene (non-doping) by traditional CVD method. The 

carrier mobility of CVD graphene sheet is normally lower than that of graphene flakes 

produced by mechanical exfoliation.  

1.3 Characterization of graphene 
  

Here we focus on the physical and electrical properties of CVD graphene and its 

applications. Several methods are listed for the characterization of the size, quality and 

2D crystalline structure of graphene. 

1.3.1 Optical microscope 
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Single layer graphene has been recognized as almost optical transparent (97.7% in 

visible light range). Nevertheless, it is possible to observe the graphene sample through 

an optical microscope.[25] [49] According to the Fresnel-law-based model, there is a 

contrast difference between graphene area and substrate as high as 12% on 100 nm~300 

nm thick SiO2  substrate using the monochromatic illumination. The graphene on a SiO2 

substrate shows a violet-to-purple color, depending on the layer numbers of graphene and 

the optical source. 

1.3.2 Atomic force microscope (AFM) 

  

The thickness of a single layer graphene is only 0.34 nm, and its height 

information can be measured by an AFM with an angstrom resolution. By using 

amplitude-modulation AFM with a non-contact mode, the topographies of the graphene 

samples can be characterized. However, it is challenging to identify a single layer 

graphene on the substrates that are not flat.  Before we took AFM images, the samples 

need to be cleaned in high temperature annealing in order to remove residues brought by 

the scotch tapes or PMMA.   

1.3.3 Raman spectroscopy 

  

The Raman spectroscopy is a powerful method to characterize the molecular 

structures of materials. By investigating the vibration or rotation modes related to the 

molecular system, Raman spectroscopy can identify a molecule by its „finger print‟. In a 

typical Raman experiment, the sample molecules are excited by a monochromatic laser.  

Due to the interaction between the photon and the molecule structure, the photon energy 

will change and result in a blue or red frequency shift of the original incident light.  
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 In figure 1.5 of the Raman spectrum of graphene, there are two intense bands, G 

band (~1580 cm
-1

) and 2D band (~2700 cm
-1

).[50] The G band can be attributed to the 

doubly degenerate zone center E2g mode.[51] The 2D band is due to the second order of 

the two-phonon mode. [52] There is also a band known as D band which can be detected 

around 1350 cm
-1

. This band usually refers to the defects of the graphene and cannot be 

found in pristine graphene. The ratio of the intensity of the G band and 2D band can 

differentiate the number of layers of graphene. A more accurate method to acquire the 

topology of a graphene is Raman mapping (figure 1.6). This method can read an area 

Raman intensity of specific band and allow people to know the properties such as the 

area and uniformity of the graphene.  

 

Figure 1.5 Raman spectrum of graphene. 
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Figure 1.6 Raman mapping of the G line position of the few-layer graphene. [53] 

 

1.4 Application of CVD graphene 
 

1.4.1 Sensing with graphene 

  

Unlike silicon, which is already determined before fabrication as p-type or n-type, 

graphene has an ambipolar electrical field effect.[3] The doping of the graphene can 

change from p-type to n-type or n-type to p-type by applying a biased gate voltage. As 

figure 1.7 shows, the positive gate voltage introduces electrons to the graphene whereas 

the negative gate voltage introduces holes to the graphene. Ambipolar field effect has 

been found in some other nanomaterials such as carbon nanotube[54] and silicon 

nanowires.[55] The conductance of the graphene will change dramatically with these 

doping near the Dirac point. It is also interesting to find that near the Dirac point where 
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the carrier density is zero, graphene has a minimum conductance in the order of
24e

h
. The 

phenomenon of minimum conductance is not fully understood yet.[56] Figure 1.8 shows 

a typical sensor based on graphene field effect transistor (GFET). For an intrinsic 

graphene field effect transistor, the conductance increases dramatically as the applied 

back gate voltage changes away from the Dirac point. When a positive gate voltage is 

applied, the majority carriers in graphene channel are electrons. When a negative gate 

voltage is applied, the majority carriers become holes in the graphene channel. If there 

are changes in ion concentration around the graphene channel, the charge carriers of 

opposite polarity will be introduced into the graphene and affect the I-V curve. In 

particular, when there are negative charges in the environment, the holes will be 

introduced into the graphene channel and cause the I-V curve shift to the right. Verse 

vice; if there are any positive charges, the I-V curve will shift to the left. Compared to the 

carbon-nanotube based sensor, the advantages of graphene sensing are larger sensing area 

(with whole surfaces exposed to the chemicals), ballistic carrier transportation, and low 

noise at low charge carrier concentration. Schedin et al reported that the detection of the 

individual gas molecules such as NO2, NH3, H2O, and CO using graphene.[57] They used 

pristine exfoliated graphene flakes to pattern Hall-bar shape with the contacts of the 

source and drain. By exposing the GFET in a gas environment, the conductance of 

graphene changed linearly with the gas molecule concentration. The conductance change 

became n-type or p-type depending on the intrinsic charges of gas molecules. The 

detection limitation was in the order of 1 ppb. 
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Figure 1.7 Ambipolar electric field effects in single-layer graphene.[58] 

 

Figure 1.8 Working principle of a graphene field effect transistor sensor. 
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1.4.2 Transparent, flexible, and conducting electrode 

  

Currently, the price of indium tin oxide (ITO) electrodes is incredibly high due to 

its scarcity in resource. New materials that can replace the ITO electrodes have attracted 

extensive attention in both academe and industry. Since the first graphene sheet was 

reported, many reports show the feasibility of graphene as a transparent electrode 

material that can replace ITO.  In order to meet industrial requirements of transparent 

electrodes, it is important to improve the transparency and sheet resistance of materials. 

Graphene has extraordinary optical transparency in itself. Even for 5 layers graphene 

sheet, the optical transmission rate is still close to 90% according to its linear light 

absorption relation with layer. ITO electrode has an optical transmission rate of 

85%~90%. Resistance per square Ω/□ is another critical parameter for the commercial 

application of transparent electrode, especially in displays and touch screens. For ITO, 

the resistor per square can be reduced to ~100 Ω/□ by heavily tin doping (n-type). An 

idea free standing intrinsic single layer graphene may have larger resistance per square 

~6000 Ω/□ by calculation, which seems not promising compared to ITO.[29] However, 

the experiment results show that single layer graphene made by mechanic exfoliation 

may have much smaller resistance.  Although the CVD graphene has issues such as 

defects and low carrier motilities, its resistance per square can still reach the similar value 

as the ITO as a result of the doping by impurities.[20] Wang et al has developed a 

graphene based solar cell by using  a thermal reduction method to obtain conductive and 

transparent graphene films from exfoliated graphite oxide.[59] Blake et al demonstrated 

first graphene based liquid crystal devices which showed a high contrast ratio.[60] In 

their device, an exfoliated graphene flake was patterned as a hexagonal shape electrode 
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with Cr/Au contact electrode in a parallel structure. When applied a 100V voltage across 

the device, the white light contrast ratio is better than 100. Graphene electrode can also 

be applied to the next generation touch screens.[61] By using a special Roll-to-roll 

method, the CVD growth graphene can be transferred onto a 30-inch size polymer sheet 

for further resistive touch screen. The graphene electrode has many advantages compared 

to conventional electrode materials like ITO. First, the carbon resources used for 

graphene synthesize is abundant. Second, the conductance is high. And lastly, graphene is 

thermally and chemically stable and more transparent. [62] 

 

Figure 1.9 Graphene electrode based applications. (a) LCD devices, (b) Touch 

screen.[63] 

1.5 Scope of this thesis 

This chapter briefly introduces graphene‟s properties, fabrication methods, 

characterization, and applications. The thesis work mainly focused on two projects. First, 

Chapter 2 and Chapter 3 discuss the sensing applications with graphene field effect 

transistor. Chapter 2 reported a high sensitive pH sensor with integrated graphene 

nanoribbons. Chapter 3 proposed a graphene biosensor for detecting E.coli bacteria. We 
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studied the sensitivity variation issues and found a new way to increase the pH response 

of graphene FET by introducing the edge defects to the graphene. The functionalization 

of graphene has also been discussed to help to understand the specific binding between 

biomolecule and graphene.  

The second part of the thesis, Chapter 4 and Chapter 5 reports the microfluidics 

applications of using graphene. Chapter 4 demonstrated the experiment using graphene as 

the transparent and flexible electrodes for electrowetting-on-dielectric (EWOD) 

application. Chapter 5 focused on developing a digital microfluidic system with patterned 

graphene ground electrodes. The dielectric layer on hydrophobic graphene surface was 

studied by impedance test and leakage current test. We observed a large contact angle 

change, and high dielectric breakdown with the graphene. Furthermore, we designed a 

graphene EWOD system for droplet manipulating. These experimental results show that 

graphene has the potential to be used as the electrode material in EWOD application. 
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CHAPTER 2 EDGE EFFECTS ON THE pH RESPONSE OF 

GRAPHENE-NANORIBBON FIELD-EFFECT TRANSISTORS 
 

2.1 Introduction 

Graphene is a single atomic layer of graphite that has extremely high carrier 

mobility and thermal conductivity, [64-66] and is chemically and thermally stable, [67] 

offering the most tantalizing prospect of  high performance carbon-based electronics for 

the post-silicon era. As the electrons/holes in graphene are confined to an atomically 

thick plane, the electrical conductance of graphene is extremely sensitive to its 

surroundings such as substrates,[68] dielectric media[69] and  adsorbed foreign 

molecules,[70] making graphene an ideal sensing material for label-free chemical and 

biological sensors. Schedin et al. demonstrated that micrometer-size gas sensors made 

from graphene were capable of detecting the adsorption and desorption of individual gas 

molecules.[70] Such high sensitivity was attributed to the unique combination of 

graphene‟s two-dimensional (2D) nature (extremely large surface to volume ratio), low 

noise level due to its relatively high conductivity and few crystal defects, and the 

possibility of fabricating graphene devices with ohmic electrical contacts.  

 Graphene has also been studied for pH,[71] chemical and biological sensor 

applications.[72] However, a large variation in pH response has been reported for pH 

sensors based on graphene field-effect-transistors (FETs), ranging from ~ 0 mV/pH to as 

high as 99 mV/pH.[71, 73-77]  Fu et al. has recently shown that pristine graphene is 

insensitive to pH changes in solution and large variation in the pH-induced gate-voltage 

shift could be attributed to the variation of graphene quality.[73] Similarly, defect free 

carbon nanotube (CNT) FETs only respond to the electrostatic potential rather than the 
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pH changes.[78] The insensitivity of graphene and CNT FETs to pH changes could be 

attributed to the lack of free bonds on the sp
2
 bond saturated pristine graphene surface. 

On the other hand, dangling bonds are anticipated on the surface of defective graphene. 

Chemical groups such as hydroxyl groups can easily attach to the defect sites of defective 

graphene through dangling bonds.[79]
,
[44] The attached hydroxyl groups can be 

protonized to OH2
+
 as the pH decreases or deprotonized to O

-
 as the pH increases.  As a 

result, positively charged OH2
+
 and negatively charged O

-
 on the graphene surface 

induces n-type and p-type doping in the graphene channel, respectively. Therefore, in 

order to improve the sensitivity of the graphene pH sensor, it is necessary to increase the 

density of the hydroxyl groups attached to the graphene channel.  

 In contrast to the chemically inert basal plane, the edges of graphene are 

chemically reactive and can be relatively easily functionalized.[80] For example, 

graphene nanoribbons (GNR) can be functionalized by nitrogen species at the edges, 

leading to n-type electronic doping.[81] Moreover, edge doping was shown to be over 

three orders of magnitude more efficient than that induced by adsorbates on the 

surface.[82] Amin et al. have reported significant sensitivity improvement in graphene 

based chemical sensors by cutting the 2D graphene sheets into micro ribbons with sizes 

comparable to the line defects.[83]  Similar to the defects in the graphene basal plane, 

edges are also expected to be receptive to the attachment of hydroxyl groups, which is 

crucial for pH sensing through the protonization and deprotonization processes. 

