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CHAPTER 1 

INTRODUCTION 

 In humans, visual function diminishes throughout healthy aging, with roughly linear 

declines in contrast sensitivity and best-corrected visual acuity beginning in young adulthood 

(<30 yrs; Owsely et al., 1983; Elliott et al., 1995; Rubin et al., 1997). In old age, these vision 

declines are linked to impairments in activities of daily living, memory declines, and increases in 

depressive symptoms (Anstey et al., 2001; Carabellese et al., 1993). Age-related vision loss is 

also associated with the choice to cease driving (Freeman et al., 2005), which itself results in 

decreased participation in out-of-the-house activities and increases in depressive symptoms 

(Marottoli et al., 2000; Ragland et al., 2005). In health care settings, poor visual acuity increases 

elderly patients’ likelihood of developing delirium (Inouye, 2000). For these reasons, substantial 

improvements in quality of life would be expected from an intervention against vision loss in 

healthy aging. Any such intervention would be based on knowledge of the anatomical and 

physiological contributions to vision loss in healthy aging, which remain poorly understood. The 

association between aging and several diseases of the visual system — including glaucoma, 

diabetic retinopathy, and age-related macular degeneration — offers another incentive for 

studying normal aging: Identifying the physiological changes that predict and explain normal 

vision decline may help clarify how aging increases the risk of disease.  

Concurrent with vision loss in healthy aging, the retinas of healthy aging humans undergo 

several anatomical and physiological changes: Declines in dark-adaptation rates (Jackson et al., 

1999) and electroretinogram (ERG) a-wave amplitude, with associated increases in a-wave 

latency (Wright et al., 1985; Freund et al., 2011), begin in young adulthood and continue through 

old age. Decreases in retinal neuron density and retinal thickness follow a similar time-course 
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(Alamouti &  Funk, 2003; Curcio et al., 1993; Harman et al., 2000), though total neuron numbers 

may be reasonably well-preserved: Retinal surface area increases with age (Harman et al., 2000) 

— an effect which would decrease thickness and neuron density merely through isovolumic 

‘stretching’ of the retina — consistent with continued modest growth of the eye and optical 

components throughout adulthood (Atchison et al., 2008; Kasthurirangan et al., 2008). At 

present, it is unknown which if any of these progressive retinal changes contribute to the 

similarly-progressive vision declines in healthy aging: As reviewed by Spear (1993), 

documented anatomical and electrophysiological changes seem too modest, relative to inter-

individual differences at any given age, to fully account for the age-related vision declines. 

Longitudinal studies could clarify the anatomical and physiological links to vision 

declines: testing, for instance, whether the rate of a given change in retinal morphology is well-

correlated with the rate of vision decline. Animal models of human aging are attractive for such 

studies. Given their shorter lifespans, age-related vision declines are measurable over months 

instead of decades. Normal aging in pigmented rats has the same features as found for humans: 

Declines in dark-adaptation rates (Bankson et al., 1989), declines in ERG a-wave amplitude, and 

increased a-wave latency (Charng et al., 2011) have been demonstrated. As in humans, retinal 

thickness and neuron density decrease throughout adulthood (Katz & Robison, 1986; Obin et al., 

2000; Feng et al., 2007; Bissig & Berkowitz, 2011), but retinal surface area increases (Mansour 

et al., 2008; Harman et al., 2003; Bissig & Berkowitz, 2011), making neuron loss with advancing 

age uncertain (Katz & Robison, 1986; Obin et al., 2000; Harman et al., 2003; Feng et al., 2007). 

To our knowledge, behavioral testing has not been used to document vision declines in normal 

aging pigmented rats, and this is one goal of the present work. However, vision declines 
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consistent with those noted in pigmented mice (van Alphen et al., 2009; Kolesnikov et al., 2010) 

and albino rats (Linder & Gribkoff, 1991; Krauter et al., 1981) are expected.  

The uncertain link between age-related vision declines and previously-documented 

anatomical and physiological changes at the retina (Spear, 1993) has prompted us to reevaluate 

the aging visual system using newer measures of retinal physiology. In the present studies, we 

use Mn
2+

-enhanced MRI (MEMRI) to longitudinally and non-invasively monitor a sensitive and 

accurate metric of retinal physiology: calcium ion influx in light and dark-adapted eyes. In 

MEMRI, animals are injected with a non-toxic dose of Mn
2+

, a Ca
2+

 surrogate which 

accumulates in neurons over a period of a few hours, while animals are awake and free-moving. 

Later, the extent of retinal Mn
2+

 uptake is measured by the manganese concentration-dependent 

alterations of MRI signals (Chuang et al., 2009). Because Mn
2+

 efflux is slow, taking days for the 

retina (Tofts et al., 2010), uptake measured a few hours after injection is a useful measure of 

neuronal Mn
2+

 influx. Similar to Ca
2+

, Mn
2+

 enters neurons through L-type voltage gated calcium 

channels (‘L-VGCC’s): In vitro, Mn
2+

 uptake is strongly inhibited by L-VGCC blockers, and 

increased both by membrane depolarization (thereby opening L-VGCCs) and application of the 

L-VGCC agonist BayK8644 (Drapeau & Nachshen, 1984; Carlson et al., 1994). In vivo studies 

confirm that neuronal Mn
2+

 uptake is inhibited by the specific L-VGCC antagonists verapamil 

(Cross et al., 2007), nifedipine (Berkowitz et al., 2011), and D-cis-diltiazem (i.e. the (+)-cis 

isomer; Berkowitz et al., 2007b). Based on similarities between Ca
2+

 and Mn
2+

 physiology, one 

would predict that Mn
2+

 uptake is activity-dependent. To-date, several studies have confirmed 

this prediction, using MEMRI to non-invasively study neuronal activity in the rodent retina (see 

below) and brain (e.g. Bissig & Berkowitz, 2009; Bissig & Berkowitz, 2011; Yu et al., 2005; 

Eschenko et al., 2010a, Lin & Koretsky, 1997), where MEMRI demonstrates good agreement 
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with other measures of activity: c-Fos (Morita et al., 2002), blood oxygen level-dependent 

(BOLD) fMRI, and cerebral blood flow (Duong et al., 2000)(see Silva, 2012 for a recent review). 

L-VGCCs, found throughout the rat retina (Ahlijanian et al., 1990; Kamphuis & 

Hendriksen, 1998; Nachman-Clewner et al., 1999; Morgans et al., 2001; Xu et al., 2002), 

contribute substantially to neuronal Ca
2+

 influx: In freshly-dissected rat retina, L-VGCCs 

account for roughly half of NMDA-induced Ca
2+

 influx (Melena & Osborne, 2001), while cell-

specific studies show substantial inhibition of Ca
2+

 currents by L-VGCC blockers in rat bipolar 

cells (Pan & Lipton, 1995; Protti & Llano, 1998) and rod photoreceptors (Koulen et al., 1999). In 

vivo, we have previously monitored retinal ion influx through these channels with MEMRI: The 

expected pattern of activity-dependent retinal Mn
2+

 influx — low in photoreceptors exposed to 

light, when membranes are hyperpolarized and L-VGCCs closed, but high in darkness, when 

photoreceptors are fully depolarized (for review, see Yau, 1994) — has been confirmed in vivo 

using MEMRI of the rat retina (Berkowitz et al., 2006; Berkowitz et al., 2009; Tofts et al., 2010; 

Bissig & Berkowitz, 2011). Moreover, Mn
2+

 influx at both the inner retina (bipolar and other 

cells) and outer retina (photoreceptors) is inhibited by L-VGCC blockers (Berkowitz et al., 

2007b; Berkowitz et al., 2011).  

Ion influx through photoreceptor L-VGCCs is critical to normal retinal function: In 

Xenopus, glutamate release by photoreceptors is halted by L-VGCC blockade (Schmitz & 

Witkovsky, 1997). Mutant mice with altered L-VGCC expression demonstrate diminished post-

photoreceptor responses to light, as well as irregular synapses between photoreceptors and 

bipolar cells (Chang et al., 2006), consistent with L-VGCC mediation of photoreceptor axonal 

growth and remodeling (Nachman-Clewner et al., 1999). If ion influx through retinal L-VGCCs 

changes with age, it could result in diminished retinal function: In the short-term, L-VGCC-
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triggered neurotransmitter release may be compromised. Longer-term functional changes may 

arise if axonal growth and remodeling are compromised. For instance, as retinal surface area 

increases, the average distance between neighboring neurons will tend to increase, and it’s likely 

that some remodeling is needed to maintain connectivity over greater distances. 

In the brain, neuronal Ca
2+

 influx through L-VGCCs increases throughout adulthood, and 

is well-correlated with impaired synaptic plasticity and cognitive function (Campbell et al., 1996; 

Thibault & Landfield; 1996; Karst et al., 1997; Norris et al., 1998; Thibault et al., 2001; 

Tombaugh et al. 2005; see Thibault et al., 1998 and Foster, 2007 for reviews). However, reports 

addressing the possibility that the same age-related change occurs in retinal neurons are sparse: 

In a previous MEMRI study, we found greater retinal Mn
2+

 uptake in mid-adult than in young-

adult mice (Calkins et al., 2008), and age-related increases in Ca
2+

 influx through Müller glial L-

VGCCs have been documented in humans (Bringmann et al., 2000). Acute L-VGCC blockade 

improves contrast sensitivity in healthy adult humans (in 54-78 yr olds from Bose et al., 1995; in 

21-49 yr olds from Boehm et al., 2003) — suggesting that high ion flux through L-VGCCs can 

somehow diminish vision — but it is not known whether this effect is age-dependent. 

Based on the above considerations, we hypothesized that ion influx through L-VGCCs 

increases with age in the rat retina, and that high influx would be correlated with age-related 

declines in visual function. To test this hypothesis, we longitudinally measured visual 

performance in two groups of rats: In one cohort, rats were studied first as Young adults (aged 

~2.5 mo), then again in Mid-adulthood (~7 mo) (Group ‘YM’). Rats in the second cohort were 

studied first as Mid-adults, at an intermediate time point (~11.5 mo), and then again as Old adults 

(~19 mo) (Group ‘MO’). At each time point, two aspects of visual function — spatial frequency 

threshold (‘SFT’; a proxy for visual acuity) and contrast sensitivity (‘CS’) — were measured 
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behaviorally using optokinetic tracking (OKT), a vision-dependent reflex which requires no 

animal training. In adult rats, OKT is stable when repeatedly measured over short periods of time 

(i.e., no practice effects) and is independent of visual cortex (Douglas et al., 2005; Prusky et al., 

2008). Unlike other methods of quantifying vision, such as the visual water task (Prusky et al., 

2000), OKT carries little risk of confounding age-related impairments in thermoregulatory and 

visual function (Linder & Gribkoff, 1991). In both groups, the first and final vision tests were 

followed by Mn
2+

-enhanced MRI (MEMRI): Using an eye patch to keep one eye dark-adapted 

while the other was exposed to normal lab lighting, we tested for longitudinal changes in retinal 

ion influx in both lighting conditions. From the same MR images, we quantified longitudinal 

changes in eye morphology; both of the retina and of optical components like the lens. 

In that first arm (‘Arm 1’) of the present study, we documented that retinal Mn
2+

 uptake 

increases with age. We also found that the relatively high Mn
2+

 uptake at the start of the study 

predicted the rate of subsequent vision declines. Since neuronal Mn
2+

 influx/uptake is inhibited 

by L-VGCC blockers (Drapeau & Nachshen, 1984; Carlson et al., 1994; Cross et al., 2007; 

Berkowitz et al., 2011; Berkowitz et al., 2007b), we considered eventually using such drugs for 

an intervention study of age-related vision loss. Arm 2 experiments were conducted in 

anticipation of such studies, to better-understand the role of L-VGCCs in Mn
2+

 uptake. In the 

first experiment of Arm 2, we compared L-VGCC involvement in dark- versus light-adapted 

outer retinal Mn
2+

 uptake. Young adult rats had one eye patched (to maintain dark-adaptation), 

and were studied with MEMRI after injection of the L-VGCC blocker nifedipine. Nifedipine-

injected rats were compared to a set of similarly-treated vehicle-injected controls. In the second 

experiment of Arm 2, we tested whether inhibition of Mn
2+

 uptake by L-VGCC blockade is 

independent of systemic effects. To our knowledge, this has not yet been tested in vivo, though 
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positive results were expected based on previous in vitro studies (Drapeau & Nachshen, 1984; 

Carlson et al., 1994). Using dark-adapted young adult rats, we compared Mn
2+

 uptake in eyes 

exposed to nifedipine eye drops to Mn
2+

 uptake in the contralateral eyes, which were exposed 

only to the vehicle used to prepare the nifedipine eye drops.   

Our investigations of age-related changes in retinal Mn
2+

 uptake were guided, in part, by 

previous studies of Ca
2+

 homeostasis in the rat hippocampus. At the hippocampus, age-related 

increases in Ca
2+

 influx have been linked to increased neuronal expression of some L-VGCC 

isoforms: Expression of the α1D isoform (Cav1.3) is greater in older rats, but expression of the α1C 

(Cav1.2) isoform appears unaffected by age (Veng & Browning, 2002; Veng et al., 2003). 

Importantly, α1D is roughly an order of magnitude less-sensitive to blockade than α1C (Xu & 

Lipscombe, 2001; Koschak et al., 2001; Tarabova et al., 2007). Substantial age-related and 

isoform-specific changes could therefore result in an age-related loss in sensitivity to L-VGCC 

blockade, complicating any pharmacological intervention in the aging process. In Arm 3, we 

therefore tested for an age-related loss in sensitivity to L-VGCC blockade — a potential 

indicator for isoform-specific changes in L-VGCC expression — using MEMRI. In a previous 

study of young adult rats, we found progressively lower Mn
2+

 influx in the presence of 

progressively higher doses of the L-VGCC blocker diltiazem (Berkowitz et al., 2007a). Based on 

that experience, we collected dose-response curves for that drug in both young and mid- adult 

rats. In a follow-up experiment, we used Western blots to compare retinal α1C and α1D expression 

over a similar age range. 
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CHAPTER 2 

ARM 1: LONGITUDINAL STUDIES OF VISUAL PERFORMANCE AND 

ASSOCIATED FACTORS 
 

2.1 Rationale 

In this Arm, visual function (CS, SFT) and retinal ion physiology (MEMRI) data were 

collected (unless otherwise mentioned) in two groups: Group YM rats (studied as Young adults 

(age ~2.5 mo) and Mid-adults (age ~ 7 mo)), and Group MO rats (studied as Mid-adults (age ~7 

mo), mid-to-older adults (age ~11.5 mo, only visual function), and Older adults (age ~19 mo). 

Mn
2+

-enhanced images were also used to measure age-related changes in morphology of both the 

retina and optical components (e.g. lens). Follow-up analyses used regression to test, for 

instance, whether retinal Mn
2+

 uptake predicts later declines in vision (CS, SFT). 

2.2 Methods 

Male Long-Evans rats (Hilltop Labs; Scottdale, PA) were studied in all arms of the 

present work. We detail the ages, weights, and quantities of rats used in each experimental arm 

below. Rats were given food and water ad libitum and housed and maintained in normal 12 hr 

light/12 hr dark cycling. All procedures were in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals and the ARVO Statement on Animals in Vision research.  

2.2.1 Missing and Excluded Data: The need for high-quality MRI data from both eyes — 

one being light-exposed, the other dark-adapted (i.e., patched; see below) — of each rat at each 

time point lead to several cases of missing or excluded data: Rats do not recover from our usual 

anesthetic of choice (urethane; see other Arms) and so this anesthetic was inappropriate for the 

present longitudinal design. Instead, we opted for a mixture of ketamine and xylazine, despite 

some difficulty in maintaining the depth of anesthesia needed during the ~2 hr of high-resolution 

MRI scanning of the eye. 
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We summarize different sources of missing and excluded data while keeping a running 

tally of the remaining subjects between <>’s in the following format: <number of subjects for 

visual performance & for MEMRI at ~7 mo, for visual performance at ~11.5mo, for visual 

performance & for MEMRI at ~19 mo>. We started with a total of 42 rats in Group MO, and in 

the hypothetical case that no subjects were excluded or lost to follow up, each would have 

contributed to all measurements <42&42,42,42&42>. Due, for instance, to animal death during 

scans or hardware problems, high-quality MEMRI data could not be obtained from seven rats at 

~7 mo and one rat at ~19 mo <42&35,35,35&34>. In addition, three rats were removed from this 

group and used to collect baseline data (i.e., without Mn
2+

; see below) at the old adult time point 

<42&35,35,35&31>. We then screened for univariate outliers (|z|>3.3) at each time point. Three 

animals had unusually thick retinas (suggestive of edema or other pathology) as mid-adults, but 

only in one eye: In those three rats, the absolute value of the left-right thickness difference was 

(mean±SEM) 71.8±7.1μm, versus 9.0±7.9μm in the other rats. It is unlikely that this asymmetry 

was related, for instance, to the eye patch or duration of anesthesia: The thicker retina was in the 

unpatched eye in one of the three cases, and the first eye scanned in two of three cases. 

Behavioral and MRI data from those three rats was excluded <39&32,32,32&28>. Twelve rats 

failed to recover normal health after being anesthetized for their first MRI scan (seven died 

within two days) and thus were unavailable for longitudinal study <39&32,20,20&16>. After 

fully recovering from the first scan, one animal died (42 d post MRI) before the follow-up vision 

testing at age ~11.5 mo. After the ~11.5 mo time point, another four rats died or were euthanized 

due to declining health <39&32,19,15&11>. Note that the three Group MO rats used, as old 

adults, for baseline (no Mn
2+

) measurements still provided useful structural data from both eyes. 

As such, longitudinal changes in retinal thickness (for instance) are measured in fourteen Group 
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MO rats, though longitudinal changes in Mn
2+

 uptake are only measured in eleven of those 

fourteen rats. Demographics (age, weight) of the remaining rats are given in the next section. 

Starting with 22 rats in Group YM, we summarize subject loss while keeping a running 

tally of remaining subjects <number of subjects for visual performance & for MEMRI at ~2.5 

mo, for visual performance & for MEMRI at ~7 mo>: High-quality MEMRI data could not be 

obtained from three rats at the young adult time-point, and two rats at the mid-adult time point 

<22&19,19&17>. As in Group MO, one rat had unilaterally thickened retina and was excluded 

from all analyses <21&18,18&16>. Five rats failed to recover normal health (four died within 

two days) after the first time point, and were not available for longitudinal study 

<21&18,13&11>.  

2.2.2 Animals: We analyzed data from twenty-one Group YM rats (mean(SD) initial age 

of 73(9) d; weighing 290(70) g). Thirteen of these were available for follow-up in mid-adulthood 

(227(7) d; 502(34) g). We analyzed data from thirty-nine Group MO animals (initial age of  

206(10) d; 439(50) g). Roughly half of these rats were available at the intermediate time point 

144(13) d later, when only visual function and body weight was measured (n=19; 350(15) d; 

580(50)g).  Fifteen of those contributed data to the old adult time point (228(21) d after the 

intermediate time point; age 580(29) d; 605(67)g). 

2.2.3 Visual Function: Spatial frequency threshold (‘SFT’; a proxy for visual acuity) and 

contrast sensitivity (‘CS’) were measured using an optokinetic tracking (‘OKT’) device built in-

house. As illustrated in Figure 1, three identical 19" LCD monitors (I-Inc model #iX-191APB) 

facing the inside of the device were arranged in an equilateral triangle and fastened to a wooden 

frame. Mirrors fastened to the floor and ceiling of the device reflected a moving sine wave 

grating (black and white, or light and dark grey, stripes) shown identically on each screen 
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through use of a PCI 8-port VGA video splitter (model #PCI815V). The sine wave grating was 

displayed and distorted with VisionEgg (v.1.0) so as to form a virtual barrel (i.e., the width of 

one light/dark/light cycle appearing similar in all directions) when viewed from the center of the 

device. This device configuration resembles van Alphen et al. (2009)’s design. In the present 

study, however, each rat was placed on an elevated perch in the center of the triangle, and 

positioned such that its head was roughly centered in the device. Rats had unrestricted head 

movement during each of the eight 15-20 min sessions (1-2 per day) used to measure SFT (4 of 

the 8 sessions) and CS at a given age. Rats typically remained on the perch for several minutes, 

and were gently placed back on the perch when they stepped off. Visual performance was 

recorded while the rat remained on the perch and while the tracking eye (left if the virtual barrel 

rotated clockwise, right if counterclockwise, when viewed from above) was within the arena 

denoted by Figure 1C. A camera (Microsoft LifeCam VX-2000) aimed through a hole in the 

center of the ceiling mirror provided a continuous video feed, allowing the experimenter to 

monitor tracking behavior. 

Unlike the commercial system developed by Douglas, Prusky, and colleagues (Douglas et 

al., 2005; Prusky et al., 2008; ‘OptoMotry’), but similar to other devices (e.g. Thomas et al., 

2010), the grating’s spatial frequency was not dynamically adjusted to account for the changes in 

distance between the rat’s eye and the screens, which occur during free movement of the head. 

We therefore describe spatial frequency settings in terms of cycles per barrel degree (c/bd) such 

that a (40/360°=) 0.111 c/bd setting means that the three screens, together, generated a 360° 

virtual barrel with 40 cycles. The position-dependent relationship between these c/bd values and 

subjective cycles per degree visual angle is shown for two eye positions in Figure 1D. 
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Figure 1: Schematics of the in-house-built OKT device. The stimulation chamber is made of three computer screens arranged 

in an equilateral triangle, with mirrors placed on the floor and ceiling. Structural elements not visible to the rat, used for instance 

to mount and secure screens, are omitted from this figure. For presentation purposes, the black plastic screen casings are depicted 

here as being white. A: An oblique view, with the ceiling of the stimulation chamber removed, showing the typical position of a 

compliant rat during optokinetic tracking. B: Side view, with one screen removed but floor and ceiling mirrors in place. Aside 

from the padded areas for hind- and forelimb placement, the stand is constructed of a single piece of metal wire (as from a 

clothes-hanger) secured at the center of, and at one corner of, the stimulation chamber’s floor. C: An overhead view showing the 

functional elements of the stimulation chamber. The 37.7 cm-wide screen faces are represented by solid black lines, and edges 

connected by dashed lines (the corners of the device are occupied by screen casings; not shown here). The rat’s right eye is 

shown just inside of the bulging-triangle shape that defines the testing arena at device center. Tracking was ignored unless the 

stimulated eye (left eye if the virtual barrel was moving clockwise; right if counter-clockwise) was inside the arena. The arena 

was not marked within the stimulation chamber, but instead was marked on the operator’s screen, superimposed on and calibrated 

to the overhead video feed. Azimuth — direction in the horizontal plane with 0° at the center of the lower left screen — is shown 

here, and used as the x-axis for D. D: As a rat’s eye moves closer to a screen, the subjective breadth of the nearest dark-light-dark 

cycle shown on that screen increases (i.e. less of the cycle fits within a degree visual angle). Measuring from the position of the 

rat’s left eye in C, and a device setting of 0.111 c/bd (used for contrast sensitivity measurements), stimuli at 0° azimuth will have 

the spatial frequency of 0.091 cycles per degree visual angle. This is plotted as a cycles-per-degree-visual-angle to cycles-per-

barrel-degree ratio of 0.82(=0.091/0.111). Near the corners of the device (gaps at -60° and 60° represent screen casings), ratios 

near 1.08 indicate that the 0.111 c/bd stimulus has a subjective spatial frequency of (1.08=0.120/0.111) 0.120 cycles per degree 

visual angle. For the right eye, which is closer to the screen center at 0° azimuth, a 0.111 c/bd setting means that stimuli will 

subjectively range from ~0.076 to ~0.133 cycles per degree visual angle. In this way, a single device setting can cover the range 

of frequencies in which Long-Evans rats’ contrast sensitivity is best (Douglas et al., 2005; Keller et al., 2000). 
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Prior to experimentation, light intensities within each sine wave grating were calibrated 

using a Traceable Dual-Range Light Meter (Control Company, Friendswood, TX). The 

minimum value (black or dark grey) taken from a grating was shown uniformly on all three 

screens, and light intensity (lx) measured from the center of the device. This procedure was 

repeated for the maximum value (white or light grey), and used to calculate the Michelson 

contrast ( [max. lx - min. lx]/[max. lx + min. lx] ) of each grating. An animal’s SFT is measured 

as the highest c/bd that elicits optokinetic tracking in either direction when testing at the highest 

contrast setting available to the device (black vs. white; ~ [97 lx - 1 lx]/[97 lx + 1 lx]). We 

carefully validated these SFT measurements (see Arm 4) and found that the maximum SFT for a 

given animal is highly reproducible and well-correlated with performance on the commercial 

OptoMotry system purchased more than mid-way through this project (CerebralMechanics, 

Lethbride, Alberta, Canada). CS measurements always took place at 0.111 c/bd — intended to 

expose the rat to the optimal subjective spatial frequency (~0.1 cycles per degree visual angle; 

Douglas et al., 2005; Keller et al., 2000) at most positions in the tracking arena (Fig.1D). For CS 

measurements, the highest [Michelson contrast]
-1

 that elicited tracking in either direction is 

reported. Gratings always moved at 12° per second, as in previous work (Douglas et al., 2005; 

Prusky et al., 2008). 

