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Chapter 1 Computational techniques at every level of biochemical 
                    discovery 
 

1.1 Introduction 

 As modern biochemistry, computational chemistry, and computing power advance, there 

are ever expanding opportunities for computational methods to be developed and applied to the 

process of discovery. The rapid development of technology has changed our lives in 

unprecedented ways. More computing power is available in the average cell phone than was 

used to put a man on the moon in 1969 (2). We are able to store and search the whole human 

genome on an iPod (3). When combined with bright and creative minds, the ability to perform 

complex calculations has been truly transformative for science. In biochemical discovery 

computational theory is being applied everywhere. Quantum chemistry tools can accurately 

model the electronic structure of a ligand molecule, and bioinformaticians can compare 

hundreds of complete human genomes to look for the roots of genetic disease. In terms of 

molecular biology, the applications range from target identification and initial druggability testing, 

to final structural modifications on potential small molecule drugs and fundamental studies on 

the nature of biomolecules. The concept of a "rationally designed drug", one that has been 

created through a deep understanding of both the receptor structure and the salient small 

molecule interactions was an entirely new concept when it was suggested in 1986 (4). In 2012 

alone there were more than 40 publications on successful rational drug design.  

 Historically the development of pharmaceuticals was based on "whatever works", rather 

than understanding how a bioactive substance acts. In the long years since herbal remedies 

were simply put into pill form, we have gained the ability to capably understand the "why" 
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associated with effective treatments. As a scientific community are now at the stage where we 

can look at a biological system as a whole, from genome to phenotype. This has led to a much 

broader perspective for examining a biological system.  

 The scope of our biological understanding has expanded, and so has the associated 

data. The rapid expansion of "omics" fields threatened to drown researchers under a deluge of 

"big data". It seemed initially that our ability to generate data had outpaced our ability to extract 

meaningful information from it. This situation drove the development of a whole range of 

computational and statistical analytics that up until recently, would have been unnecessary. Not 

only has the creative application of statistical modeling and data deconvolution necessary, it's 

illuminating. For the first time, we are able to not only think about, but model whole interaction 

networks and observe how they react when perturbed. The exponentially growing field of 

systems biology is a testament to the value of combining traditional molecular biology with 

methods originally developed for computer science.  

 Within the context of probing a disease for either cause or cure, computational chemistry 

has become invaluable at each stage of discovery. Genomic and bioinformatic investigations 

can assist in finding causal genes or potential drug targets. Applications of systems biology can 

determine how those genes or drug targets are interacting within a broader system. Network 

analysis is shifting the way we think about drug design. Should we hit one target hard? Or hit 

many associated targets weakly? Will off target hits render this a dead end for treatment? 

Structural biology literally allows us to look at the proteins we are working with. Rather than a 

line on a gel, we can hold up a three-dimensional structure and get a good look at what makes it 

tick. Once we know how it ticks, rational drug design techniques can allow us to build a 

molecule that stops the clock. 
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  From start to finish, computational chemistry has changed the way we function as 

scientists and will continue to do so in the future. This work will focus on current applications of 

computational chemistry to biochemical discovery. The techniques discussed will include novel 

bioinformatics applied to both human and bacterial genomes, structural and dynamic analyses 

applied to both fundamental understanding of biomolecules and drug discovery, and small 

molecule development methods. The following chapters will illustrate productive application of 

these techniques to the design of inhibitors for Clostridium difficile toxin, and the development of 

bioinformatic software for both human and bacterial genomic data. 

 

Figure 0-1 Opportunities to apply computational methods to biochemical discovery 

The workflow here describes one possible pathway to biochemical investigation or drug design. Initially, a 
gene or protein of interest is identified as a target for further study. Biochemical interaction pathways are 
then pursued, traditionally by methods of molecular biology. Structural characterization is carried out where 
possible to deepen the understanding of the system, followed by small molecule design either for the 
purposes of drug development, or for developing biochemical tools to interrogate the system. At each step, 
computational intervention can assist the process and provide otherwise intractable information. 
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1.2 Target identification 

 

 Traditional methods of identifying targets for biochemical investigation involve direct 

biochemical methods, where a gene, RNA or protein is identified, purified, characterized and 

then further studies are performed based on the goal of the project. These methods often 

require a heroic amount of work, along with sophisticated technologies and years of training for 

skilled scientists in the field. With the advancement of high-throughput methods such as DNA 

microarrays and RNA sequencing  data collection has greatly accelerated generating an 

overwhelming  mountain of data. It's been well documented that the rate at which publically 

available sequence data has been expanding has far outpaced our ability to handle that data 

manually(5, 6). Making sense out of a massive dataset has required complex computational 

analysis techniques, as significance cannot be assessed by simple examination. Bioinformatics 

has exploded as a field, and its popularity is well warranted. By combining mathematical and 

statistical analysis with big "omics" data, not only are significant associations detected, but 

patterns of associations, and the patterns are where it gets interesting. The following sections 

will discuss applications of bioinformatics to genomic level data.  

1.2.1 Genome-wide association studies 

 Following the completion of the Human Genome Project, the technologies for whole 

genome sequencing developed extremely rapidly. This has led to the practice of investigating 

diseases thought to have a genetic link with Genome Wide Association Studies (GWAS). In 

these experiments, large numbers of individuals with a specific disease are subjected to whole-

genome genotyping, and the results are deposited in massive databases. While this work has 

led to a number of striking discoveries, most well known of which is the BRCA1 and BRCA2 

breast cancer genes(7-9), many scientists have been disappointed in the low productivity of the 

project(10). The reigning paradigm at the time was that introduction of GWAS studies would 
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result in the deconvolution of many genetic diseases: one gene, one mutation, one disease-

termed the "common-variant hypothesis". Simple statistical methods were employed to 

determine strongly predictive mutations in diseased individuals in the hope that this would result 

in a causal relationship between mutation and disease(11). Unfortunately, this paradigm 

became the exception rather than the rule. Rather than revealing simple links between genome 

and disease, frequently a huge number of associations were detected between diseases and 

genomes, or weak clinical correlation between strong statistical predictors and disease 

phenotypes(12). Manolio et al. in 2009 was among the first to openly discuss GWAS studies as 

not meeting the expectations of the scientists involved and suggest that the "disease-common 

variant" hypothesis was incorrect. The interplay between numerous mutations may be more 

biologically relevant, something that would not be detected by trying to apply extremely stringent 

statistical methods to find a single direct connection. Others suggested that the worth of GWAS 

studies lies in the detection of rare variants (13), that statistical analysis of GWAS are 

confounded by rare variants (14), or that the combination of several alleles into a haplotype may 

be a more accurate predictor (15, 16).  

 While many people were disheartened at the failure of the common-variant hypothesis, 

this development did spur investigations into pathway associations and combinations of low-

significance mutations. The association of multiple loci with disease phenotypes has resulted in 

a reimagining of the function of GWAS studies, that rather than seeking a single mutation, 

GWAS experiments have the capability to expose novel biological pathways. Notably, the 

linkage between Crohn's disease and both the autophagy and interleukin-23 related pathways 

was completely unexpected (17). The illumination of unexpected biological pathways relevant to 

disease has resulted in an explosion in the realm of "big data analysis" applied to GWAS data. 

While the deposition of data still proceeds at a much faster rate than the growth of processing 
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power, novel analysis and data storage methods are making an attempt to keep pace with this 

ever expanding wealth of data(5).  

 The complexity of genetically linked diseases has spurred creativity in the computational 

algorithms used for analysis, far surpassing the simple statistical methods that were initially 

applied to the GWAS data. To date, over 35 major software suites have been developed 

specifically for the handling and analysis of GWAS data (5), ranging from methods for genome 

assembly (18-24), to "big data" storage and query methods(25-27), to novel data mining 

techniques(28-34). Furthermore, there has been some considerable success in identifying 

potentially "druggable" targets within the human genome using bioinformatics techniques (35-

40). With the development of novel computational techniques, and the continued re-examining 

of GWAS data(41-45), there is much more potential for a deep understanding of genetically 

linked diseases as well as a future in genome-to-pharmacy drug design.  

1.2.2 Data mining in single genome studies 

 While the term "bioinformatics" has been around since the 1970's(46), a turning point 

came in 1984 when a technique had only previously been applied to mathematical data, was 

turned on a biological system. A method was developed to align sequences from the Dayhoff 

Atlas of Protein Sequence and Structure, and very rapidly thereafter bioinformatics became 

associated with genetic and proteomic data(47). Largely, modern computational techniques in 

data mining are applied to organisms for which whole genome sequence data is available. 

Rather than analyzing a cohort of genomes for variation, these techniques focus on pattern 

determination and deep understanding of the function and interaction of the genome of a single 

organism. Frequently programs are designed to find patterns or comparisons in the genomes 

that would be undetectable without assistance. Bioinformatic software at this level ranges from 

the well established sequence alignment tools available such as ClustalX, BLAST, and TCoffee 

(48-50), to highly complex pattern and motif searching tools like PairMotif and DISCOVER (51-
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55). A comprehensive overview of the breadth of methods available is beyond the scope of this 

document, but the categories of genomic analysis to which computational methods have been 

critical will be discussed.  

 While the utility of these kinds of bioinformatics tools varies widely, we will focus on 

application of two general categories of "small data" investigation to antimicrobials. Finding 

genes that code for bacterial pathogens or that may be exploitable with new antibiotics 

comprises a non-human form of "Target Identification".  

 Target identification within bacterial genomes can generally be divided into two fields: 

sequence-based, or composition-based. Sequence based methods rely on comparison of 

multiple bacterial sequences(56-59), while composition-based methods require only a single 

genome sequence (60-65). Recent application of genomic interrogation techniques has been 

quite successful in the study of antimicrobials. 

 One such success story describes the identification of 214 unique enzymes in 

Pseudomonas aeruginosa. By using comparative genomics based on information from the 

Kyoto encyclopedia of Genes and Genomes (KEGG) Perumal et al. were able to identify 

essential genes unique to Pseudomonas aeruginosa. A case study was pursued using a 

homology model of one of the identified proteins, targeted with in silico docking of several 

inhibitors. Results indicated that this protein would be a suitable target for antibiotic 

development and further in vitro studies.  

 Study of genomic islands has become quite popular in trying to understand the 

underlying mechanisms of antibiotic resistance and pathogenicity transfer. Genomic islands are 

clusters of genes, acquired by horizontal gene transfer, which frequently confer some 

evolutionary advantage and are frequently associated with pathogenesis or antibiotic resistance. 

While many of the studies focus on determining druggable targets in pathogenic organisms(66, 
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67), some focus on organisms with inherent antimicrobial activities. (68-74). Originally these 

mobile genetic elements were analyzed using gene cloning techniques(75), but with the 

availability of genomic data on many organisms several computational techniques have 

expedited the process(65, 76, 77). The goal of many of these studies is to identify genomic 

islands associated with pathogenicity, in hopes of identifying possible targets for future anti-

microbial work.  

 A comparative analysis of three strains of antibiotic resistant Acinetobacter baumanii is 

one such application. Once fully sequenced, the genomes were examined using comparative 

genomics analysis and individual genomic island detection with IslandViewer (56, 57). Work by 

Zhu et al (78)revealed that while the three strains shared drug-resistant genomic elements, the 

context in which these elements were present was quite different. In the most genetically 

divergent strain, antibiotic resistance was conferred by a large resistance island, containing 

multiple drug-resistance genes and several transposons. The analysis indicated that one 

challenge that will be encountered by researchers targeting Acinetobacter baumanii, is the 

genomic flexibility of this organism. 

 Motif searching is also a broadly applied term in both bacterial genomics and 

proteomics. The ability to quickly identify genetic regions characteristic for protein-binding(79, 

80), sRNA-controlled regulation(80), subcellular localization(81), determination of sequence 

families(82, 83) as well as many other genome-based inquiries has a wide range of applications 

(83-89). However, computational identification of motifs remains challenging and recent surveys 

of the field indicate that there is no "best" method (90, 91). Whether informed by experiment or 

built on probabilistic modeling and neural networks, there has been no clear success in the field. 

Perhaps the best example of fully utilizing the various methods of motif recognition is the work 

done by Hu and Rajasekaran (92, 93) in developing a consensus ensemble algorithm. This 
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method combines the results from multiple external motif searches, and results in a 6-45% 

improvement in accurate motif identification.  

 As completing a full genome for an organism has become increasingly fast and cost-

effective, the tools facilitating thorough exploration have proliferated. In addition to the 

bioinformatic methods discussed above, there is a wide range of bioinformatic techniques that 

can be applied to the transcriptome and proteome. In brief, the development of computational 

tools for single-genome analysis has been both expansive and creative, facilitating the 

discovery of numerous genomic features that can be exploited for either fundamental learning, 

or antimicrobial development.   

1.3 Pathway and Network analysis 

 

 As was discussed in section 1.2.1, the richness of GWAS studies lies not in directly 

connecting a single gene mutation to a disease, but with illuminating networks of interactions 

whose cumulative effect may be more salient. Recent work in graph theory and "big data" 

analysis has led to the growth in the field of network theory, a subset of graph theory, which 

seeks to represent complex sets of interactions in tractable ways. Following the construction of 

a network of various components, data mining and mathematical sub-analysis can be applied. 

While it's easy to think of networks in terms of genes or protein-regulation, network theory is 

being applied far more broadly in computational chemistry. Network theory has been applied to 

cheminformatics, drug design, repurposing of drugs, and target identification.  

 In order to mentally parse and bring coherent understanding to the sweeping datasets 

capable of being generated by both next-generation lab techniques and those generated 

computationally, a human-readable expression of the data is necessary. While visualization 

packages are rapidly developing, it still requires human intuition and interpretation to recognize 
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some of the more biologically relevant patterns. In combination with a researchers deep 

fundamental understanding of their research focus, network analysis can provide a fascinating 

way of stepping outside the system and looking at a biological problem in a broader context. 

1.3.1 Network theory in visualization 

 Just as novel approaches have  changed the way we approach the data that we're 

aggregating, so to do new or innovative visualization methods change the way we literally view 

the data. Representing biological pathways as complicated networks in textbooks has very 

nearly reached trope status. Complex, difficult-to-interpret diagrams of cellular interaction 

pathways are in nearly all biochemical textbooks. While this is technically an application of a 

network representation, there is distinct room for improvement. Visually, there are huge strides 

being made towards visual deconvolution of networks. Uninformative hairballs have been the 

norm for genetic network interpretation, which rather than aiding in interpretation, can convolute 

it.  

 

Figure 0-2 Yeast interaction network hairball 

A visually uninformative,  but typical interaction hairball reproduced from www.visualcomplexity.com 
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 A thorough survey of modern network analysis algorithms has been published by 

Csermely et al.(94, 95) which includes an overview of available visualization and analysis 

programs as well as suggested methods for use. Appropriate use of network analysis must 

necessarily take into account the viewer, and the viewers paradigm for data interpretation. 

Effective application of network analysis can both accommodate and add to pre-existing 

paradigms for biological representation. We are familiar with the "alphabet soup" interaction 

diagrams in biochemistry textbooks. Chromosomes and sets of genes are represented as neatly 

organized straight lines. Plasmids are perfect circles with cleanly annotated features. Well 

heeled scientists have these visual organizational structures deeply embedded in how we think 

about our science and how we communicate effectively with others. The addition of network 

analysis on top of those pre-existing templates can help us clearly understand the complex 

system of connections and interactions that can be layered on top of that fundamental 

understanding. As the field of systems biology develops, we will likely become open to novel 

visual organizational structures, but as the "hairball" above illustrates, focus on understanding is 

key.  
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Figure 0-3 Various forms of network visualization 

Example plots of each of several types of network visualization. A simple force directed graph is shown in 
(A), these are most similar to biological network schemes. An arc plot, useful for depicting relationships on 
gene regions or chromosomes is shown in (B). An adjacency matrix plot combined with an arc plot is shown 
in (C), these are frequently useful for connecting data that is spatially or temporally distant. Panel D shows a 
radial/circular plot commonly used in depicting bacterial genome interactions. A network representation of 
data interpreted by an attribute driven heatmapping method is shown in E. This method is excellent for 
decomposing complex sets of unrelated interactions. Panel F shows the relatively new "hive plots", where 
nodes are organized by characteristic leading to a dramatic deconvolution of hairy networks. Data 
reproduced from references  78-94.  

  Numerous algorithms have been developed to assist in the visual reinterpretation of 

networks, and they can be decomposed into several categories: Force-directed(96-98), arc-

type(99-102), adjacency matrix (also known as correlation plots)(103-107), circular layouts(108-

111), attribute driven and hive plots(95, 112). While each of these methods has applications in 

many fields, all of them can be useful in the analysis of biological data. Figure Figure 0-3 depicts 

some of the more common types of network layouts 
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 In thinking about how to best represent data, it is critical to place emphasis what the 

viewer should take away. For example, with a network of interacting proteins, understanding 

which sets interact closely, and which are only peripherally involved in a processes can help us 

understand what role each protein plays. For this application, a force directed graph would be 

useful. Force directed graphs use mathematically applied attraction and repulsion to distribute 

nodes in a network. This visually recreates many of the standard characteristics of a biological 

interaction scheme and can illustrate which nodes are highly connected and integral to the 

system.  

 Chromosomes and gene loci are commonly represented as linear. Information on 

regulation or common protein-binding locations could be layered onto linear plots using an arc 

method without occluding the original data. By literally connecting the dots, it becomes visually 

tractable to determine if there are "hot spots" of activity on a given chromosome, or if a DNA 

binding protein is interacting with a specific family of proteins. Circular networks perform 

similarly for plasmid information, but have other applications as well. Circos (113, 114) released 

in 2009, has gained popularity as a way to visualize relationships in genomic data. Adjacency 

matrices are used to describe relationships between spatially or temporally distant data, in 

molecular dynamics these are used as "correlation plots". Representing data as a matrix has a 

range of advantages, including quick visual assessment of symmetry. One recent paper in 

Nature applied both circular and adjacency matrix plotting to yeast genomic inter-chromosomal 

interactions(115). By reducing the visual complexity of the interactions to colored diagrams, it 

becomes simple to quickly find the "take away" of the data.  

 There are times when the density of a dataset becomes intractable, even using 

appropriate network visualization techniques. With the generation of both ever larger, and 

higher dimensionality data sets on gene expression, regulation, and various other properties, it 
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becomes necessary to step away from traditional visualizations and move towards methods that 

may be able to handle such complex data.  

 Newer methods of attribute driven binning can reduce the complexity of a network to a 

heatplot, representing a single network characteristic. The recently available GraphPrism (116) 

software decomposes networks into sub-plots relevant to a single node or characteristic. This 

deconvolutes extremely dense data into visually interpretable pieces. Each heatmap is a 

statistical summary of the interactions of a node or metric. As this technique is extremely new, 

there are no published scientific articles that have effectively used this technique, though one 

could imagine its utility when applied to variable expression data, or large scale regulatory 

networks.  

 Hive plots are gaining traction for numerous applications, as these allow the grouping of 

nodes into axes by user-defined properties (112). Developed by Martin Krzwinski specifically for 

the interpretation of systems biology information, this allows the creator of the plot to decide 

which groupings of data points are most relevant when viewed together and reduces the visual 

clutter of networks. Typically color is required to bring out the salient characteristics of these 

plots, but they are ideal for displaying relationships between families of related nodes.  

 Regardless of which type of visualization algorithm is applied, appropriate use facilitates 

the recognition of patterns and connections in the data that would otherwise be hidden. As the 

size and scale of biological data grows, so too does our understanding of the interconnected 

nature of it all. Unfortunately, the working memory of the human mind is not linearly increasing 

as well. Effective graphical representations are necessary to assist in the comprehension and 

communication of the salient information an author wishes to express. 
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1.3.2 Network theory applied to genomics 

 

 Network analysis is frequently applied to large-scale genomic data to avoid deferring to 

reductionist tactics. The proposal of genome-wide regulatory networks as an alternative to the 

"disease-common variant" interpretation of GWAS data relies heavily on the treatment of 

genome level data with network theory and an analysis (117). Interrogation of regulatory 

networks rather than single genes has been illuminating in several fields, as discussed by 

Arujaho et al. (118). He suggested that as our ability to collect broad information on cellular 

function and subcellular interaction increases, we should increasingly implement that knowledge 

in our biochemical investigations. For example, high throughput methods allow us to identify 

genes that are overexpressed in tumors. Targeting those genes without considering the greater 

context of the genomic system may lead researchers down a dead end path. The detected 

associations may be peripheral, reactionary, or have a compensatory backup system in the cell. 

When using large-scale data for target identification, it is absolutely essential to consider the 

complexity of the system; network analysis is ideal as a solution.  

 In the application of network modeling to the human genome project, it has been 

suggested that the inclusion of genomic analysis methods may increase the amount of potential 

human drug targets by up to fourfold (119-121) depending on the method of estimation. While 

no new druggable protein families have been detected, bioinformatics methods have been 

applied to search for new members of those families. It should be made clear however that 

identifying a druggable protein does not necessarily result in a drug target, as many proteins, 

which can bind small molecules are not currently disease associated(122, 123).  

 Statistical analysis of genomic data is useful, however, novel insights have been 

obtained using network visualization. The concept of "bottleneck, hub and peripheral" nodes is 
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one entirely resultant from the interrogation of interaction networks of both genes and proteins, 

and provides an interesting perspective (124, 125). Hub nodes have numerous connections to 

other nodes, and typically manifest as a "starburst" when graphed. Peripheral nodes have a low 

number of connections, and may be only secondarily connected to a hub. Bottleneck nodes 

connect hub nodes, and usually have no redundant connections, i.e. information that needs to 

travel from one hub to another may pass through a bottleneck node if there are no other routes 

of communication available. Analysis of several known drug-target inclusive networks indicate 

that hub nodes are generally not targetable as they contribute significantly to the stability of the 

overall network(125). Many drug targets have turned out to be peripheral nodes, as removal of 

these nodes is less likely to destabilize the entire network system.  Similarly to hub nodes, 

bottleneck nodes are unlikely to be good drug targets, and frequently knockouts of these genes 

are lethal as the removal of a bottleneck node destabilizes the overall network(124).  

 As network analysis increases our understanding of genomic and protein interactions, 

this opens the door to reimagining drug design. Excellent work by Agoston et al. indicated that 

weak perturbation of several nodes in a transcriptional regulatory network was more efficacious 

in altering the system than singling out a particular node (126). The transcriptional regulatory 

networks of E. coli and S. cerevisiae were modeled as weighted networks, and then subjected 

to a series of perturbations. Each node was "attacked" in several ways; complete knockout, 

partial removal of interactions, or all interactions were attenuated by decreasing the weight of 

the interaction. These "attacks" mirror the biological phenomena of strong inhibitors, weak 

inhibitors and broad-spectrum inhibitors. Combinatorial simulation of the networks was carried 

out to determine what combination of effects maximally perturbed the system. Surprisingly, 

weakly targeting multiple nodes in the network was more able to shut down the system than the 

complete removal of a node. This fundamental work on a simulated model system echoes failed 

"common-variant" hypothesis from GWAS work. The general consensus of the GWAS literature 
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indicates that multiple mutations or factors are more likely to be causal than a single mutation. 

Looking forward, Agoston's work suggests that with respect to pharmacology, the design of 

multiple ligands may be more efficacious than striving towards ever more potent inhibitors. The 

concept of polypharmacology has caught like wildfire and has caused a push towards designing 

multiple ligands capable of weakly interacting with many target structures.   

1.3.3 Network theory applied to drug development  

 While no completely novel drug families have been found using network analysis, 

statistical network modeling has made some surprising discoveries. Frequently the overarching 

concept in drug design is to find one target, and bind that target as tightly as possible. Many 

branches of medicinal chemistry are devoted to substrate optimization and understanding ligand 

binding affinity. However, following the initial work by Agoston et al. mathematical modeling of 

perturbed interaction networks has repeatedly stated that there may be significant benefit in 

approaching multi-target drugs (127-129). Modest interference in an interaction network at 

several points has been shown to result in a more significant overall downstream effect(128, 

130). So far this method has been successfully applied to the discovery of ligand-gated ion 

channels as potential drug targets(131), as well as novel methods of targeting kinases in anti-

cancer treatments(132). This has led to the application of network theory to the field of drug 

development.  
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Figure 0-4 Example network illustrating standard and multiple ligand pharmacology 

Both panels show the same randomly generated interaction network. We see two typical small regulatory 
networks connected by a bottleneck. Panel A illustrates the one drug, one target paradigm. Panel B 
illustrates the concept of multiple ligands.  

 These early successes in polypharmacology led to the pursuit of "designed multiple 

ligands"(133-135). Figure 0-4 describes the concepts behind both traditional drug design and 

polypharmacology. Both panels show the same randomly generated interaction network. We 

see two typical small sub-regulatory networks connected by a bottleneck. Panel A illustrates the 

one drug, one target paradigm, with several targets highlighted for inhibition. Shown in red are 

hub nodes, which would destabilize separate sections of the network. In blue is a bottleneck 

node, inhibition of which would decouple the two, but not alter their independent behavior. In 

green are peripheral nodes, which would affect their respective small networks without 

completely shutting them down. Panel B illustrates the concept of multiple ligands. If a substrate 

weakly targets numerous nodes in a regulatory network this may provide more complete 
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inhibition than strongly targeting a single node. Small molecules that affect multiple cellular 

targets within a single cellular interaction network have shown some promise in a range of 

diseases including cancer, HIV, neurodegenerative disorders and obesity (136-139). Many 

drugs whose mechanism of action was not known during their discovery and trial phases have 

been determined to exploit multiple targets within a system(140).  

1.3.3 Integration of genomics, network analysis and pharmacology  

 In the discovery workflow described in Figure 0-1, network analysis is shown as being 

connected to pathway determination of known targets. While this is indeed a valid application for 

network analysis, it also provides an excellent bridge between the genomic data involved in 

target validation and the downstream steps involved in small-molecule design. Integration of 

genomic level data with interaction networks and current ligand databases have been used to 

"repurpose" a number of small molecule drugs. Several successes have been published 

connecting genome level data to disease treatment through network analysis(141, 142). 

Perhaps one of the most thorough is Sanseau et al. applying GWAS level information to drug 

repositioning. In this study, disease-associated SNPs were analyzed and through several 

iterations of database mining were linked to various disease therapies. This resulted in several 

small molecules being suggested for alternative usage in diseases such as Crohn's  and 

smoking cessation(143).  

 Regardless of the application, integrating genome level data, network analysis, and 

pharmacology is promising for future work from target identification to pathway analysis. Once 

potential targets have been found and the systems they participate in elucidated, further studies 

are warranted. Whether the goal is novel small molecule design, or fundamental understanding, 

structural information is an irreplaceable contributor. 
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1.4 Structural analysis 

 Computational chemistry has long been applied to the structural analysis of 

biomolecules. The initial techniques of X-ray crystallography were applied to large biomolecules 

in the early 1950's, and have steadily progressed since then. Use of 3D structural information 

can greatly assist in the interpretation of in vitro experimental results, and frequently obtaining a 

structure quickly becomes a goal when an interesting target or system is discovered.  

 Static structures themselves can be informative, as much information can be gleaned 

from thorough examination of active sites and known substrate binding regions. However, 

queries into the nature of the biomolecular surface and the dynamic properties of the molecule 

are also quite valuable. Wet-lab technologies are making great strides towards more real-world 

structural data, with the development of single molecule techniques(144-147), atomic force 

microscopy(148-151), and the combination of individual-particle electron tomography and 

focused electron tomography reconstruction (152) in addition to traditional NMR and X-ray 

techniques. Structural information is a fantastic resource, but observing biomolecules in a 

cellular setting is still far beyond our current capabilities. Until those experiments are possible, 

computational techniques can attempt to fill the gap.  

 Given a static structure, surface characteristics and electrostatic analyses provide 

context for some of the behaviors of the molecules, both alone and in contact with protein 

partners and can be used to guide both protein and ligand design. Where available, multiple 

crystal structures can provide snapshots of the motions of a protein, but dynamic calculations 

such as normal mode, molecular dynamics, and advanced sampling techniques are required to 

turn the stills into movies, so to speak. The following sections will address some of the 

computational techniques that assist in structural investigation of a biomolecule once it has 

been assessed as a potential target for study. 
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1.4.1 Static analyses 

 The importance of static structural characteristics in structural analysis should not be 

understated. Innumerable mutagenesis studies have shown that altering just a single residue in 

an active site can abolish activity. Similarly substitution on the surface of a protein can 

dramatically alter protein-protein interaction. When the alteration is not dramatic enough to 

perturb the structural dynamics of the protein, the effects of substitution can be attributed to 

either catalytic relevance, or surface effects. Electrostatics are critical to binding events between 

proteins(153), as well as with substrates(154). Polarizability and electron movement have a 

distinct role in the behavior of proteins at the catalytic level, but assessment of all quantum 

computational techniques applied to biomolecules is outside the scope of this document. With 

respect to the workflow discussed in Figure 0-1, the interjection of computational chemistry to 

the analysis of biomolecular structures can aid in fundamental understanding, engineering of 

proteins, and ligand design. The surface property most commonly discussed is largely 

electrostatics(154-164), while hydrophobicity(165-168), ligand binding pocket analysis(169-171), 

and protein-protein interaction hotspot detection(172-177) are all also popular.  