Furthermore, the edges of graphene are less disruptive to the current flow in the graphene 

channel compared to the defects in the basal plane which can seriously degrade the 

electrical properties of the graphene channel. High mobility values over 3000 cm
2
V

-1
s

-1
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have been observed in low-disorder GNRs as narrow as 20 nm, suggesting that patterning 

graphene into GNRs (or arrays of GNRs) is a viable route to creating free bonds for 

hydroxyl groups to attach to without compromising the excellent electrical characteristics 

of the graphene sensors.[84]        

 In this chapter, we report a systematic study of the effects of defects and edges on 

the pH response of graphene pH sensors by 1) correlating Raman spectroscopy with pH-

induced gate voltage shifts in the transfer characteristics of graphene FETs; and 2) 

patterning 2D graphene sheets into arrays of GNRs to significantly increase the density of 

attached hydroxyl groups. We observe a slightly increased pH response in graphene 

devices with a higher level of disorder as quantified by the D-band to G-band intensity 

ratio in the Raman spectra of the device channel made of chemical vapor deposition 

(CVD) grown graphene. We further demonstrate, for the first time, that the sensitivity of 

graphene pH sensors could be controllably increased by patterning the graphene channel 

into arrays of GNRs with decreasing width, without degrading the electrical properties of 

the graphene channel. As the width of each GNR in a channel is reduced from 40 µm to 

200 nm (or below), the pH response of the devices increases from ~0 to ~25 mV/pH. This 

significant improvement can be attributed to the increased number of hydroxyl groups 

attached to the edges per unit area as the edge to surface area ratio increases with 

decreasing GNR width.  
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2.2 Fabrication process of FET devices made of graphene nanoribbons 

 

Figure 2.1 Fabrication process of FET devices made of graphene nanoribbons. (a) 

transfer of CVD graphene onto SiO2/Si substrates; (b) graphene patterning and contact 

metal deposition; (c) graphene nanoribbon patterning with EBL by using PMMA as the 

e-beam resist; (d) graphene etching by oxygen plasma; (e) GNR array FET after 

removing the PMMA.  
 

Figure 2.1 shows the process flow for the fabrication of graphene FETs. The 

pristine graphene used in this study was grown on copper using a chemical vapor 

deposition (CVD) method.[85, 86] Subsequently, graphene was transferred onto a silicon 

substrate with 300 nm thermal oxide following a method described in the literature.[86] 

Briefly, the CVD graphene was grown on a 25 µm thick copper foil (Alfa Aesar) in a 

mixture of methane and hydrogen at 1000 
o
C.  A layer of 200 nm thick Poly(methyl 

methacrylate) ( PMMA ) was spin-coated and dried at room temperature. After removing 

the graphene on the backside of the copper using oxygen plasma, the copper foil was 

etched away using diluted copper etchant (APS-100) for 24 hours. The PMMA/graphene 
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film was cleaned using a modified RCA cleaning procedure.[86] PMMA/Graphene films 

were transferred onto the silicon substrate by carefully scooping it out from the solution. 

Finally, PMMA was dissolved by acetone and left only graphene on top of the substrate 

as figure 2.1(a) showed. Graphene channels were defined by a standard photolithography 

and oxygen plasma etching. Next, the source/drain electrodes were fabricated by 

depositing 10 nm Ti and 50 nm Au by an electron-beam evaporation system (Temescal 

BJD 1800) as figure 2.1 (b) showed. In order to controllably create edge defects, GNR 

arrays of different widths were further fabricated using electron-beam lithography (EBL) 

as shown in Figure 2.1(c). For EBL, a positive e-beam resist (PMMA) was spin-coated, 

selectively exposed by e-beam and developed. Subsequently, oxygen plasma was used to 

remove the excess graphene to form nanoribbons [figure 2.1(d)]. Finally, PMMA was 

removed by acetone [figure 2.1(e)]. HSQ resist was also used to pattern GNRs. After 

development and oxygen plasma etching to form GNRs, HSQ was removed by buffered 

oxide etch (BOE) to minimize the doping effects.[82, 87] Before testing, the device was 

annealed at 600 ºC with flow of forming gas (H2/Ar) to remove the resist residue.[88]  

     To characterize the pH response of the graphene FET devices, a droplet of pH 

solution was deposited on the device to cover the graphene channel. The transfer 

characteristics of the device were measured by a silver/ silver chloride (Ag/AgCl) 

reference gate electrode. A semiconductor parameter analyzer (Keithley 4200) was used 

to measure the drain-source current as a function of the gate voltage by applying a 

constant low drain-source voltage of 10 mV. The leak current through the gate electrode 

was also monitored to ensure that it was negligibly small compared to the drain-source 

current. All the pH solutions (6 ≤ pH ≤ 8) were prepared using phosphate buffered saline 
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(PBS) as a buffer solution with a phosphate concentration of 2~3 mM. The devices were 

rinsed with an ample amount of de-ionized water to thoroughly wash away the adsorbates 

each time before changing to a different pH solution.  

2.3 Results and discussion 

2.3.1 I-V characteristic before edge patterning with different pH 

 
 

Figure 2.2  (a) An optical image of graphene FET before edge patterning. The scale bar 

is 20 μm; (b) schematic illustration of the working principle of electrolyte-gated graphene 

FET pH sensor; (c) Measured source-drain current density Ids as a function of the top gate 

reference potential Vtop-gate in different pH buffer solution for non-patterned pristine 

graphene FET. (d) the Dirac point shift in response to the different pH. The error bars 

show the standard deviation of the pH sensitivity. 
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Figure 2.2(a) shows an optical microscopic image of a representative FET device 

made of pristine graphene. The graphene was patterned into a dumbbell shape with a 

dimension of 80 µm by 50 µm. The edge length to surface area ratio  n the graphene 

channel, 
L

S
A

 , was estimated to be around 0.04 µm
-1

, where L is the total length of the 

graphene edge and A is the total area of the graphene channel. Figure 2.2(b) 

schematically illustrates the experiment setup for the pH sensing measurement using the 

graphene FET in electrolytes with a leakage free solid-state reference electrode (eDAQ 

ET-072). The electrical double layer at the graphene/electrolyte interface functions as a 

top gate dielectric of FET. The thickness of the double layer is a function of ionic 

concentration and temperature. The Dirac point is determined by the applied gate voltage 

where the electrical conductivity or source-drain current (Ids) is minimum.  As the gate 

voltage is swept from the left side to right side of the Dirac point, the doping in the 

graphene changes from p-type to n-type. When the pH in the electrolyte is increased, the 

Ids vs Vg curve and the Dirac point shift toward the positive voltage direction with the 

increased amount of net p-doping.  By measuring the shift of the Dirac point, the change 

of pH in the electrolyte can be monitored. The sensitivity is defined as the drift of Dirac 

point voltage (mV) divided by pH change. 

 Figure 2.2(c) shows a typical transfer curve of source-drain current Ids as a 

function of the applied electrolyte gate voltage measured at a constant drain-source 

voltage (Vds) of 10 mV, where the drain-source current was normalized to the width of 

the graphene channel. The V shaped Ids-Vg curves indicate nearly symmetrical ambipolar 

behavior. To minimize the hysteretic effect, we took several measurements at each pH to 

make sure that the random drift of the Ids-Vg curves between different measurements at 
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the same pH was negligibly small. The Dirac point of the device in Figure 2.2(c) is 

around 0.22 V at pH 7, suggesting that the graphene channel is p-doped.[81] When the 

gate voltage is swept between 0.07 V to 0.32 V, the minimum and maximum current 

densities are determined to be 0.03 µA/µm and 0.062 µA/µm from pH 6 to 8, 

respectively. The mobility (µ) of the device is derived from the Ids-Vg curve using the 

equation m = (1/C
g
)(ds / dV

g
),[71] where 

gC  is the quantum capacitance of the graphene 

(~20 nFcm
-2

),[89, 90]   is the conductance, and 
gV is the gate voltage. The calculated 

hole and electron mobility are almost the same (1.25×10
3
 cm

2
V

-1
s

-1
). When the 

electrolyte pH increases from 6 to 8, the Dirac point shifts slightly from 0.21 V to 0.223 

V, yielding a low pH response of ~ 6 mV/pH. This finding is in good agreement with the 

pH response values reported by other groups, which indicate that pristine graphene is not 

sensitive to pH changes.[71, 75, 76] The weak pH response of our graphene FETs along 

with their reasonably high mobility demonstrates that our CVD graphene is of high 

quality.[73] For practical pH sensing applications, the measurement results should not be 

affected by any historic ions or charge effects. Thus, we measured the Dirac point shift 

with both increasing pH from 6 to 8 and decreasing pH from 8 to 6. Figure 2.2 (d) shows 

that the pH response is 6 mV/pH as the pH increases from 6 to 8 and 6.5 mV/pH as the 

pH decreases from 8 to 6, indicating that the pH response of our graphene FETs is 

reversible. The reversibility of the graphene FET devices is consistent with the 

protonization and deprotonization of OH
¯
 groups attached to graphene.  
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2.3.2 pH response to the intrinsic defects related to Raman 

 
Figure 2.3  (a) Raman spectrum of the graphene samples with different intrinsic defects; 

(b) pH sensitivity in response to the Raman peak intensities of G (1588 cm
-1

) /D (1344 

cm
-1

). The error bars show the standard deviation of the pH sensitivity. 

 

 Since our graphene was grown by CVD, it is likely to contain a small amount of 

defects in the basal plane. To understand the impact of the defects on pH response, we 

performed a combined study of pH response and Raman spectroscopy on a number of 

graphene FETs.[91]  Figure 2.3(a) shows the Raman spectra of two representative 

graphene FETs. The peak at 1344 cm
-1

(D band) is associated with the lattice disorder of 

graphene while the peak at 1580cm
-1

 (G band) corresponds to the vibration of sp
2
 bond 

carbon atoms. The ratio of the D band to G band intensities can be used to quantify the 

level of defects or disorder in the graphene, where a high D/G ratio corresponds to a 

higher level of defects or disorder. Figure 2.3(b) summarizes the pH response of several 

graphene FET versus the D/G intensity ratio. The pH response increases with the D/G 

ratio (or defect level in the graphene). The higher pH response in more defective devices 

can be attributed to the increased number of active dangling bonds on the defect sites that 

allow adsorption of H3O
+
 or OH

¯
 groups. The sensitivity enhancement can also be 
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affected by the Poole-Frenkel conduction regime where the electrons could hop through 

the defects.[92]  

2.3.3 I-V characteristic after edge patterning with different pH 

 

Figure 2.4  (a) An image of graphene FET after EBL edge patterning; AFM images to 

show graphene nanoribbons (b) The drain-source current density Ids as a function of the 

top gate reference potential Vtop-gate in different pH buffer solutions for FET made of 100 

nm width graphene nanoribbons. (c) The Dirac point shift in response to the different pH. 

The error bars shows the standard deviation of the pH sensitivity. 

    

  Encouraged by this interesting finding, we developed a novel approach to 

improve the pH response of graphene FETs by engineering edge defects. Figure 2.4(a) 

shows the microscopic image of a graphene FET consisting of GNR arrays patterned by 

EBL and oxygen plasma. The graphene channel consisted of four columns of ribbons 

connected by large graphene islands, where each GNR was determined to be 99.1 nm ± 
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1.5 nm wide, 5.5 µm long, and mostly 1~2 layer by atomic force microscope (AFM). 

