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Chapter 1 

Introduction 

1.1. Parkinson's disease: 

Parkinson's disease (PD), first described by Dr. James Parkinson in 1817 as shaking 

palsy, is a multifactorial progressive neurological disorder that results from the 

degeneration of dopaminergic neurons in the substantia nigra pars compacta 

(SNPc) region of the brain1. The presence of α-synuclein aggregates called Lewy 

body (LBs) or Lewy neuritis (LN) are pathological hallmark of PD.  LBs or LN are 

responsible the degeneration of dopaminergic neurons in the substantia nigra (SN) 

region of the brain. It is estimated that PD affects 1-2% of the people older than 65 

years of age. Common symptoms associated with PD include rigidity, bradykinesia, 

resting tremors, postural instability, and cognitive psychiatric complications3. The 

severity and symptoms  of PD varies according to the satge of the disease4.  PD also 

has symptoms of depression as well as dementia.  

1.2. Statistics about the Parkinson's disease:  

PD is the second most-prevalent neurodegenerative disorder in the western world 

after Alzheimer's disease. According to a statistical analysis published by the PD 

foundation, approximately 60,000 Americans are diagnosed with PD each year, and 

an estimated seven to ten million people worldwide are living with PD. PD afftects 

1% of the population at age 65 to 5% at age 85 5. Incidence of PD increases with 

age, but about 15% of people with the condition develop "young-onset" PD before 

reaching at the age 50. Men are more prone to have Parkinson's than women. Most 

cases of PD are sporadic, which means, it occurs in people with no apparent history 
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of the disorder in their family. However, approximately 15 percent of people with PD 

have a family history of this disorder. The research from the past two decades in PD 

area has provided more insights into the basic pathogenetic factors of PD such as 

roles of oxidative stress, aggregation of ASN protein and the presence of iron. The 

cost of PD treatment, is estimated to be nearly $25 billion per year in the United 

States alone.   

1.3. Pathogenetic Factors of PD:  

The pathological fetaures of PD are the progressive degeneration of the 

dopaminergic neurons in the substantia nigra which projects into the striatum and 

the presence of ASN aggregates known as LBs or LN in the DA neurons. Presence 

of ASN aggregates LBs represents an underlying similarity of PD pathogenesis with 

other neurodegenerative diseases such as AD. Although the etiology of PD is not 

known yet, It has been shown that both mitochondrial dysfunction and oxidative 

stress are interdependent and thus, emphasizing a central role in the pathogenesis 

of the disease process2, 6. Oxidative stress and excessive amounts of metals 

especially iron can lead to the formation of reactive oxygen species (ROS). These 

mitochondria-derived ROS inhibits mitochondrial respiration and promotes the 

aggregation of alpha synuclein protein (aSN), which ultimately forms LBs and LN2. 

Pathological features of PD appear when about 75 % of the nigral dopaminergic 

neurons are degenerated7. The research from the past two decades in PD area has 

provided more insights into the basic pathogenetic factors of PD such as roles of 

oxidative stress, aggregation of ASN proteins in the form soluble toxic aggregates 

and fibrils, and increased concentration of iron in the PD brain etc8. 



3 

 

 

Figure 1. The Dopamine Pathways in the Brain.  (Source: CNS Forum.com) 

1.3.1. Oxidative Stress Hypothesis: 

Cellular oxidation produces superoxide anion (O2
.-), hydrogen peroxide (H2O2) and 

hydroxyl radical (OH.) which are collectively known as ROS. Oxidative stress is a 

redox imbalance with an excess formation of ROS or  deficiency in antioxidants 

mechanism of the body9. Oxidative stress has been implicated in the pathogenesis 

of many neurodegenerative diseases besides Parkinson's disease (PD). The brain is 

more susceptible to damage by ROS because of the presence of high amount of 

polyunsaturated fatty acids, low level of antioxidants and elevated amount of iron in 

the specific regions of the brain.   

1.3.1.1. Excessive formation of ROS:  

It has been shown in the literature that ROS derived from combined presence of 

dopamine; low GSH and high iron are major culprits of dopaminergic neuronal loss. 

Dopamine is chemically unstable and undergoes auto-oxidation to form dopamine 

quinones, and free radicals (figure 2). Auto-oxidation of dopamine may be increased 
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in the early stages of the disease because of the increased turnover of DA to 

compensate for dying dopaminergic neurons. 

 

Figure 2. Structures of different auto-oxidation products of dopamine. 

Monoamine oxidase, specifically MAO-B catalyzes the oxidative deamination of 

dopamine in the substantia nigra and striatum and forms hydrogen peroxide as 

major by-product (Figure 3). The level of MAO-B enzyme increases with age.10 

Moreover, H2O2 produced in the glial cells can cross into the nearby dopaminergic 

cells, where it can potentially react with free iron and produces toxic hydroxyl radical 

which can damage cellular components.    

 

Figure 3. Dopamine metabolism by enzyme monoamine oxidase (MAO). 

There is a substantial role of iron in oxidative stress in PD brain. The iron content of 

the SN is elevated in the PD brain as compared to normal person, which leads to 

enhance conversion of H2O2 to OH radical via the Fenton reaction and favors the 

Haber Weiss cycle (Figure 4).  
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Figure 4. Fenton reaction by which H2O2 forms hydroxyl radical in iron rich 

environment. 

Reactive nitrogen species such as NO and its metabolite peroxynitrite (PN) may also 

play a major role in PD. NO is known to inhibit complexes I and IV of the 

mitochondrial electron transport chain.  

1.3.1.2. Decreased detoxification of free radicals: 

Cellular oxidation produces H2O2 and free radicals, which are counterbalanced by 

the body’s antioxidant mechanisms, such as by glutathione peroxidase, catalase, 

and superoxide dismutase. Depletion of GSH has also been reported to result in 

inhibition of glutathione reductase activity11. The peroxisomes contain catalase 

enzyme which decomposes hydrogen peroxide and their H2O2 neutralizing capacity 

can be compromised during pathological conditions. This leads to the release of 

H2O2 into the cytosol which can contribute to oxidative stress (Figure 5). GSH loss 

and alteration of the cellular redox state can lead to decrease of the GSH/GSSG 

ratio.  

 

Figure 5.  Proposed pathway for the production of quinones from RNS. 



6 

 

1.3.2. Protein aggregation:  

The mitochondria-derived ROS inhibits mitochondrial respiration and promotes the 

aggregation of alpha synuclein protein (ASN), which ultimately forms lewy bodies 

(LBs) and lewy neuritis (LN)2. LBs and LN are neuropathlogical hallmark of PD and 

toxic toward dopaminergic neurons. The common observations for the involvement 

of ASN aggregation in PD are:  ASN is a component of Lewy bodies which is the 

cardinal hallmark of PD pathology2. Second, familial early onset of PD is caused by 

over-expression of ASN due to mutation of SNCA gene 12, 13. Third, ASN forms toxic 

oligomers or fibrils. Currently it is not known how the aggregation of ASN triggers 

cell death, but it has been postulated that soluble oligomeric form of ASN, known as 

protofibrils, are the major culprit.  

PD is associated with mitochondrial dysfunction, and oxidative stress. Over 

expression of ASN in hypoththalamic tumor cell line (GT1-7) causes mitochondrial 

dysfunction, which can lead to the formation of reactive oxygen species (ROS), and 

finally, cell death.14 Raised level of ASN can also damage Lysosomes and Golgi 

apparatus. Furthermore, increased human ASN expression in transgenic flies 

(Drosophila) is associated with loss of dopaminergic neurons, formation of 

intracellular inclusions and locomotor dysfunction. 15  

1.3.2.1. Structure and functions of ASN:  The name ‘synuclein’ was coined in 

1988 by Maroteaux et al. ASN was originally identified in the electric organ of the 

Pacific electric eel Torpedo California. 16 Antibodies against that protein labeled both 

synapses and nuclei, which coined the name of synuclein. In human, there are three 

synuclein family members (α-,β-,γ-) and all the synuclein genes are relatively well 

conserved both within and between species.. Synuclein has overall 44% identity, β –
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synuclein shares 78% identity with ASN and γ –synuclein shares 60% identity with 

ASN17. All three members (α-,β-,γ-) of synuclein family are presynaptic neuronal 

proteins, there are some evidences of involvement of extranigral β- and γ- synuclein 

in synulceinopathies18. ASN is expressed at high level in the brain but it is also 

found, for unknown reasons, in erythrocytes and platelets19. The SNCA gene 

encodes ASN, composed of 140 amino acid, which in aqueous solution does not 

have defined structure, but it can form α- helical structure on binding to the lipids, 

and  β-sheet structure on prolong period of incubation.   

Primary structure of ASN can be divided into three regions:  the amino terminal 

region (1-60), which  contains 11- amino acid imperfect repeat with a conserved 

motif (KTKEGV), this region confers the propensity to form α- helical structure on 

membrane binding,  the central region (61-95) which is composed of extremely 

hydrophobic NAC (non-Aβ component of Alzheimer’s disease amyloid), which 

provides the β- sheet potential on  prolong period of incubation, and the highly 

conserved C-terminal region (96-140), which is responsible for chaperone property 

of ASN17.     

The functions of ASN are unclear but due to it’s association with synaptic vesicles 

the main function seems to release of neurotransmitter through the effect on SNARE 

complex 20 . It has been postulated that ASN can play a role in synaptic plasticity, 

and it regulates specific pool of synaptic vesicles to modulate synaptic function in 

brain17,21 . ASN may act as a protein chaperon to protect the cell against the stress 

induced death, 22 and it may be associated with the non-motor symptoms of PD23. 
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                                       Figure 6.  Primary structure of ASN. 

1.3.2.2. Theories of ASN propagation:  ASN is present not only in intracellular 

compartment but it could be detected in the extracellular fluids like in plasma and 

CSF.  In PD, ASN aggregates in the central nervous system (CNS) first appear in the 

lower brain stem nuclei, and spread sequentially into the mid brain, followed by 

mesocortical and neocortical regions24. This progression can be either due to 

aggregation in each cell and in each brain region independent of each other. 

Alternatively, protein aggregates may form in different areas of brain during the 

earlier stages, then may be transmitted to the other area by a mechanism like to 

prion propagation. Apart, form that small amount of ASN is released from the cell via 

exocytosis, and this release increases under the stress condition.  

ASN, either monomer or in aggregated form, can leave cells via multiple mechanism 

like secretion, exocytosis, impairment of autophagy-lysosome pathway, or via 

exosomes etc 25. Once ASN leaves the donor cell, it can reach to the recipient cell 

either direct cell to cell transfer or through the tunneling nanotubes (TNTs). It can 

gain access to the recipient cell by directly interacting with lipid and membranes, or 

by passive diffusion. These aggregates of ASN are packaged into endocytic vesicle, 

but due to their lipid bilayer disrupting activity they can gain access to the cytosol. 

Due to the nucleation or seeding activity of the released ASN, it can induce the 

aggregation of cytoplasmic ASN protein, and it can also lead to the impairment of 

the proteasome activity in the recipient cell 25 . 
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Figure 7. Model of ASN cell to cell transfer. (Source: Reference 25) 

1.3.2.3. Pathogenic effects of ASN: Overexpression of ASN can lead to the 

neurotoxicity in cell culture and in vivo animal model, inhibits neurotransmitter 

release by reducing in the size of synaptic vesicle recycling pool, and remarkable 

changes in SNARE protein20,26,27. PD can result from high activity of L-type Ca2+  

channel that increases cytoplasmic Ca2+, which can upregulate DA synthesis, and 

further interaction of DA with ASN lead to the formation of toxic oligomeric species28. 

At low concentration, both wild and mutant ASN oligomers but not the monomeric 

form, can change the permeability of vesicular membrane by forming the pores like 

structures on the membrane which may cause excessive influx of calcium29. 

Overexpression of ASN in PC12 cells can change vesicular pH which leads to the 

release of excessive neurotransmitter like dopamine, which may turn into the 

oxidative stress induced cell death30.  

Double labeling immunofluorescence revealed that tubulin co-localize with  ASN in 

Lewy body, infect, tubulin can accelerate ASN aggregation31. ASN can enhance the 

tau phosphorylation because of its interaction with tubulin protein. ASN can also 
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affect cellular trafficking and synaptic functions. ASN either WT or mutant can cause 

proteasomal and lysosomal dysfunction, furthermore WT α-synuclein can reduce 

autophagy20. ASN interacts with the histone protein in the nucleus, and reduces the 

histone acetylation.  

1.3.2.4. Aggregation potential of ASN:  ASN intrinsically may exists as monomeric 

or in tetrameric form which is not completely known yet32, 33. Wild type and mutants 

of ASN (A53T and A30P), do not form significant secondary β sheet structure in 

aqueous solution at low concentration, however, at high concentration they are 

prone to self aggregates. The mutant form, particularly A53T form, can aggregate at 

rapid speed because this mutation disrupts the α helical structure. The fibrillation is a 

nucleation polymerization process, which can be divided into an initial lag phase, 

followed by the exponential growth phase, and an equilibrium phase. During this 

process initially soluble oligomeric species (oligomers or protofibrils, 6-8 nm in 

diameter)  of ASN  can take various shapes like spherical or ring. Protofibrils 

become insoluble and associate with each other into fibril (10 nm and above). Some 

of these intermediate species can be observed on SDS/polyacrylamide gel while 

other forms can be separated on native gel or by size exclusion chromatography. 

There is no general consensus that which species, either soluble or insoluble form, 

is more neurotoxic but a general hypothesis is that early soluble species are more 

hazardous than the fibril. Fibrillation rate mainly depends on concentration, presence 

of other metals, pH, and temperature.  

Lansbury Jr. et. al.34, demonstrated that fibril generated invitro from both the wild 

type and mutant (A53T, A30P) ASN, posses very similar features like amyloid fibril. 

Upon incubation of WT as well as mutant ASN forms fibril in size range of  8-10 nm 

in height and 10 nm in width as well as some spherical species of 4 nm in height. 
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While the size of fibril can be same for both WT and mutant protein but the 

morphology can varies from one type of ASN to another. This fibril can be stained 

with the antibody preparation that stains LB in PD patient. Upon incubation of α-SN 

the minimum at 200 nm in CD disappears with simultaneously appearance of β- 

sheet characteristic minimum at 220 nm. The antiparallel β-sheet structure can be 

confirmed by amide I band at 1626 cm-1  and amide II band at 1693 cm-1  in IR 

spectroscopy. The fibrillar structure of ASN can further confirmed by it’s binding to 

the dye Congo red and ThT.  The absorption spectrum of Congo red shifts from 490 

nm to 540 nm in presence of fibril α-SN while fibril of ASN can detected by strong 

increase in ThT signal at 490 nm upon excitation at 450 nm.) 

Several mechanisms have been proposed for α-synuclein aggregation but oxidative 

stress and ubiquitin proteasome system (UPS) inhibition are most validated till now 

22. Metabolism of Dopamine (DA) in the nigral neurons produces reactive oxygen 

species (ROS) and other highly reactive species like DA-quinone (DAQ). Both DA 

and DAQ can interact with specific amino acid of ASN, probably with lysine, and 

inhibit further conversion of protofibrils to mature fibril both in vitro and in vivo. 

Overexpression of ASN, especially its mutant form may enhance the vulnerability of 

neurons to DA induced cell death due to excessive generation of intracellular ROS. 

This dopaminergic specificity of ASN neurotoxicity can be inhibited by the specific 

TH inhibitor, α-methyl-p-tyrosine, in the cultured dopaminergic neurons35. It has 

been shown in literature that wild type α-synuclein over expression in cells may 

regulate the dopamine synthesis by acting on several enzymes like tyrosine 

hydroxylase (TH) or DOPA decarboxylase. 
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Figure 8. Schematic representation of interaction of ASN with dopamine quinone 

UPS is the one of the major biochemical pathway responsible for degradation of 

normal and abnormal intracellular protein. It has been shown in literature that 

ubiquitin-dependent protein degradation may be impaired in many 

neurodegenerative disease like PD and diffuse LB Lewy body disease (DLBD), 

which leads to the accumulation of polyubiquitinted chains of LB- ubiquitin in the 

substantia nigra pars compacta region of brain22. 

There are literatures evidences that altered metal homeostasis can lead to the loss 

of dopaminergic neurons in the SN region of brain. In this regards iron is the central 

point of attention because it is the most abundant metal of the body and it has been 

found that total nigral iron level is increased in PD brain compared to the controls. 

Metals especially iron can lead to the fibrilization of ASN either via the release of 

long-range interaction between N- and C- terminus region of ASN or  metals like iron 

can lead to generate hydroxyl radicals by Fenton reaction which can further cause 

oxidation of α-synuclein known as metal catalyzed oxidation (MCO) 36. Interestingly, 
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phosphorylation at Tyr125 or at Ser129 can increase trivalent metal binding to the C- 

terminus of  α-synuclein. 

ASN can bind to Cu2+  via several binding site, the  Cu2+ complex with ASN 

promotes formation of ASN oligomers, which are cytotoxic in nature towards the 

SHSY-5Y neuroblastoma cell. Due to the low redox potential of ASN - Cu2+ complex, 

it can oxidize certain cellular reductant like ascorbic acid, GSH etc., which leads to 

generate H2O2 37. DA cannot be oxidized by ASN -Cu2+ complex but the H2O2 can 

oxidize DA into the corresponding quinone form.  

1.3.3. Mitochondrial dysfunction: 

Normally during oxidative phosphorylation, electrons are transferred to molecular 

oxygen and H2O is produced by complex IV. However, 1-2 % of oxygen that is not 

reduced at complex IV is reduced nonenzymatically to superoxide (O2
-.) and H2O2 by 

electrons that leak from the sites in ETC. In PD brain, there is a site of electron leak 

in complex I of the ETC. It has been found that several neurotoxic agents, such as 

rotenone, paraquat and MPP+ inhibit complex I and enhance ROS production. Local 

ROS can further damage complex I of the electron transport chain which further 

cause degeneration of neurons in the substantia nigra3.  
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Figure 9: Mitochondrial pathway of MPP+ induced toxicity 

1.3.4. Role of iron in PD pathogenesis:  

There is pivotal role of iron in production of oxidative stress in PD brain. It has been 

reported that iron concentration in PD barin  is 10 to 20 times more than its need for 

the normal physiological functions38. Iron along with H2O2 can undergo 

nonenzymatic fenton reaction to produce hydroxyl radical. The autoxidation of 

dopamine can leads to formation of neuromelanine in the SN region of brain 39, 40. 

Iron in the form of Fe3+ can bind to melanine. Further, melanine can augument 

hyrdoxy radical radical formation. Overall, increased concentration of iron along with 

increased concentration of H2O2 from dopamine metabolism leads to enhance the 

vulerabiltiy of SN neurons towards oxidative stress. The level of non heme iron 

concentration increases with age in SN region of the brain41, 42. It has been shown in 

the literature that amount of iron contenet in directly correlated with motor 

dysfunction 43, 44, 45.  Further, treatment with MPTP and 6-hydroxy dopamine raises 

iron level in the specific region of brain  46, 47.  
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Figure 10.  Iron and oxidative stress hypothesis of Parkinson’s disease. (Source: 

Reference 41) 

1.4. Therapy in PD: 

1.4.1. Levodopa Therapy: 

Levodopa (L-DOPA) became available in 1960s for the treatment of PD and is still 

being considered as one of the main stream therapies 48. L-dopa administration 

causes a dramatic improvement in the symptoms of PD. However, in long L-dopa 

administration is associated with major side effects abnormal involuntary 

movements, dyskinesia, freezing, dementia, etc49. L-dopa can provide the prominent 

symptomatic effect but cannot stop the progression of underlying disease progress. 

50 The L-dopa derived dopamine accelerates dopaminergic neuronal degenreration. 

7. Over the years, several strategies have been developed tocomabt this problem. 

Dopamine agonists have been used as an adjunct to L-dopa therapy to reduce 

oxidative stress as well as L-dopa related motor complications. Ddopamine agonists 

control DA synthesis by interacting with DA autoreceptorsFurthur, clinical studies 

has shiwn the promising results with DA agonist monotherapy alone 51 . However, 

dopamine agonist monotherapy in early stage of PD patients reduces the motor 

symptoms but eventually patient need L-dopa treatment. The advantage of 

treatment with dopamine receptor agonists in early PD is that it delays the initiation 

of L-dopa therapy. The advantage of using combination therapy of dopamine 

agonists and L-dopa is that it slows down the increase of L-dopa dose. Therefore, 

the motor complications associated with the use of L-dopa are much less in 

combination therapy. So, the current strategy of PD therapy is to delay the initiation 

of L-dopa therapy, slow down the increase of L-dopa requirement or extend the 
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period of L-dopa treatment. Clinical studies showed initial therapy with MAO-B 

inhibitors delays initiation of L-dopa therapy. Catechol-O-methyl transferase (COMT) 

inhibitors inhibit the peripheral metabolism of L-dopa, thereby increasing the half life 

of L-dopa in the brain. However, none of these strategies address the limitations of 

L-dopa. Therefore, the need of therapeutic agent which will have disease modifying 

effect, is of paramount importance49.  

1.4.2. Neuroprotective therapy: 

The development of a neuroprotective therapy that slows, stops, or reverses 

neurodegeneration in PD is the paramount choice of treatment. Current therapies of 

PD provide only symptomatic treatment without addressing the basic pathogenetic 

factors of the disease. Critical pathogenetic factors like oxidative stress, ASN 

aggregation, mitochondrial dysfunction, and excessive amount of iron are majorly 

responsible for PD. Therefore, multifunctional drug therapy, a drug while providing 

symptomatic relief also act as ASN aggregation modulator, antioxidants, iron 

chelator and neuroprotective can be evaluated as possible drug candidates for the 

treatment of PD.   

1.4.2.1. The use of dopamine agonists as neuroprotective therapy in PD: 

1.4.2.1.1. L-dopa sparring strategy: 

Dopamine agonists can delay the introduction of L-dopa for months to years. 

Therefore, dopamine agonists can be used to decrease the cumulative L-dopa dose 

taken by PD patients over the course of the illness. The administration of lesser 

amounts of L-dopa gives rise to a lower level of ROS formation, resulting in less 

oxidative stress that ultimately cause neuronal degeneration. Studies in PD animal 
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models have demonstrated that the levels of striatal dopamine and their metabolites 

are significantly higher in animals treated with L-dopa compared to the level of 

dopamine agonists, despite comparable behavioral effects52. 

1.4.2.1.2. Stimulation of dopamine autoreceptor: 

Dopamine D2/D3 receptors are located both pre and post synaptically. Dopamine 

D2/D3 receptor agonists have the potential to stimulate presynaptically located auto 

receptors on dopaminergic neurons and thereby inhibit dopamine synthesis, release 

and metabolism to form ROS53. In vitro studies demonstrated that the addition of the 

dopamine receptor agonist pramipexole to cultured dopaminergic neurons induces a 

dose dependant decrease in dopamine concentration in the medium54. In vivo 

studies have similarly shown that a variety of dopamine agonists, including 

apomorphine, quinpirole, and pramipexole, can decrease in vivo dopamine turnover, 

as determined by (DOPAC+ HVA)/Dopamine ratio as well as dopaminergic neuronal 

firing54. 

1.5. An Overview of dopamine receptor system: 

DA neurons and their associated receptors have long been known to be implicated 

in the pathogenesis of PD. The DA receptors, phylogenetically classified as 

members of the biogenic amine receptors and part of the “rhodopsin-like” sub-family, 

belong to the super-family of membrane-bound proteins, termed G-protein coupled 

receptors. Until 1990, the DA receptor population of the brain and periphery was 

believed to consist solely of two subtypes, D1 and D255.Cloning of these two 

receptors led to the discovery of several additional low-abundance DA receptors, 

including the D3, D4 and D5 subtypes. Extensive studies on these two receptor 

systems by various in vitro and in vivo techniques including behavioral, 



18 

 

physiological, neurochemical, pharmacological and molecular approaches revealed 

some of the basic properties of these two receptor systems.  

The D1-like receptors, including D1 and D5, were found to be related by their 

stimulatory nature, thereby activating the second messenger enzyme, adenylyl 

cyclase, to produce cAMP. In contrast, D2-like receptors, including D2, D3 and D4, 

are negatively coupled to adenylyl cyclase and the production of cAMP56. Both D1 

and D2 receptors exist in high affinity states for dopamine agonists. The cloning of 

the D3 receptor, initially undertaken by Sokoloff and colleagues, using cDNA from 

rat and probes derived from the D2 receptor sequence, became of particular interest 

due to new hypotheses that proposed the D3 receptor as a therapeutic target for 

neuropsychiatric disorders and PD. 

 

Figure 11.  Characterization of Dopamine Receptors in CNS.                                                             

(Goodman & Gilman's, The Pharmacological Basis of Therapeutics, 12ed, 13.7) 

1.5.1. human D2 and D3 receptor- A Comparison: 

Human dopamine D2 (hD2) and D3 (hD3) receptors display considerable amino acid 

sequence similarity/identity. In the case of D2 receptor, three different splice variants 
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have been revealed the D2 short, long and longer form contain 414, 443 amino 

acids, and 445 amino acids, respectively 57, 58. The difference in the length of the 

splice variants causes a difference in the length of the huge intracellular (IL3) loop. 

However, the wild type D3 receptor in humans does not have any splice variants that 

are functional57. Interestingly, the difference in the length of IL3 in D3 receptor in 

mice causes two splice variants59, 60. The overall amino acid sequence similarity is 

50 % between D2 and D3 receptor, which represents a very high number in terms of 

similarity. That number increases to 90% in ligand recognition sites between two 

receptors61. Some important residues are located in the binding site crevice. These 

include Ser (192) and Ser (196), which are located in transmembrane domain V and 

forms bifurcated hydrogen bonds with the two hydroxyl groups of catechol.  Asp 

(110) may participate in salt linking with the amine groups of monoamines. In 

addition, the location and orientation of Ser (192/196) and Asp (110) appear to allow 

for optimal bonds with oxygenated 2-aminotetralins, such as 7-hydroxy- 

dipropylaminotetralin (7-OH-DPAT). This may explain why these compounds show 

higher D3 affinity over D2. 

Both hD2 and hD3 receptors possess a large third intracytoplasmic loop and a short 

carboxyl-terminal tail, a characteristic of receptors that couple to the Gαi/o subfamily 

of G proteins. Activation of D2 and D3 receptors inhibit dopamine synthesis in a 

dopamine producing cell line, while D2 receptor mediates robust inhibition of cAMP 

accumulation, whereas inhibition of cAMP accumulation by the D3 receptor is 

modest or absent. This indicates a weak coupling of the D3 receptor with inhibitory 

G-proteins.62-65  

In general, dopamine and several dopaminergic agonists have a higher affinity for 

hD3 than for hD2 receptors, whereas the affinity of antagonists is usually slightly 
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higher for hD2 receptors (Sokoloff et al., 1992). The distribution of hD3 receptors in 

the brain seems to be confined to the mesolimbic areas, whereas hD2 receptors are 

found in all dopaminergic brain areas66. In situ hybridization studies in rat brain 

demonstrate that mRNA for the D3 receptor appears to be expressed preferentially 

in limbic brain regions. High levels of D3 mRNA are observed in the islands of 

Calleja, nucleus accumbens and olfactory tubercle.  Distribution of D3 mRNA and 

localization of the encoded receptors was found to be similar in the rat and human 

brain, although D3 receptor localization in human brain is somewhat less restricted 

with moderate amounts of D3 receptor found in the basal ganglia and cortical 

regions.   

1.5.2. Significance of D3 receptors in PD: 

Although it has been assumed that D2 receptor stimulation is necessary for 

antiparkinsonian activity, DA agonists used in the treatment of PD have higher 

affinity for the D3 receptor. It is thought that mesolimbic D3 receptors could play a 

role in antiparkinsonian relief, as the limbic striatum is known to be involved in 

aspects of movement, such as goal-directed behaviors and locomotor activity. 

Locomotor stimulatory activity is observed in 6-OHDA-lesioned rats at the same 

doses of D3-preferring agonists that are inhibitory in normosensitive rats, suggesting 

that D3-preferring agonists may be a viable option for antiparkinsonian treatment of 

DA-depleted animals.  

Most neuroprotection studies are conducted using the well known D3 receptor 

selective agonist pramipexole, which indicates a possible connection of 

neuroprotection with D3 preferring agonism.67 In two separate clinical trials, D3-

preferring agonists, pramipexole have proved to be the most potent neuroprotective 
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agents identified to date against MPTP and 6-OHDA-induced toxicity in mice and 

primates. Recent studies showed that pramipexole and talipexole can prevent 

neurotoxicity produced by L-dopa in mesencephalic cultures68 and by MPP+ in 

neuroblastoma cell line SH-SY5Y69. In terminally differentiated SH-SY5Y cells, in 

which D2 and D3 receptors are expressed, pretreatment with pramipexole 

demonstrated that: (1) pramipexole is neuroprotective with pretreatment; (2) the 

neuroprotection is not due to antioxidant properties; (3) neuroprotection is not 

mediated through DAT and (4) neuroprotection occurs via D2/D3 receptor-mediated 

mechanisms. It has been suggested that D3 receptor-mediated induction of 

neuroprotective factors, such as BDNF and Bcl-2, may be responsible for the 

protective actions of D3-preferring agonists. 

1.6. Receptor independent neuroprotection: 

Chronic, L-dopa therapy is thought to be neurotoxic due to oxidative species that are 

produced as a by-product of DA metabolism. Increased DA metabolism may 

overwhelm natural antioxidant defenses, such as glutathione, catalase and 

superoxide dismutase, thereby destroys DA cell. Assuming that oxidant stress 

hypothesis is correct; DA agonists that bypass oxidative DA metabolism should be 

neuroprotective. Interestingly, many studies with D-3 preferring agonists have 

concluded that the antioxidant capacity, rather than the agonist activity, is 

responsible for the neuroprotective actions of these drugs. D3-preferring agonists 

can decrease DA synthesis and release by D3 autoreceptor activation, which would 

decrease DA metabolism and overall ROS load. In rostral, mesencephalic tissue 

culture, pramipexole and other D3-preferring agonists have shown the ability to not 

only reverse the progressive loss of cells in culture over time, but also to increase 

cell proliferation. The inactive, R-(+) enantiomer of pramipexole was found to be as 
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potent as the active, S-(-) enantiomer in inhibiting mitochondrial permeability 

transition, along with reducing caspase activity and apoptosis 70.  

In addition, there are reports that indicate the ability of ropinirole to increase the 

concentrations of glutathione, catalase and superoxide dismutase71. The 

heterocyclic rings in pramipexole, ropinirole, quinpirole might be responsible for their 

free radical scavenging effects.  But, the amount of drug needed to impart 

antioxidant effect is quite high, often in micromolar range, which is not achievable 

during routine use of these drugs in PD patients to alleviate symptoms. Therefore, it 

is ambiguous whether the direct antioxidant properties of dopamine receptor 

agonists can cause neuroprotection or not72. 

1.7.  Receptor dependent neuroprotection: 

Pramipexole was shown to significantly attenuate L-dopa-induced, tyrosine 

hydroxylase immunoreactive (THir, a marker for dopamine neurons) cell loss in a 

dose-dependent fashion (ED50 = 500 pM). Due to the fact that pramipexole displays 

antioxidant activity in the micromolar range, a receptor-mediated mechanism for this 

neuroprotection has been postulated. D3-preferring antagonists were shown to 

dose-dependently inhibit the neuroprotective action of pramipexole. Taken together, 

these data suggest that D3 receptor activation is, at least, partially responsible for 

the neuroprotective effects of pramipexole. Interestingly, treatment of primary 

mesencephalic cultures with pramipexole was found to increase the expression of 

Bcl-X1 and reduce the neurotoxicity of L-dopa. Literature evidences suggest that 

pramipexole, by increasing Bcl-X1 expression, is able to stabilize the mitochondrial 

transition pore73. Pramipexole was found to attenuate TNFα-induced THir cell loss in 

mesencephalic cultures. Pramipexole may be able to block neurodegenerative 
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actions of inflammatory cytokines, in addition to its functions as a D3 receptor-

preferring agonist and antioxidant. Therefore, D3 receptor-preferring agonists may 

exert their neuroprotective properties through a number of mechanisms, including 

receptor-dependent and receptor-independent pathways.  

A growing area of neuroprotection research is that of the endogenous production of 

neurotrophic factors. GDNF, BDNF and fibroblast growth factor (FGF) have proved 

in preclinical studies to promote the survival and growth of DA neurons. 

Neurotrophic factors are able to protect DA neurons exposed to neurotoxins, 6-

OHDA and MPP+. The mechanism by which neurotrophic factors exert their effects 

has not yet been clearly identified. Dutta et al.74, have recently developed D-264, a 

D3 receptor-preferring agonist, which has shown promise as a neuroprotective 

therapy in two in vivo PD animal models. In MPTP- and lactacystin-treated mice, 

pretreatment with D-264 has been shown to: 1) increase BDNF and GDNF levels 2) 

dose-dependently increase the number of TH-positive neurons; 3) significantly 

attenuate lactacystin-induced inhibition of proteasome activity; 4) inhibit pro-

inflammatory, microglia activation; and 5) dose-dependently reduce the activation of 

astrocytes. Importantly, D3-selective antagonist, U99194, significantly altered the 

neuroprotective effects of D-264, indicating a significant role for D3 receptors in its 

neuroprotection. D3-preferring agonists have also been explored for their ability to 

induce neurogenesis.  

1.8. Clinical trial of neuroprotection in PD with dopamine receptor agonists:  

The first major neuroprotective clinical trial was the DATATOP study, this was 

designed to assess the neuroprotective effects of a combination therapy of selegiline 

and vitamin E75. The time period until patients required L-dopa treatment was 
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compared in each group. It was found that combination therapy delayed the initiation 

of L-dopa treatment significantly. Another study was carried out to assess the 

potential neuroprotective effects of seligiline where untreated PD patients were given 

seligiline along with a symptomatic dopaminergic agent. The outcome of this study 

proved seligiline to be neuroprotective. As there is a reduction in mitochondrial 

complex I level in PD, coenzyme Q10 was also used in clinical studies to see if it has 

neuroprotective effects. The outcome of this study showed neuroprotective effect of 

this drug. Clinical trial has also been undertaken on Pramipexole and Ropinirole, 

dopamine D3 receptor selective agonist. In this study, patients were treated with 

either dopamine agonist or L-dopa. The end point determination of this study was 

challenging because of the intervention of the symptomatic effect of the drugs. After 

careful interpretation of the results using various techniques including single photon 

emission tomography etc, it has been found that dopamine agonists are 

neuroprotective, though some limitations in this study apply76.  
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Figure 12. Structure of D2/D3 selective agonists with preferential selectivity at D3. 

In summery, there is no therapy available that can either stop the disease 

progression or restore the dopaminergic neuronal system back to normal condition. 

Therapy for PD includes symptomatic treatment which is necessary to give relief to 

the patients. Besides that neuroprotective therapy can also be provided to delay 

disease progression. The symptomatic therapy can be combined with 

neuroprotective therapy in a MTDL by designing drug candidate that has agonist 

property (to alleviate symptoms) as well as antioxidant property (one of the most 

powerful ways to provide neuroprotection). It will be an added significant advantage 

if iron chelating property can also be incorporated in the MTDL treatment strategy. 