 Electrostatic calculations applied to proteins suffer from a few assumptions that must be 

made in order to facilitate the calculations. As always, computational cost and accuracy are 

inversely related. The more accurate your calculations are, the more computationally 

demanding they become. There have been attempts to use combined QM/MM and full quantum 

mechanical calculations to obtain highly accurate electrostatic potentials of small proteins, 

however this is not the norm. By and large, most electrostatic calculations are done under 

continuum rather than explicit solvent, as solvation greatly increases the computational cost of 

the calculations.  Some excellent comparisons have been made by Tan, Lee and Godschalk 

with respect to the differences in explicit and implicit electrostatic calculations (178-180) and will 
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not be discussed here, rather we will focus on the information that can be discerned from 

application of electrostatic calculations in implicit solvent.  

 Within the context of continuum electrostatics, there are two primary techniques: solution 

of the Poisson-Boltzmann equation for the system, or application of the generalized Born 

approach. A broad array of programs exists to facilitate these calculations, and several 

overviews are available in the recent literature (162, 181-183) . Two of the most common are 

DelPhi and APBS, the adaptive Poisson-Boltzmann solver(184, 185). While the ability to obtain 

an electrostatic representation of a protein is in itself a valuable thing, electrostatic surfaces can 

be used in a multitude of ways to aid in the analysis and prediction of structural properties. 

Electrostatic surface calculations can be applied to the detection of protein-protein binding(153, 

157, 158), ligand interactions(154), or the predictions of ligand binding pockets, among many 

others.  

 Experimentalists are able to find protein-protein binding partners through various 

techniques such as pull down assays, but frequently investigating the protein-protein binding 

interface is difficult without extensive mutagenesis studies. Electrostatic calculations have been 

used to guide protein-protein docking(158, 186-189), protein-protein interface detection(177, 

190-192), and have been determined to be strongly involved in protein-localization(193, 194). 

With respect to fundamental studies, analysis of protein-protein interfaces and docked 

conformations can assist in directing mutagenesis studies(195, 196) and has made great 

contributions in the field of designed proteins(156, 197).  

1.4.2 Dynamic properties from Normal mode to molecular dynamics 

 When interrogating a static structure, we are excluding all the dynamic properties of a 

protein in a warm solvated system. It is not yet possible to observe biomolecules in their natural 

environment, but by simply incorporating information on the motion of a molecule, we can 
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greatly expand our understanding. Simple estimations of predicted motion such as Normal 

mode or hinge region decomposition provide computationally cheap methods for study of 

motion. Normal mode calculations applied to proteins give an estimate of the low energy 

vibrational modes by grouping sets of amino acids into dummy groups and then treating them 

like an oscillating system. Normal-mode theory involves a harmonic approximation of the 

potential energy around a global minimum, in most cases the crystal structure is used at a 

starting point and is assumed to be near an energetic minimum. This allows the solution of the 

equations of motion by diagonalization of the Hessian matrix. The eigenvectors of this matrix 

provide the normal modes and the eigenvalues are the square of the frequencies of the 

oscillations. Every atomic displacement vector is a linear superposition of normal modes 

weighted by each of its eigenvector coordinates for the atomic mass, an amplitude, phase, and 

frequency. This technique has been in use since the early 1980's and have proved highly 

reliable for predicting overall structural movement. Recent estimations suggest that in many 

cases where there are known changes in tertiary structure, normal mode calculations correctly 

represent them roughly 50% of the time(198), and given an EM map, application of normal 

mode analysis can aid in interpretation of the diffuse density observed in experiment up to 

20Å(199). Furthermore, frequently representative motions are contained within one of the three 

lowest energy normal modes (200-202). While domain level movement is particularly interesting 

in enzymes with open-closed conformational transitions such as polymerases (203), certain 

hydrolases (204, 205) and immunoglobulins (206), these types of calculations are less effective 

when the goal of a project is to interrogate a catalytic site.  

 Methods that move beyond domain level include coarse grain, all atom molecular 

dynamics, and accelerated sampling techniques, where the equations of motion are 

approximated for a system. The objective of these methods is to simulate real world phenomena 

as accurately as our technological limits will allow. In these types of simulations, classical 
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physics is applied to a three dimensional system. Molecular dynamics propagates Newton's 

equations of motion using a force field to evaluate the potential energy. The most commonly 

used force fields describe bonded and non-bonded terms and are parameterized to reproduce 

experimental data. Bonds and angles are represented as springs, dihedrals are represented 

using a sine function. This reproduces the energy cost of rotating a group through an eclipsed 

position. Van der Waals and electrostatics are included as non-bonded terms and are typically 

modeled using a Lennard-Jones potential and Coulumb's law respectively. A range of methods 

are being developed to improve on the standard force fields, in hopes of better reproducing 

physical phenomena. The development of a force field including polarizability is expected to 

improve the accuracy of simulation, and these are being pursued by various methods including 

electronic structure theory, induced dipoles, point charges, distributed multipoles and density 

fitting.  

 While there are certainly concessions to the method, all-atom molecular dynamics has 

been broadly accepted as the gold standard for exploring macromolecular motion on a per-

residue scale. As we cannot yet observe the sub-domain motions in a protein barring collecting 

crystallographic snapshots, dynamic methods give insight into systems that are beyond the 

reach of experiment and are likely to remain that way for some time.  

 Coarse grained methods involve representing clusters of atoms as larger "dummy 

atoms", assigned various properties such as size, weight, and charge based on various metrics. 

This reduction in complexity is particularly useful for simulating large or complex systems where 

discrete residue-based information isn't required, but where sub-domain detail is needed. 

Successful applications to membrane bending (207-211), lipid layer perturbation (212-216) and 

motor proteins (217, 218) have been among some of the most interesting in the literature. 

Frequently, coarse-grained simulations are capable of reproducing some gross characteristics 

of an experimentally measured system. For example, membrane tubule diameter was 
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successfully reproduced by coarse grained simulation of membrane-bending by BAR domain 

proteins (208, 209). While excellent in conjunction with biophysical experimental methods, 

coarse graining does not allow for analysis at the atomic level.  

 All-atom molecular dynamics (MD) are capable of illustrating the behavior of 

biomolecules on an atomistic scale, and can describe very fine networks of interactions when 

properly constructed. The capability in dynamics simulation has exploded in recent years, with 

studies surpassing the millisecond long milemarker in 2009 (219). While extremely long 

timescale dynamics are now within reach, frequently the resources to facilitate those studies are 

not. This has led to the development of accelerated dynamics techniques, designed to sample 

the conformational space present in an extremely long timescale simulation without explicit 

performance of those dynamics. Accelerated MD(220, 221), replica exchange MD(222-224), 

temperature accelerated dynamics(225-229) and other forms of enhanced sampling (230-237) 

are all methods that seek to decrease the computational cost associated with traditional 

molecular dynamics. Most traditional studies limit themselves to the nanosecond range and a 

plethora of analysis tools have been developed to facilitate the extraction of data from these 

simulations. Detection of correlated motions(238), solvent effects(239), per-residue 

rearrangement to facilitate salt bridges and hydrogen bonds are all common analysis 

techniques.  

 Detailed understanding of the motions of a biomolecular system are incredibly 

informative, but until recently, the computational cost, resources, and skill needed to perform 

robust dynamics simulations were prohibitive. As the methods develop to thoroughly and 

efficiently investigate biomolecular structures in a semi-native environment, the breadth of 

systems and downstream applications for which molecular dynamics has been used has greatly 

expanded. In terms of the workflow discussed in Figure 0-1, biomedical research has recently 

seen a huge push towards incorporating the data from dynamic techniques into drug design.  
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1.4.3 Molecular dynamics applied to drug design 

  As our ability to perform molecular dynamics has increased, there has been a continual 

press to increase the usage of these types of studies in drug design. There is a considerable 

body of evidence suggesting that drug design can be enhanced by studying the interactions of 

ligands with an array of protein conformations (240-244). The concept of a rigid receptor and 

rigid small molecule has lost favor over the years, as our understanding of protein 

conformational dynamics has evolved. Conformational selection and conformational capture are 

gaining favor as more realistic interpretations of protein-ligand interaction (245-251). To design 

drugs around a cadre of protein conformations, one must first have access to that 

conformational space. Molecular dynamics, as well as Markov state modeling and enhanced 

sampling have been applied recently to the generation of protein structures, which can then be 

used for ligand design. 

 Following the profound success in drug design on HIV-1 integrase leading to the now 

FDA-approved drug raltegravir, application of MD to drug design gained a considerable amount 

of notoriety(252, 253). A cryptic binding site on the surface of HIV-1 integrase was detected 

following molecular dynamics studies. Further work with molecular modeling and optimization 

was used to develop a set of small molecules which were then tested in vitro and found to have 

significant inhibition constants. This substrate optimization was directly based on the detection 

of a novel trench detected in the molecular dynamics work.  

 There have been a few other notable success stories, though none have been as 

popular in the news. Histone deacetylases have been long known to be valuable, but 

challenging drug targets. Work by Estiu et al. on the numerous crystal structures of HDAC 8 led 

to the differentiation of several critical interactions governing isoform selectivity in small 

molecules(254, 255). Molecular dynamics simulations indicated that the HDAC8 structure was 

highly mobile, with a few critical contacts in the interior of the protein. It was determined that the 
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alterations in HDAC8 conformation when bound to small molecules were essential for inhibitor 

function and isoform selectivity. This information was exploited to design isoform specific 

HDAC8 inhibitors (256-258). Further studies extended this hypothesis on isoform selectivity to 

HDAC10 and 11, where it was determined that small molecules which tightly bind HDAC8 have 

weaker contacts with the other two structures (256-259).  

 Inhibitor design targeting influenza A virus M2 (IA/M2) used molecular dynamics to 

investigate the binding dynamics of amantadine, the well known anti-viral. In this case, the 

dynamics studies were used to dissect the interactions in the active site and determine which 

contacts were stable. Reoptimization of the initial ligand structure resulted in a set of 

amantadine analogues that perform similarly in simulation and which are now being investigated 

as potential drugs(260, 261).  

 In application to protein-protein interface disruptors, molecular dynamics was used to 

detect the critical contacts in tubulin polymerization, which were then built into antimitotic 

peptides(262). Simulations of tubulin dimers allowed access to the conformational and energetic 

characteristics of the interaction. Simulation following computational alanine scanning was used 

to discern which components of the interface were most critical. Based on the essential 

sequences, a series of peptides were designed to mimic those tight interactions. Tubulin-

peptide simulations were performed and in several cases the peptides remained tightly 

associated with the tubulin monomer. In vitro assays indicated that the peptides had a strong 

inhibitory effect on tubule formation. A control peptide that dissociated in silico was found to 

have no inhibitory properties in vivo suggesting that the efficacy of the design was not random.  

 While there has been some considerable success, the popular opinion is that there 

needs to be far more inclusion of computational methods in drug design. Historically most 

dynamics studies went after structures with interesting physical properties, or those that were 
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interesting to the fundamentals of biochemistry. The few attempts at combining MD and drug 

design have been quite productive, but as the concept of combining these techniques is still 

quite new it is difficult to ascertain extent of that productivity . A text-mining and citation tracking 

foray reveals that of 35 studies performing molecular dynamics on potential drug targets since 

2001 (252, 253, 263-296), 21 of these resulted in the synthesis of an active inhibitory molecule 

(131, 263, 287, 291, 294, 297-312). That is not to say that studies without verified synthetic 

molecules have been unsuccessful; many computational investigators lack the facilities to 

synthesize and test potential drug-like molecules. When facilities or collaborations exist, it still 

may take time to translate computational results into wet-lab successes. All told, a 60% success 

rate in the last dozen years is still nothing to sneeze at.  

 The response from key figures in the drug design field has been unanimous, whatever 

can possibly be done to increase the amount of dynamic data related to drug design should be 

done. High-throughput GPU powered MD facilities, black box servers for the generation of 

Markov model structures, integration of data resources, and improvement in protein and small 

molecule forcefields have all been suggested as ways to facilitate the incorporation of dynamic 

information into drug design (313-319). Computational methods that give additional structural 

information about receptors are already becoming invaluable to the process.  

1.5 Small molecule development 

 

 With a thorough understanding of the target, the pathway, and the structure in hand, the 

final step towards drug design or investigation is to determine the ligand possibilities available. 

When receptor structure is unknown, or where there are multiple substrates with binding data 

available, there are a range of methods possible to assist in the development of small 

molecules. The broad field of quantitative structure-activity relationships (QSAR), bootstrapping, 

bioisostere and rescaffolding methods are just a few(320-323). When a receptor structure is 
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available however, computational tools can provide a considerable advantage over either high-

throughput screening or "spaghetti-to-wall" synthesis. It is generally agreed that the return on 

investment for chemical high-throughput screens is lower than expected, and they are limited by 

the contents of the screening library. Similarly, purely virtual compound screens suffer from a 

staggering number of algorithmic options, as well as a lack of consensus in scoring methods for 

potential drugs (319). An alternative to high-throughput screening that has performed well is 

chemical fragment screening. In these experiments low molecular weight molecules are 

screened for binding affinity against a target. Once small fragments are identified, these results 

are typically combined with crystallography and computational methods to develop a more drug-

like compound. A review by Murray et al  presents a list of the numerous successes in both 

industry and academic literature (324). Fragment-based drug design is an excellent example of 

how the combination of experimental and computational techniques can be more productive 

than either technique alone.  

  As structure building and conformational optimization for small molecules have become 

commonplace, these methods will not be discussed. In the last stage of the workflow discussed 

in Figure 0-1, design of small molecules for either clinical inhibition or fundamental inquiry is a 

common pursuit when studying a biomolecular system. Molecular modeling and docking, as well 

as novel structure reoptimization methods can considerably improve the pace at which a new 

molecule can be brought to bench. Additionally, this is the part of the workflow where 

computational chemistry has been most frequently applied. The following chapter sub-sections 

will focus on techniques relevant to the previous discussions, and new advancements in the 

field.  

 It is important to note that with respect to small molecule development, there are a 

spectrum of goals that can be worked towards. Small molecule design can include optimization 

of physiological transport properties, tuning of binding, increasing stability in vivo, and selecting 
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for various protein isoforms or multiple targets. As discussed in section 1.3.3, tight binding is not 

always the goal of a drug design project. Tuning a small molecule to target a range of proteins is 

becoming increasingly popular as polypharmacology catches on. Furthermore, the behavior of a 

small molecule inside a body needs to be considered. Many drug leads that perform 

spectacularly in vitro have little or no in vivo activity, alternatively off-target effects can result in 

considerable toxicity. Pharmacokinetics must be considered as well. The suite of biological 

processes known as ADME (absorption, distribution, metabolism and excretion) all affect the 

pharmacokinetic efficacy of a drug and there are numerous computational methods directed at 

tuning these properties, the well known "Rule of five" is the result of one such study.  

1.5.1 Small molecule docking 

 In assessing the interaction between a ligand and receptor, a conformation for the ligand 

is required. Numerous algorithms have been developed since the 1980's to perform this task, 

and it has been largely established that docking is a good way to generate a putative ligand 

binding conformation. While the number of docking programs has proliferated over the years, 

the fundamental protocol remains the same. Generate a set of starting structure guesses, and 

score them to assess binding or interaction affinity.  

 Generating the docked structures can be done in a number of ways. Docking a rigid 

ligand to a rigid receptor has long since been abandoned as inefficient and ineffective for small 

molecules, so these historical techniques will not be discussed. The dominant paradigm places 

flexible ligands into protein active sites of variable flexibility. Many programs still use a rigid 

receptor, while some include side chain "softness", while some accommodate docking to a 

group of related structures. Of the techniques commonly in use today, programs can be sorted 

by algorithm: Monte-Carlo methods, grid-based methods, genetic algorithm methods, fragment-

based methods, and "soft-docking".  
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 Monte Carlo methods rely on the statistical theory of Metropolis et al. (325). In its 

simplest form, this method can be thought of as a repeated series of three steps. A ligand is 

moved in cartesian space, the new position is evaluated by some heuristic, and then the move 

is accepted if the new position is more energetically favorable, or rejected if it is above an 

energetic threshold and statistical probability based on a Boltzmann distribution. In the program 

AutoDock, the AMBER force field is used for energetic scoring(326). Frequently Monte Carlo 

steps are used as a cheap form of minimization, such as in ProDock(327). The stochastic 

nature of the search means that compared to many other docking algorithms, MC methods can 

be slow. There are some structural shortcuts that decrease the computational cost, such as 

representing the protein receptor as a grid rather than an explicit 3D structure. A particularly 

interesting new stochastic method is swarm optimization, where the search is conducted using a 

model of swarm intelligence. The method of particle swarm optimization was originally 

developed to model flocking behavior, but was observed to be a mathematically efficient method 

for optimization. SODOCK(328) and PSO@AUTODOCK(329, 330), are just two examples.  

 Systemic search methods use an algorithmic approach to explore all possible 

conformational space available to a ligand, within a designated interaction space. GLIDE(331, 

332) performs an exhaustive brute-force search, as does FRED(333). Another way of 

performing a systemic search is to apply a  genetic algorithm. In the programs GOLD(334) and 

AutoDock(335), ligand docking is treated like an evolving system. A population of ligand 

conformations are generated, moved, and ranked. Poorly scoring conformers are removed from 

the pool and the process is repeated with the newly culled ligand pool.  

 Fragment based methods explore the protein binding site by decomposition of the ligand 

into small pieces which are placed in the active site, providing seeds for reconstruction of the 

ligand. While there are a range of methods for fragmentation of the ligand and placement of the 

initial fragments from which building will proceed, nearly all of them use an interaction based 
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assessment. Fragment division is typically performed in a manner that will leave major 

functional groups intact. For example, FlexX severs the ligand at all acyclic single bonds. This 

would leave protein backbone fragments and Murcko cyclical drug fragments intact (336-340). 

The advantage of the fragment based methods is their relative speed. Pre-assessment of the 

protein binding site, and the incremental construction of the ligand minimizes the amount of of 

calculations performed per docking solution(340, 341).  

 While there are many methods used to generate the set of ligand conformation, 

evaluation of the conformations is also required. A plethora of scoring algorithms is available, 

and a thorough review of recent developments is available in Ramsland et al. (342). 

Comparative studies of docking and scoring algorithms for the past few years have universally 

reached the same conclusion. While current docking methods all are capable of generating 

excellent docking conformations, the scoring algorithms are insufficient and generally are 

difficult to assess. Inclusion of solvation estimates, entropy, knowledge-based scoring based on 

database information, and even machine learning has only moderately improved the situation, 

and in no system has one scoring method proven unequivocally superior. In most cases human 

assessment of the docking conformation is still required. Regardless, the ability to generate 

structures that are reliable, even when a human eye is required for the final assessment, is a 

significant achievement.  

 

1.5.2 Lead optimization 

 It frequently happens that a small molecule is found to bind a target protein, just not with 

a particularly good dissociation constant. When a structure of the protein is available, and the 

ligand has been modeled, computational lead optimization can be performed. Before the 

development of explicit algorithms for optimization, much of the restructuring of the ligand was 
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done by eye. Newer methods however have increased our ability to explore the chemical space 

available for synthesis and more accurately assess active site interactions.  

 One popular computational technique for retooling small molecules is one that was 

borne out of the combinatorial docking studies. The generation of ligand libraries facilitated the 

generation of ligand fragment libraries. CAVEAT was the first program designed to mine 

fragment libraries in the hopes of retooling lead compounds(343). Fragment-space searching 

seeks to replace unfavorable pieces of bound ligands with small molecule fragments in the 

hopes of improving the binding. Various protocols incorporate shape complementarity, 

electrostatics, desolvation, and more recently explicit water binding (344-348). Upon obtaining a 

docked conformation, a researcher inspects the binding pose and either by eye or using a 

scoring method assesses which contacts or contact regions are negatively impacting binding. A 

region of ligand is selected to be replaced, or extended, and then a global search of the 

fragment library is used to do the substitution. Fragments are pre-screened before docking by 

assessing the region of the receptor in which they'll be binding and if possible a pharmacophore 

can be designated as a desired point of interaction. A library of derivatives is generated in this 

manner and they can be docked, scored and compared to the original ligand. There are several 

drawbacks to this method, one of which is that only fragments currently in the fragment library 

can be assessed. Second, it is highly dependent on the initial selection of regions for 

replacement and iterative investigation can be time consuming. However, the recent 

implementation of the fragment search software ReCore (349-352) has shown some promise in 

the literature (353).  

 Other methods of lead optimization are based on free energy perturbation theory (FEP), 

and thermodynamic integration (TI). While some computational groups have applied these 

methods to drug design, in very productive ways, there are no "easy" ways to perform these 

calculations. Application of these methods has been successful in the design of fructose 1,6-
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bisphosphatase inhibitors (354-359), COX1-COX2 inhibitors(360-363) and fatty acid amide 

hydrolase inhibitors(364-367). Cheaper and easier methods based on molecular 

mechanics/generalized born solvent approximation (MM/GBSA) have not proved accurate 

enough for functional lead optimization(368).  

 

1.6 Conclusions  

 As computational techniques advance and become both more sophisticated and less 

expensive, there is no denying that there is benefit to inclusion at every step on the path to 

biochemical understanding. From target identification and systems biology to structure 

interrogation and ligand design, computational chemistry can play an important role.  

 Application of bioinformatic and statistical techniques to genome level data has the 

ability to deconvolute the massive amount of data generated. High throughput sequencing is 

capable of generating a staggering amount of data very quickly, and it's only recently that 

computational techniques have been catching up to the pace. Working in conjunction with 

geneticists and clinicians, bioinformaticians have the unique ability to find novel targets and 

biomarkers hidden in the data. When data mining is applied to non-human genomes it opens 

the door to finding novel antimicrobial targets. Beyond that, the foundation of human genetics 

was laid by studying regulation in model organisms. We now have the ability to more deeply 

understand the underlying patterns of gene expression and regulation in simple organisms, 

which may in time lead to a greater understanding of human genetics.  

 With that in mind, the extrapolation of graph and network theory to biological data has 

unprecedented potential to change the way we think about biosystems. Not only does this type 

of modeling lead to a clearer understanding of the interactions in a system through 

deconvolution, mathematical modeling has revealed entirely new paradigms for drug design. 
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The prospect of generating as complete a network model as possible, and then probing the 

effects of perturbations on the system holds a lot of promise. The validation of the work of 

Csermely and Nussinov on network perturbation applied to multi-target drugs has opened the 

door for a completely new method of drug design. Multiple protein-binding ligands and network 

based repurposing of known molecules may help remedy the well-known dearth of novel drugs 

being released. Application of network analysis to both gene and transcript level data allows the 

formation of meaningful connections and novel perspectives in drug design. 

 At the level of atomic structure of biomolecules is where computational chemistry really 

shines. When you get down to the level of a 3D atomic structure, computational chemists are 

able to give insights on structure and function that are just out of the reach of experimentalists. It 

is at this point that the in vitro data from experiment can be at least partially interpreted by 

computational results at the atomic level. Static assessment of protein, RNA or DNA structures 

can help us understand the physical characteristics that are observed in experiment. 

Electrostatic and surface properties govern the subcellular interactions of biomolecules; 

computational investigation can help give context to those interactions. Protein-protein binding 

is one of the major areas where electrostatic and surface properties can assist experimentalists. 

Though determination of the protein-binding interface can be examined by mutagenesis, 

computational methods can help guide those studies and vice versa. With respect to dynamic 

information, such as normal mode or molecular dynamics studies, the level of understanding 

increases exponentially. As we begin to think about proteins as more than just rigid bodies with 

a catalytic function, dynamic structural information becomes a necessity. Molecular dynamics 

studies in particular are both highly valued, and rarely applied. There is incontrovertible 

evidence that MD investigations are highly productive when applied to drug design, but both 

computational cost and skill required are hurdles that need to be overcome.  
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 Small molecule studies are the oldest application of computational chemistry, and also 

some of the most well developed. Algorithms for in vacuo structure and energy optimization 

became the gold standard long ago and we can only hope that much of the rest of 

computational chemistry goes that way as technology advances. Modeling of protein-ligand 

complexes has reached the point where the question is no longer "Did we find a  binding 

orientation?" but is rather "Which one of these is best?". Scoring and binding energy 

assessment accuracy still lag behind the generation of docked conformations, but not for lack of 

effort. In this area, computational chemists and skilled modellers still require the input and "eye" 

of skilled wet-lab chemists. However, with respect to reoptimization of binding conformations, 

fragment space searching is a great assist in the generation of derivatives. A thorough fragment 

space search capably assesses the result of performing literally millions of substitutions on a 

molecule. While there is no software that will hand over a "magic molecule", these types of 

studies can provide inspiration, and are an excellent starting point for conversations between 

computational chemists and synthesists.  

 Computational chemistry can make critical contributions at all stages in the biochemical 

discovery workflow. From identifying targets and facilitating genome level analysis, to the 

development of systems and network biology, to structural assessment, drug design, and small 

molecule optimization, integration of computational techniques is becoming essential. The ability 

of computational methods to handle extremely large datasets, be it genomic or dynamic puts a 

wealth of information within reach. Whether for fundamental or goal-oriented studies, the 

combination of computational and experimental work is extremely powerful.   

 Looking forward, across all facets of biochemical discovery, communication and 

collaboration is key in solving the challenges we face. While presented as four separate steps in 

a process, target identification, network analysis, structural investigation and small molecule 

development each have the potential to affect other parts of the discovery pathway. 
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Collaborations between experimentalists and computational chemists are highly valued,  but 

beyond that, to really make the most of the new developments in computational chemistry, we 

need to expand our reach.  

 The rapidly expanding amount of "omics" data available is presenting a huge challenge 

in data storage, analysis and interpretation. To help us develop creative and innovative ways to 

meet the challenges we face we need to "think outside our field". Network and graph theory 

have permanently changed the way we think about genomic data and small molecule inhibition, 

though the initial studies had nothing to do with biochemistry. Bioinformatics is assisting in 

building a bridge between computer science and biochemistry, but the application of purely 

statistical techniques to biology has not been entirely helpful.  

 The initial results from genome wide association studies were considered a let-down, but 

we as scientists should know better than to approach a disproven hypothesis as a failure. The 

common-variant hypothesis failed. Genome wide association experiments did not. In fact, they 

are changing our perception of human genetics is linked to disease. Now that we have access 

to large scale genomic data, we should move past reductionist techniques and attempt to 

understand the complex interactions underlying our complex diseases.  

 When we cannot communicate our experiments, results, or interpretation, science 

suffers. As we layer network theory on top of dense systems biology information to find 

understanding in a broader context, a major challenge will be finding a way to effectively present 

our findings. While current network visualization techniques can build off of pre-established 

ideas, we need to develop a visual language that can effectively communicate the depth of 

information in pathways networks and systems. In the future perhaps we can look to cognitive 

psychologists or graphic designers to help us find new methods to express our research in a 

way that doesn't overload our brain-processing power.  
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 Novel drug targets and disease associated proteins are being identified regularly and in 

order to really get to the root of how these proteins tie into their network, we need to understand 

them. Our ability to quickly and accurately determine molecular structure has grown immensely, 

providing a wealth of information for modelers. Over 30% of the structures in the RCSB protein 

data bank have been deposited in just the last three years. As our ability to investigate structure 

grows, we need to propagate that information both backwards and forwards in our discovery 

process. Surface analysis methods have not dramatically changed in recent years, but novel 

applications of those methods should be something to strive towards particularly as inhibition at 

the protein-protein interface becomes popular.  

 There is a resounding chorus calling for more molecular dynamics in drug design, and 

one would hope that in the future, the dynamic properties of a potential drug target would be 

commonly investigated. Rationally designing a clinically valid therapy from a single crystal 

structure is similar to trying to figure out the ending of a movie from a still frame. You may be 

able to figure out some bits and pieces and make a good guess, but you're still missing the big 

picture.  

 While we should constantly strive for higher accuracy and better sampling methods, 

current methods allow for a basic investigation even into relatively large biomolecules. As both 

the methods and computational power improve, there is no doubt that in the future molecular 

dynamics should become a much more widely applied technique.  

 Challenges in the future of small molecule design seem to be largely human. Both the 

experimental and computational technologies are well advanced with respect to building new 

drugs, but a quick survey of the literature indicates a disconnect. In the future small molecule 

development needs to be enthusiastically interactive. The plethora of tools designed for small 

molecule building, docking, ranking, optimization, and physiochemical property determination 
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are staggering, and this proliferation of techniques and publications can be unwieldy to process. 

Similarly the work involved in synthesis, purification, assay development and testing can be 

gargantuan.  

 Purely computational methods lack the persuasiveness of in vitro experiments as the 

results are semiquantitative at best due to the approximations that are involved. Frequently 

organic chemists balk at synthesizing molecules from a pure computational screen. This is 

appropriate; frequently structural biologists and computational chemists are less familiar with the 

practical aspects of organic synthesis and lack the ability to quickly weed out structures that a 

specialist in pharmacokinetics or drug metabolism would easily spot as problematic. Synthesists 

overlook the capabilities of computational chemists when it comes to suggesting ore 

reoptimizing a structure. It is far faster to determine whether a substituent location will enhance 

or interfere with ligand binding computationally than it is to synthesize and test. Also, the ability 

to search millions of subtituent fragments may inject creativity into the drug design process.  

 Try as we might, no individual will ever be capable of working effectively on all facets of 

biochemical research. Rather than attempt to create polymaths of us all, collaboration and 

communication should necessarily connect experimentalists and theorists at all levels of 

biochemical discovery. Hopefully in the future our ability to generate and manage large datasets 

should go hand in hand with generating and managing profound discoveries.  