Before testing, the device was annealed at 600 ºC with flow of forming gas (H2/Ar) to 

remove the resist residue.[88] Figure 2.4(b) shows the transfer curve (Ids-Vg) of a FET 

device consisting of 100 nm wide GNR arrays. Although the total channel width was 

reduced from 50 µm to 2 µm after patterning, the current density Ids remains nearly the 

same. The mobility of GNRs FET also remains essentially the same (1.02×10
3
 cm

2
V

-1
s

-1
) 

compared to the pristine graphene FETs, suggesting that introducing edge defects would 

not degrade the electronic property of the graphene FETs. On the other hand, we 

observed a significant improvement of pH response increasing from ~6.5 mV/pH to 

~23.6 mV/pH by patterning the graphene channel into arrays of narrow GNRs (~100 nm 

wide). The strong enhancement of the pH response can be largely attributed to the 

increase of dangling bonds associated with the increase of total edge length per unit area 

after patterning the graphene channel into GNRs. Similar effects were observed in gas 

detection in atmosphere environment using graphene nanoribbons.[83] We also noticed 

that there was a small systematic shift of the Dirac point toward the negative voltages 

(0.16V) in the GNR FET compared to the pristine graphene FET device before patterning 

(0.21V). This could be attributed to the remaining resist residue from the fabrication 

process.[93] To further verify that the enhancement of the pH response in GNR FETs is 

primarily caused by the creation of more edges rather than by impurities such as resist 

residue, HSQ resist was also used to pattern GNRs. After development and oxygen 

plasma etching to form GNRs, HSQ was removed by buffered oxide etch (BOE) to 

minimize the doping effects.[82, 87] Similar pH response values were observed in GNR 

FETs pattered using HSQ as with PMMA.  Figure 2.4(c) shows the Dirac point position 
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versus pH for the GNR FET device as the pH changes from pH 6 to 8 and then from pH 8 

to 6. The pH response of the patterned GNR device is determined to be 23.6 mV/pH and 

24 mV/pH, respectively.  This result demonstrates that the pH response of GNRs is 

significantly higher than that of large area graphene and the pH response in GNR FETs is 

also reversible as in large area graphene FETs.   

2.3.4 Statistic results of pH response with different ribbon edge to surface ratio 

 

Figure 2.5 (a) A histogram of sensitivity for the FETs with pristine graphene and 

graphene ribbons of various widths, Sensitivity of different devices (mV/pH); (b) average 

pH sensitivity with different edge to surface area ratio.  The error bars show the standard 

deviations.  
 

   Figure 2.5 summarizes the results from over 40 devices divided into three 

categories: pristine graphene, wide GNRs of width 500 nm ~ 1000 nm, and narrow GNR 

of width 100 nm ~ 200 nm. Figure 2.5(a) shows the histogram of the pH response of the 

devices clearly revealing that the pH response increases with reducing GNR width. The 

lowest (~0 mV/pH) and highest (30.6 mV/pH) sensitivity values were found in a pristine 

graphene FET and a 100 nm wide GNR device, respectively. The highest pH response of 

the pristine graphene FET was about 9.6 mV/pH, and the lowest pH response of 100 nm 

graphene ribbon was above 20 mV/pH. The average pH response for pristine graphene, 
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500 nm ~ 1000 nm ribbons, and the 100 nm~200 nm ribbon pattern was determined to be 

4.2 mV/pH, 13.5 mV/pH, and 24.6mV/pH as shown in figure 2.5(b). Obviously, 

increasing edge defect sites by reducing the GNR width efficiently improves the pH 

response.  

   The sensitivity and sensing mechanisms of graphene-based FET are still under 

debate. Ohno[76] reported a sensitivity of 50mV/pH in an electrolyte-gated graphene 

field-effect transistors  (GFET) made of mechanically exfoliated graphene. Cheng[75] 

reported a sensitivity of 25mV/pH of a suspended graphene sensor with improved signal 

to noise ratio by removing underneath SiO2 with HF. Nevertheless, Fu showed that the 

large variation of the pH response may be associated with the quality of the graphene 

samples in terms of how they were prepared.[73] Here, we have shown that engineering 

edge defects significantly improves the pH response of graphene FETs in aqueous 

solutions. Controllable line edge defects can be created by patterning pristine graphene 

into graphene nanoribbons using EBL and oxygen plasma. The nanofabrication process 

does not noticeably degrade the electronic and electrochemical properties of the graphene 

FETs. The number of edge defect sites for pH sensing can be increased by reducing the 

width of GNRs, leading to the enhancement of pH response.  

2.4 Summary 

     In this chapter, we demonstrated that higher pH response of graphene FETs can 

be achieved by introducing edge defects. The edge defects were created by patterning the 

graphene into GNR arrays using electron beam lithography and oxygen plasma. We have 

observed pH response increasing from 4.2 mV/pH to 24.6 mV/pH when the edge length 
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to surface area ratio increases from 0.04 µm
-1

 to 20 µm
-1

. We also demonstrated that the 

pH sensing is reversible for both pristine and patterned graphene FET. 
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CHAPTER 3 GRAPHENE BASED BIOSENSOR FOR BACTERIA 

DETECTION 

3.1 Introduction 

Human pathogenic bacteria, such as E. coli, Salmonella, Listeria, and 

Staphylococcus, are often shed by warm-blooded animals and survive well in the 

environment. They can contaminate urban surface water through human and animal fecal 

waste and storm water runoff, combined with sanitary sewer overflows and wastewater 

treatment plant effluents. These pathogens have been commonly found in surface water 

and can cause serious outcomes. The traditional microbiological methods such as PCR, 

ELISA and DNA hybridization either are labor-intensive or require bulky and expensive 

instrument. Biosensors have great advantages over the traditional methods, including ease 

of operation, short turnaround time, high accuracy, and wide detection capacity. Berry‟s 

group first reported the graphene based biosensor for achieving single bacteria 

detection.[94] However, their results were based on electrostatic adhesion of the bacteria 

due to the non-specific attaching, which was not practical for real sensing application. 

Moreover, their approach lacks the capability of detecting different bacteria species. A 

recent breakthrough shows that the interaction between biomaterials and graphene can be 

employed as a nanosensor platform for monitoring the bacteria growth on tooth 

enamel.[95] Bioselective detection of bacteria at single-cell levels was achieved by using 

the self-assembly antimicrobial peptides on graphene. Particularly, Chen et al. has 

demonstrated that graphene based biosensors can detect E.coli bacteria. [96] In their 

experiment, (1-pyrenebutanoic acid succinimidyl ester) bio-linker molecule was used to 

functionalize with CVD graphene and anti-E.coli O& K antibody was used for specific 
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binding with E.coli bacteria.  The results showed that high sensitivity can be achieved by 

electrically detection with a limit of detection (LOD) of 10 cfu/mL. 

In this chapter, we demonstrated the highly selective detection of E.coli bacteria 

based on phage tail spike proteins (TSPs) functionalized graphene biosensor. TSPs are 

the phage proteins that attach to the specific binding sites on the surface of bacteria and 

determine the specificity of the bacterial host. Each TSP has two terminal domains, the 

C-terminal domain binding to the cellular LPS receptor and the N-terminal domain that 

can be immobilized to the substrate through EDC/NHS method.[97] Attaching only the 

TSPs to the substrates will allow a greater concentration of the proteins that interact 

directly with bacteria. The anchoring of TSPs to the substrates allows the correct 

orientation of TSPs on the substrate. This also means exposing the C-terminal domain of 

the TSPs to bind directly to the bacterial surface, and therefore, increase the binding 

efficiency of ligand-receptor as well as the smoothness of surface to facilitate 

characterization. The immobilization of P22 TSPs on silicon substrate has been studied 

and being used for selective bacterial detection.[98] However, the graphene based 

bacteria sensor through TSPs binding has not been reported yet. The electrical 

conductance measurement and optical microscope results showed that E.coli bacteria can 

be attached to the E.coli TSPs through specific binding.  

3.2 Methods 

3.2.1 Preparation of CVD 

We used chemical vapor deposition (CVD) method to grow the pristine graphene. 

Typically, a 25 µm thick copper foil (Alfa Aesar) was loaded into a vacuum furnace and 

annealed at 1000°C with 3sccm Hydrogen gas first. The graphene deposition was carried 
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out by adding a mixture gas of methane and hydrogen. The flow rate ratio is 1:10 to 

1:11.5 (H2:CH4). When the temperature is above 700 °C, methane will thermal 

decompose into carbon and hydrogen on top of the copper surface. Due to the low 

solubility of carbon atoms in copper, a thin layer of graphene will form eventually.  

3.2.2 Device Fabrication 

 

Figure 3.1 Process flow of device fabrication. (a) CVD graphene growth on copper foil, 

(b) oxygen plasma etching to remove the backside graphene with a pin-coated PMMA on 

the top side, (c) wet etching to remove the copper, (d) transfer PMMA/graphene to silicon 

substrate with thermal oxide, (e) remove PMMA, (f) graphene patterning and contact 

electrode deposition with e-beam evaporation. 
 

Figure 3.1 shows the device fabrication process, which was similar to the strategy 

that we have been used for making the pH sensor device. [99] Briefly, the graphene was 

transferred onto a silicon substrate with 300 nm thermal oxide by using the chemical wet 

etching method. During the process, a 200 nm thick Poly(methyl methacrylate) (PMMA) 

was spin-coated on the top  side of the graphene. We then etched the backside graphene 
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using 100 W oxygen plasma (30 sccm, 30 s). The copper foil was fully etched by using 

diluted copper etchant (APS-100). To remove the metal and other polymer contamination 

on the graphene, a modified RCA clean was used here to clean the graphene before 

transferred to the substrate. After rinse with deionized (DI) water the cleaned 

PMMA/graphene sheets were scoped out of the solution and gently attached to the 

substrates. We waited for 30 min to let the PMMA/graphene sheets dry in room 

temperature, and then removed the PMMA by using acetone. The patterning of graphene 

was done by photolithography and oxygen plasma etching; the graphene channel was 

designed as rectangular shape with a size about 80 µm × 50 µm. Finally, a layer of Ti/Au 

(5 nm /50 nm) was deposited as the contact electrodes as drain and source. The device 

can be tuned with both back gate (silicon) and top gate (reference electrode).  

  

Figure 3.2 Graphene bacteria sensor device structure and testing setup. (a) Optical image 

of the whole graphene FET device for bacteria sensor, (b) test setup for sensor device, (c) 
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(d) zoom-in microscope images of the device structure, (e) Raman spectrum of the CVD 

graphene.   
 

Figure 3.2(a) shows the macroscopic image of the graphene biosensor device. 

There are eight transistors in parallel and the detail structure is shown in figure 3.2 (c) 

and 3.2(d). Each graphene channel is measured 80 µm by 50 µm. Raman spectroscopy 

measurement reveals that most of the area is single layer graphene as shown in figure 3.2 

(e). The sensing of the bacteria was conducted by measuring the change of the electrical 

conductance (I-V curve shift) after each binding step. Here we used the experience of pH 

sensing with graphene FET pH in Chapter 2 for setup the bacteria sensing platform. 

Figure 3.2 (d) shows the configuration of the sensing measurement with bacteria in 

solution. Briefly, the charge carrier on the cell wall of the bacteria will affect the local 

dipole and surface potential of the graphene.[100] Similarly to the pH sensing, when the 

negatively charged bacteria is attached to the graphene surface, a larger Dirac point will 

be expected due to the increased amount of hole doping to the graphene channel. On the 

other hand, if the bacteria are positively charged, the Dirac point will shift to the left, 

which indicates the contributing of electrons to the graphene. In our experiment, an 

Ag/AgCl reference electrode was used to avoid the potential change due to the 

electrochemical reaction. We measured the I-V curve between the drain and source of the 

graphene channel by sweeping the top gate voltage after we changed each sample.  

3.2.3 Zeta Potential measurement 

Zeta potential measurement was performed by using phase analysis light 

scattering with a Zetasizer Nano ZEN3600. The E.Coli bacteria and E.Coli TSP were 

diluted with tap water and the zeta potential was measured in Malvern capillary plastic 
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cells (DTS 1061). The scattering detection angle is 173 and the zeta potential value was 

calculated from the Smoluchowski equation using Malvern software. 

3.2.4 Immobilization of E.Coli TSPs on graphene surface 

 

Figure 3.3 Chemical reaction mechanism of graphene surface functionalization (a) 

oxygen plasma to introduce the surface oxygen and hydroxyl group, (b) ATPES reaction 

to introduce the amine group, (c) glutaraldehyde (GA) to introduce the carboxyl group, 

(d) E.coli TSPs immobilization with the carboxyl groups, (e) 1% BSA was applied after 

step d for blocking the unconjugated sites, (f) E.coli bacteria specific binding with E.coli 

TSPs. 
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The protocol of graphene functionalization was adopted from the method used for 

TSPs binding on silicon. We used the modified method for the graphene surface 

functionalization with E.coli TSPs. We first treat the graphene with 1~2s oxygen plasma 

to introduce more oxygen and hydroxyl groups at the defect sites. Then, the graphene was 

immersed in a 2% solution of APTES in ethanol (95%) with pH 5. After 15 min, we 

rinsed the graphene with ethanol and DI water and blew dry with nitrogen gas. The 

device was baked at 100 ° C for 5 min to cure the silane monolayer. After that, the device 

was rinsed again with ethanol and DI water. To active the amine group of the APTES, the 

graphene device was incubated in 2% glutaraldehyde for 30 min at room temperature. 