1.9. Modulation of ASN aggregation as a therapeutics target to treat PD:  
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ASN aggregation is one of the leading causes of neuronal dysfunction and death in 

PD. The modulation of its aggregation is emerging as a novel therapeutic target to 

treat PD.  Assuming toxicity arises from aggregated form of ASN, possible 

therapeutic strategies are depicted in figure 13. There are two major aspects that 

might be targeted therapeutically first, protein is prone to aggregate so anti-

aggregative or compounds that can break the preexisting aggregates may be 

helpful. Second, there are number of molecular events like aggregation propagation 

or accumulation of aggregates may contribute to toxicity, so these may be targeted 

therapeutically as well.  

 

Figure 13. Possible Therapeutics Pathways to Modulate ASN aggregates 

 

1.9.1. Small molecules as a possible modulator of ASN aggregation:  

1.9.1.1. Effect of various polyphenolic compounds on ASN aggregation:  In last 

decade small organic molecules, specifically polyphenols have been extensively 

tested for their ability to inhibit ASN aggregation. It has been clearly shown that 

certain polyphenols can dramatically inhibit cell death induced by ASN aggregates. 

Fruits like black tea, red wine, berries etc., are rich source of polyphenols. The daily 
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average polyphenols intake is difficult to estimate, but it is supposed to be 200-500 

mg per day. Most of the polyphenols due to their potent antioxidant nature are 

salubrious. They are able to reduce highly oxidizing free radicals by hydrogen atom 

donation.  

Where POH indicate polyphenols and R .  represents free radicals . The PO.   can 

further  react with second radical which lead to the formations of stable quinone 

structure as shown in figure 14. 

  

Figure 14. Scavenging of ROS by flavanoids 

In general, the radical-scavenging ability depends on the molecular structure and 

the substitution pattern of hydroxyl group. Besides the radical scavenging ability of 

the polyphenols, they can also bind to the metal ion which may further enhance their 

antioxidant activity. Dietary intake of berries can reverse cognitive and motor deficit 

in rats, and that can lead to lower incidence of dementia. EGCG, (-) 

epigallocatechin-3-gallate, an antioxidant and metal chelating polyphenol from 

green tea, has been shown to be neuroprotective in an MPTP induced animal model 

of PD77. Different flavonoids affected the α-synuclein fibrillation to a different extent 
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which was confirmed by lower ThT fluorescence intensity for the samples containing 

these flavonoids 78. It seems vicinal dihydroxylphenyl group is responsible to provide 

a flavonoids to inhibit ASN fibrillation. Moreover, the difference in the number of the 

vicinal dihydroxyl group and the number of individual hydroxyl group also lead to 

difference in the inhibitory activities of the flavonoids. Generally larger the number of 

hydroxyl group, the stronger the ASN fibril inhibitor as illustrated in figure 15.  

                           

 

Figure 15. Comparision of ASN aggregation modulaltion property of various 

flavanoids  
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The molecular mechanism underlying the flavonoids-induced inhibition of ASN 

fibrillation may be combination of noncovalent binding of inhibitory flavonoids to 

ASN, and the covalent modification by the flavonoids lead to the restriction of the 

conformational changes in this natively unfolded protein, or the stabilization of 

soluble flavonoid-modified species of ASN.  

 

Figure 16. Chemical structure know ASN aggregation modulators 

1.9.1.2. Other small molecules as a possible modulator of ASN aggregation:  

Molecular Tweezers (MT), recently Prabhudesai et al., discovered the water soluble 

“molecular tweezers (MT)”, termed CLR01 specific for lysine as a general inhibitor of 

aggregation and toxicity of amyloid proteins including ASN. 79 CLR01 binds 

specifically with the lysine residue of ASN via the hydrophobic and electrostatic 

forces. It inhibits the aggregation of ASN into the fibril and caused disaggregation of 

preformed fibril.  Furthermore, CLR01 can also stabilize ASN in the small, nontoxic 
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oligomeric species and dose dependent inhibits the toxicity by ASN in the cell culture 

model. Finally, CLR01, has been assessed in zebrafish (ZF) embryo against the 

ASN induced neurotoxicity. Addition of CLR01, to the water in which zebrafish (ZF) 

embryo developed led to dramatic improvement in viability and it maintains ASN in 

soluble form by restoring ubiquitin proteasomal (UPS) activity. 

Effect of B2 on ASN aggregation, It is also possible that compounds that might not 

inhibit the ASN inclusion formation, yet can block downstream pathways responsible 

for the toxicity of ASN aggregates. 80One of the lead molecule, B2, was tested for it’s 

effect on ASN inclusion formation in the CHO-K1 cells transiently transfected with 

SynT, a tagged α-SN. After B2 treatment a significant enhancement in the ASN 

aggregates was observed. But when it was tested on ASN transfected H4 

neuroglioma, a significant reduction in ASN mediated adenylate kinase release was 

observed and it protected against toxicity from overexpression of ASN. 

 

Figure 17. Chemcial Strucuture of non-hydroxyl ASN aggregation modulators 

Heat shock protein (Hsp) modulators, Lewy body contains ASN as well as several 

Hsp, which are molecular chaperones. Hsp modulator are protective against α-SN 

induced toxicity, and can prevent it’s aggregation. SNX-2112 and it’s derivatives are 
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novel orally available, potent Hsp90 inhibitors which can rescue ASN induced 

toxicity and oligomerization in in vitro in a dose dependent manner.81                                                

 

Figure 18. Heat shock protein (Hsp) modulators  

Novel Synthetic Peptides, these based on the native sequence of protein can 

prevent the conversion into the toxic species. El-Agnaf et al, identified the critical 

binding region in the ASN molecule responsible for it’s self aggregation.82 Then the 

library of small peptides homologous to this region was synthesized, and the binding 

of these peptides was studied using ELISA assay.  

The shortest peptide responsible for inhibition of ASN aggregation has the sequence 

AVVT, corresponding the central NAC region of ASN.  Furthermore these peptides 

were able to inhibit the aggregation of alone NAC region. The potential use of these 

peptides as drug for PD depend upon their ability to cross the blood brain barrier and 

inhibit the formation of toxic oligomeric species of ASN in the brain.  

1.9.2. Other alternative pathways to combat ASN toxicity:  

The total amount of ASN is very critical factor for it’s aggregation which can increase 

due to the enhance transcription or due to reduced degradation of ASN. Regulator 

factor for ASN transcription are not clearly known but Intron 1 of SNCA was found to 
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be responsible element for it’s transcription. Using the siRNA approach Vekrellis et 

al, found  Zipro 1 ( zinc finger proliferation 1)  as one of the element at the 5’ end of 

interon 1 responsible for  ASN transcription in PC12 cell.83 Apart from this, ERK 

(extracellular-signal-regulated kinase) and PI3K are also important for the regulator 

of ASN level. Micro RNAs are also emerging as an novel regulator for the ASN gene 

expression. Degradation of ASN occur via lysosomal pathway of chaperon mediated 

autophagy (CMA), macroautphagy, or by proteasome. Targeting these ASN 

degradation pathways are also emerging as novel approach to treat PD. Active and 

passive immunization is emerging as novel strategy to treat the synuclepathies. 

Masliah et al.,84 vaccinated human ASN transgenic mice with human ASN that 

produced relative high affinity antibodies, and observed a decrease in accumulation 

of aggregated ASN in neuronal cell bodies and synapses along with improvement in 

behavioral deficit.  

1.10. Multi-target-directed ligand (MTDL) therapy: 

Because of the fact that there are multiple interrelated pathogenic factors that are 

associated with PD, drugs hitting a single target may be inadequate for its treatment. 

When a single medicine is not sufficient to effectively treat a disease, a multiple-

medication therapy (MMT) (combination of drugs) might be used85. Usually, an MMT 

is composed of two or three different drugs that target different therapeutic 

mechanisms. But this approach might be disadvantageous for patients with 

compliance problems. A second approach might be the use of a multiple-compound 

medication (MCM) (also referred to as a “single-pill drug combination”), which 

implies the incorporation of different drugs into the same formulation in order to 

simplify dosing regimens and improve patient compliance. Finally, a third strategy is 

now emerging on the basis of the assumption that a single compound may be able 
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to hit multiple targets that is multiple target directed ligands (MTDL). Clearly, MTDL 

have inherent advantages over MMT or MCM. It would obviate the challenge of 

administering multiple single-drug entities, which could have different bioavailability, 

pharmacokinetics, and metabolism. Furthermore, in terms of pharmacokinetic and 

ADMET optimization, the clinical development of a drug able to hit multiple targets 

should not, in principle, be different from the development of any other single lead 

molecule. It thus offers a much simpler approach than MMT/MCM. In addition, the 

risk of possible drug-drug interactions and associated side effects would be avoided 

and the therapeutic regimen greatly simplified in relation to MMT. There is a strong 

indication that the development of compounds able to hit multiple targets might 

disclose new avenues for the treatment of, for example, major neurodegenerative 

diseases, for which an effective cure is an urgent need and an unmet goal. MTDLs 

more completely describes those compounds that are effective in treating complex 

diseases because of their ability to interact with the multiple targets thought to be 

responsible for the disease pathogenesis. 
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Chapter 2 

Research Background in the evolution of D3 preferring ligands and other 

approaches to PD therapy 

2.1. Development of D3 preferring ligands  

2.1.1. Rigid analogs of  Dopamine:  

Following  discovery of the DA D3 receptor in 1990, several well-known DA receptor 

agonists were evaluated for their D3 receptor binding affinity and selectivity. In order 

to introduce higher affinity and selectivity for D2/D3, structural evolution has been 

made from the endogenous agonist dopamine to metabolically more stable, 

bioisosterically modified moieties. It is important to mention that D2 and D3 receptor 

subtypes exhibit 50% homology in their amino acid sequence and it extends to 75-

80% in the helical transmembrane spanning domains, where agonist binding sites 

are believed to be located. 86, 87 This makes the task of developing D3-selective 

ligands challenging. An enormous amount of work has been done to develop D3 

selective agonist and to identify key pharmacophoric features responsible for 

selectivity for D3 receptor over D2.  61, 88-96 The endogenous ligand, DA, binds both 

high and low affinity state (3.9 nM and 73 nM, respectively) of the human D3 

receptor. DA has also displayed low selectivity (D2/D3 = 0.4-46) for D3 over D2 

receptors. Rigidization of the aminoethyl side chain of DA has yielded the 2-

aminotetralins, (S)-5-OH- and (R)-7-OH-DPAT. These conformationally restricted 

analogs correspond to the α- and β-rotomers of DA and were designed based on 

SAR studies that determined only the m-hydroxyl group of DA to be crucial for DA 

receptor agonist activity. SAR studies have indicated moderate D3 selectivity for 

both (S)-5-OH- and (R)-7-OH-DPAT (D2/D3 = 26 and 60, respectively). 
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Figure19. Evolution of aminoteteraline class of molecules by Rigidization of 

dopamine 

Extensive SAR study has been done on these two classes of molecules, some of 

which suggest hydroxyl group at 7 position of the aromatic ring is more preferable for 

the affinity toward D3 receptor over D2 receptor97. Resolution of racemic (±)-7-OH-

DPAT98 causes increase in affinity in R-(+)-7-OH-DPAT. In contrast to this finding, 

the S-(-) enantiomer of 5-OH-DPAT is more potent. It is important to mention again 

that the selectivity ratio largely depends on the assay conditions. 

The substitutions of primary amine with two propyl groups in both 7-OH- DPAT and 

5-OH- DPAT series make them less potent for D2 receptor without much change in 

the affinity towards D3 receptor, thereby, increasing the selectivity for D3 receptor. It 

indicates change in basicity of the nitrogen is not very important to increase the 

affinity of those molecules toward D3 receptor and the basicity of the tertiary amine 

at that position is strong enough to establish hydrogen bonding with ASP110 residue 

in the transmembrane domain of the receptor. However, propyl group is optimal for 

receptor interaction which suggests that one of its N substituent must fit into a 

receptor cavity known as propyl cleft. A great deal of work has been done to 

establish structure activity relationships of amino tetralines before the discovery of 

different receptor subtypes. The importance of both hydroxyl groups as 5, 6 

dihydroxy or 6, 7 dihydroxy in aminotetraline structure (Figure 20) have also been 
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studied99. The result showed 6,7 Dihydroxy compound (20b  in figure 20)  is more 

potent agonist for dopamine receptor than its 5, 6 Dihydroxy isomer in stimulating 

the release of radioactive dopamine in rat brain slices99. 

 

Figure 20. 2-Amino-5, 6-dihydroxy tetrahydronaphthalene (ADTN) analogs. 

Further Rigidization of the 2-aminotetralins, specifically 7-OH-DPAT, led to tricyclic 

DA agonists, such as (+)-PD 128907 100. (+)-PD 128907 binds to the D3 receptor 

with high affinity (1-2 nM) and selectivity (D2/D3 = 220-1270). It has been 

hypothesized that incorporation of an oxygen atom at position 6 of PD 128907 

enhances D3-selectivity versus D2 receptor due to a decrease in hydrophobicity. 

 

Figure  21. Structure of tricyclic DA agonists (+)-PD 128907. 

2.1.2. Bioisosteric Replacement of Catechol Moiety of Dopamine:    

After this initial strategy of rigidization of dopamine molecule to come up with potent 

dopamine D3 receptor preferring agonists, the catechol moiety of dopamine was 

replaced with metabolically more stable bioisosteric heterocyclic moieties. In this 

regard, introduction of 2-aminothazole (Pramipexole) as a bioisosteric replacement 

of catechol moiety increases oral bioavailability of the compound97. Generally, many 

D3 preferring agonists were developed that incorporates heterocyclic moiety in their 



37 

 

agonist binding site. Examples of such compounds are pramipexole, pergolide, 

qunpirole, quinlorane, ropinirole, etc (Figure 24). Pramipexole, which replaces the 

catechol moiety of DA with an aminothiazole substructure, maintains high D3 affinity 

(Ki = 0.5-8.5 nM), while D3 selectivity ranges from moderate to high, depending on 

experimental conditions. Another example of bioisosteric replacement of the 

catechol moeity is pergolide, a semi-synthetic ergot alkaloid, which was developed 

as a selective, D3 autoreceptor agonist 101. Pergolide was found to decrease DA 

turnover at low doses (0.01 mg/kg, i.p), sparking interest into exploring additional 

bioisosteric replacements within the pergolide skeleton. Quinpirole, containing 

elements of the ergoline template, along with a pyrrole ring system acting as a 

bioisostere, binds with relatively high affinity (Ki D3 = 0.96-43? nM) to D3 receptors 

and with low to high selectivity (D2/D3 = 0.8-133) 102. Quinpirole also displayed an 8-

fold functional selectivity for D3 receptor (D2 EC50 = 2.4 nM, D3 EC50 = 0.29 nM) 

versus D2 receptor. The pyrrole moiety was further investigated in a series of 

molecules that diversified the position of the nitrogen atom in the aromatic ring 89, 103. 

In this series of analogues, the 1-aza derivative, (S)-20 (22a in figure 22) displayed 

moderate potency (Ki D3 = 38 nM) and high selectivity (D2/D3 = 316) for D3 over 

other DA receptor subtypes. Likewise, other 1-aza derivatives, containing N-methyl 

(S)-22 (22b in figure 22) or N-formyl (S)-23 (22c in figure 22), indicate similar D3 

affinity with moderate selectivity. Introduction of formyl in the 7a-aza derivative lead 

to development of FAUC 54 (22d in figure 22)), which exhibited enhanced D3 affinity 

(Ki = 5.3 nM), along with maintaining some selectivity. FAUC 54 was found to be a 

full agonist at D3 receptor (EC50 = 1.1 nM, 89% efficacy relative to quinpirole). 

Interestingly, aminotetrahydropyrazolo derivative was designed, in which the 

hydrogen-bond accepting formyl (FACU) or cyano functions are truncated to the lone 
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pair of the sp2 nitrogen. Similar to (S)-24a, (S)-25 displayed high D3 affinity (Ki D3 = 

4.0 nM, D2 = 180 nM) and weak binding to D2 receptor. (S)-25 exhibits high potency 

(EC50 = 3.4 nM) and intrinsic activity (82%) in stimulation of mitogenesis at D3 

receptors.  

 

Figure 22. Pyrrole derivatives with diversified the position of the nitrogen atom in the 

aromatic ring. 

2.1.2.1. Non-aromatic D3 preferring agonist:   

Interestingly, several types of non-aromatic, but conjugated π–systems have been 

discovered to mimic the catechol nucleus of DA. Increasing evidence suggests that 

optimized hydrophobic effects can compensate for the attractive forces resulting 

from hydrogen bonding. The conformationally restricted enyne, FAUC 73, was found 

to have high affinity for D3 receptor (5.2 nM) and a 52-fold preference for D3 over 

D2 receptor. Replacement of the acetylene function in FAUC 73 by a vinyl group 

yielded FAUC 206. FAUC 206 maintained D3 affinity (5.6 nM) and preference over 

D2 (41-fold), while gaining a 64-fold preference over D4 receptors. Insertion of an 

adjacent acetylene unit in FAUC 73 produced FAUC 88, which showed a significant 

increase in D3 affinity (3.2 nM) and a 29-fold preference over D2 receptor, making it 

the most potent non-aromatic DA agonist known to date. FAUC 73 and FAUC 88 

each show high efficacy at D2 (85% for both) and D3 (72% for FAUC 88 and 74% 
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for FAUC 73) receptors in mitogenesis assay. The high potency and selectivity of 

these ligands suggest that aromatic or heteroaromatic systems are not required for 

ligand recognition or intrinsic activity at D3 receptor.  

 

Figure 23. Non-aromatic D3 preferring agonist. 

Changing the fragment of the molecule that imparts agonist property from catechol 

or phenol to bioisosteric heterocycle is challenging, because changes in the receptor 

interaction as a result of molecular modification can potentially alter a molecule from 

agonist to partial agonist or to antagonist. However, all of these compounds have 

moderate to high selectivity for D3 receptor over D2. Pramipexole is proven to be 

agonist with 100% intrinsic activity at D2 and 80% at D3 in mitogenesis functional 

assay104 compared to reference compound quinpirole, which is considered as 

reference full agonist. Functional potencies were also evaluated for these 

compounds by [35S]GTPγS binding to the cloned D2, D3 receptors expressed in 

CHO cells. This assay typically shows more selectivity for D3 over D2 compared to 

mitogenesis functional assay. All of those above mentioned compounds are either 

full agonist or partial agonist for D2/D3 receptor105.  
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Figure 24. Structure of metabolically stable heterocyclicD3 preferring agonists. 

 

Figure 25. Hybrid Drug Design Model 

2.1.3. Evolution of Accessory Binding Molecular Determinant:  

So far, our discussion was based on design of the portion of the molecule that 

imparts agonist property. However, our goal in research is also to increase D3 

selectivity of the compounds by incorporating molecular determinants that should 

interact with accessory binding sites in the receptor binding cavity while retaining its 

functional activity. As we discussed, N-propyl substitution is an optimum and a 

requirement for potent agonist106 activity and  various N, N-di alkyl substitution in the 
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secondary amine is also tolerated by the receptor. A great deal of research has 

already been done for side chain modification in aminotetralines and heterocyclic 

analogous structures. It has been found that slight modification in second N-alkyl 

side chain leads to D3 selective compounds.  

Several studies showed benzamide class of molecules as potent D3 selective 

antagonists. The position of benzamide varies in the structures. Benzamide analogs 

such as sulpiride, raclopride, which are atypical antipsychotics, display a high affinity 

for both D2/D3 receptors. Other sulpiride based benzamide analogs (Figure 26) had 

been developed which function as antagonist for D2/D3 receptors107.  

 

     Figure 26. Sulpiride based benzamide analogs having high D3 selectivity. 

The sulpiride based benzamide series was followed by conformationally flexible 

benzamide analogs108 that incorporated aryl piperazine fragment. In fact, the basic 

nitrogen in sulpiride based nitrogen was replaced by one piperazine nitrogen. This 

class of molecules also lacked methoxy substitution in aromatic ring of the 

benzamide. Another characteristic of this class of molecules was separation of the 
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basic amine from the benzamide by a conformationally flexible tetramethylene linker 

(Figure 27). GR103691, an atypical antipsychotic agent is a prototypical example of 

this class108 which showed high affinity and selectivity for D3 receptor (D2/D3 = 133). 

Murray et al. (1995) reported that the aryl piperazine portion in molecules, which 

came from accessory binding site of known 5 HT1A receptor agonists molecules. 

Addition of the 4-biphenyl carboxamide butyl side-chain (taken from known D3 

receptor preferring antagonists) was responsible for the high D3 affinity and 

antagonist property of GR103691 and the other compounds in that series.  The 

molecule containing aryl piperazine fragment GR103691 is 133 fold selective for D3 

over D2, but only 10 fold selective over 5-HT1A receptor.  

 

Figure 27. Hybrid structures of conformationally flexible benzamide analogs and aryl 

piperazine with high  D3 selectivity 108. 

After the discovery of the series of aryl piperazine and 4-biphenyl carboxamide 

hybrids108 (Figure 27), another strategy that was followed to synthesize D3 selective 

ligands is hybridization of two chemical entities, 2-aminotetraline and 

conformationally flexible 4-biphenyl carboxamide structure109  (Figure 28). Boyfield 

et al. reported combination of 5-hydroxy DPAT and benzamide fragment. The 

compounds in this series were highly potent (Ki for D3 is 0.2 nM in compound 28a in 
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figure 28) and selective (D2/D3 ratio as high as 310). Some of these compounds 

were proven to be agonist in functional assay. Other well known D3 agonists were 

also used to generate hybrid structures  like quinlorane110. Example of that class of 

molecule is shown in figure 28 (compound 28a, 28b). The quinlorane derived 2-

amino analog showed high affinity (Ki for D3 = 0.8 nM) and high D3 selectivity 

(D2/D2 = 250).  

     

 

Figure 28. Structure of some of the hybrids of 2-aminotetraline or its metabolically 

stable bioisosteric moiety and flexible benzamide moiety109, 110. 

Rapid metabolism of 2-aminotetraline hybrid molecules via N-depropylation leads to 

discovery of a series of molecules that replaces the N-propyl side chain with a 5 or 

6-membered ring system. The correct stereochemistry of the ring fusion is 
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apparently important, since racemic isomer is less potent and selective for D3 

receptors.  

 

Figure 29. Structure of some of the hybrids metabolically stable bioisosteric of 2-

aminotetraline. 

Another strategy to avoid the fast metabolism for 2-aminotetraline type molecules is 

to integrate the basic nitrogen into the cyclohexane ring and the substitution of the 

biphenyl moiety with indole like functionalities. Compound 29b is a potent and 

selective antagonist of D3 receptor with good brain penetration, low blood clearance 

and a reasonable long plasma half life.  

Other agonists such as pramipexole, quinpirole were also combined with benzamide 

fragment which leads to agonists with high D3 selectivity. 4-Arylpiperazines and its 

analogs are well known for its affinity towards D3 receptor. 2,3-dichlorophenyl 

piperazine derivatives 30a (Figure 30)108 where piperazine was linked to the 

naphthamide through ethyl linker exhibited high D3 affinity and selectivity (Figure 30) 

than for propyl (D2/D3 = 6) or butyl (D2/D3 = 8) linker. Preference for ethyl linker is 

very unique for this class of molecules, because, all previous D3 receptor ligands 

possessed tetramethylene linker. Substituents at the phenyl moiety are found to be 

better tolerated in the ortho than in the meta or para positions in terms of retaining 

D3 receptor affinity. 
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Figure 30. 4-Phenyl piperazine analogs with high D3 selectivity. 

2.2. Development of multifunctional ligands for neurodegenerative diseases:  

2.2.1. Currently available Treatments  

The current therapies improve the symptoms but without halting the progression of 

the neurodegenerative disease process or reversing the neuronal degeneration. 

Furthermore, the treatment of the resulting predominantly nonmotor features like 

dementia remains a challenge. To compensate for the depleted striatal DA from the 

loss of nigral projections is the main goal for the currently available drugs (Table 1). 

The classes of compounds that still hold a prominent position in current anti-PD drug 

discovery are L-dopa and dopaminenergic receptor agonists (both used alone or as 

MMT) and MMT/MCM of L-dopa with DA level modifying drugs, such as (i) 

peripheral dopa decarboxylase inhibitors,71 (ii) catecol-Omethyltransferase (COMT)  

Mode of Action Drugs  
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inhibitors, and (iii) selective monoaminooxidase type B (MAO-B) inhibitors. 

2.2.2. Emergence of multifunction drugs for the treatment of 

neurodegeneration   

More recently, a new paradigm that addresses disease etiological complexity by a 

multi-targeted-single-ligand approach has gained increasing acceptance. Morphy & 

Rankovic have reported the structure and activity of compounds designed as 

multifuncational drugs 111. 

2.2.2.1. Combination of MAO-B and COMT inhibitor 

MAO-B inhibitors (Selegiline and Rasagiline )112 and COMT inhibitors (Entacapone 

and Tolacapone )113 are used mainly as MMT to reduce the L-dopa metabolism.  It 

has been described in the chapter 1 that dopaminergic receptor agonists may be 

used either alone or with L-dopa to increase its effectiveness. More recent 
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therapeutic approaches to PD are represented by nicotine, anti-inflammatory agents, 

melatonin, selenium, iron chelators, and vitamins A, C, and E114.   

2.2.2.2. Targeting MAO, iron and oxidative stress  

A common approach has been the combination, in a single molecule, of the 

pharmacophoric features responsible for modulating the biological activity of a 

validated molecular target with the chemical functions able to confer metal-chelating 

and/or antioxidant properties and/or MAO inhibitory activity. Rasagiline was originally 

designed as a monoamine oxidase B (MAO-B) inhibitor to increase levels of 

dopamine in the brain, specifically in the striatium, to restore the motor function in 

PD. This disease-modifying effect of rasagiline is due to its interaction with an array 

of targets along the pathological pathways of PD.  However, rasagiline specifically 

activates enzymes playing a key role in cellular events including mitochondria 

viability, modulation of apoptotic processes, and neuronal plasticity. This 

pharmacological action is associated with (i) the prevention of both the neurotoxin-

induced fall in mitochondrial membrane potential and opening of mitochondria 

permeability transition pore,71 (ii) activation of the proteasome-ubiquitin complex, (iii) 

inhibition of cytochrome-c release, and (iv) prevention of caspase-3 activation115. 

The molecular mechanism of neuroprotective antiapoptotic activity of rasagiline has 

been attributed to its ability to modulate Bcl-2 protein family, up-regulating the 

antiapoptotic Bcl-2 and Bcl-xL while down-regulating Bad and Bax116, 117.  

As proof of concept, Zheng et al. developed dual dual iron chelator and MAO-A/B 

inhibitor for the treatment of PD. The authors have used antioxidant moiety 

propargylamine with the iron chelator part of an 8-hydroxyquinoline to synthesize the 

neuroprotective brain-permeable iron chelator VK-28. The resulting product, HLA20, 
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preferably inhibits MAO-B with an IC50 of 110 mM, acts as a free radical scavenger. 

Another propargylamine (M30) was found to be a highly potent MAO-A and -B 

inhibitor in vitro and in vivo, in addition to having iron chelating properties similar to 

desferoxamine. M30 behaves similarly to other propargylamine MAO inhibitors. In 

PC12 cells, some of these derivatives [HLA20 and M30 ] were also found to be 

potent lipid peroxidation inhibitors. This is possibly as a consequence of two different 

mechanisms: (i) strong iron-chelating compounds interfere with Fenton’s reaction, 

thus decreasing hydroxyl free radical production;71 (ii) metal chelators can also 

directly act as radical scavengers, blocking the formation of free radical species118. 

Conversely, in vivo, M-30A inhibited MAO enzymes at concentrations that were 2-3 

orders of magnitude higher than those of M-30. This is in line with the profile of N-

demethylated derivatives of other MAO-B inhibitors such as Selegiline and 

Rasagiline 119. Because of its nonselective MAO inhibiting profile, M-30 was also 

able to increase 5-HT and adrenaline in the CNS, in addition to DA, providing a 

probable adjunct profile as an antidepressant. A molecule, able to simultaneously 

inhibit both MAO-A and MAO-B, without potentiating the tyramine-mediated 

cardiovascular activity holds a promising profile for the treatment of PD.  

The success of rasagiline led to the designed development of unique DML ladostigil, 

from the same group of researchers. Ladostigil  is a dual ACh-butyrylcholine (BuCh)-

esterase and brain-selective MAO-A and -B inhibitor in vivo. Ladostigil is currently in 

Phase II studies, and anticipated to be beneficial for the treatment of dementia co-

morbid with extrapyramidal disorders and depression. The propargylamine moiety 

was found to be a key pharmaocphoric features responsibe for neuroprotective 

activity.   
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Figure 31.  Design to develop bifunctional compounds. 

 

Figure 32. Design to develop bifunctional compounds 

2.2.2.3. Targeting MAO and Adenosine A2A receptor 
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A second class of potential anti-PD MTDLs was developed by combining MAO 

inhibition and adenosine A2A receptor antagonism. The rationale for the design 

strategy was based on the observation that caffeine consumption is associated with 

a reduced risk of developing PD120, 121. Adenosine A2A receptor antagonists are 

currently being investigated as possible therapeutic agents for the symptomatic 

treatment of motor deficit in PD122. One compound is currently undergoing clinical 

trials for this purpose123. In addition, it has recently been shown that adenosine A2A 

receptor antagonists can also protect against neuronal degenerative processes124, 

125. A selective and potent adenosine A2A receptor antagonist, 8-(3-

chlorostyryl)caffeine (33)126 (Figure 33) with MAO-B inhibitory activity, was tested in 

vitro against MAO-B mitochondrial activity to assess a potential bifunctional profile, 

showing a Ki of about 100 nM 124. It was then characterized in vivo using the MPTP 

(1-methyl-4-(1-methylpyrrol-2-yl)-1,2,3,6-tetrahydropyridine) animal model of PD127. 

To cause neurotoxicity, MPTP requires its oxidation to 1-methyl-4-phenylpyridinium 

(MPP+) by MAO-B. The effects of 33 on the MPTP metabolism were therefore also 

investigated in vivo. The inhibition of MPTP metabolism by 33 suggests that 

adenosine A2A receptor does not regulate MAO-B activity. It also suggests that the 

two biological profiles, MAO-B inhibition and adenosine A2A receptor antagonism, 

are indeed unrelated, acting on two parallel biochemical pathways128. Conversely, 

the metal-chelating MAO-inhibitor MTDLs discussed above, reduced the hydroxyl 

radical formation synergistically by modulating steps within the same linear 

biochemical pathway. In the design of MTDLs for complex multifactorial diseases, it 

is still unclear whether it is more beneficial for an MTDL to act at different points 

within the same biochemical pathway or to modulate targets belonging to parallel 

pathways. The observation was that a bifunctional adenosine A2A receptor 
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antagonist and MAO-B inhibitor might bear enhanced therapeutic potential for the 

treatment of PD128. As discussed, current MTDLs for PD have been based on MAO 

inhibition combined with a second activity, such as iron chelation and antioxidation 

and adenosine A2A receptor antagonism. 

 

Figure 33. Design strategy of bifunctional compound having adenosine A2a receptor 

antagonism and MAO-B reversible inhibition.                                                           

2.2.2.4. Targeting the Protein Aggregation:  

The groups of Bolognesi and Melchiorre have conducted extensive studies on the 

polyamine-quinone compound memoqui and a series of related compounds. These 

compounds address several mechanisms relevant to AD, including the processing 

and aggregation of Aβ peptides, the formation of reactive oxygen species (ROS), 

and acetylcholinesterase (AChE) inhibitory activity.  Recently, a novel series of 

memoquin derivatives was created by linking the 2,5-diamino-benzoquinone core of 

this compounds with motifs seen in known amyloid binding agents, including the 

naturally occurring polyphenol curcumin 129.  
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Curcumin a polyphenolic compound has antioxidant and anti-inflammatory property. 

Wang et al., tested  curcumin against ASN induced cytotoxicity in SH-SY5Y 

neuroblastoma cell line.130 Extracellular incubation of SH-SY5Y cells with oligomeric 

but not the monomeric or fibril form of ASN can induce significant cytotoxicity. 

Curcumin can significantly reduce the cytotoxicity of preformed ASN oligomeric 

species by reducing the ROS and inhibiting caspase-3 activity. It can also protect 

against intracellular induced ASN toxicity by over expressing ASN in transient 

transfected SH-SY5Y cells.    

Rifampicin (Rif.) a semisynthetic derivate of rifamycins, which is obtained form 

Nocardia mediterranei and commonly used for treatment of leprosy.  Patients on the 

treatment with rifampicin are less prone to develop senile dementia. It has been 

shown that rifampicin and it’s analog , p-benzoquinone,  inhibited Aβ-42 aggregation 

and neurotoxicity  in-vitro. Based on these observations and napthoquinoe core in 

the structure of rifampicin, Li et al., investigated it for ASN aggregation inhibitory 

property. 131 After incubation of ASN (50µM) for 42 hr in presence of rifampicin (100 

µM),  size exclusion chromatography (SEC) profile indicated large amount of 

monomer of ASN left over compared with the incubation of ASN (50µM) alone.  In 

anaerobic condition as well in presence of antioxidant, the inhibitory effect of 

rifampicin reduced significantly which indicates the oxidized quinone form is majorly 

responsible for it’s activity. Quinones are susceptible to nucelophilic attack via 

michcael addition to form imine with the lysine side chain of ASN, leading to covalent 

modification.           

Baicalein, a Chinese herbal medicine is a well known potent antioxidant, free radical 

scavenger, and iron chelator. It can potentially inhibit ASN oligomerization in both 

cell free and cellular system132. In this study Agnaf et al., using ThT, oligomeric 
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specific ELISA (to monitor oligomers formation in cell free system), and BiFC (to 

monitor oligomers formation in cellular system) assay, tested 8 different compounds 

for their antioligomeric and antifibrillar activity. Baicalein effectively inhibited ASN 

oligomerization at 50µM in a dose dependent manner. First time using the oligomeric 

specific, BiFC assay, authors demonstrated that baicalein inhibit the formation of 

HMW ASN oligomers in a dose dependent manner in Hela and SH-SY5Y  cell lines 

transfected with GNS and GSC plasmids. Dopamine analogs has been studied for 

their effect on the ASN aggregation 133, 134.  ASN can readily aggregate into the fibril 

form upon incubation for sufficient period of time and this process can be monitored 

using thioflavin T(ThT) fluorescence assay, AFM etc. The quinone form of 

polyphenols like dopamine, hydroquinone (HQ), catechol (CA), p-nitorphenol (pNP), 

and ascorbic acid are efficacious inhibitors of ASN fibrillation. Li et al., confirmed this 

hypothesis by increase in absorbance in the UV spectra at 280 nm and 345 nm in 

SEC profile, ThT assay and SDS/PAGE134. Further mass spectra analysis revealed 

a large amount of ASN adducts dimers in which one protein dimer was attached with 

several quinones to give a molecular mass mixture. This quinone interacts with 

lysine residue of ASN, which lead to the inhibition of ASN fibrilization. The covalent 

cross linked adduct by dopamine (DA) were majorly HMW oligomers while the most 

of the catechol formed largely monomers or dimers. Although DA modification inhibit 

ASN fibrilization process, the MTT assay on PC12 cells revealed that DA-modified 

HMW oligomers of ASN were significant cytotoxicity compared to low molecular 

weight (LMW) species of ASN. 

Selegiline is a noncompetitive monoaminooxidase B (MAO-B) inhibitor with 

neuroprotective effect, and widely used alone or in combination with other drugs to 

treat PD. Being an antioxidant in nature, Selegiline inhibits the conversion of DA into 
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ROS and reduces oxidative stress which further contributes to its action against PD. 

Selegiline interfere with earlier nucleation formation, and to a lesser extent with fibril 

elongation but the mechanism is not completely known yet. 