 



40 

 
 

Chapter 2 Conformational analysis of Clostridium difficile Toxin B and 
                 its implications for substrate recognition1 

2.1 Background 

One of the most common and serious hospital-acquired infections is Clostridium difficile 

(C. difficile), responsible for a suite of diseases collectively known as Clostridium difficile 

associated diseases (CDAD) (369, 370). C. difficile typically affects patients undergoing 

antibiotic treatment for other infections, as it leaves the GI tract susceptible to colonization by 

this highly virulent pathogen due to the reduced protection by the normal gut microbiota (371, 

372). Currently, U.S. health care costs associated with treating CDAD are estimated to be 

between $750 million and $3.2 billion (372-376). With the emergence of an epidemic strain that 

is both hypervirulent and more resistant to current therapies (377-379), costs will surely 

continue to rise, so new approaches to treating CDAD are needed. 

 C. difficile is a spore forming bacillus, and thus is difficult to effectively sanitize against, 

as the spores are easily spread 

from person to person and can 

survive most normal sanitization 

methods (380). Figure 0-1 shows 

an electron micrograph of both a 

vegetative bacillus and a spore, 

red and blue respectively (381). 

 Although two thirds of 

patients infected with C. difficile are asymptomatic, those that are symptomatic can experience 

severe complications such as fulminative colitis which is potentially fatal (372). A recent upswing 

                                                           
1
 Sections of Chapter 2 have been previously published (449)  

Figure 0-1: Electron micrograph of C. difficile spore (blue) and bacillus (red).   
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in symptomatic infection rates has spurred numerous hospital facilities to track and report 

outbreaks as they occur. In one instance, it was observed that that patients who acquired a C. 

difficile infection averaged a hospital stay of 3.6 days longer than unaffected patients, and 

increased their average hospital cost by $3669(375). C. difficile is also a rapidly changing 

bacterium that has acquired progressively more antibiotic resistance. Though this resistance 

varies by strain and geographic location, strains can be found that exhibit resistance towards 

most antibiotics.(377, 382-384) It also has been implied that the increase in C. difficile infection 

is due to the emergence of such widespread antibiotic resistance (382). As the C. difficile is an 

opportunistic pathogen, taking over when healthy intestinal flora are suppressed by broad-

spectrum antibiotics, antibiotic resistance is prerequisite to infection. Currently the main form of 

treatment for this antibiotic-initiated disease, are stronger antibiotics. Treating a naturally 

antibiotic-resistant bacterium with ever-stronger doses of antibiotics makes no sense. It simply 

makes C. difficile harder to treat. 

The complement of diseases known as CDAD is the result of cellular damage in the 

intestines due to exogenous virulence factors produced by the bacillus(385, 386). C.difficile 

produces two large cytotoxins known as Toxin A and Toxin B, referred to as TcdA and TcdB. 

These toxins are members of the type A glucosyltransferase family, and cause cellular damage 

by targeting small G-proteins such as RhoA, Rac and Cdc42 (387). Utilizing their UDP-Glucose 

as a substrate, the toxins glucosylate a conserved threonine residue on their target G-protein, 

inactivating it permanently and ultimately leading to cell death (387, 388). The toxins themselves 

are large, and consist of four domains. Both contain C-terminal repetitive oligopeptides referred 

to as the CROP domain, which acts as a receptor binding region, a translocation domain and 

the N-terminal catalytic domain responsible for glucosylation (387, 389-391). 
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2.2 C. difficile toxins A and B 

C. difficile damages the intestines primarily through the action of TcdA and TcdB as 

described above (371). These are members of the lethal subclass of large clostridial toxins 

(392). The holotoxins are ~300 KD and are comprised of four domains, each having a specific 

function related to cellular uptake and toxicity (393). The CROP domain (Clostridial Repetitive 

Oligopeptide) helps to identify and bind to appropriate target cells by recognizing cell surface 

glycoproteins and inducing endocytosis (394-397). The translocation domain is responsible for 

forming a transmembrane pore capable of passing the two remaining domains from the 

endosome to the cytoplasm (397-400). A cysteine protease domain, activated by inositol 

hexakisphosphate in the cytoplasm, intramolecularly cleaves the cytotoxic glucosyltransferase 

(GT) domain from the holotoxin (401-403). This last step is critical since at this point the GT 

domain is released into the cytosol where it can act on the RhoA, glucosylating residue T37 in 

the switch I region (or its equivalent S/T residue in the case of other Rho family members) (388). 

Glucosylation of RhoA permanently inactivates it, causing defects in the cell-signal pathways 

that lead to cell rounding and ultimately apoptosis (388). 

While one could develop new antibiotics to better target C. difficile, resistance is likely to 

be a major concern with any new agents. A potentially complementary approach to antibiotic 

therapy is to develop methods that target and neutralize the GT domain of the toxin (404).  

Several steps in the etiology pathway could be targeted for inhibition, however this work focuses 

solely on the glucosyltransferase domain. 

Several approaches are currently being used to target TcdA and TcdB. Clinical studies 

are under way with humanized monoclonal antibodies that recognize and sequester the toxins, 

but this approach has some issues and will not be suitable for all patients (378, 405, 406). 

Peptides and small molecules that recognize and inhibit toxin function are also being studied 
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(407). By better understanding the domain structures of the holotoxin, it will be easier to design 

or select molecules that disrupt their activity. 

2.3 Glucosyltransferase domain of TcdB 

The GT domain from TcdB (PDBID: 2BVL) was crystallographically characterized 

several years ago (408). This domain was found to be a 543 amino acid domain that adopts a 

characteristic GT-A glucosyltransferase fold, and binds a catalytically-important Mn(II) ion. 

Previous studies comparing the C. difficile toxins to other glucosyltransferases, as well as 

extensive mutagenesis analysis on the toxins themselves, have identified a number of amino 

acid side chains critical for activity (409-411). Figure 0-2 illustrates some of the important 

structural elements of TcdB that will be discussed later in this chapter. A four helix amphipathic 

bundle comprising residues 1-87 (shown in blue) has been implicated in membrane association 

(412); we will show that it is a key component in the large scale molecular motions exhibited by 

TcdB. Residues 510-522, shown in yellow, are part of a mobile loop which supports the catalytic 

manganese and includes a standard DXD motif. The two regions shown in cyan will be referred 

to as "upper promontories". The function of these structural motifs is not yet understood, 

although they participate in a scissoring motion that will be described below. The beta hairpin 

shown in purple (residues 374-387) will be referred to as the active site flap and may have 

implications in catalysis and substrate recognition. The green region (residues 436-456) has 

been shown to be involved in recognition of RhoA by TcdB (413). Finally, the red region 

(residues 483-497) shows motions that are highly correlated to those of the recognition site 

(residues 436-456) in our analyses (411, 414, 415). Shown in transparent orange is RhoA, 

following docking. 
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Figure 0-2: Structure of TcdB Glucosyltransferase domain 

Relevant regions for discussion: The four helix bundle is shown in blue, the mobile loop containing the DXD 
motif is in yellow, the catalytic manganese is shown in black. Regions shown in green and red are involved 
in RhoA recognition. The B-hairpin shown in purple will be referred to as the active site flap. The upper 
regions in cyan are two flexible promontories unique to TcdB. RhoA is shown in transparent orange. 

 

2.4 Experimental design and rationale 

 A comprehensive understanding of the conformational space that TcdB can occupy will 

better guide design of potential inhibitors. TcdB must pass through a pore to gain entry into the 

cell, therefore it is expected to have a flexible form to facilitate transient unfolding and refolding 

during translocation. Hinge region (416, 417) and normal mode analysis (418) were applied to 

determine the location and extent of the primary flexions. Both of these techniques have 
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previously proven useful in determining the major motions attributed to well-studied systems, 

and give a fundamental impression of the overall motions one should expect to see in a flexible 

protein. 

 Long timescale unbiased molecular dynamics (MD) simulations may give insight about 

the conformational space a protein occupies, as well as the mechanism of transition between 

those conformations. Additionally, the atomic scale detail in these simulations allows us to take 

a look at how large scale motions can have consequences in small regions, such as within an 

active site. 

Understanding in a broad sense how TcdB moves and flexes both on its own and in 

contact with RhoA is expected to lead to better understanding of catalysis, substrate recognition 

and most importantly, drug design. The GT domain of TcdB has not yet been crystallized bound 

to substrates other than UDP-Glucose, and thus, nothing is known about the range of 

conformational space it can occupy, or what consequences binding to the RhoA protein might 

have. Recent evidence suggests that RhoA employs a conformational selection mechanism 

(419), rather than induced fit or lock and key. Thus, it is expected that a toxin targeting such a 

protein might have similar properties. Here we report normal mode and hinge region analysis, 

as well as long timescale molecular dynamics of TcdB. Additionally, macromolecular docking 

and long timescale simulation of the TcdB/RhoA complex was performed. Principle component 

analysis (PCA) and Generalized Masked Delaunay (GMD) analysis of the resulting 

conformations were used to help understand the conformational space TcdB occupies both 

alone and in complex with RhoA as well as the nature of the transitions between these 

conformational spaces. 
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2.5 Flexibility studies on TcdB 

 To quickly assess TcdB’s flexibility range, initially two computationally inexpensive 

methods were employed. A hinge region analysis was performed to determine simply if there 

were regions that would be amenable to macroscopic motions. Following this analysis, normal 

mode calculations were carried out. 

2.5.1 Hinge region analysis 

 

 Hinge regions are determined by finding the consensus between two methods, 

StoneHingeP and StoneHingeD. StonehingeP incorporates ProFlex, which decomposes the 

structure into rotatable and non-rotatable bonds. These are then used to analyze flexibility 

based on bond rotation constraints. StoneHingeD incorporates DomDecomp, which uses 

gaussian normal mode analysis. StoneHingeP identifies the two largest rigid domains in the 

protein, and designates hinge regions as residues between these domains. StoneHingeD 

identifies hinge residues as those that are between domains or at domain boundaries, following 

normal mode analysis. StoneHinge (420) determined three major hinge regions on TdcB. The 

total search returns any StoneHingeD residue within five residues of a StoneHingeP residue. 

The results for TcdB are shown in Figure 0-3. These hinge regions involve the residues 

connecting the four-helix bundle to the body of the protein, as well as the region on the 

underside of the active site, and between the two upper promontories to either side of the active 

site. 
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2.5.2 Normal Mode analysis 

 Once it was determined that hinge regions were present that would allow for 

macroscopic conformational changes, a Normal Mode analysis was carried out. elNemo (421) 

was used to find the low energy modes of TcdB. Normal-mode theory involves a harmonic 

approximation of the potential energy around a global minimum, in this case the crystal structure 

is assumed to be near a minimum. This allows the solution of the equations of motion by 

diagonalization of the Hessian matrix. The eigenvectors of this matrix provide the normal modes 

and the eigenvalues are the square of the frequencies of the oscillations. Every atomic 

displacement vector is a linear superposition of normal modes weighted by each of its 

Figure 0-3: Hinge regions identified by StoneHinge shown in green.  

 Backbone is shown as a chain trace, hinge residues are represented as green 
spheres. Hinge regions are observed to occur between regions of flexibility in 
the normal mode analysis 
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eigenvector coordinates for the atomic mass, an amplitude, phase, and frequency. The normal 

modes were represented by a moving gif. Several of the modes appeared to have significant 

effect on the conformation of the active site, and this information was used to assist in 

generation of a putative RhoA-TcdB complex. The primary motions were a wagging of the four 

helix bundle, and scissoring of the upper promontories described in Figure 0-2. The intersection 

of these modes results in an opening and closing motion in the active site center.   

2.6 Macromolecular docking 

 Currently no crystal structure of TcdB bound to RhoA exists, though individual crystal 

structures of both TcdB and RhoA are available. Studies performed by the Aktories group 

determined the conformation of RhoA preferred during attack by TcdB (388). It’s also known 

that TcdB functions by glycosylating a key Threonine residue on RhoA (388, 422). The 

combination of these pieces of information was then used to begin study of the protein-protein 

interface during the glycosylation of RhoA. 

 The first step in understanding the protein-protein interface was macromolecular docking 

to determine whether or not the structures were compatible in their near crystallographic forms. 

To this end, a multi-step protocol was developed. Rough dockings using Hex 4.5 (423, 

424)were performed, followed by a more refined search using RosettaDock (425). 

2.6.1 Hex 4.5 docking 

 Hex 4.5 models rigid protein bodies using three dimensional expansions of real 

orthogonal spherical polar basis functions for both shape and electrostatics. By using the vector 

coefficients of these basis functions along with a surface representing the shape of the protein, 

it’s possible to evaluate a docked conformation through the overlap of pairs of these functions. 

The docked conformations being evaluated are generated through a Monte Carlo search 
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allowing for translational and rotational steps. This relatively simple and fast search was used to 

find initial conformations that place Threonine 37 of RhoA near the active site of TcdB. 

2.6.2 RosettaDock docking 

 To further refine the docking poses, RosettaDock was employed. Rosettadock allows for 

additional steps of minimization and side chain refinement. Beginning with a coarse grained 

Monte Carlo search, rigid body docking is carried out, following 500 Monte Carlo steps, explicit 

side chains are added using a backbone-dependent rotamer packing algorithm, and are 

optimized using a simulated annealing Monte Carlo search. A Davidson-Fletcher-Powell quasi-

Newtonian minimization technique (425) is employed to find a local minimum of the structure 

with the newly added sidechains. This process of repacking and optimization is repeated 

through fifty cycles. Initially, side-chains are repacked in a sequential manner, but once every 

eight cycles, the side chains are repacked combinatorially. Following side chain repacking, the 

structure is randomly perturbed by rigid body translation and rotation, and the process is 

repeated.  

 

Figure 0-4: Flowchart of RosettaDock algorithm  

Reproduced from Gray et al(1) Rosetta dock uses a series of low cost conformational searches followed by 
high resolution refinement steps to generate docked conformations 
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 Docking results for the initial trials did not result in a “Docking Funnel” following cluster 

analysis indicating that no preferred low energy conformation was reached. Failure to find a 

binding conformation using RosettaDock is typically due to conformational flexibility in one or 

more of the binding partners. It is known that RhoA has a region of high flexibility, however 

these studies were performed with the TcdB crystal structure. To incorporate the information 

from the flexibility studies discussed in Section 2.5 Flexibility studies on TcdB, we repeated 

these experiments with the most open of the normal mode conformations. 

Figure 0-5: Structure Energy plots generated following RosettaDock  

Panel A shows RhoA docking to the crystal structure of TcdB, and it can be observed that all energies are 
relatively high, and no cluster of low energy structures is observed. Panel B shows RhoA docked to the 
normal mode relaxed structure of TcdB. A reduction in docking energy is observed, and a few low energy 
regions are apparent. Of note is the improvement in docking when the normal mode structure of TcdB is 
utilized, indicating that flexibility in the face presented for docking may be a feature in TcdB’s target 
recognition process. 
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2.6.3 Normal Mode dockings 

 Following the failure of crystal-crystal conformation docking, The steps described in 

sections 2.6.1 Hex 4.5 docking and 2.6.2 RosettaDock docking were repeated using the crystal 

structure of RhoA and the most open normal mode conformation of TcdB. 

The normal mode docked conformations showed improvement in binding over the 

crystal-crystal docked structures in proximity of the glucosylation site to the catalytic 

manganese. In the original docking, threonine 37 had a closest approach of 18 Å to the catalytic 

manganese. Subsequent docking to normal mode structures yielded a closest approach of 

12.38 Å. A fully docked conformation might be expected to have a contact distance of between 

7.1Å and 7.7Å based on comparison to several glycosyltransferases crystallographically 

characterized in the presence of UDP and an appropriate acceptor (426, 427). Additionally, 

improvements were noted in the structure/energy plots. Overall complex energy was lower, and 

docked solutions are more tightly clustered. However, while the use of a normal mode structure 

improved the docking, none of the structures that were obtained were catalytically valid. It was 

concluded from these results that while the normal mode calculation represented some 

measure of the flexibility of the toxin, it was insufficient to model a conformation capable of 

glucosyltransferase activity--particularly with respect to the regions in and around the active site. 

2.7 Molecular dynamics and associated analyses 

To fully elucidate the interaction between these partners, all atom molecular dynamics 

simulations were performed. Apo-TcdB and the structure of the normal mode conformation 

docked to RhoA (NM-RhoA) were simulated for a minimum of 150ns. Our purpose in performing 

a full all-atom simulation was to determine what conformational changes occur in the 

TcdB/RhoA pair to allow binding when compared to TcdB in the absence of substrate. 
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 All simulations were performed using a parallel build of NAMD(428) employing the 

CHARMM (429) force field on the WSU grid. The simulations were run on eight nodes, of eight 

processors each.  Structures were solvated, and appropriate counterions were added to reach 

0.5mM NaCl. A timestep of one femtosecond was used, along with a 1-4 scaling factor of 0.4, 

recommended for protein simulations, to prevent additional contribution of bonded atoms to the 

calculated Van der Waals forces as this energetic contribution is partially included in the 

torsional terms of the force field. As in any molecular motion, there is energy associated with 

folding or unfolding of a protein. In a natural system, this energy is typically dissipated into or 

taken from the surrounding environment, however in a molecular dynamics simulation; the 

extensive surroundings that typically accommodate this thermodynamic process are absent. In 

order to maintain the simulation temperature in the form of a Boltzmann distribution around 

300K, the velocities and trajectory of the atoms is regularly rescaled using a method based on 

the Langevin equations of fluid motion. In the context of a simulation, the technique of Langevin 

Dynamics (430) provides apparent viscosity and an element of randomness while maintaining 

the Boltzmann distribution around the selected temperature. As the simulations were run 

piecewise, they were joined, and all water and counterions were removed using CatDCD (431) 

to facilitate statistical analysis. 

2.7.1 Principal Component Analysis 

In order to more effectively compare the conformational space occupied by TcdB 

through the MD trajectories, PCA was applied. PCA is useful in that it decomposes the complex 

motions of the simulation into the major types of movements that are observed across the entire 

trajectory. These can be observed as series of conformations varying in a single dimension. 

Analysis of the long MD simulations by PCA indicates that the principal component 

motions of the simulations echo the normal mode conformations as seen in Figure 0-6. Figure 

0-6A shows a superposition of snapshots from the Apo molecular dynamics simulation. Figure 
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0-6B shows the results of the fundamental normal mode analysis. Figure 0-6C shows the first 

principal component extracted from the simulation of Apo-TcdB. Figure 0-6D displays the first 

principal component of the simulation of NM-RhoA. In normal mode analysis, MD, and PCA, the 

wagging motion of the four-helix bundle dominates, while the scissoring motions of the 

promontories is secondary. In each case, movement of these three regions affects the 

conformation of the highly flexible active site. The coupling of the motions of large peripheral 

structural elements of TcdB with highly specific rearrangements in the active site appears to be 

relevant to the process of substrate accommodation. Because normal mode analysis accurately 

predicts global protein movements in approximately 70% of cases (421, 432), agreement 

between these methods can be used as a measure of validation for the molecular dynamics 

simulations.  In addition, it is apparent that in the NM-RhoA, the extent of flexibility is highly 

restricted (see Figure 0-6C and Figure 0-6D). Qualitatively the motions remain quite similar, with 

the exception of movement in regions near the active site which will be discussed below. 
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Figure 0-6: Comparison of general motile features of TcdB analyses and simulations 

All structures are colored by rainbow per residue to allow better comparison between structures. A) 
Superposed frames representing various conformations in the Apo simulation,  transparency indicates 
progression through the simulation. B) normal mode structures of TcdB in the apo form. C) First principal 
component of the Apo simulation. Degree and direction of displacement is shown by broadened ribbons. D) 
First principal component of NM-RhoA simulation. 
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Upon visual inspection the primary normal mode shows considerable similarity to the 

principal component motion of both the Apo-TcdB and NM-RhoA simulations throughout both 

trajectories, as can be observed by comparing panels B, C and D from Figure 0-6. It should be 

noted that the degree of motion is less pronounced when the protein is in contact with RhoA. 

This result is expected since there is a physical object impeding flexibility. Also, the second 

principal component, represented by the wagging of the upper promontories comprises a larger 

fraction of the variance in the Cartesian motions of both simulation 

Figure 0-7: Crossplots and Breakdown of Variance for Apo-TcdB and NM-RhoA simulations 

Panels A and B are the crossplots of the first and second principal components of the simulations. Each data point 
represents a single conformation from the MD simulations, and can be used to interpret the occupancy of the 
conformational space of a simulation. Panels C and D plots of the proportion of variance to Eigenvalue rank. These 
indicate relative contributions of the lower order principal components.  
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 It is apparent in panel A that Apo-TcdB has a broad range of conformations available. 

Panel B shows three clusters of conformations observed during the NM-RhoA simulation, one of 

which is heavily populated. Plots of the proportion of variance to Eigenvalue rank indicate 

relative contributions of the lower order principal components. In the NM-RhoA simulation a 

slightly higher contribution from the primary normal mode is observed relative to the Apo 

structure. The slight decrease in the contribution from the second principal component in the 

NM-RhoA PCA analysis indicates that the scissoring motion of the upper promontories is less 

prevalent. 

The primary difference between the Apo-TcdB simulation and the NM-RhoA simulation 

occurs upon approach of RhoA to the catalytic center of TcdB. In the Apo-TcdB simulation, the 

active site flap (Figure 0-2 shown in purple) performs a repetitive back and forth motion, never 

completely obstructing the active site. During the course of the NM-RhoA simulation, the active 

site flap folds down directly over the TcdB active site, completely precluding access to the 

catalytic manganese. We interpret this behavior as indicative of the order of binding required for 

catalysis. In the absence of UDP glucose, the TcdB conformation required for successful RhoA 

is not accessible, and folding of the active site flap precludes close association. In the presence 

of UDP-glucose, this folding would not be possible, as the sidechains of the active site flap 

would run into the bound UDP-glucose. However, the similarities between the simulations 

indicate that the majority of the large-scale motion of TcdB has been captured, and this may be 

of interest to those designing RhoA mimics. 

2.7.2 Quantitation of RhoA-TcdB contacts 

To assess improvements in the protein-protein interface following molecular dynamics, 

three structures were analyzed. One structure was selected as a representative frame from the 
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most populated cluster throughout the simulation. The structure of the closest approach 

between Threonine 37 of RhoA and the catalytic manganese of TcdB was selected, as was the 

original normal mode docked structure; NM-RhoA. Table 0-1: Quantitation of RhoA-TcdB 

contacts, lists the total number of interactions, number of hydrogen bonds, hydrophobic, ionic, 

aromatic-aromatic interactions, and cation-pi interactions. Hydrogen bonds are divided into main 

chain-main chain, side chain-main chain, and side chain-side chain interactions. The structures 

of both closest approach and most populated cluster both show improvement in the total 

number of interactions relative to NM-RhoA. Between the original docking and both MD 

structures, a shift from side chain-main chain interactions to side chain-side chain interactions 

occurs. No main chain-main chain hydrogen bonds were observed in any of the structures. A 

significant increase in ionic interactions is also observed relative to the original docked 

structures. 

 

Table 0-1: Quantitation of RhoA-TcdB contacts 

 
NM-
RhoAa Closestb Clusterc 

Total 
interactions 33 45 42 

H-bonds 20 24 20 

MC-MC 0 0 0 

SC-MC 19 4 4 

SC-SC 1 20 16 

Hydrophobic 8 5 7 

Ionic 0 15 13 

Aro-Aro 1 0 0 

Cation-pi 4 1 2 
a
 Structure of RhoA docked to the most open normal mode of TcdB. 

b
 Structure of closest Thr37-Mn approach within NM-RhoA MD simulation. 

c
 Structure of representative frame from the most populated cluster of the NM-RhoA MD simulation. 
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2.7.3  Normal Mode and molecular dynamics correlation 

 In the simulation of TcdB alone, movements were observed that mimicked the normal 

mode motions we anticipated. Moreover, in the presence of RhoA, these motions were also 

observed.  To determine how well correlated the normal mode motions were to the simulation, a 

plot of backbone RMSD from the Apo-TcdB simulation to each frame of the normal mode was 

created. Periodicity across the simulation is observed, as are fluctuations indicating normal 

mode motions coming slightly in and out of phase with the simulation 

 Both a three dimensional landscape and binned heat plot were prepared to visualize the 

correlation between the normal mode and molecular dynamics trajectories. Figure 0-8 shows 

the RMSD from the normal mode structures across the dynamics trajectory. Panel A shows 

RMSD vs. Normal mode frame vs.MD frame, with coloring by RMSD. Panel B is a binned 

version of this plot where RMSD is plotted as a color scale while molecular dynamics trajectory 

frame and normal mode frame are on the y and x axes, respectively. This correlation results in a 

plot where the fluctuations in RMSD can be interpreted as the MD motions going in and out of 

phase with the normal mode conformations. For example, at roughly frames 25, 50 and 97 

within the scaled trajectory, a low RMSD relative to the most open conformation of normal mode 

(Frame 41 on the x axis) is observed. This indicates that during the course of the molecular 

dynamics trajectory, Apo-TcdB exhibited a conformer similar to that of the normal mode 

structure, rebounded from that open conformation, and returned to the same open conformation 

later in the trajectory.  
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Figure 0-8: Correlation of MD structures to Normal Mode Structures 

Normal mode frame is on the X-axis, MD frame is on the Y-axis, and RMSD is shown as gradient from blue 
(low) to red (high). This arrangement allows observation of the  correlated motions between the normal mode 
and the simulation. As the RMSD becomes low between the various normal mode structures and the MD 
simulations, occupation of the extremes of the normal mode conformations are observed. The periodicity 
seen in the plot can be interpreted as Apo-TcdB flexing through the range of normal mode conformations. 

2.7.4 Generalized Masked Delaunay analysis 

 GMD analysis shows the rate of occurrence of significant events over the course of a 

molecular dynamics simulation. To create a time-dependent contact graph sensitive to large-

scale conformational changes the GMD analysis performed utilized a Delaunay 

tetrahedralization. In this technique, a recrossing filter is applied to remove transient local 

positional changes that are the result of thermal motion. In order to separate trivial from non-

trivial motion, a protein structure is converted into a Voronoi graph in which a representative 

atom from the side chain of each residue is considered the center of the Voronoi cell.  A 

Delaunay triangulation is the dual graph of the Voronoi tessellation, but as we are in three 

dimensions, in practicality it is a tetrahedralization. The Delaunay graph, after excluding all 

faces of significant distance from the representative sidechain atoms and in combination with a 

recrossing filter, is then used to separate significant persistent motions from trivial recrossings. 

A B 
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The recrossing filter gives several angstroms leeway for atoms to thermally fluctuate across a 

plane in the Delaunay graph without that motion being considered persistent and significant. 

When a residue crosses a plane in the Delaunay graph and remains there for the duration of the 

frame window selected, that motion is considered significant and is reported as an “event” for 

further analysis. 

 A plot of events per frame is generated following analysis, where the pattern of detected 

events in the context of contact making, breaking and total activity can be observed. In our 

analysis we observed no major folding events, and used the plots for comparative analysis of 

activity patterns. 

 

Figure 0-9: GMD plots of Apo-TcdB and NM-RhoA simulations 

This analysis plots events per frame through the course of the simulation. Total activity is shown in blue, 
contact making shown in red, and contact breaking in green. The event pattern indicates that while Apo-
TcdB is flexing through its conformational space at a relatively constant pace, the NM-RhoA simulation 
undergoes a brief period of conformational rearrangement and then persists at a low level of activity through 
the rest of the simulation. 

 Figure 0-9 panels A and B are the results of a Generalized Masked Delaunay analysis 

across the molecular dynamics trajectories of Apo-TcdB and NM-RhoA respectively. Activity is 

plotted as events per frame, and is decomposed from total activity, shown in blue, to contact 

making (red) and contact breaking (green). The patterns of activity for Apo-TcdB compared with 

that of NM-RhoA are markedly different, with Apo-TcdB showing a relatively high level of activity 

throughout the simulation, while NM-RhoA very rapidly settles down and then exhibits a much 

lower level of activity throughout the simulation. This can be interpreted as a rearrangement 
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followed by reduction of the available conformational space, or alternatively, a slowing of the 

transit between available conformations. 

Throughout the Apo-TcdB simulation, the number of events per frame as shown in 

Figure 0-9 does not change dramatically, indicating a steady fluctuation between conformations 

rather than defined transitions. This can be interpreted as smooth flexion, rather than 

spontaneous and rapid conformational switches, providing support for the argument that the GT 

domain of TcdB utilizes a conformational selection mechanism to find its targets. It is likely that 

TcdB with bound substrate will have access to an alternative range of conformations that affects 

the movement of the active site flap when in contact with RhoA. While there is some overlap in 

conformational space of the Apo and bound simulations, the absence of UDP-Glucose 

precludes formation of a catalytic complex. 

2.7.5 RMSF analysis 

Over the course of the Apo simulation, major rearrangements have been observed in 

and around the active site. Both the mobile loop supporting the catalytic center, and the regions 

responsible for recognition of RhoA appear to be highly flexible. This flexibility is illustrated by 

the relative  RMSF (root mean square fluctuation) as shown in Figure 0-10, representing atomic 

freedom of motion over the time course of the simulation. It is expected that residues on a 

protein surface are quite flexible, while interior residues tend to be less mobile (433, 434). The  

RMSF of TcdB ranges between 0.7Å and 3.9Å. In our simulation both mobile loops near the 

active site reach  RMSF values of near 2Å and thus undergo quite significant motions over time. 

The flexibility of the active site is unusual but understandable for this protein. Since the toxin 

must interact with a protein target well known for its conformational switch (435), flexibility near 

the active site would increase the ability to capture and glucosylate RhoA regardless of the 
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conformation in which the switch is presented. Detailed analysis of the active site motions from 

MD simulations of TcdB in complex with UDP-Glc will be discussed at length in Chapter 3. 

.  