2.2.4 Eye Patch: A few days after testing an animal’s visual function, we measured its 

eye morphology and retinal ion influx with MEMRI. To study both light and dark-adapted retina 

from the same rat, an opaque eye patch was adhered to one side of the head while the rat was 

anesthetized with diethyl ether, as previously described (Bissig & Berkowitz, 2011). Briefly, 

after the selected eye was sutured shut and protected by application of puralube (Pharmaderm; 

Melville, New York), the patch was adhered with a combination of eyelash glue (Andrea 
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modlash adhesive; American International Industries, Los Angeles, CA) and spirit gum (Mehron 

Inc., Chestnut Ridge, NY). Each rat was fit with an Elizabethan collar and monitored until full 

recovery from anesthesia (≤ 15 min). Rats were then dark-adapted overnight with free access to 

food and water. In all cases, visual inspection confirmed that sutures remained intact and patches 

remained fully adhered during monocular exposure to normal lab lighting on the following day, 

which was immediately followed by MRI scanning. 

In Group YM, the left eye was patched for 9 of the 18 rats contributing MRI data to the 

first time point, and 4 of the 11 contributing to the final time point. In Group MO, the left eye 

was patched for 13 of the 32 rats contributing MRI data to the first time point, and 7 of the 14 (5 

of the 11 injected with Mn
2+

) contributing to the final time point. 

2.2.5 Acquisition of MEMRI Data: As is previous work (Bissig & Berkowitz, 2011), 

animals were (binocularly) dark-adapted overnight after being fit with a patch. After that period 

of dark-adaptation, rats were placed in normal lab lighting (~300 lx) for ~30 min. Rats were then 

injected intraperitoneally with 44 mg MnCl2·4H2O / kg body weight (i.e., 222 μmol Mn
2+

 / kg; 

0.1 M solution in 0.9%saline) on the following day. We have repeatedly demonstrated that this 

dose is non-toxic to the rat retina, (Berkowitz et al., 2006; Berkowitz et al., 2007a). After this 

injection, rats continued their monocular exposure to normal lab lighting until they were 

anesthetized prior to scanning. All scanning procedures took place under dim red light or 

darkness. 

Immediately before MRI scans began, animals were anesthetized with a mixture of 

ketamine and xylazine (‘k/x’; 20 mg ketamine and 2 mg xylazine / ml 0.9%saline). Maintenance 

doses of k/x were administered between the individual scans needed for T1 measurements, 

without moving the rat, through an intraperitoneal line accessed from just outside the magnet 
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bore. Across all experiments, the loading dose of k/x used to induce anesthesia was about half 

(mean(SD): 49(15)%) of the total dose, which is reported below. Anesthesia began immediately 

before the first scans, ~4 hr after Mn
2+

 injection. This timing allows for substantial retinal Mn
2+

 

uptake while rats are awake and free-moving — our standard procedure for measuring retinal 

function (Berkowitz et al., 2006; Berkowitz et al., 2009; Tofts et al., 2010; Bissig & Berkowitz, 

2011). Due to the low efflux rate of Mn
2+

 from the retina (half-life of ~15 hr; Tofts et al., 2010), 

uptake represents Mn
2+

 influx. Mn
2+

 influx/uptake is measured with MEMRI as a change in spin-

lattice relaxation rate (ΔR1) which is directly proportional to tissue Mn
2+

 concentration (Chuang 

et al., 2009). 

Scans of the left eye began (mean(SD)) 4.4(0.4) hr after Mn
2+

 injection, and were 

immediately followed by scans of the right eye (beginning 5.5(0.7) hr post-Mn
2+

). For each eye, 

tissue R1 (= 1/T1) was measured as follows: Using a 1.0 cm diameter receive-only coil on a 7 T 

Bruker ClinScan system, retinal images were collected at eight different TRs with a standard spin-

echo sequence (echo time (TE) 13, 160 × 320 matrix, slice thickness 600 µm; 8 × 8 mm
2
 field of 

view; yielding an in-plane resolution of 50 µm from superior to inferior × 25 µm in the axial 

(optic nerve to cornea) direction). Multiple repeat images were collected at lower TRs (total 

number given in brackets), then registered and averaged offline to improve signal-to-noise. 

Images were collected in the following order: TR 0.15 s [6], 3.50 s [1], 1.00 s [2], 1.90 s [1], 0.35 

s [4], 2.70 s [1], 0.25 s [5] 0.50 s [3]. 

2.2.6 Acquisition of Baseline (no Mn
2+

) Data: To aid in the interpretation of MEMRI 

data, the above procedures for measuring T1 in a light-exposed and dark-adapted eye of the same 

animal were performed in nine rats without Mn
2+

 injection. The patched and unpatched eyes of 

young (n=3, aged 74(5) d, weighing 296(17) g), mid- (n=3, 198(7) d, 417(25) g) and old adult 
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rats (n=3, 570(29) d, 557(60) g) were scanned under k/x anesthesia (11.4(2.0) ml/kg) starting 

5.1(0.6) hr after exposure to normal lab lighting began — closely matching the timing in Mn
2+

-

injected rats. In two of the three rats at each age, the patch was applied to the left eye. Since old 

adult Long-Evans rats were not commercially available, those three rats were randomly selected 

from Group MO.  

2.2.7 Analysis of MEMRI Data; Optics: Eye morphology was measured in high-resolution 

(25 µm, axial) T1-weighted images (TR 1.0 s). From each eye, we measured anterior chamber 

depth, lens thickness, posterior chamber depth (the sum of those three measurements being axial 

length), as well as the radius of curvature (“rC”) for the anterior lens surface, posterior lens 

surface, and external surface of the cornea. These measurements of size and position of optical 

components (summarized in Figure 2) were made using semi-automated scripts written in R 

(v.2.9.0; R Development Core Team (2009); http://www.r-project.org), and used to calculate the 

quality of light focus on the retinal photoreceptors. The result, refractive state, is expressed in 

diopters (D) with positive values indicating hyperopia, and negative values myopia. For a near-

sighted (myopic) rat with a refractive state of -4 D, for instance, light from a distant object would 

be optimally focused on the photoreceptors if a -4 D artificial lens were placed at the eye. 

The refractive state of the eye was calculated using Hughes (1979)’s two shell (“core”) 

lens model, and the refractive indices reported therein. A full description of this calculation is 

found in Hughes (1979) (see also Hughes, 1972; Southall, 1918), and in our recent application of 

that model to MRI images of the juvenile rat eye (Chui et al., 2012). We note some minor 

alterations to Hughes’ original model: First, although Hughes (1979) measures corneal thickness, 

and uses it to calculate refractive state, the present MRI images are not optimized for that 

measurement. Though some layering within the cornea is visible (Fig.2), we find that the border 
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of cornea and aqueous humor is too subtle for 

reliable measurement in the present images. We 

therefore calculate corneal thickness by its ratio to 

axial length, as reported by Hughes (1979)(axial 

length / corneal thickness = 23.004). The interior rC 

for the cornea is calculated by subtracting this 

corneal thickness value from the exterior corneal rC 

measured in each MRI. Second, the diameter of the 

spherical lens core, which is centered in the lens, is 

set proportional to (based on Hughes (1979), 51.67% 

of) the thickness of the lens measured in each MRI. 

Since Hughes (1979)’s model was originally 

developed with young adult rats, these modifications 

were used here and in previous work (Chui et al., 

2012) to scale the model for age-related changes in 

eye/lens size. Finally, the position of the image plane 

must be estimated within the retina: Retinal 

thicknesses are calculated from MRI images as 

described below, and the image plane is placed at 

84% of that thickness (‘84%thick’) beyond the 

vitreoretinal border. The 84%thick figure is based on 

recent in vivo optical coherence tomography (OCT) images of Long-Evans rat retinas (Srinivasa 

et al., 2006a; Srinivasa et al., 2006b; Hariri et al., 2009) which place the border between the outer 

Figure 2: Anatomy of the rat eye and associated 

optics measurements. A: A high-resolution (25 μm) 

T1-weighted image of an old adult rat eye with 

anatomical labels overlaid on large structures (bold text) 

or indicating finer structures (arrows; italic text). White 

dashed lines indicate internal and external borders of the 

cornea. Despite the high image quality — layering is 

evident within both the cornea and retina — the internal 

border separating cornea and aqueous humor is subtle. 

B: Measurements of lens thickness and chamber depths 

(black arrows and text) and radii of curvature (rC) are 

overlaid on the same image shown in A, but with image 

brightness and contrast altered to help visualize labels.  

 



18 

  

 

nuclear layer and bacillary layer (rod inner and outer segments) at ~71%thick, and the border 

between bacillary layer and retinal pigment epithelium at ~93%thick. Since inner segments are 

~2/3rds the length of outer segments throughout adulthood (Hagins et al., 1970; Katz et al., 1991; 

Cohen, 1971; Cunea & Jeffery, 2007; Case & Plummer, 1993; Penn & Williams, 1986) the 

84%thick estimate places the image plane at the photopigment-laden rod outer segments. 

2.2.8 Analysis of MEMRI Data; Spatial Normalization and Retinal Morphology: These 

procedures were adopted without modification from Bissig and Berkowitz (2011), and are 

detailed therein. Briefly, we started by fitting polynomials to the vitreoretinal border. Polynomials 

were integrated about the central axis of the eye to calculate retinal surface area and, in 

combination with retinal thicknesses (see below), retinal volume. Signal intensities were sampled 

along perpendiculars to the polynomials, then organized as a linearized image of the retina. The 

distance from optic nerve to ciliary body was measured for each hemiretina, and values were 

averaged to calculate retinal extent. The linearized retina was then binned in 10% increments of 

that distance, %extent, with 0%extent at the optic nerve head, and 100%extent at the ora serrata 

(junction of retina and ciliary body). Average signal intensity as a function of retinal depth was 

calculated for each %extent bin, producing a signal intensity profile. Vitreoretinal and 

retina/choroid borders were demarked in each profile (where signal intensity fell halfway between 

the local minimum and maximum) and subtracted to calculate retinal thickness. Profiles were then 

resampled from a μm scale to a %thick scale, with 0%thick at the vitreoretinal border, and 

100%thick at the retina/choroid border, in 4%thick increments. These spatially-normalized signal 

intensity profiles were used to facilitate comparisons of tissue Mn
2+

 uptake: Although the retina 

thins with greater age and greater distance from the optic nerve, the relative (%thick) position of 

each retinal layer is stable in healthy adults (Katz & Robison, 1986; Feng et al., 2007; Braekevelt 
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& Hollenberg, 1970). We report average retinal thicknesses and tissue Mn
2+

 uptake for the central 

retina (10-30%extent). 

We have previously demonstrated the internal validity of the above measurements of 

retinal extent, surface area, thickness, and volume through comparison of left and right eyes 

(Bissig and Berkowitz, 2011). In young control rats, whole-retinal thickness measurements have 

been externally validated with histology (Berkowitz et al., 2006). 

2.2.9 Analysis of MEMRI Data; Retinal Mn
2+

 Uptake: As described in the previous 

subsection, central retinal signal intensity (‘SI’) profiles were measured at each TR. These signal 

intensities were used to calculate tissue T1 based on the equation SI = a + b * ( exp( -TR / T1 ) ), 

where a, b, and T1 are fitted parameters. Data were fit with this function by the Levenberg-

Marquardt nonlinear least-squares algorithm using the minpack.lm library (v.1.1.1, written by 

Timur V. Elzhov and Katharine M. Mullen) for R. Binned central retinal data were then averaged 

to produce a single profile of T1 as a function of depth into the retina (i.e., %thick). 

The inverse of T1 varies linearly with tissue Mn
2+

 concentration (Chuang et al., 2009). 

Because this value, (T1
-1

=) R1, is influenced by other tissue characteristics, Mn
2+

 uptake was 

measured by calculating the difference between Mn
2+

-enhanced R1 and the baseline (i.e., without 

Mn
2+

 injection) retinal R1, yielding the measurement ΔR1. Based on measurements from the rat 

brain (Chuang et al., 2009), ΔR1s of 0, 0.5, and 1 s
-1

 represent tissue Mn
2+

 concentrations of 

approximately 0, 80, and 160 μM. In rats studied after monocular exposure to normal lab 

lighting, we also measured differences between retinal Mn
2+

 uptake in dark- versus light-adapted 

eyes, both proportional (ΔR1,Dark / ΔR1,Light) and absolute (ΔR1,Dark - ΔR1,Light). 

Data from 16-28%thick were averaged to represent inner retinal ΔR1s, while data from 

48-68%thick were averaged to represent outer retinal ΔR1s. These spans respectively fall within 
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the inner plexiform and outer nuclear layers, based on in vivo OCT images of Long-Evans rat 

retinas (Srinivasa et al., 2006a; Srinivasa et al., 2006b; Hariri et al., 2009). For completeness, we 

also report R1s and ΔR1s at all depths (%thick) into the retina in this Arm. 

2.2.10 Statistics: We began by evaluating baseline (i.e., no Mn
2+

) R1s. Since these data 

were collected in young, mid-, and old-adult rats, we first tested for effects of age by looking for 

significant correlations (α=0.05) between age and either R1,Dark, R1,Light, or the dark-light 

difference (R1,Dark - R1,Light) at each depth into the retina between 12 and 88%thick. Areas closer 

to the retina/non-retina borders (between 0-12% and 88-100%thick) are routinely excluded to 

avoid partial-volume averaging with non-retina (Bissig & Berkowitz, 2011; Berkowitz et al., 

2012). The same tests were run on the averaged values for inner (16-28%thick) and outer (48-

68%thick) retina. These analyses suggested no baseline effect of age (see Results), but because 

false-negatives are the primary concern in these comparisons of baseline data, two other 

approaches were attempted: We re-ran these regression analyses after log-transforming ages, and 

also analyzed the baseline data with one-way ANOVAs (young vs. mid vs. old). Since statistical 

findings were similar with these alternative approaches (P>0.05 for all age comparisons of 

baseline data) the results from these alternative analyses are not discussed further. 

Since we found no effect of age on R1,Dark, R1,Light, or dark-light differences, we ignored 

age when testing whether dark-light differences were present within the baseline data. Paired 

two-tailed t-tests (n=9 pairs of eyes) compared R1,Dark to R1,Light at each depth between 12 and 

88%thick, and for the averaged inner and outer retinal values. Since false-negatives were the 

primary concern in these analyses, α was set to 0.10 (so as to match the threshold of one-tailed 

tests in Mn
2+

-enhanced retinas; see below), and no adjustment for multiple comparisons was 

made. No influence of light on baseline R1 (see Results) was found. We therefore averaged 
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across ages and lighting conditions to generate a single baseline inner retinal R1 (0.514 s
-1

), outer 

retinal R1 (0.568 s
-1

), and retinal R1 profile. These R1s were subtracted from the Mn
2+

-enhanced 

R1s, discussed next, to generate ΔR1s. 

Based on previous in vivo MEMRI studies (e.g. Berkowitz et al., 2009; Berkowitz et al., 

2006; Bissig & Berkowitz, 2011), as well as the general finding that outer retinal ion influx is 

greatest in darkness when photoreceptors there are fully depolarized (for review, see Yau, 1994), 

two major patterns were expected, irrespective of the hypothesized age-related changes in Mn
2+

 

uptake: (1) Mn
2+

-enhanced R1s are expected to be higher than baseline (no Mn
2+

) R1s, and (2) in 

the outer half of the retina (where photoreceptors are located), Mn
2+

 uptake is expected to be 

higher in the patched, dark-adapted eye than in the unpatched, light-exposed eye. To test for 

these patterns, one-tailed t-tests (unpaired for Mn
2+

-enhanced > baseline; paired for dark > light; 

α=0.05) were performed at each depth into the retina between 12 and 88%thick, and for the 

averaged inner and outer retinal regions. In addition to dark-light differences evaluated with 

paired t-tests, we also generated dark/light ratios (i.e. ΔR1,Dark/ΔR1,Light) to test whether they 

differed significantly from 1 (one-sample t-tests). As in previous work (e.g. Berkowitz et al., 

2009; Berkowitz et al., 2006; Bissig & Berkowitz, 2011) dark-light differences are not expected 

in the inner-most portions of Mn
2+

-enhanced retinas, since the light-driven (ON) and dark-driven 

(OFF) pathways are approximately equally represented, and since there is extensive spatial 

overlap of each pathway, the relevant neurons cannot be resolved at the present image resolution. 

Next, we tested for longitudinal changes in each variable. Paired two-tailed t-tests were 

used to compare the first to final time point within each group, testing, for instance, whether 

retinal surface area increased significantly between ages ~2.5 and ~7 mo in Group YM. Body 

weight, and visual function (CS, SFT) had additional paired comparisons, since these 
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measurements were also recorded at the intermediate time point in Group MO. To control type I 

error in these multiple comparisons, only results falling below a standard false discovery rate 

threshold (‘FDR’; q=0.05 on these 52 tests; Genovese et al., 2002) were considered significant. 

Most variables changed with age (see Results). To better-understand these changes, we 

compared variables with four rounds of regression analyses: (1) We tested whether variables are 

correlated with one-another at the first time point. For instance, do rats which start the study with 

above-average body weight also start with above-average axial length? (2) We tested whether the 

first measurement of a variable is correlated with the last measurement of the same variable. For 

instance, do rats which start the study with above-average body weight tend to have above-

average body weight at the end of the study? (3) We tested whether the change in a variable over 

time is correlated with the change in another variable over the same time. For instance, do rats 

which show the greatest increases in body weight also show the greatest increases in axial 

length? A rate was used here to remove any influence of the minor age differences within each 

group, and log-transformed age was used in the denominator since lifespan changes in most 

variables are well-approximated by a logarithmic function (see Supplemental Material in 

Appendix A): In Group YM, for instance, each subject’s change from the initial measurement of 

a variable (‘VAR’) to the final measurement (from age ~2.5 mo to age ~7 mo) is calculated as 

(VARfinal - VARinitial) / (ln(agefinal) - ln(ageinitial)). In Group MO, changes relative to the 

intermediate time point are calculated in an identical fashion. Group MO changes from study 

start to study end are treated in the same way, but use a linear best fit (after log-transforming 

age) to the three measurements available for SFT, CS, and body weight. (4) Also, we tested 

whether the change in a variable over time is correlated with the starting value of the same, or of 

any other, variable. For instance, do rats which start with the highest body weights show the 
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greatest increases in axial length in the following months? We further checked for relationships 

between starting value for ln(age) and changes over time: Presuming a logarithmic growth curve, 

the youngest animals will tend to show the greatest changes over a fixed follow-up interval. 

Though within-group age differences are small at each time point, it’s important to check that a 

given variable’s predictive power is not merely due to initial age. In these analyses, we use the 

same log-transformed rates as in (3). 

Where possible, data from both Groups YM and MO are combined prior to statistical 

testing. Values from each group at each age — and for rates, each time span — are standardized 

by conversion to z-scores: For instance, a Group YM subject’s standardized retinal thickness at 

age ~2.5 mo is (subject’s measured retinal thickness - [mean of YM retinal thicknesses at ~2.5 

mo])/[SD of YM retinal thicknesses at ~2.5 mo]. Standardizing scores has no effect on p-values 

or correlation coefficients (Pearson’s r) when testing one group at a time, but allows both groups 

to be combined in the same analysis without biasing the outcome due to differences in group 

means or variances. For instance, we tested the hypothesis that retinal thickness is correlated 

with low SFT (i.e. poor vision): Standardized YM and MO data were combined to see whether 

subjects with thinner-than-average retinas (for their respective groups, i.e., negative z-scores) 

have worse-than-average SFTs (for their respective groups, i.e., negative z-scores). Before 

finalizing comparisons, we also tested for Group × variable (e.g. thickness) interactions. These 

could occur if, for instance, retinal thickness was related to SFT in mid-, but not young, adults. In 

the presence of a suspected interaction (P<0.05; not corrected for multiple comparisons) groups 

were analyzed separately. When there was no evidence of an interaction (P>0.05) formal 

statistical testing used only the combined (YM and MO) analysis. For completeness, though, we 

report correlation coefficients from each group. 



24 

  

 

For each round of regression analyses above ((1) through (4)) results were considered 

significant below a standard FDR threshold (q=0.05). Some post-hoc testing was used to further 

interpret positive results, and exact p-values are reported in those cases. 

2.3 Results 

2.3.1 Baseline R1: Representative baseline R1 maps are shown in Figure 3. In dark-adapted 

(i.e., patched) eyes, mean±SEM R1 for the inner retina (16-28%thick) was 0.52±0.03 s
-1

 (young 

0.58±0.04 s
-1

; mid 0.44±0.03 s
-1

; old 0.54±0.04 s
-1

) and for the outer retina was 0.57±0.03 s
-1

 

(young 0.64±0.01 s
-1

; mid 0.49±0.05 s
-1

; old 0.59±0.04 s
-1

). Results were similar in unpacthed 

eyes, which were exposed to normal lab lighting: For the inner retina, R1 was 0.51±0.02 s
-1

 

(young 0.53±0.03 s
-1

; mid 0.51±0.03 s
-1

; old 0.48±0.07 s
-1

). For the outer retina, R1 was 0.56±0.03 

s
-1

 (young 0.59±0.05 s
-1

; mid 0.50±0.03 s
-1

; old 0.60±0.03 s
-1

). Consistent with expectations for 

these control animals, which were not injected with Mn
2+

, there were no significant dark-light 

differences in either inner retina or outer retina (P>0.23). We found no effects of age on R1s in 

dark, light, or dark-light differences (inner retina: -0.32<r<0.21 with P>0.41; outer retina: -

0.18<r<0.17 with P>0.66). The above analyses yielded similarly negative (P>0.05) results when 

extended to the entire retinal profile. Age-averaged profiles for dark, light, and the dark-light 

difference are shown in Figure 4. 

Because baseline (no Mn
2+

) R1s were stable with age and light exposure, we averaged 

across ages and lighting conditions to generate a single baseline inner retinal R1 (0.514 s
-1

) outer 

retinal R1 (0.568 s
-1

), and retinal R1 profile (see Fig.4). Those mean baseline values are subtracted 

from Mn
2+

-enhanced R1s in all arms of this study to generate ΔR1s. 
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2.3.2 R1s and ΔR1s from Mn
2+

-enhanced Retinas: Representative R1 maps showing the 

effects of Mn
2+

 injection and age are shown in Figure 3. Quantitative details of the results 

summarized here are provided in Figure 4 and legend. 