 

Figure 34. Chemical Structure of alpha synuclein aggregation modulaotrs. 

2.2.2.5.  Targeting inflammation, MAO and mito-NEET: pioglitazone and 

rosiglitazone 

Peroxisome proliferator activated receptor gamma (PPAR-γ) agonists have been 

developed to combat diabetics.  PPAR-γ agonists containing the thiazolidinedione 

(TZD) moiety have become a new focus group of compounds in the treatment of 

ischemic stroke and PD. PPAR- γ belongs to the orphan receptor group of ligand-

activated transcription factors. Several studies have nowbeen published which 

suggest that PPAR-g agonists might be neuroprotective in stroke 135.    

PPAR- γ agonists appear able to modulate the inflammatory response and reduce 

the size of the infracted area.  Additionally, they seem to interact with mechanisms of 

inflammation as well as with pathways that lead to ROS, and inhibition of matrix 
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metallopeptidase.  Pioglitazone also has been shown to reduce cytokine release 

when cells are treated with lipopolysaccharide (LPS).  

The PPAR-g agonists appear to inhibit beta-amyloid-stimulated secretion of 

inflammatory mediators, as well as deposition of beta-amyloid in the brain136.  

Several groups have shown that pioglitazone and rosiglitazone are protective in the 

MPTP parkinsonian mouse model may be through inhibition of MAO-B 137.   It has 

been shown that Pioglitazone stabilizes mito NEET and acts as a neuroprotective 

drug by altering mitochondrial function.  

2.2.2.6. Design of Prodrug  

In addition to these compounds, small molecules derived by conjugating L-dopa and 

DA with LA (lipoic acid) have recently been reported138. The rationale for the 

development of these molecules (38a-d) was derived from the well-recognized 

observation that ROS play a role in the progressive and selective loss of the 

nigrostriatal dopaminergic neurons in PD. However, it is noted that low molecular 

weight free radical scavengers, such as glutathione, vitamin E, carnosine, and 

ascorbic acid, have limited antioxidant properties because of their marginal 

efficiency in crossing BBB and/or affecting iron accumulation. Conversely, LA readily 

crosses BBB, accumulates in neuronal cell types139, and is reduced by mitochondrial 

dehydrogenases to dihydrolipoic acid (DHLA), which lowers the redox activities of 

free iron cations140. Furthermore, LA  is also a good metal chelator and can therefore 

contribute to the tackling of the neuron damaging effects of iron accumulation in 

aging brains. The concept of a co-drug is somewhat different from the original 

meaning of MTDLs. An MTDL is a single chemical entity able to simultaneously 

modulate different molecular targets responsible for a multifactorial disease. A co-
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drug, however, is essentially a prodrug made by two parent compounds linked 

together by a chemical bond. It has to be stable at the gastrointestinal level, but then 

it has to be hydrolyzed to provide two (or more) different drugs. The final biological 

effects of an MTDL and a codrug are essentially the same. Conceptually, they 

represent different approaches to the discovery of multifunctional compounds. 

 

Figure 35. Design strategy of Co-drug or Prodrug. 
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CHAPTER 3 

HYPOTHESIS AND SPECIFIC AIMS 

Parkinson's disease (PD) is a progressive age-related neurodegenerative disorder of 

the central nervous system that is characterized by gradual loss of dopaminergic 

neurons in the substantia nigra region of the brain. Common symptoms associated 

with PD include rigidity, bradykinesia, resting tremors, postural instability, and 

cognitive psychiatric complications. Levodopa (L-DOPA) became available in 1960 

for the treatment of PD and is still being considered as one of the main stream 

therapies of choice. However, prolog use of L-DOPA gives rise to “on” and “off” 

episode along with motor fluctuations, and eventual oxidation of dopamine (DA) 

derived from L-DOPA might further facilitates neurodegeneration. One of the current 

strategies of PD therapy is to delay the initiation of L-DOPA therapy, by using 

various combinations of other therapeutic agents such as dopamine agonists, 

inhibitors of dopamine metabolism, etc. However, none of these strategies address 

the limitations of L-dopa. Therefore, the need of therapeutic agents which will have 

disease modifying effect, is of paramount importance. 

3.1. Hypothesis: 

It is increasingly evident that drugs aiming a single target may be inadequate for the 

treatment of complex diseases such as PD, which is multifactorial in nature. Thus, it 

is hypothesized that multifunctional drugs exhibiting multiple pharmacological 

activities addressing underlying pathogenic factors of PD should be effective as a 

disease modifying agent. With this in mind, we initiated our drug discovery approach 

aimed at identifying novel multifunctional agents possessing D2/D3 agonist or D3 

preferring agonist activity along with antioxidant, iron chelator, and modulation of 

ASN aggregation activities.  
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One of the major goals behinds the first phase of study was to enhance brain 

penetration of D-264 related compounds without compromising its agonist and 

neuroprotection properties. In order to achieve this we have carried out a structure 

activity study with different analogues of lead compound D-264.  

There are plethora of literature evidences indicating the toxicity of ASN aggretges 

towards the dopaminergic neurons2.   ASN is a component of Lewy bodies, a 

pathological hall mark of PD. These protein aggregates may be responsible for 

triggering the degeneration of dopaminergic neurons in the SN region of the brain. 

ASN forms toxic oligomers or fibrils. Currently, it is not known how the aggregation 

of ASN triggers cell death. The modulation of its aggregation is emerging as a novel 

therapeutic target to treat PD. One of the major aspects that might be targeted 

therapeutically is to inhibit the aggregation of ASN so anti-aggregative compounds 

or the compounds that can break the preexisting aggregates may be helpful. These 

ASN modulators have been proven to be neuroprotective in both in vitro and in vivo 

animal models of PD 79, 130, 132. In our second approach to develop D2/D3 agonist 

molecules with ASN modulator will give not only symptomatic relief but also provide 

neuroprotection.  

 

Figure  36. Various possible pathways of proposed D3 selective hybrid dopaminergic 

agonist for symptomatic and neuroprotective treatment of PD. 
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3.2. General aims: 

In our effort to design and develop novel D3 selective potent ligands with high affinity 

for both D2, D3 receptors, we have adopted a ‘hybrid structure approach’. In our 

hybrid drug design approach we combine known D2/D3 agonists with D2/D3 

antagonist fragments, which lead to the development of a number of potent and in 

vivo active D3 selective ligands 74, 141-154.  One of our D3 preferring lead compounds, 

D-264, exhibited potent in-vivo activity in PD animal models and also exhibited 

neuroprotective properties in two different PD animal models 74, 149, 150. Inspite of 

interesting neuroprotective property of D-264, it suffers from poor brain penetration. 

In vivo activity of D-264 was enhanced significantly when D-264 was solubilized in 5-

10 % β-hydroxy-propyl-cyclodextrin solution presumably by encapsulating the 

molecule leading to enhanced blood brain barrier penetration of D-264. 

Our general aim is to design and synthesize D3 selective agonists with enhance 

entry into the brain.  We have also proposed to develop multifunctional molecules 

with the property to modulate ASN aggregation in order to reduce toxicity.  

3.2.1. Specific Aims: 

1. To enhance blood brain barrier crossing ability of D-264: In our first 

phase of study to enhance brain penetration of D-264 related compounds, 

we plan to carry out a structure activity relationship of our lead compound 

D-264. The goal behind this SAR study is to enhance the entry of suitable 

derivatives of D-264 into the brain without compromising its agonist and 

neuroprotection properties to further enhance multifunctional property.  
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Figure 37. Schemetic representation of interaction of novel proposed D3 selective 

agonist at the pre and postsynaptic nerve terminals. 

2. ASN aggregation modulators: In the second series of molecules our aim 

is to further enhance multifunctional property of our molecules. In order to 

achieve this, we plan to incorporate ASN aggregation modulator 

functionality e.g. dihyrdoxyl group, at various positions on the accessory 

binding biphenyl ring of the hybrid molecule.  

3. To elucidate the basis of potency and selectivity for D3 over D2 

(D2/D3): To gain an insights into the structural requirements for dopamine 

D2 and D3 agonists in the treatment of Parkinson’s disease  (PD) and to 

elucidate the basis of selectivity for D3 over D2 (D2/D3), CoMFA 

(comparative molecular field analysis) and CoMSIA (comparative 

molecular simulation analysis) three-dimensional quantitative structure-

activity relationship (3-D QSAR) studies will be performed on a series of 

45 related D2 and D3 dopaminergic agonists. 
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3.2.2. Ligand design and synthesis: 

Our structure activity relationship study in the first series of molecules is focused on 

introduction of methoxy and hydroxyl group at various positions on the accessory 

binding biphenyl ring of this hybrid molecule. The introduction of hydroxyl group or 

combination of hydroxyl/methoxy group at a suitable position could further potentiate 

its antioxidant and neuroprotection. Methoxy and hydroxyl substitutions also should 

help us to examine the possible contribution of any hydrogen-bonding interaction 

originating from this region of the molecule with D2 and D3 receptors. Apart from 

these modifications, other molecular alterations involving bioisosteric replacement of 

thiazolidium moiety by aminotetraline or quanazoline rings, change of ethylene linker 

length, and incorporation of amide bond at the piperazine nitrogen atom distal to the 

agonist head group have also been incorporated.  

In the next series of molecules, we are developing a SAR study, incorporating 

known ASN aggregation inhibitor moieties, into our established D2/D3 

pharmacophore structure.  By means of incorporating ASN aggregation modulator 

moieties on the accessory binding biphenyl ring of the hybrid template, we will 

explore their ASN aggregation inhibition property along with its receptor binding, 

functional and in vivo activity.  We have envisioned that dihyrdoxyl group will not 

affect the agonist activity of the compounds.  

Therefore two classes of molecules and their bioisosters were designed and 

synthesized to develop lead molecules. 

 4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-3-ol. 
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 4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-3,4-diol. 

 

Figure  38. Schemetic representation of interaction of proposed hybrid D3 selective 

agonist with ASN.  

3.2.3. Separation of enantiomers of the potent racemic compounds: 

We plan to separate the enantiomers of the potent racemic compounds to evaluate 

the chiral requirement of the receptor for biological activity for those compounds.  

3.2.4. Radioligand binding assay using radioligand [3H]-spiperone:  

We will perform in vitro competitive binding assay of all our synthesized ligands to 

evaluate in vitro binding affinity of compounds towards D2 and D3 receptors.  

3.2.5. [35S]-GTPγS-binding in vitro functional assay:  

We plan to evaluate functional activity of our selected ligands by this in vitro 

functional assay. Potency of the compounds will be estimated from half maximal 
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concentration (EC50). Dopamine is considered full agonist to estimate the maximal 

stimulation (Emax).  

3.2.6. Biochemical antioxidant assay: 

Selected lead compounds will be tested in a biochemical colorimetric antioxidant 

assay, known as DPPH assay.  

3.2.7. Neuroprotection study:  

Selected lead compounds will be evaluated in vitro neuroprotection experiment with 

dopaminergic MN9D cells in reversing the toxicity of MPP+ or 6-OHDA.  

3.2.8. ASN aggregation study: 

We will assess the ability of our in-vivo active lead compounds to inhibit the 

aggregation of α-synuclein in both the cell free and cellular system. The time 

dependent toxicity of pre-fabricated ASN in rat pheochromocytoma cell line PC12 

using pre-fabricated αSN aggregate which will be followed by evaluation of effect of 

selected drugs in modulation of toxicity.    

3.2.9. In vivo assays with rat model of PD:  

Selected lead compounds will be tested in the animal models of Parkinson’s disease 

by using ‘reversal of reserpine-induced hypolocomotion in rat’ model or ‘6-hydroxy 

dopamine treated unilaterally lesioned rat’ model to evaluate in vivo potency of the 

test compounds and their blood brain crossing ability. 

3.2.10. Molecular modeling study: 

Two alignment methods (atom-based and flexible) and two charge calculation 

methods (Gasteinger-Huckel  and MOPAC) will be used in the present study. 
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CHAPTER 4 

RESULTS AND DISCUSSION 
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Our first objective was to design and develop a series of novel ligands for dopamine 

receptors that will possess enhanced blood brain barrier crossing ability compared to 

the first generation hybrid compound D-264 without compromising its DA receptor 

binding and neuroprotection properties. The molecules with high affinity and 

selectivity for binding at the dopamine D3 receptor compared to D2 in in vitro binding 

assay were selected as potential candidate for in vitro functional assay to test its 

agonist potency. The compounds that produced appreciable stimulation of the 

dopamine receptors in in vitro functional assay system compared to D-264 were 

tested in in vivo assay to evaluate potential antiparkinsonian property. Next, 

objective was to carry out in vitro biochemical assay system to evaluate the 

antioxidant potency. In line with our multifunctional drug development obejective, 

one of our important goal was to evaluate in vitro neuroprotection ability of the lead 

compounds. Our final goal was to develop potent in vivo active dopamine D2/D3 

receptor agonists which should modulate ASN aggregation in a way that will inhibit 

the toxicity of wild type ASN aggregates in the cell culture system. Therefore, in this 

chapter, we will discuss 

1) Chemistry involved in synthesizing library of compounds 

2)  In vitro binding data for all synthesized compounds 

3) In vitro functional activity data for selected compounds 

4) In vivo activity data for selected compounds 

5) In vitro antioxidant data for our lead compounds 

6) In vitro neuroprotection experiment  

7) In vitro ASN aggregation experiment 

The procedure followed to do all the above mentioned assays will be discussed in 

detail in the materials and methods section. 
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4.1. Chemistry involved synthesizing the compounds: 

Schemes 1 and 2 describe the synthesis of final compounds (±)8a, (±)8b, (±)8c, 

(±)9a, (±)9b, (±)9c, (±)9d, (±)9e, (±)9f, (-) 11 and their enantiomers. Iodination of 

phenyl piperazine was done following the literature procedure. The 1-(4-iodophenyl) 

piperazine was treated with Boc-anhydride to synthesize mono Boc protected 

intermediate (1). Boc protected intermediate was then subjected to Suzuki coupling 

reaction 155, 156 with various commercially available substituted benzene boronic 

acids. The amine protecting t-Boc group was removed by using trifluoroacetic acid. 

The free amines (4a-f) were subjected to N-alkylation reaction with TBDMS 

protected bromoalcohol to get intermediates (5a-g) which further underwent TBDMS 

deprotection using tetrabutyl ammonium fluoride solution (TBAF) to get the alcohol 

intermediate (6a-g). These alcohol intermediates (6a-g) were  oxidized under Swern 

oxidation conditions to get the arylpiperazine aldehydes (7a-g)  which were further 

condensed with (±)-, S-(-), or R-(+)-pramipexole under reductive amination 

conditions to give four final compounds (±)8a, (±)8b, (±)8c, (-)8b, and other 

intermediates including the four linker intermediate (±)8d. The demethylation of 

these intermediates with either boron tribromide or with freshly distilled aqueous 

hydrobromic acid (48%) yielded the six more final compounds (9a-f) and their 

enantiomers. One more final quinone compound 10 was generated by oxidation of 

(±)9d in presence of MnO2.   
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Schemes 3 and 4 depict the synthesis of final target compounds (±)-21a, (±)-21b, 

and (±)-22. Various substituted Methoxyanilines (11a-b) were subjected to 

cyclization by following the literature procedure 157 to produce intermediate 12a-b. 

Further, iodination of the intermediate, 12a-b, yielded iodo derivatives, 13a-b.  

These amine intermediates were converted into t-Boc protected compound, 14a-b, 

followed by their Suzuki coupling reaction with commercially available benzene 

boronic acids, and subsequently t-Boc group was removed by using TFA to yield 

16a-b. The free amine intermediates, 16a-b, were N-alkylated with (2-bromo 

ethoxy)-tertbutyldimethylsilane to get compounds, 17a-b, which on TBDMS 

deprotection yielded alcohols, 18a-b. Compounds 18a-b were converted into 

aldehyde derivatives 19a-b under Swern oxidation conditions followed by 

condensation with (±)-pramipexole under reductive amination conditions and 

subsequently treated with aqueous hydrobromic acid (48%) to yield the final 

compounds (±)-21a, (±)-21b. One of the final compounds (±)-21b was oxidized in 

presence of MnO2 to yield final compound (±)-22.   

In Schemes 5 and 6, we describe the synthesis of bioisosteric analogs of 2-

aminothiazole agonist pharmacophoic head group using aminotetraline and 

quanazoline moiety. The intermediates described in Scheme 1, the arylpiperazine 

aldehyde, 7b and 7e, were subjected under reductive amination conditions to react 

with (S)-(5-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-amine to get 

corresponding mehtoxy intermediates (-)-23a and(-)-23b and subsequently treated 

with aqueous hydrobromic acid (48%) to furnish the final compound (-)-24a and(-)-

24b. While the quanazoline derivatives were synthesized as reported in our earlier 

publication, Briefly, 1,4 Cyclohexanedionemonoethyleneketal,  on treatment with n-

propylamine under reductive  
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amination condition yielded intermediate 33. This intermediate 33 was coupled with 

aldehyde 7d and 7b to afford 34a and 34b. Removal of the ketal group by dilute HCl 

in THF followed by ring formation in two step synthesis afforded the final compound 

36a and the intermediate 36b. Final target 37 was produced by demethylation of 

methoxy group of 26b, using 48% aqueous HBr. 

The synthesis of the final compound 32 is shown in Scheme 7. Mono-t-Boc 

protected amine 25 was reacted with commercially available biphenyl carbonyl 

chloride 26 at room temperature in THF in presence of diisopropylethylamine as 

base to provide 27.  The t-Boc group was removed using TFA followed by N-

alkylation with TBDMS protected bromoethanol and subsequently TBDMS group 

was removed using TBAF to yield corresponding alcohol 30.  Alcohol 30 was 

converted, under swern oxidation condition, into its aldehyde derivative 31 followed 

by reductive amination  with (±)-pramipexole to afford the final compound 32.    
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Scheme 8 and 9 describes the synthesis of two more final compounds (±)46, (±)53. 

TBDMS protection of starting material bromo alcohol (38), was performed following 

the literature procedure23, after protection the bromo intermediate, was coupled with 

mono Boc protected piperazine intermediate 40, to synthesize the intermediate 41. 

The amine protecting group, Boc, was removed using trifluoroacetic acid. The free 

amine 42 was reacted TBDMS chloride using trietylamine as base to get 

intermediates 43 which was treated with chloroacetyl chloride to provide substituted 

piperazine derivative 44. In presence of a base and potassium iodide yielded 
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racemic substituted amide, 45. Reduction of amide with borane produced the final 

compound 46. While to synthesize the biphenyl derivate 53, intermediate 39 from 

scheme 8 was reacted with n-butyllithium and triisopropylborate to get the 

corresponding boronic acid intermediate 47. Substituted benzene boronic acid 47 

was then be exposed to Suzuki coupling reaction 25,26 with Boc protected 

intermediate. The amine protecting group, Boc, was removed using trifluoroacetic 

acid followed by scheme 8 to yield the final compound 53.  
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4.2. In vitro characterization with the first series compounds: 

In this series, we have developed 16 final target compounds which were tested in in 

vitro binding assay to determine their affinity toward dopamine D2 and D3 receptors. 

The binding assay is a competition assay that determines the inhibition constants of 

the compounds for displacing the binding of dopamine receptor antagonist [3H]-
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Spiperone at the cloned hD2L and D3 receptors expressed in HEK-293 cells. The 

detailed procedure is written in the material and method section (Chapter 6). 

We envisioned that our SAR studies on hybrid compounds will produce highly potent 

and selective compounds for dopamine D3 receptors. The results showed that 

almost all of our compounds in this series exhibited high binding affinity at 

nanomolar range as well as different selectivity range for dopamine D3 receptor. 

Table 2 shows the binding results of our synthesized compounds.  

As mentioned in the introduction section, in order to develop multifunctional agents 

as potential therapeutic agents for PD, we described development of first generation 

hybrid compound D-264 as potent and selective agonist for D3 receptor. One of the 

major goals behind first series of compounds is to enhance the blood brain crossing 

ability of D-264 without compromising its agonist potency. The structural 

modifications are mainly centered around the introduction of methoxy and hydroxyl 

groups at various positions on the accessory binding biphenyl moiety of this hybrid 

molecule. Methoxy and hydroxyl substitutions also should help us to examine the 

possible contribution of any hydrogen-bonding interaction originating from this region 

of the molecule with D2 and D3 receptors. Apart from these modifications, other 

molecular alterations involving bioisosteric replacement of thiazolidium moiety by 

aminotetraline or quanazoline rings, change of ethylene linker length, and 

incorporation of amide bond at the piperazine nitrogen atom distal to the agonist 

head group have also been incorporated.  

       First of all we wanted to observe the influence of introduction of methoxy and 

hydroxyl substitutions on the biphenyl ring of D-264 with rat dopamine D2 and D3 

(rD2 and rD3) receptors expressed in HEK-293 cells.  To this end, a series of 
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racemic derivatives 8a-c, 9a-c and 20a were synthesized and characterized. It is 

evident from Table 2 that most of these compounds displayed high affinity for D3 

and moderate affinity for D2 receptors.  Among this series of analogs, compound 9b 

with monohydroxyl substitution on the meta position of the phenyl ring distal to the 

piperazine found to be the most potent and selective for D3 (Ki, D2 = 347, D3= 1.20 

nM, D2/D3= 289). On the other hand, 20a with hydroxyl group on the ortho position 

of phenyl ring proximal to piperazine ring (Ki, D2=70.6, D3= 2.35 nM, D2/D3= 30) 

proved to be the most potent for D2. While compound 8b, a methoxy analog of 9b, 

exhibited somewhat lower binding affinity at D2 receptor, while D3 affinity 

decreased approximately 2-fold in comparison to 9b (Ki, D2=464, D3=2.11 nM, 

D2/D3= 220 for 8b). These results indicated that introduction of monomethoxy and 

monohydroxyl groups are well tolerated on the distal phenyl ring of D-264 and, 

increased the selectivity for the D3 receptor. 

  Next, we synthesized two enantiomerically pure forms of racemic 9b, compound (-)-

9b (Ki, D2 = 369 nM, D3 = 1.73 nM, D2/D3=213) and compound (+)-9b (Ki, D2 = 

1507 nM, Ki D3 = 19.7 nM, D2/D3=76) to evaluate the differential potency and 

selectivity of the enantiomers at the dopamine receptors. In agreement with our 

earlier results, (-)-9b exhibited higher potency at both D2 and D3 receptors 

compared to (+)-9b. Compound (-)-9b represents addition of a hydroxyl functionality 

into the parent compound D-264, which resulted in retention of almost similar 

binding affinity at D3 with slightly lower binding affinity for D2, with overall higher 

selectivity of (-)-9b for D3 compared to D-264 (Ki; D2/D3=213 vs. D2/D3 = 86 for (-)-

9b and D-264, respectively). The (-)-isomer of 8b was made, to evaluate whether 

free hydroxyl group in (-)-9b is critical for activity (Table 2). Compound (-)-8b, which 

is a methoxy analog, maintained D2 receptor affinity similar to (-)-9b (Ki; D2=343 nM 
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vs. D2=369 nM for (-)-8b and (-) 9b, respectively), while the binding affinity toward 

D3 dropped approximately 2-fold (Ki; D3=2.33 nM vs. D3=1.73 nM for (-)-8b and (-)-

9b, respectively) with similar selectivity for D3 over D2 receptors compared to (-)-9b 

(D2/D3=220 vs. D2/D3= 213 for (-)-8b and (-)-9b, respectively). All compounds in 

this series showed nanomolar potency for the D3 receptor in the competitive binding 

assay. 

       In our next design of compounds we incorporated aminotetraline, and amino 

pyrimidine moieties as the bioisosteric replacement of thiazolidium moiety of 

pramipexole in 9b or D-264, which resulted in the design and development of (-)-

24a, 36a, and 37. It has been hypothesized that in both cases H-bonding interaction 

of parent amino group with Serine-192 should be maintained. Specifically, (-) isomer 

of 5-hydroxy aminotetraline was synthesized, as we have shown in our previous 

reports that the (-)-enantiomer exhibits the highest affinity compared to the (+)-

isomer for both D2 and D3 receptors. As expected, compound (-)-24a, which is a 5-

hydroxy aminotetraline analog, exhibited higher affinity for both D2 and D3 receptors 

with over all less selectivity for D3 receptor compared to (-)-9b (Ki, D2=27.8, 

D3=0.77 nM, D2/D3= 36). In Our pervious report phenolic moiety of 5-hydroxy 

aminotetraline was replaced by an amino pyrimidine moiety, which is a known 

bioisostere of a phenolic group. Here we wanted to explore this further with linearly 

fused biphenyl moiety. Our initial design to incorporate amino pyrimidine and linearly 

fused biphenyl moiety led to development of compound 36a. Compound 36a 

exhibited less potency for both D2/D3 receptors (Ki, D2=735 nM, D3= 3.65 nM), with 

decrease in selectivity (D2/D3=201) compared to 9b. Next, we wanted to introduce 

hydroxyl group on the accessory binding biphenyl ring of 36a which resulted in the 

development of compound 37.  Compound 37, which is a bioisosteric analog of 
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compound 9b, exhibited significantly decreased binding affinity at both D2 and D3 

receptors compared to 9b (Ki, D2=13,121 nM, D3= 67 nM, vs. D2=235 nM, D3= 0.70 

nM for 37 and 9b, respectively). This suggests that it is the combination of either 2-

aminothiazole or hydroxy-tetralins and linearly fused biphenyl moiety gives rise to 

potency and selectivity for both D2 and D3 receptors.  Next, we increased the length 

of the two carbon linker in 9b to four carbons.  In agreement to our previous results 

with compound containing four methylene linker, compound 9f (Ki, D2=567 nM, D3= 

9.43 nM) displayed lower potency at both D2 and D3 receptors compared to 9b.150 

       Finally, in one of our earlier publications, we reported compound D-440 as one of 

the most potent and selective agonists for D3 receptor known to date and this 

compound contains an amide bond, between the piperazine nitrogen atom and 5-

position of indole, distal to the agonist head group.141 So, in order to probe the 

impact of introduction of a carbonyl group on D3 receptor selectivity in our first 

generation hybrid compound D-264, we incorporated an amide bond between the 

piperazine nitrogen and the accessory binding biphenyl ring of D-264.  This 

modification generated compound 32, scheme 4, which exhibited lower binding 

affinity for D2/D3 receptors (Ki, D2=1666 nM, D3= 9.58 nM) and its selectivity was 

reduced (D2L/D3= 174) compared to parent compound D-264. This result indicated 

that introduction of a carbonyl group between the piperazine nitrogen and the 

biphenyl ring impacted D3 affinity and selectivity unfavorably.   

Table 2. Inhibition constants for competition with [3H]spiroperidol binding to cloned 

rat D2L and D3 receptors expressed in HEK-293 cells. 

Compound 
Ki (nM), rD2L 

[3H]spiroperidol 

Ki (nM), rD3 

[3H]spiroperidol 

D2L/D3 
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(-)-5-OH-DPAT 58.8 ± 11.0 1.36 ± 0.28 43.2 

D-264 186 ± 34 2.10 ± 0.34 86 

8a (D-415) 213 ± 12 1.41 ±0.12 151 

8b (D-417) 464 ± 93 2.11 ± 0.34 220 

8c (D-419) 274 ± 45 3.57± 0.44 78 

(-)8b (D-533) 343 ± 65 2.33± 0.26 147 

9a (D-416) 230 ± 50 1.17± 0.37 196 

9b(D-418) 347 ± 54 1.20 ± 0.14 289 

(-)-9b (D-433) 369 ± 39 1.73 ± 0.14 213 

(+)-9b (D-434) 1507 ± 312 19.7 ± 2.1 76 

9c (D-425) 208 ± 15 1.80 ± 0.38 115 

9f (D-492) 567± 83 9.43 ± 1.14 60 

(-)-11 (D-437) 27.8± 1.8 0.77 ± 0.030 36 

22 (D-424) 70.6 ± 10.2 2.35 ± 0.13 30 

26a (D-468) 735±198 3.65±0.64 201 

27 (D-467) 13,121± 4539 67 ± 7.8 196 

35 (D-517) 1666±282 9.58 ± 1.18 174 
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On the basis of the binding results, selected compounds (-)-8b and (-)-9b were 

subjected to the GTPγS binding functional assay for D2 and D3 receptors and 

compared with endogenous ligand dopamine and the parent compound D-264. The 

functional assay measures quantitatively the ability of the compound to stimulate the 

receptor to initiate downstream events. The maximum stimulation of a particular 

receptor produced by the compound compared to the reference compound 

dopamine (which is considered to be full agonist and produce 100% maximum 

stimulation) is represented by Emax. The maximum stimulatory potency (Emax) 

determines if the compound is full agonist, partial agonist or antagonist compared to 

the reference compound which is considered to be full agonist. The concentration of 

the compound that produces half maximal response (EC50) determines the affinity of 

the compound towards the high affinity state of the receptor. In this assay, amount of 

binding of nonhydrolyzable analog of GTP ([35S]GTPγS) to the α-subunit of 

heterotrimeric G-protein was measured and compared with the reference compound 

dopamine which was considered to be 100 % agonist for both the receptors. This 

binding event is one of the first steps in signal transduction process in GPCRs after 

the ligand is bound to the receptor. The assays were carried out with cloned human 

D2 and D3 receptors expressed in CHO cells. 

All three compounds exhibited high affinity for the D3 receptor and their affinity were 

in the subnanomolar range (Table 3). Compound (-)-9b displayed higher functional 

potency for D2/D3 and selectivity for D3 receptor in comparison to D-264 and 

dopamine (Table 3).  (-)-9b demonstrated 15-fold increase in functional potency 

(EC50= 12.3 nM vs. 33.1nM for D2 and 0.1 nM vs. 1.51 nM for D3, for (-)-9b and D-

264, respectively) and an almost 5-fold increase in functional selectivity (D2/D3 = 

123 vs. 22.1 for (-)-9b vs. D-264) for D3 receptor in comparison to D-264. 
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Compounds (-)-9b and D-264 exhibited full agonist activity at D2 and D3 receptors, 

while their selectivity for D3 receptor dropped significantly when compared to binding 

data.  On the other hand, compound (-)-8b turned out to be functionally two fold less 

potent at D3 receptor (EC50=3.42 nM) in comparison to D-264. The functional 

potency of compound (-)-8b for D2 receptor was comparable with D-264 (EC50= 36.8 

nM vs. 33.1nM for (-)-8b vs.D-264, respectively).    

Table 3. Stimulation of [35S]GTPγS binding to hD2 and hD3 receptors expressed in 

CHO cells. 

 CHO-D2 CHO-D3  

Compd EC50 (nM)a 

[35S]GTPãS 

%Emax EC50 (nM)a 

[35S]GTPãS 

%Emax D2/D3 

Dopamine 218 ± 12 100 10.6 ± 2.1 100 26.5 

Ropinirole 304 ± 11 73.9 ± 0.9 10.3 ± 1.5 66.6 ± 8.1 29.5 

(-)-D-264 33.1 ± 6.6 104 ± 5 1.51 ± 0.02 90 ± 4.3 22 

(-)-8b(D-

533) 36.8 ± 7.2 105 ± 6 

3.42 ± 1.01 67.3 ± 5.6 10.8 

(-)-9b(D-

433) 15.9 ± 1.8 116 ± 10 

0.10 ± 0.02 95.8 ± 3.7 159 

 

EC50 is the concentration producing half-maximal stimulation; for each compound, 

maximal stimulation (Emax) is expressed as percent of the Emax observed with 1 
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mM (D2) or 100 uM (D3) of the full agonist DA (%Emax).  Results are the means +/- 

SEM for 3-6 experiments each performed in triplicate. 

4.3. In vivo experiments with lead molecules from first series of compounds. 

Based on the in vitro binding and functional activity results, we decided to evaluate (-

) 8b or (D-533), (-) 9b or (D-433) in our pharmacological studies. Ropinirole was 

also evaluated as a reference compound for comparison purpose.  

4.3.1.  Evaluation of In Vivo Blood Brain Barrier Crossing Ability of D-264, (-) 

8b, (-) 9b, and Ropinirole by Reversal of Reserpine Induced Hypolocomotion in 

Rats: Reserpine induces depletion of catecholamine in nerve terminals, resulting in 

a cataleptic condition in rats, which is a well established animal model for PD.158, 159 

Significant inhibition of locomotion of rats was observed 18 h after the administration 

of reserpine (5 mg/ kg,sc) which indicated the development of akinesia in rats. 

Compound (-)8b and (-)9b at a dose of 5 µMol/ kg, i.p., DI water,  were highly 

efficacious in reversing akinesia (Figure 39) while D-264 at the same dose (5 

µMol/kg, i.p., DI water) failed to produce any significant effect in reversing akinesia in 

the reserpine treated rats. However, the D-264 was more effective when it was 

dissolved in 10% beta-hydroxy cyclodextrin solution (Figure 39). The locomotor 

activity of (-)8b at the end of 6h remained high compare to (-)-9b. It is evident from 

the result that compounds (-)8b and (-)9b were the most efficacious in producing 

reversal of akinesia when (-)-8b seems to exhibit greater potency. Thus, the results 

indicate that the compounds (-)8b and (-)9b could efficiently crossed the blood brain 

barrier, exhibited early onset, demonstrated long duration of action whereas 

compound D-264 was able to produce in vivo activity if dissolved in 10% beta-

hydroxy propyl cyclodextrin solution. 
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Figure 39. Effect of different drugs upon reserpine (5.0 mg/Kg, s.c.)-induced 

hypolocomotion in rats. Data are means ± S.E.M, n = 4 per value. Horizontal activity 

was measured as described under materials and methods. The plots are the 

representation of horizontal locomotor activity at discrete 30-min intervals after the 

administration of (-)9b (i.p.), (-)-8b (i.p.) and D-264 (i.p.) at the dose of 5 µMol/kg 

compared to control reserpine treated rats in 18 h post reserpine treatment. One 

way ANOVA analysis demonstrates significant effect among treatments F (5,95) = 

14.16 (P< 0.0001). Dunnett’s analysis following ANOVA showed that the effects of (-

)9b (P< 0.01) and (-)-8b (P< 0.01) were significantly different compared to reserpine 

control.  

Degeneration of the substantia nigral dopaminergic neurons which leads to profound 

striatal dopamine deficiency syndrome is responsible for its classic motor symptoms 

akinesia and bradykinesia127, 159. Reserpine administration causes depletion of 

monomaines including dopamine resulting in marked suppression of locomotor 

activity which resembles the motor impairment found in PD127, 159. Therefore, 

reserpine model is one of the PD models used to screen drugs used for alleviation of 
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the symptoms of motor dysfunction in PD127, 158. Compounds (-) 8b, (-) 9b with the 

dose of 5 μmol/kg i.p. not only reversed reserpine induced hypokinesia to the normal 

level of locomotion found in control animals (vehicle treated rats), but also 

demonstrated significant enhancement of locomotion. The mechanism of the 

locomotor stimulation in reserpine model is likely to be mediated by the postsynaptic 

D2/D3 receptor activation.  