During this step, the amine group will form C=N group with the carboxyl group of the 

Glutaraldehyde. Also the other terminal of the glutaraldehyde can be used for the 

bioconjugation with TSP through its N-terminal. Here we used 180 µg/ml~400µg/ml 

E.coli TSPs to functionalize the graphene through bioconjugation. After the TSPs 

immobilization, 1% BSA was used to block the nonspecific binding.  

3.2.5 Device Testing 

 To measure the binding of the bacteria with the graphene biosensor, a droplet of 

fresh E.coli bacteria with a concentration of 1×10
9
~1×10

10 
cfu/ml was deposited to cover 

the graphene sensing channel to let the bacteria bind to the TSPs. After half an hour, we 

washed off the non-binding bacteria by rinsing the device with Tap water. The electrical 

conductance of the device in response to the bacteria binding was measured by an 

Ag/AgCl reference gate electrode. We used a semiconductor characterization system 

(Keithley 4200) to measure the I-V curve through the drain and source. All the curves 

were measured in tap water liquid environment.  
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3.3 Results and discussion 

3.3.1 Zeta Potential 

We characterized the electric properties of the E.coli bacteria by using the zeta 

potential, which is the electrical potential between the aqueous solution and the stationary 

layer of the surrounding liquid attached to the bacteria. Zeta potential of each material 

(BSA, TSP and bacteria) were measured in tap water at 25 °C. We have diluted original 

sample into 10 times and 100 times within tap water. It was found that the E.coli bacteria 

shows a Zeta potential around 0.328 mV to 0.517 mV in Tap water, which indicated that 

the surface charge of the bacteria in the tap water environment is positive. However, 

other research [101],[102],[103] show that zeta potential of the bacteria are mostly 

negative. This is because of the zeta potential is associated with the pH and also the ion 

concentration of the media. 

Sample Name Zeta Potential (mV) Mobility (cm
2
/Vs) Conductivity (mS/cm) 

E.coli bacteria 0.328 ~ 0.517 0.0257~ 0.0406 1.67~ 0.401 

BSA -13.1~ -15.8 -1.03 ~ -1.24 0.324~1.02 

E.coli phage -12.2~ -17.3 -0.954~ -1.354 0.396~1.69 

E.coli TSP -2.88 ~ -15.8 -0.226 ~ -1.236 0.158 ~6.71 

Table 3.1 Zeta potential of E.coli bacteria, E.coli phage, BSA, and E.coli TSP in tap 

water. 

3.3.2 Electrical testing 

We studied the specific detection of the E.coli bacteria with E.coli TSPs. We first 

applied 1% Bovine serum albumin (BSA) to quench the unreacted E.coli TSPs 

immobilized on the graphene. After that, a different type of bacteria, salmonella bacteria, 

which will not form specific binding with the E.coli TSPs was cultured with the graphene 
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sample.  Figure 3.4 (a) showed the transfer characteristics of the graphene biosensors 

after each binding steps. The initial Dirac point (the gate voltage that has the minimum 

drain current value) after immobilized with E.coli TSP was only 0.038 V, indicated a low 

level of defects of the graphene. The Dirac point had almost no shift after the BSA 

blocking. This denoted that the BSA blocking had very limited effects on TSPs 

immobilized graphene surface and would cause very small change to the electrical 

property of graphene in our case. However, other researches show that the BSA 

functionalized graphene can cause the resistance increase due to the adsorbed non-

conductive molecules inhibited the graphene contact and prevented the electron transfer 

across the graphene film.[104] Here, the reason of small change of the Dirac point and 

conductance (resistance) may be due to the high level of uniform E.coli TSPs films that 

formed on the graphene surface and the Stericycle effect which will prohibit the 

attachment of the BSA to the unreactive binding site.  The 5×10
10

 cfu/mL salmonella 

bacteria did not cause a significant shift of the Dirac point. This is attributed to the fact 

that the salmonella bacteria are not able to bind with the E.coli TSPs functionalized on 

the graphene. In addition, the non-specific binding of the salmonella bacteria was 

prevented by the BSA blocking. In figure 3.4 (b), the microscope image of the graphene 

biosensor after salmonella bacteria binding showed that there is no specific binding of the 

salmonella bacteria to the E.coli TSPs.   
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Figure 3.4 (a) I-V curve after salmonella bacteria, show no binding of bacteria, (b) 

optical microscope image of the device after salmonella bacteria binding. 

In sharp contrast, the E.coli bacteria binding led to a significant shift of the Dirac 

point (20 mV) of the graphene FET. The left shift is in agreed with the zeta potential 

measurement of the E.coli bacteria we obtained. The positively charged bacteria 

increased the electron density in graphene. The mobility of the graphene FET can be 

derived by m = (1/C
g
)(ds / dV

g
)  [71], where 

gC  is the quantum capacitance of the 

graphene (~20 nFcm
-2

),[90, 105]   is the conductance, and 
gV is the gate voltage. The 

calculated hole and electron mobility are almost the same (1.1×10
3
 ~1.2×10

3
 cm

2
V

-1
s

-1
). 

The numbers of the E.coli bacteria binding to the graphene was counted as 33±2 in an 

area of 80µm by 50 µm.  
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Figure 3.5 (a) I-V curve after E.coli bacteria, show Dirac point shifted around 20 mV to 

the left; (b) optical microscope image of the device after E.coli bacteria binding showed 

there are about 33±2 bacteria counts. 

A comprehensive specific binding experiment with different type of bacteria 

towards the E.coli TSPs was conducted. Potentially, after binding with E.coli bacteria, 

the graphene FET was unable to bind any other type of bacteria because of the specific 

bind. Here the transfer characteristics in figure 3.6(a) showed that after E.coli bacteria 

binding, there was no obvious shift of the Dirac point towards the left.  

 

Figure 3.6 (a) I-V curve after E.coli and salmonella bacteria binding, showed no obvious 

shift after salmonella bacteria binding; (b) optical microscope image of the device after 

salmonella bacteria binding showed there are about 27±2 bacteria counts. 
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3.3.3 Sensitivity  

 

Figure 3.7 Dirac point shift in response to the bacteria numbers bind to the graphene 

FET. 7 devices were counted for obtaining the statistic information. Linear fitting showed 

that the sensitivity was 1.24 mV/E.coli bacteria. 
 

We summarized the sensitivity of the graphene bacteria sensors related to the 

numbers of the E.coli bacteria that specifically bound to the E.coli TSPs. The observed 

results showed that with a higher population (~50) of bacteria bound to the graphene, the 

shift of the Dirac point could be as high as 35 mV, which gave sensitivity at 1.24 mV/ 

bacteria. 

 

3.4 Summary 

 In this chapter, a label-free graphene bacteria sensor was developed to detect the 

specific binding to E.coli bacteria. CVD graphene was patterned as transducer sensing 

arrays by utilizing the photolithography and oxygen plasma etching. We developed a 

method to functionalize the graphene surface with E.coli TSPs, which can directly bind to 
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the E. coli bacteria with high selectivity. The electrical conductivity properties for each 

functionalization step and bacteria binding were studied by the graphene FET system 

using a reference electrode as the top gate electrode. The linear sensitivity (1.24 

mV/bacteria) was derived by analyzing the Dirac Point shift in response to the numbers 

of the bacteria binding to the graphene from7 devices.       
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CHAPTER 4 ELECTROWETTING ON DIELECTRIC (EWOD) 

USING GRAPHENE ELECTRODE 
 

4.1 Introduction of electrowetting  

Electrowetting on dielectric (EWOD) is the control of contact angles (wetting) of 

droplets by applying an electrical voltage between the droplet and the counter electrode 

coated with a hydrophobic dielectric layer.[106] The contact angle in response to the 

voltage change is described by the Lippmann-Young equation 
2

0cos cos
2

CV
 


  (1), 

where   is the contact angle of the liquid droplet with the applied voltage, 0  is the 

initial contact angle,   is the surface tension of the liquid-vapor interface, C is the 

capacitance of the dielectric layer per area, and V is the applied voltage.[107] In EWOD, 

the capacitance per unit area is determined by 0

t

 
, where   and t are the relative 

dielectric constant and thickness of dielectric materials, respectively, and 0  is the 

permittivity of free space. Because of the presence of an insulating dielectric layer, a 

large voltage can be applied between the conductive droplet and the electrode without 

electrolysis. The advantages of EWOD include (1) reversible and robust control of 

contact angles, (2) more applicable liquids that can be manipulated because of the 

hydrophobic surface coating of dielectric layers (typically fluoropolymer).  Therefore, 

EWOD has been applied in various applications, including digital microfluidics, [47, 

108-113] optics,[114-117]  display,[118-121]
 
 and analysis of biological samples.[122-

124]  
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  Most of the current EWOD devices are based on planar substrates. The electrode 

materials commonly used in EWOD include metals (gold, platinum, copper, etc), 

semiconductors (silicon, carbon nanotube),[125] and ceramics (ITO). Table 4.1 

summarizes the properties of selected materials.  ITO (310nm thick) has a 85% optical 

transparency in the visible light range.[126] However, it is brittle and lacks flexibility. 

Gold offers more flexibility, but is rather expensive and optically opaque. None of these 

electrode materials can achieve both high optical transparency and mechanical flexibility. 

On the other hand, graphene is a novel nanomaterial with excellent material properties 

such as high conductivity, optical transparency, and mechanical flexibility. Graphene thin 

film can achieve better optical transmission (>90%) than ITO with a similar resistance 

Rs=20Ω/□.[29] It is also promising to fabricate low cost graphene electrode by chemical 

vapor deposition (CVD).[127-129] However, to the best of our knowledge, there has 

been no report on the application of graphene in EWOD. 

 In this chapter, superior EWOD performances can be achieved by depositing 

graphene on flexible transparent plastic substrates. The graphene-based EWOD devices 

were measured by applying both AC and DC driving voltages. The electrochemical 

properties of Teflon coated graphene were characterized using electrochemical 

impedance spectroscopy (EIS). Compared to gold electrode, Teflon layer on graphene 

electrode exhibits less electrolysis and less leakage current under the same applied 

voltages.  
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 Gold ITO Graphene 

Optical transmission (%) <20 

(180nm)[130] 

85 

(310nm)[125] 

97.7 (<1nm)[131] 

Youngs‟ modulus (GPa) 80[132] 116[133] 500[19] 

Yield strength (MPa) 55~200[134] 1200[135] 1.3×10
5
[18] 

Electrical conductivity (S/cm) 4.52×10
5
[136] 1×10

4
[137] 9.6×10

5
[3] 

Table 4.1 Properties of different electrode materials. The optical transmission uses 

550nm wavelength as reference. 

4.2 Materials and methods 

The graphene sheets used in this study were grown using a CVD method [138]. 