Rat retinas showed the expected Mn
2+

-enhancement at all ages, based on the finding that 

those R1s were significantly higher (P<0.05) than baseline (no Mn
2+

) at all retinal depths. Also, 

consistent with expectations, inner retinal Mn
2+

 uptake was similar (P>0.05) in light and 

darkness, but outer retinal Mn
2+

 uptake was significantly higher (P<0.05) in dark-adapted 

(patched) eyes than in the unpatched eyes, which were exposed to normal lab lighting during the 

period of Mn
2+

 accumulation (Berkowitz et al., 2009; Berkowitz et al., 2006; Bissig & 

Berkowitz, 2011). This activity-dependent pattern of Mn
2+

 uptake was noted at all ages when 

testing whether the difference between R1,Dark and R1,Light was significantly different from zero 

(i.e. paired t-tests of R1,Dark versus R1,Light), whether that difference was significantly greater than 

the (near-zero and non-significant) dark-light differences in baseline (no Mn
2+

) data, and when 

testing whether the dark/light ratio of Mn
2+

 uptake (i.e., ΔR1,Dark/ΔR1,Light) was significantly 

greater than 1. 

Note that the paired comparisons of R1,Dark to R1,Light are identical to paired comparisons 

of ΔR1,Dark and ΔR1,Light since a common baseline value is used to calculate ΔR1s from R1s: A 

paired t-test is equivalent to a one-sample t-test (versus zero) on the difference scores, which are 

ΔR1, Dark - ΔR1, Light = [(R1, Dark - R1, Baseline) - (R1, Light - R1, Baseline)] = R1, Dark - R1, Light. The same 

considerations apply to paired comparisons of longitudinal data (e.g. young-adult versus mid-

adult ΔR1, Dark in Group YM). 

 Retinal Mn
2+

 uptake significantly (q<0.05; Fig.4) increased with age in both Group YM 

and Group MO.  This effect was found in both light and darkness, and in both the inner and outer  
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retina. In the inner retina, dark-light differences in Mn
2+

 uptake were similar to zero (P>0.05) in 

all cases and did not change with age (P>0.05). Dark/light ratios showed a similar pattern. In the 

outer retina, the absolute amount of activity-dependent Mn
2+

 uptake — represented by dark-light 

differences in ΔR1 — increased significantly (q<0.05) with age in both groups. Interestingly, the 

outer retina’s dark/light ratios did not change with age (P>0.05). 

 2.3.3 Visual Function: SFT declined from ages ~2.5 to ~7 mo (q<0.05; P=2.4e-4) and 

then remained stable from ~7 mo onward (P>0.26 for all Group MO comparisons of SFT). In 

contrast, each longitudinal comparison of CS showed significant (q<0.05) declines with age in 

Figure 4 (previous page): Light- and age-dependent changes in Mn2+ uptake in Arm 1. Top Row: Plots of R1 (in units of s-1) 

as a function of depth into the retina for the dark-adapted retina, light-adapted retina, and the dark-light difference in R1s. Profiles 

are color-coded by group (top right). Grayed areas near the vitreoretinal (0%thick) and retina/choroid (100%thick) borders are 

routinely ignored to avoid partial-volume averaging with non-retina. Mn2+-enhanced R1s are significantly higher than baseline 

(i.e., no Mn2+) in both light and dark in all four Mn2+-enhanced datasets (P<0.0002 at all depths from 12-88%thick; one-tailed t-

tests; not labeled). Dark-light differences greater than 0 (marked with a green line) indicate activity-dependent Mn2+ uptake. No 

dark-light differences were found for the baseline group, consistent with expectations. For other groups, this check of activity-

dependent Mn2+ uptake is shown in the middle and bottom rows of this figure. Here, the orange * indicates dark-light differences 

significantly greater than those calculated at baseline (no Mn2+) over the span indicated for each group by color-coded bars 

(P<0.05; one-tailed t-tests). Middle Row: Plots of ΔR1 (in units of s-1) which is directly proportional to tissue Mn2+ concentration 

(Chuang et al., 2009). ΔR1 is calculated by subtracting the baseline (no Mn2+) tissue R1 from the Mn2+-enhanced R1. Note that the 

dark-light differences in this row are identical to in the top row of this figure because the same baseline (averaged across ages and 

lighting conditions) is used to calculate dark and light ΔR1s (i.e. ΔR1,Dark - ΔR1,Light = (R1,Dark - R1,baseline) - (R1,Light - R1,baseline)). 

Filled red * indicates dark-light differences significantly greater than 0 (P<0.05; one-tailed t-tests). The dark-to-light ratio is 

shown at figure right, with the absence of light-dependent Mn2+ uptake (ratio = 1) marked with a green line. The open red * 

indicates dark/light ratios significantly greater than 1 (P<0.05; one-tailed t-tests). Note that ratio profiles become highly variable 

near the retinal borders (at 0 and 100%thick) due to partial-volume averaging with non-retina, which has little Mn2+ uptake and 

therefore smaller (and occasionally negative) denominator (ΔR1,Light) values. Dashed vertical lines indicate the regions selected 

for further analyses — the inner retina from 16-28%thick, and the outer retina from 48-68%thick. Bottom Row: Inner and outer 

retinal means from each subject are shown, with one exception: For the inner retina, a young adult dark/light ratio value of 4.69 is 

omitted to retain a useful y-axis range (but was retained in statistical comparisons; this is the only scatter plot omission 

throughout the entire present work). Mean±SEM are indicated by the thick and thin horizontal lines overlaid on each scatter plot. 

Horizontal offset of points avoids overlap. Measures from the same subject (at different ages) are connected by gray lines, while 

a white mark within a point denotes the lack of follow-up MEMRI data (e.g., due to animal death). Note that values from rats lost 

to follow-up are fairly evenly distributed among (and statistically similar to P>0.05) those from animals retained for longitudinal 

comparisons. As with profiles, filled red *s indicate dark-light differences significantly greater than 0 (all outer retinal tests 

P<0.017), and open red *s indicates dark/light ratios significantly greater than 1 (all outer retinal tests P<0.0058). Consistent with 

the inner retina’s intermingled and equally-represented ON and OFF pathways, no activity-dependent changes in inner retinal 

Mn2+ uptake were noted. § indicates a significant (q<0.05; paired two-tailed tests) effect of age in longitudinal comparisons — 

young vs. mid-adults in Group YM, and mid- vs. old adults in Group MO. Retinal Mn2+ uptake (ΔR1s) increased significantly 

with age in both darkness (all P<8.4e-4) and light (all P<5.3e-4). Activity-dependent Mn2+ uptake — measured as outer retinal 

dark-light differences — also increased with age (both P<0.038). Interestingly, the dark-to-light ratio of Mn2+ uptake was stable 

with age (P>0.3; uptake was consistently ~35% higher in dark than light). We considered the possibility that ratio values simply 

had greater variance, making it more difficult to detect age effects. However, outer retinal tests for activity-dependent changes 

had similar effect sizes when testing whether dark-light > 0 and dark/light > 1: For the young and mid-adults of Group YM as 

well as the mid- and old adults of Group MO, Cohen’s d was respectively 0.54, 1.27, 0.88, and 1.30 for differences and nearly 

identical for ratios: respectively 0.67, 0.94, 0.87, and 1.30. Thus, variance does not appear inflated in outer retinal dark/light 

ratios. In short, the data demonstrate stability in the dark-to-light ratio of Mn2+ uptake — despite age-related increases in the total 

quantity of Mn2+ uptake in dark, in light, and the activity-dependent difference in Mn2+ uptake revealed by outer retinal dark-light 

differences. 
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both Group YM (P=3.4e-2) and Group MO (P=2.7e-4 for ~7 to ~11.5 mo; P=1.3e-4 for ~11.5 to 

~19 mo). These data are plotted in Figure 5. 

2.3.4 Morphology: Significant (q<0.05; Fig.5) results were found for each longitudinal 

comparison of retinal morphology (P<8.3e-3), radii of curvature (‘rC’s; P<2.0e-5), refractive 

state (P<5.3e-3), and axial length (P<1.7e-5). The age-related increase in axial length was mostly 

driven by significant (q<0.05) increases in lens thickness (P<4.5e-6) and anterior chamber depth 

(P<4.3e-3), rather than vitreous chamber depth (P=0.22 from young to mid-adulthood; P=0.031 

from mid- to old adulthood). In most cases, the magnitude change in morphology from young to 

mid-adulthood appears similar to the change from mid- to old adulthood. This is consistent with 

a logarithmic growth curve, since the log-transformed age differences in those comparisons are 

similar (i.e., ln(19 mo) - ln(7 mo)) ≈  ln(7 mo) - ln(2.5 mo)). Body weight appeared to stabilize 

from ~11.5 to ~19 mo (P=0.08), but significantly increased with age over all other ranges 

(q<0.05; P<1.1e-6; Fig.5). Further exploration of these growth patterns is offered as 

Supplemental Material in Appendix A. 

2.3.5 Regression Analyses: Results are presented in Tables 1-4. Before considering 

relationships with visual function, we summarize the inter-relationships of the other variables: 

Correlations found for several morphological variables seem generally linked to eye 

growth beyond young adulthood: Body weight, anterior chamber depth, lens thickness, axial 

length, corneal radius of curvature, lens radii of curvature, retinal extent, and retinal surface area 

all share the following features: (1) As seen in Table 1, they all are significantly (q<0.05) 

positively correlated to one-another at the start of the experiment (i.e. at age ~2.5 mo in Group 

YM, at ~ 7mo in Group MO), such that rats which weighed more also tended to have a larger 

axial  lengths,  retinal  surface  areas,  etc.  (2)  As  seen  in  Table 2, the starting value for each is  
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significantly (q<0.05) positively correlated with the final value, such that rats with larger-than-

average axial lengths at study start with tend to have larger-than-average axial lengths at study 

end. (3) As seen in Table 3, the rate of change in each is significantly (q<0.05) positively 

correlated with the rate of change in the other ‘eye growth’ variables, such that rats which show 

the largest increases in axial length over time tend to show the largest increases in retinal surface 

area over the same time. (4) As seen in Table 4 (pt.2), each variable mentioned here is 

significantly negatively correlated with later changes in self, and in other ‘eye growth’ variables: 

Rats with above-average body weight at the first time point will tend to have the smallest gains 

in body weight by the final time point, and will similarly have the smallest gains in retinal 

surface area, lens thickness, etc. The above relationships also hold reasonably well for refractive 

state, though changes in refractive state over time (Tables 3 and 4) are well-correlated with only 

some of the ‘eye growth’ variables (e.g. corneal rC, but not lens thickness). This may be due to 

significant relationships between refractive state and vitreous chamber depth, which is poorly 

correlated with most other variables. 

The relationships between most morphological measures over time may be summarized 

in the following way: A larger-than-average rat at the start of the experiment it is nearer to its 

final size than the other members of its cohort. Growth of that rat in the following months is 

modest, relative to growth in smaller-than-average animals, which end up at a similar final size 

Figure 5 (previous page): Longitudinal changes in body weight, visual function, the morphology of optical components, 

and retinal morphology. As in Figure 4, mean±SEM are indicated by the thick and thin horizontal lines overlaid on each scatter 

plot. Measures from the same subject (at different ages) are connected by gray lines, while a white mark within a point denotes 

the lack of follow-up MEMRI data (e.g., due to animal death). Note that values from rats lost to follow-up are evenly distributed 

among those from animals retained for longitudinal comparisons. § indicates a significant (q<0.05; paired two-tailed tests) effect 

of age. For SFT, CS, and body weight, comparisons of ~7 to ~19 mo data are not labeled since patterns of significance 

(respectively, P=0.57, P=2.1e-7, P=5.1e-8) are well-depicted by the ~7 vs. ~11.5 mo comparisons. Body weight tends to stabilize 

from 11.5 mo onward, and SFT tends to stabilize after the initial decline from young to mid-adulthood. CS progressively declines 

with age. Refractive state calculations indicate that rats are hyperopic (i.e., >0 diopters; indicated by the green horizontal line) 

through most of their life, but myopic (<0 diopters) as young adults. The sizes of most eye structures and the associated radii of 

curvature (‘rC’), increase with age. This general pattern of eye growth is noted in retinal morphology as well: The retina thins 

with age, and may partially be due to stretching of the retina as the eye continues to grow (Katz & Robison, 1986), as suggested 

by increases in retinal extent and surface area with age. Since retinal volume increases with age, it seems unlikely that thinning is 

due to cell loss. 
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as the larger rats. Morphological data thereby tend to converge over time, a pattern readily seen 

in Figure 5 (e.g., for external corneal rC). For most variables, this convergence is incomplete: 

The larger-than-average rat at the start of the study remains larger-than-average at the end, but by 

a smaller margin. Anterior chamber depth is one exception to this pattern: Though initial size is 

well-correlated with later growth (Table 4), values converge so much that starting smaller- or 

larger-than-average has no bearing on whether a rat will end with a smaller- or larger-than-

average anterior chamber. The non-significant regression result in Table 2 describes this pattern, 

which is visible in Figure 5: Most of the connecting lines intersect for anterior chamber depth, 

but not, for instance, for external corneal rC. 

Patterns observed for retinal volume were similar to those for the ‘eye growth’ variables 

described above. Central retinal thickness and volume are related — animals whose central 

retinas thin least over time tend to have the greatest increases in retinal volume over time 

(significant positive correlation in Table 3) — but changes in thickness were poorly correlated 

with changes in ‘eye growth’ variables. Although cross-sectional comparison of retinal thickness 

and surface area suggests an inverse relationship — as though some animals’ retinas were more 

‘stretched out’ (greater surface area), resulting in thinner central retina at the start of the 

experiment (q<0.05 for negative correlation; Table 1) — there was no correlation between rates 

of change in surface area and retinal thickness (q>0.05; Table 3). 

 Mn
2+

 uptake in dark-adapted outer retina (ΔR1,Dark) is well-correlated with uptake in the 

inner retina at the start of the experiment (Table 1), and changes in these variables over time 

were well-correlated (Table 3). Rats starting with high Mn
2+

 uptake (relative to other cohort 

members) in either location tended to have the smallest subsequent increases in Mn
2+

 uptake 

(Table 4). Values converged enough that starting Mn
2+

 uptake was not well-correlated with Mn
2+
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from the start to the end of the 

experiment 

with ~11.5 mo data as 

start or endpoint   

Group YM MO Combined MO 

Age Range (months) ~2.5 to ~7 ~7 to ~19 ← ~7 to ~11.5 ~11.5 to ~19 

Body Weight 
(n=13) (n=15) (n=28) (n=19) (n=15) 

0.05 0.41 0.25 0.85 0.60 

B
eh

av
io

r  (n=13) (n=15) (n=28) (n=19) (n=15) 

STF 0.77 0.59 0.67 0.37 0.68 

CS 0.11 0.06 0.09 0.40 0.37 

M
o

rp
h

o
lo

g
y

 a
n
d

 O
p

ti
cs

 

 (n=11) (n=14) (n=25)   

Ant. Chamber Depth 0.08 0.05 0.06   

Lens Thickness 0.90 0.77 0.83   

Vit. Chamber Depth 0.52 0.51 0.52   

Axial Length 0.72 0.53 0.61   

Corneal rC 0.83 0.68 0.75   

Anterior Lens rC 0.84 0.37 0.57   

Posterior Lens rC 0.76 0.39 0.55   

Refractive State 0.80 0.53 0.65   

Retinal Thickness 0.80 0.08 0.39   

Retinal Extent 0.73 0.60 0.66   

Retinal Surface Area 0.74 0.62 0.67   

Retinal Volume 0.55 0.12 0.31   

P
h

y
si

o
lo

g
y
 

 (n=11) (n=11) (n=22)   

ΔR1 (inner retina) 0.29 0.01 0.15   

ΔR1,Dark (outer retina) 0.39 0.12 0.26   

ΔR1,Light (outer retina) 0.11 0.61 0.36   

ΔR1,Dark - ΔR1,Light (outer retina) 0.31 0.52 0.42   

ΔR1,Dark / ΔR1,Light (outer retina) 0.04 0.48 0.26   

Table 2: Correlations between measurements at the start versus at the end of the study in Arm 1. 

Correlation coefficients (Pearson’s r) values are listed for each comparison. Bold indicates significance 

(q<0.05; FDR calculated on 26 tests — twenty of the combined data and six with the ~11.5 mo age as a start 

or endpoint). Formal analyses combined z-standardized Group YM and Group MO data. For completeness, r 

values calculated for each group are also shown.  

 



35 

  

 

T
a

b
le

 3
: 

C
o

rr
el

a
ti

o
n

s 
b

et
w

ee
n

 r
a

te
 o

f 
ch

a
n

g
e 

in
 o

n
e 

v
a

ri
a

b
le

 w
it

h
 r

a
te

 o
f 

ch
a

n
g

e 
in

 a
n

o
th

er
 i

n
 A

rm
 1

. 
C

o
rr

el
at

io
n

 c
o

ef
fi

ci
en

ts
 (

P
ea

rs
o

n
’s

 r
) 

ar
e 

li
st

ed
 f

o
r 

ea
ch

 a
n

al
y

si
s 

as
 

[(
G

ro
u

p
 Y

M
 ,

 G
ro

u
p

 M
O

) 
C

o
m

b
in

ed
].

 B
o
ld

 i
n
d

ic
at

es
 s

ig
n

if
ic

an
ce

 (
q

<
0

.0
5

; 
F

D
R

 c
al

cu
la

te
d

 o
n

 2
0
6
 t

es
ts

):
 W

h
en

 r
 i

s 
li

st
ed

 f
o

r 
th

e 
co

m
b

in
ed

 a
n

al
y

si
s,

 g
ro

u
p

-s
p

ec
if

ic
 r

 v
al

u
es

 

ar
e 

sh
o

w
n

 o
n
ly

 f
o

r 
co

m
p

le
te

n
es

s.
  

W
h

er
e 

an
 *

 a
p

p
ea

rs
 i

n
st

ea
d

 o
f 

an
 r

 v
al

u
e,

 a
n

 i
n

te
ra

ct
io

n
 b

et
w

ee
n

 g
ro

u
p

 a
n
d

 t
h

e 
co

rr
el

at
io

n
 w

as
 s

u
sp

ec
te

d
 (

P
<

0
.0

5
) 

an
d

 s
ta

ti
st

ic
s 

w
er

e 
ru

n
 o

n
 

ea
ch

 g
ro

u
p

 s
ep

ar
at

el
y
. 

A
d
d

it
io

n
al

 t
es

ts
 (

in
cl

u
d

ed
 i

n
 t

h
e 

2
0
6

 t
o

ta
l)

 u
si

n
g

 G
ro

u
p

 M
O

’s
 a

g
e 

~
1
1

.5
 m

o
 d

at
a 

as
 a

 s
ta

rt
 o

r 
en

d
p

o
in

t 
(b

o
d

y
 w

ei
g

h
t 

v
s.

 S
F

T
, 

b
o
d

y
 w

ei
g

h
t 

v
s.

  
C

S
, 

an
d

 

S
F

T
 v

s.
 C

S
) 

al
l 

p
ro

d
u

ce
d

 n
eg

at
iv

e 
re

su
lt

s 
(-

0
.3

1
<

r<
0

.2
7

; 
P

>
0

.2
; 

n
o
t 

sh
o

w
n

).
 

 

 

 

B
o
d
y

 W
ei

g
h
t 

S
F

T
 

C
S

 

A
n

t.
 C

h
am

b
er

 

D
ep

th
 

L
en

s 
T

h
ic

k
n

es
s 

V
it

. 
C

h
am

b
er

 

D
ep

th
 

A
x

ia
l 

L
en

g
th

 

C
o

rn
ea

l 
rC

 

A
n

te
ri

o
r 

L
en

s 
rC

 

P
o

st
er

io
r 

L
en

s 
rC

 

R
ef

ra
ct

iv
e 

S
ta

te
 

R
et

in
al

 T
h

ic
k
n

es
s 

R
et

in
al

 E
x

te
n
t 

R
et

in
al

 S
u

rf
ac

e 

A
re

a 

R
et

in
al

 V
o
lu

m
e 

Δ
R

1
, 

(i
n
n

er
 r

et
in

a)
 

Δ
R

1
,D

ar
k
 (

o
u

te
r 

re
ti

n
a)

 

Δ
R

1
,L

ig
h
t  

(o
u

te
r 

re
ti

n
a)

 

Δ
R

1
,D

ar
k
 -

 

Δ
R

1
,L

ig
h
t 
(o

u
te

r 

re
ti

n
a)

 

ΔR1,Dark / 

ΔR1,Light 

(outer retina) (0
.4

,0
.2

) 

0
.2

8
 

(0
.0

,-
0
.1

) 

-0
.0

5
 

(0
.0

,0
.0

) 

0
.0

2
 

(0
.2

,-
0
.4

) 

-0
.1

2
 

(0
.1

,0
.2

) 

0
.1

6
 

(0
.3

,0
.2

) 

0
.2

5
 

(0
.2

,0
.1

) 

0
.1

4
 

(-
0
.2

,0
.1

) 

-0
.0

7
 

(0
.0

,0
.0

) 

0
.0

1
 

(0
.1

,0
.0

) 

0
.0

6
 

(-
0
.4

,-
0
.3

) 

-0
.3

4
 

(-
0
.4

,0
.7

) 

*
 

(0
.0

,-
0
.1

) 

-0
.0

5
 

(-
0
.1

,-
0
.3

) 

-0
.2

2
 

(-
0
.3

,0
.1

) 

 -
0
.1

1
 

(-
0
.1

,0
.1

) 

0
.0

1
 

(0
.5

,0
.5

) 

0
.5

 

(-
0
.4

,-
0
.2

) 

-0
.3

3
 

(0
.9

,0
.8

) 

0
.8

5
 

ΔR1,Dark - 

ΔR1,Light 

(outer retina) (0
.2

,0
.0

) 

0
.1

0
 

(0
.3

,0
.2

) 

0
.2

3
 

(0
.0

,0
.0

) 

-0
.0

2
 

(0
.2

,-
0
.5

) 

-0
.1

3
 

(0
.1

,0
.1

) 

0
.1

1
 

(0
.3

,0
.3

) 

0
.2

6
 

(0
.2

,0
.0

) 

0
.1

1
 

(-
0
.3

,0
.1

) 

-0
.0

8
 

(0
.0

,0
.1

) 

0
.0

4
 

(0
.1

,-
0
.1

) 

-0
.0

1
 

(-
0
.4

,-
0
.3

) 

-0
.3

6
 

(-
0
.2

,0
.8

) 

*
 

(-
0
.1

,-
0
.1

) 

-0
.0

8
 

(-
0
.2

,-
0
.3

) 

-0
.2

5
 

(-
0
.3

,0
.1

) 

-0
.0

9
 

(0
.1

,0
.4

) 

0
.2

3
 

(0
.7

,0
.7

) 

0
.7

0
 

(-
0
.3

,-
0
.2

) 

-0
.2

3
 

 

ΔR1,Light  

(outer retina) 

(0
.5

,0
.3

) 

0
.3

8
 

(-
0
.2

,-
0
.1

) 

-0
.1

3
 

(0
.6

,0
.0

) 

0
.2

9
 

(0
.6

,0
.2

) 

0
.3

7
 

(0
.7

,0
.0

) 

0
.3

5
 

(0
.2

,-
0
.5

) 

-0
.1

5
 

(0
.7

,-
0
.1

) 

0
.2

9
 

(0
.7

,-
0
.1

) 

0
.2

8
 

(0
.7

,0
.0

) 

0
.3

5
 

(0
.7

,0
.0

) 