4.3.2. Induction of contralateral rotation by (-)-8b and (-)-9b in unilaterally 

lesioned rats in Ungerstedt rat model for PD:  

On the basis of above locomotor experimental results, compound (-)-8b and (-)-9b 

were selected for in-vivo evaluation in in the Ungerstedt rat rotation model for 

Parkinson’s disease. This is an accepted model for studying dopamine agonist 

efficacy and their potential utility in the treatment of Parkinson’s disease160.  In this 

model, rats received unilateral lesion by administration of neurotoxic 6-Hydroxy 

dopamine selectively in the medial forebrain bundle (MFB) region of the brain, the 

area that projects dopaminergic neurons to the striatum. The lesion caused gradual 

loss of dopaminergic neurons in that area which caused striatal dopamine deficiency 

on the lesioned side. As a result of the scarcity of dopamine in the synapse, the 

postsynaptic dopamine receptors became supersensitive in the striatum on the 

lesioned side. As a result, administration of dopamine agonist causes an imbalanced 

locomotor activity, the rotational movement away from the lesioned side. The full 

contralateral rotations were recorded in every 30 minutes and plotted against total 

time of action.  

Both compounds (-)-8b and (-)-9b produced potent rotational activity in a dose 

dependent manner when administered intaparetionally (i.p). At 10 µMol/kg dose, 
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both (-)-8b (6.56 mg/kg) and (-)-9b (9.28 mg/kg) produced potent rotations that 

lasted for more than 10 h (Figure 40). Compound (-)-8b was more potent in 

producing maximum rotation numbers compared to (-)-9b (5866 vs. 2653 for (-)-8b 

and (-)-9b, respectively). Peak effect of both compounds reached at 7.5 h. This is an 

indication of long duration of action of both compounds in producing contralateral 

rotation. When tested at a lower doses (5 µMol/kg), both compounds, (-)-8b (3.28 

mg/kg) and (-)-9b (4.64 mg/kg), produced lower number of rotations (3333 vs. 1839 

for (-)-8b and (-)-9b, respectively). The rotation in this case lasted for more than 7h 

(Figure 40). Interestingly, both compounds produced initial increase of rotational 

activity followed by a brief decrease of activity before exhibiting a steady increase of 

rotational activity. At present, the reason of such biphasic activity is unknown. As 

indicated in the locomotor activity study with reserpinized rats, the higher efficacacy 

of (-)-8b (Figure 40) correlates to higher activity of compound (-)-8b compared to (-)-

9b in producing rotational activity in 6-OHDA rats. This more potent nature of (-)-8b, 

mehtoxy analog of D-264, in rotational experiment may be due to its high in-vivo 

stability compared to the hydroxyl analog (-)-9b. 

4.4. Antioxidant assay: 

Oxidative stress has been strongly implicated in PD pathogenesis. Therefore, one of 

our objectives in ligand design was to impart antioxidant activity into our designed 

drugs. Citrus secondary metabolites such as ascorbic acid posses antioxidant 

property and have shown several health benefits. Scavenging of DPPH (1,1-

diphenyl-2-picrylhydrazyl) radical by D-264, (-)-8b and (-)-9b, D-437 and ascorbic 

acid was carried out (Figure 41). To compare the difference in DPPH free radical 

scavenging property of the salt versus the free base form of the compounds, the 

assay was performed with the both forms. The detailed experimental procedure is 
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dicussed in the chapter containing materials amd methods. As shown in Figure 41, 

all compounds inhibited DPPH radical activity dose dependently. However, there is a 

considerable difference in the kinetics of the reaction with DPPH between the salt 

form and free base form of the compounds. The reaction rate is much slower with 

the free base compared to the salt form. The steady state was achieved at 110 

minutes and 25 minutes for the free base and salt, respectively. At the end of both 

assays, the extent of scavenging of the radical was comparable. Overall all the 

compounds, with the exception of D-437, exhibited similar antioxidant potency as 

ascorbic acid. Interestingly, D-437 exhibited lesser antioxidant activity in this assay 

compared to D-433, which indicates more potent antioxidant nature of thiazolidum 

moiety compared to aminoteteraline. 

 

Figure 40. Comparison of the effects of (-)-8b and (-)-9b with a dose of  10 µMol/kg 

and 5 µMol/kg and vehicle in unilaterally 6-OH-DA lesioned rats studied for 

maximum 12 h. Each point is the mean ± SEM of three rats. The drugs were 
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administered ip. One way ANOVA analysis demonstrates significant effect among 

treatments: F (4,95) = 13.87 (P< 0.0001). Dunnett’s analysis showed that the effects 

are significantly different statistically compared to vehicle (P< 0.01). 

Generally antioxidants will react with DPPH (1,1-Diphenyl-2-picrylhydrazyl), which is 

a nitrogen-centered radical with a characteristic absorption at 517 nm and converted 

into 1,1,-diphenyl-2-picryl hydrazine, due to its hydrogen donating ability at a very 

rapid rate. The degree of discoloration indicates the scavenging potentials of the 

antioxidants. It is known that free radicals cause auto-oxidation of unsaturated 

lipids161. On the other hand, antioxidants are believed to intercept the free radical 

chain of oxidation and to donate hydrogen, thereby forming stable end product, 

which does not initiate or propagate further oxidation of lipid. The data obtained 

revealed that the compounds D-264, (-)-8b and (-)-9b are strong free radical 

scavengers and primary antioxidants that react with DPPH radical.  We believe that 

compounds D-264, (-)-8b and (-)-9b will have potential to reduce the oxidative stress 

in the parkinsonian brain via quenching free radicals. 

4.5. Neuroprotection studies with MN9DCell line: 

The MN9D cells are hybridoma cells derived via the somatic infusion of rostral 

mesencephalic neurons from embryonic C57BL/6J (E14) mice and the N18TG2 

neuroblastoma cells.  The MN9D cells they represent as one of the most suitable 

model for in vitro study of PD due to high level of expression of tyrosine hydroxylase, 

have high dopamine content and exhibit other similarities with DA neurons. We 

carried out experiments to evaluate the effect of treatment of D-264 and (-)-9b in the 

protection of dopaminergic MN9D cells from toxicity of 6-OHDA and MPP+. Both 

MPP+ and 6-OHDA  are known to cause dopamine cell death possibly via different 
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mechanisms. The MPP+ which is a metabolite of MPTP, is a dopaminergic 

neurotoxin which destroys the nigrostriatal dopaminergic pathway and produces 

parkinsonian syndrome with massive loss of nigral DA neurons. Inhibition of 

mitochondrial complex I by MPP+, thereby, increasing the oxidative stress is the 

central mechanism for its toxicity. Oxidation of 6-OHDA is known to produce 

quinones as well as free radicals such as hydrogen peroxides, superoxides and 

hydroxyl radicals which induce apoptosis in cells.  

  

           

Figure 41. DPPH radical scavenging activity by D-264, (-)-9b, (-)-8b, (-)-11 and 

ascorbic acid. 

4.5.1. Neuroprotection against MPP+ toxicity:  

From our previous dose-dependent experiment of MPP+, we chose 100 μM of 

MPP+ which can induce 50-60% cell death, for our study. To test whether D-264 and 
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(-)-9b can protect dopaminergic MN9D cells from MPP+ induced toxicity, the cells 

were pre-treated with various concentrations of (20, 10, 5, 1, 0.1, 0.01 and 0.001 

μM) of either D-264 or (-)-9b for 1 h and then co-treated with 100 μM MPP+ for an 

additional 24 h. The dose dependent effect of treatment of D264 and D-433 in 

reversing the toxicity of MPP+ to dopaminergic MN9D cells is demonstrated in 

Figure xxx. The data from the MTT assay further indicated that both D-264 and (-)-

9b can protect the MN9D cells in a dose-dependent manner. For D-264, significant 

protection from toxicity of MPP+ was conferred by 1, 5, 10 and 20 μM doses. For D-

433, significant neuroprotection was conferred at 5 and 10 μM doses. It seems D264 

is relatively more potent than D433 in this neuroprotection assay.  

 

Figure 42. Dose dependent effect of combination of pretreatment followed by co-

treatment of D-264 and D-433 with 100 μM MPP+ on cell viability of MN9D cells 

from toxicity of 100 μM MPP+. A-B: MN9D cells were pretreated with different doses 

of D-264 and D-433 for 1 h followed by co-treatment with 100 μM MPP+ for 24 h. 

The values shown are means ± SDs of three independent experiments performed in 

4-6 replicates. One way ANOVA analysis followed by Tukey's Multiple Comparison 
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post hoc test were performed. (**p<0.01 compared to the MPP+ group. ##p<0.001 

compared to the control group). 

4.5.2. Neuroprotection against 6-OHDA:  

6-OHDA is known to cause cell death in a dose-dependent manner via production of 

reactive oxygen species. From our previous dose-dependent experiment of 6-

OHDA, we chose 75 μM of 6-OHDA which can induce 40-50% cell death for our 

study. To examine whether D-264 and (-)-9b can protect MN9D cells from the 

exposure to 75 μM neurotoxin 6-OHDA, the cells were incubated with various 

concentrations of (20, 10, 5, 1, 0.1, 0.01 and 0.001 μM) of either D-264 or (-)-9b for 

1 h and then co-treated with 75 μM 6-OHDA for additional 24 h. 

As shown in Figure 43, the data from the MTT assay clearly indicated that D-264 

was able to protect significantly the MN9D cells from 6-OHDA toxicity in a dose-

dependent manner. The highest protection conferred by D-264 was exhibited at 

concentration, 5 and 10 μM, of the drug. At these concentrations, D-264 conferred 

almost 25% protection from 6-OHDA toxicity. However, (-)-9b was able to protect 

MN9D almost 12% compared to 6-OHDA treated alone and the highest protection 

was exhibited at 5 and 10 μM concentrations of the drug. It seems that the extent of 

protection conferred by (-)-9b was slightly less compared to D-264  (Figure 43).  
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Figure 43. Dose dependent effect of combination of pretreatment followed by co-

treatment of D-264 and D-433 with 75 μM 6-OHDA on cell viability of MN9D cells 

from toxicity of 100 μM MPP+. A-B: MN9D cells were pretreated with different doses 

of D-264 and D-433 for 1 h followed by co-treatment with 75 μM 6-OHDA for 24 h. 

The values shown are means ± SDs of three independent experiments performed in 

4-6 replicates. One way ANOVA analysis followed by Tukey's Multiple Comparison 

post hoc test were performed and it did not show significant effect of D-433. 

4.6. In vitro characterization of dihyrdoxyl derivatives of D-264: 

In our approach to design multifunctional ligands which should not only act as 

agonist at dopamine D2/D3 receptor but also be able to modulate ASN aggregation, 

we decided to introduce two hydroxyl groups in our hybrid template. Numerous 

studies have shown that compounds with dihyroxy group are able to effectively 

modulate ASN aggregation. SAR studies on hybrid template have indicated that 

bulky aromatic substitutions located distally from head group are well tolerated on 

the piperazine moiety. Our recent SAR studies have demonstrated that 

monothydroxyl and methoxy moieties are not only well tolerated but also produced 

highly efficacious in-vivo active compounds. Thus, it was hypothesized that 

introduction of another hydroxyl group on the accessory binding site should not only 

retain high affinity for the D2/D3 receptor but also should provide potent ASN 

aggregation modulator. Based on this, preliminary compounds were designed and 

synthesized. In this series, we have developed 11 final target compounds which 

were tested in in-vitro binding assay to determine their affinity toward dopamine D2 

and D3 receptors. The binding assay is a competition based assay that determines 

the inhibition constants of the compounds for displacing the binding of dopamine 

receptor antagonist [3H]-Spiperone to the cloned hD2L and D3 receptors expressed 
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in HEK-293 cells. The detailed procedure is written in the materiasl and methods 

section (chapter 6). 

The two initial compounds that were designed first were 9d and 21b. These 

compounds posses two hyroxyl groups in the para position to each other. Both 

compounds exhibited low nanomolar potency for D3 receptor (3.50 and 5.29 nM for 

9d and 21b, respectively). Compound 21b was twice as potent at D2 receptor 

compared to 9d (866 vs. 13,29 nM for 21b and 9d, respectively) but it was less 

potent compared to monothydroxyl derivative, 9b (235 vs. 866 nM for 9b and 9d, 

respectively). These results indicated that two hydroxyl groups in para position to 

each other were well tolerated by D3 receptors but exhibited less potency for D2 

receptor. It is well established in the literature that conversion of dihyroxyl to quinone 

is critical to modulate ASN aggregation131.  Therefore, compounds 9d and 21b, were 

converted into corresponding quinone, which lead to the generation of compound 10 

and 22, respectively. Surprisingly, there was no significant change in affinity of the 

22 towards D3 receptor (7.35 nM ) compared to the dihyroxyl compound 21b (5.29 

nM) but affinity towards D2 receptor dropped by four fold compared to 21b (3210 

and 866 nM for 22 and  21b, respectively). On the other hand, compound 10 showed 

less affinity towards D3 receptor compared to corresponding parent molecule 9d 

(13.4 and 3.50 nM for 10 and 9d, respectively) while the affinity to D2 receptor did 

not change significantly compared to 9d (17,19 and 13,29 nM for 10 and 9d, 

respectively). This could be due to the presence of complex interaction of molecule 

in this region of D2 and D3 receptor but the major factor responsible for this change 

in affinity is not clear yet.   

        Next, we synthesized two enantiomerically pure forms of racemic 9d, using S(-) 

Pramipexole compound (-)-9d (Ki, D2 = 762 nM, D3 =2.51 nm, D2/D3=303) and the 
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R(+) pramipexole  compound (+)-9d (Ki, D2 = 2542  nM, Ki D3 = 34.4 nM, D2/D3=74) 

to see the change of potency and selectivity at the dopamine receptors. In agreement 

with our earlier results, (-)-9d exhibited higher potency at both D2 and D3 receptors 

compared to (+) -9d. (-)-9d showed higher potency for both D2 and D3 receptors 

compared to the racemic 9d (Ki, D2=762, D3= 2.51 nM vs. 9d Ki, D2=13,29, D3= 

3.50 nM). All compounds in this series showed nanomolar potency for the D3 

receptor in the competitive binding assay. 

       In our next design of compounds we wanted to evaluate the positional effect of 

dihydroxyl group on binding affinity and selectivity. The bioisosteric replacement of 

thiazolidium moiety by aminotetraline was also perfromed. Specifically, (-) isomer of 

5-hydroxy aminotetraline was synthesized, as we have shown in our previous reports 

on 5-hyrdoxy series, the (-)-enantiomer exhibited the higher potency for both D2 and 

D3 receptors with lower selectivity for D3 over D2 compared to 2-aminothiazole head 

group. This resulted in the design and development of (-)-9e, (+)-9e, and (-)-24b. It 

has been shown in literature that vicinal dihydroxylphenyl group can provide ASN 

fibrillation inhibition property to flavonoids. As expected, compound (-)-24b, which is a 

5-hydroxy aminotetraline analog, exhibited higher affinity for both D2 and D3 

receptors (Ki, D2=41.8 nM; D3=0.350 nM,) compared to (-)-9e and (+)-9e (Ki, 

D2=556, vs. (+)-9e  Ki, D2=2852 nM;  D3=8.25 nM, vs. (+)-9e   Ki, D3=18.3  nM). In 

agreement with our earlier results, (-)-9e exhibited higher potency at both D2 and D3 

receptors compared to (+) -9e.   

       Curcumin a polyphenolic compound has antioxidant and anti-inflammatory property. 

Wang et al., tested crucumin against ASN induced cytotoxicity in SH-SY5Y 

neuroblastoma cell line.130 Extracellular incubation of SH-SY5Y cells with oligomeric 

but not the monomeric or fibril form of ASN can induce significant cytotoxicity. 
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Curcumin can significantly reduce the cytotoxicity of preformed ASN oligomeric 

species by reducing the ROS and inhibiting caspase-3 activity. It can also protect 

against intracellular induced ASN toxicity by over expressing ASN in transient 

transfected SH-SY5Y cells. However, the Pharmacophoric feature responsible for 

ASN aggregation modulation property of curcumin is not known yet.  

Our SAR studies on hybrid template have indicated that monomethoxy and 

monohydroxylgroups are well tolerated on the distal phenyl ring. Compounds with 

mono hydroxyl and methoxy group are potent agonist for both D2 and D3 receptos 

with high in vivo efficacy. Our SAR also indicated that compounds with dihyrdoxyl 

group on the distal phenyl are potent towards D3 receptor, however, binding potency 

of dihyrdoxyl substituted compounds for D2 receptors dropped significantly 

compared to monohydroxyl compounds.  

Keeping in mind both the influence of dihyrdoxyl on the binding potency while 

probing the key functional groups of curcumin responsible for ASN modulation 

property, we incorpotared combination of critical hodyoxyl and methoxy functional 

group on the accessory binding biphenyl ring of our hybrid molecules. Thus, it was 

perceived that replacement of dihyrdoxyl group by hydroxyl methoxy moiety should 

not only retain high binding affinity for D2/D3 receptors but also provide 

multifunctional molecules with ASN aggregation modulation property.  

Initially, two compounds 46 and 53 were designed, synthesized and evaluated. In 

these two compounds piperazine moiety was attached to monophenyl and biphenyl 

ring substituted with hydroxyl and methoxy groups ortho in position to each other. 

Both compounds displayed nanomolar potency for D3 receptor (Ki; D3=6.41 nM vs. 

D3=3.07 nM for 46 and 53, respectively). Compound 46 was seven times more 
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potent at D2 recptors compared to 53 (Ki; D2=356 nM vs. D2=2480 nM for 46 and 

53, respectively). These results indicated that mono phenyl ring with hydroxyl and 

methoxy substitution is well tolerated at both D2 and D3 receptors. Overall, 

combination of both the hydrophobicity and electronic nature of the substituent plays 

a major role towards the binding affinity for D2 and D3 receptors.    

Table 4.  Affinities for Cloned D2L and D3 Receptors Expressed in Human 

Embryonic Kidney Cells  Measured by  Inhibition of [3H]-spiroperidol Binding a 

S.N. 

 

Compound Ki, (nM), D2L 

[3H]Spiperone 

Ki, (nM), D3 

[3H]Spiperone 

D2L/D3 

1. D-264 264 ± 40 0.92 ± 0.23 253 

2. 22 (D-489) 3210± 572 7.35 ± 0.56 464 

3. 9d (D-490) 13,29± 182 3.50 ± 0.73 380 

4. 21c (D-491) 866± 85 5.29 ± 0.91 164 

5. 10 (D-493) 1719± 33 13.4 ± 1.33 128 

6. (-)9d (D-510) 762± 90 2.51± 0.50 303 

7. (+)9d (D-511) 2542± 462 34.4 ± 6.0 74.0 

8. (-)9e (D-519) 556±165 8.25 ± 0.98 67 

9. (-)24b (D-520) 41.8±11.2 0.350 ± 0.101 119 

10. (+)9e (D-521) 2852±458 18.3 ± 2.5 156 
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11. 46 (D-546) 356±55 6.41±1.47 55.6 

12. 53 (D-553) 2480±602 3.07±0.66        808 

aResults are  the means + SEM for three to seven experiments, each performed in 

triplicate. 

Following binding analysis, selected compounds (-)9d, (-)9e, and (-)24b were 

subjected to the [35S]GTPγS functional assay for D2 and D3 receptors and compared 

with the full agonist dopamine (Table 5). The assays were carried out with the 

cloned human D2 and D3 receptors expressed in CHO cells. In this study, (-)-9e as 

well as (-)-24b exhibited high affinity for both D2 (EC50 for (-)9e, 42.4 nM; for (-)24b, 

4.73 nM) and D3 (EC50 for (-)9e, 5.92; for (-)24b, 2.18 nM) receptors, compared to 

the reference compound dopamine (EC50 for dopamine, 227 nM for D2 and 8.53 nM 

for D3). Compound (-)-9d exhibited moderate affinity for D2 (EC50 for D2, 107.2 nM; 

but demonstrated high affinity for D3 (EC50 for D3 receptor, 2.32). All three 

compounds were full agonist when compared against reference dopamine. 

Table 5. Stimulation of [35S] GTPγS Binding to Cloned Human D2 Receptor and D3 

Receptor Expressed in CHO Cellsa 

hCHO-D2  hCHO-D3  Compd. 

EC50 %Emax EC50 %Emax D2/D3 

DA 227 ± 11 100 8.50 100     26.5 

(-) D-264 33.1 ± 6.6 104 ± 5 1.51 ± 0.022          90 ± 4.3      22.1 

(-)-D-510 107.2± 19.5 96.0 ± 3.8 2.32 ± 0.22   97.2 ± 4.5      46.2 
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aEC50 is the concentration producing half-maximal stimulation; for each compound, 

maximal  stimulation (Emax) is expressed as a percent of the Emax observed with 1 

mM (D2) or 100 μM (D3) of the full agonist DA (%, Emax). Results are the mean ± 

SEM for three to six independent experiments, each performed in triplicate. 

4.7. In vivo experiments with lead molecules from second series of 

compounds. 

4.7.1. Reversal of reserpine-Induced Hypolocomotion in Rats: 

Reserpine induces depletion of catecholamines in nerve terminals resulting in a 

cataleptic condition in rats, which is a well established animal model for PD158. 

Significant reduction of locomotion of the rats was observed 18 h after the 

administration of reserpine (5 mg/kg, s.c.) which indicated the development of 

akinesia in rats. Compound (-)-24b (D-520) was highly efficacious in reversing the 

locomotor activity of reserpinized rats. The locomotor activity of (-)-24b at the end of 

5h remained at a high level. The reference drug ropinirole on the other exhibited 

much shorter action and was much less efficacious compared to (-)-24b. Compound 

(-)-24b  with the dose of 10 μmol/kg i.p. not only reversed reserpine induced 

hypokinesia to the normal level of locomotion found in control animals (vehicle 

treated rats), but also demonstrated significant enhancement of locomotion for the 

whole time frame of study. The standard drug ropinirole at a dose of 10 µMol/Kg s.c. 

exhibited much shorter duration of action compare to (-)-24b, the peak of action 

reached within 30 min and the pharmacological action ceased after 90 min. The 

(-)-D-519 42.4± 13.6 98.2 ± 1.5 5.92 ± 0.74         82.4 ± 0.5  

(-)-D-520 4.73± 0.44 80.9 ± 6.6 2.18 ± 0.30        58.3 ± 9.6  
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mechanism of the locomotor stimulation in reserpine model is likely to be mediated 

by the postsynaptic D2/D3 receptor activation. The results indicated that compound 

is a potent agonist which could cross blood brain barrier effectively. 

 

 

 

 

 

 

Figure 44. Effect of different drugs upon reserpine (5.0 mg/Kg, s.c.)-induced 

hypolocomotion in rats. Data are means ± S.E.M, n = 3-4 per value. Horizontal 

activity was measured as described under materials and methods. It is the 

representation of horizontal locomotor activity at discrete 30-min intervals after the 

administration of (-)-24b  and ropinirole at the dose of 10 µMol/kg compare to control 

rats in 18 h reserpine post treatment. One way ANOVA analysis demonstrates 

significant effect among treatments: Panel A, F (3,95) = 31.36 (P< 0.05). Dunnett’s 

analysis following ANOVA showed that the effects of (-)-24b (P< 0.05) and ropinirole 

(P< 0.05) were significantly different statistically compared to reserpine control.  

4.7.2. In vivo Pharmacology with 6-OHDA lesioned rats: 

Based on the above locomotor activity results, compound (-)-24b  was selected for 

in vivo evaluation in rats carrying a unilateral lesion in the medial forebrain bundle 

induced by application of the neurotoxin 6-hydroxydopamine (6-OHDA). 
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Development of supersensitivity of dopamine receptors takes place resulting from 

destruction of dopamine neurons in these surgically modified rats. When these rats 

are challenged with direct acting dopamine agonists, they produce contralateral 

rotations away from the lesioned side. This rat model is considered to be one of the 

standard models for preclinical screening of drugs for possible antiparkinsonian 

property.162 Compound (-)-24b was highly potent in producing large number of 

rotations at a dose of 2.5 μMol/kg (Number of rotation = 1180) and the activity lasted 

more than 5 h. At a higher dose of 5 μMol/kg, the rotational activity was initially 

higher compared to the lowest dose but the activity remained at high leve after 5 h 

(figure 45). The efficacy of this compound in producing rotations indicated its good 

bioavailability, excellent brain penetration but rapid mtabolism. 

4.7.2.1. Effect of 24b at two different doses (2.5 μM/kg, and 0.5 μM/kg i.p) and 

comparison with standard drug ropinirole:  

 

 

            

 

 

 

Figure 45. Effect on turning behavior of two different doses of 24b and vehicle in 

lesioned rats studied for maximum 8 h. Each point is the mean ± SEM of 3-4 rats. 
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The drugs were administered i.p. One way ANOVA analysis didnot demonstrates 

significant effect among treatments. 

4.8. Evaluation of anti-oligomeric and/or anti-fibrillar activity of potential 

inhibitors of ASN (α-synuclein) aggregation: 

The misfolding and aggregation of ASN is proposed to be toxic towards the 

dopaminergic neurons. ASN oligomers could perforate vesicular membranes of 

dopaminergic neurons which lead to DA leakage into the cytoplasm. Cytoplasmic DA 

can quickly form ROS, and DA-quinone, which can form covalent adducts with ASN.  

It has been shown in the literature that ASN forms soluble, SDS-resistant oligomers 

in the presence of DA133. In order to assess the ability of our lead molecules to 

inhibit the aggregation of ASN mediated by dopamine following experiments were 

carried out. 

4.8.1. Generation of ASN aggregates using cell-free system:  

Recombinant wild-type human ASN (17.5 μM) was incubated with 200 μM of DA for 

72 h and the reaction was then analyzed by silver staining and ThT assays (Figure 

46 a). DA induced increase in ASN oligomerization over the time, whereas in the 

absence of DA there was no apparent oligomerization of ASN. The sizes of the DA-

induced ASN oligomers were consistent with aggregates of ASN into dimers, 

trimers, and higher molecular weight species. There was a clear reduction in the 

monomeric band of ASN with concomitant increase in the intensity of the oligomeric 

species (Figure 46 a).  To determine if there is a synergistic effect of H2O2 and DA 

on ASN aggregation, a mixtue of H2O2 (300 µM), DA (200 µM) and ASN (17.5 µM) 

was incubated for 72 hrs. There was a clear increase in oligomerization of ASN was 
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observed, as judged by the intensity of the silver-stained bands (Figure 47b) which 

indicated time dependent, syneggistic effect of H2O2 with DA on ASN aggregation.  

DA and DA+ H2O2 -induced ASN oligomers are non sensitive to ThT: 

ASN forms amyloid fibrils in vitro, and the kinetics of the fibrillar formation can be 

monitored using ThT fluorescence. Aggregation of ASN (17.5 μM) in the presence of 

DA and DA+ H2O2, displayed no significant increase in ThT fluorescence even after 

72 hrs incubation (Figure 46b). This indicated that the DA and DA+ H2O2 mediated 

ASN oligomers are not amyloidogenic and is consistent with the SDS-PAGE profiles 

(Figure 47b).                            

Generation of iron-induced, SDS-sensitive ASN fibrils:  

There are literature evidences that altered metal homeostasis lead to the loss of 

dopaminergic neurons in the SN region of brain. In this regards iron is the central 

point of attention because it is the most abundant metal of the body and it has been 

found that total nigral iron level is increased in PD brain compared to the controls. 

Metals especially iron can lead to the fibrilization of ASN either via the release of 

long-range interaction between N- and C- terminus region of ASN or  metals like iron 

can lead to generate hydroxyl radicals by Fenton reaction which can further cause 

oxidation of α-synuclein known as metal catalyzed oxidation (MCO). 36 Interestingly, 

phosphorylation at Tyr125 or at Ser129 can increase trivalent metal binding to the C- 

terminus of ASN. 

Fe3+ can induce the fibrilization of ASN into ThT positive species36. ASN (17.5 μM) 

was incubated with 17.5 μM of Fe3+ for 6 days and the reaction was then analyzed 

by silver staining and ThT assay (Figure 46 c). ASN in presence of iron (Fe3+) 

displayed rapid rate of fibrillaziation, sixteen fold faster compared with ASN alone 
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while amylodegenic fibrils were SDS sensitive as shown by the intensity of the 

silver-stained bands (Figure 47 c ).  

4.8.2. Assessment of potential lead compounds and comparision with refrence 

compounds for their ability to modify ASN aggregation in cell-free system: 

In the last decade small organic molecules, specifically polyphenols have been 

extensively tested for their ability to inhibit ASN aggregation. Overall the potency 

(inhibition and disaggregation) of compounds could be correlated to the number of 

hydroxyl groups present on single phenyl group, and it was observed that potency 

follows this order trihydroxyl > dihydroxyl > monohydroxyl compounds 163.  

It has been shown that rifampicin (Rif.)  and it’s analog, p-benzoquinone,  inhibited 

Aβ-42 aggregation and neurotoxicity in-vitro. Based on these observations and 

napthoquinoe core in the structure of rifampicin, Li et al., has shown that rifampicin 

can inhibit and disaggregate α-SN fibrillation in a dose dependent manner. In 

anaerobic condition as well in presence of antioxidant, the inhibitory effect of 

rifampicin reduced significantly which indicates the oxidized quinone form is majorly 

responsible for its activity.  

The first aim of our ASN project was to evaluate the inhbiotory potency of in vivo 

active anti-Parkinsonian lead molecules towards the oligomerization of ASN induced 

in presence of DA and compare with refrence compound rifampicin and ascorbic 

acid in a cell free system. To investigate the influence of D-520, ascorbic acid (AA), 

rifampicin on ASN aggregation in presence of DA, we incubated either ASN (17.5 

μM) + DA (200 μM) alone or in the presence of rifampicin /Ascorbic Acid/D-520 each 

400 μM for 10 days. The aggregation process was monitored using SDS-PAGE 

analysis and ThT assay. As shown in figure 47d-f after 10 days of incubation, DA 



106 

 

enhanced aggregation of ASN in time dependent manner and similar results were 

observed with rifampicin, while, ascorbic acid and D-520 abolished ASN oligomer 

formation as judged by the intensity of the silver-stained bands. Overall, in this 

assay, D-520 turned out to be the most potent as the intensity of monomeric band of 

ASN did not change much over the time compared to ASN+DA alone or 

ASN+DA+Rifampicin/ Ascorbic Acid. 

The ThT results were confirmed by TEM, We used samples from 4th day of 

experiment to evaluate physical characteristics of aggregates. As shown in figure 48  

a, α-synuclein monomers appeared as a small spherical homogeneous structures, 

whereas, dopamine incubated α-synuclein appeared as a protofibrillar 

heterogeneous structure figure 48  b. While in the presence of ascorbic acid 

spherical aggregates were predominantly observed (figure 48 c). Analysis of the 

sample incubated in presence of DA and rifampicin by TEM revealded somewhat 

distinct shaped aggregates of α-synuclein, which were morphologically different 

compared to α-synuclein monomer (figure 48 d), similarly ASN+DA in presence of D-

520 showed and gave rise to heterogenous aggregates of α-synuclein ranging from 

apparent monomers to aggregates of higher dimensions but smaller than protofibrils 

(figure 48 e). There are several mechanisms by which these D-520 could inhibit ASN 

aggregation: 

 1) its ability to stabilize the native monomeric state of protein, 

 2) target different intermediates on the amyloid process and, 

 3) covalently bind with ASN and alter the aggregation potential.  
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 4.8.3. Generation of α-synuclein aggregates to assess extracellular toxicity in 

cell-culture models: 

ASN aggregates were generated with a primary goal to evaluate the effect of various 

extracellular ASN species on cell viability in PC12 cells. In this experiment, ASN 

aggregates were formed by two different methods, either to yield β-sheet positive 

fibrillar structure or to yield β-sheet negative dopamine-induced and co-valently 

modified oligomeric structure of ASN. 

4.8.3.1. Generation of ASN fibrils and ASN oligomers co-valently modified with 

dopamine: 

ASN fibrilization is a concentration-dependent process and it occurs readily under 

agitation condition with high concentration of protein. We evaluated the fibrilization of 

ASN under agitation condition in the range of 17.5-120 µM, and 60 µM was selected 

as optimal concentration to assess the ability of compounds to modulate 

aggregation. Initially, ASN aggregates were generated with primary goal to evaluate 

the effect of various extracellular ASN species on cellular viability assay in PC12 

cells. In this experiment, ASN aggregates were formed by two different methods, 

either to yield β-sheet positive fibrillar structure or β-sheet negative dopamine-

induced and co-valently modified oligomeric structure of ASN. In order to achieve 

this, we incubated ASN (60 µM) and ASN (60 µM) +DA (90 µM) with mechanical 

agitation for 10 days and the time course of fibrilization process of ASN alone and 

ASN+DA were monitored by ThT assay. Figure 46 d displays the inhibition of ASN 

fibrilization by dopamine compared to ASN alone. DA completely destroys ASN 

fibrilization of ASN at a molar ratio of 1:1.5.  
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4.8.3.1.1. Evaluation of cytotoxicity of extracellular ASN aggregates (pre-

formed) in cell-culture system: 

Aliquots obtained from experiments mentioned above were used to evaluate the 

effect of (pre-formed) various species generated from ASN aggregation experiments 

on PC12 cell viability (extracellular toxicity). The main objective of this experiment 

was to optimize the time-point and the aggregation environment that would induce 

desired cytotoxicity (in ideal conditions, ~50% cell death). For cell-culture 

experiments, 40 µL aliquots (60µM ASN) from various time-points were diluted with 

200 µL PC12 cell media to make the final concentration of ASN 10 µM in the cell 

culture experiments. Figure 50 shows the percentage of MTT reduction in cell 

culture vs. incubation time. The ASN alone (60 µM) has significant impact on cell 

viability and was comparable to ASN+DA. However, DA inhibited ASN fibrilization, 

the MTT experiment suggests that DA-modified has significant cytotoxicity which 

was comparable to ASN alone (Figure 50). It seems that 6 day incubated ASN 

alone (60µM) is more toxic to the cells than fresh or samples after incubated for 8-10 

days. ASN alone (60µM) was able to induce around ~ 40% cell death after shaking 

for 6 days. Therefore, we assessed the ability of some of our lead compound D-520 

and a standard drug (rifampicin) to alter cytotoxicity induced by ASN (60µM) after 

shaking for 6 days. 

4.8.3.1.2. Assessment of lead compounds and standard drug’s ability to alter 

cytotoxicity induced by extracellular α-synuclein: 

To investigate the influence of our in vivo active anti-parkinsonian compound D-520, 

and the refrence drug rifampicin, we monitored the fibrilization of ASN (60 µM) in the 

absence and presence of D-520 (120 µM) using ThT, TEM and MTT assay. 
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Rifampicin was selected as a refrence drug and was tested under the same 

experimental conditions.  

First, the effect of D-520 and rifampicin on ASN fibril formation was analyzed. 

Solution of ASN monomer was incubated for 6 days at 37°C and samples were 

collected at 0 day and 6 days. Both D-520 and rifampicin inhibited ThT fluroscence 

of ASN aggregates to a significant extent (Figure 46e). The ThT results were 

confirmed by TEM, which demonstrated the absence of significant amount of fibril in 

ASN samples with either D-520/ rifampicin. The control samples (ASN 60 µM) at day 

6 showed abundant fibril, helically twisted to each other with varying degree of 

lateral association and these are complementary to ThT data. ASN in presence of 

DA showed few fibril structures. In contrast, D-520 showed dsitcinct morphology of 

small broken fibril (figure 49D). The ASN incubated in presence of rifampicin 

displayed amoprphous and annular aggregates with few detectable fibril strucutures 

(figure 49C).    