Figure 0-10: RMSF of Apo-TcdB simulation 

RMSF was calculated across the Apo-TcdB simulation, and mapped onto the TcdB structure. Ribbons are 
colored by average atomistic rmsf per residue, from 3.5Å (red) to 0.7Å (blue). High flexibility is observed at 
the periphery of the protein, while the core of the four helix bundle and RhoA recognition site are stable. The 
active site flap and mobile loop reach rmsf values near 2Å 
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2.8 Conclusions 

Unbiased long timescale simulations of TcdB from C. difficile both Apo and in contact 

with RhoA were performed. Analysis on these trajectories included GMD, PCA, and comparison 

to motions observed in normal mode analysis. Large-scale flexibility was observed both in the 

presence and absence of a protein binding partner without a catalytic binding event being 

observed. The dramatic rearrangement of the TcdB active site and the consequences for 

substrate binding point to the possibility that TcdB utilizes a conformational selection 

mechanism rather than lock and key, or induced fit binding. 

Application of normal mode analysis to the crystal structure of TcdB from C. difficile 

correctly captured the large-scale motions of this prototypical glucosyltransferase. The great 

degree of flexibility of TcdB is both expected and shown in evidence through normal mode 

analysis and molecular dynamics. A loose fold and considerable flexibility would be practical as 

the glucosyltransferase domain TcdB must, by necessity, thread through the membrane pore 

created by the translocation domain. The normal mode conformations bind RhoA moderately 

well while the crystal structure conformation of TcdB is completely incapable of forming a 

docked protein-protein complex. While the docking was unable to achieve a fully 

accommodated form where the toxin has Thr37 fully in the active site, this is a solid step 

towards determining the manner in which TcdB recognizes the Rho-family GTPases and 

excludes alternative G-proteins that might be structurally similar but which are not viable 

substrates. 

In simulation, the conformations sampled between the Apo-TcdB and NM-RhoA bound 

structures are similar with respect to the primary normal modes. PCA plots in Figure 5, indicate 

that the NM-RhoA and Apo simulations are separately populated, with distinct conformational 

space occupancy. Taken together, this provides evidence for a conformational selection 

mechanism, which has been perturbed by Apo-Apo binding. In light of the dramatic alterations in 
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the active site landscape through the course of the simulations. it is possible that the presence 

of substrate may shift the conformation of TcdB towards a more suitable orientation for protein-

protein binding. 

Very recently, high resolution crystal structures for C. difficile Toxin A were reported, both alone 

and in complex with UDP-Glucose (436). These proteins are highly homologous and catalyze 

the same glucosylation chemistry. Superposition of the TcdA structures shows considerable 

rearrangement of the active site in both the mobile loop, and active site flap. This has 

implications for the RhoA binding we observed. During the course of the NM-RhoA simulation, 

RhoA approach and active site flap orientation were correlated. In the absence of UDP-Glucose, 

the active site flap motions precluded close approach of RhoA to the catalytic center. In light of 

the rearrangements observed in the TcdA crystal structures, it is likely that conformational 

changes initiated by UDP-glucose binding are required before RhoA can be fully 

accommodated. 

It is logical that a protein that seeks out Rho GTP-ases would employ a conformational 

search mechanism, as Rho GTP-ases are known to employ conformational selection in their 

binding interactions both with small molecules and macromolecules 

The exploration of this non-catalytic binding event has large implications for the kinetics 

of glucosyltransferase-substrate interactions. As anticipated, flexion in the active site alters 

substrate binding, and further study will elucidate the consequences of substrate binding on the 

conformational space available to TcdB. The combination of normal mode analysis, MD and 

GMD and PCA was shown to be a very effective method for study of protein-protein 

interactions. 
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2.9 Methods 

Normal mode analysis of the toxin structures in question were performed via the El 

Nemo (418) web server and confirmed via hinge analysis using the StoneHinge (416, 417) 

hinge region prediction software. Docked conformations of the Apo-Toxin in contact with RhoA 

were generated using the RosettaDock (1) server using Hex 4.5 (424) for preliminary 

conformation generation, and systems were selected for simulation based on proximity to the 

catalytic binding site. 

MD simulations were run using the CHARMM27 (437-440) force field with the NAMD 

(428) suite of programs on the WSU rocks cluster. The canonical ensemble was maintained via 

periodic boundaries, Langevin dynamics and thermostat (430). Simulation stability was verified 

by use of the trajectory analysis tools available with the VMD software (431). Stability was 

monitored by energy and RMSD. Two systems were prepared and subjected to MD: Apo-TcdB 

and NM-RhoA. 

The Apo-TcdB simulation includes only the TcdB structure, while the NM-RhoA 

simulation contains TcdB and RhoA in a putative docked conformation following protein-protein 

docking as described above. 

The systems were solvated with TIP3P water, neutralized with counter ions and 

subjected to 1000 steps of conjugate gradient minimization and temperature ramped to 300K. 

The Apo-TcdB simulation contains 543 residues, 28,330 water molecules, and a total of 94,013 

atoms. The NM-RhoA simulation contains 719 residues, 30,780 water molecules and a total of 

102,970 atoms. 

Frames from the trajectories were written every 1 ps. Apo-TcdB was simulated for 300ns 

and NM-TcdB was simulated for 150ns post minimization. The solvation box includes a 15Å pad 

on each face of the box. Electrostatics were calculated using the particle mesh Ewald (441), and 

van der Waals were calculated with a nonbonded cutoff of 8Å and a switching function between 
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7-8Å.  Results were analyzed by use of the GMD method, via the TimeScapes (442) software 

from the D.E. Shaw research group, as well correlation analysis manually handled by the 

Mathematica software (443). For the purposes of the correlation analysis, a corkscrew 

interpolation was applied to the eleven original normal mode structures, resulting in a total of 41 

normal mode structures. MD frames were selected evenly throughout the simulation, and 

pairwise RMSDs were calculated. 

Analysis of the protein-protein interface was carried out across three structures using 

PIC (436). Following clustering, a representative frame from the most populated cluster was 

selected, designated Cluster 1. The frame representing closest approach between Threonine 37 

on RhoA and the catalytic manganese of TcdB, and the NM-RhoA structure described above. 

Hydrogen bond analysis was broken into two types, side chain-main chain interactions, and side 

chain-side chain interactions. Main chain-main chain interactions were looked for, but none 

occurred. Additionally, hydrophobic pairs, ionic, aromatic, and cation-pi interactions were 

tabulated. 

 



67 

 

Chapter 3 Development of peptide based inhibitors of TcdA and B2. 

 

3.1 Background  

 Clostridium difficile infection is increasingly becoming problematic to treat, due to both 

the intrinsic antibiotic resistance and the emergence of hypervirulent strains. An opportunistic 

pathogen, C. difficile primarily affects patients taking, or having recently completed, a course of 

broad-spectrum antibiotics (377). Development of anti-virulence therapies as opposed to 

antibiotics may be an effective way of mitigating the damage of an infection without inciting 

further antibiotic resistance(383, 384). Toxins A and B (TcdA and TcdB) are responsible for the 

bulk of the cellular damage that occurs upon infection, and thus are excellent targets for 

development of antitoxin therapies. While investigation into both immunotherapy (13), toxin-

binding materials (444), and probiotics (445) are making progress, none have been approved 

for clinical use. 

  It has been proposed that inhibition of the glucosyltransferase activity of toxins A and B 

may provide some protection against CDAD(407, 446, 447). Considering the etiology of the 

toxins discussed in Chapter 2, preventing the final step in cellular intoxication may preclude 

apoptosis of intestinal cells while a C. difficile infection is present. As a proposed treatment, GT 

inhibitors would be co-administered at the start of broad-spectrum antibiotics to abrogate tissue 

damage if or when C. difficile is contracted. By preventing the cellular death and consequent 

structural damage, many of the symptoms of C. difficile infection will be avoided. From a clinical 

perspective, decreasing the symptoms of C. difficile infection would decrease the amount of 

patien-to-patient transmission. Additionally, preservation of tissue integrity may provide 

                                                           
2
 Sections of Chapter 3 have been previously published (407,484) 
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protection against recurrence as C. difficile spores will be less likely to remain in the digestive 

tract.  

 Early work by S. Abdeen on anti-toxin therapies included a phage display experiment 

designed to find heptapeptides with potential anti-TcdA/TcdB activity. This experiment was 

successful and a library of peptides with inhibitory potential was discovered. Due to the way the 

experiment was performed, it was unclear if the potential lead peptides were inhibiting 

glucosyltransferase activity, or protein-protein binding. Computational experiments were 

designed to determine the binding modes of these peptides and improve on their in cellulo 

activity. This chapter describes the successful development of a potent anti-toxin molecule.  

3.2 Identification of a library of inhibitory peptides  

 

 TcdA and TcdB both target a wide range of Rho GTP-ases, and as such it is possible 

that they would recognize and bind to a broad array of peptides. To determine if any peptides 

have affinity for TcdA/B, a phage display experiment was performed. The PhD-7 phage library 

was queried with an affinity capture method.  As shown in Figure 0-1 the phage display query 

was performed in several steps. The recombinant GT domain of TcdA rTcdA540 containing a 

histidine tag was generated, to allow collection on nickel coated magnetic beads. The phage 

pool was first pre-cleared against the Ni-NTA beads to preclude selection of phage that bind 

nickel rather than rTcdA540. The pre-cleared phage were allowed to interact with rTcdA540 coated 

beads, which were then washed. Three rounds of selection were performed with different elution 

methods. Following each cycle of elution, the recovered phage were amplified in an E. coli host, 

and used as the phage pool for the next cycle of selection. The first round elution was carried 

out using EDTA. The following three rounds of elution were performed with RhoA, to select for 

phage that bind either the protein-binding face or active site of TcdA.  
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Figure 0-1 Flowchart of phage-display experiment.  

A PhD 7 phage library was pre-screened against Nickel-coated magnetic beads. The pre-cleared phage pool 
was then exposed to beads coated in recombinant TcdA. Following a wash, the bound phage were eluted, 
amplified in an E. Coli host, and the cycle was repeated several times. Following the final round of selection, 
phage were grown, isolated and sequenced.  

 Phage were then sequenced and grouped into families by S. Abdeen. This provided an 

excellent starting point for the computational assessment of peptide binding. Figure 0-2 shows 

the breakdown of phage sequences into families and subfamilies. A phage-based ELISA assay 

was performed to determine the apparent Kd for all sequences. Marks to the right of each 

sequence indicate the range of binding affinity. Red marks indicate binding affinity less than 200 

nM; blue, 200-1000 nM; and gray, >1 µM. It is of note that the affinity of TcdA for RhoA is poor, 

with a Km of over 300 µM(448). Relative to the natural substrate, several of the phage exhibited 

what would be considered "tight" binding.  
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Figure 0-2: Phage sequences from biopanning experiment.  

 Sequences were sorted into families based on sequence similarity. Bars to the right of the sequence 
indicate Kd. Red indicates a Kd <200nm, Blue have Kd between 200-1000nm, and Gray bars indicate Kd > 
1µM 

 However, as polyvalent phage were used for these assessments, chelate and avidity 

effects were a consideration. Before moving forward with peptide binding assays, computational 

modeling was used to suggest putative binding modes for the peptides. 

3.3 Computational studies of inhibitory peptides 

 

 To better understand the possibilities of the inhibitory peptides found in the study, 

several computational investigations were launched. Initial dockings of the peptides to the TcdB 

crystal structure were carried out. As TcdB is highly flexible and MD relaxed structures were 

available from the work performed in Chapter 2, we also docked the peptides to several 

snapshots from the MD. Lastly molecular dynamics studies were performed.  
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 Previous studies (449) showed that a conformational selection mechanism is likely at 

work in TcdB, and that the presence of a protein binding partner can dramatically alter the 

conformational space of the toxin. While all peptides in the scan were subjected to initial 

assessment, two were selected for more in depth analysis. A combination of computational and 

experimental evidence suggested that the peptides EGWHAHT and HQSPWHH were likely to 

have the most potential as inhibitors. These two peptides had good docking scores to both the 

crystal and MD relaxed structure, as well as good in vitro activity in RhoA glucosyltransfer 

assays. EGWHAHT was found to have the highest Kd of all inhibitory peptides in the phage 

based ELISA assay, and HQSPWHH showed up the most frequently in the sequencing of 

clones. To determine the effects of substrate binding on the conformational space of TcdB, the 

structure PDBID:2BVL was simulated in the presence of it's native substrate UDP-Glucose, and 

these two inhibitory peptides.  

3.3.1 Peptide docking with LeadIT 

 FlexX was selected as the best candidate based on its inclusion of user-definable 

coordination for metals. Investigation of the peptide binding characteristics of TdcB began 

following a proof of method docking with UDP-Glucose,. The peptides obtained from the phage 

display experiments were built using Spartan, minimized at the AM1 level and concatenated into 

a database file for use with FlexX (338). Active site designation was carried out by selecting all 

residues within 20Å of any atom in the crystallographic substrates UDP and Glucose. Water 

visible in the crystal structure within the active site area were allowed full rotation, and were 

displaceable in the event that a fragment of the docking candidate bound more favorably in a 

location occupied by water.  

 The docking results ranked the peptides by favorability of binding using an arbitrary 

ranking scheme. It was determined that TcdB contains two primary grooves where peptides are 

capable of binding. The model peptide shown in blue has the sequence SPHLHGS; peptides 
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binding in this location tend to form contacts with two glutamine residues and an asparagine, 

thus this nitrogen heavy groove has been termed the N pocket. The peptide shown in green has 

the sequence EGWHAHT, and the groove in which it binds contains several charged residues, 

including two glutamic acid residues, an aspartic acid residue, it has been termed the A pocket 

due to the acidic nature of the residues contacting the peptides that bind in this location.   

 

 EGWHAHT ranked higher than the rest of the peptides, this result is confirmed by the 

inhibition studies being performed concurrently. EGWHAHT has a Ki of approximately 105 pfu 

and is ranked first among the docked peptides. 

Figure 0-3 Depiction of two peptide binding pockets of TcdB 

Representative peptides EGWHAHT (green)  and SPHLHGS (blue) shown in their docked conformations 
to illustrate the two binding pockets of TcdB 
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 Peptides were ranked using a modified Boehm's scoring algorithm, which includes terms 

for hydrophobic interactions, amphiphilic residue interactions, steric clashes and number of 

rotatable bonds. includes a comparison of the docking scores with Kd and apparent binding 

pocket.  

Table 0-1: Comparison of docking scores to experimental data. Kd and Ki experiments performed with 

phage. 

Ligand  Score  Kd  Ki  (pfu) Pocket  

EGWHAHT  -57.3 100+5  10
5
 Green  

SPTHGHD  -53 900+400    Blue  

QPQYHTS  -49.5 200+40     Blue  

NPHAHLQ  -49 115+5     Blue  

SPHLHGA  -48.9 105+10     Blue  

TPHLHRD  -48.1 530+80     Blue  

ITAPHPH  -47.7 840+200     Blue  

QLSHTHI  -46.7 500+50     Blue  

SPHLHGS  -45.6 770+130     Blue  

HQSPWHH  -43.7 330+40  10
3
 Both  

KPHPHVP  -42.3 145+35     Blue  

UDP-Glucose  -40.3 N/A     N/A  

QFTSLLH  -36.6 210+10     Green  

HAIYPRH  -35 170+10     Green  

ISAHEHL  -18.1 480+60     Blue  

LQPHLHR  -6.7 100+5     neither  
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3.3.2 Peptide docking to MD relaxed TcdB 

 To incorporate information from the molecular dynamics studies discussed in Chapter 2, 

the above docking protocol was applied to the MD relaxed structure of TcdB. The peptides were 

built using the Spartan (450) modeling program, minimized at the AM1 level of theory, subjected 

to fragmentation and docked. Base placement was performed using a triangle-matching scan, 

which gives preference to base placements that pair complementary functional groups such as 

Hydrogen bond donor-acceptor pairs. Docking results were ranked using an internal scoring 

function (451-453). Results from all techniques described here and below were visualized and 

all images generated using UCSF Chimera(454).  

  

Figure 0-4 Alteration in peptide binding following MD.  

Alteration in the conformation of peptide HQSPWHH docked to both the TcdB Crystal structure in Panel A, 
and the MD relaxed structure in panel B. Active site residues are shown in green. The peptide interacts with a 
mobile loop shown in orange to a greater degree in the MD relaxed structure. 

 It was determined that the peptides dock deeper into the active site, exhibit more 

hydrogen bonding and ring stacking interactions, and their ranking scores better agree with in 

vitro inhibition data relative to the crystal structure dockings.  
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Table 0-2 Comparison of Crystal and MD docking scores to experimental data 

Ligand  Kd (nM) Ki (nM) Crystal rank Crystal Score MD rank MD Score 

EGWHAHT  100+5  500 1 -57.3 3 -23.6 

SPHLHGA  105+10     4 -48.9 2 -35.3 

NPHAHLQ  115+5     3 -49 6 -38.8 

HAIYPRH  170+10     9 -35 8 -37 

QFTSLLH  210+10     8 -36.6 7 -32.5 

HQSPWHH  330+40  300 7 -43.7 1 -41.1 

ISAHEHL  480+60     10 -18.1 4 -27.3 

SPHLHGS  770+130     6 -45.6 9 -39.4 

ITAPHPH  840+200     5 -47.7 5 -21.5 

SPTHGHD  900+400     2 -53 10 -40.1 

 

 We determined from this study that peptide binding is improved when the structural 

constraints imposed by crystallization are alleviated. Table 0-2 synthesizes the experimental 

and computational docking information. Peptides are ordered by ascending Kd. For The two 

peptides selected for lead optimization, Ki values were calculated. The relative rank and score 

for the dockings to the crystal and MD relaxed structures are also shown. It is noteworthy that 

EGWHAHT outperformed the other peptides in the crystal docking, while HQSPWHH docked 

best to the MD relaxed structure. These results suggested that the flexible nature of TcdB may 

play a role in designing molecules with inhibitory properties.  
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3.4 Determination of mechanism by Molecular Dynamics and Analysis 

 While the studies discussed in Chapter 2 and Section 3.3 showed that conformational 

flexibility in TcdB affects both protein-protein binding and small molecule binding, it was unclear 

what effects the binding of small molecule substrates would have on the conformational 

flexibility of the toxin. Interesting behavior in inhibition assays indicated that while EGWHAHT 

had a tighter Kd, HQSPWHH had a better Ki for both TcdA and TcdB.  

Table 0-3 Differential activity of two inhibitory peptides.  

Sequence Kd (nM)  
Ki (peptide) nM  

TcdA540  TcdB 

EGWHAHT 100 ± 5 500 ± 200 54 ± 20 

HQSPWHH 330 ± 40 300 ± 200 18 ± 9 

 

 This suggests that even the peptides may inhibit the toxins in different ways, possibly 

through disruption of the intrinsic motions of the protein. By applying MD followed by GMD and 

PCA, it was determined that a conformational selection mechanism is likely at work in this 

system. The specific consequences of substrate presence in the active site were determined 

with respect to the subsets of conformational space contingent on substrate binding. To 

facilitate interpretation of the results from these experiments, an overview of the structure of 

TcdA and B and relevant domains for analysis is shown in Figure 0-5 



77 

 

 

Figure 0-5 Domain organization of C. difficile toxins, structure of C. difficile Toxin B glucoysltransferase 
domain (TcdB).  

Panel A:Toxins A and B share a common domain organization, differing in the size of the CROP receptor 
binding region. The glucosyltransferase domain is cleaved from the translocation and CROP domains by the 
cysteine protease domain upon endocytosis. Panel B: Structure of the glucosyltransferase domain. Toxin 
specific upper promontories shown in cyan, DXD supporting mobile loop shown in yellow, active site flap 
shown in purple, Protein-protein recognition loops shown in green and red, and N-terminal four helix bundle 
shown in blue. Panel C. Inset showing orientation of UDP-glucose in the active site, relative to the mobile 
loop and active site flap. 

 A protein that employs a conformational selection mechanism occupies a large 

conformational space, which is then restricted or modified by interactions with its substrates or 

binding partners (455). To understand known substrates and develop novel binding partners 

such as inhibitors, it is necessary to recognize the malleability of the active site and thoroughly 

understand the consequences of each internal motion and interaction. One avenue to evaluate 

the available conformational space and understand how it is affected by substrate binding 
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involves using a combination of molecular dynamics, General Masked Delaunay (GMD) 

analysis and principal component analysis (PCA). Long-timescale unbiased molecular dynamics 

allows us to sample a the conformational space available to a given protein, without biasing the 

population density. Utilization of GMD analysis allows us to pinpoint significant transitions 

between conformations or clusters of conformations, without relying solely on clustering or PCA 

(442).  

3.4.1 Simulation of Apo, UDP-Glucose and peptide bound TcdB 

 Four simulations were carried out to study the inhibitory peptides EGWHAHT and 

HQSPWHH. For the purpose of the description below we will refer to EGWHAHT as peptide 1 

(P1) and to HQSPWHH as peptide 2 (P2). TcdB was also simulated in the Apo conformation, 

and bound to its native substrate UDP-Glucose (UPG). Peptide-bound conformations were 

created by docking using LeadIT, and then performing MD simulation of the docked structures 

according to the protocol described in the Methods section. All simulations were carried out for 

75 ns under unbiased conditions. Analysis was performed using PCA and GMD.  All simulations 

completed normally, and observation of root mean square deviation (RMSD) and total energy 

indicated that they were continuously stable. The docked structures are shown in Figure 2, 

where EGWHAHT is shown in panel A in red and HQSPWHH is presented in panel B in green. 

Both peptides bind in the active site, interacting with the yellow mobile loop and purple active 

site flap. The active site conformation shown in the docking is consistent the mass spectrometric 

analysis of peptides crosslinked to TcdA (407). Following completion of the dynamics a 

comparison between docking clusters and dynamics peptide conformations was carried out, to 

verify agreement between both methods.  
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3.4.2 Clustering analysis 

 A complete clustering analysis workflow is shown in Figure 0-6. The aim of this 

comparison was to determine whether or not the docked peptide conformations generated by 

LeadIT were well represented within the simulation and vice versa. Agreement between the two 

experiments indicates that the docking succesfully generated a series of low energy 

conformations, and that the molecular dynamics was run long enough to explore a range of 

peptide conformers.  

 All docking results as well as the two molecular dynamics simulations were clustered. To 

assess the presence of peptide conformations in both the docking and MD simulated structures, 

a cluster comparison was performed. All docking conformations were superposed on selected 

structures from the four most populated clusters from the molecular dynamics. In all cases, 

following superposition, RMSDs were calculated and cluster membership assessed. As shown 

in Table 0-4, the conformations represented in the molecular dynamics studies are 

overwhelmingly represented within the top four clusters of the dockings from each state. 

Backbone RMSDs for all paired structures are <1.1Å (for a visual comparison see  
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Figure 0-7). The backbone structure of representative members of the top four clusters from the 

molecular dynamics is shown as a block ribbon, while the side chains are shown as wire.  

  

Figure 0-6 Workflow of the clustering comparison.  

Following Apo MD, peptide docking was performed. The peptide bound structures were simulated, resulting structures 
were clustered, and comparison between the docking and the molecular dynamics was performed. 
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Table 0-4 Comparison between the MD and Docking clusters 

Following superposition, RMSDs were calculated, and the cluster to which each structure belonged was 
identified. There is strong agreement between the molecular dynamics structures and the docking clusters. 

 
EGWHAHT 

Crystal 60 ns 80 ns 

MD 
cluster 

Docking 
cluster 

RMSD 
(Å) 

MD 
cluster 

Docking 
cluster 

RMSD 
(Å) 

MD 
cluster 

Docking 
cluster 

RMSD 
(Å) 

1 3 0.849 1 2 0.969 1 3 0.849 

2 1 0.986 2 1 0.804 2 1 0.986 

3 2 1.028 3 2 0.902 3 1 0.969 

4 2 1.013 4 2 1.013 4 2 1.013 

 
HQSPWHH 

Crystal 60 ns 80 ns 

MD 
cluster 

Docking 
cluster 

RMSD 
(Å) 

MD 
cluster 

Docking 
cluster 

RMSD 
(Å) 

MD 
cluster 

Docking 
cluster 

RMSD 
(Å) 

1 4 0.919 1 1 0.941 1 3 0.818 

2 2 1 2 3 0.958 2 1 1.05 

3 2 1.042 3 1 0.76 3 1 1.099 

4 2 0.93 4 1 0.754 4 2 0.959 

 

Figure 0-7 Visualization of the MD clustering results.  

Representative members of the top four MD clusters from the peptide bound simulations. Clusters 1-4 are 
shown in blue, green, pink and gold respectively. Backbones are represented as block ribbon and sidechains 
as wire. In both simulations, good clustering was observed, and when compared to the docking clusters 
described in table S1 and S2, a high degree of similarity was present. We interpret this as good agreement 
between the docked conformations selected for study, and the conformational cohort described by the 
molecular dynamics 
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3.4.3 Solvent interaction analysis 

 An analysis of hydrogen bonding and salt bridges was performed to look for solvent 

interactions and other significant contributions to the stability and coordinated motions of the 

protein. All interactions present in more than 90% of the frames were subjected to further 

analysis and are listed in Table 1. While the overall number of H-bonds fluctuates from frame-to-

frame, solvation of the active site behaves differently. Hydrogen bonds related to the regions 

described above have been tabulated separated. The "active site" for the purposes of this 

analysis was defined in the same way as it was for the docking. The Apo and P1 bound 

simulations show higher numbers of H-bonds overall, while the UPG and HQ bound simulations 

show fewer interactions. In all simulations, one water molecule remains stationary, interacting 

with residue E472 on the TcdB-RhoA recognition face. In the UPG and P1 bound simulations, 

no stationary waters are observed in the active site. The Apo simulation contains one active site 

water, and the P2 bound simulation contains two. Hydrogen bonding is observed between 

solvent water and residue D286 of the DXD motif in both cases.  This indicates that P2 is not 

interacting with the active site in the same way that P1 is, and that P2 preserves the active site 

hydration observed in the Apo simulation. Salt bridge analysis echoes these results with a 

higher overall number of salt bridge interactions in the Apo and P2 simulations, and fewer in the 

UPG and P1 simulations. Again, this reiterates that P1 is mimicking the UPG bound behavior, 

while P2 is not.  
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Table 0-5 Interaction analysis of MD simulations.  

Interactions Apo UPG P1 P2 

Total solvent H-bonds 81 77 87 74 

Active site solvent H-bonds 1 0 0 2 

Protein binding interface solvent H-bonds 1 1 1 1 

Salt bridges 77 58 58 74 

 

3.4.4 Principal component analysis 

 Principal component analysis was performed to determine the effects of peptide binding 

on protein structure and flexibility. Following simulation, the principal components of each 

trajectory were extracted and plotted along with the contribution of each eigenvalue to the total 

variance as shown in Figure 3. It is apparent that the binding of the three substrates (UPG, P1 

and P2) each has an effect on the conformational space that TcdB explores. In columns 1 and 

2, principal component structures are overlaid for each simulation. A widened ribbon in these 

plots indicates motion, whereas narrow ribbons indicate residues that remain relatively 

stationary. Column 3 contains the cross-plots of principal components 1 and 2 (PC1 and PC2), 

in essence, giving a two-dimensional representation of the conformational space that the protein 

structure is occupying. Since the simulations were projected onto the same core residues for the 

PC decomposition, all plots in column three are comparable. Column four breaks down the 

variance in the simulation into contribution by each individual eigenvalue, i.e. the point with the 

highest proportion of variance is principal component one. The distribution of points along the 

plotted line indicates the relative contribution to the overall motion from each component 

eigenvalue.  
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Figure 0-8 PCA analysis of MD simulations; Apo-TcdB, UPG, P1 and P2 bound  

Simulations are organized by row, analyses by column. Principal component 1 of each simulation is shown 
in column 1, principal component 2 is shown in column 2. All structures are colored as in Figure 1 for 
comparison. Crossplots of the first two principal components are shown in column three. PC1 and PC2 are 
plotted on the X- and Y-axes respectively. Column four presents the contribution of all calculated principal 
components to the total variance as a percentage. Proportion of variance is plotted against eigenvalue rank 
to allow assessment of the relative weight of each component 

 

 The Apo simulation shows a high degree of flexibility in both mobile loops, as well as 

considerable "wagging" of the four-helix bundle at the N-terminus of the structure. The first 

principal component, PC1 largely describes this motion, while the second captures the side-to-

side scissoring of the two promontories shown in cyan (described in Figure 1). The cross-plot of 

these two principal components shows an organized set of conformations connected by smooth 

transitions. The relative contribution of these principal components shows that 36% of the 
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variance in conformation is captured by the wagging motion of the four-helix bundle, and 19% 

by the scissoring motion. All other motions are captured in lower rank eigenvalues.  

 The UPG-bound simulation shows less flexibility than the Apo simulation, which is to be 

expected upon binding of a natural substrate. PC1 is again the wagging of the N-terminal four-

helix bundle, while PC2 is a distributed motion, not specific to any single region. The cross-plot 

of principal components shows contraction of the conformational space, particularly with respect 

to the second principal component. The proportion of variance between the first and second 

eigenvalues is comparable to the Apo structure.  

 Peptide 1 binding appears to induce modifications in both the nature of the principal 

components and the distribution of variance. PC1 again is the wagging of the four-helix bundle, 

but the motion becomes exaggerated relative to both the Apo and UPG-bound simulations. PC2 

is very similar to that of the UPG bound simulations, with very little motion in the active site 

apparent in either principal component. The cross-plot of principal components shows a pattern 

that appears to be somewhat intermediate between the cross-plots of the Apo and UPG-bound 

structures described above. We interpret this result as an indication that peptide 1 is inhibiting 

TcdB by mimicking UPG to a great extent. It has previously been shown by Abdeen et al. that 

Peptide 1 is competitive with UPG and can be displaced at high concentrations of UPG (407). 