0
.3

6
 

(0
.6

,0
.2

) 

0
.3

7
 

(0
.0

,0
.0

) 

-0
.0

1
 

(0
.8

,-
0
.1

) 

0
.3

4
 

(0
.8

,-
0
.0

) 

0
.3

7
 

(0
.6

,-
0
.2

) 

0
.1

9
 

(0
.9

,0
.6

) 

0
.7

3
 

(0
.4

,0
.6

) 

0
.5

3
 

  

ΔR1,Dark 

(outer retina) 

(0
.5

,0
.2

) 

0
.3

7
 

(0
.1

,0
.1

) 

0
.1

0
 

(0
.4

,-
0
.1

) 

0
.1

8
 

(0
.6

,-
0
.2

) 

0
.1

8
 

(0
.6

,0
.1

) 

0
.3

5
 

(0
.4

,-
0
.2

) 

0
.1

0
 

(0
.7

,-
0
.1

) 

0
.3

0
 

(0
.2

,0
.0

) 

0
.1

0
 

(0
.5

,0
.0

) 

0
.2

8
 

(0
.6

,-
0
.1

) 

0
.2

6
 

(0
.0

,-
0
.1

) 

-0
.0

5
 

(-
0
.2

,0
.6

) 

0
.2

0
 

(0
.5

,-
0
.1

) 

0
.1

7
 

(0
.4

,-
0
.3

) 

0
.0

5
 

(0
.1

,0
.0

) 

0
.0

3
 

(0
.7

,0
.7

) 

0
.7

2
 

   

ΔR1, (inner 
retina) 

(0
.6

,-
0
.1

) 

0
.2

4
 

(-
0

.1
,0

.3
) 

0
.1

0
 

(0
.7

,0
.0

) 

0
.3

4
 

(0
.7

,-
0
.2

) 

*
 

(0
.9

,-
0
.3

) 

*
 

(0
.1

,-
0
.3

) 

-0
.1

2
 

(0
.8

,-
0
.4

) 

*
 

(0
.7

,-
0
.2

) 

*
 

(0
.8

,-
0
.2

) 

*
 

(0
.8

,-
0
.4

) 

*
 

(0
.5

,0
.1

) 

0
.3

0
 

(-
0

.1
,0

.2
) 

0
.0

6
 

(0
.8

,-
0
.2

) 

*
 

(0
.8

,-
0
.2

) 

*
 

(0
.5

,-
0
.1

) 

0
.2

3
 

    

Retinal 

Volume 

(0
.4

,0
.5

) 

0
.4

5
 

(0
.3

,0
.0

) 

0
.1

2
 

(0
.5

,0
.4

) 

0
.4

6
 

(0
.3

,0
.6

) 

0
.4

6
 

(0
.6

,0
.7

) 

0
.6

9
 

(0
.1

,0
.2

) 

0
.1

5
 

(0
.6

,0
.7

) 

0
.6

4
 

(0
.6

,0
.7

) 

0
.6

6
 

(0
.7

,0
.3

) 

0
.4

3
 

(0
.7

,0
.6

) 

0
.6

5
 

(0
.5

,0
.1

) 

0
.2

9
 

(0
.5

,0
.6

) 

0
.6

0
 

(0
.5

,0
.8

) 

0
.6

5
 

(0
.3

,0
.7

)

0
.5

3
 

     

Retinal 
Surface Area 

(0
.7

,0
.5

) 

0
.6

0
 

(-
0

.3
,-

0
.1

) 

-0
.2

2
 

(0
.7

,0
.6

) 

0
.6

1
 

(0
.8

,0
.8

) 

0
.7

9
 

(0
.8

,0
.8

) 

0
.8

0
 

(-
0

.1
,0

.1
) 

0
.0

2
 

(0
.8

,0
.8

) 

0
.7

7
 

(0
.7

,0
.8

) 

0
.7

8
 

(0
.7

,0
.6

) 

0
.6

4
 

(0
.7

,0
.7

) 

0
.7

2
 

(0
.6

,0
.4

) 

0
.5

2
 

(-
0

.4
,0

.2
) 

-0
.0

5
 

(0
.9

,0
.9

) 

0
.9

4
 

      

Retinal 

Extent 

(0
.8

,0
.5

) 

0
.6

1
 

(-
0

.2
,0

.0
) 

-0
.0

9
 

(0
.7

,0
.5

) 

0
.5

8
 

(0
.8

,0
.7

) 

0
.7

7
 

(0
.9

,0
.9

) 

0
.9

1
 

(0
.1

,0
.1

) 

0
.1

0
 

(0
.9

,0
.8

) 

0
.8

6
 

(0
.8

,0
.9

) 

0
.8

2
 

(0
.9

,0
.5

) 

0
.6

8
 

(0
.9

,0
.7

) 

0
.7

8
 

(0
.6

,0
.4

) 

0
.4

9
 

(-
0

.3
,0

.3
) 

0
.0

5
 

       

Retinal 

Thickness 

(-
0

.2
,0

.2
) 

0
.0

2
 

(0
.5

,-
0

.1
) 

0
.1

8
 

(0
.2

,-
0

.1
) 

0
.0

2
 

(-
0

.4
,0

.2
) 

-0
.0

6
 

(-
0

.1
,0

.5
) 

0
.2

3
 

(0
.1

,0
.4

) 

0
.2

7
 

(-
0

.1
,0

.5
) 

0
.2

2
 

(0
.1

,0
.3

) 

0
.2

1
 

(0
.0

,0
.1

) 

0
.0

4
 

(0
.1

,0
.3

) 

0
.2

2
 

(0
.0

,-
0

.5
) 

-0
.2

5
 

        

Refractive 

State 

(0
.4

,0
.2

) 

0
.3

2
 

(-
0

.3
,0

.2
) 

-0
.0

2
 

(0
.7

,0
.3

) 

0
.4

7
 

(0
.3

,0
.2

) 

0
.2

6
 

(0
.7

,0
.2

) 

0
.3

9
 

(-
0

.4
,-

0
.7

) 

-0
.5

4
 

(0
.5

,-
0

.1
) 

0
.1

8
 

(0
.9

,0
.3

) 

0
.5

7
 

(0
.6

,0
.2

) 

0
.4

0
 

(0
.6

,0
.2

) 

0
.3

7
 

         

Posterior 

Lens rC 

(0
.8

,0
.7

) 

0
.7

5
 

(0
.0

,0
.0

) 

0
.0

2
 

(0
.8

,0
.5

) 

0
.6

3
 

(0
.7

,0
.8

) 

0
.7

5
 

(1
.0

,0
.9

) 

0
.9

3
 

(0
.3

,0
.3

) 

0
.2

8
 

(1
.0

,0
.9

) 

0
.9

2
 

(0
.8

,0
.8

) 

0
.8

3
 

(0
.9

,0
.8

) 

0
.8

6
 

          

Anterior 

Lens rC 

(0
.7

,0
.6

) 

0
.6

5
 

(0
.2

,0
.2

) 

0
.1

6
 

(0
.7

,0
.5

) 

0
.5

7
 

(0
.7

,0
.6

) 

0
.6

7
 

(0
.9

,0
.7

) 

0
.7

7
 

(0
.3

,0
.4

) 

0
.3

4
 

(0
.9

,0
.7

) 

0
.8

2
 

(0
.8

,0
.8

) 

0
.8

1
 

           
Corneal rC 

(0
.7

,0
.7

) 

0
.6

9
 

(-
0

.2
,0

.2
) 

0
.0

1
 

(0
.8

,0
.6

) 

0
.6

8
 

(0
.4

,0
.8

) 

0
.6

0
 

(0
.8

,0
.8

) 

0
.8

4
 

(0
.1

,0
.4

) 

0
.2

6
 

(0
.8

,0
.9

) 

0
.8

2
 

            

Axial Length 

(0
.8

,0
.6

) 

0
.7

2
 

(0
.0

,0
.0

) 

-0
.0

1
 

(0
.7

,0
.5

) 

0
.5

8
 

(0
.8

,0
.8

) 

0
.8

0
 

(1
.0

,0
.9

) 

0
.9

4
 

(0
.3

,0
.6

) 

0
.4

6
 

             

Vit. Chamber 
Depth 

(0
.3

,0
.2

) 

0
.2

6
 

(0
.0

,0
.0

) 

0
.0

4
 

(0
.1

,0
.1

) 

0
.1

1
 

(-
0
.1

,0
.3

) 

0
.1

2
 

(0
.1

,0
.3

) 

0
.2

0
 

              

Lens 
Thickness 

(0
.8

,0
.6

) 

0
.7

1
 

(0
.0

,-
0
.1

) 

-0
.0

6
 

(0
.8

,0
.4

) 

0
.5

9
 

(0
.8

,0
.7

) 

0
.7

3
 

               

Ant. 
Chamber 

Depth (0
.6

,0
.6

) 

0
.6

1
 

(0
.1

,0
.0

) 

0
.0

8
 

(0
.5

,0
.5

) 

0
.5

0
 

                

CS 

(0
.8

,0
.4

) 

0
.6

1
 

(0
.0

,0
.0

) 

0
.0

0
 

                 

SFT 

(-
0

.1
,-

0
.2

) 

-0
.1

4
 

                  



36 

  

 

 

 

 

 

 

P
re

d
ic

ti
n

g
 C

h
a

n
g

e 
in

 M
ea

su
re

m
en

t 

(p
er

 u
n

it
 l

n
(a

g
e)

)…
 

fr
o

m
 ~

4
.5

 m
o
 a

ft
er

 s
tu

d
y

 s
ta

rt
 

to
 ~

1
2

 m
o

 a
ft

er
 s

tu
d
y

 s
ta

rt
  

(G
ro

u
p

 M
O

) 

CS 

(-
0
.4

) 

(0
.3

) 

(-
0
.2

) 

(-
0
.4

) 

(-
0
.4

) 

(-
0
.1

) 

(-
0
.4

) 

(-
0
.5

) 

(-
0
.3

) 

(-
0
.5

) 

(-
0
.2

) 

(0
.2

) 

(-
0
.4

) 

(-
0
.4

) 

(-
0
.3

) 

(0
.6

) 

(0
.7

) 

(0
.4

) 

(0
.4

) 

(0
.3

) 

 

(-
0
.2

) 

SFT 

(-
0

.1
) 

(0
.2

) 

(0
.0

) 

(-
0

.1
) 

(-
0

.2
) 

(0
.0

) 

(-
0

.2
) 

(-
0

.2
) 

(-
0

.1
) 

(-
0

.2
) 

(-
0

.2
) 

(0
.3

) 

(-
0

.1
) 

(-
0

.1
) 

(0
.0

) 

(-
0

.1
) 

(-
0

.2
) 

(-
0

.1
) 

(-
0

.1
) 

(-
0

.1
) 

 

(-
0

.2
) 

Body 

Weight (-
0

.1
) 

(0
.3

) 

(-
0

.4
) 

(-
0

.3
) 

(-
0

.3
) 

(-
0

.2
) 

(-
0

.4
) 

(-
0

.4
) 

(-
0

.3
) 

(-
0

.4
) 

(-
0

.2
) 

(0
.3

) 

(-
0

.1
) 

(-
0

.1
) 

(0
.1

) 

(0
.0

) 

(-
0

.2
) 

(0
.0

) 

(-
0

.2
) 

(-
0

.2
) 

 

(0
.3

) 

fr
o

m
 t

h
e 

st
ar

t 
o

f 
th

e 
st

u
d

y
 t

o
 

~
4

.5
 m

o
 l

at
er

 
(G

ro
u

p
 Y

M
, 

G
ro

u
p

 M
O

) 
C

o
m

b
in

e
d
 

CS 

(-
0

.8
,-

0
.2

) 

-0
.4

6
 

(0
.0

,0
.2

) 

0
.1

4
 

(-
0

.8
,-

0
.3

) 

-0
.5

1
 

(-
0
.5

,-
0

.1
) 

-0
.2

6
 

(-
0

.8
,-

0
.1

) 

*
 

(0
.4

,0
.1

) 

0
.2

2
 

(-
0

.8
,-

0
.1

) 

-0
.3

6
 

(-
0

.8
,0

.0
) 

*
 

(-
0

.8
,-

0
.2

) 

-0
.4

3
 

(-
0

.9
,-

0
.1

) 

*
 

(-
0

.8
,0

.0
) 

*
 

(0
.5

,0
.0

) 

0
.1

7
 

(-
0

.7
,-

0
.1

) 

-0
.3

3
 

(-
0

.8
,-

0
.1

) 

*
 

(-
0

.6
,-

0
.2

) 

-0
.3

6
 

(-
0

.6
,-

0
.7

) 

-0
.6

8
 

(-
0

.7
,-

0
.8

) 

-0
.7

4
 

(-
0

.6
,-

0
.5

) 

-0
.5

1
 

(-
0

.5
,-

0
.6

) 

-0
.5

7
 

(-
0

.4
,-

0
.3

) 

-0
.3

7
 

  
(-

0
.6

,0
.1

) 

-0
.1

9
 

SFT 

(-
0

.2
,-

0
.2

) 

-0
.2

3
 

(0
.2

,-
0

.5
) 

-0
.1

8
 

(0
.2

,-
0

.3
) 

-0
.0

9
 

(-
0

.4
,0

.0
) 

-0
.1

8
 

(-
0

.1
,-

0
.1

) 

-0
.1

1
 

(-
0

.2
,-

0
.3

) 

-0
.2

5
 

(-
0

.2
,-

0
.2

) 

-0
.1

9
 

(0
.0

,-
0

.2
) 

-0
.0

9
 

(-
0

.1
,-

0
.2

) 

-0
.1

8
 

(0
.0

,-
0

.1
) 

-0
.0

7
 

(0
.1

,0
.1

) 

0
.1

1
 

(-
0

.2
,-

0
.1

) 

-0
.1

3
 

(0
.0

,0
.0

) 

-0
.0

3
 

(0
.1

,0
.0

) 

0
.0

1
 

(-
0

.2
,-

0
.2

) 

-0
.1

8
 

(-
0

.1
,0

.1
) 

0
.0

5
 

(-
0

.1
,0

.2
) 

0
.1

1
 

(0
.1

,0
.1

) 

0
.0

7
 

(-
0

.2
,0

.3
) 

0
.0

8
 

(0
.0

,0
.3

) 

0
.1

6
 

  
(-

0
.3

,-
0

.2
) 

-0
.2

9
 

Body 

Weight 

(-
0

.9
,0

.0
) 

*
 

(0
.0

,0
.0

) 

0
.0

3
 

(-
0

.7
,-

0
.2

) 

-0
.3

7
 

(-
0

.5
,-

0
.3

) 

-0
.3

7
 

(-
0

.8
,-

0
.3

) 

-0
.5

0
 

(0
.2

,0
.2

) 

0
.1

8
 

(-
0

.8
,-

0
.2

) 

-0
.4

4
 

(-
0

.6
,-

0
.3

) 

-0
.4

4
 

(-
0

.7
,-

0
.3

) 

-0
.4

6
 

(-
0

.8
,-

0
.3

) 

-0
.4

9
 

(-
0

.6
,-

0
.4

) 

-0
.4

5
 

(0
.6

,0
.0

) 

0
.2

3
 

(-
0

.7
,-

0
.3

) 

-0
.4

9
 

(-
0

.7
,-

0
.3

) 

-0
.4

9
 

(-
0

.6
,-

0
.2

) 

-0
.3

8
 

(-
0

.8
,0

.4
) 

*
 

(-
0

.8
,0

.2
) 

*
 

(-
0

.6
,0

.7
) 

*
 

(-
0

.7
,-

0
.4

) 

-0
.5

3
 

(-
0

.6
,-

0
.5

) 

-0
.5

7
 

  
(-

0
.4

,0
.5

) 

*
 

   

B
o
d
y

 W
ei

g
h
t 

S
F

T
 

C
S

 

A
n

t.
 C

h
am

b
er

 D
ep

th
 

L
en

s 
T

h
ic

k
n

es
s 

V
it

. 
C

h
am

b
er

 D
ep

th
 

A
x

ia
l 

L
en

g
th

 

C
o

rn
ea

l 
rC

 

A
n

te
ri

o
r 

L
en

s 
rC

 

P
o

st
er

io
r 

L
en

s 
rC

 

R
ef

ra
ct

iv
e 

S
ta

te
 

R
et

in
al

 T
h

ic
k
n

es
s 

R
et

in
al

 E
x

te
n
t 

R
et

in
al

 S
u

rf
ac

e 
A

re
a 

R
et

in
al

 V
o
lu

m
e 

Δ
R

1
  

(i
n
n

er
 r

et
in

a)
 

Δ
R

1
,D

ar
k
  

(o
u
te

r 
re

ti
n

a)
 

Δ
R

1
,L

ig
h
t  

(o
u
te

r 
re

ti
n

a)
 

Δ
R

1
,D

ar
k
 -

 Δ
R

1
,L

ig
h
t (

o
u

te
r 

re
ti

n
a)

 

Δ
R

1
,D

ar
k
 /

 Δ
R

1
,L

ig
h
t 
(o

u
te

r 
re

ti
n
a)

   

ln
(A

g
e)

 

      1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

1
1
 

1
2
 

1
3
 

1
4
 

1
5
 

1
6
 

1
7
 

1
8
 

1
9
 

2
0
 

 

2
1
 

      Measured at the Start of the Study 

Table 4 (pt.1 on this page; pt.2 on following page): Correlations between starting values and subsequent rates of change 

over the several-month follow-up periods in Arm 1.  Part 1 shows the correlations between starting measurements and the rate 

of change in either the ~4.5 mo following the first MRI, or in the ~4.5 mo to ~12 mo following MRI. Part 2 shows the 

correlations between starting measurements and the rate of change measured from the start to the end of the study — a ~4.5 mo 

period in Group YM, but ~12 mo period in Group MO. To fit Part 2 on a single printed page, an index number (from 1 to 21) was 

assigned to each starting variable. These are listed together in Part 1. 

 

Correlation coefficients (Pearson’s r) are listed for each analysis as [(Group YM,Group MO) Combined]. Bold indicates 

significance (q<0.05; FDR calculated on the 600 tests in pts.1 and 2 of this Table): When r is listed for the combined analysis, 

group-specific r values are shown only for completeness. Where an * appears instead of an r value, an interaction between group 

and the correlation was suspected (P<0.05) and statistics were run on each group separately. Combined analysis was not possible 

when testing for lagging predictors of change (i.e. dependent variable = change from ~4.5 mo to ~12 mo after study start) since 

only Group MO was tested over such a time period. Therefore only one number is shown for those analyses (right half of Table 

4, pt.1). Note that Group YM’s r values appear in both pt.1 and pt.2 — since the “~4.5 mo later” time point was also the end of 

the study for those rats — but are combined with different Group MO data.  
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uptake at the end of the study (Table 2). Though starting values (Table 1) and changes in (Table 

3) Mn
2+

 uptake in light-adapted outer retina (ΔR1,Light) were reasonably well-correlated with the 

those found in darkness and inner retina, starting values were poor predictors of later changes in 

ΔR1,Light (Table 4,pt.2). A similar pattern was found for activity-dependent Mn
2+

 uptake, defined 

as the outer retinal dark-light difference (ΔR1,Dark - ΔR1,Light). However, outer retinal ΔR1,Light and 

activity-dependent Mn
2+

 uptake were poorly correlated in all cases. Relationships between Mn
2+

 

uptake and the ‘eye growth’ variables were sometimes present in Group YM, but generally 

absent in Group MO — suggesting that, overall, intraretinal Mn
2+

 uptake is independent of eye 

size and growth. 

The two measures of visual function (CS and SFT) showed distinct patterns, and were 

poorly correlated with one-another in all regression analyses. We first consider SFT: We found it 

was poorly correlated with all variables at the start of the study (Table 1). Rate of change in SFT 

was not significantly correlated with rate of change in any other variable (Table 3), or predicted 

by any starting variable (Table 4). We note that starting values for SFT were positively 

correlated with later measures of SFT (Table 2) — demonstrating that subject-to-subject 

differences in SFT were reasonably stable over time. 

On the other hand, CS showed several significant relationships with eye morphology and 

Mn
2+

 uptake: High rates of ‘eye growth’ were positively correlated with changes in CS over time 

(Table 3) — rats which showed the largest increases in e.g. retinal surface area experienced the 

smallest CS declines. Measuring from the start to the end of the study, the rate of CS decline was 

significantly negatively correlated with starting values of most ‘eye growth’ variables (Table 4, 

pt.2) such that animals which started with the larger-than-average retinal surface areas (for 

instance) experienced the largest CS declines. A similarly strong relationship was found for 
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initial values of CS. Since initial CS was poorly correlated with most of the ‘eye growth’ 

variables at the start of the study (Table 1), we considered the possibility that they were 

independent predictors of CS decline: After statistically controlling for the influence of any one 

of the eye growth variables (e.g. axial length), initial CS remained a significant predictor of later 

declines (P≤1.1e-3), but the remaining eye growth variables typically were not (P>0.05, except 

for posterior lens rC, which yielded 0.05>P>0.025 when controlling for either retinal volume or 

body weight). Testing in the reverse order — statistically controlling for the influence of initial 

CS, then evaluating whether any of the eye growth variables remained significant predictors of 

CS decline — yielded uniformly positive results (all P≤0.021). From these post-hoc multiple 

regression analyses, we conclude that initial CS and initial retinal surface area are the strongest 

pair of predictors for rate of CS decline from the start to the end of the study, accounting for 

~60% of the variance in rate of CS decline. In that model (F[2,25]=18.5, P=1.19e-5, multiple 

R
2
=0.596), initial CS uniquely accounts for ~28% of the variance in rate of CS decline (squared 

semipartial correlation (‘sr
2
’) = 0.281; P=3.20e-4) while initial retinal surface area uniquely 

accounts for another ~15% of the variance in rate of CS decline (sr
2
=0.147, P=5.80e-3). The 

remaining (60% - 28% - 15% =) ~17% of the variance is accounted for by either variable (e.g. 

when only initial retinal surface area is used to predict rate of CS decline, P=1.87e-3, 

R
2
=0.316≈(15%+17%)). In short, those animals which showed the largest CS declines were 

those which began with larger-than-average retinal surface area (and other ‘eye growth’ 

measures described above), or better-than-average CS, and declined most with a combination 

thereof. 

The above correlations with rate of CS decline were generally weaker when evaluating 

declines over a shorter time period in Group MO (Table 4, pt.1). In those analyses, Group MO 
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declines in CS were calculated between the starting (~7 mo) and intermediate (~11.5 mo) time 

points, instead of the yearlong span between the start and end of the study. Of note, those 

analyses revealed that high retinal Mn
2+

 uptake was the strongest predictor of CS declines in the 

~4.5 mo after MRI scans. The relationship between Mn
2+

 uptake and future CS declines was not 

evident when considering the trends over the yearlong study of Group MO (Table 4, pt.2) for the 

following reason: Those rats which declined rapidly from ages ~7 to ~11.5 mo tended to decline 

least from ~11.5 to ~19 mo. Mn
2+

 uptake in the inner retina and dark-adapted outer retina were 

thereby significant predictors of preserved CS from ~11.5 to ~19 mo (Table 4, pt.1), despite 

being significant predictors of declining CS in the ~4.5 mo following MRI scans. This complex 

relationship between CS and Mn
2+

 uptake, as well as the broader correlations with ‘eye growth’ 

variables are illustrated in Figure 6. 