Next, we quantified the effect of ThT negative spherical aggregates formed in the 

presence of D-520 and rifampicin on the metabolic activity (?) of PC-12 cells.  In 

order to achieve this we used a mixture of ASN that was incubated in the presence 

and/or absence of compounds for 0 day and 6 days at 37°C under agitation 

condition. 40 µL aliquots of ASN/ compound mixture were then were diluted with 

200µL PC12 cell media to make the final concentration of ASN 10µM for cell culture 

experiments. The treatment with preaggregated ASN showed a reduction of cell 

viability by ~ 40% (figure 51). Intersetngle, earlier time point (0 time) ASN samples 

which were incubated with D-520 a significant reduction of cell viability, however, 

later time point (6 day) sample showed a significant increase of cell viability of 40% 
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and almost approached to control level. While, the standard drug rifampicin was not 

able to show significant neurpprotection at higher time point (figure 51).  

 

a) ASN (17.5µM)+ DA(200µM) 

 

b) ASN (17.5 µM)+ DA (200µM)+H2O2((300µM) 
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c) ASN (17.5 µM)+ Fe 3+(17.5 µM) 

 

d) ASN (60 µM) and ASN (60µM)+ DA(90µM) 

 



112 

 

 

e) ASN (60 µM) and ASN (60µM)+ Drugs(90µM)         

Figure 46.  Thioflavin T assay (Monitoring ASN aggregation) ASN fibrillization 

observed under different conditions. a, b) Over 3 days, ASN (17.5 µM) was 

incubated in the presence of 200 µM DA, and DA (200 µM)+300 µM H2O2  for 72 h 

at 37oC, shaking at 1400 rpm. Fibril formation was monitored by an increase in ThT 

fluorescence at 444 and 485 nm. ASN did not show a significant increase in 

fluorescence compared with ThT alone, suggesting little or no fibril formation.   c) 

ASN (17.5 μM) was incubated with 17.5 μM Fe (III) citrate over 6 days at 37oC, 

shaking at 1400 rpm. Fibril formation was monitored by an increase in ThT 

fluorescence at 444 and 485 nm, ASN incubated with Fe (III) citrate showed a 

significant increase in ThT fluorescence, compared ThT alone.  d) ASN (60 µM) 

alone and ASN (60 µM)+DA (90 µM) was incubated for 10  days at 37oC, shaking at 

1400 rpm. Fibril formation was monitored by an increase in ThT fluorescence at 444 

and 485 nm. ASN alone showed a significant increase in ThT fluorescence 

compared ThT alone while ASN +DA did not show a significant increase in 

fluorescence compared with ThT alone.  
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e) ASN (60 µM) alone and ASN (60 µM)+D520/Rifampicin (120 µM) was incubated 

for 10  days at 37oC, shaking at 1400 rpm. Fibril formation was monitored by an 

increase in ThT fluorescence at 444 and 485 nm. ASN alone showed a significant 

increase in ThT fluorescence compared ThT alone while ASN +D-520/Rifampicin did 

not show a significant increase in fluorescence compared with ThT alone.  

                       

       a. ASN (17.5µM)+ DA(200µM)        b. ASN (17.5 µM)+ DA 

(200µM)+H2O2((300µM) 

         

        c. ASN (17.5µM)+ Fe3+(17.5µM)             d.ASN (17.5 µM)+ DA (200µM)       
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e.ASN(17.5µM)+DA(200µM)+Rifa.(400µM) f.ASN(17.5µM)+DA(200µM)+D-

520(400µM) 

 

  g. ASN(17.5µM)+DA(200µM)+AA(400µM) 

Figure 47.  ASN oligomerization in the presence of DA, DA+ H2O2 and DA+Various 

Drugs.  a) Time-dependent ASN oligomerization in presence of DA. ASN (17.5 μM) 

was incubated for 72 hrs with 200 μM of DA concentrations at 37ºC, shaking at 1400 

rpm. Samples were analyzed on a 12% SDS gel and visulazied with silver staining. 

ASN formed oligomers with 200 μM DA after a short incubation period. b) Time 

dependent DA + H2O2 mediated ASN oligomerization. ASN (17.5 μM) was incubated 

with 200 μM DA+300 μM H2O2 at 37ºC, shaking at 1400 rpm. Aliquots were taken at 

4, 8, 12, 24, 48, and 72 frozen at -20°C. Samples were analyzed on 12% SDS-
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PAGE and visualized with silver staining. ASN with DA + H2O2 had the fastest rate of 

oligomerization. c) Time dependent DA + Fe3+
 mediated ASN oligomerization. ASN 

(17.5 μM) was incubated with 17.5 μM Fe3+ at 37ºC, shaking at 1400 rpm. Aliquots 

were taken at 0, 1, 2, 4, and 6 day 72 frozen at -20°C. Samples were analyzed on 

12% SDS-PAGE and visualized with silver staining. d,e,f,g) Time dependent DA and 

DA+Drugs (Rifampicin, D-520, Ascorbic Acid) mediated ASN oligomerization. ASN 

(17.5 μM) was incubated with 200 μM DA and DA (200 μM)+ 400 μM Drugs 

(Rifampicin, D-520, Ascorbic Acid) at 37ºC, shaking at 1400 rpm. Aliquots were 

taken at 0, 2, 4, 6, 8, 10 days and frozen at -20°C. Samples were analyzed on 12% 

SDS-PAGE and visualized with silver staining. ASN with DA and 

ASN+DA+Rifampicin had the fastest rate of oligomerization. The rate of α-SN 

oligomerization was intermediate when 400 μM AA was used and it reduced 

significantly in case of ASN+DA+D-520.   
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Figure 48: Electron microscopic images (TEM) of α-SN aggregates. α-SN (17.5 μM) 

was incubated either alone (A) or with 200 μM DA (B)  or with 200 μM DA and 400 

μM AA (C) or with 200 μM DA and 400 μM Rifampicin (Rif.) (D), or with 200 μM DA 

and 400 μM D-520 (E), at 37ºC, with shaking at 1400 rpm over 10 days. 

                                       

Figure 49: Electron microscopic images (TEM) of α-SN aggregates. α-SN (60 μM) 0 

day (A)  was incubated either alone (B) or with 120 μM Rifampicin (C) or 120 μM D-

520 (D), at 37ºC, with shaking at 1400 rpm over 10 days. 
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Figure 50. Time dependent cytotoxic effect of asn alone or asn +DA in PC12 cells. 

PC12 cells were treated with pre-incubated asn (60 µM) alone or co-incubated with 

120µM dopamine (DA). The cellular viability was evaluated by MTT assay, and the 

data were expressed as percentage of the control (non treated cells). The control 

treatment is set to 100%.  
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Figure  51.  Cytoprotective effect of the compounds against asn induced toxicity in 

PC12 cells. PC12 cells were treated with pre-incubated asn (60 µM) alone or co-

incubated with 120µM rifampicin (Rif) or D-520. The cellular viability was evaluated 

by MTT assay, and the data were expressed as percentage of the control (non 

treated cells). The control treatment is set to 100%.  

Table  6. Summary of ASN experiments in cell free and with PC-12 cells 

 

Exp. No. Type of Experiment 

 

Experimental Condition 

(Conc. of ASN, Days, Sample 

collection time points) 

Silver 

Staining 

 

ThT  Data 

 

1. ASN+ DA 17.5µMASN+200µMDA; 3days; Over the time No  ThT 
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4, 8, 12, 24, 48 and 72 hrs. 

 

monomer 

decreases 

and 

oligomeric 

species  

increase 

 

signal 

compared 

to ThT 

alone 

 

 

2. ASN+ DA+ H2O2 

 

17.5µM ASN+200 µMDA+300 

µM H2O2;   3days; 4, 8, 12, 24, 

48 and 72 hrs. 

Over the time  

increased 

oligomer 

species 

observed 

compared to 

ASN+ DA 

alone. 

 

 

No ThT 

signal 

compared 

to ThT 

alone 

 

 

 

3. ASN+ Fe3+ 

 

 

17.5µM ASN+17.5 µM Ferric 

Chloride; 6days;   0, 24, 48, 72, 

96, and 144 hrs. 

 

Iron induced 

aggregates 

fall apart in 

SDS gel. 

From Third 

day ThT 

Signal 

enhanced  

compared 

to  ThT 
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alone 

4. ASN+DA 

and 

ASN+DA+ Drug (D-

520, AA, Rifa.) 

 

 

17.5µM ASN+200 µMDA 

and 

17.5µM ASN+200 µMDA+400 

µM Drugs (D-520, AA, Rifa.); 10 

days; 0, 2, 4, 6, 8, and 10 day. 

 

In ASN+ DA  

Over the time  

increased in 

oligomer 

species while  

oligomer 

species  

decreased 

with 

ASN+ DA  

+Drugs  

treatment 

No  ThT 

signal 

compared 

to ThT 

alone 

 

5. ASN alone (Cell 

Culture Exp.) 

 

60µM ASN; 10 days; 0, 2, 4, 6, 

8 and 10 day. 

 

For Cell 

culture. No 

gel was run. 

From 

Second day 

ThT Signal 

enhanced  

compared 

to  ThT 

alone 

6. ASN+DA (Cell 

Culture Exp.) 

 

60µM ASN+120 µM DA; 10 

days; 0, 2, 4, 6, 8 and 10 day. 

 

For Cell 

culture. No 

gel was run. 

No  ThT 

signal 

compared 
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 to ThT 

alone 

 

7. ASN+Drugs (Rifa. or 

D-520), (Cell Culture 

Exp.) 

 

 

60µM ASN+ 120 µM Rifa. or D-

520; 10 days; 0, 2, 4, 6 ,8 and 

10 day. 

 

For Cell 

culture. No 

gel was run. 

No  ThT 

signal 

compared 

to ThT 

alone 

 

 

 

 

 

 

 

 

 

 



122 

 

CHAPTER 5 

Molecular Modeling Studies 

The design and development of the DA D2/D3 agonists using the hybrid approach 

involved combination of an agonist moiety (e. g., aminothiazole, aminotetraline or 

bioisosteric equivalent) with (un)substituted arylpiperazine substructure via a 

suitable linker. Initial SAR studies around the early lead structures focused mainly on 

the optimization of the linker length and the arylpiperazine moiety. Several 

conformationally flexible and rigid molecules were synthesized and tested. Once the 

linker length and possible arylpiperazine moieties were identified, the agonist part of 

the molecule was varied. These extensive efforts led to structurally diverse, novel 

molecules. In the present study, a data set of 45 such structurally diverse molecules 

(Table 7) was used to derive the 3D QSAR models. The position of the –OH group 

on the aminotetraline head group, presence of –C=O group and the absolute 

configuration (R or S) of these molecules posed obvious problems for the alignment. 

Two different alignment methods, atom-based and flexible were tried. Thus, D2 and 

D3 potency models were built using both alignments rules and compound 4, the 

most active analog for both the D2 and D3 receptors, as a template for alignmnet. 

Similarly, D2/D3 selectivity models were constructed using the two alignment types 

but with compound 42, the most selective analog, as the template. As expected, the 

flexible alignment provided better superimposition of the data set onto the templates. 

The representative alignments obtained from the atom-based and flexible modes are 

shown in Figure 52. 

Table 7.  Molecular structures, binding potencies (D2 and D3) and the selectivity 

(D2/D3) of the ligands used in 3D QSAR studies 
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The points indicated by asterisk (*) were used for atom based alignment. 

Ki (nM)             
D2L/D3 

Compound 
No. 

 

Ar1 

 

Ar2 

 

Stereoc
hemist
ry 

D2L  
[3H]spiperon

e 

D3 
[3H]spiperon

e 

 

                

1a 

 

 

220 ± 37.7 

 

4.73 ± 0.64 

 

46.5 

2 e  A  Ph  R  238± 14  18.4±1.0  12.93 

3e  A  Ph  S  26.0 ± 7.5  0.82 ± 0.13  31.5 
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4c  B 

 

S  3.74 ± 0.70  0.19 ± 0.03  19.68 

5a    23.6 ± 1.1  4.95 ± 1.1  4.8 

6a    835 ± 182  89.3 ± 19.4  9.4 

7d  A 

 

S  53.6 ± 12.3  2.36 ± 0.87  22.7 

8e  A  2’‐OMePh  R  88.7 ± 3.1  18.8 ± 4.2  4.7 

9e  A  2’‐OMePh  S  9.56 ± 2.29  0.46 ± 0.12  20.9 

10d  A  1’‐(4’‐(4’’‐pyridyl)phenyl  S  13.2 ± 1.3  1.53 ± 0.18  8.6 

11d  C  1’‐(4’‐(4’’‐pyridyl)phenyl  S  399 ± 16  16.2 ± 1.8  24.6 

12b  A 

 

R  113 ± 21  3.73 ± 0.56  30.2 

13b  A 

 

S  47.5 ± 6.2  0.57 ± 0.094  83 

14b   A 

 

S  157 ± 35  2.27 ± 0.52  69.2 

15 f  A 

 

S  3.75± 0.63  1.28 ± 0.08  2.9 

16f  A 

 

R  20.7 ± 1.5  7.73 ± 0.64  2.67 

 

17 a  C  Ph  S  809 ± 65  38.6 ± 0.7  20.9 

18b  C  Ph  R  40.6 ± 3.6  1.77 ± 0.42  22.93 
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19f  C 

 

R  4.55± 0.59  1.27 ± 0.15  3.58 

20 e 

 

S  19.4 ±1.3  1.22 ± 0.37  15.9 

21 e 

 

R  19.3 ± 1.5  0.74 ± 0.069  25.8 

22e 

 

R  32.9 ± 8.6  0.76 ± 0.079  43.2 

23e 

 

S  25.2 ± 7.3  0.35 ± 0.03  71.0 

24d  C 

 

R  58.0 ± 14.7  2.79 ± 0.73  20.8 

25 d  C  1’‐(4’‐(4’’‐pyridyl)phenyl  R  24.7 ± 5.8  0.78 ± 0.22  32.0 

26j  N

S
H2N (S)

NHPr  

6740 ± 510  11.7 ± 2.5  576.1 

27g   D  Ph  S  243 ± 65  4.15 ± 0.76  58.6 

28g   D  Ph  R  1979± 567  44.0 ± 10.6  45.0 

29g   D  2’‐OMePh  S  288 ± 86  7.01 ± 1.16  41.1 
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30g   D  2’‐OMePh  R  243 ± 47  101± 41  2.40 

31 g   D  2’,3’‐Cl2Ph  S  56.8 ± 15.4  1.80± 0.32  31.6 

32 g   D  2’,3’‐Cl2Ph  R  44.2 ± 6.9  12± 2.9  3.68 

33 g   D 

 

S  264 ± 40  0.92± 0.23  253 

34c  D 

 

S  109 ± 14  2.61± 0.18  41.8 

35c  D 

 

S  269 ± 16  2.23± 0.60  121 

36 c  D 

 

S  57.7 ± 3.3  1.21± 0.16  47.7 

37c  D 

 

S  270 ± 28  4.78 ± 0.89  56.5 

38h  D 

 

S  27.1 ± 5.0  4.98 ± 0.78  5.4 

39 h  D 

 

R 

 

190 ± 29  13.2 ± 2.3  14.5 

40i  D 

 

R  2558 ± 112  54.1 ± 4.2  47.3 

41 i  D 

 

S  1073 ± 92  1.84 ± 0.51  583 



127 

 

42 i  D 

 

S  902 ± 130  1.09 ± 0.14  828 

43 i  D 

 

R  1316 ± 244  48.2 ± 8.6  27.3 

44 i  D 

 

R  2626 ± 229  52.8 ± 8.3  49.7 

45 i  D 

 

S  1031 ± 182  1.40 ± 0.29  736 

a Please see Ref. 151 (Dennis Brown, et al. ); b Please see Ref. 148 (Dennis Brown, 
et al. 2009); c Please see ref. 146 (Ghosh, et al. 2010); d Please see ref. 147 
(Ghosh, et al. 2010) ; e Please see ref. 150 (Biswas, et al. 2008)); f Please see ref. 
145 (Ghosh, et al. 2010) ); g Please see ref. 149 (Biswas, et al. 2008) ; h Please see 
ref. 143 (Gogoi, et al. 2011) ; i Please see ref. 141 (Johnson, et al. 2011) 

a)                                                                                

 
 
 

b) 
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Figure 52.  a) Flexible and b) Atom-based alignments of the dataset molecules 

onto compound 4 (template)                                        

5.1. CoMFA analysis: D2 and D3 receptor binding affinity: 

With the help of carefully selected training sets of 37 molecules comprising of 

enatiomers, statistically significant CoMFA models were obtained. The results of 

CoMFA analyses are summarized in Table 10.  Since the experimental activity 

varied significantly for D2, D3 and selectivity (D2/D3), different training and test set 

were used for all three cases. The resulting models showed poor internal predictive 

ability (r2
cv < 0.3) (data not shown). Careful examination of the residuals from the 

non-cross-validated PLS analysis of the models using all compounds as training set 

led to identification of the compounds 6, 11 and 17 as common outliers for both D2 

and D3 models. Systematic removal of these outliers from the data set resulted in 

improved statistics. The 3D QSAR model is considered statistically significant if r2
cv 

is greater than 0.3, although a value greater than 0.4 is normally desirable 164. For 

DA D2 binding affinity, both alignments resulted in models comparable in terms of 

relevant statistical parameters.  
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For D2, the best CoMFA model was based on flexible alignment with AM1 charges 

(Model d) with r2
cv of 0.713 (4 components), conventional r2 of 0.920 and standard 

error of estimate (SEE) of 0.234. This model also showed excellent predictive 

capability with r2 pred of 0.926. Interestingly, for DA D3 receptor binding affinity, the 

best CoMFA model was based on flexible alignment with Gasteiger –Hückel charges 

(Model e) with the r2
cv of 0.453 (5 components), r2

conv of 0.941, SEE of 0.169 and r2 

pred of 0.710. In comparison, the CoMFA models generated using the atom-based 

alignment exhibited poor external predictions (Model b, Table 10). The experimental 

and fitted/predicted  pKi values for the training and test sets of the best D2  and D3 

CoMFA models (Models d and e, respectively) are given in Table 8. The plots of 

fitted versus experimental activity values for the training set molecules and predicted 

versus experimental values for the test set molecules for the D2 CoMFA model d are 

shown in Figures 53a and 53c, respectively. The corresponding CoMFA predicted 

plots for D3 model e are shown in Figure 53b and 53d, respectively. The steric field 

describes 41.5% and 63.6% of variance for DA D2 and D3 binding affinities, 

respectively (refer Table 10, Model d and e), while the corresponding contributions 

from the electrostatic field were found to be 58.5% and 36.4%, respectively. 

The LOO cross-validation method might lead to high r2
cv values which do not 

necessarily reflect a general predictability of the models. Therefore, cross-validation 

using 10 groups was performed for 10 times. In this method, a model based on 

about 80% of the variable data predicts each target property. The mean r2
cv values 

of 0.731 and 0.472 for D2 and D3 binding affinities, respectively, reveal that the 

models have good internal predictivity and the results were not by chance. To further 

assess the robustness of the model, boot-strapping analysis (10 groups) was 
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performed and r2
bs of 0.950 and 0.963 (SDbs= 0.016 and 0.014) was obtained for D2 

and D3, respectively, which further establishes the robustness of the models.            

 5.2. CoMSIA analysis: D2 and D3 receptor binding affinity: 

A total of five fields, steric, electrostatics, hydrophobic, hydrogen bond donor (HDon) 

and acceptor (HAcc), as implemented in CoMSIA, were used for the generation of 

the 3D QSAR models. Initial analyses were performed using individual fields as well 

as various combinations of different fields. The models developed using all the fields 

gave statistically robust results. It emphasized the importance of hydrophobic, HDon, 

and HAcc fields in addition to steric and electrostatic fields for D2/D3 binding affinity 

of the ligands. The summary of the CoMSIA analyses is given in Table 11. For D2 

binding affinity, CoMSIA model generated using atom-based alignment and AM1 

charges performed better (Model a, Table 11) with r2
cv of 0.719 (4 components), 

r2
conv of 0.912, SEE of 0. 245 with r2

pred of 0.911 than the corresponding model using 

flexible alignment and Gasteiger-Hückel charges (Model d, Table 11). Similarly, for 

D3 binding affinity, the best model generated using flexible alignment and Gasteiger-

Hückel charges (Model e, Table 11) gave r2
cv of 0.493 (6 components), r2

conv of 

0.898, SEE of 0. 227 with r2
pred of 0.465. Removal of compound 33 (outlier as seen 

from high residual) improved the value of r2
pred from 0.465 to 0.640. The outlier 

behavior of 33 in D3 CoMSIA models could not be reasoned. The experimental and 

fitted/predicted pKi values for the training and test sets are given in Table 8. The 

plots of fitted versus experimental activity values for the training set molecules and 

predicted versus experimental values for the test set molecules for the D2 CoMSIA 

model a are shown in Figures 54a and 54c, respectively. The corresponding 

CoMSIA predicted plots for D3 model e are shown in Figure 54b and 54d, 

respectively.  
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The field contributions for 3D QSAR CoMSIA models are given in Table 11. For 

cross- validation using 10 groups, the mean r2
cv values of 0.726 and 0.456 were 

found for D2 and D3, respectively, while r2
bs of 0.951 (SDbs=0.013) and 0.936  

(SDbs=0.020) were obtained for D2 and D3, respectively. 

Compounds 6, 11, and 17 were found to be outliers in CoMFA and CoMSIA models 

for both D2 and D3 potency, therefore, not included in the analyses. The outlier 

behavior could be due to several factors. One of the possible reasons could be the 

structural properties, including stereochemistry, of these compounds. The outlier 

behavior of compound 6 could be due to it’s constrained structure along with R 

stereochemistry. For this series of hybrid molecules, it was observed that the 

compounds with 5-OH DPAT as agonist head group with R stereochemistry were 

less potent than their corresponding S isomers.  However, it has been observed that 

compound containing 7-OH-DPAT as agonist head group with S stereochemistry 

due to reorientation loses the favorable interaction with the receptor.         

5.3. CoMFA and CoMSIA analysis: selectivity for D3 over D2 receptors  

In order to understand the structural features responsible for D3 selectivity, 3D 

QSAR models were generated using both, the atom-based and flexible alignments. 

The resulting models showed poor internal predictivity (r2
cv <0.3) (data not shown). 

Various combinations of the training and test sets did not improve the statistics. As 

described previously, compounds showing high residuals were identified. Systemic 

removal of these outliers from the data set resulted in improvement of the statistics.  

The summary of the 3D QSAR models is shown in Tables 10 (CoMFA) and 11 

(CoMSIA). The best CoMFA model was obtained using flexible alignment and AM1 

charges (model f, Table 10) while the best CoMSIA model was based on atom-

based alignment and AM1 charges (model c, Table 11). The best CoMFA model for 
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selectivity (n=40) exhibited r2
cv of 0.634 (5 components), r2

conv of 0.958, and SEE of 

0.145. This model also showed good external predictivity with r2
pred of 0.864. In case 

of cross-validation using 10 groups, the mean r2
cv value of 0.640 was found for 

selectivity model while r2 bs of 0.984 (SDbs=0.009) was obtained.   

The best CoMSIA model for selectivity (n=39) showed r2
cv of 0.797 (3 components), 

r2
conv of 0.940, SEE of 0.161, and r2

pred of 0.781. The mean r2
cv value of 0.795 was 

found for cross-validation using 10 groups for the selectivity model while r2
bs value of 

0.955 (SDbs=0.016) further confirmed the robustness of the model. The experimental 

and fitted/predicted pKi values for the training and test sets are given in Table 9. The 

plots of fitted versus experimental activity values for the training set molecules and 

predicted versus experimental values for the test set molecules are given in Figures 

55a, 55b and 55c, 55d, respectively.  

Compounds 30, 32, 38, 40, 43 and 44 were found to be outliers and therefore, not 

included in the analyses. The reasons for this observation could be many-fold. Since 

the selectivity values represent affinity differences, the experimental uncertainty due 

to error propagation is likely to be higher. Other possible reason could be the 

structural properties, including stereochemistry, of these compounds. For these 

series of hybrid molecules, it was observed that the compounds with R 

stereochemistry were less potent than their corresponding S isomers. No suitable 

explanation could be provided for the higher residuals values for compound 38.     

Table 8.  Experimental and fitted/predicted activities of D2/D3 ligands used as 

the training and test sets for CoMFA and CoMSIA analyses 

pKi
a 

Fitted/Predicted 
Sr. 
No.  Experimental 

CoMFA  CoMSIA 
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  D2L  D3  D2L  Rsd1  D3  Rsd2  D2L  Rsd3  D3  Rsd4 

1a  6.657  8.325  6.687  -0.037 8.261 0.064 6.470  0.180  8.49 -0.165 

2 e  6.623  7.735  7.157  -0.534 7.987 -0.251 7.243  ‐0.625  7.742 -0.006 

3e  7.585  9.086  7.413  0.172 8.834 0.252 7.463  0.122  8.659 0.426 

4c  8.427  9.721  8.371  0.058 9.607 0.113 8.208  0.218  9.953 -0.231 

5a  7.627  8.305  7.492  0.134 8.205 0.100 7.705  ‐0.077  7.987 0.318 

6a  6.078  7.049  7.423  -1.344 9.167 -2.118 7.724  ‐1.645  9.430 -2.380 

7d  7.270  8.627  7.447  -0.176 8.809 -0.181 7.361  ‐0.090  8.703 -0.075 

8e  7.052  7.725  7.363  -0.311 8.093 -0.368 7.198  ‐0.145  8.113 -0.387 

9e  8.019  9.337  7.796  0.214 8.911 0.425 7.594  0.416  8.822 0.514 

10d  7.879  8.815  7.998  -0.119 8.935 -0.119 7.851  0.028  8.770 0.044 

11d  6.399  7.790  9.942  -3.542 9.134 -1.343 7.675  ‐1.276  9.494 -1.704 

12b  6.946  8.428  7.054  -0.108 8.304 0.124 6.923  0.022  8.361 0.066 

13b  7.323  9.244  7.109  0.214 9.174 0.069 7.089  0.233  9.194 0.050 

14b  6.804  8.643  6.936  -0.131 8.648 -0.005 6.685  0.118  8.769 -0.125 

15 f  8.425  8.892  8.562  -0.136 9.07 -0.178 8.212  0.212  9.063 -0.170 

16f  7.684  8.111  8.204  -0.520 8.189 0.077 8.241  ‐0.558  8.092 0.091 

17 a  6.092  7.413  7.432  -1.339 9.134 -1.721 7.679  ‐1.586  9.553 -2.139 

18b  7.391  8.752  7.188  0.202 8.504 0.248 7.391  0.000  8.73 0.022 

19f  8.341  8.896  8.061  0.280 8.899 -0.003 8.313  0.027  9.008 -0.112 

20 e  7.712  8.913  7.834  -0.121 9.114 -0.183 7.593  0.119  9.146 -0.215 

21e  7.714  9.130  7.546  0.168 9.345 -0.215 7.576  0.138  8.968 0.162 

22e  7.482  9.119  7.302  0.180 9.152 -0.032 7.483  ‐0.001  9.044 0.075 

23e  7.598  9.455  7.698  -0.099 9.061 0.393 7.730  ‐0.132  9.529 -0.074 

24d  7.236  8.554  7.198  0.038 8.700 -0.146 7.417  ‐0.180  8.770 -0.216 

25 d  7.607  9.107  7.429  0.177 9.019 0.087 7.565  0.042  9.152 -0.044 
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26j  5.171  7.931  5.125  0.045 7.814 0.116 4.967  0.204  8.036 -0.104 

27g  6.614  8.381  6.533  0.081 8.274 0.106 6.779  ‐0.165  8.05 0.331 

28g  5.703  7.356  6.113  -0.410 7.418 -0.061 6.326  ‐0.622  7.705 -0.349 

29g  6.540  8.154  6.465  0.074 8.328 -0.174 6.697  ‐0.157  8.121 0.032 

30g  6.614  6.995  6.367  0.247 7.059 -0.063 6.563  0.050  7.312 -0.317 

31 g  7.245  8.744  7.045  0.200 8.795 -0.050 7.039  0.206  8.439 0.305 

32 g  7.354  7.920  6.805  0.548 7.897 0.022 6.841  0.513  7.385 0.535 

33 g  6.630  9.033  6.480  0.150 8.308 0.725 6.415  0.215  8.096 0.936 

34c  6.962  8.583  7.108  -0.146 8.815 -0.232 7.251  ‐0.288  8.699 -0.116 

35 c  6.570  8.651  6.910  -0.340 8.725 -0.074 6.548  0.022  8.778 -0.126 

36c  7.238  8.917  7.118  0.120 8.802 0.114 7.028  0.209  8.947 -0.029 

37c  6.568  8.320  6.651  -0.082 8.437 -0.116 6.841  ‐0.273  8.267 0.053 

38h  7.567  8.302  7.226  0.340 8.195 0.107 7.619  ‐0.052  8.248 0.054 

39 h  6.721  7.879  7.020  -0.298 7.661 0.218 6.880  ‐0.158  7.786 0.093 

40i  5.592  7.266  5.815  -0.223 7.872 -0.606 5.681  ‐0.088  8.069 -0.802 

41i  5.969  8.735  6.061  -0.091 8.794 -0.059 5.870  0.099  8.856 -0.120 

42i  6.044  8.962  5.911  0.133 9.047 -0.084 5.955  0.089  8.811 0.150 

43i  5.880  7.316  5.972  -0.092 7.361 -0.044 5.792  0.088  7.679 -0.363 

44 i  5.580  7.277  5.682  -0.101 7.333 -0.055 5.786  ‐0.205  7.035 0.242 

45 i  5.986  8.853  6.040  -0.054 8.755 0.098 5.926  0.059  8.778 0.075 

 

   Rsd1: Residual between predicted and observed activity for D2 CoMFA model  

   Rsd2: Residual between predicted and observed activity for D3 CoMFA model  

   Rsd3: Residual between predicted and observed activity for D2 CoMSIA model 

   Rsd4: Residual between predicted and observed activity for D3 CoMSIA model 
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Table 9.  Experimental and fitted/predicted activities of D2/D3 ligands used as 

the training and test sets for selectivity (D3 over D2) analyses using 

CoMFA and CoMSIA  

pKi
a 

Experimental  Fitted/Predicted 

 

Sr. No. 

  CoMFA  Rsd5  CoMSIA  Rsd6 

1a  1.668  1.685  ‐0.017  1.766  ‐0.095 

2 e  1.112  1.210  ‐0.098  1.191  ‐0.079 

3e  1.501  1.270  0.231  1.214  0.286 

4c  1.294  1.195  0.099  1.085  0.208 

5a  0.678  0.620  0.058  0.809  ‐0.130 

6a  0.971  0.865  0.106  0.929  0.041 

7d  1.357  1.212  0.145  1.296  0.060 

8e  0.673  1.021  ‐0.348  1.304  ‐0.631 

9e  1.318  1.054  0.264  1.032  0.295 

10d  0.936  0.804  0.132  0.963  ‐0.026 

11d  1.391  1.449  ‐0.058  1.497  ‐0.106 

12b  1.482  1.592  ‐0.11  1.601  ‐0.119 

13b  1.921  1.523  0.398  1.616  0.304 

14b  1.839  1.811  0.028  1.945  ‐0.106 

15 f  0.467  0.386  0.081  0.622  ‐0.155 

16f  0.427  0.469  ‐0.042  0.401  0.025 

17a  1.321  1.434  ‐0.113  1.408  ‐0.087 

18b  1.361  1.242  0.119  1.394  ‐0.033 

19f  0.555  0.674  ‐0.119  0.792  ‐0.236 

20 e  1.201  1.382  ‐0.181  1.353  ‐0.133 
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21 e  1.416  1.545  ‐0.129  1.392  0.023 

22 e  1.637  1.445  0.192  1.431  0.257 

23 e  1.857  1.912  ‐0.055  1.563  0.293 

24d  1.318  1.345  ‐0.027  1.495  ‐0.176 

25 d  1.500  1.378  0.122  1.413  0.086 

26j  2.760  2.636  0.124  2.711  0.049 

27g  1.767  1.583  0.184  1.652  0.114 

28g  1.653  1.692  ‐0.039  1.847  ‐0.193 

29g  1.614  1.575  0.039  1.670  ‐0.055 

30g  0.381  0.689  ‐0.308      1.704  ‐1.32 

31 g  1.499  1.349  0.15  1.805  ‐0.305 

32 g  0.566  1.637  ‐1.071  1.681  ‐1.114 

33 g  2.403  2.406  ‐0.003  2.084  0.319 

34c  1.621  1.785  ‐0.164  1.741  ‐0.120 

35c  2.081  1.958  0.123  1.981  0.100 

36c  1.679  1.788  ‐0.109  1.637  0.042 

37c  1.752  1.918  ‐0.166  1.760  ‐0.007 

38h  0.735  1.756  ‐1.021  1.601  ‐0.866 

39h  1.158  1.133  0.025  1.232  ‐0.074 

40i  1.674  2.906  ‐1.232  3.007  1.332 

41i  2.766  3.029  ‐0.263  3.043  ‐0.277 

42i  2.918  2.827  0.091  2.958  ‐0.040 

43i  1.436  2.711  1.275  2.931  ‐1.495 

44 i  1.697  2.776  ‐1.079  2.961  ‐1.126 

45 i  2.867  2.930  ‐0.063  3.006  ‐0.138 

 

a pKi is the negative logarithm of equilibrium inhibition constant 
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b ΔpKi = pKi D3 ‐ pKi D2L 

Table 10.   Summary of 3D QSAR CoMFA results 

                           Atom‐based alignment                          Flexible alignment 

 

                 

a Model based on atom-based alignment and AM1 charges  
b Model based on atom-based alignment and AM1 charges 
c Model based on atom-based alignment and AM1 charges  
d Model based on flexible alignment and AM1 charges  
e Model based on flexible alignment and Gasteiger-Hückel charges  

     f Model based on flexible alignment and AM1 charges

 pKi D2a pKi D3b 
Selectivity 
(D2/D3)c 

pKi D2d 

 
pKi D3e 

Selectivity 
(D2/D3)f 

 
Test set 

molecules 

 
8, 9, 13, 16, 
19, 27, 40, 41 

 
5, 8, 10, 23, 
24, 32, 33, 40 

 
6, 8, 13, 18, 
22, 24, 31, 41 

 
8, 9, 13, 16, 
19, 27, 40, 41 

 
5, 8, 10, 23, 
24, 32, 33, 40 

 
6, 8, 13, 18, 
22, 24, 31, 41 

r2
conv 0.903 0.964 0.976 0.920 0.941 0.958 

SEE 0.258 0.143 0.111 0.234 0.169 0.145 

Components 4 5 5 4 5 5 

F values 67.507 145.94 208.99 83.140 89.538 118.68 

Pr2=0 0.00 0.00 0. 00 0.00 0. 00 0.00 

Fractions       

Steric 0.447 0.424 0.437 0.415 0.636 0.528 

Electrostatic               0.553                   0.576                     0.563                   0.585                    0.364                   0.472 

r2
pred 

0.852 
 

0.249 
 

0.849 0.926 0.710 0.864 

σmin 2.0 2.0 2.0 2.0 2.0 2.0 
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Table 11.  Summary of 3D QSAR CoMSIA results 

           Atom-based alignment                           Flexible alignment 

  pKi D2a pKi D3b 
Selectivity 
(D2/D3)c 

pKi D2d pKi D3e 
Selectivity 
(D2/D3)f 

Test set 
molecules  

8, 9, 13, 16, 
19, 27, 40, 

41 

5, 8, 10, 23, 
24, 32, 33, 

40          

6, 8, 13, 18, 
22, 24,31,41 

8, 9, 13, 16, 
19, 27, 40, 

41 

5, 8, 10, 23, 
24, 32, 33, 40   

 
6, 8, 13, 18, 
22, 24, 31, 

41 
 

r2
conv 0.912 0.963 0.94 0.912 0.898 0.967 

 
     SEE 

 
        0.245 

 
       0.151 

 
     0.161 

 
      0.246 

 
      0.227 

 
     0.122 

Comp. 4 7 3 4 6 4 
F values 75.51 93.179 141.33 75.018 39.5 190.65 

Pr2=0 0 0 0. 00 0 0. 00 0 
Fractions       

Steric 0.069 0.055 0.059 0.078 0.028 0.068 
Electrost. 0.157 0.194 0.18 0.156 0.113 0.143 

 
Hydrophobic 

 
0.205 

 
0.174 

 
0.164 

 
0.227 

 
0.204 

 
0.173 

Donor 0.229 0.308 0.283 0.211 0.323 0.277 
Acceptor 0.34 0.268 0.314 0.328 0.332 0.339 

r2
pred 0.911 0.335 0.781 0.814 0.64 0.719 

 
σmin 

 
2.0 

 
2.0 

 
2.0 

 
2.0 

 
2.0 

 
2.0 

       
 

a  Model based on atom-based alignment and AM1 charges  
b Model based on atom-based alignment and AM1 charges  
c Model based on atom-based alignment and AM1 charges 
d Model based flexible alignment and Gasteiger-Hückel charges 
e Model based on flexible alignment and Gasteiger-Hückel charges  
f Model based on flexible alignment and Gasteiger-Hückel charges  
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Figure 53. Experimental versus fitted (training set) activity a) DA D2a and b) DA 

D3b from the CoMFA analyses of the training sets and experimental 

versus predicted (test set) activity c) DA D2a and d) DA D3b from the 

CoMFA analyses. Note.  aThe results are from flexible alignment and 

AM1 charges. bThe results are from flexible alignment and Gasteiger-

Hückel charges  
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Figure 54. Experimental versus fitted (training set) activity a) DA D2a and b) DA 

D3b from the CoMFA analyses of the training sets and experimental 

versus predicted (test set) activity c) DA D2a and d) DA D3b from the 

CoMFA analyses. Note.  aThe results are from atom-based alignment 

and AM1 charges. bThe results are from flexible alignment and 

Gasteiger-Hückel charges 
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Figure 55. Experimental versus fitted (training set) selectivity (D2/D3) from a) 

CoMFA analysesa and b) CoMSIA analysesb of the training sets and 

experimental versus predicted (test set) selectivity (D2/D3) from c) 

CoMFA analysesa and d) CoMSIA analysesb. Note.  aThe results are 

from flexible alignment and AM1 charges. bThe results are from atom-

based alignment and AM1 charges. 
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5.4. Graphical Interpretation of the CoMFA and CoMSIA models:  

CoMFA and CoMSIA contour maps were generated by interpolating the product 

between 3D QSAR coefficients and their associated standard deviations. The 3D 

representation of the field contributions defined as “STDEV*COEFF” contour maps 

which can provide better insights into the key structural features responsible for the 

variations in experimental binding affinities. Figure 56a shows the steric and 

electrostatic CoMFA contour maps derived from flexible alignment and AM1 charges 

for D2 potency while Figure 56b shows the corresponding maps generated using 

flexible alignment and Gasteiger-Hückel charges for D3 potency with the most active 

compound 4 shown inside the fields. The green contours (contribution level 80%) 

suggest that increase in steric bulk would result into an increase in activity, whereas 

yellow contours (contribution level 20%) suggest the opposite - a sterically bulky 

group would lead to decreased activity. Similarly, the blue (contribution level 80%) 

and red (contribution level 20%) contours indicate regions where the addition of 

electropositive and electronegative substituents, respectively, would result in an 

increase in activity.  