CH4 gas was used as the carbon source, and was thermally decomposed on copper at high 

temperature. A clean copper foil (Alfa Aesar) was first annealed for 2 hours while 

flowing a H2 gas at a rate of 3 sccm and a pressure around 40 mTorr at 1000 °C. To grow 

graphene, a mixture of 30 sccm CH4 and 2 sccm H2 gases was flown into the chamber for 

30 minutes at 1000 °C. The pressure was controlled around 500 mTorr.  After growth, 

graphene sheets were transferred onto different substrates following the procedures 

reported by Colombo et al.[138] Briefly, a thin layer of PMMA 495 (MicroChem, 

Newton MA) was spin-coated (3000 rpm) on the graphene side of the copper foil and 

dried at room temperature for 1 hour.  Subsequently, the copper foil was etched in a 1 M 

ferric chloride (FeCl3) with the PMMA side facing up. The floating PMMA/graphene 

sheets were then carefully scooped out of FeCl3 solution using a piece of silicon substrate 

and rinsed in DI water. To obtain a smooth graphene surface, the silicon substrate was 

kept close to the floating PMMA/graphene sheet until the whole sheet naturally attached 

to the substrates before it was removed from the beaker. The graphene/PMMA sheet was 



49 
 
 

 
 

dried overnight at room temperature.  The PMMA layer was then removed by acetone, 

and the graphene sheet was rinsed several times in isopropyl alcohol (IPA).  In this 

experiment, the transparent and flexible polyester film (PET) was used to demonstrate 

EWOD on a transparent, curved and three-dimensional substrate. Considering that the 

glass transient temperature of PET films was less than 200 °C, high temperature 

annealing was not applied for the device fabrication. However, it has been often used in 

literature to remove the PMMA residue on graphene with other substrates.[139]  

For external electrical contact, 5 nm Cr/ 50 nm Au was deposited using electron 

beam evaporation through a shadow mask made of stainless steel.  A Teflon dielectric 

layer (DuPont AF 1600 1%~6% diluted in 3M FC 72) was spin coated on top of graphene 

at 3000 rpm and baked at 165 °C for 2 hours. The thickness of Teflon was measured by 

both an ellipsometry and a surface profiler (Dektak, Bruker). The Raman spectroscopy of 

the CVD graphene deposited on various of substrates was measured by a Raman system 

consisting of a  Jobin–Yvon Horiba Triax 550 spectrometer, a liquid-nitrogen cooled 

charge-coupled device (CCD) detector, Olympus model BX41 microscope with a 

100×objective, and a 514.5 nm Modu-Laser (Stellar-Pro-L) Argon-ion laser. The Raman-

scattered light from the sample was collected by the same microscope objective and was 

focused on the entrance slit of the spectrometer with a 1200 line/mm diffraction grating. 

The data was recorded and analyzed using the LabSpec software.  

The contact angle measurement was performed on a home-built optical system 

consisting of a Navitar 12X zoom lens, a white light semi-flexible fiber optical source 

and a USB CCD camera (iSolution). The samples were placed on a three-axis stage while 

a Labview module was used to control a function generator (Agilent 33120A) and an AC 
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power amplifier. The CCD camera was also programmed using the Labview software to 

record movies with a maximum frame rate of 60 fps. The system is capable of generating 

AC voltages from 0 V~140 V with a frequency between 10 Hz and 10 KHz.  For EWOD, 

KCl solution (10 mM, 100 mM) was used.  

The AC impedance measurement was carried out using a PARSTAT 2273 

advanced electrochemical system (Princeton Applied Research). A schematic illustration 

of the device structure is shown in figure 4.1, where a thin graphene sheet was deposited 

on top of a PET substrate and was coated with a thin Teflon layer. The working electrode 

of the potentiostat was connected to the tungsten probe (W1000-1605R, Rucker & Kolls) 

inserted in a droplet deposited on the dielectric surface, while the counter and reference 

electrodes were connected to the graphene electrode. The amplitude of the AC voltage 

was 0.1 mV. The frequency was swept from 0.1 Hz to 100 kHz. All the measurements 

were performed under ambient atmosphere conditions at room temperature inside a 

Faraday cage (in order to minimize electromagnetic noises). Nyquist plots were recorded 

with the x and y axes as the real part and imaginary part of the device impedance, 

respectively.[130] The leakage currents were measured by a digital multimeter (Agilent 

34401A). Additional 1 µm Parylene C dielectric layer was deposited by a Parylene 

deposition system (Labcoter 2 SCS PDS2010, Specialty Coating Systems, Indianapolis, 

IN, USA). 
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4.3 Results and discussion 

4.3.1 Graphene flexible EWOD device structure 

 
Figure 4.1 A schematic view of EWOD on a flexible and optically transparent graphene 

electrode. 

Figure 4.2a and 4.2b show pictures of two types of graphene based EWOD 

devices. Figure4.2a shows a graphene sheet after being transferred onto a PET film with 

Cr/Au contact pads. Figure 4.2b shows a graphene EWOD device on a glass slide for 

droplet manipulations. The graphene was defined using photolithography and oxygen 

plasma. The low optical contrast of graphene on the transparent glass is attributed to the 

lack of interference between glass and graphene as well as the high transmission rate of 

graphene. Figure 4.2c shows a Raman spectra of the graphene in figure 4.2a, where a 

relative intensity ratio of 
2

0.4G

D

I

I
 between G band (~1590 cm

-1
) and 2D band (~2670 

cm
-1

) along with the shape of the 2D peak indicates that our graphene sample was a 

single layer.[140] The absence of D band (~1350 cm
-1

) indicates low disorder and high 

quality of our graphene.[141] The average thickness of a 6% Teflon spin-coated (3000 
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rpm) device was measured to be 1.2 µm ± 0.2 µm, using ellipsometry. The surface profile 

of spin-coated Teflon by Dektak shows a 15%~20% thickness variations within the 

scanning range of 3 mm. 

 
Figure 4.2 (a) and (b) Two types of EWOD devices with graphene electrodes and Cr/Au 

contact pads; (c) Raman Spectra of CVD graphene.  

4.3.2 EWOD performance    

Figure 4.3 shows the response of aqueous electrolyte droplets (KCl, 3 µL, 10 

mM) to AC voltages (1 kHz) from 0 V to 100 V. The voltage was applied between the 

Teflon coated graphene electrode and the droplet. By using a droplet analysis tool of the 

ImageJ software, the initial contact angle of the KCl droplet placed on a 1 µm Teflon 

dielectric layer (6% in FC72) was determined to be 109.5°±1° at 0 V. This value was 

very similar to the literature.[108] The contact angle of the droplet decreased to 70.2°±1° 

as the voltage increased to 90 V without any electrolysis as shown in Figure 4.3a. The 

voltage dependence on the contact angle can be well described by the equation (1) as 

shown in Figure 4.3b (the solid line is the theoretical fit). The unit capacitance extracted 

from the fit (6.08×10
-11

 F) is in good agreement with that calculated using the double-
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plate capacitance model (5.8×10
-11

 F, assuming  =72.7 dyn/cm,[142]  =2.1, and the 

thickness of the Teflon layer t=0.96 μm).   The variation of contact angles was probably 

due to the rough surfaces of Teflon coatings. As the voltage increased beyond 90 V, no 

further decrease of the contact angle was observed. This can be attributed to the 

instability of the applied electrical field where the high density of charge carrier is 

injected into the insulator, a phenomenon known as contact angle saturation.[107, 143, 

144] In the experiment, the dielectric Teflon layer was still stable on graphene even at 

140 V and the initial value of the contact angle of the droplet at 0 V was instantaneously 

restored when the applied voltage was turned off, suggesting high durability and 

reversibility of the Teflon on the graphene structure. Contact angle changes with DC 

voltage were also observed here. It is found that the contact angle change range varies 

depending on the thickness of the Teflon dielectric layer. 

 
Figure 4.3 (a) Captured images of contact angle changes of a KCl droplet on a graphene 

electrode coated with 1 μm Teflon (6% in FC72); (b) Contact angle changes of a KCl 

droplet (10 mM) as a function of applied AC voltage (0 V~100 V, 1 kHz) on a 1μm 

Teflon (6% in FC72) coated graphene. The solid line is the fitting result by using 

Lippmann-Young equation. The fitting parameters are: 0 =109.45°, surface tension 

=72.7 dyn/cm, relative dielectric constant for Teflon layer  =2.1, the thickness of the 

Teflon layer t =0.96μm and 0 =8.85×10
-12

 F/m. 
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The reversibility of electrowetting on graphene was tested with two different 

Teflon (1% and 3%) thicknesses using a Labview controlled power amplifier. Figure 4.4 

shows the cyclability of the contact angles of a droplet on the thicker Teflon layer (3% in 

FC 72; 550 nm~750 nm) coated on graphene when an AC voltage (1 kHz) was switched 

between 15.3 and 46.9 V. The result shows that the contact angles changed reversibly 

between 112° and 92° for more than 50 cycles. On the thinner Teflon layer (1% in FC 72, 

less than 100 nm), the AC voltage (1 kHz) applied to a 3 µL KCl droplet was switched 

between 15 V and 36 V every second. The result shows the reversible electrowetting with 

the contact angles switched between 115° (at 15 V) and  95° (at 36 V). We speculate that 

the excellent cyclability of the reversible electrowetting demonstrated by Teflon coated 

graphene electrodes could be attributed to the higher chemical and mechanical stability of 

graphene compared to other commonly used electrode materials. It was also found that 

the reversible electrowetting was reproducible using both AC and DC voltages. 

 
Figure 4.4 Reversibility tests of contact angles of a droplet (10 mM KCl) in air with AC 

voltage switched between 15.3 V and 46.9 V. This result shows a reversible contact angle 

changes for 50 cycles with a 550nm~750nm thick Teflon layer. 
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4.3.3 Electrochemistry modeling of graphene EWOD system 

 

 
Figure 4.5 (a) An equivalent circuit model of EWOD electrode and the Teflon dielectric 

layer (b) Impedance measurements and simulations on Teflon coated graphene with 100 

mM KCl solution.  (blue square) 6% Teflon with graphene electrode; (red  triangles) 6% 

Teflon with gold electrode; (c) 6% Teflon coated on gold electrode at 80V; (d) 6% Teflon 

on graphene electrode at 80V. There were bubbles from the Teflon coated gold electrodes 

(c) compared to no bubbles in Teflon coated graphene electrodes (d).  

To further study the Teflon dielectric properties with different electrodes, we 

tested the AC impedance of graphene and gold electrodes using the same Teflon coating 

condition (6% in FC72). Electrochemical impedance measurement is a common 

technique to understand an electrochemical system. Critical parameters can be extracted 

by this method, including the capacitance and leaking resistance of Teflon, the double 

layer capacitor between electrolytes and solid, and electrolyte resistance. A simplified 

circuit model for the device is shown in figure 4.5a, where RS is the electrolyte resistance, 

RT and CT are the resistance and the capacitance of the Teflon layer, and CPE is the 

constant phase element associated with the double layer of the electrolyte/Teflon 
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interface. Based on the Nyquist plots from Figure 4.5b, the circuit could be cataloged by 

two different regions depending on the frequency of the AC voltages. At high frequency 

(100 kHz to 100 Hz), CPE is negligible, and RS in series with RT //CT dominate the 

impedance. The depressed semi-circles (Zimg 0~1 MΩ and Zre 0-1.2 MΩ) next to the 

origin of the plot represent high frequency responses. By fitting impedance data to this 

model, as shown in table 4.2, we found that RS is approximately 2000 Ω and RT is about 

1.08×10
6 

 Ω to 1.15×10
6 

 Ω. The capacitances of the Teflon layer CT on graphene and 

gold electrodes are 3.8×10
-11

 F and 4.58×10
-11

 F respectively. These values are consistent 

with the theoretical capacitance 0 A
C

t

 
  assuming a Teflon thickness of 1 µm ± 0.2 

µm and droplet size of 3 µL (from 5.8×10
-11

 F to 4.14×10
-11

 F). At low frequencies 

(f<100 Hz), the circuit is dominated by the double layer capacitor of solid/electrolytes. 

The double layer capacitor is not an ideal capacitor because of presence of pin-holes and 

rough surfaces of electrodes. The circuit response is represented by a straight line 

connected to the depressed semi-circle. The straight line is modeled by a constant phase 

element (CPE). A CPE comprises a distribution of ohmic and capacitive elements which 

lead to non-uniform, frequency-dependent resistance and capacitance.[145] By fitting the 

impedance data, we estimated the slope                 =0.91 and             =0.66. 