Considering both Group YM and Group MO together, several starting measurements 

were significant predictors of CS decline in the ~4.5 mo following MRI (Table 4, pt.1): body 

weight, anterior lens rC, initial CS, as well as Mn
2+

 uptake in the inner retina, dark-adapted outer 

retina, light-adapted outer retina, and the dark-light difference in outer retinal Mn
2+

 uptake. Since 

several of these variables were significantly correlated (Table 1) we used multiple regression to 

gauge the importance of each: The strongest predictor of CS decline was Mn
2+

 uptake in the 

dark-adapted outer retina (P=1.24e-6; R
2
=0.55). After controlling for this relationship, only 

initial CS remained a significant predictor of CS decline (P=3.51e-4; for the other five variables, 

P>0.05). The model with those two independent variables accounted for ~71% of the variance in 

CS declines (i.e., multiple R
2
=0.71), which was statistically similar (P=0.38) to a model 

including all seven independent variables (multiple R
2
=0.77). The failure of the five other 

variables (e.g. body weight) to improve predictions of CS  decline  in  those  models  argues  that 
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Figure 6: Visualization of regression results linking initial morphological and physiological measurements to subsequent 

CS declines. In these plots, groups are split based on whether an animal’s first measurement (at age ~2.5 mo for Group YM 

(circles); at age ~7 mo for Group MO (squares)) was higher or lower than the median value for that group at that time. Note that 

these splits are intended for visualization purposes only: Because distributions were roughly normal in all cases, these high/low 

categories were not used in formal statistical comparisons, which were performed with linear regression (see Tables 1-4). Only 

animals which were studied longitudinally (i.e., vision tested ~4.5 mo after the first measurement) were used to calculate 

medians, or the means ±SEM plotted for each sub-group (note that, for clarity, the lower right panel omits error bars). In terms of 

the patterns shown here, retinal surface area is representative of most other morphological measures: Its starting values and rates 

of change were correlated with starting values and rates of change for most other morphological measures (Tables 1,3,4). The 

slopes of connecting lines are of critical importance in these plots, representing rates of change described in Tables 3 and 4. Top 

Left: Rats starting with relatively (for one’s age) low surface area experience significantly greater growth over the course of the 

study (steeper slopes on dashed than solid lines; Table 4,pt.2) but still end our studies with lower surface area (Table 2). Top 

Center: There are no consistent relationships between starting surface area and starting values of, or rates of change in, retinal 

Mn2+ uptake (Tables 1 and 4). Top Right: Measuring from the first to the final time point for each group, rats starting with higher 

surface areas experience significantly greater CS declines (steeper slopes on solid than dotted lines; Table 4). Center: Rats 

starting with relatively low Mn2+ uptake area experience significantly greater increases in Mn2+ uptake over the course of the 

study (steeper slopes on red than blue; Table 4,pt.2). Levels of Mn2+ uptake converge so much over time that starting and ending 

values are not correlated (Table 2). Center Right: In the ~4.5 mo after MRI scans, rats starting with high Mn2+ uptake showed 

significantly steeper CS declines (steeper slopes for blue than red; Table 4,pt.1), but from ~4.5 to ~12 mo after MRI scans, the 

opposite pattern was seen in Group MO (squares). Bottom Right: The patterns at Top Right and Center Right are present when 

splitting data by both Mn2+ uptake and surface area, arguing that they are relatively independent processes. In Group MO 

(squares), ultimate (over 1 year) CS declines are predictable by starting surface area (solid lines steeper than dashed), but the 

tendency to decline immediately (within ~4.5 mo of scan; blue lines) versus retain function until a later eventual decline (from 

~4.5 mo to ~12 mo; red lines) is predicted by starting Mn2+ uptake, regardless of starting surface area. 
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their correlations with CS decline (Table 4, pt.1) are a byproduct of their significant relationships 

with dark-adapted outer retinal Mn
2+

 uptake (Table 1). We note that the relationship between 

initial CS and later CS declines cannot account for the relationship between Mn
2+

 uptake and CS 

declines: After statistically controlling for the relationship with initial CS, each of the Mn
2+

 

uptake variables remains a significant (P<1.36e-3) predictor of CS declines — with dark-adapted 

outer retinal Mn
2+

 uptake remaining the strongest of those four variables (P=2.13e-7). In short, 

Mn
2+

 uptake and initial CS are both strong and unique predictors of CS declines in the 

subsequent ~4.5 mo. This relationship is detailed in Figure 7. 

Additional regression analyses were run to fully document the relationships between 

Mn
2+

 uptake and CS decline in the ~4.5 mo after MRI scans: As noted above, inner retinal Mn
2+

 

uptake was not significant after controlling for the relationship with dark outer retinal Mn
2+

 

uptake (P=0.88). However, the reverse was not true: Dark-adapted outer retinal Mn
2+

 uptake (as 

well as the dark-light difference) remained significant predictors of CS decline (P=2.81e-2 (and 

3.58e-2, respectively)) even after controlling for the relationship to inner retina. These findings 

argue that dark-adapted outer retinal Mn
2+

 uptake is a superior predictor of CS declines, and we 

therefore tried to differentiate between the activity-dependent (i.e. dark-light difference) and 

other (light-adapted Mn
2+

 uptake) components of Mn
2+

 uptake in the dark-adapted outer retina. 

However, regression analyses including both light-adapted Mn
2+

 uptake and the dark-light 

difference showed that each variable was a significant and unique predictor of CS decline, either 

when statistically controlling for the relationship with initial CS (both P≤1.72e-4) or not (both 

P≤6.64e-4). 
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also show R2 values and best-fit lines (solid lines indicate P<0.05) for each group separately. B): Higher initial CS values 

predict greater rates of CS decline in the following ~4.5 mo. Layout of axes is similar to that of A. C): Even after statistically 

controlling for the effect of initial CS — y-axis values in this plot are the residuals from the combined (black line) best-fit in B 

— greater Mn2+ uptake in the dark-adapted outer retina strongly predicts greater rates of CS declines in the following ~4.5 mo. 

D): Even after statistically controlling for the effect of greater Mn2+ uptake in the dark-adapted outer retina, initial CS strongly 

predicts greater rates of CS decline in the following ~4.5 mo. E): Venn diagram showing the proportion of variance in rate of 

CS decline that is uniquely explained by dark-adapted outer retinal Mn2+ uptake (semipartial correlation (‘sr2’) = 45%) or 

initial CS (‘sr2’ = 16%), of the total ~71% of variance which can be explained by some combination of those two variables. 

Note that R2 values in A through D can be derived from this diagram, for instance: The unique 45% explained by Mn2+ uptake 

plus 10% shared with initial CS combine to yield the R2 of 0.55 in A. Controlling for the effects of Mn2+ uptake to make plot D 

is visualized by removing the 0.45 and 0.10 regions from the diagram, leaving only the variance that could not be explained by 

Mn2+ uptake. Of that remaining (0.16+0.29=)45%, (0.16/(0.16+0.29)=)36% is explained by initial CS, as reflected by R2=0.36 

in D. 

 

Figure 7: Prediction of 

CS declines in the ~4.5 

mo after the initial 

MRI by both initial 

level of dark-adapted 

outer retinal Mn2+ 

uptake and initial CS. 
Initial CS and Mn2+ 

uptake measurements 

were made at age ~2.5 

mo in Group YM (red; 

•) and age ~7 mo in 

Group MO (blue; +). A): 

Greater Mn2+ uptake in 

the dark-adapted outer 

retina — when 

photoreceptors are fully 

depolarized and ion flux 

is greatest — predicts 

greater rates of CS 

decline in the following 

~4.5 mo. As with Tables 

1-4, the combined 

analysis (black line and 

scales, p-value, R2) 

showing this effect is 

performed after 

standardizing values 

from each group by 

converting them into z-

scores. The red and blue 

axes show the pre-

standardized values for 

Mn2+ uptake (ΔR1; x-

axis) and rate of change 

in CS (change in inverse 

Michelson contrast 

divided by change in 

log-transformed age). 

Note that the ~4.5 mo 

time span covered here 

is ~ 1 natural log-unit of 

age for Group YM, but 

only ~0.5 for Group 

MO. Although formal 

statistical testing was 

restricted to the 

combined analysis, we 

also 
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CHAPTER 3 

ARM 2: EFFECTS OF L-VGCC BLOCKADE ON RETINAL Mn
2+

 UPTAKE IN YOUNG 

ADULTS 

 

3.1 Rationale 

Arm 2 experiments were carried out to better-understand the role of L-VGCCs in Mn
2+

 

uptake, which seems to be an important predictor of vision decline, based on Arm 1 results. We 

measured retinal Mn
2+

 uptake in young adult rat retinas with and without exposure to the 

dihydropyridine L-VGCC blocker nifedipine. To test the hypothesis that L-VGCC blockade 

inhibits the activity-dependent component of retinal Mn
2+

 uptake, we used an eye patch to 

expose one eye to normal lab lighting while the other remained dark-adapted. The well-

documented (e.g., Berkowitz et al., 2009; Berkowitz et al., 2006; Bissig & Berkowitz, 2011) 

dark-light difference in outer retinal Mn
2+

 uptake is due to the full depolarization of 

photoreceptors in darkness, but relative hyperpolarization in light (for review, see Yau, 1994). In 

addition to verifying this effect in vehicle-injected controls, we tested whether systemic 

(intraperitoneal) nifedipine attenuated outer retinal activity- (i.e. light-) dependent Mn
2+

 uptake. 

In a second experiment, nifedipine eye drops were administered to only one eye of binocularly 

dark-adapted rats. Mn
2+

 uptake was compared in vehicle-treated versus nifedipine-treated eyes. 

Positive results from that experiment would indicate that the effect of L-VGCC blockade on 

retinal Mn
2+

 uptake is not an artifact of systemic effects. 

3.2 Methods 

All aspects of these experiments — for instance, the rat strain, eye patch procedure, Mn
2+

 

doses, MRI equipment, procedures, and image processing, including the use of averaged baseline 

(no Mn
2+

) data collected for Arm 1 to calculate ΔR1s — are identical to those in Arm 1 unless 

otherwise noted. 
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3.2.1 Intraperitonal Nifedipine: The influence of nifedipine on retinal Mn
2+

 influx was 

tested in both light- and dark-adapted eyes using two groups of young-adult rats. After a patch 

was applied to one eye of each rat (the right eye for four members of each group), animals were 

dark-adapted overnight. The following day, rats were monocularly exposed to normal lab 

lighting (~300 lx). Immediately after beginning light exposure, drug-treated rats (n=8; 264(20) g; 

aged 63(3) d) were injected with nifedipine (30 mg/kg body weight) dissolved in DMSO (20 mg 

nifedipine / ml of undiluted dimethyl sulfoxide), and vehicle-control rats (n=6; 259(57) g; aged 

63(9) d) were injected with DMSO only (1.5 ml/kg body weight). Each rat was injected with 

Mn
2+

 31(2) min later, then maintained in normal lab lighting until immediately before MRI 

scanning, when rats were anesthetized with k/x solution (8.3(2.6) and 8.3(2.3) ml/kg, 

respectively, in drug-injected and control rats) immediately followed by removal of the eye patch 

and scanning of the left, then right, eyes (respectively 4.3(0.2) and 5.5(0.2) hr after Mn
2+

 

injection in drug-injected and 4.4(0.3) and 5.6(0.3) hr in controls). Some data collected for this 

experiment has been published previously (Berkowitz et al., 2011). 

3.2.2 Topical Nifedipine: The influence of nifedipine eye drops on retinal Mn
2+

 influx 

was tested in five dark-adapted young adults (330(18) g; aged 80(2) d). Undiluted PEG400 

(polyethylene glycol with an average molecular weight of 400 daltons; Sigma-Aldrich; St. Louis, 

MO) was used as a vehicle for the extremely hydrophobic nifedipine. PEG400 is nonirritating 

when applied to rabbit eyes and in alternative assays (ECETOC, 1998; Adriaens et al., 2005) and 

otherwise has low potential for toxicity (Smyth et al., 1950). Nifedipine (Sigma-Aldrich; St. 

Louis, MO) was expected to be similarly nonirritating (Gonzalez et al., 1993). Although 

temporary reductions in intraocular pressure have been reported following topical nifedipine 

administration in rabbits, they are similar to reductions measured in an untreated contralateral 
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eye, or in animals exposed only to vehicle (Segarra et al., 1993; Payne et al., 1990). Nifedipine 

was dissolved in warm (40-45°C) PEG400 to produce high-concentration (0.211 M) eye drops, 

which were aliquoted and stored at -80°C until use. Along with a sample of identically-treated 

vehicle (PEG400 only), aliquots were thawed at room temperature before application to the eyes. 

All additional procedures took place under dim red light or darkness. After anesthetizing the rat 

with diethyl ether, six 50 μl drops of nifedipine in PEG400 were applied to one eye (the right in 

3 of 5 subjects; ~1 min between each drop), and six 50 μl drops of PEG400 only were applied to 

the contralateral eye. Rats were injected with Mn
2+

 38(2) minutes after nifedipine exposure 

(ensuring full recovery from anesthesia). Rats were scanned ~4hr later (left and right eye 

respectively at 4.0(0.3) and 5.3(0.5) hr post-Mn
2+

) immediately after being anesthetized with 

urethane (3.7(0.3) ml/kg of a 36%w/v solution in 0.9% saline; Sigma-Aldrich, St. Louis, MO). 

Only dark-adapted retinas were studied in this experiment; eye patches were never applied to 

these rats. 

3.2.3 Statistics: Multiple in vitro (Carlson et al., 1994; Drapeau & Nachshen; 1984) and 

in vivo (Cross et al., 2007; Berkowitz et al., 2007b) studies have demonstrated that L-VGCC 

blockade inhibits neuronal Mn
2+

 uptake. In addition, several previous studies, both in vivo with 

MEMRI (Berkowitz et al., 2006; Berkowitz et al., 2009; Bissig & Berkowitz, 2011; Tofts et al., 

2010) and ex vivo (e.g. Morjaria & Voaden, 1979; see Yau 1994 for review), have demonstrated 

that the outer retina is more active and ion permeable in dark than light. For these reasons, we 

initially analyzed Mn
2+

 uptake (ΔR1) with one-tailed t-tests (patched > unpatched; control > 

nifedipine; α = 0.05). ANOVAs and meta-analytic methods were used to aid in the interpretation, 

as detailed alongside exact p-values in the Results section. 
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3.3 Results 

3.3.1 Intraperitonal Nifedipine: For the inner retina, paired t-tests showed that dark and 

light conditions were similar in vehicle-control rats (P=0.832), and in nifedipine-treated rats 

(P=0.569). This is consistent with Arm 1 results, showing that dark and light are similar in inner 

retina (Fig.4). Mn
2+

 uptake non-significantly trended lower in nifedipine-injected than in vehicle-

control rats, for both light-exposed and dark-adapted (patched) inner retina (P=0.128 and 0.0573, 

respectively). When assessed with a two-way (light vs. dark × drug vs. vehicle) mixed ANOVA, 

the drug effect was suggestive (see below; F[1,12]=3.15; P=0.101) but none of the results reached 

significance (F[1,12]<0.59; P>0.45 for both the light effect and interaction). These results are 

summarized in Figure 8. 

For the outer retina, vehicle-control rats showed more Mn
2+

 uptake in dark than light 

(P=0.0181; Fig.8), but nifedipine-treated animals did not (P=0.571). Other comparisons 

suggested this was due to inhibition of activity-dependent Mn
2+

 uptake by nifedipine: Comparing 

nifedipine-injected to vehicle-control rats, outer retinal Mn
2+

 uptake was inhibited in dark-

adapted (patched) (P=0.0418; Fig.8) but not light-exposed eyes (P=0.524). This activity- (i.e., 

light-)dependent drug effect was further suggested by significant drug vs. vehicle differences in 

ratio (ΔR1,dark/ΔR1,light) and difference (ΔR1,dark-ΔR1,light) scores (P=0.0430 and 0.0257, 

respectively, two-tailed unpaired t-tests; Fig.8). (The latter point is similarly described by a 

significant (light vs. dark × drug vs. vehicle) interaction in a mixed ANOVA (F[1,12]=6.48; 

P=0.0257).) 

3.3.2 Nifedipine Eye Drops: Paired t-tests (nifedipine- vs. vehicle-treated eye) failed to 

show an effect of nifedipine on Mn
2+

 uptake in the inner retina (P=0.379) but revealed a 

significant effect at the outer retina (P=0.0312).  In these dark-adapted outer retinas, Mn
2+

 uptake  
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in nifedipine-treated eyes was (mean±SEM) 82±6% 

that in vehicle-control eyes (calculated as 

ΔR1,nifedipine/ΔR1,vehicle; P=0.0221 for difference from 

100%). These results are shown in Figure 9. 

3.3.3 A Note on the Inner Retina: Somewhat 

surprisingly, neither experiment found a significant 

effect of nifedipine on inner retinal Mn
2+

 uptake. 

It’s plausible that the relatively small sample sizes 

used in each experiment contributed to these 

negative findings. We therefore reexamined the 

data: Taking advantage of the fact that both 

experiments test the same general hypothesis, their 

results can be meta-analytically combined. This 

produces an outcome consistent with expectations: 

Using the Z-transform method, weighted by degrees 

of freedom (‘df’) (Whitlock, 2005), the ANOVA 

main effect for drug (P=0.101;df=12) and the test 

comparing eye drops (P=0.379;df=4) combine to 

produce a significant (P=0.0493) demonstration that 

inner retinal Mn
2+

 uptake is inhibited by nifedipine. 

Reassuringly, assessment with a different channel 

blocker (see Arm 3) supports this finding. 

Figure 8: Effects of intraperitoneal nifedipine on 

retinal Mn2+ uptake. Top: Scatter plots show Mn2+ 

uptake in the inner and outer retina from both eyes of 

control (⁬) and nifedipine-treated (+) rats. Values from 

the dark-adapted (‘dark’; patched) eye of each subject 

are connected by gray lines to the values from the 

contralateral eye, which was exposed to normal lab 

lighting (‘light’; unpatched) during the period of Mn2+ 

accumulation. As in previous figures, mean±SEM are 

indicated by the thick and thin horizontal lines overlaid 

on each scatter plot. Consistent with expectations (and 

Arm 1 studies, see Fig.4) inner retinal Mn2+ uptake was 

similar in light and darkness and — in controls only — 

outer retinal Mn2+ uptake was higher in dark than light 

(P<0.05; open *). Outer retinal Mn2+ uptake was 

inhibited by nifedipine, but only in darkness (P<0.05; 

closed *) when photoreceptors are fully depolarized, 

thereby allowing ion flux through L-VGCCs (Yau, 

1994). Bottom: The difference in Mn2+ uptake in dark 

versus light is shown. As indicated in Top, these dark-

light differences are greater than zero (horizontal grey 

line) for only the control outer retina (P<0.05; open *). 

The dark-light difference is significantly higher in 

control than nifedipine-treated rats (P<0.05; closed *). 

The ability of nifedipine to suppress activity-dependent 

outer retinal Mn2+ influx strongly argues that (at least) 

this portion of the total Mn2+ uptake occurs through L-

VGCCs. 
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Figure 9: Effects of topical nifedipine on 

dark-adapted retinal Mn2+ uptake. Top: 

Scatter plots show Mn2+ uptake in the inner and 

outer retina from the nifedipine-treated eye of 

each rat connected by gray lines to the partner, 

vehicle-treated, control eye. As in previous 

figures, mean±SEM are indicated by the thick 

and thin horizontal lines overlaid on each scatter 

plot. Outer retinal Mn2+ uptake is significantly 

inhibited by nifedipine exposure (* P<0.05). 

Bottom: Differences between control and 

nifedipine-treated eyes are plotted, again 

showing that dark-adapted outer retinal Mn2+ 

uptake is significantly inhibited by topical 

nifedipine exposure (* P<0.05 for difference 

below zero (horizontal grey line)). 
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CHAPTER 4 

ARM 3: TESTING FOR ISOFORM-SPECIFIC CHANGES IN L-VGCC EXPRESSION 

 

4.1 Rationale 

Results from Arms 1 and 2 demonstrated that retinal Mn
2+

 uptake — including the 

activity-dependent dark-light difference — increased with age, and was inhibited by L-VGCC 

blockade. Based on these findings, we hypothesized that the retina was experiencing an age-

related increase in L-VGCC expression. By analogy to the aging rat hippocampus — where 

Veng and Browning (2002) demonstrated an age-related increase in expression of the ~180 kDa 

isofrom of α1D, but not of the larger (>200 kDa) α1D isoform or α1C levels — an isoform-specific 

change in expression was expected.  

Based on ex vivo studies, the concentration of L-VGCC antagonist needed to achieve 

half-maximum inhibition of current through α1D channels is roughly an order of magnitude 

higher than for α1C, both with dihydropyridine (Xu & Lipscombe, 2001; Koschak et al., 2001) 

and non-dihydropyridine antagonists including diltiazem and verapamil (Tarabova et al., 2007). 

If retinal α1D expression increases with age, pharmacological inhibition of Mn
2+

 uptake through 

L-type channels should become more difficult with age — at least at lower drug doses. To our 

knowledge, the differential sensitivity of the α1C and α1D isoforms has not been demonstrated 

with nifedipine (only related drugs in the same class). For this reason, we use the non-

dihydropyridine L-VGCC blocker D-cis-diltiazem (i.e., the (+)-cis isomer) in this arm of the 

study. We have previously demonstrated progressive inhibition of retinal Mn
2+

 uptake following 

intraperitoneal doses (5 and 30 mg/kg) of this drug in young adult rats (Berkowitz et al., 2007a). 

Western blots were also performed to test for changes in L-VGCC expression. 
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4.2 Methods 

4.2.1 Intraperitoneal Diltiazem Dose-Response: All aspects of this experiment — for 

instance, rat strain, Mn
2+

 doses, MRI equipment, procedures, and image processing, including 

the use of averaged baseline (no Mn
2+

) data collected for Arm 1 to calculate ΔR1s — are 

identical to those used in Arm 1 unless otherwise noted. Rats in this experiment were never fit 

with an eye patch; only dark-adapted eyes were studied. 

Young adult (n=10, aged 72(2) d, weighing 287(26) g) and mid-adult (n=12, 202(20) d, 

465(59) g) rats were dark-adapted overnight. The following day, they were injected with 10, 30, 

50, 100, or 125 mg diltiazem (Sigma-Aldrich; St. Louis, MO; intraperitoneal injection of 1.4 ml 

of diltiazem mixed in 0.9% saline / kg body weight), and maintained in darkness until MRI 

scanning was complete. Rats were injected with Mn
2+

 31(2) min after diltiazem injection. 

4.0(0.3) hr after Mn
2+

 injection, the left eye of these dark-adapted rats was scanned under 

urethane anesthesia (see above; 3.6(0.8) ml/kg). 

4.2.2 Western Blots: Retinal expression of two isoforms of the pore-forming subunit of 

L-VGCCs — α1C and α1D (i.e.Cav1.2 and Cav1.3, respectively) — was studied in young adult (n 

= 6; all age 59 d, weighing 267(9) g) and mid-adult rats (n = 6; 192 d; 532(53) g). Immediately 

after death via urethane overdose, the left retina was isolated from each rat and stored at -80°C. 