 

5.4.1. DA D2 receptor binding affinity: 

The 3D QSAR contours are divided into two groups – one consisting of contours 

near the aminotetraline head group (Site 1) and the second group consisting of 

contours at or near the phenyl ring attached to piperazine (Site 2). Presence of 

several sterically favored green and disfavored yellow contours (Figure 56a) 

surrounding the head group depicts stricter adherence to the limited steric bulk for 

both the D2 potency. The head group is likely to be situated in a well-defined cavity 

in the ligand-binding pockets of the D2 and D3 receptors. A small green contour is 
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overlapping the 5-methoxy group of aminotetraline moiety of compound 4 

suggesting the requirement of steric bulk at this position for high affinity interaction.  

A sterically unfavorable yellow region around the aminoteteraline moiety arises from 

the third ring of the conformationally rigid analog, 6, explaining its lower binding 

affinity for both the receptors compared to its conformationally flexible bicyclic 

counterpart 2.  Similarly, the presence of a yellow contour near the N-propyl group of 

aminotetraline moiety suggests the detrimental effect of steric bulk near this position 

which is in consonance with other findings. In case of electrostatic contour maps, a 

small red contour is observed near the oxygen of 7 position of aminotetraline head 

group, indicating the critical importance of hydroxyl group for D2 potency.  

 As shown in Figure 56a, a large sterically unfavorable yellow contour is observed in 

the vicinity of the quinoline ring of 4, indicating no steric bulk is allowed in this region 

and explains the lesser activity of the biphenyl analog 7 compared to 3 (Ki D2= 56.3 

nM and 26.0 nM, respectively). Similarly, there are three small green regions located 

on the 6, 7 and 8 position of quinoline moiety which signifies the importance of 

limited steric bulk in this region. Lower potency of compounds 2 and 3 compared to 

4, 15, and 16 could be due to the above interpretation, among others.  

The appearance of blue polyhedra pointing away from position 3 position of 

quinoline moiety (Figure 56a) indicates that this region should carry relatively lesser 

electron density or should be more electropositive in nature for better binding affinity 

for the D2 receptor.  The carbonyl group of the compounds 12, 13, 14, 41, 42 and 45 

is directed towards these blue polyhedra which explain the less potent nature of 

these molecules. The appearance of red polyhedra in the vicinity of chlorine atom 

attached to the ortho and meta position of compounds 31 and 32 indicates that 

substitution with groups, carrying high electron density, is favorable at this position.  
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This explains the higher potency of 31 and 32 compared to 27 and 28 lacking the 

halogen substituents (Ki D2 = 56.8 nM and 243 nM for 31 and 27, respectively; Ki D2 

= 44.2 nM and 1979 nM for 32 and 28, respectively). A blue polyhedron around 

indole-containing compound 14 indicates that this nitrogen should be more 

electropositive for better binding affinity at the D2 receptor.   

The hydrophobic, HDon and HAcc contour maps of D2 CoMSIA model are displayed 

in Figure 57a. Yellow (the contribution level 80%) and white (the contribution level 

20%) contours indicate the region where hydrophobic and hydrophilic groups, 

respectively, are preferred. There are three hydrophilic regions in this contour map: 

First, large white contour near the N-propyl group of the aminotetraline head group, 

which indicates that a hydrophobic group is disfavored at this position. This contour 

maps onto the tertiary nitrogen of the aminotetraline and aminothiazolidium groups 

which confer hydrophilicity upon protonation in physiological pH; and is also 

consistent with the conclusion of the steric field.  It is a well-known fact that one of 

the N substituents of a potent DA receptor agonist fits into a small pocket known as 

‘propyl cleft’. Another white polyhedron is located around the piperazine ring 

suggesting that hydrophobic groups will decrease the activity. Third white 

polyhedron is observed away from the quinoline moiety of the most active 

compounds which is in consonance with the steric contour map.  As seen in Figure 

57a, the quinoline group of 4 is surrounded by a yellow contour. These results 

demonstrate that a hydrophobic function in this region will increase activity which is 

consistent with CoMFA steric contour map. The HDon-favored and disfavored 

regions are represented by cyan (contribution level 80%) and purple (contribution 

level 20%) contours, respectively. The presence of two cyan contours are near the 

5- and 7-positions of the aminotetraline head group indicate that HDon functionality 
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in this region will enhance the binding affinity. The HDon moieties, the hydroxyl and 

amino groups of the aminotetraline and thiazolidium head groups may be involved in 

H-bonding with the receptor amino acid residues.  These results are in accordance 

with the similar results obtained by other authors.   One cyan contour near the N of 

the n-propyl group of aminotetraline indicates that a HDon functionality in this region 

will enhance the binding affinity to D2 receptor. The cyan contour map surrounding 

the piperazine nitrogen signifies the position of nitrogen atom as donor group 

present in this class of dopaminergic compounds. It is likely that these nitrogen will 

exist as protonated species at physiological pH and thus, may serve as HDon and/or 

cationic center.   

CoMSIA HAcc favored and disfavored fields are shown in magenta (contribution 

level 80%) and red (contribution level 20%) respectively. The large red contour 

around the 5 position of aminotetraline indicates that any substituent containing an 

acceptor group will reduce the activity which is in agreement with HDon feature at 

this region of molecules. On the other hand a red polyhedron is seen around the 

carbonyl oxygen attached to the piperazine ring in compounds 12, 13, 14, 41, 41 

and 45. This indicates that acceptor group is disfavored at this position and is 

validated by the presence of carbonyl group in compounds 12, 13, 14, 41, 41 and 45 

which resulted in the reduced binding affinity for the D2 receptor. The magenta 

contours around the nitrogen of quinoline and indole moiety of the compounds 15, 

16 and 19 suggest that this nitrogen can act as an acceptor and should be 

electropositive for better binding affinity. 

5.4.2. DA D3 receptor binding affinity: 

The steric and electrostatic contour plots are shown in Figure 56b. Compound 4 is 

shown for reference.  As seen from Figure 56b, a large sterically favorable green 
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contour is observed around the 7- and 8-positions of the aminotetrlaine head group, 

suggesting the requirement of bulk near these positions for higher D3 potency. 

Sterically unfavorable yellow contours are observed near the N-propyl group of 

aminotetraline and near the pendant ring of the conformationally rigid analogs 5 as 

observed for D2 potency. Significant number of red contours is observed around the 

molecules. The red contour seen near the piperazine nitrogen reveals that nitrogen 

may act as a HAcc to interact with the D3 receptor. A red polyhedron is observed 

around the nitrogen of the molecules having an indole moiety attached to the 

piperazine ring in compounds 12, 13 and 41 which indicates the involvement of 

indole N in H-bonding with the receptor.   

The hydrophobic, HDon and HAcc contour maps of CoMSIA model based on flexible 

alignment and Gasteiger-Huckel charges are displayed in Figure 57b and are 

generally in accordance with the field distribution pattern seen for D2 potency. In the 

CoMSIA contour maps for D3 potency, there is a cyan contour map surrounding the 

piperazine nitrogen implying that donor group is favorable at this location for better 

activity. However, an acceptor favorable magenta contour on the same nitrogen 

signifies that the group with the dual donor and acceptor properties are favorable at 

this position. A magenta polyhedron is seen around the oxygen of the carbonyl 

group attached to the piperazine ring in molecules 12, 13, 14, 41, 42 and 45. This 

indicates that an acceptor group is favored at this position and the position of 

carbonyl group in these compounds resulted in the higher binding affinity towards 

the D3 receptor which is in contrast to the corresponding D2 contour maps. These 

contour maps may explain the higher D3 selectivity of the carbonyl-containing 

compounds. The magenta contour map near the oxygen of hydroxyl group 

containing compounds 15, 16, 19 and on 8 position of quinoline moiety signifies that 
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an acceptor group is favored at this position. The yellow contour on the phenyl and 

white hydrophobic contour on the cyclohexyl ring of aminotetraline indicate that the 

hydrophobic and hydrophilic groups, respectively, are favored for higher D3 potency.  

A white contour near the N-propyl group of the aminotetraline and yellow contours 

around the quinoline ring of 15, 16 and 19 is complementary to the D2 CoMSIA 

contour maps (Figure 57a). A large white contour is located around the quinoline 

moiety suggesting that hydrophobic group will reduce the binding affinity towards D3 

receptor.    

 

                  
 

a)  
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Figure 56. CoMFA STDEV*COEFF contour plots showing steric and electrostatic 

features from analysis based on a) flexible alignment and AM1 charges for 

D2 potency and b) flexible alignment and Gasteiger-Hückel charges for D3 

potency. Green polyhedra represent sterically favored areas (contribution 

level of 80%) and yellow polyhedra represent sterically disfavored areas 

(contribution level of 20%). For electrostatic fields, blue polyhedra 

(contribution level of 80%) are regions of the molecule where more 

positive charge and H-bond donors are favored or negative charge or H-

bond acceptors are disfavored for high-affinity interactions. Red fields 

(contribution level of 20%) are regions where negatively charged 

substituents and H-bond acceptors are favored or more positive charge 

and H-bond donors are disfavored. Compound 4 is shown inside the fields 

in both (a) and (b) 

a) 
 

 

 
b) 
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Figure 57. Hydrophobic, HDon and HAcc contour maps from the CoMSIA model 

using  a) atom-based alignment and AM1 charges for D2 potency and 

b) flexible alignment and Gasteiger-Hückel charges for D3 potency. 

Compound 42 is shown inside the fields.   

Selectivity for D3 over D2 

The steric and electrostatic contour plots obtained from the CoMFA analysis based 

on flexible alignment and AM1 charges are shown in Figure 58a, and are generally 

in accordance with the field distribution pattern seen for D2 CoMFA. Compound 42 

has been shown for reference. A large blue and small red contour observed near the 

nitrogen and the hydroxyl group of the thiazolidium and aminotetraline head groups, 

respectively, suggests the dominating role of more positive charge and HDon over 

more negative charge and HAcc in determining D3 selectivity. A blue polyhedron 

around the piperazine nitrogen suggests that this nitrogen can be protonated at 

physiological pH and act as donor in this region of receptor. The red polyhedron 

around the N-propyl group signifies the role of electronegative atom in this area 

which cannot be explained from the current set of molecules.    
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A large green contour around the head group in the molecules as shown in Figure 

8a substantiates the significance of steric bulk in this region. Selectivity for D3 

receptor will increase further with increasing steric bulk in this region of the 

molecules. Two green polyhedra exist surrounding the n-propyl group indicating that 

the steric bulk is favored for selectivity in these areas. Compound 5, which is a rigid 

analog, lacking N-propyl group, is less selective (D2/D3 4.8) compared to 4 (D2/D3 

31.5). A large green contour is observed around the tail region of the molecules 

which entails the significance of steric bulk for D3 selectivity in the molecules. 

Compounds with biphenyl ring like compound 33 are more selective (D2/D3 253) 

compared to compound 27 (D2/D3= 58.6) which is in accordance with other findings. 

The yellow polyhedron near to the indole moiety of 42 indicates that substitution with 

bulkier group will decrease selectivity for D3 receptor. This may be the reason why 

compound 18 is more selective compared to 19. 

The hydrophobic, HDon and HAcc contour maps of the CoMSIA models based on 

atom based alignment and AM1 charges are displayed in Figure 58b, and are 

generally in accordance with the contour plots observed from D2 CoMSIA with minor 

modification in contribution level (hydrophobic favored with contribution level 90%, 

HDon favored and disfavored with the contribution levels 75% and 15%, 

respectively).  The presence of a cyan contour around position 7 of the head group 

(-OH group) indicates HDon group is favorable at this position for better selectivity. 

However, development of purple and magenta contour on the 5 position of hydroxyl 

group around the head group signify that group with HAcc are favorable at this 

position which is complementary to the CoMFA electrostatic contour maps. This 

entails the necessity of dual natured group at this position.  The magenta polyhedron 

directed towards the carbonyl group of indole-containing highly D3 selective 
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compounds 41, 42 and 45 implies the significance of acceptor group at this location 

of the molecules. Carbonyl group might be playing a very critical role in the 

selectivity for D3 receptor which is in agreement with other findings. Red contour is 

oriented towards the N of quinoline moiety of 15, 16 and 19 which indicates that the 

N should be electropositive for better selectivity towards D3 receptor. The cyan 

contour maps, similar to the D2 and D3 CoMSIA contour maps oriented toward the 

nitrogen of N-(n-propyl) group indicates that N may be acting as a HDon. A purple 

contour map located between the N-(n-propyl) and piperazine N indicates that HDon 

groups are disfavored at this location. Two big yellow contours around the distal part 

of the molecules imply the significance of hydrophobic features for selectivity 

towards D3 receptor. The emergence of yellow contours over the linker, between N-

(n-propyl) and the piperazine N, suggested that substitution with hydrophobic bulky 

group at this position is favorable for better selectivity. White contour overlapping 

one of the N of the piperazine ring suggests that hydrophobic group at this position 

will reduce the selectivity for D3 receptor.  

 

a) 
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b) 
 

           
 
Figure 58. a) Steric and electrostatic CoMFA contour maps using atom-based 

alignment and AM1 charges and b) hydrophobic, HDon and HAcc 

CoMSIA contour maps using flexible alignment and Gasteiger-Hückel 

charges. Compound 4 is shown inside the fields. 
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CHAPTER 6 

Materials and methods 

6.1. Chemistry: 

Reagents and solvents were obtained from commercial suppliers and used as 

received unless otherwise indicated. Dry solvents were obtained according to the 

standard procedure as described in Vogel’s book on practical organic chemistry. 

Analytical silica gel-coated TLC plates (Silica Gel 60 F254) were purchased from  EM 

Science and were visualized with UV light or by treatment with phosphomolybdic 

acid (PMA), ninhydrin and dragondroff solution.  Flash chromatography was carried 

out on Whatman Purasil 60A silicagel 230-400 mesh. 1H NMR spectra were routinely 

obtained on Varian 400 MHz FT NMR. The NMR solvent used was either CDCl3 or 

CD3OD as indicated. TMS was used as an internal standard. Elemental analyses 

were performed by Atlantic Microlab, Inc and were within ± 0.4% of the theoretical 

value.  Optical rotations were recorded on a Perkin Elmer 241 polarimeter and 

Autopol III, Automatic Polarimeter (Rudolph Research Aanalytical).  

 tert-Butyl 4-(4-iodophenyl)piperazine-1-carboxylate (1): Into a stirring solution of 

1-phenylpiperazine (21.8 g, 134.0 mmol) in acetic acid/water (3:1, 42 ml), a 

suspension of iodine monochloride (24.0 g, 148.0 mmol) in acetic acid/water (3:1, 42 

ml) was added at 55 oC. The reaction was stirred at 55 oC for 1 h and then at room 

temperature for another 1 h. The solution was poured into 400 mL of crushed ice 

and the pH was adjusted to 13 with 4 N NaOH. The product was then extracted with 

dichloromethane (3 x 100 mL). The combined organic layer was dried over Na2SO4, 

filtered and evaporated in vacuo to provide the free amine of compound 1 as a pale 
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yellow solid (28.69 g, 74%) which was converted to Boc derivative without further 

purification.  

Into a stirring solution of this amine (28.0 g, 97.17 mmol) in dichloromethane (80 

mL), (Boc)2O (25.44 g, 116.60 mmol) and Et3N (35.26 mL, 252.64 mmol) were 

added at room temperature. The reaction mixture was stirred at the same 

temperature for 12 hours and was extracted with CH2Cl2 (3 x 100 mL), washed with 

water, dried over Na2SO4, filtered, and concentrated in vacuo. The crude material 

was purified by column chromatography over silica gel (Hexane/EtOAc, 9.0:1.0) to 

give compound 1 (34.70 g, 92%). 1H (CDCl3, 400 MHz): δ1.48 (s, 9 H), 3.10 (t, J = 

4.8 Hz, 4H), 3.56 (t, J = 4.8 Hz, 4H), 6.68 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 9.2 Hz, 

2H).  

Procedure A. tert-Butyl 4-(4'-methoxybiphenyl-4-yl)piperazine-1-carboxylate 

(3a):   A suspension of (4-methoxyphenyl)boronic acid 2a (2.34 g,15.49 mmol), iodo 

compound 1 (6.01 g, 15.49 mmol), Na2CO3 (3.28 g, 30.98 mmol, 2 M solution in 

water) and Pd(PPh3)4 (875 mg, 0.75 mmol) in dimethoxy ethane/ethanol (1:1) was 

refluxed for one hour. The solvents were removed in vacuo and the crude product 

was purified by flash chromatography using solvent system hexane: ethyl acetate 

(4.0:1.0) to yield compound 3a (3.82 g, 67%). 1H NMR (CDCl3, 400 MHz): δ 1.49 (s, 

9H), 3.17 (t, J = 4.8 Hz, 4H), 3.61 (t, J = 4.8 Hz, 4H), 3.85 (s, 3H), 6.96 (d, J = 8.8 

Hz, 2H), 6.98(d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H),  7.49 (d, J = 8.8 Hz, 2H).  

Synthesis of tert-butyl 4-(3'-methoxybiphenyl-4-yl)piperazine-1-carboxylate 

(3b): Commercially available, (3-methoxyphenyl)boronic acid, 2b (4.60 g, 30.44 

mmol) was reacted with iodo compound 1 (11.81 g, 30.44 mmol), Na2CO3 (6.45 g, 

60.88 mmol, 2 M solution in water) and Pd(PPh3)4 (1.16 gm, 1.01 mmol) in 
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dimethoxy ethane/ethanol (46 mL:46 mL) as followed in procedure A to yield 

compound 3b (6.95 g, 62 % yield). 1H NMR (CDCl3, 400 MHz): δ 1.49 (s, 9H), 3.18 

(t, J = 4.0Hz, 4H), 3.59 (t, J = 4.4Hz, 4H), 3.85 (s, 3H), 6.82 (dd, J = 8.0 Hz, 1.6 Hz,  

1H), 6.99 (d, J = 8.0 Hz, 2H), 7.09 (bs, 1H),  7.15 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 

7.8Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H). 

Synthesis of tert-butyl 4-(2'-methoxybiphenyl-4-yl)piperazine-1-carboxylate (3c): 

Commercially available, (2-methoxyphenyl)boronic acid, 2c (2.10 g, 13.90 mmol) 

was reacted with iodo compound 1 (5.4 g, 13.90 mmol), Na2CO3 (2.94 g, 27.80 

mmol, 2 M solution in water) and Pd(PPh3)4 (560 mg, 0.484 mmol) in dimethoxy 

ethane/ethanol (20 mL:20 mL) by following procedure A to yield compound 3c (3.58 

g, 70% yield).1H NMR (CDCl3, 400 MHz): δ 1.50 (s, 9H), 3.19 (t, J = 4.8 Hz, 4H), 

3.60 (t, J = 4.8Hz, 4H), 3.81 (s, 3H), 6.96-7.04 (m, 4H), 7.25-7.32 (m, 2H), 7.48 (d, J 

= 9.2 Hz, 2H). 

     Synthesis of tert-butyl 4-(2',5'-dimethoxybiphenyl-4-yl)piperazine-1-carboxylate 

(3d): Commercially available, (2,5-dimethoxyphenyl)boronic acid, 2d (4.68 g, 25.70 

mmol), was reacted with iodo compound 1 (9.97 g, 25.70 mmol), Na2CO3 (5.44 g, 

51.40 mmol, 2 M solution in water) and Pd(PPh3)4 (1.47 g, 1.28 mmol) in dimethoxy 

ethane/ethanol (40 mL:40 mL) followed by procedure A to yield compound 3d (6.64 g, 

65%). 1H NMR (CDCl3, 400 MHz): δ δ 1.49 (s, 9H), 3.18 (bs, 4H), 3.58 (t, J = 4.4 Hz, 

4H), 3.74 (s, 3H),  3.84 (s, 3H), 6.83 (dd, J = 2.8Hz, 9.2 Hz, 1H), 6.88-6.90 (m, 2H), 

6.96 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H). 

tert-Butyl 4-(3',4'-dimethoxy-[1,1'-biphenyl]-4-yl)piperazine-1-carboxylate (3e): 

A suspension of (3,4-dimethoxyphenyl)boronic acid, 2e, (2.34 g, 12.88 mmol), iodo 

compound 1 (5.0 g, 12.88 mmol), Na2CO3 (2.73 g, 25.76 mmol, 2 M solution in 
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water) and Pd(PPh3)4 (731 mg, 0.63 mmol) in dimethoxy ethane/ethanol (20 mL:19 

mL) followed by procedure A to yield compound 3e (3.43 g, 67%). 1H NMR (CDCl3, 

400 MHz): δ 1.49 (s, 3H), 3.17 (t, J = 4.8 Hz, 4H), 3.60 (t, J = 4.8 Hz, 4H), 3.91 (s, 

3H), 3.94 (s, 3H), 6.88-7.14 (m, 5H), 7.48 (d, J = 8.8 Hz, 2H). 

tert-butyl 4-([1,1'-biphenyl]-4-yl)piperazine-1-carboxylate (3f):Commercially 

available, benzeneboronic acid, 2f (2.5 g, 20.48 mmol), was reacted with iodo 

compound 1 (7.95 g, 20.48 mmol), Na2CO3 (4.34 g, 40.96 mmol, 2 M solution in 

water) and Pd(PPh3)4 (1.18 gm, 1.02 mmol) in dimethoxy ethane/ethanol (25 mL: 25 

mL) by following procedure A to yield compound 3f (1.74g, 80%).1H NMR (CDCl3, 

400 MHz): δ 1.49 (s, 9H), 3.07 (bs, 4H), 3.61 (t, J = 4.8 Hz, 4H),  6.96 (d, J = 8.0 Hz, 

2H), 7.23 (d, J = 7.2 Hz, 1H), 7.41 (t, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.52 

(d, J = 7.2 Hz, 2H).  

Procedure  B.   1-(4'-methoxy-biphenyl-4-yl)piperazine (4a):  Into a stirring 

solution of compound 3a (3.4 g, 9.23 mmol) in CH2Cl2 (30 mL), TFA (20 mL) was 

added slowly at room temperature and the reaction mixture was stirred for four 

hours. Unreacted TFA and solvent CH2Cl2 were removed in vacuo and the salt 

formed was washed with diethyl ether. Saturated solution of sodium bicarbonate was 

added to the salt and it was extracted with dichloromethane (50 x 3 mL). The 

combined organic layer was dried over Na2SO4, filtered and evaporated in vacuo to 

provide the compound 4a (2.22 g, 90%). 1H NMR (CDCl3, 400 MHz): δ 1.63 (bs, 1H); 

3.06 (t, J = 4.4Hz, 4H); 3.19 (t, J =4.6Hz, 4H), 3.84 (s, 3H); 6.95 (d, J = 8.4 Hz, 2H), 

6.98(d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H),  7.49 (d, J = 8.0 Hz, 2H). 

1-(3'-methoxy-biphenyl-4-yl)piperazine (4b): Compound 3b (4.6 g, 12.5 mmol) 

was reacted with TFA (30 mL) in CH2Cl2 (20 mL) by following procedure B to give 
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compound 4b (3.34 g, 99%). 1H NMR (CDCl3, 400 MHz): δ 3.07 (t, J = 4.8 Hz, 4H), 

3.21 (t, J = 7.2 Hz, 4H), 3.85 (s, 3H),  6.83 (dd, J = 2.4 Hz, 8.0 Hz 1H),  6.98 (d, J = 

8.8 Hz, 2H), 7.09 (t, J = 2.8 Hz, 1H),  7.15 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 8.2Hz, 

1H), 7.52 (d, J = 8.8 Hz, 2H). 

1-(2'-methoxy-biphenyl-4-yl)piperazine (4c): Compound 3c (3.4 g, 9.23 mmol) 

was reacted with TFA (15 mL) in CH2Cl2 (20 mL) by following procedure B to give 

compound 4c (2.47 g, 99%). 1H NMR (CDCl3, 400 MHz): δ  3.08 (bs, 4H); 3.23 (bs, 

4H), 3.81 (s, 3H); 6.93-7.06 (m, 4H), 7.25-7.35 (m, 2H),  7.40-7.49 (m, 2H).  

    1-(2',5'-dimethoxybiphenyl-4-yl)piperazine (4d): Compound 3d (5.4 g, 14.65 mmol) 

was reacted with TFA (30 mL) in CHCl3 (40 mL) using procedure B to give compound 

4d (3.41 g, 87%).1H NMR (CDCl3, 400 MHz): 3.20 (bs, 8H); 3.75 (s, 3H); 3.85 (s, 3H); 

6.62 (s, 1H); 6.85 (s, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 7.2 Hz, 2H), 7.52 (d, J = 

8.0 Hz, 2H). 

1-(3',4'-dimethoxy-[1,1'-biphenyl]-4-yl)piperazine (4e): To a stirring solution of 

compound 3e (3.2 g, 8.03 mmol) in CHCl3 (20 mL), TFA (20 mL) was added slowly at 

room temperature using procedure B to give compound 4e (2.37 g, 99%). 1H NMR 

(CDCl3, 400 MHz): δ 1.70 (bs, 1H); 3.06 (t, J = 4.4 Hz, 4H); 3.19 (t, J = 4.4 Hz, 4H), 

3.92 (s, 3H); 3.94 (s, 3H); 6.92 (d, J = 7.2 Hz, 1H); 6.99 (d, J = 7.2 Hz, 2H), 7.04-7.14 

(m, 2H), 7.48 (d, J = 7.2 Hz, 2H). 

   1-(1,1'-biphenyl]-4-yl)piperazine (4f): Compound 3f (1.7 g, 5.02 mmol) was reacted 

with TFA (10 mL) in CH2Cl2 (20 mL) by following procedure B to give compound 4f 

(2.18 g, 90%).1H NMR (CDCl3, 400 MHz): 3.18 (t, J = 6.8 Hz, 4H), 3.28 (t, J = 4.8 Hz, 

4H), 6.98 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 6.4 Hz, 1H), 7.41 (t, J = 8.0 Hz, 2H), 7.52 

(d, J = 8.0 Hz, 2H), 7.58 (d, J = 7.2 Hz, 2H).  
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Procedure C.  1-(2-(tert-Butyldimethylsilyloxy)ethyl)-4-(4'-methoxybiphenyl-4-

yl)piperazine (5a). A mixture of compound 4a (1.5 g, 5.59 mmol), (2-bromo-ethyl)-

tert-butyldimethylsilane (1.57 g, 6.56 mmol), and K2CO3 (2.27 g, 16.44 mmol) in 

CH3CN (30 mL) was refluxed for 14 hours. Acetonitrile was evaporated under vacuo 

and the crude material was purified by silica gel column chromatography 

(Hexane/EtOAc, 1:4) to give compound 5a (1.90 g, 80%). 1H NMR (CDCl3, 400 

MHz): δ 0.09 (s, 6H), 0.92 (s, 9H), 2.61 (t, J = 6.0 Hz, 2H), 2.72 (t, J = 5.0 Hz, 4H), 

3.24 (t, J = 4.80 Hz, 4H), 3.80 (t, J = 6.4 Hz, 2H),  3.83 (s, 3H), 6.95 (d, J = 9.2 Hz, 

2H), 6.98(d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H),  7.48 (d, J = 8.4 Hz, 2H).  

1-(2-(tert-butyldimethylsilyloxy)ethyl)-4-(3'-methoxybiphenyl-4-yl)piperazine 

(5b): Compound 4b (3.20 g, 11.94 mmol), was reacted with (2-bromo-ethyl)-tert-

butyldimethylsilane (3.42 g, 14.32 mmol), and K2CO3 (4.94 g, 35.74 mmol) in CH3CN 

(80 mL) by following the procedure C to furnish 5b (4.06 g, 80%).1H NMR (CDCl3, 

400 MHz): δ   0.06 (s, 6H), 0.90 (s, 9H), 2.49 (t, J = 7.2 Hz, 2H), 2.63 (bs, 4H), 3.26 

(t, J = 4.8Hz, 4H), 3.68 (t, J = 4.0Hz, 2H), 3.83 (s, 3H), 6.84 (dd, J = 8.0 Hz , 2.4 Hz, 

1H), 6.99 (d, J = 8.8 Hz, 2H), 7.09 (t, J = 2.4 Hz ,1H),  7.15 (d, J = 8.0 Hz, 1H), 7.32 

(t, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 2H). 

1-(2-(tert-butyldimethylsilyloxy)ethyl)-4-(2'-methoxybiphenyl-4-yl)piperazine 

(5c): Compound 4c (2.20 g, 8.20 mmol) was reacted with (2-bromo-ethyl)-tert-

butyldimethylsilane (2.34 g, 9.84 mmol), and K2CO3 (3.39 g, 24.60 mmol) in CH3CN 

(30 mL) by following procedure C to afford compound 5c  (2.70 g, 80%).1H NMR 

(CDCl3, 400 MHz):  0.06 (s, 6H), 0.90 (s, 9H), 2.58 (t, J = 5.6 Hz, 2H), 2.69 (bs, 4H), 

3.24 (bs, 4H), 3.78 (t, J = 4.8Hz, 2H), 3.83 (s, 3H), 6.95-7.06 (m, 4H), 7.24-7.27 (m, 

2H), 7.44-7.46 (m, 2H).  
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1-(2-(tert-butyldimethylsilyloxy)ethyl)-4-(2',5'-dimethoxybiphenyl-4-

yl)piperazine (5d): Compound 4d (3.0 g, 10.06 mmol) was reacted with (2-bromo-

ethyl)-tert-butyldimethylsilane (2.88 g, 12.07 mmol), and K2CO3 (4.17 g, 30.18 mmol) 

in CH3CN (60 mL) using procedure C to afford compound 5d (3.90 g, 85%).1H NMR 

(CDCl3, 400 MHz): δ  0.06 (s, 6H), 0.87 (s, 9H), 2.61 (t, J = 6.8 Hz, 2H), 2.74 (bs, 

4H), 3.16 (bs, 4H), 3.74 (s, 3H), 3.80 (t, J = 6.4 Hz, 2H), 3.85 (s, 3H), 6.83(dd, J = 

2.4 Hz,8.0 Hz, 1H), 6.98 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 2.4 Hz ,1H),  7.14 (d, J = 7.2 

Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H). 

1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-4-(3',4'-dimethoxy-[1,1'-biphenyl]-4-

yl)piperazine (5e). A mixture of compound 4e (2.37 g, 7.95 mmol), (2-bromo-ethyl)-

tert-butyldimethylsilane (2.28 g, 9.56 mmol), and K2CO3 (3.17 g, 22.9 mmol) in 

CH3CN (30 mL) using procedure C to afford compound 5e (3.41 g, 94%). 1H NMR 

(CDCl3, 400 MHz): δ 0.09 (s, 6H), 0.92 (s, 9H), 2.64 (t, J = 6.4 Hz, 2H), 2.75 (t, J = 

4.8 Hz, 4H), 3.27 (t, J = 4.8 Hz, 4H), 3.83 (t, J = 6.4 Hz, 2H), 3.92 (s, 3H), 3.95 (s, 

3H), 6.93 (d, J = 8 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 7.04-7.14 (m, 2H), 7.47 (d, J = 

8.4 Hz, 2H). 

1-([1,1'-biphenyl]-4-yl)-4-(2-((tert-butyldimethylsilyl)oxy)ethyl)piperazine(5f): 

Compound 4f (2.1 g, 8.81 mmol) was reacted with (2-bromo-ethyl)-tert-

butyldimethylsilane (2.52 g, 10.58 mmol), and K2CO3 (3.65 g, 26.43 mmol) in CH3CN 

(30 mL) by following procedure C to afford compound 5f (2.79 g, 80%).1H NMR 

(CDCl3, 400 MHz): δ 0.09 (s, 6H), 0.92 (s, 9H), 2.69 (t, J = 5.6 Hz, 2H), 3.18 (t, J = 

6.8 Hz, 4H), 3.30 (t, J = 4.8Hz, 2H), 3.72 (t, J = 5.6 Hz, 4H), 6.98 (d, J = 8.0 Hz, 2H), 

7.25-7.30 (m, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.51-7.56 (m, 4H).  
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1-(4-((tert-butyldimethylsilyl)oxy)butyl)-4-(3'-methoxy-[1,1'-biphenyl]-4-

yl)piperazine (5g): Compound 4b (2.0 g, 7.45 mmol) was reacted with (4-

bromobutoxy)(tert-butyl)dimethylsilane (2.38 g, 8.94 mmol), and K2CO3 (3.08 g, 

22.35 mmol) in CH3CN (40 mL) by following procedure C to afford compound 5g 

(2.80 g, 85%).1H NMR (CDCl3, 400 MHz): δ 0.09 (s, 6H), 0.92 (s, 9H), 1.62 (t, J = 

8.0 Hz, 4H),  2.41 (t, J = 7.2 Hz, 2H), 2.62 (t, J = 7.6 Hz, 4H), 3.27 (t, J = 6.8 Hz, 

4H), 3.64 (t, J = 7.2 Hz, 2H),  3.85 (s, 3H), 6.85 (dd, J =1.6 Hz,  8.0 Hz , 1H), 6.99 (d, 

J = 8.8 Hz, 2H), 7.09 (bs ,1H),  7.15 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.51 

(d, J = 8.0 Hz, 2H).  