The slope   gave the nature of the impedance properties. For capacitive impedance,   is 

close to 1, for resistive impedance,   is close to 0. The double layer capacitor of 

Teflon/gold is more electrically leaky compared to that of Teflon/graphene. For the same 

voltage range (0 V to 100 V), the contact angle changes on the Teflon coated graphene 

electrode (~40°) were found to be larger than that on Teflon coated gold electrode (~30°) 

under otherwise identical conditions, suggesting that the Teflon on graphene is slightly 
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thinner than the Teflon on gold. The higher capacitive impedance for the Teflon/graphene 

electrode system in comparison with the Teflon/gold electrode system can be mainly 

attributed to the lower density of pores and defects in the Teflon on graphene electrode 

than in the Teflon on gold electrode.[146]      

4.3.4 Leakage current and dielectric breakdown 

 
Figure 4.6 Leakage current across the EWOD device with different dielectric layers and 

electrodes. (a) a 3% Teflon layer with gold and graphene electrodes; (b) a 6% Teflon 

layer with gold and graphene electrodes; (c) Parylene C as a pinhole-free dielectric layer 

with a 3% Teflon hydrophobic layer; (d) EWOD device with two-layers stacking 

(Parylene C/3% Teflon dielectric layers) and graphene electrodes. (The thickness of the 

Parylene C is around 1µm.) 

 

We measured the leakage current and the breakdown voltage of dielectric layers 

of different thicknesses and configuration. The breakdown voltage is defined as the 

minimum voltage which results in an irreversible EWOD.[147] Figure 4.6(a) showed 
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leakage current measurements of thin Teflon coatings (3%, 0.55-0.75µm) on gold and 

graphene electrodes. The leakage current jumped significantly from 50µA to 110 µA 

with applied voltage from 40V to 50V for gold electrode. Electrolysis was observed 

around 60V. When we used a thicker Teflon layer (6%, 1µm) as shown in Figure 4.6(b), 

the leakage currents reduced while breakdown voltage slightly increased. Nevertheless, at 

high voltage (>80V), leakage current dramatically increased for gold electrodes which 

was not the case for graphene electrodes. Severe electrolysis was observed on gold 

electrode when the voltage further increased. With graphene electrodes underneath, the 

leakage current was less than 200µA and the breakdown voltage was larger than 100V in 

both cases (3% and 6% Teflon). Considering pin-hole surfaces and low dielectric 

constant of the Teflon layer, we also tested the leakage current of two-layers stacking 

which comprised a Parylene C layer coated with a hydrophobic Teflon layer. Parylene C 

has a higher dielectric constant (3.1 at 1000Hz), and is considered pinhole free with 

thickness higher than few nanometers.[148] Figure 4.6 (c) showed that the leakage 

current could be reduced for both electrode with Parylene C sandwiched between 

electrodes and Teflon. However, when the applied voltage was larger than 90 V, the 

dielectric layer began to breakdown on the gold electrodes rather than on graphene 

electrodes. By testing the EWOD of Parylene C/ Teflon stacking layers on graphene, it 

was found that the breakdown voltage with graphene electrodes could be larger than 

140V without any electrolysis happening. Thus, graphene electrodes allowed Teflon 

coating to possess a higher breakdown voltage compared to gold electrodes. In addition, 

and the leakage current in the Teflon/graphene devices was also much smaller than that in 
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the Teflon/gold electrode devices. This is likely due to the fact that carbon atoms have a 

wide potential window in the electrode/electrolyte interface. 

  

 
Figure 4.7 EWOD on curved PET films with a gold electrode (a, b) and a graphene 

electrodes (c, d) coated with Teflon dielectric layers. (a) A gold electrode on a PET film 

with a 6% Teflon layer with the applied voltage 0V; (b) A gold electrode on a PET film 

with a 6% Teflon layer with the applied voltage 60V; (c) A graphene electrode on a PET 

film with a 6% Teflon layer with the applied voltage 0V; (d) A graphene electrode on a 

PET film with a 6% Teflon layer with the applied voltage 60V. As the voltage increased, 

the contact angles on both electrodes decreased. Compared to the gold electrode, the 

graphene electrode was more stable.  There were no bubbles (electrolysis) at a high 

voltage on Teflon-coated graphene. The voltage was AC sinusoidal wave with frequency 

1kHz.  
 

Based on our experiments with graphene electrodes and gold electrodes, the 

Teflon coatings are expected to be more stable on graphene than on gold for EWOD. 

Unlike gold, whose surfaces are hydrophilic, the surfaces of graphene are hydrophobic. 
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The interactions between hydrophobic graphene and hydrophobic Teflon may allow 

Teflon to self-assemble better and provide better adhesion during the coating process. 

This is further verified in our observation that, under AC 70 V, electrolysis was less 

likely to occur at Teflon/graphene electrodes than at Teflon/gold electrodes (as indicated 

by gas bubble generation around the Teflon/gold electrodes, figure 4.5c and figure 4.5d).  

 RS (Ω) RT (Ω) CT (F) CPE     

Teflon/Graphene 2000 1.15×10
6
 3.8×10

-11
 7.2×10

-9
 0.91 

Teflon/Gold 2000 1.08×10
6
 4.58×10

-11
 5.6×10

-9
 0.66 

Table 4.2 Parameters for fitting the Nyquist impedance plot with different electrode 

materials. 

Reversible contact angle can also be observed in curved substrates using graphene. 

Figure 4.7 shows electrowetting performed on gold electrodes (4.7a and 4.7b) and 

graphene electrodes (4.7c and 4.7d) deposited on PET films.  The KCl droplet (5 µL 10 

mM) with colored food dye was carefully placed on the curved PET film surface. With 

thickness 50nm, a gold electrode became optically non-transparent, and it blocked the 

light to transmit through a PET film. In addition, bubbles occurred with the applied 

voltage 60V due to water hydrolysis. While the breakdown voltage of a dielectric layer 

(Teflon) could be increased by its thickness, thick Teflon required higher driving voltage 

for EWOD. In contrast, a graphene electrode is optically transparent. Reversible EWOD 

on graphene has been observed by applying both DC and AC (10 Hz~1 kHz) voltages.  
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4.4 Summary 

In summary, we demonstrate that the transparent graphene electrode exhibits 

superior performance in electrowetting on dielectric (EWOD) compared to other 

commonly-used electrodes such as gold, including higher breakdown voltage, optical 

transparency, flexibility, and electrical conductivity as well as lower cost. This study 

provides a new approach to using graphene as a promising transparent conducting 

electrode material for future EWOD applications. We envision that the improved EWOD 

properties using graphene as an electrode material will open the door to various 

applications, including flexible displays and droplet manipulation in three-dimensional 

microfluidics. 
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CHAPTER5 DIGITAL MICROFLUIDICS USING GRAPHENE 

EWOD  

5.1 Introduction 

Digital microfluidics is a lab-on-a-chip system that based on EWOD technology. 

It can be used for processing discrete unit-sized packet of fluid with operations such as 

transport, sort, mix, and react. Digital microfluidics technique has application potential in 

both biomedical and chemical field. Since we have showed the feasibility of graphene in 

EWOD system (chapter 4), we would like to know if it is possible to develop graphene-

EWOD based microfluidics system for the moving the droplet in micro channels that can 

be used for detection and analysis of multiplex biological sample in liquid. Most of the 

digital EWOD devices use metal or ITO electrode materials for applying the electrical 

field to manipulate the droplet in a hydrophobic channel. Graphene is flexible and 

electrically conductive, which makes it an ideal electrode material for making the EWOD 

device on both planer and curved surface.  

To design the digital microfluidics device by using graphene, we need to separate 

a droplet from its source (reservoir) and transport the droplet by the electrical field force. 

S. K.Cho et al developed a model and calculated the critical point of the design 

parameters to allow moving a droplet. [108] In this model, the static pressure drop inside 

a droplet should be equal and the droplet starts to separate when the    shows negative. 

In equation,    and    are the curvature of droplet in the front end and middle point,   is 

the gap between the top layer electrodes and bottom layer electrodes.  
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Figure 5.1 Droplets separation in EWOD. 

  

  
    

  

 
 
     

 

   
 

To achieve the split of the droplet, the requirements include: (1) necking in the 

middle of the droplet (Negative R1) (2) large contact angle change (large V) (3) small gap 

(d) (4) large radius R2 at the end regions of the droplet. Here we design a graphene-

EWOD based microfluidic system; the objective is to achieve droplet movement on a 

transparent substrate with graphene electrodes. Figure 5.2 shows the cross-section view 

and the top view of the graphene EWOD system design. In general, the graphene 

electrodes are patterned onto a glass substrate and connected with the gold external 

electrodes. The channel is coated with hydrophobic insulating layer (Teflon AF 1600).  

A typical process contains the steps as follows: 

1. Alignment mark on glass substrate 

2. Graphene transfer onto glass substrates 

3. Graphene patterning (photolithography and O2 plasma etching) 

4. Ti/Au electrode patterning (photolithography and E-beam evaporation) 

5. Insulating layer coating (Teflon AF 1600, hotplate 160C 10 min, and oven 90C 30 

min) 

6. Teflon patterning (photolithography and O2 plasma etching) 
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7. Electrodes external wires connecting 

8. Device assemble (2 layers) 

 

Figure 5.2 Schematics of graphene based EWOD microfluidics system 

 

Current application of EWOD especially optical based devices such as display 

and lab on chip detection, require the device to be transparent and even flexible.[125] 

However, most electrodes material which is used in EWOD right now does not have both 

of these properties. We have demonstrated that graphene with its property of highly 

optical transparent and mechanical flexible can be used as the electrode material in 

EWOD.[149] The previous result show that with the Parylen C/Teflon dielectric layer, 

the  graphene based EWOD devices can achieve 40° contact angle change on both glass 

slide and PET film with 70~100V AC voltage. 

       In this chapter, we proposed the manipulation of liquid droplet movements using 

graphene-based electrowetting on dielectrics (EWOD).[150] We show superior EWOD 

performances can be achieved using graphene thanks to Teflon layers assembled on 

graphene surfaces that permit low leakage current and less hydrolysis. The interactions 
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between hydrophobic Teflon and hydrophobic graphene surfaces allow better self-

assembly and fewer pinholes of Teflon layers. In contrast, the leakage current of Teflon 

coated on gold with hydrophilic surfaces is three times higher than that of Teflon on 

graphene. A wide water window of graphene also allows higher voltage without 

hydrolysis compared with gold. The fundamental mechanisms of graphene-based EWOD 

such as leakage currents/impedance were investigated and the feasibility of digital 

microfluidics using patterned graphene electrodes on transparent substrates was 

demonstrated.  

5.2 Experimental methods  

5.2.1 CVD graphene growth 

       The graphene sheets were grown by using a chemical-vapor-deposition (CVD) 

method [109]. In detail, a 25µm thick clean copper foil (Alfa Aesar, 99.9%) was first 

annealed with 3 sccm hydrogen gas under 40 mTorr at 1000 °C for 1 hour. Then the 

copper foil was kept in the CVD furnace too cool down to room temperature. To grow 

graphene, methane gas was used as carbon source and thermally decomposed on copper 

at high temperature (>700°). Usually, the furnace was first heated up to 1000 °C with a 

ramp around 10°C/min. During this step, a 3sccm hydrogen gas was kept flown into the 

chamber. Then a mixture of 30 sccm methane and 2 sccm hydrogen gases was flown into 

the chamber for 30 minutes at 1000 °C. The pressure was controlled around 500 mTorr.   

5.2.2 CVD graphene transfer 

       Graphene sheets can be transferred onto different substrates using the following 

the procedures. First, a thin layer of PMMA was spin-coated on the graphene side of the 

copper foil and dried at room temperature. Then the backside graphene on the copper was 
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removed by 100W oxygen plasma. The copper foil was etched by 1 M iron (III) chloride 

(Sigma, 97%) for at least 3 hours. After copper was fully etched, the PMMA/graphene 

sheets were carefully scooped out of the iron chloride solution using a piece of glass 

substrate and rinsed in DI water. Additional clean use diluted hydrogen chloride can help 

to get better quality of transfer with less metal particle residues. The PMMA/graphene 

sheets were further rinsed with DI water for three times and finally scooped out using a 

target substrate (glass slide, PET film) and drying at room temperature. The PMMA layer 

was then removed by acetone; and the graphene sheet was rinsed several times with 

isopropyl alcohol (IPA).  