Later, samples were sonicated on ice in a nonionic denaturing urea buffer (6 M urea; 62.5 mM 

Tris-HCl; pH 6.8; 10% glycerol; 2% sodium dodecyl sulfate; 0.00125% bromophenol blue; and 

freshly-added 5% β-mercaptoethanol; Shah et al., 1995) and the protein content of each sample 

was determined by a dot blot protein assay (Henkel and Bieger, 1994) calibrated against bovine 

serum albumin (BSA). Aliquots of each sample were diluted with the urea buffer to 3µg protein / 

µl in preparation for SDS-PAGE. Samples were loaded (20 µl per lane) onto 6% polyacrylamide 
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separating mini-gels alongside size standards (Bio-Rad Dual Color Standards #161-0374). Bio-

Rad mini-gel kits were used to separate proteins and transfer to membranes (#IPFL00010, 

Millipore). Membranes were blocked at room temperature in TST (10 mM Tris base and 145 

mM NaCl in dH2O, pH 8.0, mixed with Tween 20 (0.05%v/v)) containing 10%w/v non-fat dry 

milk and 3%w/v BSA, then incubated overnight at 4°C with primary antibodies — mouse anti-β 

actin (clone AC-15, #A5441, lot 030M4788, 1:10,000 dilution, Sigma-Aldrich) and either mouse 

anti-α1C (clone L57/46, #73-053, lot 437-4VA-62, 1:4 dilution) or mouse anti-α1D (clone N38/8, 

#73-080, lot 437-4VA-10, 1:4 dilution) — mixed into TST containing 5%w/v nonfat dry milk 

and 1.5%w/v BSA. The monoclonal anti-α1C and anti-α1D antibodies were obtained from the UC 

Davis/NIH NeuroMab Facility. The following day, blots were thoroughly washed in TST, then 

incubated for 1.5 hr at room temperature with the secondary antibody, horseradish peroxidase-

linked sheep-anti-mouse IgG (#NA931V, lot 399402, 1:5000 dilution, GE Healthcare), mixed 

into TST containing 5%w/v non-fat dry milk and 1.5%w/v BSA. Blots were visualized using 

chemiluminescent horseradish peroxidase substrate (#WBKLS0500, Millipore) and imaged on a 

FluorChem E system (ProteinSimple, Santa Clara, California).  

 Blot chemiluminescence intensities were quantified in ImageJ. Intensities were 

normalized to a non-specific band common to both anti-α1C- and anti-α1D-exposed blots at ~60 

kDa. Although we originally planned to use β-actin for normalization, we found that apparent β-

actin expression was in gross excess of L-VGCC levels and was therefore not a reliable control 

for protein loading (Dittmer and Dittmer, 2006). For completeness, however, we note that no age 

differences were found for the apparent β-actin levels normalized to the non-specific band at ~60 

kDa (P>0.39 with two-tailed t-tests; not shown). 
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4.2.3 Statistics: To test for age effects on diltiazem’s inhibition of Mn
2+

 uptake, inner 

retinal (16-28%thick) and outer retinal (48-68%thick) ΔR1 values were compared using multiple 

regression to test for effects of age (young vs. mid-adult), dose, and a dose × age interaction. 

Lower ΔR1s were expected in younger rats (given Arm 1 results), and in rats given higher doses 

of diltiazem. A significant interaction would indicate that the relationship between diltiazem 

dose and Mn
2+

 uptake is modulated by age. 

In an alternative statistical approach, we compared ΔR1s of rats injected with relatively 

low (10 to 30 mg/kg) and high (≥100 mg/kg) doses of diltiazem to age-matched, dark-adapted 

(patched), control ΔR1s from Arm 1: Young diltiazem-injected rats were compared to the young-

adult data from Group YM, while the mid-adult diltiazem-injected rats were compared to the 

combined mid-adult data from Groups YM and MO. These comparisons allowed us to test 

whether low and/or high doses of diltiazem were effective, and to estimate %inhibition of Mn
2+

 

uptake at each age. These comparisons of Mn
2+

 uptake were one-tailed (control > low-dose; 

control > high-dose; low-dose > high-dose) given the large body of previous work showing 

inhibition of Mn
2+

 uptake by L-VGCC blockers (e.g., Carlson et al., 1994; Drapeau & Nachshen; 

1984; Cross et al., 2007; Berkowitz et al., 2007b). Due to the disparate subject numbers and 

variances in Arm 1 control versus diltiazem-treated rats (ratios ≥3.5), we used Welch’s t-tests for 

these comparisons. 

For Western blots, the direction of findings (higher expression in older rats) for the ~180 

kDa isofrom of α1D is predicted both by two previous studies in the rat hippocampus (Veng & 

Browning, 2002; Veng et al., 2003), and significant differences in diltiazem dose-response data 

(see Results). We therefore use one-tailed t-tests (mid > young adults, α = 0.05) to test for age 

differences in expression (normalized chemiluminescence) of that protein. The other bands (α1C, 
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and α1D banding at >200 kDa) are similarly tested, but serve as negative controls: Only the ~180 

kDa α1D isofrom is expected to change with age (Veng & Browning, 2002; Veng et al., 2003). 

4.3 Results 

4.3.1 Intraperitoneal Diltiazem Dose-Response: Multiple regression analysis of the inner 

retina showed that Mn
2+

 uptake (ΔR1) was generally lower in young than mid-adult rats 

(P=7.32e-5) and lower with higher doses of diltiazem (P=3.19e-3). Consistent with expectations, 

we also found a dose × age interaction (P=1.30e-2). Follow-up testing for each age group 

showed that mid-adult ΔR1 steadily declined with higher diltiazem doses (P=7.54e-4; r=-0.83; 

mean±SEM change in ΔR1 per 100mg/kg diltiazem (slope) of -0.45±0.09) but young adult ΔR1 

was similar throughout the 10-125 mg/kg range of doses (P>0.6; r=-0.14; slope of -0.05±0.11). 

Comparison to Arm 1 data — i.e., to age-matched dark-adapted control data — demonstrated 

that the highest (≥100 mg/kg) doses of diltiazem significantly inhibited Mn
2+

 uptake in young 

adults (P=1.62e-2) by ~40±11% (estimated as [1 – (ΔR1,diltiazem / ΔR1,control)] and considering only 

the standard error of ΔR1,diltiazem). A similar effect was noted in mid-adult rats (P=7.36e-4; 

~42±8%). The lowest (10 to 30 mg/kg) doses inhibited Mn
2+

 uptake in young rats (P=2.74e-2; 

~45±14%), but had no effect in older rats (P>0.9). These results are summarized in Figure 10. 

Multiple regression analysis of the outer retina showed that Mn
2+

 uptake was generally 

lower in young than mid-adult rats (P=1.60e-4) and lower with higher doses of diltiazem 

(P=0.0212). The dose × age interaction did not reach significance (P=0.0951). Follow-up testing 

for each age group showed that mid-adult ΔR1 steadily declined with higher diltiazem doses 

(P=0.0143; r=-0.68; slope of -0.42±0.14) but young adult ΔR1 was similar throughout the 10-125 

mg/kg range of doses (P>0.5; r=-0.20; slope of -0.08±0.13). Comparison to Arm 1 data 

demonstrated  that  the  highest  (≥100  mg/kg)  doses  of  diltiazem  significantly  inhibited Mn
2+ 
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Figure 10: Diltiazem inhibition of retinal Mn2+ uptake in young and mid-adult 

rats. Data from both the inner retina (Left) and outer retina (Right) are shown. Top: 

Scatter plots, with best-fit lines (±95%C.I.) for young and mid-adults in the 

background, showing that progressively higher doses of diltiazem are correlated with 

progressively less Mn2+ uptake (i.e., greater inhibition; P<0.05) in mid-adults, but 

have little effect in young adults (P>0.05). Note that two pairs of mid-adult data 

points for the outer retina overlap: one pair at 100 mg/kg (ΔR1s of 0.471 and 0.475) 

and one at 125 mg/kg (ΔR1s of 0.551 and 0.556). Bottom: Retinal Mn2+ uptake in 

diltiazem-injected rats is compared to uptake in age-matched rats from Arm 1, which 

were never exposed to diltiazem. The right y-axis for each plot shows %inhibition, 

calculated as [1 – (ΔR1,diltiazem / ΔR1,control)], such that Arm 1 data (which serves as a 

control for diltiazem injection) is set to zero. In young adults, diltiazem significantly 

inhibits Mn2+ uptake (* P<0.05) at both low and high doses: Beyond the ~40% 

inhibition seen with the low dose, no additional inhibition is seen with high doses 

(‘n.s.’ indicates not significant; P>0.05). In mid-adults, low doses of diltiazem 

showed no effect on Mn2+ uptake, but high doses yielded significant (* P<0.05; 

~40%) inhibition of Mn2+ uptake. Taken together, these data suggest that there is an 

age-related decrease in sensitivity to L-VGCC blockers, though with high-enough 

doses, maximum inhibition is still possible. This pattern is consistent with an age-

related increase in the α1D isoform of L-VGCCs, which is roughly an order of 

magnitude less-sensitive to diltiazem than the α1C isoform (Tarabova et al., 2007).  
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uptake in young adults (P=4.72e-3) by ~44±9%. A similar effect was noted in mid-adult rats 

(P=1.07e-4; ~40±6%).  The lowest  (10  to  30  mg/kg) doses inhibited Mn
2+

 uptake in young rats 

(P=5.53e-3; ~46±9%), but had no effect in older rats (P>0.4; Fig.10). 

4.3.2 Western Blots: Expression of α1D was confirmed by the presence of specific 

banding (i.e., absent in partner anti-α1C gels) at high molecular weight (~180 kDa and >240 

kDa). The ~180 kDa variant was expressed more in mid-adult than young adult rats (P=0.0434), 

but this was not true of the >240 kDa variant (P>0.4) — consistent with aging patterns in the rat 

hippocampus (Veng & Browning, 2002; Veng et al., 2003). Aside from the non-specific band at 

~60 kDa that was used for normalization, there was also modest α1D labeling near ~120 kDa and 

between ~70 and ~90 kDa (not shown). For completeness, measurements were made from these 

bands. They showed no age differences when normalized to the ~60 kDa band, and normalizing 

α1D bands to either of these (instead of the ~60 kDa band) had no effect on statistical conclusions 

for the >240 kDa (no effect of age) and ~180 kDa (mid>young) bands (not shown). Results are 

summarized in Figure 11. 

 Expression of α1C was confirmed by the presence of specific banding at high molecular 

weight (~240 kDa). Consistent with expectations, similar α1C expression was measured in young 

and mid-adults (P>0.2). However, we note that labeling of this band was fairly faint, plausibly 

making any age differences difficult to detect. Other qualitative patterns were noted for 

completeness: Although α1C labeling for the rat brain typically shows a second high molecular 

weight band (~190 kDa; Westenbroek & Babcock, 1999; Iwamoto et al., 2004), this was not 

found in retina (Figure 11). Some banding was noted at ~45 kDa and ~100 kDa (not shown). 

Although α1C labeling at ~100 kDa has been reported for other tissues (Callinan et al. 2005; 
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Westenbroek & Babcock, 1999), it is typically subtle or absent in rat brain (Ahlijanian et al., 

1990; Iwamoto et al., 2004; Westenbroek & Babcock, 1999). 

 

 

 

 

 

Figure 11: Western blots comparing α1C and α1D expression in retinas of young and mid-adult rats. Top: 

Representative anti-α1C (left) and anti-α1D (right) gels with lanes loaded with protein from 3 (of 6) young-adults (Y1-

Y3) and 4 (of 6) mid-adults (M1-M4). For display purposes, images were cropped to highlight bands from of L-type 

channels at >150 kDa and the non-specific band used for normalization at ~60 kDa. The brightness and contrast 

settings differ for anti-α1C (meant to display the fairly faint band at ~240 kDa) versus anti-α1D, but are the same for the 

high and low molecular weight portions of each gel. Qualitatively, banding ≥240 kDa is similar in the two age groups, 

but the anti-α1D band at ~180 kDa is clearly visible in all the mid-adult lanes shown here, but only one of the young-

adult lanes. This is consistent with the expectation of greater expression of the ~180 kDa α1D isoform in older rats 

(Veng & Browning, 2002; Veng et al., 2003). Bottom: Thick and thin horizontal lines indicate mean±SEM for the six 

data points plotted for each age group, which showed a difference in protein expression for only the ~180 kDa band of 

α1D (* P<0.05). Since visual inspection of the ~180 kDa data suggested slight skewedness, that comparison of young 

to mid- adults was repeated with a one-tailed non-parametric test, yielding similar results (P=0.0465; Wilcoxon rank-

sum test). 
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CHAPTER 5 

ARM 4: ADDITIONAL MEASUREMENTS 

5.1 Methods  

5.1.1 Blood-Retinal Barrier (BRB) Integrity: After all other imaging procedures were 

finished, BRB was measured in five of the nine rats (2 young, 1 mid-, and 2 old adults) used to 

collect baseline (no Mn
2+

) data in Arm 1. As in Berkowitz et al. (2004), BRB is measured by 

testing for vitreous enhancement in T1-weighted images following tail vein injection of the 

vascular contrast agent Gd-DTPA (0.3 mmol/kg; Magnevist; Bayer HealthCare Pharmaceuticals, 

Leverkusen, Germany): Using the same hardware as for all other MRI scans reported here, 25 

images of the eye were collected over a 37 min period using a standard spin-echo sequence (TR 

1.0s, TE 11, 64 × 128 matrix, slice thickness 600 µm; 12 × 12 mm
2
 field of view; 1 min 18 s 

acquisition time, 15 s pause between scans).The bolus of Gd-DTPA was injected through a tail 

vein between the fifth and sixth images. 

A hand-drawn region of interest (ROI) was used to measure the mean signal intensity of 

all vitreous (‘vSI’) appearing in each image. For each subject, the pre-contrast signal intensity 

was calculated by averaging vSIs from the five pre-Gd-DTPA images (vSImean(pre)). Blood retinal 

barrier permeability surface area product (BRB PS) was calculated using vSIs from last three 

images of each subjects’ series (vSImean(post)), the ROI volume (mean(SD): 2.9(0.4) mm
3
), image 

repetition time (TR=1.0 s), and previously described methods and constants (a1, a2, m1, m2, 

vitreous T1, and relaxivity of Gd-DTPA; Berkowitz et al., 2004). 

 5.1.2 Validation of SFT Measurements: Reproducibility of SFT measurements on our in-

house device was assessed in 13 mid-adult rats (aged 206(14) d, weighing 458(67) g). Linear 

regression was used to compare each rat’s SFT measurement (the maximum of 4 sessions) with a 
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second SFT measurement 14(10) d later. Late in the present studies, a commercial OKT system 

(OptoMotry; CerebralMechanics, Lethbride, Alberta, Canada) became available. We measured 

SFT of 9 young adult rats and 13 old adult rats using both the in-house and commercial systems 

(≤10 d between measurements). Shortly after this vision testing, the young adult rats were used 

for Arm 3 MRI studies, and old adult rats were used for the final time point in Arm 1. Linear 

regression was used to compare in-house and commercial measurements within each age group, 

and across all subjects.  

5.1.3 Lifespan MRI Growth Curves: The MRI measurements described in Arm 1 produce 

a unique dataset cataloguing changes in eye morphology and physiology through much of the 

lifespan of Long-Evans rats. The corresponding growth curves for these measures are of some 

interest in their own right, providing a potentially useful baseline for studies in, for instance, 

transgenic or calorie-restricted rats (Guggenheim et al., 2004; Obin et al., 2000). Refractive state, 

derived from our measurements of optical media, is of some additional interest since previous 

measurements in adult rats differ substantially: While behavioral testing (Wiesenfeld & 

Branchek, 1976) suggests adult rats are myopic, retinoscopic (Massof & Chang 1972; Hughes, 

1977; Mutti et al., 1992) measurements, as well as single-unit recordings from the optic nerve 

(Hughes, 1977), argue for hyperopia in adulthood. Age-related changes in refractive state during 

young adulthood may help account for inter-study variability. Growth curves were constructed 

using MRI data from control (Arm 1) rats, combined with a small set of juvenile control rats 

(aged 14-53 d; for details, see Supplemental Material in Appendix A), most of which were used 

in previous studies (Berkowitz et al., 2011; Chui et al., 2011). 

5.2 Results 

For each of the following, plots and further details are provided as Supplemental 
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Information in Appendix A. 

5.2.1 Blood-Retinal Barrier (BRB) Integrity: All subjects had passive blood retinal barrier 

permeability surface area products less than 0.22 (10
-5

 cm
3
/min). Since this is not higher than 

previously-collected control data (Berkowitz et al., 2004) it argues that the BRB was fully intact 

in every subject. No relationship between permeability and age was found with linear regression 

(r=0.03; P=0.97). 

5.2.2 Validation of SFT Measurements: Test-retest reproducibility of SFT measurements 

from the in-house system was good (r=0.70; P=7.48e-3; mid-adults), and showed no change in 

acuities in the short time between test and retest (P=0.296; paired two-tailed t-test). SFT 

measurements from the in-house and commercial systems were well-correlated within young 

adult (r=0.70; P=0.0360) and old adult groups (r=0.75; P=3.01e-3)(combined: r=0.82; P=3.56e-

6). 

 5.2.3 Lifespan MRI Growth Curves: Age-related increases were characterized for all 

variables except retinal thickness, which decreased with age, and vitreous chamber depth, which 

showed no consistent change with age. In most cases, logarithmic models reasonably 

approximated growth, except for predicting larger optical components (e.g. lens thickness, rC) 

for old-adults than was measured presently. In this regard, Weibull models offered a superior fit. 

Age-related increases in body weight, refractive state, retinal volume, and retinal Mn
2+

 uptake 

appeared sigmoid in Weibull models, with inflection points appearing in young or mid-

adulthood.  



61 

  

 

CHAPTER 6 

DISCUSSION 

In these studies, we developed and applied, for the first time, a unique combination of 

behavioral, morphological, and physiological measures to examine the normal aging rat eye. The 

major findings from each arm are as follows: (1) In Arm 1, we demonstrated progressive age-

related declines in contrast sensitivity (‘CS’), as well as progressive age-related  increases in 

retinal Mn
2+

 influx and eye size. Declines in SFT (a proxy for acuity) leveled off after ~7 mo and 

were not well correlated with any structural or physiological measurements. Importantly, relative 

to measurements from other rats in the same cohort, high Mn
2+

 influx in the dark-adapted outer 

retina was the best predictor of CS declines in the ~4.5 mo following MRI scans. When 

measuring CS declines over a broader time period — from the start to the end of our studies — 

rats beginning the study with a large eye (relative to other rats in the same cohort) experienced 

significantly greater CS declines. (2) In Arm 2, we demonstrated Mn
2+

 uptake in the dark-

adapted outer retina was similarly inhibited by both systemic and topical exposure to the L-

VGCC blocker nifedipine. (3) In Arm 3, we demonstrated age-related and isoform-specific 

increases in L-VGCC expression: Inhibition of retinal Mn
2+

 uptake by diltiazem was age-

dependent, requiring more drug in mid-adult than young-adult rats. This pattern, observed in 

vivo, was consistent with greater expression of the relatively drug-insensitive α1D isoform in mid-

adult rats — a finding confirmed ex vivo with Western blots. These findings are discussed in 

more detailed below. 

In Arm 1, age-related declines in visual function were heterogeneous: SFT declined from 

young to mid-adulthood, and then leveled off. In contrast, CS declined progressively over all age 

spans tested. Neither starting values (Table 1) nor rates of change (Table 3) in CS were 
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correlated with SFT. This disparity argues that CS declines are independent of pre- and post-

retinal factors with potential to diminish both CS and SFT (e.g. very poor optics, motor 

function). Owing to that same disparity, poor correlations between SFT and our MRI 

measurements might be expected, given the strong correlations found between the same MRI 

measurements and CS declines. Indeed, both starting values and rates of change in SFT were 

poorly-correlated with measures of morphology and Mn
2+

 uptake (Tables 1 and 3). SFT 

measurements were nevertheless reliable, with repeated measurements collected over a short 

period being well-correlated, regardless of whether the in-house or commercial OKT system 

were used for the second measurement (see Appendix A for more detail). The finding that SFTs 

were well-correlated over broader age ranges (Table 2) and stable from mid- to old adulthood 

(Fig.5) similarly argues for the reliability of the measurement, and offers an explanation for the 

negative correlations to MRI measures: Almost every measure changes from mid- to old 

adulthood (Figs.4&5), ruling out any simple links with the relatively unchanging SFT. There 

nevertheless remained several opportunities to link the structural and physiological MRI 

measures to age-related vision declines, since progressive declines in CS were observed. 

6.1 Structural Changes in the Aging Rat Eye 

Consistent with several previous studies in pigmented rats, we found that the retina 

thinned throughout adulthood (Katz & Robison, 1986; Obin et al., 2000; Feng et al., 2007; Bissig 

& Berkowitz, 2011). By analogy to models of retinal degeneration, where more-dramatic retinal 

thinning is caused by cell loss — we considered the possibility that the retinal thinning we 

observed reflected cell loss in healthy aging. However, interpretation of retinal thinning is not 

straightforward: Retinal extent and surface area increase throughout adulthood (present data; 

Katz & Robison, 1986; Obin et al., 2000; Feng et al., 2007; Mansour et al., 2008; Bissig & 
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Berkowitz, 2011). Due to this ‘stretching’ of the retina, some thinning is expected even if neuron 

numbers are fully preserved. Though we are aware of two reports of age-related cell loss in the 

pigmented rat retina which attempt to adjust for this ‘stretching’ of the retina (Katz & Robison, 

1986; Obin et al., 2000), the adjustment presumes stretching and proportional thinning is uniform 

throughout the retina. If that were true, longitudinal rates of change in central retinal thickness 

and surface area would be well-correlated. We find no such correlation (Table 3; r=-0.05; 

P>0.05).  

Other attempts to quantify age-related cell loss have produced negative results: Recent 

stereological work by Feng et al. (2007) indicated no cell loss in any retinal layer from 6 to 24 

mo, and Harman et al. (2003) found that ganglion cell numbers, sampled evenly from a retinal 

wholemount, are stable from 3 to 30 mo. Rhodopsin levels are stable or increase from 4 to 26 

mo, suggesting preserved photoreceptor numbers (Katz & Robison, 1986). In the retinas of 

young versus old C57BL/6 mice — which, like Long-Evans rats, show age-related CS declines, 

retinal thinning, and increases in retinal surface area (van Alphen et al., 2009; Samuel et al., 

2011) — neuron numbers are unaffected by age when counted by flow cytometry (Samuel et al., 

2011). 

Recent studies suggest that retinal volume is unaffected by age (Feng et al., 2007; Samuel 

et al., 2011), further arguing against cell loss. Presently, we find age-related increases in total 

retinal volume. Though this also argues against cell loss, it’s not immediately obvious why 

volume would increase with age. Age-related increases in astrocyte size (Mansour et al., 2008) 

and cross-sectional area of the nuclei within each retinal layer (Case & Plumber, 1993; Harman 

et al., 2003; but see Katz & Robison, 1986) may contribute, but would presumably influence the 

histology-based estimates showing constant volume (Feng et al., 2007; Samuel et al., 2011). We 
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speculate that changes in total extracellular water contribute: As the retinal sheet expands, 

distances between adjacent photoreceptors increase. A corresponding increase in the cross-

sectional area of the interphotoreceptor space — the water-filled space between neighboring rod 

outer segments (see cross-sections in Hagins et al., 1970; Katz et al., 1991) — is therefore 

expected. Since rod outer segment length is stable with age, at least in the first 12 mo of life, 

(Fox & Rubinstein, 1989), such an increase in cross-sectional area should translate into an 

increase in the volume of the outer retina. Though detectable in vivo with MRI, the dehydration 

steps common to histologic methods would make them insensitive to such a volume increase. 