Interestingly, the proportion of variance of the first principal component is considerably higher 

than for either the UPG or Apo structures, with 52.9% of the variance in the conformational 

space due to the wagging of the four helix bundle and moderate motion around the active site.   

 The simulation of peptide 2 bound to TcdB shows considerable alteration in both the 

principal components and distribution of variance. PC1 shows motion in the upper promontories, 

as well as the RhoA recognition site, something unseen in prior simulations. PC2 indicates 

scissoring of the promontories, albeit in a different direction than observed previously. 
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 Additionally, major rearrangements of the RhoA recognition site are observed. The 

cross-plot of the first and second principal components bears little resemblance to any of the 

other simulations, and the contributions to the variance are moderately distributed. Abdeen at al. 

previously showed that peptide 2 is not competitive with UDP-glucose, thus using a distinctly 

different mechanism for inhibition. This evidence suggests that TcdB uses a conformational 

selection mechanism (449) and that deformation of the substrate binding site, rather than direct 

substrate competition is sufficient to achieve inhibition. This avenue for inhibitor may be 

effective since avoiding direct competition with a natural substrate is desirable to achieve 

maximum efficacy. The sum of these analyses leads us to believe that peptide 2 inhibits TcdB 

by perturbing the RhoA binding site, rather than by mimicking UDP-Glucose while peptide 1 

represents a relatively classical competitive binding mode of inhibition. 

 Analysis of the simulations by PCA indicates that the UPG and peptide bound 

conformers have restricted flexibility relative to the apo conformation as expected. However the 

inhibitory peptides display differing behaviors with respect to their conformational restriction. As 

was previously shown by Abdeen et al, peptides show inhibitory potential by either interfering 

with RhoA or UPG binding (407). The spatial freedom exhibited by the apo toxin indicates that it 

is likely that TcdB is subject to a conformational selection and induction mechanism similar to 

that of the small G-proteins (419). Since TcdB must recognize RhoA and it is undergoing 

significant motions in response to its own conformational selection process, it makes logical 

sense that its binding partners, TcdB in this case, might also exhibit similar conformational 

selection behavior. The dramatic perturbation of the conformational space of TcdB upon contact 

with the inhibitory peptides, may illustrate a good way to identify proteins involved in 

conformational selection and study the way they interact with their substrates and/or targets.  

3.4.5 Local RMSD analysis  
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 To quantitate these results, total as well as local backbone RMSDs of the regions 

described in Figure 1 were calculated and are shown in. The RMSD overall for the Apo 

simulation is higher in all regions with the exception of the two protein-protein interface regions, 

which are dramatically perturbed in the P2 bound simulation. This result is in agreement with the 

PCA analysis where perturbation of these regions was a major component of the motion. The 

UPG bound simulation shows a low RMSD in all regions, again in agreement with the PCA 

analysis. The P1 bound simulation shows some increased movement in the protein-protein 

interface regions, while both the mobile loop and active site flap behave similarly to the UPG 

bound simulation. The combination of the qualitative PCA with the quantitative local RMSD 

breakdown shows good agreement.   

 RMSD in angstroms was calculated for the overall trajectory, as well as for each region 

described in Figure 1. The Apo simulation shows the highest overall RMSD as well as generally 

higher local RMSDs for all regions with the exception of the two protein-protein interfaces. The 

green and red binding sites are greatly perturbed by the binding of the P2 peptide with their 

RMSD reaching over 3Å. The UPG bound simulations shows the lowest overall RMSDs with low 

activity in the mobile loop and active site flap. P1 shows similar behavior in the active site, while 

still perturbing the protein-protein binding sites to some extent 

 

 

 

Table 0-6 Overall and Local RMSDs of MD simulations 

RMSD (Å) Apo UPG P1 P2 

Overall 2.475 1.294 1.798 2.101 

Promontories 2.09 1.746 1.759 1.967 
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Mobile Loop 1.297 1.247 1.21 1.458 

Active Site Flap 2.509 0.964 0.989 1.172 

Binding Site 
Green 1.237 1.297 2.464 3.42 

Binding Site Red 1.058 1.216 2.217 3.105 

Four Helix 
Bundle 2.09 1.629 2.464 2.147 

 

3.4.6 Generalized Masked Delaunay analysis 

 Generalized Masked Delaunay analysis was used to determine the effects of substrate 

binding on the relative rate of conformational activity.  GMD assesses the "activity" of a 

simulation, by creating a masked Delaunay representation of the protein structure, and using it 

to determine how frequently side chains exhibit significant and persistent motion (16). As this is 

a "sliding window" analysis, the presented data has been truncated to remove artifacts that 

occur at the end of these plots. We examined the activity pattern across all four simulations, to 

determine what effect each substrate had on the rate and degree of activity of TcdB. Figure 0-9 

shows the results of GMD analysis on the 4 simulations. Column 1 shows plots of activity vs. 

scaled frame, all simulations were scaled to 5% of the total frame count for the finished 

simulation. Columns 2 and 3 show the decomposition of the activity into contact forming 

interactions and contact breaking interactions. 
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Figure 0-9 GMD analysis of MD simulations; Apo-TcdB, UPG, P1 and P2 bound.  

As in the PCA analysis, simulations are organized by column, analyses are organized by row. Column 1 
shows the total activity of each simulation as a function of frame. The count of significant persistent events 
are plotted on the Y- axis, against simulation progress on the X-axis. Columns 2 and 3 decompose the total 
activity into contact-forming events and contact-breaking events.  

 

 The Apo simulation shows a high level of flexibility throughout, along with a rapid event 

pattern.  The decomposition of activity shows somewhat more contact breaking than forming, as 

well as a more steady level of contact breaking. The high number of activity spikes may be 

indicative of continuous conformational transitions, with low points in activity representing 

conformations amenable to the approach of a binding partner or substrate. Visual inspection of 

the trajectory shows a repetitive breathing motion that opens the active site somewhat, possibly 

accounting for the higher level of contact breaking.  
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 The UPG bound simulation exhibits a dramatically different activity plot. Following an 

initial rearrangement, activity steadily declines, until reaching a relatively steady state roughly 

halfway through the trajectory. A few slow moderate rises in activity occur following this point, 

but the overall rate of activity remains moderate. The plot of contact forming events shows a 

steady decrease, suggesting that the bulk of the conformational change involves some degree 

of unfolding. Analysis of the conformational trajectory agrees with this interpretation. The active 

site flap moves away from the catalytic center, presenting the region near the manganese ion 

for catalysis, presumably to allow binding of a glucosylation partner such as RhoA. It has been 

previously shown that in the absence of UPG, the active site flap folds down, precluding protein-

protein binding (449). The level of contact breaking throughout the UPG simulation shows an 

initial increase, likely associated with the initial rearrangements due to UPG binding.  

 Analysis of the P1 simulation shows the same initial rearrangements observed in both 

the UPG and Apo simulations, with an event pattern intermediate to both. A decrease in activity 

is observed, similar to the bound form with UPG, but remains at a higher level overall, roughly 

1.5-1.75 events per frame. The number and frequency of activity spikes are also intermediate to 

the Apo and UPG-bound simulations. Interestingly the shape of the contact forming and contact 

breaking plots is similar to the Apo simulation, but with an increase in the number and frequency 

of activity spikes, similar to the Apo simulation. This seems to indicate that P1 is in some way 

acting as a UPG mimic; upon P1 binding, TcdB takes on activity characteristics of the UPG 

bound toxin.  

 The P2 simulation has an activity pattern disparate from all other simulations. The 

overall level of activity is higher, with smooth transitions between regions of high and low 

activity. This pattern is not seen in any of the other simulations. The level of contact forming is 

somewhat lower than the level of contact breaking overall.  More rapid transitions in the level of 

contact making are apparent in the second half of the simulation, while no such pattern is 
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observed in the contact breaking activity. The distinct alteration in the event pattern may in 

some way be contributing to P2's ability to inhibit TcdB. While P2 is bound, it appears to disrupt 

the native pattern of conformational searching, but in an entirely different way than P1. No 

similarity is evident between the P2 bound and UPG bound simulations, suggesting that P2 is 

not acting as a UPG mimic.  

3.5 Computational functionalization of peptide leads 

 Functionalization of HQSPWHH was considered necessary, while the peptides were 

inhibitory in vitro they did not provide cell protection in cell assays. The etiology of the toxin is 

such that we propose that the peptide inhibitors were becoming dislodged during the course of 

endosomal escape. To determine whether or not an irreversibly linked peptide could provide cell 

protection, initial studies with a photo-activatable crosslinker were performed, and cell protection 

was observed. However, as photo-activation of an inhibitor is at the very least inconvenient in a 

clinical setting, we chose to pursue other methods of irreversible binding. Inclusion of an 

epoxide in the structure was selected, as nucleophilic attack would result in a covalently linked 

inhibitor.The studies described in Section 3.4 indicated that of the two peptides chosen for study 

HQSWPHH was a better choice for functionalization. EGWHAHT mimics UDP-Glucose in our 

studies, and we considered the risk of off-target effects problematic, however initial 

functionalization studies were still performed. Alanine scanning was performed to locate sites 

where modification was possible, followed by epoxide scanning. As in vitro work included 

assays on TcdA, docking was carried out against both TcdA and TcdB structures. Once a lead 

molecule was selected, synthesis and testing were carried out.  

3.5.4 Alanine and epoxide scanning 

 In silico scanning was performed to determine the optimal site for modification based on 

docking energies to TcdB (PDB: 2BVL) (387) and reiterated in light of recent high resolution 

crystal structure for C. difficile TcdA (PDB: 3SS1) (436). This optimization was done in several 
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steps. The first step involved incorporation of an alanine at each position to determine the 

relative contribution of the parent side chain at each site. It was determined that positions 1 and 

5 of EGWHAHT and positions 1, 5 and 7 of HQSPWHH were not detrimental to either binding 

conformation or docking score. Modifications at positions 2 and 3 of EGWHAHT or 2 and 4 of 

HQSPWHH perturbed binding, dramatically altered docking score or both. All other positions 

had intermediate effects. These positions were then assessed for both the ability to sterically 

accomodate an epoxide moiety, and availability of nearby nucleophiles.  

Table 0-7 Docking scores of parent and derivatized peptides and number of surrounding nucleophiles  

The two positions chosen for functionalization are highlighted in gray. Selection was made based on docking 
score and number of nearby nucleophiles 

 WT H-1-X Q-2-X S-3-X P-4-X W-5-X H-6-X H-7-X 

Alanine -36.01 -38.84 -31.93 -29.86 -35.18 -34.74 -35.47 -39.12 

Epoxide R -35.58 -32.53 -15.74 -24.94 -40.76 -32.04 -37.50 -43.38 

Epoxide S -36.04 -29.04 -2.06 -35.34 -20.89 -52.85 -33.01 -24.26 

Nucleophiles 

surrounding nucleophiles  

     -     2     1      2      2       4      2     6 

WT: Parent peptide HQSPWHH 

X-substituent, either alanine or R/S epoxides 

 

 Due to the nature of the docking algorithm, slight fluctuations in scores occur as a 

consequence of sub-angstrom variations in the docked conformation, predominantly through 

rotation around bonds in the flexible side chains. While not on an absolute energy scale, this 

procedure provides reliable relative binding affinities to assess positions where the epoxide 

might be accepted. A docking score of greater magnitude than the parent peptide was 

considered an advantageous modification, while a docking score lower than the parent peptide 

was considered disadvantageous.  

 Peptides were selected for derivatization based on two criteria: a) epoxy modified 

peptides with tighter binding affinity but relatively few reactive nucleophiles nearby or b) with 

moderate binding affinity but with larger number of surrounding nucleophiles. Two peptides 
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derivatized at different residues were subsequently selected for synthesis shown in Figure 0-10, 

both with docking scores more favorable than the parent peptide (parent docking score, -35.58): 

HQSPGepoxyHH (H-epoxy-5) (Figure 0-10 Epoxidated peptide structures and conformationsA 

and C) and HQSPWHGepoxy (H-epoxy-7) (Figure 0-10 B and D). One reason for selecting H-

epoxy-5 was that it displayed the overall tightest docking score, while the rationale for selecting 

H-epoxy-7, despite a more modest docking score, was due to the higher number of potential 

nucleophiles in its vicinity that might facilitate rapid cross-linking. In all cases the structures 

interact both with the active site catalytic Manganese and residues on the highly conserved 

mobile loop within the active site critical in glucosylation (456, 457). The parent peptide 

HQSPWHH adopts a curled conformation (407) as seen in Figure 0-4. The N-terminal histidine 

contacts a active site region comprised of  an Asn 270 -Asp 273 pair, while the C-terminal 

histidines interacts with the charged loop region comprised of residues 513-526 (456, 457). The 

epoxide of H-epoxy-5 has close contact with Lys142, Leu 265 and Asn 139. The epoxide of H-

epoxy-7 is within reach of Lys 452, Asp 523, Asp 461 and Ser 518. Even though the structural 

(436) and functional similarity between the GTD of TcdB and TcdA makes TcdB a suitable 

substitute for the purpose of docking, we revalidated the binding modes and surrounding 

nucleophiles in terms of GTD of TcdA  
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Figure 0-10 Epoxidated peptide structures and conformations.  

Structures of selected epoxy-peptides and close-up view of ribbon structure of the TcdB active site, showing 
binding modes of peptides H-epoxy-5 and H-epoxy-7. Panels A and B show the structure of the epoxidated 
peptides. Panels C and D show the binding conformations of H-epoxy-5 and H-epoxy-7 respectively.The 
epoxide residue of H-epoxy-7 is in close proximity to more polar amino acids when compared to H-epoxy-5. 
The catalytic Manganese ion is indicated as a green sphere in both images 
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3.4.6 Comparison to TcdA  

 To verify that the active sites of TcdA and B were similar enough to be confident that our 

epoxidated peptide would react with both toxins, we compared the structures with respect to the 

bound peptide conformations. The docked structure of the TcdB-peptide complexes were 

structurally aligned with the TcdA crystal structure and spatial compatibility and active site 

similarity were assessed.  

 

Figure 0-11 Overlay of TcdA on peptide bound TcdB structures.  

Panel A shows H-epoxy-5 and panel B shows H-epoxy-7. TcdA is shown in green and TcdB in yellow. The 
aligned structures are similar in their overall active site organization, with a backbone RMSD of 0.85Å. No 
steric clashes were observed between TcdA and the epoxy-peptides.   

 No steric clashes were observed, so we continued to comparison of the sequence of 

TcdA and TcdB in the active site. o determine the extent of similarity between contacts in the 

bound conformations, the structural alignment was used to determine which residues are 

conserved in the putative binding orientation. All residues within 5Å of the peptides in the TcdB 

conformation were considered "contacts", the structurally cognate residues in TcdA were 

determined and compared for both the H-epoxy-5 and H-epoxy-7 structures.  
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Table 0-8 Comparison of residues in contact with H-epoxy-5.  

Structurally cognate residues within 5Å of H-epoxy-5 in both TcdB and TcdA are compared. Residues 
highlighted in green are identical, those in blue are conservative substitutions, and those in red have non-
conservative substitutions 

H-epoxy-5  H-epoxy-7 

TcdA TcdB  TcdA TcdB 

ASN 138 ASN 139  ASP 288 ASP 287 

LYS 141 LYS 142  MET 289 MET 288 

LEU 264 LEU 265  ILE 382 VAL 381 

SER 268 SER 269  ILE 383 ILE 382 

ARG 272 ARG 273  ASN 384 ASN 383 

TYR 283 TYR 284  GLN 385 GLN 384 

ASP 285 ASP 286  MET 448 THR 447 

ILE 382 ASN 384  GLU 449 LYS 448 

ASN 383 GLN 385  LEU 450 ILE 449 

GLN 384 GLU 515  PRO 460 GLU 460 

ASN 516 ALA 517  GLU 515 GLU 514 

SER 517 SER 518  MET 516 ASN 516 

LEU 518 LEU 519  SER 518 SER 517 

     LEU 519 LEU 518 

     TRP 520 TRP 519 

     SER 521 SER 520 

     PHE 522 PHE 521 

     ASP 523 ASP 522 

     ASP 524 GLN 523 

 

 The conclusions from these comparisons were that the epoxidated peptides would likely 

have activity in both TcdA and TcdB. There were enough conserved residues in the proposed 

binding site, including conserved nucleophiles to move forward with synthesis.  
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3.6 Experimental validation of proposed inhibitors 

3.6.1 Synthesis and in cellulo testing of epoxidated peptides 

 

 Dr. Sanofar Abdeen synthesized the epoxidated peptides by oxidizing allyl-glycine 

substituted peptides with mCPBA. Details of the synthesis and purification are described in 

Abdeen et al. (JBC submitted) As the parent peptides were capable of inhibiting TcdA and TcdB 

in vitro, but were unable to protect cells, the epoxidated peptides were tested in cellulo. Vero 

cells were challenged with 600µm TcdA and observed over a 48hr period. Cell viability was 

quantitated using an ATP-sensitive luminescent assay. All cell viability assays and imaging was 

performed by Dr. Stephanie Kern.  

 It was determined that the H-epoxy-5 was capable of providing 95% cell protection in 

cellulo and had no cellular toxicity. No cell protection was detected with H-epoxy-7. We propose 

that either the dissimilarity in the active site of TcdB and TcdA affected a critical contact in the 

H-epoxy-7 binding site, or that the overall binding geometry for this complex is more unfavorable 

than predicted.  
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Figure 0-12 Cell protection and viability quantitation.  

Panel A shows the morphological assessment of cells under various treatments. Sub-panel (a) shows 
healthy cells in PBS buffer, cells are elongated and adherent. Following treatment with TcdA, cells exhibit 
rounding and detach from the surface of the plate (b). Sub-panel (c) shows healthy cells in the presence of 
the parent peptide. No toxicity is observed. Upon challenge with TcdA, the parent peptide provides no 
protection and apoptosis is detected (d). Cells imaged in sub-panel (e) were treated with the H-epoxy-5, 
indicating that the epoxidated peptide is not inherently toxic. Lastly, treatment with both TcdA and H-epoxy-5 
in (f) shows a dramatic reduction in observed apoptosis. Cell adherence and elongation are both preserved. 
Panel B describes the quantitation of these results. Cell protection as a percentage is plotted vs. increasing 
inhibitor concentration.   
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3.6.3 Validation of crosslinking site by mass spectrometry 

 To determine whether or not the epoxidated peptides were acting as designed, or if they 

were nonspecifically inhibiting TcdA by some other mechanism, mass spectrometry was used to 

determine the site of crosslinking.  Recombinant TcdA was allowed to react with H-epoxy-5, 

then subjected to tryptic digestion and analyzed via FT-ICR mass spectrometry. Full details are 

available in Abdeen et al. (JBC in submission). Sequence coverage of roughly 70% was 

obtained, and the site of crosslinking was structurally mapped.  

 

Figure 0-13 Stereoimage of TcdA/B crosslinking site.  

The ribbon structure of TcdB in complex with H-epoxy-5 (in blue)  is shown as a stereoimage. Shown in red 
is the TcdA sequence where crosslinking was detected by FT-ICR mass spectrometry. It is clear that the 
docking and epoxidation studies correctly predicted the bound conformation and crosslink region 

 From these studies it is apparent that the inhibitory activity was not due to random 

crosslinking, but that the predicted binding conformation was accurate. The epoxide is 

positioned directly facing the detected site of crosslinking.  

3.7 Conclusions  

 In this study, we rationally designed an epoxide-containing peptide that acts as an 

irreversible inhibitor of the clostridial-glucosylating toxins sufficiently potent to protect cultured 

cells from intoxication. Previously described peptide inhibitors of TcdA and TcdB were found to 

employ differential mechanisms of inhibition in vitro. Upon docking, the peptides were found to 
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bind tightly to different regions of the active site. Long timescale simulations were applied to 

investigate possible mechanisms. Application of GMD analysis indicated that the peptides 

induced significantly different event patterns over the course of the simulations. Application of 

PCA analysis determined that flexibility in the active site is restricted when UPG and EGWHAHT 

are bound relative to the Apo structure. Binding of HQSPWHH, which proved to be the best 

inhibitor of glucosyltransferase activity, greatly deformed the protein-protein recognition face of 

TcdB. Evidence suggests that EGWHAHT acts as a UDP-Glucose mimic, while HQSPWHH 

interferes in the conformational selection mechanism.  HQSPWHH was selected for further 

functionalization; computational alanine and epoxide scanning was used to determine which 

residues would perform best upon epoxidation. Following synthesis, H-epoxy-5 was able to 

provide 95% cell protection during in cellulo assays, and mass spectrometric analysis showed 

that the peptide covalently crosslinked exactly where the parent peptides were computationally 

predicted to bind.  

 

3.8 Methods  

 All simulations were carried out using NAMD (428) with the CHARMM27 (439) force 

field. It is well known that this force field has a tendency to prefer helical structures (458, 459). 

Previous long timescale simulations did not show significant formation of helical structures in 

crystallographically unstructured regions (449), based on these results we decided to continue 

our studies with the CHARMM27 force field. The apo simulation was prepared by removal of the 

crystallographic UDP and Glucose as previously described. Bound conformations for UPG, 

HQSPWHH and EGWHAHT were generated using the LeadIT (338, 460-463) suite for docking. 

Docking parameters were tested using the crystallographic UDP conformation as proof of 

method, as published previously (407). All substrates were initially built and minimized at the 

AM1 level of theory using Spartan '03 (464) and docked into a sphere encompassing all 
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residues within 20 Å of the catalytic manganese. All crystallographic waters were retained and 

utilized as both fully rotatable and displaceable.  Triangle matching was used for base fragment 

placement, and dockings were performed with two thousand solutions per each iteration and 

fragmentation. The standard scoring scale based on Bӧhm's scoring algorithm (465-467) was 

employed. Docking was carried out against dynamically relaxed structures following simulation 

of the apo toxin from a previous work (449) as well as the crystal structure. Following docking to 

the crystal, 60 ns and 80 ns structures, clustering was carried out.  

 Force field parameters for UDP glucose were created both de novo from single point 

calculations and by generalization. UDP-Glucose was built in Spartan and initially optimized at 

the AM1 level of theory. Restricted Hartree-Fock optimization at the 6-31G* level of theory was 

performed using Gaussian '03 (463). The optimized geometry was utilized for frequency 

calculation, NPA and ESP charge fitting. Paratool (431) was used to convert the Gaussian 

output into CHARMM format parameters for comparison with the manually determined 

parameters.  Parameterization by generalization was performed using the parameters from UTP 

for the UDP after removal of the terminal phosphate. CHARMM parameters for glucose were 

readily available and parameters for the sugar-UDP linkage were obtained from those 

determined for phosphoserine. Comparison of parameters derived from these two methods 

indicated that they were identical within the decimal places utilized by the standard CHARMM 

force field.  

 MD simulations were run on the WSU rocks cluster. The canonical ensemble was 

maintained via periodic boundaries, with Langevin dynamics and thermostat (430). Simulation 

stability was verified by use of the trajectory analysis tools available with the VMD software 

(431). Stability was monitored by energy and RMSD. The systems were solvated with TIP3P 

water, neutralized with counter ions and subjected to 1000 steps of conjugate gradient 

minimization and temperature ramped to 300K. Frames from the trajectories were written every 
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1 ps. The solvation box includes a 15Å pad on each face of the box. Long-range electrostatic 

effects were taken into account using the smooth particle mesh Ewald method (441), and van 

der Waals interactions were calculated with a non-bonded cutoff of 8Å and a switching function 

between 7-8 Å.  Results were analyzed by use of GMD graphs, via TimeScapes (442), and by 

PCA using the bio3d package for R.  Hydrogen bond and salt-bridge analysis was performed 

using VMD. All hydrogen bonds and salt bridges occurring for more than 90% of the simulation 

time were noted. RMSDs were calculated using VMD.  

 Clustering was carried out on both MD and docked peptide conformations. Standard 

clustering in Chimera was performed (468). Cross comparison of the docked and MD 

conformations was carried out by superposing all conformers from the docking clusters onto 

representative structures from the MD clustering. RMSDs between best matching pairs were 

calculated, and the docking cluster to which they belonged was identified for rank comparison. 
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Chapter 4 Investigation of an allosteric circuit in the cysteine protease 
                 domain of Clostridium difficile Toxin B 
 

 

4.1 Background 

 The cysteine protease domain (CPD) of the C. difficile toxins A and B is responsible for 

cytosolic release of the glucosyltransferase domains, and was recently crystallized 

(PDBID:3PEE) (402) Once the toxin undergoes receptor mediated endocytosis, CPD and GT 

domains undergo translocation through a pore created by the translocation domain. Cleavage of 

the CPD releases the GT domain into the cytosol at this point. Cellular damage occurs when an 

endocytosed toxin transfers a glucose moiety from UDP-Glucose to any number of Rho-family 

GTPases. The CPD domain is a possible drug target since targeting virulence factors may be a 

way to abrogate the cellular damage that occurs during an active infection,. The CPD domain 

could be targeted at two points during cellular intoxication due to the etiology of the toxin,. 

Endosomal escape may be prevented if the CPD domain is bound irreversibly to a small 

molecule and tight folding prevents translocation,. The GT domain would potentially remain 

endosomal, no interaction with Rho-GTPases would be possible. If cleavage and release of the 

GT domain occurs before cell contact and endocytosis, there will be no GT domain translocated 

to damage the cells. Induction of CPD domain cleavage in the lumen of the intestine would 

preclude cell death. 

4.2 Cysteine protease domain of TcdB 

 CPD cleavage is allosterically activated by the binding of inositol hexakisphosphate 

(IP6). Binding of IP6 triggers the organization of the CPD catalytic triad into an active 

conformation. Figure 0-1 shows the structure of the CPD from Clostridium difficile TcdB. 
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Residues comprising the catalytic triad are shown in red, residues experimentally determined to 

participate in IP6 binding are shown in purple, and the β-hairpin shown in blue has been 

determined experimentally to have an effect on rate of cleavage (402). We have introduced the 

mutations shown in Panel B in green, also experimentally explored (402), to determine their 

possible structural consequences both apo and IP6 bound. K764N is predicted to affect 

interactions with IP6,E764N potentially perturbs folding of the β-hairpin responsible for active 

site organization and R751Q is predicted to communicate IP6 binding allosterically to induce 

hairpin formation. The objective of studying these mutations is to determine which activities, IP6 

binding, hairpin formation or communication, is most critical to folding and function. Further use 

of this work might include design of inhibitors based on IP6 with the purpose of manipulating 

one or more of these functions.  
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Figure 0-1 Structure of the CPD domain and investigated mutations. 

 Structure of the CPD domain is shown in panel A. IP6 binding residues are shown in purple, The β-hairpin 
mutagenically shown to contain an allosteric communication circuit are shown in blue. Shown in red are the 
catalytic triad responsible for protease activity. Panel B shows the three mutations studied in this work, and 
Panel C indicates their putative roles. E753N participates in a salt bridge responsible for organizing the β-
hairpin structure. K764N is directly involved in IP6 binding, and R751Q is a putative allosteric communicator. 

 

4.3 Investigation of allosteric circuit through molecular dynamics 

 Previous work by Shen et al. determined the in vitro effects of introducing several 

mutations of the CPD domain. MD simulations of both the wild type and three mutant CPD 

structures both apo and IP6 bound were performed. Analysis of these simulations by PCA and 

GMD indicates differential behavior and may provide context for the development of targeted 

inhibitors or activators of function. Puri et al have designed cleavage inhibitors, however, these 
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molecules are active intracellularly (446). While some work has been done by Puri et al towards 

designing inhibitors of cleavage, however these molecules are active intracellularly. We hope 

that these studies may lead to the development of molecules that would induce CPD cleavage 

extracellularly, or prevent GT domain escape, as this would preclude issues of cellular transport. 

Cell protection by either of these avenues would allow for more efficient treatment of infection 

and alleviate many of the symptoms of CDAD.  

 A total of eight MD simulations were performed as listed in Table 0-1; Apo and IP6 

bound structures of the wild type and each of the three mutants described above. Unbiased MD 

was performed as described in the Methods section, the Apo-WT simulation was run for 130ns, 

while all other trajectories were run for 25ns. The Apo-WT simulation was allowed to run for a 

longer time to provide better data density for analysis. Following preliminary analysis, the Apo-

E753N simulation was extended to 90ns to determine if additional information on the mutant 

simulations was forthcoming with longer simulation times. Correlation analysis as well as PCA 

and GMD analyses were applied.  

Table 0-1 Simulations performed on Apo and IP6 bound CPD domain.  

A total of eight simulations were performed. The wild type and three mutant structures in both Apo and IP6 
bound conformations were studied. The wild type was simulated longest to give more structural context for 
the molecular motions. E753N was extended following initial analyses. 

Total simulation time 

Structure Apo IP6 

Wild Type 130 ns 25ns 

E753N 90 ns 25ns 

R751Q 25ns 25ns 

K764N 25ns 25ns 

 

 From visual inspection of the trajectories, it was clear that the apo structure exhibits a 

high degree of flexibility throughout the simulation. This is to be expected as IP6 binding is 

responsible in vitro for the organization of the active site. An overall loose fold was expected as 

Apo-CPD must be able to thread through a pore during endosomal escape. All IP6 bound 
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simulations are far less mobile relative to the Apo simulations and tight contacts with the IP6 

phosphate groups are maintained throughout. All simulations were stable through their time-

courses as was monitored by RMSD and total energy. Backbone RMSDs for all simulations 

were below 1.5Å.  