5.2.3 EWOD device fabrication process 

The fabrication process of the graphene electrodes of the EWOD device is shown 

in figure 5.3. The graphene was first transferred onto a glass slide substrate using the 

followed by the method previously mentioned. Then we used standard photolithography 

to pattern the graphene electrodes into a circular shape. During this step, 1 min oxygen 

plasma with 30sccm O2 under 100W was used to etch the graphene electrodes. After 

etching the graphene, the photoresist was removed by Acetone and followed by baking at 

115°C for 1 min. The Ti/Au contact electrodes were then defined using e-beam 

evaporation and photolithography. After lift-off, the whole substrates were coated with 

1µm Parylene C. Finally a thin layer of Teflon was spin-coated on top of the Parylene as 

a hydrophobic layer. 

The top layer electrodes were fabricated using an ITO glass coated with Parylene 

C and Teflon. The two electrodes plates were separated using double-side scotch tape 

with a gap about 100 µm. A 1.5µL KCl droplet was introduced into the central electrodes 
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area with a pipette. The electrodes were wired to a circuit board functioned the PIC 

controlled sequential switches and power amplifier. The output voltage to active the 

droplet moving is about 70 V.   

 
 

Figure 5.3 Process flow of bottom electrodes (graphene electrodes). (a)  Transfer 

graphene onto a glass substrate, (b)Pattern graphene electrodes using photolithography 

and oxygen plasma etching, (c) Lift-off Ti/Au electrodes, (d) Deposit a Parylene C 

dielectric layer, (e)Spin-coat a Teflon layer, (f) Remove dielectric layers on the Ti/Au 

contact electrodes. (g) A schematic view of digital microfluidics using graphene 

electrodes. 

5.3 Results and discussion 

       Figure 5.4 shows a typical graphene based digital EWOD device. The conducting 

area of the graphene electrodes were highlighted in the figure 6.4b. Each graphene 
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electrode was connected with an external Ti/Au electrode pads for applying the voltage. 

Since the graphene is a flexible and transparent electrode materials. This protocol can 

also be used on other electronic system, such as flexible PCB board, and PET film. 

Compare to traditional EWOD system which can only use ITO, semiconductor, and metal 

electrodes, graphene electrode can provide the most extensive application such as biology 

detection and display technology.  

 
Figure 5.4 (a) An optical image of graphene electrodes with Ti/Au contact pads. (b) 

Zoom-in image of the transparent graphene electrodes on glass. Scale bar: 1mm. 

 

Here we used a home-built optical system to measure the contact angle change of 

graphene electrode with ParyleneC /Teflon dielectric layer. The system consists of a 

Navitar 12X zoom lens, a white light semi-flexible fiber optical source and a USB CCD 

camera (iSolution). A Labview module was used to control a function generator (Agilent 

33120A) and an AC power amplifier. The CCD camera was also programmed using the 

Labview software to record movies with a maximum frame rate of 60 fps. The system is 

capable of generating AC voltages from 0 V~140 V with a frequency between 10 Hz and 

10 KHz.  For EWOD, KCl solution (10 mM, 100 mM) was used. Figure 5.5 shows by 

using a pinhole free dielectric layer (Parylene C) sandwiched between graphene and 

Teflon, the breakdown voltage of dielectric layers increased, which allowed a higher 
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contact angle change (~36°) as shown in Fig 5.5. We also noticed that by using the 

Parylene C layer, the vibration of the droplet during its wetting can also be reduced due 

to the more smoothed Teflon surface. We have also tested the cyclability of the 

electrowetting on Parylene C/ Teflon system with graphene electrodes, the results show 

that the system is highly stable. The DC voltage is also tested and shows similar 

electrowetting performance compared to AC mode.   

 
Figure 5.5 Contact angle change on Parylene C/ 3% Teflon coated graphene electrodes. 

The voltage was from 0V to 84 V, AC 1kHz. 

 

The leakage current was tested here for comparing the electrowetting stability 

between graphene electrode and gold electrode with different dielectric system. The 

leakage current was measured by a digital multimeter (Agilent 34401A) using the setup 

system in figure 5.6. Figure 5.7 showed leakage current of the thin Teflon coatings (3%, 

0.55-0.75µm) on gold and graphene electrodes. Here we used 100mM KCl solution to 

test the leakage current. On Teflon/gold electrode, the leakage current was jumped 

significantly from 50µA to 110 µA with applied voltage increased from 40V to 50V. For 
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graphene electrode, the leakage current was lower than 90 µA even the voltage increased 

to 70V, which the leakage current on Teflon/gold is above 300 µA. We also found 

bubbles on the Teflon/gold electrodes, which showed electrolysis on Teflon/gold around 

60V. When we used a thicker Teflon layer (6%, 1µm), the leakage currents reduced while 

breakdown voltage slightly increased. Nevertheless, at high voltage (>80V), leakage 

current dramatically increased for gold electrodes which was not the case for graphene 

electrodes. Severe electrolysis was observed on gold electrode when the voltage further 

increased. With graphene electrodes underneath, the leakage current was less than 200µA 

and the breakdown voltage was larger than 100V in both cases (3% and 6% Teflon). 

Considering pin-hole surfaces and low dielectric constant of the Teflon layer, we also 

tested the leakage current of two-layers stacking which comprised a Parylene C layer 

coated with a hydrophobic Teflon layer. Parylene C has a higher dielectric constant (3.1 

at 1000Hz), and is considered pinhole free with thickness higher than few 

nanometers.[85] Figure 5.7 (b) showed that the leakage current could be reduced for both 

electrode with Parylene C sandwiched between electrodes and Teflon. However, when 

the applied voltage was larger than 90 V, the dielectric layer began to breakdown on the 

gold electrodes rather than on graphene electrodes. By testing the EWOD of Parylene C/ 

Teflon stacking layers on graphene, it was found that the breakdown voltage with 

graphene electrodes could be larger than 140V without any electrolysis happening. Thus, 

graphene electrodes allowed Teflon coating to possess a higher breakdown voltage 

compared to gold electrodes. In addition, and the leakage current in the Teflon/graphene 

devices was also much smaller than that in the Teflon/gold electrode devices. This is 
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likely due to the fact that carbon atoms have a wide potential window in the 

electrode/electrolyte interface.  

 
 

Figure 5.6 A system for leakage current test. 

 

 
Figure 5.7 Comparison of leakage currents in the dielectric layers using different 

electrodes. (A)3% Teflon with graphene, (B) 3% Teflon with gold, (C)Parylene C/ 3% 

Teflon with graphene, (D)Parylene C/ 3% Teflon with gold.  

 

Figure 5.8 showed the manipulation of a KCl liquid droplet movement using 

sequential switching voltage that was controlled by a programmable logic controller 

(PLC) relay array. 1kHz 70V AC voltage was used to drive liquid droplets. The voltage 

was applied on each electrode for 5 seconds before the next electrode was switched on. 
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We show it is feasible to manipulate droplet movement using graphene-based EWOD. 

Figure 5.9 showed a more detailed droplet movement with time frame on a square 

graphene electrode patterned EWOD devices. Same voltage was used here as the circular 

shape device. On this device, we used faster switching time (1s). It was observed that the 

movement of the droplet is responsive and highly repeatable. The moving direction and 

be easily programmed with the PLC controller.   

 

 

 

 
Figure 5.8 Control of droplet movements using graphene based EWOD. The voltage 

was AC 70V (1kHz) and the droplet was 1.5µL KCl (100mM). The droplet moved 

from the left side to the right side as voltage was sequentially turned on. 
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Figure 5.9 The droplet movement on graphene EWOD device with square electrodes.  

5.4 Summary 

       In this chapter, we further demonstrated the capability of building digital 

microfluidics system using graphene electrodes instead of traditional metal and ITO 

electrodes. We suggest that with pin-hole free dielectric layer protection, the graphene 

can have higher breakdown voltage and lower leakage than gold electrodes. In additional, 

future applications such as flexible, total transparent electrowetting can be realized by 

using graphene electrodes.  
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

In this thesis work, we developed the applications of biosensing and microfluidics 

using CVD graphene. For graphene sensor devices, we focused on 1) the engineering of 

the graphene edge defects for the sensitivity enhancement using EBL, and 2) the surface 

functionalization of graphene for bio-specific binding. For the EWOD application, we 

first time demonstrated the integration of CVD graphene as the transparent and flexible 

ground electrode materials with the dielectric insulating layer. In additional, we proved 

the droplet manipulation on planer surface with the graphene electrode.  

 In Chapter 2, we reported a systematic study of the effects of defects and edges on 

the pH response of graphene pH sensors by 1) correlating Raman spectroscopy with pH-

induced gate voltage shifts in the transfer characteristics of graphene FETs; and 2) 

patterning 2D graphene sheets into arrays of GNRs to significantly increase the density of 

attached hydroxyl groups. We observed a slightly increased pH response in graphene 

devices with a higher level of disorder as quantified by the D-band to G-band intensity 

ratio in the Raman spectra of the device channel made of chemical vapor deposition 

(CVD) grown graphene. We further demonstrated that the sensitivity of graphene pH 

sensors could be controllably increased by patterning the graphene channel into arrays of 

GNRs with decreasing width, without degrading the electrical properties of the graphene 

channel. The pH response of the devices increased as the width of the GNR reduced 

down to 200 nm, which can be attributed to the increased number of hydroxyl groups 

attached to the edges per unit area as the edge to surface area ratio increases with 

decreasing GNR width. 
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In Chapter 3, we developed a graphene biosensor for specifically detecting of 

E.coli bacteria. Functionalization of graphene with saline using solution immersion 

method was performed. We also studied the functionalization of graphene with P22 

phage and E.coli phage to compare the bacteria binding efficiency with bacteria.  By 

using APTES and Glutaraldehyde, we successfully immobilized the E.coli TSPs to the 

CVD graphene. Further experiment show that E.coli bacteria can be attached to the E.coli 

TSPs through specific binding.  

In Chapter 4, we demonstrated the superior performance of graphene electrode in 

electrowetting on dielectric (EWOD) compared to other commonly-used electrodes such 

as gold, including higher breakdown voltage, optical transparency, flexibility, and 

electrical conductivity as well as lower cost. We also observed low leakage current and 

less hydrolysis of graphene electrode with Parylene/Teflon dielectric system. This study 

provided a new approach of using graphene as a promising transparent conducting 

electrode material for future EWOD applications.  

      In Chapter 5, we proposed the manipulation of liquid droplet movements using 

graphene-based electrowetting on dielectrics (EWOD). [150] [149] [148] [148] [148] 

[147] [146] [145] A double plate planer EWOD device was designed with CVD graphene 

as the ground electrodes. We designed both circular shape and square shape electrode 

patterns with graphene and both of them were able to move the droplet under an applied 

voltage between the electrode plates above 70 V. The experiments provided an alternate 

electrode material candidate for the digital microfluidics application. 

All the graphene materials in our experiment uses CVD grow graphene. 

Compared to other graphene fabrication method, CVD graphene method is a promising 
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technique for its capability of large scale integration with good electrical mobility and 

conductivity. In the last, we also descripted the process of CVD graphene growth on 

copper, and compared the transfer process using different method. The EBL process for 

fabricating GNR was also discussed.  

6.2 Future work 

Although this work gives some proof of concept results for graphene biosensing 

and EWOD application. However, it should not be considered as an end, but rather as just 

a start. First of all, for the graphene biosensor, the functionalization with specific 

biomolecule without changing the electrical properties is still a big challenge. In our 

experiment in Chapter 3, although we have compared the gate potential change before 

and after the binding of the bacteria, the electrical property of the graphene before and 

after the TSP immobilization has not been studied yet. Since the top gate results have 

showed a huge doping from the single bacteria, it is worth to see the sensing capability of 

the graphene FET through the back gate measurement. Additionally, the sensitivity of the 

graphene FET in response to the channel size will give us more about the sensing 

mechanism. Graphene has a chemically inert basal surface and can it be used as the 

reference electrode for electrochemical sensing? If so, it will benefit to make the sensing 

device embedded with microfluidics system for detecting ions and biomolecules. And 

finally, the edge functionalization of graphene has not been fully studied. For the 

graphene electrode application, we have demonstrated the EWOD phenomena on 

graphene; it will be interesting to find some real applications by using the advantages of 

the graphene EWOD devices such as flexibility, transparent, high reliability.   
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APPENDIX A 
 

A.1 Single layer graphene synthesize by CVD 
 

The single layer graphene films used in this study were grown by using chemical-

vapor deposition (CVD) method. CH4 gas was used as the carbon source, and was 

thermally decomposed on copper at high temperature. A clean copper foil (Alfa Aesar) 

was annealed in a vacuum furnace for 2 hours with a 5 sccm H2 gas flow and a pressure 

around 0.4 mTorr at 1000 °C. For graphene growth, a mixture of 30 sccm CH4 and 2 

sccm H2 gases was flown into the furnace for 30 minutes at 1000 °C. The pressure was 

controlled around 500 mTorr.  