The above considerations would suggest that measurements of retinal morphology are not 

sufficient, on their own, to understand the basis of vision declines in healthy aging. Nevertheless, 

rates of change in retinal surface area were well-correlated with rates of CS decline (Table 3), 

and initial retinal surface area was a strong predictor of declines in CS from the start to the end 

of our studies (Table 4,pt.2). At first glance, age-related reductions in dendritic field size of 

retinal ganglion cells (Samuel et al., 2011), for example, could explain this structure/function 

link: Amplified by the expansion of the retinal sheet, the fraction of retina covered by each 

dendritic arbor is substantially reduced, potentially producing gaps in visual field coverage by 

some RGC subtypes. Our findings seem to argue against that hypothesis: Insofar as increased 

retinal surface area is itself deleterious, one would expect a negative correlation between surface 

area and visual function even at study start, but no such relationship was found (Table 1). Also, 

longitudinally, one would expect that relatively rapid increases of retinal surface area would be 

correlated with relatively rapid declines in visual function, but we found a significant correlation 

in the opposite direction (Table 3): Those rats experiencing the largest surface area increases 

show the smallest losses in CS. 
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Links between retinal surface area and CS decline are part of the broader set of 

relationships with general eye growth: Axial length, lens thickness, and most other measures of 

eye morphology related to optics increased with age in a similar (roughly logarithmic) way. The 

starting values (Table 1), rates of change (Table 3), and predictive relationship between starting 

values and later rates of change (Table 4,pt.2) for each of these ‘eye growth’ variables were well-

correlated with other ‘eye growth’ variables including retinal surface area. The above-stated 

relationships between CS and retinal surface area are similarly strong for lens thickness, corneal 

radius of curvature, and other such measures: Rats whose eyes grow least from the start to the 

end of the study tend to show the greatest age-related declines in CS (Table 3), and rats which 

start the experiment with large eyes tend to show the greatest age-related declines in CS (Table 

4). 

We synthesize the link between CS and morphology, using surface area as a 

representative metric for all ‘eye growth’ variables, in the following way: Consider very young 

(e.g. 14 d postnatal) rats: Retinal surface areas are fairly similar from rat to rat, ranging from 30 

to 32.5 mm
2
 (see Supplemental Material in Appendix A). By age ~2.5 mo, mean surface area is 

~48 mm
2
 (Fig.5). Consistent with a logarithmic growth curve (see Supplemental Material in 

Appendix A), at least half the postnatal growth needed to reach the old adult surface area of ~65 

mm
2
 (Fig.5) took place before the start of our longitudinal studies. In that early juvenile period, 

some of the rats grew much faster than others, producing the wide variety in surface areas seen in 

Figure 5 (e.g., ranging from 40 to 55 mm
2
 in young adults). At the start of our studies, there was 

little sign that this early growth conferred either cost or benefit to visual function, given the 

preponderance of non-significant correlations between CS (and SFT) and ‘eye growth’ variables 

in Table 1. However, beginning the study with a large eye predicted greater declines in visual 
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function (Table 4). There seems to be a delayed penalty to unusually rapid postnatal growth. The 

correlation between rates of change in CS with rate of change in ‘eye growth’ (Table 3) may be 

explained through that relationship: Those large-eyed rats experienced less growth (Table 4,pt.2) 

during our study — owing to unusually rapid postnatal growth, they entered the study nearer to 

their final (old age) eye size. 

Why might rapid eye growth in the earliest stages of life predict eventual vision declines? 

As the retina stretches, the relatively constant population of retinal neurons is distributed over a 

progressively larger surface area, and the average distance between neighboring neurons 

increases. It’s therefore plausible that some remodeling is necessary to maintain the 

interconnectivity of these retinal neurons between early postnatal life and adulthood. If early eye 

growth is rapid enough, it may surpass the rate of remodeling. If true, this alone is not enough to 

diminish visual function, since surface area and other measures of eye size were generally not 

correlated with visual function at the start of our studies (Table 1). However, well-matched eye 

growth and neuronal remodeling in early life might buffer the retina against the reductions in (for 

instance) dendritic field size of retinal ganglion cells (Samuel et al., 2011) in later in life. 

Extraocular factors may also contribute to the association between eye size/growth and CS 

declines: Body weight, being well-correlated with ‘eye growth’ variables, also tracked with and 

predicted CS declines. Since low body weight in young-adulthood (3 mo) predicts prolonged 

lifespan among rats fed ad libitum (Anisimov et al., 2004), low body weight during young-

adulthood may also confer some modest neuroprotective effects in the retina. 

Future studies may experimentally manipulate early eye growth to better-determine its 

relationship to later vision decline. Calorie restriction (‘CR’) is one possible approach: 

Compared to controls (fed ad libitum), rats maintained on a CR diet starting in young adulthood 
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have smaller retinal extents at mid-adulthood (age 12 mo). Later, their eye growth is more rapid 

than in rats fed ad libitum, since both groups eventually (age ≥24 mo) have the same retinal 

extents (Obin et al., 2000). However, CR could confound early eye growth with altered retina ion 

physiology: CR is reported to alter Ca
2+

 homeostasis in the hippocampus, preserving the low-

influx phenotype of young adulthood, even through old age (Hemond & Jaffe, 2005). A similar 

pattern might be found for the retina.  

6.2 Physiological Changes in the Aging Rat Retina  

Retinal Mn
2+

 influx increased throughout adulthood in both the inner and outer retina. 

Longitudinally, there were no consistent relationships between increases in Mn
2+

 uptake and 

changes in eye morphology (Table 3), suggesting that they are relatively independent processes. 

Retinal Mn
2+

 uptake was the strongest predictor of CS decline in the ~4.5 mo following MRI 

scans (Figs.6,7). When Mn
2+

 uptake in the dark-adapted outer retina was considered along with 

initial CS, we could account for ~70% of the variance in rates of subsequent CS decline (Fig.7). 

It is unclear whether predictions of CS decline could be improved any further, since some 

variability is intrinsic to behavioral measures of visual function. For instance, although our test-

retest measures of SFT were well-correlated, the first measurements (‘test’) never accounted for 

more than ~70% of the variance in the second (‘retest’). The present findings argue that 

progressive and potentially-deleterious changes in retinal ion physiology occur in normal aging. 

Given the strong link between high retinal Mn
2+

 uptake and CS declines in the subsequent ~4.5 

mo, we were interested in identifying the molecular basis of age-related increases in Mn
2+

 

uptake. To this end, we compared Mn
2+

 uptake in dark- versus light-adapted retina during aging, 

and pharmacologically modified Mn
2+

 uptake in Arms 2 and 3. 
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In the inner retina, there is extensive spatial overlap and relatively equal representation of 

light-activated (ON pathway) and dark-activated (OFF pathway) neurons. Because the present 

image resolution is too low to distinguish between these pathways, no dark-light differences in 

inner retinal (16-28%thick) Mn
2+

 uptake were expected or found, consistent with previous work 

(e.g. Berkowitz et al., 2009; Berkowitz et al., 2006; Bissig & Berkowitz, 2011). This does not 

imply that the inner retina is quiescent. Rather, during the period of Mn
2+

 accumulation, one 

would expect roughly half of inner retinal neurons to be depolarized regularly in light-exposed 

(ON) eyes, while the other half would be depolarized regularly in patched (OFF) eyes. Some 

degree of activity-dependent Mn
2+

 influx is therefore expected in both conditions, entering 

depolarized neurons through L-VGCCs (Drapeau & Nachshen, 1984; Carlson et al., 1994; Cross 

et al., 2007; Berkowitz et al., 2011; Berkowitz et al., 2007b). Consistent with these 

considerations, we found that L-VGCC antagonists significantly inhibited inner retinal Mn
2+

 

uptake in Arms 2 and 3.  

The inner retina experienced an age-related increase in Mn
2+

 uptake (Fig.4), which 

significantly predicted CS declines (Table 4,pt.1). High doses of the L-VGCC blocker inhibited a 

similar proportion of Mn
2+

 uptake (i.e., ‘%inhibition’) in both young- and mid-adult rats 

(Fig.10). Thus, age-related increases in both the L-VGCC-dependent and L-VGCC-independent 

portions of Mn
2+

 uptake seem to occur. Also note that, at both ages, substantial Mn
2+

 uptake was 

detected even with high doses of antagonist (Fig.10). For inner retina, it is unclear whether the L-

VGCC-independent Mn
2+

 uptake is activity-dependent — for instance, involving other types of 

voltage-gated channels — or represents some basal level of Mn
2+

 uptake occurring even in 

quiescent (hyperpolarized) neurons and/or adjacent non-neuronal (e.g., Müller) cells.  
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The outer retina is almost exclusively populated by photoreceptors, which are depolarized 

in darkness and hyperpolarized in light (for review, see Yau, 1994). Consistent with previous 

reports (e.g., Berkowitz et al., 2009; Berkowitz et al., 2006; Bissig & Berkowitz, 2011) and the 

expectation of Mn
2+

 uptake through voltage-gated channels, we found significantly higher Mn
2+

 

uptake in darkness than in light in the outer retinas of each age group (Fig.4). It is very likely that 

those dark-light differences in Mn
2+

 uptake are specific to photoreceptors: Although Müller cell 

processes interdigitate with photoreceptor somas in the outer retina, each Müller cell also extends 

through inner retina. Intracellular movement of Mn
2+

 is fairly rapid — generally > 2mm/hr 

(Watanabe et al., 2001; Olsen et al., 2010) — and any Mn
2+

 entering Müller cells in a light-

dependent fashion therefore had hours to evenly distribute over the < 0.2mm separating inner 

from outer retina. Since dark-light differences were confined to the outer retina, we attribute 

them to the only non-negligible population of cells confined to the outer retina: photoreceptors.  

Dark-light differences in outer retinal Mn
2+

 uptake progressively increased with age 

(Fig.4), and rats with high activity-dependent Mn
2+

 uptake compared to other cohort members 

experienced the greatest CS declines in the ~4.5 mo following MEMRI (Table 4,pt.1). The outer 

retina’s activity-dependent Mn
2+

 uptake occurs predominantly through photoreceptor L-VGCCs. 

In Arm 2, dark-light differences were eliminated by systemic administration of a L-VGCC 

blocker: Nifedipine inhibited outer retinal Mn
2+

 uptake in darkness, but had no effect in light 

(Fig.8). In dark-adapted eyes, outer retinal Mn
2+

 uptake was similarly-inhibited by topical 

nifedipine administration (Fig.9). That finding may be important for some proposed uses of L-

VGCC blockers wherein systemic drug delivery would be problematic (e.g. retinal ischemia or 

retinopathy of prematurity; Crosson et al., 1990; Berkowitz et al., 2011). For present purposes, 

the topical nifedipine data confirmed that L-VGCC blockade decreases neuronal Mn
2+

 uptake 
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independent of peripheral drug effects, as expected from previous in vitro studies (Drapeau & 

Nachshen, 1984; Carlson et al., 1994). 

The present data argue that rat photoreceptors experience a progressive age-related 

increase in ion influx through L-VGCCs. Explanations for this phenomenon fall, broadly, into 

two categories: (1) Light-dependent changes in photoreceptor membrane voltage depend on 

dark-light differences in cyclic-GMP gated channels (‘cGMPGCs’). In darkness, cGMPGCs are 

open, allowing constant influx of the major charge carrier, Na
+
, into the photoreceptor and 

preventing membrane hyperpolarization. Light exposure ultimately closes cGMPGCs, stopping 

most Na
+
 influx and permitting membrane hyperpolarization (for review, see Yau, 1994). 

Although Mn
2+

 does not appear to enter cGMPGCs (except in special, non-physiologic, 

preparations; Capovilla et al., 1983; Cervetto et al., 1988), light-dependent changes in Mn
2+

 

uptake through L-VGCCs will depend on light-dependent changes in photoreceptor membrane 

voltage, which in turn is controlled by cGMPGCs. We first considered the possibility that this 

electrical response to light becomes more exaggerated with age, producing larger dark-light 

differences in L-VGCC opening and therefore Mn
2+

 uptake. (2) A change in expression or 

regulation of the L-VGCCs themselves could increase dark-light differences in Mn
2+

 uptake. In 

the conceptually simplest case — the number of L-VGCCs increases with age — Mn
2+

 has more 

opportunities to enter in darkness, when the membrane is depolarized and L-VGCCs are open, 

but a similar number in light, when L-VGCCs are closed, producing increased dark-light 

differences in Mn
2+

 uptake.  

If the electrical activity of the photoreceptors increases with age, it will be difficult to 

distinguish between the first and second possibilities, since the effects could be additive. If the 

electrical activity of the photoreceptors is constant or decreases with age, then a change in L-
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VGCCs themselves is more likely to account for the age-related increase in dark-light 

differences documented in Arm 1. 

Previous studies strongly argue against the first possibility; that light-dependent changes 

in photoreceptor membrane voltage increase with age. The electrical response of photoreceptors 

to light, ultimately determined by cGMPGCs currents, is described in vivo by the amplitude of 

the electroretinogram a-wave (Breton et al., 1994). Through adulthood, progressive age-related 

decreases in a-wave amplitude are found in humans (Wright et al., 1985; Freund et al., 2011), 

albino rats (DiLoreto et al., 1995), pigmented rats (Parmer et al., 1982; Charng et al., 2011), and 

in pigmented mice (Kolesnikov et al., 2010). In mice, the age-related decrease in a-wave 

amplitude was further probed using ex vivo measurements of individual photoreceptors’ rod 

outer segments, which confirmed diminished electrical (i.e., cGMPGC current) responses to light 

(Kolesnikov et al., 2010).  

Since dark-light differences in total current across the photoreceptor membrane 

(predominantly through cGMPGCs) appear to decrease with age, but dark-light differences in 

outer retinal Mn
2+

 uptake (through L-VGCCs) increased with age in the present work, we next 

considered the second possibility — that the aging rat retina experiences an alteration in 

expression or regulation of L-VGCCs. Intriguely, in the rat hippocampus, age-related increases 

in neuronal Ca
2+

 influx, L-VGCC density, and L-VGCC protein expression have been 

documented, and are greatest in those rats with the poorest cognitive function (Thibault and 

Landfield, 1996; Veng & Browning, 2002; Veng et al., 2003). In the hippocampus, increased 

expression of the pore-forming α L-VGCC subunit is isoform specific, with the ~180 kDa 

isoform of α1D increasing with age, while expression of α1C and the larger (>200 kDa) α1D 

isoform appears stable (Veng & Browning, 2002, Veng et al., 2003). By analogy to the 
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hippocampus, we expected age-related increases in retinal α1D expression. The α1D isoform is 

roughly an order of magnitude less-sensitive to pharmacological blockade than α1C (Xu and 

Lipscombe, 2001; Koschak et al., 2001; Tarabova et al., 2007). Based on those isoform-specific 

drug sensitivities, we first tested for a change in retinal α1D expression in vivo by measuring 

inhibition of Mn
2+

 uptake by different doses of the L-VGCC antagonist diltiazem. We found 

substantial inhibition with 10 mg/kg doses in young adult rats, consistent with previous work 

(Berkowitz et al., 2007b), but 100 mg/kg doses were needed to produce similar %inhibition in 

mid-adult rats (Fig.10). This result is of some interest in its own right, suggesting that neuronal 

L-VGCC-based therapies/interventions may become progressively less-effective with age. For 

present purposes, though, the diltiazem dose-response differences between young and mid-adult 

rats strongly suggest that retinal α1D L-VGCC expression increases with age. Western blots 

(Fig.11) further support that in vivo finding: Expression of the ~180 kDa isoform of α1D 

increased with age, while no change in expression of either α1C or the larger (>200 kDa) α1D 

isoform was found. 

Our interpretation of age-related increases in outer retinal Mn
2+

 uptake focuses mainly on 

dark-light differences because they are relatively easy to interpret: They are activity-dependent, 

L-VGCC sensitive, and specific to photoreceptors (rather than e.g., Müller cells). However, even 

when statistically controlling for the strong correlation between dark-light uptake differences and 

later CS declines, we found that Mn
2+

 uptake in the light-adapted outer retina remained a unique 

and significant predictor of CS declines. Since photoreceptors are relatively hyperpolarized in 

light, and ion flux presumably low, it’s possible that this represents Mn
2+

 entry into Müller cells. 

If so, the present results for the light-adapted outer retina might support Bringmann et al. 

(2000)’s finding of age-related increases in ion influx through Müller cell L-VGCCs. On the 
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other hand, we found that light-adapted outer retinal Mn
2+

 uptake appears insensitive to L-VGCC 

blockade (Fig.8). We therefore speculate that Mn
2+

 is entering light-adapted photoreceptors 

though some cGMP- and voltage-independent route. If so, this could offer a partial explanation 

for why L-VGCC expression increases with age: Since Ca
2+

 influx controls neurotransmitter 

release by photoreceptors (Schmitz & Witkovsky, 1997), normal function could be severely 

compromised unless the difference between (or ratio of) dark versus light influx is preserved. 

Increased L-VGCC expression may therefore compensate for increased Ca
2+

 permeability in the 

hyperpolarized photoreceptor, so as to proportionally increase Ca
2+

 permeability in the 

depolarized receptor. Although we found that magnitude dark-light differences increased with 

age, no change was noted in the ratio of dark to light Mn
2+

 uptake (Fig.4). 

Within each group of rats, those with relatively low Mn
2+

 uptake at the start of the study 

later showed the largest age-related increases in Mn
2+

 uptake for the inner retina and dark-

adapted outer retina (Fig.6; negative correlations between ΔR1s in Table 4,pt.2). Those that 

started the study with relatively high Mn
2+

 uptake tended to show the smallest subsequent 

increases in Mn
2+

 uptake. This tendency may explain why Mn
2+

 influx is a strong predictor of CS 

declines over the ~4.5 mo following MRI scans, but a poor predictor of average CS declines 

from the start to the end of the study — a yearlong period for Group MO: After ~4.5 mo passes, 

the mechanism relating high ion influx to CS decline has affected those rats which started with 

high Mn
2+

 uptake, and insofar as Mn
2+

 uptake goes no higher, no further declines would be 

expected. In contrast, those rats starting with low Mn
2+

 uptake convert to a high uptake 

phenotype after ~4.5 mo (as seen for Group YM; Fig.6). They are then primed to experience the 

largest CS declines from ~4.5 to ~12 mo post-MRI. This pattern is shown in Figure 6 and Table 

4,pt.1: Beginning the study with high Mn
2+

 uptake predicted the largest CS declines in the ~4.5 
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mo post-MRI, but beginning with low Mn
2+

 uptake predicted the largest CS declines from 4.5 to 

~12 mo post-MRI. 

In interpreting the present physiological data, three potential confounds need to be 

considered. (1) Since very high doses of Mn
2+

 can be toxic (Silva et al., 2004), there must be 

some assurance that the modest doses used here are non-toxic. Otherwise, the ability of Mn
2+

 

uptake to predict later CS declines could be interpreted as a toxic effect of the Mn
2+

 ions 

themselves. Several lines of evidence argue against Mn
2+

 toxicity in the present study: We have 

previously demonstrated that the present dose (222 μmol Mn
2+

 / kg) is non-toxic to the rat retina, 

based on measurements of intraocular pressure, blood-retinal barrier integrity, retinal histology 

(Berkowitz et al., 2006), electroretinography, and dose-redose reproducibility of retinal Mn
2+

 

enhancement (Berkowitz et al., 2007a). If Mn
2+

 exposure affected long-term visual function, it 

would be evident in comparisons of ~7 mo data from Groups YM and MO: At the time of the ~7 

mo vision tests, the former but not the latter had previously been injected with Mn
2+

. Post-hoc, 

we find that Group YM and Group MO have similar visual function at ~7 mo (for SFT, P=0.277; 

for CS, P=0.0908; two-tailed t-tests), further arguing against toxicity. Thus, available data 

overwhelmingly demonstrate that 222 μmol Mn
2+

 / kg is non-toxic to the rat retina. This is 

consistent with previous work related to the rat hippocampus, which showed no histological 

signs of toxicity following a 500 μmol Mn
2+

 / kg injection (Eschenko et al., 2010b), and normal 

performance on a memory task after a 200 μmol Mn
2+

 / kg injection (Jackson et al., 2011). (2) 

Longitudinally, we found that Mn
2+

 uptake increased with age. If Mn
2+

 efflux rates were slow 

enough, then the second measurement might be higher than the first merely because residual 

Mn
2+

 remains from the first injection. This seems very unlikely, given that the half-life for retinal 

Mn
2+

 efflux is less than one day (Tofts et al., 2010). In the present study, three rats were selected 
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from Group MO to measure baseline (no Mn
2+

) R1s in the retina at age ~19 mo. Since those 

values were similar to the never-injected rats at ages ~2.5 mo and ~7 mo, it is unlikely that 

residual Mn
2+

 was present one year (>365 efflux half-lives) after that first injection. Finally, the 

longitudinal finding of higher Mn
2+

 uptake in mid- than young-adult rats (Group YM) can be re-

checked by comparing the once-injected ~2.5 mo rats from Group YM to the once-injected ~ 7 

mo rats from Group MO: Those post-hoc comparisons yield significant differences for both inner 

and outer retina in both dark and light (each P<0.0015), consistent with longitudinal findings 

(Fig.4). Data collected while testing the effects of diltiazem (Fig.10) similarly suggest greater 

uptake in mid- than young-adult retinas. (3) Finally, any declines in blood-retinal barrier (BRB) 

integrity might alter neuronal Mn
2+

 exposure, and therefore uptake. We tested for vitreous 

enhancement following injection of the intravascular contrast agent Gd-DTPA, and found no 

signs of BRB compromise during healthy aging (see Supplemental Material in Appendix A for 

additional detail), consistent with previous work (Vinores et al., 1990). 

6.3 Conclusions 

Longitudinally, we documented age-related vision declines along with progressive 

increases in eye size and retinal Mn
2+

 uptake in adult rats. Measuring from the start to the end of 

our studies, the rate of CS decline was predicted by several measures of initial eye size, such as 

retinal surface area. Since the rats beginning our study with the largest eyes experienced the 

greatest CS declines, our data suggest that relatively rapid early eye growth — from postnatal to 

young-adult life — is somehow deleterious. Age-related increases in Mn
2+

 uptake also seem 

deleterious, since high retinal Mn
2+

 uptake was a strong predictor of CS declines in the ~4.5 mo 

following MRI scans. In the outer retina, the age-related increase in activity-dependent Mn
2+

 

uptake is likely due to an increase in photoreceptor α1D L-VGCC expression.  
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 Prior studies of the anatomy and physiology of the aging retina have had little success 

explaining age-related declines in visual function (see Spear, 1993 for review). Our in vivo 

measurements of retinal morphology detected no signs of volume loss with age, suggesting that 

cross-sectional measurements aimed at detecting cell loss — based, for example, on retinal 

thickness — would be uninformative. Although lifespan patterns of eye growth predict eventual 

vision declines, a longitudinal experimental design is needed to detect this effect, and would be 

difficult with non-MRI methods. To-date, most in vivo studies of retinal physiology have been 

performed with some variant of the electroretinogram (ERG). However, ERG appears insensitive 

to the large alterations in L-VGCC-related ion physiology that we detected with MEMRI. Ex 

vivo electrophysiologic studies (e.g. patch clamp) may be sensitive to age-related increases in ion 

influx through L-VGCCs, but would be incompatible with longitudinal studies. MEMRI is 

capable of measuring both eye morphology and retinal ion physiology non-invasively — an 

essential feature when using those measures to predict and explain subsequent vision declines. 

We have previously shown that a clinically-relevant dose of Teslascan, an FDA-approved Mn
2+

-

based contrast agent, provides enough neuronal Mn
2+

 influx to detect dark-light differences in 

the rat retina (Tofts et al., 2010). It may therefore be possible to non-invasively test the strongest 

findings of the present rat studies in humans: whether Mn
2+

 uptake is greater in the retinas of old 

than young adults, and whether higher neuronal Mn
2+

 uptake predicts greater vision declines in 

healthy aging. 
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APPENDIX A 

SUPPLEMENTAL MATERIAL 

In this Supplemental Material, we provide additional details on (1) our tests of blood-

retinal barrier integrity, (2) our validation of SFT measurements through test-retest comparisons 

on the in-house system, and comparisons of SFT on the in-house to the commercial system, and 

(3) use data from the main text and previously-published juvenile rat data to show lifespan 

growth curves for MRI measurements. 