4.3.1 Principal Component analysis of MD simulations 

 The PCA of both the IP6 bound and Apo simulations is very revealing. Figure 0-1 Panel 

A, shows the cross-plots of PC1 and PC2 for both the Apo and IP6 bound simulations. PC1 is 

on the x-axis and PC2 is on the y-axis. For each set (Apo vs IP6) the trajectories were projected 

onto the same core residues and may be directly compared. While Apo-IP6 cross-plot 

comparisons are not quantitatively reasonable, the breadth, localization, and transition patterns 

can be used to discern qualitative relationships. Panel B shows a broadened ribbon diagram for 

all first principal components, colored as in Figure 2. The longest timescale simulation Apo-WT 

shows a wide range of conformational freedom, which is to be expected. In both the Apo and 

IP6 bound sets of simulations, viewed horizontally across panels, the mutants all behave 

similarly to one another. One point of interest is the range of the axes on the IP6 bound plots 

relative to the Apo plots; there is considerable restriction in the conformational space explored in 

all IP6 containing simulations. 
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Figure 0-2 PCA analysis of Apo and IP6 bound CPD simulations. 

 Panel A: All apo simulations were projected onto the same invariant core for PC analysis, as were all IP6 
simulations. Quantitative comparisons can be made left to right, and qualitative comparisons top to bottom. 
The greatest amount of flexibility was observed in the Apo-WT simulation. All Apo simulations seem to 
occupy the same general conformational space to varying degrees and in slightly more punctate or diffuse 
manners. The same is seen in the IP6 bound simulations. Again, the wild type has the highest degree of 
flexibility, and the mutant simulations are somewhat comparable. Panel B: Broadened ribbon diagrams of the 
first principal component projected onto the structures. All have been oriented similarly for comparison. 

 In the Apo simulations, while all mutants seem to exhibit similar behavior, Apo-K764N 

shows a bit more diffuse conformational exploration, while Apo-R751Q shows more clearly 

defined paths between conformational regions. Apo-E753N shows both consistent grouping and 

smooth transitioning. 

 In the IP6 bound mutant simulations, again all three behave similarly, though the IP6-

E753N shows diffuse conformational space relative to IP6-K764N and IP6-R751Q. R751Q 



109 

 

shows transitioning between regions by clearly defined paths, showing some similarity to the 

Apo simulation.  

 Between the Apo and IP6 bound WT simulations, there is both restriction of 

conformational space, and alteration in the mode of transition. In all other simulations there is 

transitioning between conformational regions, while in the Apo-WT simulation there are a few 

isolated regions of localization. This may be due to the longer timescale of the simulation, 

possibly exploring several local minima that the other simulations do not investigate. 

4.3.2 Interaction analysis of Apo and IP6 bound simulations  

 We performed hydrogen bond analysis, salt-bridge analysis, and assessed water-protein 

hydrogen bonds to quantitate the effects of IP6 binding on the simulations,. Tables 2-4 describe 

these metrics. With respect to intra-protein hydrogen bonds, the stabilizing effect of the IP6 

dramatically increases organization.  

 Table 0-2 lists the total number of intra-protein hydrogen bonds for each simulation. In all 

cases the inositol bound simulations exhibit over twice the number of detected hydrogen bonds. 

This is physiologically sensible, as IP6 binding is predicted to stabilize the fold, theoretically 

allowing time for the optimization of the local hydrogen bonding network. This conclusion is 

supported by the data presented in Table 0-3 .  

 In all simulations, the apo structures exhibit greater hydrogen bonding to water 

throughout the simulation. As we observed considerable structural flexibility in the apo 

simulations, it would be logical that charged amino acids would be available to form more 

solvent-protein hydrogen bonds. Lastly, Table 0-4 presents the total number of salt bridge 

interactions detected in each simulation. This echoes the result of the intra-protein hydrogen 

bond analysis, where over twice as many self-interactions were detected. We again attribute 

this to the IP6 binding-induced stability allowing the protein structure to optimize it's self 

interactions.  
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Table 0-2 Intra-protein hydrogen bonds observed for both Apo and IP6 bound simulations.  

In all IP6 bound simulations, we observe nearly double the total number of stable hydrogen bonds, we 
attribute this behavior to the additional backbone stability afforded by IP6 binding. 

Intra-protein hydrogen bonds 

Structure Apo IP6 

Wild Type 56 129 

E753N 50 137 

K764N 57 128 

R751Q 57 131 

 

Table 0-3 Solvent-protein hydrogen bonds observed in both Apo and IP6 bound simulations.  

In agreement with the information in Table 4-2, without the stabilizing presence of IP6 the apo simulations 
fulfill their desired hydrogen bonding networks with solvent-protein hydrogen bonds. In the IP6 bound 
simulations, there are consistently fewer protein-solvent hydrogen bonding interactions.  

Solvent-protein hydrogen bonds 

Structure Apo IP6 

Wild Type 189 129 

E753N 193 129 

K764N 204 144 

R751Q 166 143 

 

Table 0-4 Intra-molecular salt bridges observed in both Apo and IP6 bound simulations.  

Stable salt bridges were assessed for all trajectories. IP6 bound simulations show over twice as many salt 
bridged residues as the Apo simulations do in all cases. Again, we attribute this to the overall stability 
increase due to IP6 binding that allows to sidechains to find intra-protein interaction partners, rather than 
interacting with solvent during large scale conformational changes.  

Salt bridges 

Structure Apo IP6 

Wild Type 8 20 

E753N 7 19 

K764N 8 19 

R751Q 7 17 
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4.3.3 Correlation analysis on Apo and IP6 bound simulations 

 Correlation analysis was applied to determine the effects of the mutations on the overall 

motions of the simulations. Difference plots are shown in Figure 0-3, where the correlation 

matrices of the mutant simulations have been subtracted from the correlation plot of the wild 

type. When plotted, this data indicates which residues show altered correlated motion relative to 

the wild type. Anti-correlation is shown as blue, correlated motions are shown as orange, and x 

and y axes are residue numbers. What is immediately apparent in these plots is that correlation 

is dramatically perturbed in the Apo-E753N simulation. Upon examination of the structure 

however, this is very logical. The mutation removes a salt bridge pair, replacing an Arg-Glu 

interaction with an Arg-Asn. This substitution causes the β-hairpin critical in forming the active 

site to partially unfold during the simulations, presumably damaging overall correlation as well 

as active site organization. The K764N position is involved in IP6 binding, and R751Q in 

communication of that binding, so it is not surprising that we see no effects on correlated motion 

in the Apo simulations.  
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Figure 0-3 Difference correlation plots .  

Correlation matrices of the mutant simulations have been subtracted from the wild type simulations to 
determine how the introduction of the mutation affects overall concerted motion. It is readily apparent that 
E753N dramatically perturbs how the CPD domain explores its conformational space. In all IP6 bound 
simulation, a low degree of motility is observed, and this low correlation overall is to be expected. 

 

 Once IP6 is bound we see little overall motion in all simulations, and consequently there 

can be a limited amount of correlated motion. As we see in the three mutant IP6 bound 

simulations, there is no discernible difference between the three other than a few slight point 

correlations. While IP6 binding precludes differentiating between these mutations by correlation, 

GMD was applied to determine the effects on the activity of the simulations. 
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4.3.4 Generalized Masked Delaunay analysis of simulations  

 Generalized masked Delaunay plots for all simulations are shown in Figure 0-4. Total 

activity is indicated in blue, contact forming is in green and contact breaking is in red. This 

analysis provides a number of events per frame, by monitoring the space explored by a residue 

during a window of the trajectory, and then determining whether or not motions that occur are 

significant or trivial. Please refer to the original manuscript for further information (442).  

 

Figure 0-4 : GMD plots of all Apo and IP6 bound simulations.  

Total activity is indicated in blue, contact breaking is in red, and contact forming is in green. This analysis 
provides events per frame and was used to monitor overall activity as well as investigate specific activity 
peaks, such as those seen in the IP6-K764N simulation. 

 

 The Apo-WT shows a high level of activity overall, two phases of bond breaking and 

forming are observed around 70ns and 115ns, these alternating contact forming and breaking 

periods indicate an open-close behavior when the trajectory is observed at these points and is 

likely a normal part of the conformational exploration of this protein. While the Apo-E753N 

behaves dissimilarly from the other simulations, we interpret this as associated with the 

breaking of the concerted motions of the β-flap that were previously described. The Apo-R751Q 

simulation shows slightly higher activity overall, between 0.2 and 0.5 events per frame, slightly 

higher than the Apo-E753N and K764N simulations.  
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 The IP6-bound simulations all show a low level of activity relative to the Apo-WT 

simulation, which is partly due to simulation length, but is expected due to the low motion 

observed in the PCA analysis. The IP6-WT simulation shows the lowest level of activity overall, 

with some periodic fluctuations. The mutant IP6 bound simulations all share a common feature, 

a high activity peak somewhere between 7 and 20ns. As this peak occurs at different times in 

the simulations we believe it is not an artifact, but rather a consequence of forcing IP6 binding to 

these mutants. When the trajectory is observed, these time points correlate to rearrangement 

near the IP6 binding site.  

 The IP6-E753N simulation shows the lowest of these peaks, presumably because this 

mutation does not directly contact the IP6 molecule. The mutation, while removing an Arg-Glu 

interaction as discussed above, does not result in a repulsive pairing and the β-hairpin remains 

largely stable through the simulation. The IP6-K764N simulation shows the most pronounced 

peak, and when observed this also includes some rearrangement of the β-hairpin as well. The 

K764N mutation is directly interacting with the IP6 molecule, and therefore this would likely have 

the most dramatic effect on an IP6 bound conformation. The R751Q mutation does not directly 

interact with the IP6, but interacts with the K764 position to communicate IP6 binding. The GMD 

of this simulation shows a moderate peak, occurring later in the simulation than in either the 

E753N or K764N. Interestingly, the Apo-K764N simulation also shows this peak, and may be 

indicative of the K764N position having structural importance beyond IP6 binding.  

4.3.5 Quantitation of active site organization 

 Organization of the active site was quantitated in two ways, by RMSF, and by calculating 

the area of the triangle defined by the alpha carbon of the Asp 44, Lys 112 and Cys 155, the 

residues of the catalytic triad.  

 Figure 0-5 plots RMSF of the three residues over the simulation time, normalized to wild 

type. The first four columns are the Apo simulations, while the last four are the IP6 bound 
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simulations. Interestingly, even in the highly flexible apo simulations, the active site remains 

fairly stable. What is more interesting is that on a per-residue basis, the mobility of the active 

site triad is not evenly distributed. In all simulations the Cys155 residue has the highest RMSF. 

This residue is positioned adjacent to the β-flap that gets organized upon IP6 binding, and we 

theorize that this residue may be an extension of the allosteric circuit, critical in organizing the 

active site.  

 

Figure 0-5 Rmsf vs. simulation for three catalytic residues normalized to wild type.  

Cys 155 shows much higher flexibility than either Lys 112 or Asp 44, and as this residue is proximal to the β-
flap critical for activity, this is to be expected. While overall the activities are fairly consistent, IP6-K764N 
shows a somewhat increased level of activity 

 To determine the extent of organization of the active site, a triangular distance metric 

was created, using the area as a measure of "openness" Measured at the C-alpha position, the 

average distance for each of the three active site triad residues was observed for all 

simulations. The area of the triangle defined by these distances was calculated by Heron's 

formula and is included in Table 0-5. A visualization of this metric is shown in Figure 0-6.  
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Figure 0-6 Visualization of the distance metric used to describe active site stability.  

 Distance between the alpha carbon of Asp 44, Cys 155 and Lys 112 were averaged through all trajectories. 
The triangle described by this region was used as a metric of active site stability. 

 

Table 0-5 Distance between C-alpha of catalytic triad and area of triangle representing active site 
organization. 

Apo 

Simulation 44 to 155(Å) 155 to 112(Å) 44 to 112(Å) Area(Å2) 

Wild Type 14.7 9.6 9.8 46.5 

E753N 13.7 9 13.8 58.4 

K764N 14.84 6.99 14.3 49.28 

R751Q 16.15 11.32 10.76 60.75 

IP6 bound 

Simulation 44 to 155(Å) 155 to 112(Å) 44 to 112(Å) Area(Å2) 

Wild Type 14.17 7.33 13.29 48.14 

E753N 14.16 7.15 13.07 48.56 

K764N 14.11 7.67 13.18 49.84 

R751Q 15.21 6.17 14.1 43.47 
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 The overall results are similar to that of the RMSF calculation, but there are some slight 

differences, in both the apo and IP6 bound simulations, the active site seems relatively stable. 

There are a few notable exceptions, which support the evidence for an allosteric pathway. 

 Residue R751Q has been previously described as being critical in the communication of 

IP6 binding to the active site. As previously shown in our RMSF calculations, we theorize that 

the active site residue with the largest amount of flexibility, and therefore the highest effect on 

active site organization is Cys 155. In the Apo-R751Q simulation, there is a dramatic increase in 

the Cys155 to Lys 112 distance. This causes an increase in the area of the catalytic triad from 

roughly 46-48 Å2 to 60.75 Å2, a phenomenon not observed in any of the other simulations. 

Again, in the IP6 bound simulations, we observe a relatively stable active site area, with the 

exception of IP6-R751Q. In this case the active site area is actually decreased relative to the 

other IP6 bound simulations. We propose that perturbing the allosteric circuit even in the 

absence of IP6 has effects on the organization of the active site. It is possible that an inhibitor 

that alters the distance between the catalytic triad may be effective in preventing protease 

activity, or an activator that stabilizes this section of the allosteric pathway might be able to 

induce cleavage extracellularly.  

4.4 Conclusions  

 This work assesses the effects of three mutations of the CPD domain of TcdB on IP6 

binding, overall conformational mobility, correlation and activity. Comparison of the effects of 

these mutations illustrates in greater depth the interactions required for the formation of the 

CPD active site. This information will be useful in the future design of inhibitors or activators of 

cleavage for this protein.  

 Previous experiments indicated that the selected mutations perturbed catalytic activity as 

well as IP6 binding. It was shown that positions E753, K764 and R751 were critical for activity in 

various capacities, and their roles were determined as β-hairpin folding, IP6-binding and 
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allosteric communication respectively. While some work has been done towards development of 

inhibitors of the pre-organized active site, these require cell penetration as their active site target 

does not exist until late in the process of cellular intoxication. Currently there are no inhibitors 

exploiting the allosteric site of this protease.  

 MD simulation, PCA, correlation and GMD analyses were used to determine the where, 

what and when of these structurally important mutations. PCA allowed us to determine the 

similarities and dissimilarities in the overall structure through the simulation timecourses. 

Correlation analyses were used to indicate which mutations altered the method of movement, 

and GMD was applied to determine how the introduced mutations affect event pattern.  

MD simulations and PCA analysis indicate that in the IP6 unbound form the E753N mutation 

dramatically perturbs the conformational space of the protease, which may explain some of the 

in vitro findings with respect to IP6 binding and protease activity.  

 The correlation analysis dramatically illustrates that the E753N mutation in the apo 

conformation has strong effects on overall correlated motion. Strong correlation was observed in 

the Apo-WT simulation, and this is completely destroyed by the introduction of the E753N 

mutation. While later studies showed that the overall arrangement of the active site may not 

have been perturbed, our findings agree with the conclusions of Shen et al. that this mutation 

most dramatically interferes with protease activity. In the IP6 bound simulations, we observe a 

low level of activity and correlation as the simulations are quite stable. The difference correlation 

plots reflect this beautifully, as once IP6 is bound the protease should remain in a stable fold 

until proteolysis occurs.  

 GMD analysis was used to determine the effects of these mutations on overall activity 

and to discern critical events in simulation. While all three mutant IP6 bound simulations 

indicated an "event" during the course of the simulation, K764N was observed to have the 

greatest level of mid-simulation activity. This activity was determined to be a reorganization near 

the base of the β-flap. We propose that the alteration in IP6 interaction due to this mutation 



119 

 

partially destabilizes this region as the simulation progresses while the protein attempts to 

somewhat ameliorate the unfavorable contacts included by this mutation.  

 In observation of the RMSF and active site triad area, we determined that even through 

the highly flexible apo simulations, the active site remains fairly stable. On a per-residue basis, it 

was determined that Cys 155 appears to be an extension of the allosteric circuit defined by 

Shen et al.. As Cys 155 is proximal to the β-flap responsible for active site organization, this is 

logical. Both the K764N and R751Q mutations affect the behavior of this residue, albeit in 

different ways. During the IP6-K764N simulation, the RMSF of increases relative to wild type, 

and is in fact higher than all other simulations. The R751Q mutation affects the distances 

between the residues of the catalytic triad, directly affecting the shape of the active site pocket.  

We consider the pre-organization of the active site to be in agreement with current in vitro work 

As there has been evidence for small molecule inhibition of the CPD domain. As some of these 

studies have been performed in the absence of IP6, we consider the active site stable enough 

to be considered a target for inhibition. However, as this work has been done at pH 7, it is 

possible that the range of pH found in the gut may affect organization or flexibility of the CPD 

domain, making active site targeting difficult. Additionally, as altered pH has been observed in 

individuals with severe bowel disturbances, pH sensitive studies would be advised in the future.  

We suggest that small molecules targeting the IP6 binding region which stabilize the fold and 

allosteric circuit may potentially trigger extracellular cleavage. However, as we have determined 

that there is some extant pre-organization of the active site, targeting of the active site pocket is 

not an unreasonable goal, provided the inhibitors are not dislodged during endosomal escape. 

We propose that Cys 155 is the direct target of allosteric control in the CPD domain, and 

molecules perturbing the flexibility or position of Cys 155 would be capable of inhibiting protease 

activity. Furthermore, molecules capable of causing conformational alterations similar to those 

induced by the R751Q mutation may be able to prevent organization of the active site. 
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Investigation into allosteric activation as a potential mechanism to prevent cellular intoxication 

may prove fruitful.  

 It is clear that alteration of any step in the allosteric circuit has consequences. 

Introduction of the K764N mutation affects activity while IP6 is bound, introduction of the E753N 

mutation appears to perturb conformation, and introduction of the R751Q mutation alters 

organization of the active site. Small molecules exploiting these activities would potentially be 

powerful tools against Clostridium difficile infection.  

 

4.5 Methods 

 The wild type crystal structure of CPD (PDBID:3PEE) was used as a scaffold for the 

creation of three mutants E753N, R751Q and K764N. Mutations were introduced using the 

structure editor in Chimera (469). Conformations were selected from the Dunbrack rotamer 

library (470), and taking into account the first two atoms of the wild type side chain 

conformation. All four structures were generated with and without the crystallographic inositol for 

a total of eight simulations. Structures were solvated and ionized using the MeadIonize plugin 

for highly charged systems using VMD (431). Simulations were carried out using NAMD (428) 

with the CHARMM force field (437, 438, 471).  

 Parameterization for IP6 was performed as previously described (449) using both ab 

initio and analogy methods. Parameters from both methods agree to within the decimal places 

used by the CHARMM force fields.  

 Correlation analysis was carried out using the ptraj module of AmberTools (472). All 

atom correlation of the protein structure was performed and results were plotted using 

Mathematica (473). Solvent, ions and IP6 were excluded. Difference plots were generated for 

ease of comparison. Unsubtracted plots are available in SI.  
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 Generalized Masked Delaunay analysis was performed using TimeScapes (442). 

Simulations were strided to 1/10 of total simulation time, water, counterions and substrate was 

removed. The calculation was performed using a 5% frame window. Contact breaking, forming 

and total activity were plotted. Activity based trajectories were generated and used to examine 

the events detected in the IP6 bound simulations.  

 PCA was done using the bio3d package under R (474). Trajectories were reduced to C-

alpha atoms only, each set of four trajectories was used to determine the spatially invariant 

residues. All trajectory frames were aligned onto the "core" residues and PCA was performed. 

Crossplots of PC1 vs. PC2, PC2 vs. PC3, and PC1 vs PC3 were generated as well as a plot of 

proportion of total variance captured vs. Eigenvalue rank. Broadened ribbon diagrams were 

generated using Chimera where the degree and direction of broadening indicates degree and 

direction of eigenvalue for each PC.  

 Hydrogen bond and salt bridge analyses were carried out using VMD (431). Active site 

distance metrics were calculated using python and the Chimera visualization suite (469). Area 

of active site was calculated using Heron's theorem. Rmsf of selected residues was performed 

using R (475).  
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Chapter 5 Comparative analysis of Clostridium difficile Toxins A and 
                 B 
 

5.1 Background 

 Clostridium difficile  (C. diff) is a well known hospital-acquired infection that costs 

the American healthcare system millions of dollars and thousands of lives per year (374, 

376). Infection occurs following treatment with broad-spectrum antibiotics during an 

inpatient stay.(370). While the broad-spectrum antibiotics perturb the natural colonic 

microflora, hospitalization provides exposure to C.diff bacteria and spores; creating the 

perfect opportunity for C. diff infection. Preventing patient-to-patient transmission would 

preclude the spread of C. diff infection, however complete control by this method is 

difficult in a real world setting. C. diff is a gram-positive, spore forming anaerobe, and 

the spores are notoriously resistant to antimicrobial agents, up to and including bleach 

(476). Once exposed to live cultures or spores, C. diff quickly takes over a compromised 

patients intestinal tract. The presence of the bacillus itself does not always result in 

disease and can be observed in a sub-clinical state in some individuals (477). However 

this is contingent on other gut bacteria keeping the local C. diff population in check. The 

more virulent strains involved in disease onset produce two large glucosylating toxins 

(GT's) which cause large scale tissue damage(370). Infection with C. diff causes a 

range of symptoms, ranging from diarrhea to  pseudomembranous colitis, and toxic 

megacolon(370).  

 C. diff is not the only bacillus known to cause tissue damage by the action of 

glucosylating toxins. There are currently five known Large Clostridial Toxins (LCT's), 
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TcdA and B of C. diff, alpha toxin (Tcn) from C. novyi, and hemorrhagic (TcsH) and 

lethal toxins (TcsL) from C. sordellii. In all cases these LCTs cause massive tissue 

damage, associated with the disregulation of cell signaling(478). The phenotypes 

associated with infection are typically edema, myonecrosis, and sepsis, usually in the 

form of gas gangrene, Toxic Shock Syndrome (TSS) or clostridium difficile associated 

diseases (CDAD). The glucosyltransfer step of these toxins places a glucose moiety 

from a nucleotide sugar onto a variety of Rho GTP-ases. This leads to disruption of cell 

signaling, followed by cell death. The propensity for massive tissue damage coupled 

with the fact that clostridial infections are difficult to treat with antibiotics has recently led 

to a novel approach. Treatment with anti-toxin therapies during an active infection may 

preclude the severe tissue damage that these toxins cause and improve clinical 

outcomes.  Toxin binding polymers, monoclonal antibodies, and epoxide inhibitors are 

all currently being pursued for this purpose, with some success(383, 407, 446, 479-

483).  

 To better design anti-toxin agents however, a thorough understanding of the 

causative agents is essential. An excellent comparison of the genetic structure and 

cellular targets of these toxins was performed by Busch and Aktories(478) in 2009, but 

a considerable amount of structural information has become available since those 

studies. Drug design based on structural and dynamic studies of the GT domain of 

TcdB have proved particularly productive (484). By incorporating information obtained 

through molecular dynamics studies, a potent and irreversible anti-toxin molecule was 

developed. It is with these studies in mind that we undertook a structural comparative 

analysis of the two glucosylating toxins of  C. diff, TcdA and TcdB.  
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 While the structure of TcdB was solved several years ago(408), TcdA has only recently 

been structurally characterized (436) provided a unique opportunity for study. While the 

toxins have a similar domain structure (Figure 1 Panel A), they have some common and 

some unique intracellular targets, and differing levels of toxicity. The overlay in Panel B 

is a superposition of the GT domains of TcdA and TcdB with relevant regions for 

analysis indicated. For the purposes of these studies, the toxins will always be 

presented in this orientation. The protein-protein recognition face, and active site flap 

are in the center, the four-helix bundle responsible for membrane localization is on the 

lower right, and the promontories unique to these toxins are shown at the top. Panel C 

shows a cutaway of the active site, with the glucose donor UDP-Glucose complexed to 

the catalytic manganese ion. In the TcdB crystal structure hydrolysis of this substrate 

occurred, producing a UDP and Glucose, it remains complete in the TcdA structure. 

While the simple structural overlay appears highly homologous, these proteins have 

dramatically different properties on a per-residue level. The initial TcdA structural 

analysis by Pruitt et al included some electrostatics images which seemed to disagree 

with my initial examination of the structure. Upon further examination, it became 

apparent that their "electrostatics" was simply coloring by residue type. This prompted a 

quick coloumbic surface calculation, which revealed a dramatically different surface for 

TcdA than what had been observed for TcdB. This fascinating result led to a deep 

comparative analysis of the two proteins investigating electrostatics, hydrophobicity, pH 

sensitivity and dynamic motion between TcdA and TcdB.  
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0-1 Comparison of TcdA and TcdB.  

(A) Schematic diagram of the domain organization of TcdA/B. Both proteins have conserved 
glucosyltransferase, cysteine protease and translocation domains. The most significant difference is in the 
C-terminal repetitive oligopeptide receptor binding region. (B) Structural superposition of the toxins. (C) 
Structural overlay of the GT-domain active site. Both structures were crystallized with UDP-glucose in the 
active site, however hydrolysis occurred in the TcdB structure, resulting in separate UDP and Glucose 
moieties in the crystal. 

5.2 Comparison of surface properties 

 Full electrostatic surfaces were calculated for TcdA and TcdB using the 

Accelerated Poisson-Boltzmann Solver (APBS) (485). Hydrophobicity, sequence 

similarity, crystal structure RMSD, and charge differentials at pH 7 were all compared. 

Straightforward investigation of electrostatics as well as novel mapping techniques were 

used to determine regions on the structures where pH sensitivity may play a role in their 
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differential activity. Multi-Conformer Continuum Electrostatics (MCCE) calculations were 

carried out along with a computational pH titration to determine residues in both 

structures which show shifted pKa's.  

5.2.1 Surface electrostatics, hydrophobicity and structural similarity at pH 7 

 Figure 2 shows the full electrostatic APBS results of TcdA and TcdB at pH 7 

projected onto an MSMS (Maximal Speed Molecular Surface) surface representation. 

Clockwise from top left, each progressive panel represents at 90° rotation from the 

previous panel. It is notable that on all faces, it appears that TcdB has significantly more 

charged residues on the surface compared to TcdA leading to more electrostatically charged 

surface on the former  

 

0-2 APBS electrostatics at pH 7 projected onto the surfaces of TcdA and TcdB.  

Panel A presents the active site and protein-binding face, with TcdA on the right and TcdB on the left. The 
four-helix membrane localization domain is positioned at the bottom right on this panel. TcdB shows 
considerably more electrostatic character than TcdA in all orientations, Panels B-D represent 90° rotations 
around the y-axis from each previous panel 
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 Panel A orients the active site and protein-protein interface towards the viewer. It 

is notable that there is a prominent negatively charged patch directly on the active site 

interface. Also, between the two upper promontories there is a considerably greater 

amount of negative charge. The four-helix bundle in shows greater positive charge on 

the TcdB structure in all orientations. Panels C and D are striking in that there is a 

dramatic increase in negative character for TcdB relative to TcdA.  

 

 

0-3 Charged residues on TcdA and TcdB 

Charged residues of all types are colored on TcdA and TcdB. Those from TcdA are colored orange,a nd those from 
TcdB are colored blue. It is noticeable that there is a distinct lack of charged residues on the TcdA structure in and 
near the active site, while many of the surface charge has been maintained.  
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 Structural superposition followed by sequence alignment indicates that overall, 

TcdA has far fewer charged amino acids than TcdB does. A full sequence alignment is 

available as Supplementary Figure S1. It was determined that TcdA has 49.54% identity 

with TcdB, increasing to 50.66% if gaps are omitted. Nearly all active site mutations 

(those occurring within 20Å of the crystallographic UDP-Glucose) replace charged 

amino acids with nonpolar residues as shown in Abdeen et al. in press. It is interesting 

to note that although TcdB has many more charged residues in its sequence, the 

tertiary structure for both proteins results in the arrangement of many charged residues 

on the surface for TcdA as well as TcdB. Additionally this results in a lack of charged 

residues in the active site of TcdA.  

 The overall charge distribution at pH 7 indicates that the two proteins, while 

structurally similar, have different surface properties. Figure 4 plots the Kyte-Doolittle 

hydrophobicity on an MSMS surface. Kyte-Doolittle hydrophobicity is based on a 

hydropathy scale derived from experimental observations, applied to a protein structure 

by using a moving-segment approach to determine average hydropathy within a 

segment. Panels A-D are each rotated 90° from the previous frame. Hydrophobic 

regions are shown in orange while hydrophilic regions are shown in blue. Neutral 

residues are shown in white. Panel A orients the toxins with both the protein recognition 

face and active site facing forward.  
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0-4 Kyte-Doolittle hydrophobicity surfaces of TcdA and TcdB 

Toxins are in the same orientation as Figure 2 with the active site and protein-interface located in the center 
of the image. TcdA is on the right and TcdB is on the left. Panels B-D represent 90° rotations around the y-
axis from each previous panel. There is a notable increase in hydrophilicity on the TcdA active site and 
protein interface regions, with an overall slight increase in hydrophilicity on the sides and rear of the protein. 