 

Figure A.1 A typical CVD furnace setup for graphene growth (on copper).  
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Figure A.2 A typical time dependent CVD experiment condition for graphene growth 

(flow rate, pressure, temperature). 

Figure A.3 shows an SEM image of CVD graphene after using the above method. 

During the growth process, we noticed that some multilayer graphene will also appear 

(shown as the black area in the picture). The coverage of one layer graphene is above 

90% in most of the cases. We also found that to the quality of the graphene is also related 

to the surface roughness of the copper foil that we used. It is generally observed that the 

flat copper will get better graphene growth results than the rough copper. In order to get 

flat copper, anneal is always used before the graphene growth, the anneal process is 

similar to the CVD graphene process. During the process, we used 3 sccm hydrogen 

gases to anneal the surface of the copper at1000 C° for 1 hour. The whole process 

including the cooling down can take about 4 to 6 hours.  
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Figure A.3 An SEM image of CVD graphene after growth on copper foil, the black 

islands show the multilayer areas.   

 

A.2 Comparison of different CVD graphene Transfer process 
 

A.2.1 CVD graphene Transfer process by using FeCl3 etching 

 
A typical transfer process for CVD graphene is showed in figure A.4. Briefly, a 

thin layer of PMMA 495 (100 nm ~200 nm) was spin-coated (3000 rpm) on the copper 

foil with graphene on it and dried at room temperature for half an hour. Subsequently, the 

copper was etched in a 1 M ferric chloride (FeCl3) with PMMA side facing up. The 

floating PMMA/graphene sheets were then carefully scooped out of FeCl3 solution using 

a piece of glass slide and rinsed with DI water. After the whole sheets were attached to 

the substrates, they were taken out of the beaker and dried for 1hour at room temperature. 

The PMMA was removed by acetone or chloroform; and the graphene sheet was rinsed 

several times in isopropyl alcohol (IPA) and demonized (DI) water. 
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Figure A.4 A typical CVD graphene wet transfer process by using FeCl3. 

A.2.2 CVD graphene Transfer process by using modified RCA clean 
 

 We noticed that when using the method introduced in A.2.1, some unsolutable 

nanoparticles will be deposited to the graphene and cause the contamination of the 

graphene samples. Those nanoparticles will not be able to remove even after high 

temperature anneal. In order to solve the problem, we developed a more effective method 

that based on the Liang et al.[86]. In the process, we first remove the copper foil by using 

the diluted copper etchant (APS-100) for overnight. Then we put the PMMA/graphene 

sheet into a beaker with diluted ammonia solution (H202:H20:NH4OH=20:1:1) to remove 

the organic residue attached to the graphene. After rinse with the above solution for at 

least 15 min, we clean the sheets with DI water and then put them into the diluted 

Hydrochloric acid (HCl) solution (H202:H20:HCl=20:1:1) for at least 15 min to remove 

the inorganic waste. We found that by using this method, the graphene is much cleaner 
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than the one we transferred using FeCl3 etching. Also the diluted solution will not cause 

the damage to the graphene.  

 Figure A.5 showed the AFM images of the CVD graphene transferred with two 

different methods. The graphene showed in figure A.4 (a) was etched with the APS 

copper etchant and cleaned with the diluted RCA solution. It is much smooth and cleaner 

than the graphene showed in figure A.4 (b) which was transferred without the RCA clean. 

The scan area of the AFM image was 5µm×5µm with tapping mode.   

 

Figure A.5 AFM microscope images of CVD graphene transferred on silicon substrate 

with a 300 nm thick thermal oxide after (a) modified RCA clean with diluted 

Hydrochloric acid and ammonia solution, the surface is clean and only very few 

contamination are remaining on the graphene surface (b) graphene transferred with FeCl3 

and without modified RCA clean, showed very rough surface and some residues are still 

remaining. 

 We also notice that it is not necessary to use oxygen plasma to treat the substrate 

before graphene transfer. Oxygen plasma will introduce hydroxyl groups and oxygen 

groups to the substrates and because of the existing of these groups, during the transfer 

process, moistures will be difficult to remove. Under the optical microscope, the 

graphene will show a blue color compared to the original dark purple color as the figure 
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A.6 showed. Also after the e-beam lithography patterning and oxygen plasma etching, the 

stain of moisture will still remain on the substrate. 

 

Figure A.6 (a) CVD graphene transferred onto SiO2/Si substrate with oxygen plasma, (b) 

after e-beam patterning, showed the blue stain remain on the substrate. 

A.3 Graphene sheet patterning 

Graphene can be patterned by either photolithography or electron-beam 

lithography (EBL) combined with oxygen plasma etching. For photolithography, S1811 

photoresist was spin coated onto the graphene sheets at 4000rpm (30s, 1.1µm thick). We 

used a mask aligner (MA150) to expose photoresist for 8 seconds under a hard contact 

mode. After being developed for 30 seconds with CD-30, the graphene was etched by 

using oxygen plasma (Drytek). The parameters were oxygen 30 sccm, power 100 W, and 

1 minute. The photolithography can only produce graphene channel larger than 5 µm 

because of the limit of optical diffraction. For smaller features (around 0.5µm), we use E-

beam lithography (EBL) to pattern the graphene. A 200nm Poly (methyl methacrylate) 

PMMA was spin-coated onto the graphene sheets and baked under 180°C using a 

hotplate for 5 min. In specific, 100~150 nm line pattern could be fabricated with 1000X 

magnification and 10kV. After exposure, the PMMA was developed in the solution of 
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Methyl isobutyl ketone (MIBK) (30:1). After development, the devices were ready for 

oxygen plasma etching. 

 

Figure A.7 Optical microscope images of CVD graphene before patterning with 

photolithography and oxygen plasma etching (top left), after patterning (top right), 2µm 

holes array pattern (bottom left), 2µm wide line pattern (bottom right). 

 Figure A.7 showed the patterns that we have made using photolithography and 

oxygen plasma. With current lithography system (EVG 620), the smallest feather size of 

the graphene pattern is 2 µm. 



84 
 
 

 
 

 

Figure A.8 Process flow of the e-beam lithography for writing sub-micron patter on the 

graphene FET sensor device (left), graphene FET patterned with circular shape holes and 

lines with PMMA covered (top right), and after remove PMMA(bottom right).  

Figure A.8 illustrated the process flow of the e-beam lithography for writing sub-

micron patter on the graphene FET sensor device. The top right figure showed the 

circular pattern and line pattern wrote by using PMMA e-beam resist. The bottom right 

figure showed the device with patterned graphene after removed the PMMA. It is noticed 

that the PMMA may be more difficult to remove after EBL due to the crosslink during 

the e-beam lithography process. Thermal annealing and hot acetone immerse will help to 

remove most of the residue but not perfectly.  
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Figure A.9 Graphene nano ribbon pattern wrote by EBL with HSQ e-beam resist. The 

line width was only 100 nm.   

Figure A.9 demonstrated the EBL method that we used in chapter 2 for making 

the graphene nano ribbon arrays less than 100 nm. For this process, it is important to 

properly control the expose dose to prevent the proximity effect. During the oxygen 

plasma etching process, the graphene ribbon underneath the HSQ can be over etched due 

to the undercut etching. It is necessary to shorten the etching time for about 50%, usually 

10s~15s. Also to remove the HSQ covered on graphene ribbon, BOE was used. 

A.4 External contact electrode and lift-off 

The electrodes for external contact were fabricated by Electron-beam evaporation 

(BJD 1800, Temescal). An evaporation process was used to deposit material (source) on 

substrates by heating the materials to the point where it started to melt and evaporate. 

This process took place inside a vacuum chamber, enabling the molecules to evaporate 

freely in the chamber. Metal molecules would condense on the substrates. For e-beam 

evaporation, an electron beam was used to heat the source material. Compared to E-beam 

evaporation, physical evaporation methods like sputtering may cause graphene structure 
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defects by ion bombardment (Ar
 
ions plasma) and by impurities from a gas mixture. To 

make electrode for external contact on the graphene sheet in devices, 5 nm Cr/ 50 nm Au 

(5 nm Ti/ 50 nm Au) was deposited using electron beam evaporation.  After evaporation, 

we used Acetone/PG remover under 70°C for lift-off in order to remove excess metal 

layers. During the lift-off process, ultrasonic cleaning was avoided because of the 

vibration of substrate can cause the damage to the graphene sheets. In general, we use 

gentle shaking to accelerate the lift-off process. 
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APPENDIX B 
 

B.1 Microfluidics fabrication using PDMS (Polydimethylsiloxane) 

 
 

Figure B.1 A typical fabrication process of the two-layer microfluidics.  

  The fabrication of the microfluidic channels was adapted from standard soft 

lithography method as shown in figure 1. The two-layer microfluidic network was made 

by PDMS RTV 615 (GE) and sealed with a glass substrate. For one-layer device, Sylgard 

184 is usually used. First, 200 µm thick SU-8 (Microchem SU-8 100) was spin coated on 

the silicon wafers. After hard bake with hot plate at 95°C, the SU-8 was exposed for 150 

s and followed by 30 min post exposure bake. The fluidic channel was made by 250 µm 

PDMS replica (part A: part B = 20:1) and the pneumatic layer was made by a 4 mm 

thickness PDMS replica (2:1). The PDMS replicas were baked using the hotplate for 1 

hour under 80°C. For bonding, the two PDMS replicas were first treated with corona 
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discharge for 30 s and then baked at 80°C for 10 min. Finally, the PDMS replica was 

treated with corona discharge for 30 s and sealed with a glass slide. The whole device 

was baked at 80°C for 10 min to enhance the bonding force.  
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ABSTRACT 

THE APPLICATION OF GRAPHENE FILMS IN BIOSENSING AND 

ELECTROWETTING  
 

by 

XUEBIN TAN 

May 2014 

Advisor: Dr. Mark Ming-Cheng Cheng 

Major: Electrical Engineering 

Degree: Doctor of Philosophy 

In recent years, graphene has been found to possess extraordinary electronic, 

optical, mechanical and electrochemical properties. Graphene is optically transparent and 

mechanically flexible, and has high electron mobility and conductivity. In this thesis, we 

propose to investigate graphene‟s properties in the detection of biomolecules as well as 

the manipulation of biological samples. Graphene without defects has high charge carrier 

mobility and surface areas, which is ideal for biosensors. However, literature shows a lot 

of variations in the measurements using graphene biosensors. In addition, the surface 

functionalization of graphene in order to enhance the specificity has not been fully 

investigated yet. We propose to combine e-beam lithography (EBL) and dry etching to 

generate edge defects for biosensor application. These edge defects not only enhance 

sensitivity but also control the binding sites for surface functionalization. We also 

demonstrate, for the first time, a microfluidic device based on electrowetting-on-

dielectric (EWOD) using a graphene electrode. Hydrophobic surfaces of graphene 

facilitate self-assembly of the hydrophobic dielectric layer (Teflon). Using graphene 
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electrode, we are able to achieve robust and reversible changes in contact angle without 

electrolysis. Graphene enables the manipulation of droplets on flexible and transparent 

substrates using low-cost PET (polyethylene terephthalate). With its high optical 

transparency, mechanical flexibility and excellent electrical properties, graphene may be 

suitable in the manipulation of biological samples and in the detection of biomolecules. 

The research may be applicable in the development of the next generation point-of-care 

device.  
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