Blood-Retinal Barrier (BRB) Integrity: 

In the Main Text, we reported that blood retinal barrier permeability surface area product 

(BRB PS) was not effected by age, and was consistent with previous control data (Berkowitz et 

al., 2004). Here, we illustrate these negative findings by showing sample images from a young 

and an old adult, and provide time-courses for each of the five subjects. 

Loss of BRB integrity would be demonstrated by gradual leakage of Gd-DTPA into the 

vitreous, causing enhancement on T1-weighted images. As seen in Figure A1, vitreous signal 

intensities appeared stable over time. Areas without a blood-structure barrier offer a positive 

internal control: the aqueous humor and large blood vessels clearly enhanced (higher signal 

intensity) after Gd-DTPA injection. 

At the bottom of Figure A1, time-courses of vitreous signal intensity (vSI) are shown for 

each subject, after normalizing to the mean and standard deviation of pre-Gd-DTPA signal: The 

difference between vSI at a given time (vSIt) and vSImean(pre-Gd-DTPA), divided by the standard 

deviation vSI (vSIsd(pre-Gd-DTPA)) from the five pre-Gd-DTPA images (i.e. (vSIt - vSImean(pre-Gd-

DTPA)) / vSIsd(pre-Gd-DTPA)) from a rat produces a standardized vitreous signal intensity. Analogous 

to a z-score, values between -1.96 and 1.96 are within the 95% prediction interval of pre-Gd-
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DTPA data. Only post-Gd-DTPA standardized values rising and consistently remaining above 

~2 suggest vitreous enhancement. None of the five subjects showed signs of vitreous 

enhancement post-Gd-DTPA injection, arguing for an intact BRB.  

Figure A1: The blood-retinal barrier is intact throughout aging. Top: Representative time series of gadolinium 

enhancement in a young (aged 72 d) and an old (603 d) rat, showing averaged eye images before, just after, and a half hour 

after intravenous injection with Gd-DTPA. For each series of three, brightness and contrast are set identically to highlight 

any appearance of Gd-DTPA enhancement, which is demonstrated as an increase in signal intensity (black to grey to white) 

between pre- and post-Gd-DTPA images. Both series show rapid enhancement of vasculature and slower enhancement of 

the aqueous humor. However, neither shows enhancement of the vitreous, suggesting an intact blood-retinal barrier. Bottom: 

The time-course of standardized vitreous values is shown for all five subjects. Vitreous values regularly remained < 2 for 

the duration of the experiment, suggesting no enhancement at any age. In contrast, analogous measurements from the 

aqueous humor — which does not have a blood-structure barrier and visibly enhances (see Top) —produced standardized 

values >100 in all subjects (not shown). The absence of Gd-DTPA leakage into the vitreous strongly argues for an intact 

BRB throughout the present age range. 
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Validation of SFT Measurements: 

We measured SFTs from young and old adult rats on our in-house system, and then 

measured SFTs from the same rats on a commercially-available system (OptoMotry; 

CerebralMechanics, Lethbride, Alberta, Canada; Douglas et al., 2005; Prusky et al., 2008). On 

both systems, the rat is surrounded by a virtual barrel displaying sine wave gratings with a set 

number of cycles per barrel degree (c/bd). For instance, a barrel showing 0.5 c/bd contains (360° 

* 0.5 cycles/° =) 180 cycles of the sine wave grating. On the commercial system, the display is 

dynamically altered based on eye position, such that the rat sees 0.5 cycles per degree visual 

angle when the machine is set to 0.5 c/bd. No such dynamic adjustments were possible on the in-

house system, meaning that as rats moved closer to a screen, the number of cycles contained in 

each degree visual angle would decrease, becoming easier to see (e.g. a 0.5 c/bd may be seen as 

0.45 cycles per degree visual angle). For this reason, the threshold c/bd values for the in-house 

system were expected to be higher than for the commercial system. 

Consistent with expectations, young rats had SFTs of 0.564±0.005 c/bd on the 

commercial system and 0.676±0.010 c/bd on the in-house system. Old rats had SFTs of 

(mean±SEM) 0.524±0.004 c/bd on the commercial system and 0.627±0.010 c/bd on the in-house 

system. Importantly, as shown in Figure A2, measurements on our in-house system were well-

correlated with those on the commercial system for young rats (r=0.70; P=0.0360), old rats 

(r=0.75; P=0.00301), and the combination of both age groups (r=0.82; P=3.56e-6). SFTs from 

the commercial system were in good agreement with the ~0.54 cycles per degree visual angle 

obtained from Long-Evans rats in previous studies (Douglas et al., 2005; Prusky et al., 2008). 

A separate set of measurements used mid-adult rats to test the internal reliability of vision 

tests on the in-house system: SFT was measured twice in 13 rats, with measurements separated 
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by ~14 d. Good correlation between the first and 

second measurements would argue for the reliability of 

our SFT measurements. Consistent with expectations, 

we found that SFTs from the first to second 

measurement were well-correlated (Fig.A2; r=0.70; 

P=0.00748) and stable over time (respectively 

0.640±0.016 and 0.626±0.017 c/bd; difference -

0.014±0.013, P=0.296 on two-tailed paired t-test).  

The data used to validate SFT measurements 

also show that age-related changes reported for Arm 1 

are replicable: Although old adults tested here were part 

of Arm 1, the young and mid-adult rats were not. Using 

one-tailed t-tests, we again find that SFT was higher for 

young than mid-adulthood rats on the in-house system 

(P= 0.0492 or 0.0177, depending on whether the test or 

retest mid-adult data are used, respectively), but similar 

between mid- and old adults on the in-house system 

(P=0.250 or 0.479 depending on whether the test or 

retest data are used, respectively). As expected by the 

declines from young to mid-adulthood, we found 

significantly lower SFTs in old than young rats 

(P=0.00162). That pattern was also present in SFT data 

collected on the commercial OKT system (P=1.21e-6). 

Figure A2: Validation of SFT measurements on 

the in-house system. Top: Measurements are 

internally validated by demonstrating 

reproducibility on the in-house system. We found a 

significant correlation between measurements taken 

~14 d apart in mid-adult rats. Bottom: SFT 

measurements on the in-house system are externally 

validated against the commercial system 

(CerebralMechanics OptoMotry) in which the 

virtual barrel stimulus is dynamically adjusted 

based on the rat’s position in the device arena. In 

that way, the number of cycles per barrel degree 

(c/bd) is made equivalent to the number of cycles 

per degree visual angle (c/deg.vis.angle) from the 

rat’s perspective. The in-house system makes no 

adjustment for rat position, and thresholds therefore 

were expected to appear higher than in the 

commercial system: As a rat moves closer to a 

computer screen showing the stimulus, cycles 

appear larger from the subject’s perspective. 

Portions of a 0.64 c/bd stimulus will appear 0.54 

c/deg.vis.angle if the rat is sufficiently off-center. 

Despite the different approaches to stimulus 

presentation, values from the in-house and 

commercial systems are very-well correlated in 

young adults (blue), old adults (red), and the 

combination thereof (black): Between-device 

correlations are similar to the test-retest correlation. 

Importantly, regardless of the system, SFTs are 

noticeably higher in young than in old adults.  
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Based on the tight correlation between the two systems, the visual performance data from the in-

house system (Main Text) are presented without correction to the commercial system. 

Lifespan MRI Growth Curves 

Growth curves are constructed using data from Arm 1 rats and from a small set of 

juvenile control rats.  Most of the latter have contributed data to previous publications 

(Berkowitz et al., 2011; Chui et al., 2011): The left dark-adapted eye of postnatal/juvenile control 

rats was studied ~4 hr after Mn
2+

 injection under urethane anesthesia (4.1(1.5) ml/kg) at four 

different ages: 14 d (n = 6; weighing 23(1) g), 20-21 d (n = 6; 37(3) g), 32 d (n = 5; 95(3) g), and 

53 d (n = 7; 207(36) g). Growth curves for Mn
2+

 uptake (ΔR1) only used data from juveniles and 

the dark-adapted (patched) eyes in Arm 1 of the present work. (Although light ΔR1s are available 

in Arm 1, we lack the juvenile ΔR1 light data needed to produce a full growth curve.) Growth 

curves for morphological data (e.g., lens thickness, retinal volume) used data from juveniles and 

both the dark-adapted (patched) and light-exposed (unpatched) eyes of Arm 1 rats, for whom the 

left and right eye values were averaged to produce a single value (per rat per time point). When 

possible, Arm 1 rats were studied at two different ages. Those repeated measurements were 

several months apart, and considered independent of one another when fitting these growth 

curves. 

For each dependent variable (“DV”) — such as body weight, lens thickness, or outer 

retinal Mn
2+

 uptake — we began by fitting a logarithmic model (Eq.A1) 

Eq.A1: Bln(age)ADV   

wherein ‘A’ and ‘B’ are fitted parameters and age is given in days. ‘B’, the y intercept, is the 

extrapolated value for DV at birth. It is important to note that these intercept values are generally 

not useful since the earliest data in these model fits is from an age of 14 d: Due to the log 
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transform, extrapolation over the 2.64 natural log units between that age and the first day of life 

is at least as problematic as using only data from the beginning of adulthood (~50 d) to 

extrapolate values during senescence (~700 d; 2.64 natural log units after 50 d). The problem is 

exacerbated if the population growth curve is sigmoidal, with the possibility of extrapolating 

nonsensical values (e.g. negative body weight). ‘A’ is the slope relating the DV to log-

transformed age such that a significant relationship between DV and age is demonstrated by 

when the 95% confidence interval (‘95%CI’) for ‘A’ does not include zero. We note that 

analyses in the Main Text also demonstrate age effects using a different approach (paired t-tests) 

which has fewer assumptions about the pattern of growth, and better-accommodates the repeated 

measures in our longitudinal data. Parameter estimates for logarithmic models are given with 

95%CIs (calculated as estimate ± two standard errors) in Table A1. 

 Next, we fit a four-parameter Weibull model (Eq.A2) using the ‘drc’ package for R 

(http://www.r-project.org; e.g., ‘model=drm(DV ~ age, fct= W2.4())’). 

Eq.A2: )ln(d))))-ln(age)(exp(cexp(-1-(1a)-(baDV   

wherein ‘a’, ‘b’, ‘c’, and ‘d’ are fitted parameters and age is given in days. This function is 

asymmetrical about the inflection point, ‘d’ (when age = d, DV ≈ 0.37*a + 0.63*b). Parameter 

estimates for Weibull models are given with 95%CIs (calculated as estimate ± two standard 

errors) in Table A2. 

 In Figures A3 through A8, we show scatter plots of several measurements from control 

rats, as well as the best-fit lines (with 95%CI) for logarithmic and Weibull growth models, fit to 

those data as a function of age. 
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Figure A3: Mn2+ uptake increases with age in the dark-adapted retina. Mn2+ uptake is proportional to ΔR1, 

which was measured in the inner retina (16-28%thick; left panel) and outer retina (48-68%thick; right panel) 

throughout the lifespan of the rat. Filled points represent data from Group MO of Arm 1. ‘X’s represent data from 

Group YM of Arm 1. Open points represent the data from juvenile rats described in this Appendix. The blue lines 

show the best-fit (solid line) and 95%CI (dashed lines) for the logarithmic model. The orange lines represent the 

best fit (middle dark orange line) and 95%CI (light orange fill, bordered by dark orange lines) for the Weibull 

model. This mapping of points and line colors is used in all of the remaining figures in this Appendix.  

Figure A4: Retinal extent, surface area of the vitreoretinal border, and total retinal volume increase with age. 

Although the central retina thins with age, this may be partially explained by stretching of the retinal sheet during 

continued eye growth throughout adulthood. Despite retinal thinning, these data argue against age-related cell loss, 

since retinal volume increases with age. (See Fig.A3 Legend for explanation of lines and symbols.) 
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Figure A5: Anterior chamber depth and lens thickness increase with age. In contrast, vitreous chamber depth 

remains essentially constant (for this reason it was not possible to fit a Weibull model for that variable). Axial length — 

the sum of the chamber depths and lens thickness — increases with age. Note that the same y-axis distances are used on 

all four of these plots to facilitate visual structure-to-structure comparisons. (See Fig.A3 Legend for explanation of 

lines and symbols.) 

 

Figure A6: Body weight 

increases with age. The 

pattern of growth closely 

follows a logarithmic 

curve throughout 

adulthood. (See Fig.A3 

Legend for explanation of 

lines and symbols.) 
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Figure A7: Refractive state increases in young adulthood, 

then plateaus. In early life, rats are myopic (nearsighted, 

refractive state < 0 D), but rapidly become mildly hyperopic 

(farsighted, > 0 D) in young adulthood. Refractive state is 

relatively stable from mid-adulthood onward. Note that even 

subtle differences in animal age may account for varying 

literature reports of myopia versus hyperopia in young 

adulthood: Behavioral testing by Wiesenfeld & Branchek 

(1976) implied myopia in young adulthood, and their reported 

body weights suggest that rats were between 70 and 95 d. The 

Weibull model produces mean estimates of -9.7 and +2.3 D at 

those ages. Hughes (1977), using both retinoscopy and single 

unit recordings from the optic nerve, found ~+9 D hyperopia in 

115-130 d old rats. Our Weibull model gives hyperopic mean 

estimates of +5.8 D and +6.6 D at those ages.  There is little 

literature information on changes beyond young adulthood: 

Meyer et al. (1997), using visual evoked potentials, found that 

both young and old rats are relatively emmetropic (refractive 

state near 0). However, this is based on peak responses after 

placement of an artificial lens, and it is unclear whether 

stimulus magnification by the lens was considered in the 

analysis. Also, refraction may differ from central versus 

peripheral field (Hughes 1977), a nuance not captured by VEP-

based refraction. In a small sample, measured by 

ophthalmoscope and streak retinoscope, Massof & Chang 

(1972) found fairly consistent hyperopia , ~+15 D, between 90 

to 200 d. (See Fig.A3 Legend for explanation of lines and 

symbols.) 

 

Figure A8: Age-related increases in radii of curvature. 
The radii of curvature for the external surface of the cornea, 

the anterior lens, and the posterior lens, all increase with 

age. (See Fig.A3 Legend for explanation of lines and 

symbols.) 
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  logarithmic model  

  DV=A*ln(age)+B 

DV units A B 

  estimate 95%CI estimate 95%CI 

Body Weight g 169 (160 to 179) -453 (-500 to -406) 

      

Using Patched (Dark-Adapted) Data      

Inner Retinal Mn
2+

 Uptake (ΔR1) s
-1

 0.233 (0.192 to 0.274) -0.49 (-0.690 to -0.286) 

Outer Retinal Mn
2+

 Uptake (ΔR1) s
-1

 0.345 (0.292 to 0.398) -0.82 (-1.078 to -0.558) 

      

Using Average of Patched and 

Unpatched Data      

Lens Thickness μm 517 (485 to 548) 1096 (944 to 1248) 

Anterior Chamber Depth μm 141 (125 to 146) 215 (129 to 290) 

Vitreous Chamber Depth μm -3.53 (-21.29 to 14.22) 1349 (1262 to 1435) 

Axial Length μm 654 (606 to 702) 2659 (2426 to 2894) 

External Corneal Radius of Curvature μm 316 (294 to 339) 1282 (1171 to 1394) 

Anterior Lens Radius of Curvature μm 236 (220 to 253) 1133 (1052 to 1213) 

Posterior Lens Radius of Curvature μm 267 (249 to 284) 935 (850 to 1020) 

Refractive State Diopters 16.6 (14.7 to 18.4) -85.3 (-94.4 to -76.3) 

Retinal Extent μm 377 (348 to 406) 2730 (2589 to 2871) 

Retinal Volume mm
3
 0.862 (0.755 to 0.969) 5.19 (4.67 to 5.71) 

Retinal Surface Area mm
2
 8.7 (8.06 to 9.33) 9.82 (6.73 to 12.91) 

Retinal Thickness μm -14.3 (-16.3 to -12.2) 276 (266 to 286) 

Table A1: Parameter Estimates (with 95%CI) for logarithmic growth models. Estimates are bolded when significantly 

different from zero (based on 95%CI).   
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 four-parameter Weibull model 

 DV=a+(b-a)*(1-exp(-exp(c(ln(age)-ln(d))))) 

DV a b c d‡ 

 estimate 95%CI estimate 95%CI estimate 95%CI estimate 95%CI 

Body Weight -428 (-1024 to 169) 753 (483 to 1024) 0.417 (0.082 to 0.752) 95.2 (28.7 to 161.8) 

         

Using Patched (Dark-

Adapted) Data         
Inner Retinal Mn2+ Uptake 

(ΔR1) 0.234 (0.058 to 0.411) 1.06 (0.88 to 1.24) 1.30 (0.34 to 2.25) 206 (135 to 276) 

Outer Retinal Mn2+ Uptake 
(ΔR1) 0.104 (-0.373 to 0.580) 1.58 (0.97 to 2.20) 0.871 (0.027 to 1.714) 216 (61 to 372) 

         

Using Average of Patched 

and Unpatched Data         

Lens Thickness -1169 (-6709 to 4371) 4507 (4041 to 4972) 0.309 (0.046 to 0.573) 15.7 (-27.5 to 59.0) 

Anterior Chamber Depth -1901 (-5310 to 1509) 991 (973 to 1009) 0.468 (0.198 to 0.738) 4.98 (-5.51 to 15.47) 

Vitreous Chamber Depth† - - - - - - - - 

Axial Length -5900 (-11880 to 80) 6645 (6435 to 6856) 0.282 (0.204 to 0.360) 2.78 (-1.11 to 6.66) 
External Corneal Radius of 

Curvature 663 (-1333 to 2658) 3243 (3059 to 3427) 0.424 (0.112 to 0.737) 26.9 (-17.6 to 71.5) 

Anterior Lens Radius of 
Curvature 183 (-2443 to 2809) 2640 (2452 to 2828) 0.341 (0.032 to 0.650) 16.2 (-28.9 to 61.2) 

Posterior Lens Radius of 

Curvature -1309 (-4019 to 1401) 2614 (2497 to 2732) 0.291 (0.155 to 0.426) 5.78 (-6.25 to 17.81) 

Refractive State -44.6 (-50.1 to -39.1) 6.86 (4.83 to 8.90) 2.49 (1.57 to 3.41) 66.6 (60.5 to 72.6) 

Retinal Extent -1234 (-4105 to 1636) 5242 (4939 to 5545) 0.237 (0.152 to 0.322) 3.59 (-2.16 to 9.33) 

Retinal Volume 6.71 (4.71 to 8.71) 10.89 (9.79 to 11.98) 0.653 (0.060 to 1.245) 127 (42 to 212) 

Retinal Surface Area -76.9 (-194.1 to 40.2) 88.0 (45.6 to 130.5) 0.157 (0.009 to 0.305) 8.48 (-18.9 to 35.9) 

Retinal Thickness 168 (130 to 205) 393 (91 to 695) -0.374 (-0.675 to -0.072) 1.28 (-4.98 to 7.53) 

Table A2: Parameter Estimates (with 95%CI) for Weibull growth models. Estimates are bolded when significantly 

different from zero (based on 95%CI).  † Being relatively constant with age, a satisfactory Weibull model could not be fit for 

vitreous chamber depth. ‡ Since d is age of inflection point, the finding that d is significantly different from 0 argues that the 

population growth curve is at least somewhat sigmoidal over the age range analyzed. However, as exemplified by body weight 

(see Fig.A6), it may nevertheless be possible for a non-sigmoidal (e.g. logarithmic) curve to closely match a sigmoidal growth 

curve for most of postnatal life. 
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intervention improves abnormal outer retinal ion channel closure in diabetic mice. 

Molecular Vision, 18, 372-376. 

Berkowitz,B.A., Bissig,D., Ye,Y., Valsadia,P., Kern,T.S., Roberts,R., 2012. Evidence for diffuse 

central retinal edema in vivo in diabetic male Sprague Dawley rats. PLoS One, 7(1), 

e29619. 

Berkowitz,B.A., Bissig,D., Bergman,D., Bercea,E., Kasturi,V.K., Roberts,R., 2011. Intraretinal 

calcium channels and retinal morbidity in experimental retinopathy of prematurity. 

Molecular Vision, 17, 2516-2526. 

Bissig,D., Berkowitz,B.A., 2011. Same-session functional assessment of rat retina and brain with 

manganese-enhanced MRI, NeuroImage, 58(3), 749-760. 
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acoustic startle reflex testing. PLoS One, 5(12), e14260. 

Berkowitz,B.A., Roberts,R., Bissig,D., 2010. Light-dependant intraretinal ion regulation by 

melanopsin in young awake and free moving mice evaluated with manganese-enhanced 

MRI. Molecular Vision, 16, 1776-1780. 

Ivanova,E., Roberts,R., Bissig,D., Pan,Z.H., Berkowitz,B.A., 2010. Retinal channelrhodopsin-2-

mediated activity in vivo evaluated with manganese-enhanced magnetic resonance 

imaging. Molecular Vision, 16, 1059-1067. 

Berkowitz, B.A., Gradianu, M., Bissig,D., Kern, T.S., Roberts, R., 2009. Retinal ion regulation 

in a mouse model of diabetic retinopathy: Natural history and the effect of Cu/Zn 

superoxide dismutase overexpression. Investigative Ophthalmology & Visual Science, 

50(5), 2351-2358. 

Berkowitz, B.A., Roberts, R., Oleske, D.A., Chang, M., Schafer, S., Bissig, D., Gradianu, M., 

2009. Quantitative mapping of ion channel regulation by visual cycle activity in rodent 

photoreceptors in vivo, Investigative Ophthalmology & Visual Science, 50(4), 1880-

1885. 

Bissig, D., Berkowitz, B.A., 2009. Manganese-enhanced MRI of layer-specific activity in the 

visual cortex from awake and free-moving rats. NeuroImage, 44(3), 627-637. 

Berkowitz,B.A., Roberts,R., Luan,H., Bissig,D., Bui,B.V., Gradianu,M., Vingrys,A.J., 2007. 

Manganese-enhanced MRI studies of alterations of intraretinal ion demand in models of 
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In healthy aging, visual function declines throughout adulthood. Age-related changes in 

neuronal ion homeostasis — specifically, increased Ca
2+

 influx through L-type voltage gated 

calcium channels (L-VGCCs) —  are believed to contribute to certain functional declines, but 

this possibility has not yet been tested in the neural retina. In young, mid- and old adult Long-

Evans rats, we compared visual function (optokinetic tracking), as well as retinal physiology and 

eye morphology (Mn
2+

-enhanced MRI (MEMRI), which uses neuronal Mn
2+

 uptake as a marker 

of Ca
2+

 influx). We documented significant age-related decreases in visual performance and 

increases in retinal ion influx. We confirmed that Mn
2+

 uptake was regulated by L-VGCC using 

systemic and topical application of the L-VGCC antagonist nifedipine, and discovered an age-

related change in sensitivity to L-VGCC blocker diltiazem. Based on Western blot studies, we 

find this sensitivity change to be consistent with the age-dependant appearance of drug-

insensitive L-VGCC isoforms. Longitudinally, rats starting the study with relatively high retinal 

Mn
2+

 uptake, compared to other cohort members, experienced significantly greater declines in 

contrast sensitivity in the ~4.5 mo following MRI. Independent of that relationship, rats starting 

the study with relatively large eyes experienced significantly greater declines in contrast 
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sensitivity. The latter finding suggests that particularly rapid juvenile or young-adult growth is a 

risk factor for particularly rapid senescence. Longitudinally, we found no evidence of retinal 

volume loss, and found that changes in retinal volume were not correlated with changes in visual 

function — suggesting that age-related vision declines cannot be explained by neuron loss. In 

summary, our longitudinal studies identify two previously-unknown risk factors for age-related 

vision declines: rapid eye growth in early life, and age-related changes in L-VGCC-dependent 

retinal ion physiology.   
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