Procedure D.  2-(4-(4'-methoxybiphenyl-4-yl)piperazin-1-yl)ethanol (6a). Into a 

stirring solution of compound 5a (1.5 g, 3.52 mmol) in anhydrous THF (30 mL), n-

tetrabutylammonium fluoride (0.92 g, 3.52 mmol, 1.0 M solution in THF) was added 

at 0 oC. The reaction mixture was then stirred at room temperature for 1.5 hour. THF 

was evaporated in vacuo, the residue was diluted with CH2Cl2 (50 mL) and washed 

with water. The water layer was extracted with CH2Cl2 (3 x 75 mL). The combined 

organic layer was washed with brine, dried over Na2SO4, and evaporated in vacuo. 

The crude product was purified by silica gel column chromatography (EtOAc) to yield 

compound 6a (1.04 g, 95%). 1H NMR (CDCl3, 400 MHz): δ 2.62 (t, J = 5.2 Hz, 2H), 

2.70 (t, J = 4.8Hz, 4H), 3.25 (t, J = 4.8Hz, 4H), 3.67 (t, J = 5.4Hz, 2H), 3.83 (s, 3H), 

6.95 (d, J = 9.2 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H),  7.48 (d, J 

= 9.2 Hz, 2H).  

2-(4-(3'-methoxybiphenyl-4-yl)piperazin-1-yl)ethanol (6b): Compound 5b (4.0 g, 

9.39 mmol) was reacted with n-tetrabutylammonium fluoride (2.44 g, 9.39 mmol, 1.0 

M solution in THF) in anhydrous THF (100 mL) by following procedure D  to yield 

compound 6b (2.62 g, 90%).1H NMR (CDCl3, 400 MHz): δ 2.61 (t, J = 5.2 Hz, 2H), 



161 

 

2.69 (t, J = 4.0 Hz, 4H), 3.25 (t, J = 4.8Hz, 4H), 3.67 (t, J = 6.0Hz, 2H), 3.83 (s, 3H), 

6.83 (dd, J =8.0 Hz,  2.4 Hz, 1H), 6.99 (d, J = 8.0 Hz, 2H), 7.09 (bs, 1H),  7.15 (d, J = 

7.2 Hz, 1H), 7.31 (t, J = 8.2 Hz, 1H), 7.51 (d, J = 8.0 Hz, 2H). 

2-(4-(2'-methoxybiphenyl-4-yl)piperazin-1-yl)ethanol (6c): Compound 5c (2.5 g, 

5.87 mmol) was reacted with n-tetrabutylammonium fluoride (1.53 g, 5.87 mmol, 1.0 

M solution in THF) in anhydrous THF (50 mL) by following procedure D to yield 

compound 6c (1.57 g, 86%).1H NMR (CDCl3, 400 MHz): δ 2.66 (t, J =5.4 Hz, 2H), 

2.74 (t, J = 4.0 Hz, 4H), 3.29 (t, J = 5.0Hz, 4H), 3.70 (t, J = 5.6Hz, 2H), 3.83 (s, 3H), 

6.95-7.02 (m, 4H), 7.27-7.31 (m, 2H), 7.46 (d, J = 8.8 Hz, 2H). 

2-(4-(2',5'-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethanol (6d): Compound 5d 

(3.8 g, 8.93 mmol) was reacted with n-tetrabutylammonium fluoride (2.33 g, 8.93 

mmol, 1.0 M solution in THF) in THF (80 mL) using procedure D to yield  compound 

6d (2.27 g, 80%).1H NMR (CDCl3, 400 MHz): δ 2.62 (t, J = 5.0 Hz, 2H), 2.69 (t, J = 

4.4H, 4H), 3.26 (t, J = 4.8Hz, 4H), 3.67 (t, J = 5.0Hz, 2H), 3.74 (s, 3H), 3.84 (s, 3H),  

6.80 (dd, J = 9.2 Hz, 3.6 Hz, 1H), 6.89-6.95 (m, 2H), 6.96 (d, J = 8.8 Hz, 2H), 7.46 

(d, J = 8.4 Hz, 2H). 

2-(4-(3',4'-dimethoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)ethanol (6e). Into a 

stirring solution of compound 5e (3.4 g, 7.46 mmol) in anhydrous THF (30 mL), n-

tetrabutylammonium fluoride (1.95 g, 7.46 mmol, 1.0 M solution in THF) was added 

at 0 oC using procedure D to yield  compound 6e (2.30 g, 90%). 1H NMR (CDCl3, 

400 MHz): δ 2.63 (t, J = 5.2 Hz, 2H), 2.70 (t, J = 4.0 Hz, 4H), 3.25 (t, J = 4.0 Hz, 4H), 

3.68 (t, J = 5.2 Hz, 2H), 3.91 (s, 3H), 3.94 (s, 3H), 6.92 (d, J = 8.4 Hz, 1H), 6.98 (d, J 

= 8.4 Hz, 2H), 7.02-7.16 (m, 2H), 7.47 (d, J = 8.4 Hz, 2H). 
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2-(4-([1,1'-biphenyl]-4-yl)piperazin-1-yl)ethanol (6f):  Compound 5f (2.5 g, 6.30 

mmol) was reacted with n-tetrabutylammonium fluoride (1.65 g, 6.30 mmol, 1.0 M 

solution in THF) in THF (50 mL) by following procedure D to yield compound 6f (1.50 

g, 80%).1H NMR (CDCl3, 400 MHz):  δ 2.69 (t, J =8.0 Hz, 4H), 2.78 (t, J = 4.0 Hz, 

2H), 3.30 (t, J = 4.8Hz, 4H), 3.72 (t, J = 5.6Hz, 2H), 6.97-7.02 (m, 2H), 7.25-7.30 (m, 

1H), 7.38-7.42(m, 2H), 7.51-7.56 (m, 4H). 

4-(4-(3'-methoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)butan-1-ol (6g): Compound 

5g (2.6 g, 5.72 mmol) was reacted with n-tetrabutylammonium fluoride (1.50 g, 5.72 

mmol, 1.0 M solution in THF) in THF (40 mL) by following procedure D to yield 

compound 6g (1.40 g, 72%).1H NMR (CDCl3, 400 MHz):  1.62 (t, J = 8.0 Hz, 4H),  

2.41 (t, J = 7.2 Hz, 2H), 2.62 (t, J = 7.6 Hz, 4H), 3.27 (t, J = 6.8 Hz, 4H), 3.64 (t, J = 

7.2 Hz, 2H),  3.85 (s, 3H), 6.85 (dd, J =1.6 Hz,  8.0 Hz , 1H), 6.99 (d, J = 8.8 Hz, 

2H), 7.09 (bs ,1H),  7.15 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 

Hz, 2H).  

Procedure E. 2-(4-(4'-methoxybiphenyl-4-yl)piperazin-1-yl)acetaldehyde (7a). 

Into a stirred solution of oxalyl chloride (0.324 mL, 2.56 mmol) in CH2Cl2 (40 mL) at -

78 oC, DMSO (0.40 mL, 5.12 mmol) was added. The reaction mixture was stirred for 

10 minutes followed by addition of compound 6a (400 mg, 1.28 mmol, dissolved in 5 

mL of CH2Cl2). The reaction mixture was stirred at the same temperature for 15 

minutes. Then Et3N (0.78 mL, 7.68 mmol) was added next and stirring was 

continued for another 1 hour and 20 minutes while allowing the reaction mixture to 

reach at room temperature. The reaction mixture was quenched by addition of water 

and extracted with CH2Cl2 (3 x 25 mL). The combined organic layer was washed 

with brine and concentrated to yield the compound 7a (321 mg, 81%), which was 

used without purification in the next step.   
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2-(4-(3'-methoxybiphenyl-4-yl)piperazin-1-yl)acetaldehyde (7b):Compound 6b 

(2.6 g, 8.32 mmol) was reacted with oxalyl chloride (1.43 mL, 16.65 mmol), DMSO 

(2.36 mL, 33.28 mmol) and Et3N (6.91 mL, 49.92 mmol) in dichloromethane (50 mL) 

by following procedure E to yield compound 7b (2.18 g, 85%). 

2-(4-(2'-methoxybiphenyl-4-yl)piperazin-1-yl)acetaldehyde (7c): Compound 6c 

(500 mg, 1.60 mmol) was reacted with oxalyl chloride (0.41 mL, 3.20 mmol), DMSO 

(0.50 mL, 6.40 mmol) and Et3N (0.97 mL, 9.60 mmol) in dichloromethane (40 mL) by 

following procedure E to yield compound 7c (372 mg, 75%). 

2-(4-(2',5'-dimethoxybiphenyl-4-yl)piperazin-1-yl)acetaldehyde(7d): Compound 

6d (1.2 g, 3.50 mmol) was reacted with oxalyl chloride (0.60 mL, 7.0 mmol), DMSO 

(1.0 mL, 14.0 mmol) and Et3N (2.91 mL, 21.0 mmol) in dichloromethane (50 mL) 

using procedure E to yield compound 7d (850 mg, 72%). 

2-(4-(3',4'-dimethoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)acetaldehyde(7e): 

Compound 6e (500 mg, 1.46 mmol, solution in 5 mL of CH2Cl2) was reacted with 

oxalyl chloride (0.25 mL, 2.92 mmol), DMSO (0.42 mL, 5.84 mmol) and Et3N (1.2 

mL, 8.77 mmol) in CH2Cl2 (40 mL) using procedure E to yield compound 7e (402 mg, 

81%). 1H NMR (CDCl3, 400 MHz): δ 2.40-2.80 (m, 4H), 2.82-3.50 (m, 6H), 3.92 (s, 

3H), 3.95 (s, 3H), 6.93 (d, J = 8 Hz, 1H), 6.98 (d, J = 7.6 Hz, 2H), 7.03-7.16 (m, 2H), 

7.48 (d, J = 6.8 Hz, 2H). 

2-(4-([1,1'-biphenyl]-4-yl)piperazin-1-yl)acetaldehyde (7f) : Compound 6f (1.3 g, 

4.60 mmol) was reacted with oxalyl chloride (0.79 mL, 9.21 mmol), DMSO (1.30 mL, 

18.4 mmol) and Et3N (3.82 mL, 27.60 mmol) in dichloromethane (40 mL) by 

following procedure E to yield compound 7f (1.0 g, 78%). 
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4-(4-(3'-methoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)butanal (7g): Compound 6g 

(1.2 g, 3.52 mmol) was reacted with oxalyl chloride (0.60 mL, 7.05 mmol), DMSO 

(1.00 mL, 14.08 mmol) and Et3N (2.92 mL, 21.12 mmol) in dichloromethane (30mL) 

by following procedure E to yield compound 7g (0.89 g, 75%). 

Procedure F. N6-(2-(4-(4'-methoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-

4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (±)(8a). Into a stirring solution of 

compound 7a (321 mg, 1.03 mmol) in CH2Cl2 (10 mL), (±)-pramipexole (219 mg, 

1.03 mmol) was added at room temperature. The reaction mixture was stirred for 1 

hour and then NaBH(OAc)3 (393 mg, 1.85 mmol) was added into the reaction 

mixture. After stirring for 48 hours, saturated solution of NaHCO3 was added into the 

reaction mixture and it was extracted with CH2Cl2 (3 x 50 mL). The combined 

organic layer was washed with brine and finally purified by silica gel column 

chromatography (EtOAc/MeOH, 9:1) to yield  compound (±)-8a (313 mg, 60%). 1H 

NMR (CDCl3, 400 MHz): δ 0.91 (t, J = 7.2 Hz, 3H), 1.52-1.56 (m, 2H), 1.76-1.79 (m, 

1H), 2.06 (d, J = 8.8 Hz, 1H), 2.59-2.80 (m, 13H), 3.17-3.26 (m, 6H), 3.84 (s, 3H), 

6.91-7.01(m, 4H), 7.42-7.49 (m, 4H).The product was converted into corresponding 

hydrochloride salt, m.p.268 oC. Anal. (C29H39N5OS . 4.0 HCl . 2.0 H2O) : C, H, N. 

N6-(2-(4-(3'-methoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine ((±)-8b): Compound 7b (250 mg, 0.80 

mmol) was reacted with (±)-pramipexole (169 mg, 0.80 mmol) and NaBH(OAc)3 

(305.19 mg, 1.44 mmol) in dichloromethane (30 mL) by following procedure F to 

yield compound (±)8b (263 mg, 65%).1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.2 

Hz, 3H), 1.46-1.51 (m, 2H), 1.63-1.77 (m, 1H), 1.90 (d, J = 11.6 Hz, 1H), 2.42-2.73 

(m, 13H), 3.06-3.26 (m, 6H), 3.84 (s, 3H), 5.05 (bs, 2H),  6.82 (d, J = 8.0 Hz, 1H), 

6.96 (d, J = 8.4 Hz, 2H), 7.08 (bs, 1H),  7.14 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 8.0 Hz, 
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1H), 7.50 (d, J = 8.4 Hz, 2H).The product was converted into corresponding 

hydrochloride salt, m.p.255 oC . Anal. (C29H39N5OS . 4.0 HCl . 1.0 H2O) : C, H, N. 

(S)-N6-(2-(4-(3'-methoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine ((-)-8b) : Compound 7b (500 mg, 1.61 

mmol) was reacted with (-)pramipexole (340.24 mg, 1.61 mmol) and NaBH(OAc)3 

(612.50 mg, 2.89 mmol) in dichloromethane (100 mL) by following procedure F to 

yield compound (-)8b (526 mg, 65%).  [α]d = - 34.6 (c = 1, CH3OH). Spectral data 

matching with compound (±)8b. The product was converted into corresponding 

hydrochloride salt, m.p.245 oC. Anal. (C29H39N5OS . 4.0 HCl . 1.0H2O) : C, H, N. 

(R)-N6-(2-(4-(3'-methoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine ((+)-8b): Compound 7b (100 mg, 0.322 

mmol) was reacted with (+)-pramipexole (68.04 mg, 0.322 mmol) and NaBH(OAc)3 

(122.84 mg, 0.579 mmol) in dichloromethane (20 mL) by following procedure F to 

yield compound (+)8b  (105 mg, 65%).  Spectral data matching with compound 

(±)8b.  

N6-(2-(4-(2'-methoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine ((±)-8c): Compound 7c (372 mg, 1.19 

mmol) was reacted with (±)-pramipexole (251.48 mg, 1.19 mmol) and NaBH(OAc)3 

(453.60 mg, 2.14 mmol) in dichloromethane (40 mL) by following procedure F to 

yield compound (±)8c (391 mg, 65%).1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.2 

Hz, 3H), 1.42-1.50 (m, 2H), 1.66-1.77 (m, 1H), 1.99 (d, J = 10.8 Hz, 1H), 2.41-2.76 

(m, 13H), 3.02-3.27 (m, 6H), 3.79 (s, 3H), 4.83 (bs, 2H),  6.94-6.97 (m, 2H), 6.99 

(dd, J = 1.2 Hz, J = 7.6 Hz, 2H), 7.24-7.31 (m, 2H),  7.43-7.46 (m, 2H).  The product 

was converted into corresponding hydrochloride salt, m.p.255 oC. Anal. 
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(C29H39N5OS . 4.0 HCl. 1.0 CH3COOCH2CH3) : C, H, N. MS(ES+): m/z calculated for 

C29H39N5OS [M+H+]: calculated 505.29; found 506.56. 

N6-(2-(4-(2',5'-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine ((±)-8d): Compound 7d (200 mg, 0.585 

mmol) was reacted with (±)-pramipexole (123.62 mg, 0.585 mmol) and 

NaBH(OAc)3 (223 mg, 1.05 mmol) in dichloromethane (10 mL) using procedure F to 

yield compound (±)8d (205 mg, 65%).1H NMR (CDCl3, 400 MHz): δ 0.92 (t, J = 7.6 

Hz, 3H),1.52-1.61 (m, 2H), 1.73-1.77 (m, 1H),2.03 (d, J = 4.0 Hz, 2H), 2.41-2.89 (m, 

13 H), 3.00 -3.17 (m, 5H), 3.73 (s, 3H), 3.84 (s, 3H), 4.76 (bs,2H), 6.79 (dd, J = 8.8 

Hz, 3.2 Hz, 1H), 6.87-6.95 (m, 2H), 6.94 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H). 

(S)-N6-(2-(4-(2',5'-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-

4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine ((-)-8d): Compound 7d (435 mg, 

1.27 mmol) was reacted with (-)-pramipexole (268 mg, 1.27 mmol) and 

NaBH(OAc)3 (485 mg, 2.28 mmol) in dichloromethane (50 mL) using procedure F  to 

yield compound (-)8d (424 mg, 60%). Spectral data matching with compound (±)8b. 

(R)-N6-(2-(4-(2',5'-dimethoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)-N6-

propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine ((+)-8d): Compound 7d 

(200 mg, 0.585 mmol) was reacted with (+)-pramipexole (123.62 mg, 0.585 mmol) 

and NaBH(OAc)3 (223 mg, 1.05 mmol) in dichloromethane (10 mL) using procedure 

F to yield compound (+)8d (203 mg, 65%). Spectral data matching with compound 

(±)8b. 

N6-(2-(4-(3',4'-dimethoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)-N6-propyl-

4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine ((±)-8e): Compound 7e (402 mg, 

1.18 mmol)  was reacted with (±)-pramipexole (275 mg, 1.30 mmol) and 



167 

 

NaBH(OAc)3 (451 mg, 2.13 mmol) in dichloromethane (10 mL) using procedure F to 

yield compound (443 mg, 70%) of compound (±)-8e. 1H NMR (CDCl3, 400 MHz): δ 

0.89 (t, J = 7.6 Hz, 3H); 1.38-1.60 (m, 2H); 1.62-1.82 (m, 1H); 1.86-2.10 (m, 2H), 

2.35-2.84 (m, 12 H), 2.94-3.62 (m, 5H); 3.90 (s, 3H), 3.93 (s, 3H), 6.91 (d, J = 8 Hz, 

1H); 6.90 (d, J = 8.4 Hz, 2H), 7.04-7.14 (m, 2H), 7.46 (d, J = 8.8 Hz, 2H). 

 (S)-N6-(2-(4-(3',4'-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-

4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine ((-)-8e): Compound 7e (200 mg, 

0.587 mmol) was reacted with (-)-pramipexole (124 mg, 0.587 mmol) and 

NaBH(OAc)3 (225 mg, 1.06 mmol) in dichloromethane (30 mL) using procedure F to 

yield compound (-)8e  (218 mg, 70%).1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.6 

Hz, 3H); 1.38-1.60 (m, 2H); 1.62-1.82 (m, 1H); 1.86-2.10 (m, 2H), 2.35-2.84 (m, 

13H), 2.94-3.62 (m, 5H); 3.90 (s, 3H), 3.93 (s, 3H), 6.91 (d, J = 8 Hz, 1H); 6.96 (d, J 

= 8.4 Hz, 2H), 7.04-7.14 (m, 2H), 7.46 (d, J = 8.8 Hz, 2H). 

(R)-N6-(2-(4-(3',4'-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-

4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine ((+)-8e): Compound 7e (100 mg, 

0.293 mmol) was reacted with (+)-pramipexole (51 mg, 0.293 mmol) and 

NaBH(OAc)3 (112 mg, 0.53 mmol) in dichloromethane (20 mL) using procedure F to 

yield compound (+)8e (100 mg, 64%). Spectral data matching with compound (-) 8e. 

N6-(4-(4-(3'-methoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)butyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine ((±)-8f): Compound 7g (600 mg, 1.77 

mmol) was reacted with (±)-pramipexole (375mg, 1.77mmol) and NaBH(OAc)3 

(675mg, 3.18 mmol) in dichloromethane (25 mL) by following procedure F to yield 

compound (±)8f (586 mg, 62%). 1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.2 Hz, 

3H), 1.39-1.74 (m, 6H), 2.01-2.21 (m, 1H), 2.44-2.68 (m, 13H), 3.11-3.26 (m, 6H), 
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3.46 (s, 1H),  3.84 (s, 3H), 4.91 (bs, 2H),  6.82 (dd, J = 2.4 Hz, 8.0 Hz, 1H), 6.97 (d, 

J = 8.8 Hz, 2H), 7.08 (bs, 1H),  7.14 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.50 

(d, J = 8.8 Hz, 2H). 

Procedure G. 4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-4-ol ((±)-9a): Into a stirring 

solution of compound (±)-8a (60 mg, 0.11 mmol) in anhydrous CH2Cl2 (10 mL) at -

78° C, boron tribromide (1.1 mL, 1.1 mmol, 1M solution in CH2Cl2) was added. The 

reaction mixture was allowed to come to room temperature and was stirrered  for 48 

hrs. The reaction was quenched by addition of saturated NaHCO3 solution, and the 

mixture was extracted with CH2Cl2. The combined organic layer was dried over 

Na2SO4 and evaporated under vacuum, and the crude product was purified by flash 

chromatography (CH2Cl2/MeOH = 9:1) to afford compound (±)-9a (0.029 g, 50%). 1H 

NMR (CDCl3, 400 MHz): δ 0.96 (t, J = 7.2 Hz, 3H), 1.60-1.64 (m, 2H), 1.81-1.85 (m, 

1H), 2.08 (d, J = 7.2 Hz, 1H), 2.52-3.04 (m, 13H), 3.11-3.24 (m, 6H), 6.81(d, J = 8.4 

Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H),  7.43 (d, J = 8.8 Hz, 2H). 

The product was converted into corresponding hydrochloride salt, m.p.272 oC. Anal. 

(C28H37N5OS . 4.0 HCl . 1.0 H2O) : C, H, N. 

4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-3-ol ((±)-9b): A mixture of 

compound (±)-8b  (70 mg, 0.13 mmol) in anhydrous CH2Cl2 (10 mL) at -78° C, boron 

tribromide (1.04 mL, 1.04 mmol, 1M solution in CH2Cl2) was added as followed by 

procedure G to yield (±)-9b (40 mg, 60%). The product was converted into 

corresponding hydrochloride salt, m.p.265 oC. 1H NMR of HCl salt (CDCl3, 400 

MHz): δ 1.07 (t, J = 7.2 Hz, 3H), 1.89-1.95 (m, 2H), 2.13-2.21 (m, 1H), 2.49 (d, J = 

12.0  Hz, 1H) 2.80 (m, 2H), 2.96-3.32 (m, 4H), 3.38-3.99 (m, 13H), 6.71 (dd, J = 8.0 
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Hz, 1.6 Hz,  1H), 6.98 (bs, 1H), 7.03 (d, J = 7.2 Hz, 1H), 7.13-7.24 (m, 3H), 7.55 (d, J 

= 8.8 Hz, 2H). Anal. (C28H37N5OS . 4.0 HCl . 1.0 H2O): C, H, N. MS(ES+): m/z 

calculated for C28H37N5OS [M+H+]: calculated 491.27; found 492.52. 

Procedure H: (S)-4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)biphenyl-3-ol ((-)-9b): Compound (-)-8b  

(200 mg, 0.98 mmol) and 48% aqueous HBr (15 ml) was refluxed for 12 hours. The 

reaction mixture was then evaporated to dryness in vacuo. The crude mixture was 

then washed with diethylether and finally recrystallized from ethanol to afford 

compound (-)-9b (246 mg, 70%, recrystallized from ethanol). 1H NMR of HBr salt 

(CD3OD, 400 MHz): δ 1.08 (t, J = 7.2 Hz, 3H), 1.94-2.06 (m, 2H), 2.22-2.27 (m, 1H), 

2.55 (d, J = 10.4  Hz, 1H) 2.83 (m, 2H), 2.99-3.39 (m, 4H), 3.52-4.20 (m, 13H), 6.73 

(dd, J = 8.0 Hz, 1.6 Hz,  1H), 7.00 (bs, 1H), 7.04 (d, J = 7.6 Hz, 1H), 7.20-7.24 (m, 

3H), 7.57 (d, J = 8.8 Hz, 2H). [α]d = -21.0 (c=0.5, CH3OH). Hydrobromide salt, 

m.p.270 oC. Anal. (C28H37N5OS . 5.0 HBr ) : C, H, N. 

(R)-4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)biphenyl-3-ol ((+)-9b): Compound (+)-8b 

(100 mg, 0.20 mmol) and 48% aqueous HBr (10 ml) was refluxed for 12 hours by 

following procedure H to afford compound (+)-9b  (105 mg, 60%, recrystallized from 

ethanol). Spectral data matching with compound (-)-9b. [α]d = +16.0 (c =0.5, 

CH3OH). Hydrobromide salt, m.p.270 oC. Anal. (C28H37N5OS . 5.0 HBr. 1.0 H2O ): C, 

H, N. 

4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino)ethyl)-

piperazin-1-yl)biphenyl-2-ol ((±)-9c): Into the mixture of Compound (±)-8c (100 

mg, 0.197 mmol) in anhydrous CH2Cl2 (10 mL) at -78° C, boron tribromide (1.38 mL, 
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1.38 mmol, 1M solution in CH2Cl2) was added as followed by procedure G to yield 

(±)-9c (53 mg, 55%). 1H NMR (CDCl3, 400 MHz): δ 0.90 (t, J = 7.2 Hz, 3H), 1.45-

1.51 (m, 2H), 1.66-1.77 (m, 1H), 1.93-2.02 (m, 1H), 2.62-3.12 (m, 13H), 3.16-3.66 

(m, 6H),  6.84-6.89 (m, 2H), 7.01 (d, J = 8.8 Hz, 2H), 7.07-7.11 (m, 1H), 7.20 (dd, J = 

1.2 Hz, J = 7.6 Hz, 1H),), 7.47(d, J = 8.4 Hz, 2H). The product was neutralized and 

converted into corresponding hydrochloride salt, m.p.270 oC. Anal. (C28H37N5OS . 

4.0 HCl . 2.0 H2O) : C, H, N. 

4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)biphenyl-2,5-diol ((±)-9d): Compound (±)-

8d (200 mg, 0.37 mmol) and 48% aqueous HBr (10 ml) was refluxed for 12 hours 

using procedure H to afford compound (±)-9d (243 mg, 71%, recrystallized from 

ethanol). 1H NMR of HBr salt (CD3OD, 400 MHz): δ 1.07 (t, J = 7.6 Hz, 3H), 1.91-

1.97 (m, 2H), 2.12-2.30 (m, 1H), 2.50 (d, J = 8.0 Hz, 1H) 2.81 (m, 2H), 3.0-3.12 (m, 

4H), 3.54-4.08 (m, 13H), 6.58 (dd, J = 8.8 Hz, 3.2 Hz, 1H), 6.68-6.72 (m, 2H),  7.20-

7.28 (m,  2H), 7.56 (d, J = 8.0 Hz, 2H). Hydrobromide salt, m.p.265 oC. Anal. 

(C28H37N5O2S . 4.5 HBr . 0. 55 C2H50C2H5 ) : C, H, N.(S)-4'-(4-(2-((2-amino-4,5,6,7-

tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino)ethyl)piperazin-1-yl)biphenyl-2,5-

diol ((-)-9d): Compound (-)-8d (400 mg, 0.75 mmol) and 48% aqueous HBr (25 ml) 

was refluxed for 12 hours using procedure H to afford compound (-)-9d (439 mg, 

65%, recrystallized from ethanol). Spectral data matching with compound (±)-9d. [α]d 

= -18.0 (c = 0.1, CH3OH). Hydrobromide salt,  m.p.265 oC. Anal. (C28H37N5O2S . 5.0 

HBr . 0. 7H2O ) : C, H, N. 

(R)-4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-2,5-diol ((+)-9d): 

Compound (+)-8d (150 mg, 0.280 mmol) and 48% aqueous HBr (5 ml) was refluxed 
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for 12 hours using procedure H to afford compound (+)-9d (180 mg, 70%, 

recrystallized from ethanol). Spectral data matching with compound (±)-9d. [α]d = 

+15.0 (c = 0.1, CH3OH). Hydrobromide salt,  m.p.265 oC. Anal. (C28H37N5O2S . 5.0 

HBr . 0.6 C2H50C2H5 ) : C, H, N. 

4'-(4-{2-[(2-Amino-4,5,6,7-tetrahydro-benzothiazol-6-yl)-propyl-amino]-ethyl}-

piperazin-1-yl)-biphenyl-3,4-diol ((±)-9e). A mixture of compound 8e (200 mg, 0.37 

mmol) and 48% aqueous HBr (10 ml) was refluxed for 6 hours using procedure H to 

afford compound (±)-9e (145 mg, 65%). Mp 209-214 oC. 1H NMR (CD3OD, 400 

MHz): δ 1.07 (t, J = 7.2 Hz, 3H), 1.88-2.06 (m, 2H), 2.12-2.30 (m, 1H), 2.55 (d, J = 

10 Hz, 1H) 2.74-2.90 (m, 2H), 2.95-3.46 (m, 4H), 3.52-4.20 (m, 13H), 6.82 (d, J = 8.0 

Hz, 1H), 6.93 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.03 (d, J = 1.6 Hz, 1H), 7.27 (d, J = 8.4 

Hz, 2H), 7.54 (d, J = 8.8 Hz, 2H). 13C NMR (CD3OD, 100 MHz): δ 11.3, 19.0, 19.7, 

22.9, 23.5, 24.4, 47.0, 50.0, 51.7, 53.0, 55.0, 61.2, 113.1, 114.7, 116.8, 119.2, 

119.6. Anal. calculated for C28H45.8Br5N5O3.9S: C, H, N. 

(S)-4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)biphenyl-3,4-diol ((-)-9e): Compound (-)-8e  

(200 mg, 0.37 mmol) and 48% aqueous HBr (10 ml) was refluxed for 12 hours using 

procedure H to afford compound (-)-9e (219 mg, 65%, recrystallized from ether and 

ethanol mixture). 1H NMR (CD3OD, 400 MHz): δ 1.07 (t, J = 7.2 Hz, 3H), 1.88-2.06 

(m, 2H), 2.12-2.30 (m, 1H), 2.55 (d, J = 10 Hz, 1H) 2.74-2.90 (m, 2H), 2.95-3.46 (m, 

4H), 3.52-4.20 (m, 13H), 6.82 (d, J = 8.0 Hz, 1H), 6.93 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 

7.03 (d, J = 1.6 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.8 Hz, 2H). [α]d = -

18.56 (c = 0.6, CH3OH). Hydrobromide salt,  m.p.260 oC. Anal. (C28H37N5 O2S . 4.5 

HBr . 0.7C2H50C2H5 ) : C, H, N. 
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(R)-4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)biphenyl-3,4-diol ((+)-9e): Compound (+)-

8e   (100 mg, 0.19 mmol) and 48% aqueous HBr (10 ml) was refluxed for 12 hours 

using procedure H to afford compound (+)-9e  (119 mg, 70%, recrystallized from 

ethanol). Spectral data matching with compound (-)-9e. [α]d=+20.69 (c = 0.6, 

CH3OH).. Hydrobromide salt, m.p.260 oC. Anal. (C28H37N5 O2S . 4.5 HBr. 

0.6C2H50C2H5 ) : C, H, N. 

4'-(4-(4-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino)-

butyl)piperazin-1-yl)-[1,1'-biphenyl]-3-ol ((±)-9f): Compound (±)8f (200 mg, 0.38 

mmol) and 48% aqueous HBr (5 ml) was refluxed for 12 hours using procedure H to 

afford compound (±)-9f  (248 mg, 72%, recrystallized from ethanol). 1H NMR of HBr 

salt (CD3OD, 400 MHz): δ 1.05 (t, J = 7.2 Hz, 3H), 1.86-2.16 (m, 6H), 2.45  (bs, 1H), 

2.79 (bs, 2H), 2.96-3.94 (m, 18H), 6.73 (dd, J = 2.4 Hz, 8.0 Hz, 1H), 7.00 (bs, 1H), 

7.04 (d, J =8.0 Hz, 1H), 7.20-7.24 (m, 3H), 7.57 (t, J = 7.2 Hz, 2H). m.p.245 oC. Anal. 

(C30H41N5OS . 5.0 HBr . 2.0 H2O. 1.0 C2H5OC2H5) : C, H, N. MS(ES+): m/z calculated 

for C30H41N5OS [M+H+]: calculated 519.30; found 520.59. 

2-(4-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)phenyl)cyclohexa-2,5-diene-1,4-dione (±)-

10):   Into the  solution of free base of the compound (±)-9d (200 mg, 0.396 mmol) in 

dichloromethane (10 mL), was  reacted with MnO2 (140 mg, 1.58 mmol)  for 1 hr. at 

r.t. The reaction mixture was filtered through celite. The crude compound thus 

obtained was further purified through silica gel column chromatography 

(CH2Cl2/MeOH, 9:2) to to afford compound (±)-10 (129 mg, 65%). NMR (CDCl3, 400 

MHz): δ 0.88 (t, J = 7.2 Hz, 3H), 1.47-1.53 (m, 2H), 1.71-1.75 (m, 1H), 2.01 (d, J = 

10.0 Hz, 1H), 2.54-2.73 (m, 14H), 3.10-3.30 (m, 5H), 4.85 (bs, 2H),   6.77-6.81 (m, 
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3H), 6.90 (d, J = 9.2 Hz, 2H). 7.46  (d, J = 8.8 Hz, 2H). The product was converted 

into corresponding hydrochloride salt, m.p.270 oC. Anal. (C28H35N5 O2S . 5.0 HCl . 

2.6 H2O . 0.7C2H50C2H5) : C, H, N. 

Procedure I:  1-(2-methoxyphenyl)piperazine (12a): A stirring solution of 2-

methoxyaniline 11a (31.60 g, 256.91 mmol) and bis(2-chloroethyl)amine (45.85 g, 

256.91 mmol) was heated at 150 oC in diethylene glycol monomethyl ether (100mL) 

for 6 hours. After being cooled to room temperature, the mixture was dissolved in 

MeOH (4 mL) followed by addition of Et2O (300 mL). The precipitate was filtered off 

and washed with Et2O to provide HCl salt. The HCl salt was further converted to free 

amine by treatment with Na2CO3 solution and extracted with EtOAc (2 × 100mL). 

The combined organic layers were dried over Na2SO4, and concentrated in vacuo to 

provide the pure free amine product 12a (34.34 g, 70%).  1H NMR (CDCl3, 400 

MHz): δ 3.12 (t, J = 7.6 Hz, 4H), 3.37 (t, J = 6.4 Hz, 4H), 3.79 (s, 3H), 6.86 (t, J = 7.6 

Hz, 1.6 Hz, 1H), 6.93 (t, J = 4.8Hz, 2H), 6.94-7.07 (m, 1H). 