 More hydrophilic character is observed in the center of the TcdA structure, as 

seen in the center of the top left panel, and the amphipathicity of the membrane 

association bundle is greater than that of TcdB. The hydrophobic areas shown in Panel 

B are nearly identical, while an increase in hydrophilic residues in TcdB is observed in 

panel C. Panel D shows slightly greater hydrophilicity for TcdA on this face. The 

differential distribution of hydrophobic residues on various critical regions, notably the 

protein-protein interface and active site may be relevant for function. TcdA and TcdB 

have different preferential cellular targets(388), and this variability may correlate with 

the electronic or hydrophobic contacts on those proteins. TcdB targets Rac1, 

Rho(A/B/C), RhoG, TC10, and Cdc42 while TcdA targets Rac1, Rho(A/B/C) and Cdc42, 

so while there is some overlap in the targets, there are some unique targets as well.   
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0-5 Similarity metrics applied to TcdA and TcdB.  

Panel A shows the sequence similarity projected onto the structure. Identical residues are colored blue, 
strongly similar residues are colored pink, and dissimilar residues are colored gold. Panel B describes the 
RMSD of the crystal structures for TcdA and TcdB. High RMSD is colored magenta, while low RMSD is 
colored cyan. Panel C projects the sequence-predicted charge differences. Residues with no change in 
charge are colored white, a change of +/- 1 is indicated by purple and a change of +/- 2 is indicated by red. 
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 To better represent the differences in these two structures, we have done a direct 

comparison for several properties and overlaid them on the superimposed structures. 

We have depicted the properties of conservation, crystal structure RMSD and charge 

difference on a per-residue basis as shown in Figure 4 panels A-C.  

 Panel A indicates a measure of conservation between the two structures. 

Identical residues are colored blue, similar residues are colored pink, and dissimilar 

residues are colored gold. Similar and dissimilar residues are defined by the Al2CO 

method using the BLOSUM-62 matrix. The highest region of conservation is in the 

active site center, while high dissimilarity is seen near the protein-protein interface and 

four-helix bundle.  

 RMSD between the two crystal structures was measured and the ribbon 

structures are colored on a gradient from rose to cyan. Structurally, the two proteins are 

highly similar, with the major differences being near the active site flap. This flap is 

mobile during UDP-Glucose binding (Swett et al, Biophys J. in press) and presumably 

this difference is due to the fact that the UDP-Glucose observed in the TcdB structure 

underwent hydrolysis in the crystal and thus represents a EP complex rather than the 

ES state. Other regions with higher RMSDs are the edges of the promontories and the 

four helix bundle, presumably due to the inherent mobility in these regions or  crystal 

contacts. Both the upper promontories and the four helix bundle of TcdB were observed 

to have high mobility in both normal mode and dynamics simulations(449).   

 Absolute value of charge difference is shown in Panel C. Residues with no 

charge difference are colored white, residues with a change of + 1 are colored purple, 
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and + 2 are colored red. Again, charge consistency is conserved in and near the active 

site, with high difference in charge on the upper promontories and on the four-helix 

bundle. There are some residues showing charge alteration near the active site flap, 

slightly more distant from the catalytic center. 

5.2.2 Mapping of electrostatics for TcdA and TcdB 

 To better compare the internal electrostatics of TcdA and TcdB, a novel mapping 

method was applied to allow visualization of the sensitivity of electrostatics to pH 

changes. A pseudo-Voronoi approach was used to assign electrostatic potential as a 

property of each atom closest in space to the center of that Voronoi cell. The atom 

properties were summed per residue, allowing the accurate projection of electrostatic 

potential onto a ribbon structure as opposed to an isolevel volume projection or 

projection onto an MSMS surface. This was done from pH 5.5-8 in half pH unit intervals. 

Once assigned, subtracting the maps at a per-residue level allows us to point residues 

that are sensitive in a given pH range. Figure 5 shows the results of applying this 

mapping method to TcdA and TcdB. TcdA is shown on the top row and TcdB is shown 

on the bottom. Each map was subtracted from its nearest neighbor point, producing a 

spectrum representing pH sensitive residues at each point.  
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0-6 Mapping of pH sensitivity to the structures of TcdA and TcdB 

The change in electrostatic potential across half pH unit ranges was mapped to the ribbon representations of 
the structures. Regions that show altered electrostatics in the given pH range are colored red, with color 
intensity indicating degree of change. 
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 In both structures the region around the active site and protein-protein 

recognition face show the highest pH sensitivity, but interestingly, not in the same pH 

ranges. TcdA shows nearly no pH sensitivity between ph 5.5-6. In the pH ranges 

between 6-6.5, 6.5-7-7.5 and 7.5-8, we see pH response concentrated around the 

protein-protein interface and at higher pH's, near the active site. TcdB behaves radically 

differently, between pH 5.5-6 there is considerable response in the upper promontories 

and protein-protein interface. Between 6-6.5, this sensitivity almost completely 

disappears and a region near the c-terminus of the four-helix bundle becomes pH 

sensitive. Between pH 6.5-7, this sensitivity remains, and some pH response is seen 

proximal to the protein-protein recognition face. As the pH rises to 7-7.5 a number of 

residues in the active site and on the protein-protein interface are strongly pH 

responsive, and this sensitivity is concentrated within the active site at pH 7.5-8. We 

postulate that the differential pH sensitivity may be a factor in some of the functional 

variability between TcdA and TcdB. TcdB is far more lethal to cells and causes cell 

death far more quickly than TcdA. An increased rate of endosomal escape and refolding 

due to its higher pH sensitivity would be one plausible explanation. The pH sensitivity in 

the TcdB four-helix bundle that is not observed in TcdA may be of interest as well. If the 

unfolding and refolding of this helix is a bottleneck in the etiology of intoxication, the 

inclusion of pH sensitive residues might be helpful as TcdB transitions from the 

endosome to the cytosol.  
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5.2.3 Multi-conformer continuum electrostatics applied to pKa shift prediction 

 To further investigate the pH sensitivity of these two proteins, we applied multi-

conformer continuum electrostatics (MCCE) to identify pKa-shifted residues in both 

structures. In TcdB, 13 residues with pKa shifts of more than 2 pH units were found, and 

11 were found in TcdA. Tables with the sequence numbers and quantitative pKa shifts 

are in supplementary information Table 1. For our purposes we wanted to determine 

whether pKa shifted residues were in the regions we had determined as being sensitive 

to pH.  Figure 6 shows side by side the comparison of TcdA and TcdB at pH 7, with pKa 

shifted residues colored in blue. There are a higher overall number of pKa shifted 

residues in TcdA and TcdB, but in both cases, the presence of pKa shifted residues 

corresponds with our predicted pH sensitive regions.  

Table 0-1 MCCE determined pKa shifted residues in TcdA and TcdB 

TcdB TcdA  

Residue  Number 
Calculated 
pKa  

Standard 
pKa  Difference Residue  Number 

Calculated 
pKa  

Standard 
pKa Difference 

ARG 194 0.098 12.48 12.382 ARG 215 0.334 12.48 12.146 

ARG 6 1.284 12.48 11.196 LYS 346 0.459 10.53 10.071 

ARG 158 5.063 12.48 7.417 ARG 302 4.071 12.48 8.409 

LYS 303 4.045 10.53 6.485 ARG 405 4.318 12.48 8.162 

ARG 165 7.379 12.48 5.101 ARG 224 4.563 12.48 7.917 

ARG 16 7.898 12.48 4.582 ARG 67 8.161 12.48 4.319 

HIS 492 2.581 6.1 3.519 LYS 428 6.267 10.53 4.263 

ASP 270 0.592 3.86 3.268 ARG 535 9.07 12.48 3.41 

ASP 310 1.345 3.86 2.515 GLU 22 1.721 4.07 2.349 

ARG 445 10.101 12.48 2.379 GLU 20 1.874 4.07 2.196 

LYS 64 8.317 10.53 2.213 ASP 31 1.731 3.86 2.129 

ARG 455 10.374 12.48 2.106      

LYS 50 8.454 10.53 2.076      
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0-7 Comparison of MCCE predicted pKa shifted residues and electrostatically mapped structures of TcdA 
and TcdB.  

Regions with ph sensitivity are colored red, and residues with predicted pKa shifts are colored in blue 

 As both TcdA and TcdB transit from the lumen of the intestine, through 

endosomal acidification and into the cytosol, they are exposed to a range of pH's. We 

applied the Adaptive Poisson Boltzmann Solver to calculate the continuum 

electrostatics of both toxins across the pH range of 5.5-8. By applying a novel mapping 

method, we were able to highlight the regions that show pH sensitivity in half pH unit 

ranges. Multi-conformer continuum electrostatics calculations were performed to 

determine the positions of pKa-shifted residues. These results were in agreement with 

the pH sensitivity mapping method. TcdB shows higher pH sensitivity than TcdA, likely 

due to the increase in total number of charged residues. Additionally, the regions that 

are pH sensitive differ in the two toxins, with a region near the active site broadly pH 

sensitive on TcdA, and a section in both the protein-protein binding face and four-helix 

bundle showing sensitivity on TcdB. This sensitivity in the four-helix bundle is 
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particularly interesting. If this pH sensitive region assists in the folding or unfolding of 

the membrane localization domain, this may enhance the ability of this toxin to exit the 

endosome or localize to the cell membrane. Further work needs to be done to valdiate 

the prediction that these specific residues affect the differential function of TcdA and 

TcdB during internalization and glucose acceptor binding/specificity.  

5.3 Molecular dynamics applied to TcdA 

 All-atom molecular dynamics simulations of TcdA in the presence and absence 

of UDP-glucose were performed to determine whether there were any dynamic 

differences between TcdA and the dynamic analyses of TcdB present in the literature. 

PCA and GMD were applied to determine both the overall structural motions and event 

patterns in simulation. Solvent analysis, hydrogen bonding and salt bridge analyses 

were performed to determine whether or not the increased hydrophobicity of TcdA 

affects solvent dynamics relative to TcdB.  

 As computational studies on the dynamics of TcdB have already been discussed 

in chapter 2 and 3, we performed molecular dynamics simulations to assess the 

behavior of TcdA in comparison to TcdB. We simulated TcdA in the presence and 

absence of UDP-Glucose for 40 and 20ns respectively. We performed generalized 

masked Delaunay analysis (GMD), as well as PCA and hydrogen bond analysis. These 

experiments were undertaken to determine the extent of similarity in dynamic motion 

relative to the previously published data(449). It was previously shown that the Apo-

TcdB structure had an increased range of motion, higher overall activity in GMD 

analysis, and increased active site solvation relative to the UDP-glucose-bound 
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conformer. The results of the TcdA simulations echo these results , and are discussed 

below. 

5.3.1 Simulation of TcdA assessed with GMD, PCA and interaction analysis 

 Binding of UDP-glucose decreases the overall activity and flexibility of TcdA, in 

agreement with previous results for TcdB. Figure 7 shows the data from conformational 

analysis of this protein. Panels A and B are generalized masked Delaunay plots, which 

indicate the number of significant and persistent "events" per frame. This can be used 

as a rough gauge of the overall activity of a simulation. Panel A indicates that for the 

Apo simulation, the overall level of activity remains higher than the UDP-glucose-bound 

simulation shown in panel B. The PCA analysis shown in panels C and D largely agrees 

with these results. Crossplots of the eigenvalues for each simulation frame from 

principal component vectors 1, 2 and 3 are shown, along with a breakdown of the 

contribution to total variance expressed as a percentage of total. Overall Panel C 

indicates a lower amount of conformational space explored by the UDP-glucose bound 

simulation than that seen in panel D.  This finding goes hand in hand with the data in 

panels A and B, we observe both lower overall activity, and a decreased amount of 

conformational space explored in the UDP-glucose-bound state. During visual 

inspection of the trajectories, we observed no large scale reorganization in either the 

Apo or bound form. RMSD's were calculated at 1.8Å and 1.6Å for the Apo and UDP-

glucose-bound simulations respectively.  



139 

 

 

Table 0-2 GMD and PCA analysis of TcdA simulated both Apo and in the presence of UDP-glucose.  

Panels A and B plot the number of significant events over the course of the trajectory. Panels C and D show 
the crossplots from the first three eigenvectors of the simulation, along with the proportion of variance that 
each contributes to the total. 

 Hydrogen bonding, solvent-interaction and salt bridge analyses suggest that the 

introduction of the UDP-Glucose increases the stability of the structure. Table 1 

describes these interactions. Interaction type is broken down into intramolecular 

hydrogen bonds, solvent hydrogen bonds, and salt bridges. TcdA and TcdB simulations 

both in the presence and absence of UDP-glucose are presented for comparison. In the 

TcdA simulations, we see an increase in hydrogen bonds upon UDP-glucose-binding. 

This is largely due to the additional backbone stability contributed by ligand binding. 
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 With UDP-glucose bound, the structure is more able to optimize intramolecular 

interactions. We also see a decrease in active site hydrogen bonds, as these are 

physically precluded by the presence of UDP-glucose. With respect to solvent 

interactions, we observe overall increased solvation in the active site and surface 

relative to TcdB, and again, several active site interactions are disturbed by the 

presence of UDP-glucose. During the TcdA simulations, there is an increase in salt-

bridge formation upon UDP-glucose binding. This is in contrast to the TcdB simulations, 

however, several of the salt bridges disrupted in TcdB were in the active site, and are 

physically disrupted by the presence of UDP-glucose. Overall, we have determined that 

TcdA is stabilized by the presence of UDP-glucose, and we see a higher level of 

solvation, relative to TcdB. Differential behavior with respect to salt bridges is due to the 

location of interactions within the structures.  

Table 0-3 Interaction analysis for the simulation of TcdA in the presence and absence of UDP-glucose.  

Interaction type 
TcdA TcdB† 

Apo UPG bound Apo UPG bound 

Intramolecular h-bond 28 39 - - 

Intra-active site h-bond 13 9 - - 

Intra-binding face h-bond 5 5 - - 

Solvent h-bond 68 62 81 77 

solvent-active site h-bond 7 4 1 0 

solvent-binding face h-bond 6 6 1 1 

Salt-bridges 67 74 77 58 
† Reproduced from Swett et al. (In press) 

 Molecular dynamics was applied to determine whether or not TcdA and TcdB 

behave similarly in solution. TcdA was simulated in the presence and absence of UDP-

glucose, and analyzed with GMD, PCA and several interaction analyses. In comparison 
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to previous simulations of TcdB, the results are largely similar. We observe higher 

activity in the GMD analysis when TcdA is in the Apo form, as well as an increased 

range of conformational motion as shown by PCA. The interaction analysis indicates 

that TcdA has a higher level of stationary water molecules, some of which are 

displaceable upon UDP-glucose binding. As observed in the GMD and PCA, TcdA is 

more conformationally stable when bound to UDP-glucose and this results in a higher 

level of intramolecular interactions. We suggest that the additional backbone stability 

allows the sidechains to optimize their hydrogen bonding networks and salt bridges 

more readily than the Apo form. A decrease in the overall number of salt bridges 

observed on TcdB upon UDP-glucose binding was previously described, and is due to 

the interruption of active site salt-bridges by the substrate.  

5.4 Conclusions 

 We have performed a full electrostatic and dynamic comparison of the clostridial 

toxins TcdA and TcdB. While the proteins have a highly similar overall fold, there are 

significant sequence changes that result in radically different electrostatic properties. 

These were compared across multiple pH's to determine the location, if any of pH 

sensitive residues. A novel mapping method was applied to allow clear visualization of 

these regions. Multi-conformer continuum electrostatics was used to probe pKa shifted 

residues and determine their locations relative to pH sensitive regions. Molecular 

dynamics simulations of TcdA in the presence and absence of TcdB were performed to 

determine whether or not there were significant differences in the mobility of TcdA, as 

compared to literature information on TcdB.  
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In conclusion, we have delineated the effects of the limited sequence similarity between 

TcdA and TcdB on the surface properties of these two toxins. We suggest that while the 

toxins have similar dynamic properties, the alterations in pH sensitivity and 

electrostatics may play a role in both their differential targets, and catalytic efficiency. A 

novel mapping method was developed and applied to indicate regions of pH sensitivity 

across pH ranges. This has discovered a pH sensitive region in the four helix bundle of 

the toxins which may aid in the translocation step, by assisting in the unfolding or 

refolding of the toxins following endosomal acidification and escape. As it has already 

been shown that the cytotoxicity of these proteins can be alleviated by perturbing the 

protein-protein binding face (ref), we suggest that the design of an inhibitor based on 

surface properties of the toxins may be useful as well. Also, as the dynamic comparison 

of TcdA and TcdB indicated very similar behavior in response to UDP-glucose, and it 

has been previously shown that inhibitors targeting TcdA also affect TcdB, we suggest 

that active site binders will likely have cross-toxin activity.  

5.5 Methods 

 Structural superposition was performed using the Needleman-Wunsch algorithm 

in conjunction with the BLOSUM-62 matrix. A gap extension penalty of 1 was selected. 

Secondary structure score was included as 30% of the total superposition score. 

Secondary structure assignments were calculated using ksdssp(Kabsch and Sander 

Define Secondary Structure of Proteins) with an energy cutoff of -0.5, a minimum helix 

length of 3, and a minimum strand length of 3. Within the secondary structure score, 

structural gap-opening penalties were applied as follows. In predicted helices, an intra-
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helix or intra-strand gap required a penalty of 18, and any other gap was a penalty of 6. 

After superposition, a structure-based sequence alignment was generated. The total 

alignment score was 1775.8. The percent identity was calculated based on simple 

alignment (49.54%), and with non-gap columns only (50.66%)  

 Conservation was calculated using AL2CO methods(486). The Independent 

counts method was used for frequency estimation, and conservation was calculated by 

the sum of pairs method. The averaging window was set to 1 and the gap fraction was 

set to 0.5. The Sum-of-pairs matrix again was set to BLOSUM-62, with no matrix 

transformations applied. .   

 Sequence alignment is colored by the ClustalX standard. Conservation is 

represented by bar height. Full height indicates identical residues, 2/3 indicate strong 

similarity, 1/3 height indicate weak similarity. as per AL2CO standards. Charge variation 

is relative to TcdA. Blue bars indicate more positive charge, red bars indicate more 

negative charge. Full height bars indicate a change of +2 charge units, and half height 

bars indicate a change of +1 charge units. RMSD is represented as a gray bar with 

height relative to increasing RMSD per residue. Hydrophobicity coloring was projected 

onto an MSMS surface(487), using the KD method(488).  

 APBS was used for the initial electrostatic calculations(489). The AMBER force 

field was used for the calculation, and output was returned using the APBS internal 

naming scheme. The hydrogen bonding network was optimized and PropKa(490) was 

used to assign protonation states between 5.5-8 in half pH unit intervals. An 

automatically configured sequential focusing multigrid calculation was performed(491, 
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492). For the TcdB structure, this used 193 grid points in all directions for grid-based 

discretization. The focusing calculation was carried out with the following coarse mesh 

domain lengths: x-direction 136.583, y-direction 143.144, z-direction 123.15. Fine mesh 

lengths were: x-direction 100.343, y-direction 104.215, z-direction 92.441. For the TcdA 

structure, this used 225 x-direction, 161 y-direction, and 193 z-direction points per 

processor for grid-based discretization. The focusing calculation was carried out with 

the following coarse mesh domain lengths: x-direction 153.095, y-direction 114.974, z-

direction 126.133. Fine mesh lengths were: x-direction 110.056, y-direction 87.632, z-

direction 94.196. 

 Both grids were centered at the center of mass of the protein structure. No 

mobile ion species were included in the calculation. The biomolecular dielectric constant 

was set at 2, and the dielectric of the solvent was set at 78.54. Point charges were 

mapped to the grid using cubic B-spline discretization(493), and 10 grid points per 

square angstroms were used in surface construction. Ion accessibility coefficients were 

defined based on a molecular surface definition, with an ion accessibility coefficient 

defined by an "inflated" van der Waals model and smoothed by a 9-point harmonic 

averaging(485). The temperature was set at 298.15K for the PBE calculation.  

 Mapping of the density to structure was performed using a pseudo-Voronoi 

approach. All electrostatic potential closest to a given atom was defined as a property of 

that atom, and atom "electrostatics" were summed per residue. This allows 

representation on a ribbon projection or surface. By subtracting the allocated density 

maps it is possible to determine which residues experience changes in the nearby 
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electrostatic field across a pH range. This was performed using the APBS generated 

electrostatic potential maps for both TcdA and TcdB across the range of 5.5-8, in 0.5 pH 

unit intervals.  

 MCCE calculations were run at the standard full level of analysis. pH titration was 

carried out between pH 0-14 at 1 pH unit intervals. Generation of rotamers was carried 

out by creating heavy atom rotamers followed by protonation at low energy positions. 

Using the Dunbrack rotamer library conformers all possible conformations for all 

sidechains were generated. The protein structure was stripped of residues and 

generated with all sidechains in “allowed conformations". Clash tolerance was set at 2Å 

and multiple protonation states were allowed for titratable residues. Structures were 

created with 5000 repacks per conformer were allowed with an occupancy cutoff of 

0.01. Delphi was used to calculate the reaction field energy and pairwise electrostatics. 

Solvent dielectric constant was set at 80, and the 65 grids per calculation were used 

with a target of 2 grid points per angstrom. The probe radius used was 1.4Å, with an ion 

radius of 2Å and a final salt concentration of 0.15 mMol. Monte Carlo sampling was 

used to determine which conformers dominate at each pH. The number of sampling 

steps was set to2000 times the number of conformers generated. Energy was traced for 

50,000 steps per round with a maximum of 1 million microstates allowed during the 

analytical solution step. A protein microstate is a combination of one conformer for each 

residue, any cofactors present, and water. pKa determination is done by determining 

which conformers dominate when we perturb all possible microstates. This was 

performed from pH 0-14, to obtain the pKa of each titrating group. 
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 Both molecular dynamics simulations were done using the CHARMM force field 

with NAMD, on the WSU rocks cluster. The canonical ensemble was used with periodic 

boundary conditions, Langevin dynamics and thermostat. Simulations were monitored 

by GMD, and simulation stability was assessed using the trajectory analysis tools under 

VMD monitoring energy and RMSD. The systems were solvated with TIP3P water, 

neutralized with counterions and minimized for 1000 steps of conjugate gradient 

minimization. A smooth ramp to 300K was used to bring the simulation to production 

temperature. A 1 fs timestep was used in the calculation and frames were written every 

1ps. Both simulations consist of approximately 57,000 atoms, with approximate box 

dimensions of 100Å x 70Å x 80Å. The solvation box includes a 10Å pad on each face of 

the box. Short range electrostatics were calculated with a non-bonded cutoff of 8Å, with 

switching between 7-8Å. Long range electrostatics were calculated with the smooth 

particle mesh Ewald method. Results were analyzed by GMD, PCA and assessed for 

hydrogen bonds, solvent interactions and salt bridges. Timescapes, bio3d for R and 

VMD were used for these calculations, respectively. For the hydrogen bond analyses, 

intramolecular hydrogen bonds were considered stable if they were present for 50% of 

the simulation or more, and solvent-protein hydrogen bonds were considered stable if 

they were present for 90% of the simulation or more. For the purpose of categorizing 

these interactions, "active site" residues are those within 10Å of the crystallographic 

UDP-Glucose, and "protein-protein interaction face" residues are those between 440 

and 497 as this region encompasses all known residues critical for protein-protein 

association(411, 413, 415).  
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Chapter 6 CoGent-Seq: Connecting genes to sequence. Relating motif  
                 sequences to annotated gene structures. 
 

6.1 Background  

 As increasing interest in protein binding motifs and regulatory elements develops, 

determining which genes contain these elements is required. Genome is a program designed to 

quickly search regions of a genome near either the 5' or 3' UTR for a pattern, and to return a 

user defined segment of genome for analysis. It can be applied to any genome, and any given 

set of annotations. It is capable of matching multiple patterns and returning a true/false match 

for each query. This program is user-friendly, requires minimal user interaction with input, and 

returns data ready for analysis via blast, structural characterization  or statistical analysis. To 

date it has been applied to searches for Dcm methylation sites, and Hfq binding sites in 5' UTRs 

of the E.Coli genome. This chapter will include a brief description of the application of CoGent-

Seq to the search for Hfq mediated regulatory sRNA's.  

 Detection of consensus sequences and recognition motifs can be performed by 

employing statistical methods to detect enrichment of various sequences in a genome. From the 

perspective of a molecular biologist however, detection of consensus sequences or motifs is 

largely informed from wet lab studies. Much of this research is focused on regulatory elements 

in either the 5' or 3' UTR, with novel sequences being reported frequently. Once found 

experimentally, exploration of these sequences within a genome may be attempted, but without 

simple, user-friendly tools, this may be a daunting prospect for a molecular biologist. It is tedious 

and time consuming to perform these searches by hand, and so here we present software 

capable of automating this task. Given a sequence such as a protein recognition motif, 

modification flag, or contextual region within a noncoding RNA, CoGent-Seq will return a list of 
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all genes containing that motif within a user specified region at either the 5' or 3' end of a gene, 

along with a segment of sequence to facilitate further analysis.  

6.2 CoGent-Seq 

 

 A user need only supply the genome for query in the form of a FASTA formatted text file, 

the positions of interest for searching nearby as a .csv formatted list, the pattern or patterns to 

match (i.e. AATTCCGG) and the region the user would like excised for further study if desired. 

The entire program was written in Java, so as to facilitate cross-platform use. It can be used 

either command line or with a GUI, both of which are distributed as executable jar files. Results 

are given as a csv formatted table returning the start site, the motif or motifs searched with a 

true/false identifier, and the segment of sequence requested by the user. For negative sense 

genes, This is ideal for RNA studies where immediate secondary structure prediction of the 

region is required.  

 

 Figure 1A shows the graphical user interface, while Figure 1B shows a typical workflow 

for this software. Upon selecting the version of a genome appropriate to a researchers work, the 

number of nucleotides to the 5' and 3' regions are declared, as is the motif of interest. Any 

number of motifs may be searched simultaneously. The list of either 5' or 3' sites appropriate to 

the organism of study is required in .csv format, which is readily available from several 

databases. Output is returned in two .csv formatted files. The “sequence hits” file returns the list 

of start sites, and reports whether each motif has been found. The “data export” file returns the 

segment of sequence requested by the user for each start site region that contains the motif 

requested. These are semicolon separated for use with either BLAST searches or Mfold 

analysis.  



149 

 

 

6-1 Graphical user interface and workflow for CoGent-Seq 

CoGent-Seq requires minimal user inputs. The graphical user interface in panel A, 
describes these fields. From top to bottom, length of search into 5' and 3' regions, 
sequence to match, a list of annotations for searching, a genome in fasta format, and 
then filenames for data export. A sample workflow would include selecting an 
organism of study, downloading the genome and annotations, applying the search by 
selecting a motif and local range for the search, and CoGent-Seq returns both a list 
of genes containing that motif, and the sequences queried.  
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6.3 Application to E. Coli Hfq-mediated sRNA regulation.  

 A first application of CoGent-Seq to a bacterial system involved the search for Hfq 

mediated sRNA-mRNA interactions in E. Coli. Hfq is known to assist in regulatory RNA function 

for several stress-response systems, and it has a known putative binding sequence. CoGent-

Seq was applied to find all mRNAs in E. Coli containing the sequence AAYAA, to which Hfq 

binds. It was later determined that AAYAA is a subset of the Hfq binding sequence (ARN)x, 

where x=2 or more. The purpose of these studies was to attempt to find novel regulatory sRNA-

mRNA pairs employing Hfq as a chaperone. Following the initial bioinformatics search, Martha 

Faner pursued the prospective mRNA's and performed both structural bioinformatic analysis 

and in vitro testing. 

A list of all E.Coli gene start positions and sense were obtained from the EcoGene 

database and formatted as a .csv file(494). The genes were sorted by sense, and the start 

positions for both forward and reverse sense genes were output to separate files. A search was 

performed across the E. coli K-12 genome wherein the region from -200 to +60 was searched 

for the sequence AATAA or AACAA, setting zero as each gene start position iteratively. The 260 

nucleotide range and start position were outputed into a .csv file by line for all lines containing 

either the AATAA or AACAA sequence. This process was repeated for all negative sense genes 

using the E.Coli K-12 genome complement strand sequence.  Start position was matched back 

to gene name for systems analysis and the extracted 260 nucleotide region was submitted to 

mfold for structural analysis. Annotated transcription start sites for the biocyc database were 

used to discard any mRNA that contained and AAYAA in the region -200 to +60 but within the 

start site(495).  
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Martha Faner subjected the results of this CoGent-Seq search to structure 

approximation, assessment of sRNA potential binding partners, followed by in vitro testing. 

Structural assessment of known Hfq mediated mRNAs indicates that Hfq prefers a single 

stranded ARNx motif, flanked by structure. The mRNAs returned from this search were 

subjected to the folding predictor mfold, and mRNAs without ARNx sites meeting this structural 

requirement were discarded. This leaves a pool of roughly 20% of the annotated E.Coli mRNA's 

with potential Hfq mediated sRNA regulation. These were then subjected to sRNA matching 

using IntaRNA, resulting in a list of mRNAs with potential sRNA binding partners (M. Faner 

unpublished data).  

Two mRNAs were selected for further study, nhaA and mak, both having logical 

connections to the type of stress-response typically mediated by Hfq. nhaA encodes a sodium 

antiporter used to maintain pH and sodium levels (496). mak endcoes a mano(fructo)kinase 

which participates in fructose metabolism (497). Their IntaRNA predicted partners were RhyeB 

for mak and RyfA for nhaA. Using electromobility gel shift assays it was determined that in the 

presence of Hfq, ternary complexes of the two RNA binding partners in complex with Hfq were 

stable. An in vivo GFP assay was applied to determine whether or not these interactions were 

regulatory in nature. It was determined that in the presence of RyfA, the expression of NhaA 

was downregulated. This constitutes the successful discovery of a novel sRNA-mRNA 

regulatory pair. 

6.4 Conclusions 

 The discovery of numerous novel regulatory elements in recent years, along with the 

increasing interest in  regulatory pathways is placing a demand on computational chemist to 

produce user friendly tools that can both inform and be informed by experimental data. CoGent-

Seq is a simple, yet powerful tool that facilitates broad study of regulation at the 5' or 3' UTR, by 

individuals that may have varying levels of bioinformatic experience. Basic user input 
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requirements, along with a streamlined GUI and easy to parse output allow users with little to no 

interest in computational methods to easily perform genome wide analyses. Following the 

experimental detection of a regulatory or protein binding sequence, the results from a CoGent-

Seq analysis will indicate which other systems may be involved through the same regulatory 

element. In application to E. Coli regulatory RNA systems chaperoned by Hfq, this led to the 

discovery and validation of one completely novel interaction. The purpose of CoGent-Seq was 

to provide a simple interface that provides initial motif searching  for deeper bioinformatic or in 

vitro discovery. While this is only one of many possible applications of CoGent-Seq, it is an 

excellent illustration of the potential of this tool.  
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Chapter 7 Hypothesis Driven Single Nucleotide Polymorphism Search  
                (HyDn-SNP-S)3  

7.1 Background 

 In recent years, the amount of genomic data on disease phenotypes has increased 

exponentially. The decreasing cost of genotyping, along with the future promise of personalized 

medicine has resulted in a boom in individual genomic data (498-502). Most bioinformatic 

techniques determine clusters of mutations that may be followed and used as a diagnostic tool 

in various diseases (503-506). Traditional analysis of genome wide association studies (GWAS) 

focus on a single phenotype, and aim to find SNPs that show statistically significant association 

with the phenotype in any of the measured genes. In most cases these analysis do not have an 

a priori hypothesis of the locations of the SNPs. Therefore, very stringent statistical criteria are 

needed to obtain SNPs that are predictive, resulting in only a small number of SNPs being 

identified. Few studies have leveraged the vast information generated to identify new SNPs with 

clear functional impact on disease onset (507-510). 

 Moreover, tracking a mutation resulting from these SNPs through transcription and 

translation to their ultimate effects in a cell is largely left to the scientific community at large. In 

addition, correlating a mutation to a phenotype is a daunting task for researchers who typically 

work at a cellular level. Most biochemists or molecular biologists have a biosystem of interest, 

and broad sweeping GWAS studies are typically intractable for their purposes. It was our intent 

to create a tool that would allow a user to query genome-level data for their system of interest. 

There have been examples previously where this has been done on a single GWAS study, but 

not on combined data sets(511). To this end, we developed and implemented an algorithm with 

which a researcher can directly query one or several GWAS studies for their gene region of 

                                                           
3
 Sections of Chapter 7 have been previously published (DNA Repair In Press) 
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interest. We term this method Hypothesis Driven SNP Search (HyDn-SNP-S). The software 

returns all SNP mutations within their gene region, along with regarding the phenotype 

associated with the mutation. Further statistical methods can then be applied to the GWAS data. 

Additionally, by returning a focused set of mutations, tracking the consequences of the 

mutations through transcription, RNA processing and translation becomes trivial. 

 The workflow shown in Figure 1 outlines the process used in HyDn-SNP-S. Researchers 

can select one or many studies associated with the phenotype(s) of interest, apply HyDn-SNP-S 

to search for their gene of interest, and further analysis can be performed, as desired, on the 

output. Our program returns both intronic and exonic SNPs, allowing the investigation of impact 

on RNA, processing or protein sequence. The simplicity of the software implementation makes 

this method ideal for researchers uncomfortable with large-scale bioinformatic analyses, or 

those who lack the resources to perform such studies. 

  

Figure 7-1 : Flowchart of the HyDn-SNPs method.  

Upon development of a hypothesis, researchers select GWAS studies with relevant phenotypes, and obtain 
locations of the genes of interest. Following application of the algorithm, SNPs can be separated by intronic 
or exonic. Further analysis can be performed by in vitro validation or computational studies. 
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 The database of Genotypes and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap) 

was developed to "archive and distribute the results of studies that have investigated the 

interaction of genotype and phenotype". Results are distributed in the form of either raw 

genotyping data tagged with individual specific data such as gender, race and onset of 

phenotype; or as catenated lists of SNPs. This repository provides an ideal source of GWAS 

data useful to researchers with a targeted interest. Users are able to freely download the sets of 

SNPs, in a standard format for use with our software. Any phenotype of interest that is 

represented in this database would be a possible point of study for a HyDn-SNP-S study. 

 In this chapter, we present the development of HyDn-SNP-S and its application to 

search for cancer related SNPs on DNA polymerases and Histone Deacetylases. These 

enzymes are involved in all processes related to DNA duplication. The efficiency and fidelity of 

the processes involved with duplication of DNA are critical since errors can lead to 

carcinogenesis. Numerous studies indicate that mutations in DNA polymerases affect 

characteristics ranging from fidelity, to nucleotide incorporation rate, to cell proliferation (450, 

512-522). However, a direct link has not been established between these mutations and cancer 

onset.  

 Our results uncovered a large number of cancer related SNPs on DNA polymerases. 

Statistical analysis on selected studies reveals for the first time the possibility that DNA POLL 

could be a major contributor to cancer risk. Molecular dynamics simulations were performed on 

wild-type and a SNP mutant on POLL to further investigate the functional impact of the 

mutation. 

7.2 Hy-Dn-SNP-S 

 The HyDn-SNP-S method returns results from whole genome genotyping studies 

rapidly, far faster than traditional bioinformatic methods. Pre-screening with HyDn-SNP-S 
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dramatically decreases the time required to perform statistical analysis on GWAS data, by 

excluding all mutations not relevant to a researcher’s hypothesis. As proof of concept four 

genotyping studies have been statistically analyzed following application of the HyDn-SNP-S 

method. Additionally, one mutation, determined to be both statistically significant and of 

structural interest, was subjected to molecular dynamics studies and subsequent analysis.  

7.2.1 Application to cancer phenotypes 

 Hy-Dn-SNP-S was applied to four cancer phenotype studies, melanoma, breast, lung 

and prostate cancer (523-528). A search for mutations in all polymerase genes was performed, 

resulting in a total of 708 cancer associated mutations. Of these mutations, 491 were intronic, 

and 217 were exonic. Additionally, four of the exonic mutations were found to be at splice sites. 

As per the workflow described above, all four searches were carried out simultaneously, and 

results were available within a few minutes. The four studies were subjected to traditional 

biostatistical analysis (529) following application of the HyDn-SNP-S. The focused nature of the 

search allows for relaxation of the more stringent mathematical methods, and facilitates more 

thorough analysis of the resulting mutations. Haplotype analysis on whole genome genotyping 

data is frequently not performed since the combinatorial nature of these studies across all 

mutations would be prohibitively expensive, computationally speaking. As the dataset used for 

analysis following the HyDn SNP-S method has significantly reduced complexity, these targeted 

studies can detect mutations of moderate significance that would be overlooked in traditional 

bioinformatic analyses and perform these searches more rapidly than is typically possible. 
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7.2.2 Statistical analysis 

 Logistic regression and haplotype analysis was performed on the resulting SNPs to 

determine their statistical significance. Results are presented in Table Table 7-1: 

Table 7-1 DNA polymerase SNPs correlated to four cancer studies 

 

 

 

 This data is shown in The GWAS for prostate cancer yielded 69 SNPs in the genes of 

interest. Association of 11 SNPs with prostate cancer was statistically significant for at least one 

genetic model. The melanoma cancer case/control database examined yielded 215 SNPs in the 

genes of interest. Twenty-six of them were significantly associated with disease status for at 

least one genetic model after controlling for age and gender. The breast cancer study yielded 

100 SNPs in the genes of interest. Twenty-two of them were statistically significantly associated 

with breast cancer status for at least one genetic model. The lung cancer case/control database 

examined yielded 51 SNPs in the genes of interest. Twenty of them were statistically 

significantly associated with lung cancer status for at least one genetic model. Table 7-2 reports 

the identities of the significant SNPs, their p-value and corresponding POL gene. 

 Analysis to determine the association between the derived haplotypes from each gene 

and disease status was performed. No haplotypes were predictive of disease status for the lung 

cancer study nor the melanoma study using any of the three genetic models. However, the 

haplotypes constructed from SNPs on POLL were borderline significant for the breast cancer 

study using a recessive (p-value = 0.048) or additive (p-value = 0.091) model formulation. This 

haplotype is constructed from two SNPs: rs3730477 (C>T; R438W) and rs3730463 (A>C: 

T221P). The odds ratios from individual significant and borderline significant contrasts within 

Phenotype Total SNPs  Significant 

Prostate 69 11 

Melanoma 215 26 

Breast 100 22 

Lung 51 20 
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each model type are reported below.  In the case of the additive model, for each additional C-A 

haplotype observed, the odds of breast cancer are multiplied by 1.15, (p-value =0.029). 

Similarly, for each additional C-C haplotype observed, the odds of breast cancer are multiplied 

by 0.812 (p-value =0.062), i.e., a protective genotype. For the recessive model, having 0 or 1 

copy of the C-A haplotype results in the odds of breast cancer being multiplied by 0.829 relative 

to having 2 copies of the C-A haplotype (p=0.026). Having 0 or 1 copy of the C-C haplotype 

results in the odds of breast cancer being multiplied by 3.01 relative to having two copies of the 

C-C haplotype (p=0.099).  The haplotypes constructed from SNPs on the PolG genes were 

significant for prostate cancer.  This haplotype is constructed from three SNPs: rs3087374, 

rs2351000 and rs2247233. The odds ratios from individual significant contrasts within each 

model type are reported below.  For the recessive model, having 0 or 1 copy of the G-T-G 

haplotype results in the odds of prostate cancer being multiplied by 1.33 relative to having 2 

copies of the G-T-G haplotype (p=0.005). Having 2 copies of the G-C-A haplotype results in 

9.64 of the odds of prostate cancer as compared to having 0 or 1 copy of the G-C-A haplotype 

(p=0.008).  

  A literature search indicates that only one of these statistically evaluated mutations has 

been explored in vitro (530). Experimental analysis of the mutations we report here is outside 

the scope of this work. However, the mutations arising from these SNPs present interesting 

targets for further experimental studies.  

7.2.3 Edge-Node Analysis 

 The data resulting from a HyDn-SNP-S search can be discussed at the molecular level, 

and in the context of predictive power, but due to the nature of these studies, it also allows a 

much broader basis of understanding. Relating many phenotypes to many polymerases 

generates a network of data best represented by an edge-node interactive diagram. Using the 

number of SNPs as a weighting property, it is possible to broadly examine the complete network 
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of phenotype-polymerase interactions. Figure 2 shows a flattened version of this data, limited to 

statistically explored phenotype data, which is available in interactive form online at 

http://chem.wayne.edu/cisnerosgroup/gexf-js2/index2.html 

 

Figure 7-2 Edge-node network of the HyDn-SNPs results.  

Phenotypes  and polymerases are shown as nodes, edges are weighted by total number of SNPs connecting 
each phenotype to each polymerase. Statistically validated connections are shown in red. 

 The complete dataset is also available in this form. Both polymerases and phenotypic 

studies are represented as nodes, sized according to SNP density. By clicking on a node, all 

http://chem.wayne.edu/cisnerosgroup/gexf-js2/index2.html
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connections to that node will be listed. Clicking on any of those connections will return all 

connections to that selected node.  

 The interactive map allows investigation of the network associations of various 

phenotypes and polymerases and the complete list of connections is available for download 

from the top of the page. This file also includes the translated mutations. Many diseases are not 

caused by a single point mutation, but rather by a collection of factors. As the formatting for the 

results of HyDn-SNP-S is well suited to network analysis, and additional data can be garnered 

as desired from the genotyping studies, this approach may have critical importance in searching 

for combinations of factors that may be predictive for disease. Due to the targeted nature of the 

search, there is a significant reduction in the analytic space and thus, more thorough analysis 

can be performed. The haplotype described above is one example; individually the two 

mutations would have been overlooked by traditional analysis, but in combination they are 

strongly predictive. 

7.2.4 Molecular Dynamics investigations of DNA Polymerase λ mutant R438W 

 

 To further validate that hypothesis driven analysis of whole genome genotyping data is 

valuable to researchers, we sought to study a mutation with statistical significance that would 

have been overlooked by traditional methods. Of the two mutations that comprise the haplotype 

linking POLL to breast cancer, only the mutation R438W is in the polymerase domain. This 

position is not close to the active site, but it is within 14 Å of Loop 1, which has been shown to 

be critical for fidelity (531). The R438W SNP mutation has been previously shown to contribute 

to decreased fidelity in vitro, increased mutation frequency, and generation of chromosomal 

abnormalities (532). An 8-fold increase in inaccurate substitutions was observed in base 

substitution assays and karyotypic analysis of several cell lines carrying this mutation also 

reported a high level of spontaneous or IR-induced chromosomal aberrations. With ample 
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evidence to suggest a molecular basis for these results, we selected DNA polymerase lambda 

R438W for further study.   

 Four MD simulations were performed using crystal structures 1RZT and 2PFQ. These 

structures were selected as they represent the binary and ternary complexes of Pol Lambda, 

respectively. The change in Loop 1 conformation between the two structures is shown in  Figure 

7-3 panel A. Panel B shows a closer view of the loop conformations, indicating both binary and 

ternary conformations. Panels C and D illustrate the relative proximity to the R438W mutation. 

As the structure transits between the two loop conformations, the mutation ranges from roughly 

12.6 Å to 14.3 Å away. Mutations in this loop have been shown to have no effect on catalytic 

rate while simultaneously increasing the number of misincorporations, thus Loop 1 is critical for 

polymerase fidelity (531). Following a 14 ns simulation, correlation analysis was carried out to 

determine whether the residues in Loop 1 were affected by the mutation.  
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Figure 7-3 Structure and relevant regions of PolL  

 binary and ternary conformations. DNA is shown in light blue, and the Loop 1 is 
shown in purple. (B) Differences in loop 1 orientation between the two conformations. Distance between 
position 438 and loop 1 following an interpolation between the two structures at its furthest (Panel D) and 
closest (Panel C) approaches. 

 

7.2.5 Correlation and GMD analysis of PolL R438W 

 

 These simulations were analyzed by both GMD and correlation analysis. Details of GMD 

analysis were described in Chapter 2.7.4. Briefly, it calculates the number of significant and 

persistent motions experienced by a structure, and plots them against frame number. This gives 

an approximation of the overall level of activity and can be used for event detection. Correlation 

analysis can determine whether residues are moving in the same direction in space 
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(correlation), or opposite directions at the same time (anti-correlation) through the course of a 

trajectory. Specific residues or regions on a protein that show correlation frequently have 

structural implications for function(533). This is plotted on an orange to blue scale with color 

intensity depicting high correlation or anti-correlation. Residues whose motion is unrelated are 

presented in white.  

 As shown in Figure 7-4, the binary complex shows little change in correlation between 

the wild-type and mutant structures. Conversely, the ternary complex shows high correlation 

and anti-correlation in two regions. The highest points of correlation are between residues at 

position 438 and 569, as well as between 438 and 420. Residues showing the greatest change 

in correlation in the ternary complex were mapped to the structure and colored orange as shown 

in Figure 4C. It is notable that a majority of these residues are on Loop1. To further understand 

the impact of the SNP mutation on Loop 1, the correlation data between position 438 and all 

residues in Loop 1 was extracted and plotted. Figure 4D shows that although there is higher 

correlation in the ternary complex between the wild-type and mutant, both complexes show 

altered correlation between the wild-type and mutant. The sum of these analyses suggests that 

the introduction of the R438W mutation alters the overall correlation pattern in the ternary 

complex, but more importantly, directly affects the motions of Loop 1 in both complexes. Since 

loop 1 regulates fidelity, and transit between the two conformations shown in Figure 3 is 

required for catalysis, the SNP leading to the R438W mutation likely has direct effects on 

polymerase activity in vitro and in vivo.  

 In addition to the correlation analysis, generalized masked Delaunay (GMD) analysis 

was performed to determine the impact, if any, on the overall dynamics of the protein (during the 

simulation time). The results are shown in Figure 5, events are plotted on the Y-axis, and frame 

number is plotted on the X-axis. GMD defines events as persistent motions across the masked 

Delaunay reduced representation of the protein structure. Panels A and B show the wild type 
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activity for both the binary and ternary complexes, with average activity levels of roughly 0.2 

events per frame. These patterns are typical of stable simulations, where no major 

rearrangement is occurring. The alteration in the correlation plots combined with the stability of 

the GMD indicates that the mutation induces only local alterations in activity.  

 The sum of the correlation and GMD analysis indicates that the R438W mutation 

appears to modify only the movement of Loop 1, while the overall dynamics are not significantly 

altered. This provides context for the experimental work by Terrados et al (532). Their 

experiments indicated that the R438W mutation increases the error rate of Pol lambda, but does 

not alter the overall rate of polymerization. Our results indicate that the R438W mutation alters 

only the behavior of Loop 1, while leaving the overall conformational motions of Pol lambda 

unperturbed. This would agree with the behavior observed experimentally. The R438W mutation 

alters the behavior of Loop 1, thus decreasing fidelity, while the overall behavior of the 

polymerase is unaffected, allowing it to maintain a normal rate of polymerization.  
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Figure 7-4 Correlation difference plots for the binary (A) and ternary (B) conformations relative to the wild 
type. Highly correlated residues are shown in orange (C) and total correlation for residues in Loop 1 is 
shown in (D) 

 Increases in correlation are shown in orange, while increases in anti-correlated motions are shown in blue. 
In both cases, alterations in the correlation plots are visible, more notably in the ternary complex. The 
highest values from the ternary complex correlation plots were mapped back to the residues affected, and 
are colored orange in Panel C. Notably many of these residues are on Loop 1. Panel D shows the individual 
correlation values for each of the residues in Loop 1. While the binary complex shows moderate alteration on 
several , the ternary complex shows considerable differences for several residues, particularly between 
residues 469 and 472. 
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Figure 7-5 : GMD plots for the binary and ternary complex simulations in both wild type and mutant form. 

 No drastic differences are apparent between the four simulations indicating that all four are showing the 
same general level of physical activity. This result indicates that the overall motions of the polymerase are 
not perturbed by the presence of the mutations. In light of the data presented in Figure 4, this indicates that 
the significant alterations in conformational space are restricted to the Loop 1 region. 
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7.2.6 Associated Studies 

 During the development of this project, HyDn-SNP-S was also applied to Histone 

Deacetylases (HDACs). Further analysis of many of these projects is pending, but the work on 

HDACs has proved interesting. HDACs are responsible for the modification of histone tails 

during the process of chromatin repacking, and several have been known to be implicated 

cancer, including breast and colon (534-540). Following application of HyDn SNPs to HDACs 

1,3, and 6, several mutations were both detected and pursued in various manners. Mutations 

found in HDAC 3 correlated to breast cancer were determined to be near the active site, and 

thus docking studies were performed to determine whether or not substrate binding was 

affected. Figure 7-6 shows the locations of the two mutations.   

 

Figure 7-6 Two mutations on correlated to cancer mapped to HDAC3. 

The Arg 265 mutation was determined to be in proximity to the typical SAHA binding site. Comparative 
dockings were performed to determine the possibility of altered substrate binding. Shown in blue is the 
inhibitor SK-691.  
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 The R265W was determined to be adjacent to the natural substrate binding site, and a 

library of known HDAC3 inhibitors were docked to the structure (PDBID:4A69) to determine 

whether or not this mutation might have implications in the treatment of breast cancer. Following 

docking to both the wild type and mutant HDAC3, the docking scores were calculated. As 

shown in Table 7-2, several of the inhibitors show preference for either the mutant or wild type. 

Negative scores indicate preferred binding to the wild type, while positive scores indicate 

preferred binding to the mutant.  

Table 7-2 Table of inhibitors showing preferential binding to wild type or mutant HDAC 3
†
 

Inhibitor WT R265P Δbinding 

SK-691 -33.01 -36.86 3.85 

SK-692 -31.36 -33.64 2.28 

SK-683 -30.89 -30.73 -0.16 

SK-658 -27.57 -30.8 3.23 

TSA -25.25 -22.96 -2.29 

APHA-1 -22.47 -24.06 1.59 

APHA-8 -20.63 -24.67 4.04 

SAHA -18.83 -21.55 2.72 

CG1521 -16.18 -15.3 -0.88 

† Inhibitor structures were retrieved from Wang et al (541). Docking scores of Wild type and the R265P 
mutants are shown, Δbinding is the difference in LeadIT docking scores.  

 

 These studies indicate that a breast cancer-associated SNP in HDAC3 may have 

implications for treatment based on differential substrate binding. Isoform specificity is a 

problem for drug design with respect to HDACs as their high degree of similarity leads to off-

target inhibition. It may be possible in the future to determine if a specific drug may be 

preferable for treatment depending on the gene sequence of the individual patient.  
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7.3 Conclusions 

 We have developed a powerful method that allows researchers to interact with whole 

genome genotyping data in a focused, hypothesis driven way. By allowing researchers to find 

data on their own systems of interest, we will expedite the study of any mutations that may 

logically be connected to a phenotype. Also, the focused nature of these searches will allow 

more thorough statistical analysis, and appropriate recognition to combinations of factors that 

would be difficult to fully assess in an extremely broad GWAS analysis. By applying this 

methodology to our system of interest we were able make the first direct statistical link between 

DNA polymerases and cancer, define two haplotypes with strong predictive power, and trace a 

cancer-associated mutation to a structural effect in the translated protein and investigate its 

functional impact by computational simulations. Furthermore we were able to extend these 

studies to several other systems, one of which has shown promise in the development of 

isoform specific histone deacetylase inhibitors.  

 

7.4 Methods 

 In this section we describe the algorithm to search for disease related SNPs based on a 

given hypothesis and its implementation in an easy to use software package. Subsequently we 

describe the statistical methods to determine the association of the SNPs with the phenotype. 

This is followed by a description of the graph analysis of the resulting data from HyDn-SNP-S 

for the present studies. Finally, the details of molecular dynamics (MD) simulations on DNA 

polymerase lambda structures are described. 

 HyDn-SNP-S:  SNP collections deposited through studies on the database of genotypes 

and phenotypes are obtained. A header is appended to the data declaring the phenotype 

associated with each individual mutation. Mutations listed relative to the HuRef and Celera 
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genomes are removed, as we are working within the frame of reference of the GrCh37 human 

genome reference build. The SNP collections are then catenated into a searchable resource 

file. Following generation of this resource file, the program HyDn SNPs was used to search for 

mutations within the gene region of interest. Users enter the chromosome, and gene range for 

searching, and point the program to the resource file. Sample resource files are available with 

the HyDn SNPS download. Further information and instructions are available in the 

documentation for this program. Any SNPs found that match the chromosome and gene 

location range are deposited into a results file. This file lists all the SNP associated information, 

such as ss and rs number, allele, chromosome, chromosomal location, contig number, and 

contig location, and type of chip used in the original genotyping experiment. These can then be 

categorized by location; intronic, exonic, or at a splice site. For our purposes, exonic SNPs were 

then compared to reference SNPs to ascertain the extent of prior investigation, as well as 

relative allele frequency in the natural population. The consequence of any given SNP was 

determined either by use of the reference SNP database, or in the case of previously 

unreported SNPs, translated by use of a DNA codon table in conjunction with the gene 

sequence and protein sequence. HyDnSNPs is available for download at the link provided in the 

abstract. 

 Statistical Analysis: We utilized four publically available case/control genome wide 

association studies (GWAS) from dbGAP (access request # 1961) across multiple cancer types 

(including breast, melanoma. lung and prostate cancers)(14, 523, 524, 526-528) to determine if 

SNPs or haplotypes constructed from SNPs in our genes of interest are associated with a 

disease phenotype. Additionally, we determined if any synergistic results across multiple 

databases exist that may imply a common cancer genesis. Multiple genetic modes of 

inheritance were examined: additive, dominant, recessive and genotypic in a covariate-adjusted 

logistic regression analysis associating each SNP with the disease phenotype. The maximum 
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likelihood estimate of the posterior probabilities of haplotypes for each observation was 

produced using the EM algorithm. Score statistics for the association of the haplotypes with the 

cancer phenotype were constructed using these posterior probabilities. We use the R package 

“haplo.stats“ to implement these haplotype functions (529). Logistic regression is also used to 

estimate the association of a haplotype with the disease phenotype, given the genetic context. 

As we focus on the SNPs in only a few genes, we avoid issues with multiple testing, which are 

burdensome when trying to evaluate the association between genetic markers and a disease 

phenotype when measuring thousands or millions of genetic variants.  

 Graph analysis: For ease of visual analysis, the data resulting from the HyDn-SNP-S 

search has been transformed into edge-node format to allow visual interpretation of the 

networks of phenotypes and polymerases involved in tumorigenesis. Frequently more than one 

polymerase was found to have single point mutations within a cohort of cancer patients; network 

analysis allows for easy visual interpretation. Edge-node tables were csv formatted for use in 

Gephi (542), visualization was performed with a Fruchterman-Reingold (543) algorithm using an 

area of 15,000 and a gravity of 7.0. Nodes and edges were weighted by degree; for these 

analyses, weight was the number of mutations occurring between each phenotype and 

polymerase.  

 MD simulations: MD was performed on wild-type and the R438W mutant of POLλ in the 

binary and ternary conformations (PDBID: 1RZT, 2PFQ) using NAMD. The simulations were 

performed using a parallel build of NAMD(428) employing the CHARMM(429) force field on the 

XSEDE Teragrid. The structures were solvated, and appropriate counterions were added to 

reach 0.5mM NaCl. A timestep of one femtosecond was used, a Langevin thermostat was used 

to maintain temperature at 300K, and a Nose-Hoover Langevin combination method was used 

to control pressure. The systems were solvated with TIP3P water, neutralized with counter ions 

and subjected to 1000 steps of conjugate gradient minimization and temperature ramped to 
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300K. After equilibration, the systems were run for at least 14 ns of production time. Frames 

from the trajectories were written every 1 ps. The solvation boxes included a 15 Å pad on each 

face of the box. Long range electrostatics were calculated using particle mesh Ewald (441), and 

van der Waals were calculated with a nonbonded cutoff of 8 Å and a switching function between 

7-8 Å. 

 Correlation analysis: Correlation analysis by residue was carried out for each system 

using the ptraj module of Amber11, across the entire simulation. An all residue correlation was 

performed and difference plots were calculated using Mathematica (544).  Correlation between 

the mutated residue and the residues in Loop 1 were also calculated and plotted.  Generalized 

Masked Delaunay analysis was carried out using the TimeScapes software from the D.E. Shaw 

group (442). Trajectories were prepared using VMD (431), and all solvent and nucleic acids 

were excluded from analysis. A sliding window of 5% of the total number of frames was used, 

and total events per frame were calculated and plotted against frame number.  

 HDAC 3 Dockings: The R265W mutation was introduced to HDAC3 (PDBID:4A69)  via 

the structure editor under Chimera. Substitution was made using the Dunbrack Rotamer library, 

and 1000 steps of conjugate gradient minimization were applied to relieve unfavorable 

interactions. All HDAC inhibitors built and minimized at the AM1 level of theory using Spartan 

'03 (464) and docked into a sphere encompassing all residues within 20 Å of the center of the 

SAHA binding pocket. All crystallographic waters were retained and utilized as both fully 

rotatable and displaceable.  Triangle matching was used for base fragment placement, and 

dockings were performed with two thousand solutions per each iteration and fragmentation. The 

standard scoring scale based on Bӧhm's scoring algorithm (465-467) was employed. 
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Degree: Doctor of Philosophy 

 This work describes the fundamental study of two bacterial toxins with computational methods, 

the rational design of a potent inhibitor using molecular dynamics, as well as the development of two 

bioinformatic methods for mining genomic data.  

 Clostridium difficile is an opportunistic bacillus which produces two large glucosylating toxins. 

These toxins, TcdA and TcdB cause severe intestinal damage. As Clostridium difficile harbors 

considerable antibiotic resistance, one treatment strategy is to prevent the tissue damage that the 

toxins cause. The catalytic glucosyltransferase domain of TcdA and TcdB was studied using molecular 

dynamics in the presence of both a protein-protein binding partner and several substrates. These 

experiments were combined with lead optimization techniques to create a potent irreversible inhibitor 

which protects 95% of cells in vitro. Dynamics studies on a TcdB cysteine protease domain were 
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performed to an allosteric communication pathway. Comparative analysis of the static and dynamic 

properties of the TcdA and TcdB glucosyltransferase domains were carried out to determine the basis 

for the differential lethality of these toxins.  

 Large scale biological data is readily available in the post-genomic era, but it can be difficult to 

effectively use that data. Two bioinformatics methods were developed to process whole-genome data. 

Software was developed to return all genes containing a motif in single genome. This provides a list of 

genes which may be within the same regulatory network or targeted by a specific DNA binding factor. A 

second bioinformatic method was created to link the data from genome-wide association studies 

(GWAS) to specific genes. GWAS studies are frequently subjected to statistical analysis, but mutations 

are rarely investigated structurally. HyDn-SNP-S allows a researcher to find mutations in a gene that 

correlate to a GWAS studied phenotype. Across human DNA polymerases, this resulted in strongly 

predictive haplotypes for breast and prostate cancer. Molecular dynamics applied to DNA Polymerase 

Lambda suggested a structural explanation for the decrease in polymerase fidelity with that mutant. 

When applied to Histone Deacetylases, mutations were found that alter substrate binding, and post-

translational modification.  
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