1-(2,5-dimethoxyphenyl)piperazine (12b): Commercially available, 2,5-

dimethoxyaniline 11b (10.0 g, 65.32 mmol) and bis(2-chloroethyl)amine (11.65 g,  

65.32 mmol) was heated at 150 oC in diethylene glycol monomethyl ether (100 mL) 

following the procedure I to yield  compound 12b ( 9.28gm, 65 % yield). 1H NMR 

(CDCl3, 400 MHz): δ 3.07 (d, J = 5.2 Hz, 8H), 3.75 (s, 3H), 3.81 (s, 3H),  6.46-6.54 

(m, 2H), 6.76 (d, J = 8.4 Hz, 1H). 

Procedure J:  1-(4-bromo-2-methoxyphenyl)piperazine (13a): Amine 12a (15.0 g, 

78.07 mmol) was dissolved in CH2Cl2 (200 ml) and cooled to 0 oC.  Bromine (4.02 

ml, 78.07 mmol) was added dropwise into the above solution. After 2 hrs, reaction 

mixture was washed with 1N sodium hydroxide and the organic layer was sperated, 
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dried over Na2SO4, and concentrated in vacuo to yield 13a (16.86 gm, 80 % yield). 

The crude product 13a thus obtained was converted into its Boc derivative without 

further purification.  

1-(4-iodo-2,5-dimethoxyphenyl)piperazine (13b): Amine 12b (8.0 g, 36.0 mmol) 

was reacted with ICl (5.84 g, 36.0 mmol) in acetic acid/water (3:1, 100 ml) at 55 oC. 

The reaction was stirred at 55 oC for 1 h and then at room temperature for another 1 

h. The solution was poured into 400 mL of crushed ice and the pH was adjusted to 

13 with 4 N NaOH. The product was then extracted with dichloromethane (3 x 100 

mL). The combined organic layer was dried over Na2SO4, filtered and evaporated in 

vacuo to provide the free amine of compound. The crude product 13b (9.98 g, 80%) 

thus obtained was converted into its Boc derivative without further purification. 

Procedure K:  tert-butyl 4-(4-bromo-2-methoxyphenyl)piperazine-1-carboxylate 

(14a): Into a stirring solution of amine 13a (14.0 g, 51.84 mmol) in dichloromethane 

(40 mL), (Boc)2O (11.31 g, 51.84 mmol) and Et3N (21.55 mL, 155.52 mmol) were 

added at room temperature. The reaction mixture was stirred at the same 

temperature for 12 hours and was extracted with CH2Cl2 (3 x 100 mL), washed with 

water, dried over Na2SO4, filtered, and concentrated. The crude material was 

purified by column chromatography over silica gel (Hexane/EtOAc, 8:2) to give 

compound 14a (16.30 g, 85%).1H NMR (CDCl3, 400 MHz): δ 1.49 (s, 9H), 2.95 (t, J 

= 4.4 Hz, 4H), 3.58 (t, J = 5.2 Hz, 4H), 3.86 (s, 3H), 6.75 (d, J = 8.4 Hz, 1H), 6.97 (d, 

J = 2.0 Hz, 1H), 7.58 (dd, J =8.4 Hz ,2.0 Hz, 1H). 

tert-butyl 4-(4-iodo-2,5-dimethoxyphenyl)piperazine-1-carboxylate (14b). 

Amine, 13b, (9.0 g, 25.85 mmol) in dichloromethane (100 mL), (Boc)2O (5.64 g, 

25.85 mmol) and Et3N (10.75 mL, 77.57 mmol) were reacted followed by procedure 
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K to give compound 14b (11.0 g, 95%). 1H NMR (CDCl3, 400 MHz): δ 1.49 (s, 9H), 

2.98 (bs,  4H), 3.61 (t, J=4.0, 4H), 3.81 (s, 3H), 3.83 (s, 3H), 6.52 (s, 1H), 7.01 (s, 

1H). 

tert-butyl 4-(3-methoxybiphenyl-4-yl)piperazine-1-carboxylate (15a): 

Commercially available, phenylboronic acid  (2.63 g, 21.61 mmol) was reacted with 

bromo  compound 14a (8.0 g, 21.61 mmol), Na2CO3 (4.58 g, 43.22 mmol, 2 M 

solution in water) and Pd(PPh3)4 (1.24 g, 0.75 mmol) in dimethoxy ethane/ethanol 

(30 mL:30 mL) by follwing procedure A to yield compound 15a (5.17g ,65% yield).  

1H NMR (CDCl3, 400 MHz): δ 1.49 (s, 9H), 3.04 (t, J = 4.4 Hz, 4H), 3.63 (t, J = 4.8 

Hz, 4H), 3.92 (s, 3H), 6.96 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 2.0.0 Hz, 1H),   7.15 (dd, 

J = 8.4 Hz, 2.0 Hz, 1H), 7.29-7.32 (m, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.56 (d, J = 7.20 

Hz, 2H). 

tert-butyl 4-(2,5-dimethoxybiphenyl-4-yl)piperazine-1-carboxylate (15b): 

Commercially available benzene boronic acid (2.72 g, 22.31 mmol) was reacted with 

iodo compound 14b (10.0 g, 22.31 mmol), Pd(PPh3)4 (1.28 g, 1.11 mmol) and 

Na2CO3 (4.72 g, 44.62 mmol) in a mixture of solvent dimethoxy ethane and ethanol 

(40 mL : 40 mL) follwed by procedure A  to afford compound 15b (6.16 g, 70%). 1H 

NMR (CDCl3, 400 MHz): δ 1.49 (s, 9H), 3.07 (t, J = 4.4 Hz, 4H), 3.62 (t, J = 5.2 Hz, 

4H), 3.75 (s, 3H), 3.87 (s, 3H), 6.60 (s, 1H), 6.85 (s, 1H), 7.23-7.31 (m, 1H), 7.39 (t, 

J=8.0,2H),7.53 (d, J=7.2, 2H). 

1-(3-methoxy-[1,1'-biphenyl]-4-yl)piperazine (16a). Compound 15a (6.2 g, 16.83 

mmol) was reacted with TFA (20 mL) in CH2Cl2 (20 mL) by following procedure B to 

give compound 15a (4.0 g, 90%). 1H NMR (CDCl3, 400 MHz): δ 2.77 (bs, 1H), 3.08 

(t, J = 4.8 Hz, 4H), 3.18 (t, J = 5.6 Hz, 4H), 3.92 (s, 3H), 6.84 (dd, J = , 2.4 Hz, 8.0 
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Hz 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.98 (t, J = 4.8 Hz, 1H), 7.29-7.34 (m, 1H), 7.44 (t, 

J = 7.2 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H). 

1-(2,5-dimethoxy-[1,1'-biphenyl]-4-yl)piperazine (16b): Compound 15b (6.0 g, 

15.06 mmol) was reacted with TFA (20 mL) in CHCl3 (20 mL) using procedure B to 

give compound 16b (3.6 g, 80%).  1H NMR (CDCl3, 400 MHz): δ  3.20 (bs, 8H),  3.75 

(s, 3H), 3.85 (s, 3H), 6.62 (s, 1H), 6.85 (s, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 

8.4 Hz, 2H), 7.52 (t, J = 8.0 Hz, 2H). 

1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-4-(3-methoxy-[1,1'-biphenyl]-4-

yl)piperazine (17a): Compound 16a (3.5 g, 13.05 mmol) was reacted with (2-

bromo-ethyl)-tert-butyldimethylsilane (3.74 g, 15.66 mmol), and K2CO3 (4.14 g, 

39.15 mmol) in CH3CN (50 mL) by following procedure C. The crude residue was 

purified by column chromatography (ethylacetate/hexane, 2:3) to afford compound 

17a (5.0 g, 90%). 1H NMR (CDCl3, 400 MHz): δ 0.08 (s, 6H), 0.90 (s, 9H), 2.53 (t, J 

= 6.4 Hz, 2H), 3.08 (t, J = 4.8 Hz, 4H), 3.18 (t, J = 5.6 Hz, 4H), 3.26 (t, J = 4.8 Hz, 

2H), 3.92 (s, 3H), 6.84 (dd, J = 8.0 Hz, 2.4 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.98 (t, 

J = 4.8 Hz, 1H), 7.29-7.34 (m, 1H), 7.44 (t, J = 7.2 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H). 

1-(2-(tert-butyldimethylsilyloxy)ethyl)-4-(2,5-dimethoxybiphenyl-4-yl)piperazine 

(17b). Compound 16b (3.0 g, 10.06 mmol) was reacted with (2-bromo-ethyl)-tert-

butyldimethylsilane (2.88 g, 12.07 mmol), and K2CO3 (3.20 g, 30.18 mmol) in CH3CN 

(50 mL) using procedure C. The crude residue was purified by column 

chromatography (ethylacetate/hexane, 2:3) to afford compound 17b (3.90g, 82%). δ 

0.09 (s, 6H), 0.92 (s, 9H), 2.61 (t, J = 6.8 Hz, 2H), 2.75 (bs, 4H), 3.16 (bs,  4H), 3.74 

(s, 3H), 3.78 (t, J = 6.8 Hz, 2H), 3.84 (s, 3H), 6.34 (s, 1H), 6.84 (s, 1H), 7.25-7.31 (m, 

1H), 7.39 (t, J = 7.6 Hz, 2H),7.53 (d, J = 6.8 Hz, 2H). 
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2-(4-(3-methoxybiphenyl-4-yl)piperazin-1-yl)ethanol (18a). Compound 17a (4.5 g, 

11.72 mmol) was reacted with n-tetrabutylammonium fluoride (3.06 g, 11.72 mmol, 

1.0 M solution in THF) in THF (30 mL) by following procedure D. The crude product 

was purified by silica gel column chromatography (EtOAc/MeOH, 9:1) to yield 

compound 18a (2.25 g, 76%). 1H NMR (CDCl3, 400 MHz): 1H NMR (CDCl3, 400 

MHz): 2.65 (t, J = 5.6 Hz, 2H), 2.76 (bs, 4H), 3.15 (bs, 4H), 3.67(t, J = 5.6 Hz, 2H), 

3.93 (s, 3H), 6.84 (d, J = 2.6 Hz, 1H), 7.08 (d, J = 2.4 Hz, 1H), 7.14 (dd, J = 8 Hz, 2.4 

Hz, 1H), 7.31 (t, 7.2 Hz, 1H), 7.42 (t, J = 7.2 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H). 

2-(4-(2,5-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethanol (18b). Compound 17b 

(3.8 g, 8.32 mmol) was reacted with n-tetrabutylammonium fluoride (2.17 g, 8.32 

mmol, 1.0 M solution in THF) in THF (30 mL) using procedure D. The crude product 

was purified by silica gel column chromatography (EtOAc/MeOH, 9:1) to yield 

compound 18b (2.21 g, 86%). 1H NMR (CDCl3, 400 MHz):  δ 2.62 (t, J = 5.6 Hz, 2H), 

2.73 (bs, 4H), 3.16 (bs, 4H), 3.65 (t, J = 5.6 Hz, 2H), 3.74 (s, 3H), 3.84 (s, 3H), 6.62 

(s, 1H), 6.83 ( s, 1H), 7.28-7.30 (m, 1H), 7.38 (t, J = 8.0 Hz, 2H), 7.51 (d, J =6.4 Hz, 

2H). 

2-(4-(3-methoxybiphenyl-4-yl)piperazin-1-yl)acetaldehyde (19a). Compound 18a 

(500 mg, 1.60 mmol) was reacted with oxalyl chloride (0.28 mL, 3.20 mmol), DMSO 

(0.45 mL, 6.40 mmol) and Et3N (1.33 mL, 9.6 mmol) in dry dichloromethane (30 mL) 

by following procedure E. The crude product was purified by silica gel column 

chromatography (EtOAc/MeOH, 9.5:0.5) to yield compound 19a (397 mg, 80%).  

2-(4-(2,5-dimethoxybiphenyl-4-yl)piperazin-1-yl)acetaldehyde (19b). Compound 

18b (1.2 g, 3.50 mmol) was reacted with oxalyl chloride (0.60 mL, 7.01 mmol), 

DMSO (1.0 mL, 14.0 mmol) and Et3N (2.91 mL, 21.0 mmol) in dichloromethane (30 
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mL) using procedure F The crude product was purified by silica gel column 

chromatography (EtOAc/MeOH, 9.5:0.5) to yield compound 19b (834 mg, 70%). 

N6-(2-(4-(3-methoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine (±)(20a) : Compound 19a (350 mg, 1.12 

mmol) reacted with (±)-pramipexole  (238 mg, 1.12 mmol) and NaBH(OAc)3 (427 

mg, 2.01 mmol) in dichloromethane (10 mL) by following procedure F. The crude 

product was purified by silica gel column chromatography (EtOAc/MeOH, 9:1) to 

yield compound (±)20a (370 mg, 65%). 1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.2 

Hz, 3H), 1.45-1.59 (m, 2H), 1.70-1.75 (m, 2H), 1.98-2.04 (m, 1H), 2.49-3.15 (m, 

18H), 3.93 (s, 3H), 4.70 (s, 2H), 6.9 (d, J = 8.4 Hz, 1H), 7.07 (bs, 1H), 7.13-7.17 (m, 

1H), 7.28-7.33 (m, 1H), 7.42 (t, J = 7.2 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H). 

N6-(2-(4-(2,5-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine (±)(20b): Compound (±)-19b (300mg, 

0.88 mmol) was reacted with (±)-pramipexole (185 mg, 0.88 mmol) and NaBH(OAc)3 

(334 mg, 1.58 mmol) in dichloromethane (10 mL) using procedure F. The crude 

product was purified by silica gel column chromatography (EtOAc/MeOH, 9:1) to 

yield compound (±) 20b (456 mg, 65%). 1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 

7.2 Hz, 3H), 1.45-1.48 (m, 2H), 1.70 (d,  J = 6.8 Hz, 1H), 1.97-2.02 (m, 1H), 2.48-

3.35 (m, 19H), 3.72 (s, 3H), 3.85 (s, 3H), 5.22 (bs, 2H), 6.62 (s, 1H), 6.83 (s, 1H), 

7.26 (t, J = 6.8 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H),  7.51 (d, J = 7.2 Hz, 2H). 

(S)-N6-(2-(4-(2,5-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine (-)(20b): Compound 19b (500 mg, 1.46 

mmol) was reacted with (-)-pramipexole (310 mg, 1.46 mmol) and NaBH(OAc)3 

(556 mg, 2.62 mmol) in dichloromethane (10 mL) using procedure F. The crude 
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product was purified by silica gel column chromatography (EtOAc/MeOH, 9:1) to 

yield compound (-)20b (511 mg, 65%). Spectral data matching with compound   (±)-

(20b). 

4-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino)ethyl)-

piperazin-1-yl)-[1,1'-biphenyl]-3-ol (±)-(21a)  : A mixture of compound (±)-20a  

(200 mg, 0.395 mmol) and 48% aqueous HBr (10 ml) was refluxed for 12 h by 

following procedure H to afford compound (±)-21a (281 mg, 80%). 1H NMR of free 

base (CDCl3, 400 MHz): δ 0.90 (t, J = 7.2 Hz, 3H), 1.45-1.59 (m, 2H), 1.68-1.75 (m, 

2H), 2.0 (d, J = 10.0Hz, 1H), 2.48-3.05 (m, 18H), 4.75 (bs, 2H), 7.10 (d, J = 8.0 Hz, 

1H), 7.16-7.23 (m, 2H), 7.31-7.34 (m, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 

Hz, 2H).The product was converted into corresponding hydrochloride salt, m.p.270 

oC. Anal. (C28H37N5OS . 4.0 HCl . 2.0 H2O) : C, H, N. 

4-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-2,5-diol (±)(21b): A mixture 

of compound (±)20b  (300 mg, 0.560 mmol) and 48% aqueous HBr (10 ml) was 

refluxed for 12 hours followed by procedure H to afford compound (±)21b (380mg, 

75%).  1H NMR (CD3OD, 400 MHz): δ 1.07 (t, J = 7.2 Hz, 3H), 1.90-1.99 (m, 2H), 

2.16-2.23 (m, 1H), 2.48-2.56 (m, 1H) 2.81 (bs, 2H), 2.98-3.25 (m, 4H), 3.54-4.08 (m, 

13H), 6.70 (s, 1H), 6.89-6.9 (m, 1H),  7.17-7.55 (m,  5H). Hydrobromide salt, 

m.p.265 oC. Anal. (C28H37N5OS . 5.0 HBr. 0.4 C2H5OC2H5 ) : C, H, N. 

(S)-4-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-2,5-diol (-)(21b): A mixture 

of compound (-)20b  (400 mg, 0.746 mmol) and 48% aqueous HBr (10 ml) was 

refluxed for 12 hours followed by procedure H to afford compound (-)21b  (474 mg, 
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70%).[α]d =  - 22.18 (c = 0.55, CH3OH).  Spectral data matching with compound   

(±)(21b).Hydrobromide salt, m.p.260 oC. Anal. (C28H37N5 O2S . 5.0 HBr. 0.4 

C2H5OC2H5 
.
 0.2 H2O ) : C, H, N. 

2-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-5-phenylcyclohexa-2,5-diene-1,4-

dione(±)(22):  Into the  solution of free base of the compound (±)-21b (100 mg, 0.20 

mmol) in dichloromethane (10 mL), was  reacted with MnO2 (140 mg, 0.8 mmol)  for 

1 hr. at r.t. followed by procedure similar to compound (±)-10  to yield compound (±)-

22 (59 mg, 60%).NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 6.4 Hz, 3H), 1.52-2.03 (m, 

4H), 2.54-2.73 (m, 15H), 3.47 (bs, 4H), 4.85 (bs, 2H), 5.84 (s, 1H), 6.64 (s, 1H), 

7.30-7.46 (m, 5H).  The product was converted into corresponding hydrochloride 

salt, m.p.240 oC. Anal. (C28H35N5O2S . 5.0 HCl . 1.8 C2H5OC2H5 
.
 0.8 H2O) : C, H, N. 

(S)-5-methoxy-N-(2-(4-(3'-methoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-N-propyl-

1,2,3,4-tetrahydronaphthalen-2-amine (-)(23a): Compound 7b (350 mg, 1.13 

mmol) was reacted with (S)-(5-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-

amine (247.83 mg, 1.13 mmol) and NaBH(OAc)3 (430.23 mg, 2.03 mmol) in 

dichloromethane (60 mL) by following procedure F. The crude product was purified 

by silica gel column chromatography (EtOAc/Hexane, 3:2) to yield compound (-)23a 

(347 mg, 60%).1H NMR (400 MHz, CDCl3): δ 0.90 (t, J = 7.2 Hz, 3H), 1.46-1.64 (m, 

3H), 2.04-2.25 (m, 1H); 2.51-3.28 (m, 19H), 3.74 (s, 3H); 3.81 (s, 3H), 6.65 (d, J = 

8.0 Hz, 1H); 6.71 (d, J = 7.6 Hz, 1H); 6.82-6.86 (m, 1H), 7.0 (d, J = 8.4 Hz, 2H);  

7.07-7.15 (m, 3H), 7.31 (t, J = 8.0 Hz, 1H); 7.50 (d, J = 8.4 Hz, 2H). 

(S)-N-(2-(4-(3',4'-dimethoxybiphenyl-4-yl)piperazin-1-yl)ethyl)-5-methoxy-N-

propyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)(23b):  Compound 7e (200 mg, 
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0.59 mmol) was reacted with (S)-(5-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-

propyl-amine (130 mg, 0.59 mmol) and NaBH(OAc)3 (225 mg, 1.06 mmol) in 

dichloromethane (50 mL) using procedure F. The crude product was purified by 

silica gel column chromatography (EtOAc/Hexane, 4:1) to yield compound (-)23b 

(174 mg, 55%).  1H NMR (400 MHz, CDCl3): δ 0.92 (t, J = 7.2 Hz, 3H); 1.40-1.68 (m, 

3H); 2.01-2.18 (m, 1H); 2.36-3.28 (m, 19H); 3.81 (s, 3H); 3.91 (s, 3H), 3.93 (s, 3H); 

6.65 (d, J = 8.0 Hz, 1H); 6.71 (d, J = 7.6 Hz, 1H); 6.91(d, J = 8.0 Hz, 1H), 6.97(d, J = 

8.8 Hz, 1H), 7.06-7.11(m, 3H); 7.46 (d, J = 8.8 Hz, 2H).  

(S)-6-((2-(4-(3'-hydroxybiphenyl-4-yl)piperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-

tetrahydronaphthalen-1-ol (-)(24a): Compound (-)23a (300 mg, 0.58 mmol) and 

48% aqueous HBr (15 ml) was refluxed for 10 hours by following procedure G to 

afford compound (-)23a (296 mg, 70%, recrystallized from ethanol). 1H NMR of HBr 

salt (400 MHz, CD3OD): δ 1.04 (t, J = 7.2 Hz, 3H),  1.73-1.93 (m, 3H), 2.30-2.69 (m, 

2H), 3.07-3.83 (m, 18 H), 6.60 (d, J = 5.2 Hz, 1H), 6.69 (d, J = 6.4 Hz, 1H), 6.73 (d, J 

= 7.6 Hz, 1H), 6.96-7.04 (m, 3H), 7.19-7.23 (m, 3H), 7.56 (d, J = 7.2 Hz, 2H). [α]d = - 

41.0 (c = 1.0, CH3OH). Hydrobromide salt,  m.p.290 oC. Anal. (C31H39N3O2S . 3.0 

HBr . 2.0 H2O ) : C, H, N.  

(S)-4'-(4-(2-((5-hydroxy-1,2,3,4-tetrahydronaphthalen-2-

yl)(propyl)amino)ethyl)piperazin-1-yl)biphenyl-3,4-diol (-)(24b):  Compound (-

)23b  (100 mg, 0.183 mmol) and 48% aqueous HBr (5 ml) was refluxed for 12 hours 

using procedure G to afford compound (-)24b (95 mg, 70%, recrystallized from ether 

and ethanol mixture).1H NMR of HBr Salt (400 MHz, CD3OD): δ 1.08 (t, J = 7.8 Hz, 

3H), 1.80-2.04 (m, 3H), 2.41-2.51 (m, 1H), 2.60-2.80 (m, 1H), 3.09-3.97 (m, 18 H), 

6.62 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.90-7.01 
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(m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H). [α]d = -20.5 (c = 1.0, 

CH3OH). Hydrobromide salt,  m.p.255 oC. Anal. (C31H39N3O3S . 3.0 HBr . 0.5 H2O) : 

C, H, N. 

Procedure L : N-(2-(4-([1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)-N-propyl-1,4-

dioxaspiro[4.5]decan-8-amine (34a) : Into a stirring solution of compound 7f (750 

mg, 2.55 mmol) in ClCH2CH2Cl (40 mL), amine 33 (510 mg, 2.55 mmol), 

NaBH(OAc)3 (973 mg, 4.59 mmol) and HOAc (153 mg, 2.55 mmol)  were added at 

room temperature. After stirring for 48 hours, saturated solution of NaHCO3 was 

added into the reaction mixture and it was extracted with CH2Cl2 (3 x 50 mL). The 

combined organic layer was washed with brine and finally purified by silica gel 

column chromatography (EtOAc/MeOH, 9:1) to yield (670 mg, 60%) of compound 

34a. 1H NMR (CDCl3, 400 MHz): δ 0.90 (t, J = 6.8 Hz, 3H), 1.46-1.50 (m, 2H), 1.69-

1.79 (m, 2H), 2.04-2.07 (m, 2H), 2.38-2.55 (m, 8H), 2.65-2.70 (m, 6H), 3.01 (t, J = 

7.2 Hz, 1H), 3.26 (t, J = 4.4 Hz, 4H), 3.92 (s, 4H),  6.98 (d, J = 8.4 Hz, 2H), 7.27 (d, J 

= 7.6 Hz, 1H), 7.41 (t, J = 8.0 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.0 Hz, 

2H).  

N-(2-(4-(3'-methoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)-N-propyl-1,4-

dioxaspiro[4.5]decan-8-amine (34b): Into a stirring solution of compound 7b (700 

mg, 2.25 mmol) in ClCH2CH2Cl (40 mL), amine 33 (450 mg, 2.25 mmol), 

NaBH(OAc)3 (858 mg, 4.05 mmol) and  HOAc (135 mg, 2.25 mmol) were added at 

room temperature using procedure L to yield (710mg, 70%) of compound 34b. 1H 

NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.2 Hz, 3H), 1.52-1.62 (m, 2H), 1.79-1.82 (m, 

4H), 2.59-2.82 (m, 15H), 3.24 (t, J = 4.8 Hz, 4H), 3.88 (s, 3H), 3.93 (s, 4H), 6.82 (dd, 

J =1.2 Hz, 8.4 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 7.08 (t, J = 2.4 Hz, 1H), 7.13-7.15 

(m, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.50 (d, J = 7.2 Hz, 2H).  
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Procedure M :4-((2-(4-([1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)(propyl)amino)-

cyclohexanone (35a): A solution of ketal 34a (600 mg, 1.29 mmol) in THF (50 mL) 

and 1N HCl (10 ml) was stirred at 80oC under N2 for 2 h. THF was removed under 

vacuo and saturated NaHCO3 solution was added slowly. The mixture was extracted 

with CH2Cl2 (4*100 mL) and the combined organic layer was washed with brine, 

dried over Na2SO4, and evaporated to give the crude product, which was purified by 

silica gel column chromatography (EtOAc/MeOH, 9:2) to yield (490 mg, 90%) of 

compound 35a. 1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.6 Hz, 3H), 1.46-1.60 (m, 

2H), 1.80-1.83 (m, 2H), 2.04-2.37 (m, 2H), 2.39-2.55 (m, 8H), 2.65-2.70 (m, 6H), 

3.15 (t, J = 7.2 Hz, 1H), 3.25 (t, J = 4.4 Hz, 4H), 6.98 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 

7.2 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.51 (d, J = 7.2 Hz, 2H), 7.55 (d, J = 8.8 Hz, 

2H).  

4-((2-(4-(3'-methoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)(propyl)amino)-

cyclohexanone (35b): A solution of ketal 34b (700 mg, 1.41 mmol) in THF (50 mL) 

and 1N HCl (10 ml) was stirred at 80oC under N2 for 2 h followed by procedure M to 

yield (540 mg, 85%) of compound 35b. 1H NMR (CDCl3, 400 MHz): δ 0.89 (t, J = 7.2 

Hz, 3H), 1.45-1.52 (m, 2H), 1.82-1.91 (m, 2H), 2.04-2.12 (m, 2H), 2.30-2.52 (m, 8H), 

2.66-2.70 (m, 6H), 3.15 (t, J = 7.2 Hz, 1H), 3.67 (t, J = 6.0 Hz, 4H), 3.85 (s, 3H), 6.83 

(m, 1H), 6.98 (d, J = 8.8 Hz, 2H), 7.14 (bs, 1H), 7.13-7.15 (m, 1H), 7.31 (t, J = 8.0 

Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H). 

Procedure N: N6-(2-(4-([1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)-N6-propyl-

5,6,7,8-tetrahydroquinazoline-2,6-diamine (36a):  Into a solution of ketone 35a 

(450 mg, 1.07 mmol) in dry toluene (20 mL), tris(dimethylamino)methane (780 mg, 

5.36 mmol) was added and the mixture was stirred under nitrogen at 90oC for 4 h. 

The solvent was removed under vacuo and the residue was dissolved in EtOH (50 



184 

 

mL). Guandine carbonate (460 mg, 2.55 mmol) was added next. The mixture was 

then refluxed for 17 h. The solvent was evaporated in vacuo and the residue was 

diluted with CH2Cl2 and washed with brine. The organic layer was dried over Na2SO4 

and evaporated to yield crude product, which was purified by purified by silica gel 

column chromatography (EtOAc/MeOH, 7:3) to yield (378 mg, 75%) of compound 

36a. 1H NMR (CDCl3, 400 MHz): δ 0.87 (t, J = 6.4 Hz, 3H), 1.57-1.76 (m, 3H), 2.05-

2.13 (m, 1H), 2.64-2.98 (m, 15H), 3.27 (t, J = 4.4 Hz, 4H), 4.93 (s, 2H),  6.97 (d, J = 

8.8 Hz, 2H), 7.28 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.50 (d, J = 8.4 Hz, 

2H), 7.54 (d, J = 7.2 Hz, 2H), 8.07 (s,1H). The product was converted into 

corresponding hydrochloride salt, m.p.232 oC. Anal. (C29H38N6 . 4.0 HCl . 1.0 

CH3COOCH2CH3) : C, H, N. MS(ES+): m/z calculated for C29H38N6 [M+H+]: 

calculated 470.32; found 471.52. 

N6-(2-(4-(3'-methoxy-[1,1'-biphenyl]-4-yl)piperazin-1-yl)ethyl)-N6-propyl-5,6,7,8-

tetrahydroquinazoline-2,6-diamine (36b): Into a solution of ketone 35b (500 mg, 

1.11 mmol) in dry toluene (30 mL), tris(dimethylamino)methane (807 mg, 5.56 mmol) 

was added and the mixture was stirred under nitrogen at 90oC for 4 h. The solvent 

was removed under vacuo and the residue was dissolved in EtOH (50 mL). 

Guandine carbonate (500 mg, 2.77 mmol) was added next followed by procedure N 

to yield  (390 mg, 70%) of compound 36b. 1H NMR (CDCl3, 400 MHz): δ 0.90 (t, J = 

7.2 Hz, 3H), 1.45-1.51 (m, 2H), 1.67-1.75 (m, 2H), 2.04-2.12 (m, 1H), 2.50-2.93 (m, 

14H), 3.24 (t, J = 4.8 Hz, 4H), 3.85 (s, 3H), 6.83 (dd, J =2.4 Hz, 7.6 Hz, 1H), 6.97 (d, 

J = 8.8 Hz, 2H), 7.09 (bs, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.50 

(d, J = 8.8Hz, 2H), 8.01 (bs, 2H).  

4'-(4-(2-((2-amino-5,6,7,8-tetrahydroquinazolin-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-[1,1'-biphenyl]-3-ol (37) :  Compound 36b 
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(100 mg, 0.59 mmol) and 48% aqueous HBr (10 ml) was refluxed for 8 hours using 

procedure H to afford compound 37 (118 mg, 65%, recrystallized from ether). 1H 

NMR of HBr salt (CD3OD, 400 MHz): δ 1.08 (t, J = 7.2 Hz, 3H), 1.95-2.01 (m, 2H), 

2.27-2.29 (m, 1H), 2.58-2.64 (m, 1H), 3.01-3.39 (m, 6 H), 3.48 (bs, 8H), 3.91-4.01 

(m,4H), 4.14 (bs,1H),  6.71 (d, J = 8.0 Hz, 1H), 6.99 (bs, 1H), 7.03 (d, J = 7.6 Hz, 

2H), 7.19-7.26 (m, 3H), 7.56 (d, J = 8.4 Hz, 2H), 8.67 (bs,1H). Hydrobromide salt,  

m.p.255 oC. Anal. (C29H38N6O . 6.0 HBr . 3.0H2O) : C, H, N. 

Procedure O: tert-butyl 4-(biphenylcarbonyl)piperazine-1-carboxylate (27) : To 

a stirring solution of  BoC-piperazine, 25 (1.5  g, 8.05 mmol) in THF (25 mL),  4-

biphenyl carbonyl chloride, 26  (1.6 g, 7.24 mmol) and  diisopropylethylamine (2.53 

mL, 14.49 mmol) were added at room temperature. The reaction mixture was stirred 

at the same temperature for overnight and partitioned between brine and 

ethyacetate. The organic layer was separated and washed with brine, dried over 

Na2SO4 and concentrated. The crude material was purified by column 

chromatography over silica gel  (Hexane/EtOAc, 8.0:2.0) to give compound 27 (2.16 

g, 80%). 1H (CDCl3, 400 MHz): δ1.47 (s, 9 H), 3.47 (bs, 4H), 3.74 (bs, 4H), 7.37 (t, J 

= 7.2 Hz, 1H), 7.43-7.49 (m, 4H), 7.59 (d, J = 7.2 Hz, 2H), 7.59 (d, J = 7.2 Hz, 2H). 

biphenyl-4-yl(piperazin-1-yl)methanone (28): Compound 27  (2.1 g, 5.73 mmol) 

was reacted with TFA (20 mL) in CH2Cl2 (30 mL) by following procedure B to give 

compound 28 (1.44 g, 95%).1H (CDCl3, 400 MHz):  3.47 (bs, 4H), 3.74 (bs, 4H), 7.38 

(t, J = 7.2 Hz, 1H), 7.44-7.49 (m, 4H), 7.59 (d, J = 7.2 Hz, 2H), 7.63 (d, J = 8.4 Hz, 

2H). 

biphenyl-4-yl(4-(2-(tert-butyldimethylsilyloxy)ethyl)piperazin-1-yl)methanone 

(29):   A mixture of compound 28 (1.2 g, 4.50 mmol), was reacted with (2-bromo-
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ethyl)-tert-butyldimethylsilane (1.30 g, 5.41 mmol), and K2CO3 (1.86 g, 13.50 mmol) 

in CH3CN (50 mL) by following the procedure C to furnish 29 (1.30 g, 70%).1H NMR 

(CDCl3, 400 MHz): δ  0.05 (s, 6H), 0.88 (s, 9H), 2.51-2.62 (m, 6H), 3.47-3.54 (m, 

2H), 3.76 (t, J = 5.6 Hz, 4H), 7.37 (t, J = 7.2 Hz, 1H), 7.43-7.49 (m, 4H), 7.59 (d, J = 

7.2 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H). 

biphenyl-4-yl(4-(2-hydroxyethyl)piperazin-1-yl)methanone (30): Compound 29 

(1.2 g, 2.82 mmol) was reacted with n-tetrabutylammonium fluoride (0.8 g, 2.82 

mmol, 1.0 M solution in THF) in anhydrous THF (20 mL) by following procedure D  to 

yield compound 30 (790 mg, 90%).1H NMR (CDCl3, 400 MHz): 2.50-2.61 (m, 6H), 

3.46-3.54 (m,  2H), 3.65 (t, J = 4.8 Hz, 4H), 7.37 (t, J = 8.8 Hz, 1H), 7.43-7.49 (m, 

4H), 7.58 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H). 

2-(4-(biphenylcarbonyl)piperazin-1-yl)acetaldehyde (31): Compound 30 (500 mg, 

1.61 mmol) was reacted with oxalyl chloride (0.29 mL, 3.22 mmol), DMSO (0.46 mL, 

6.44 mmol) and Et3N (1.33 mL, 9.66 mmol) in dichloromethane (20 mL) by following 

procedure E to yield compound 31 (420 mg, 85%). 

 (4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino)ethyl)-

piperazin-1-yl)(biphenyl-4-yl)methanone(±)(32):  Compound 31 (400 mg, 1.29 

mmol) was reacted with (±)-pramipexole (275 mg, 1.29 mmol) and NaBH(OAc)3 

(492.12 mg, 2.32 mmol) in dichloromethane (20 mL) using procedure F to yield 

compound (±)32 (420 mg, 70%).1H NMR (CDCl3, 400 MHz): δ 0.86 (t, J = 7.2 Hz, 

3H), 1.41-1.46  (m, 2H), 1.57-1.70 (m, 1H), 1.95 (d, J = 11.6 Hz, 1H), 2.40-2.70 (m, 

13H), 3.01-3.06 (m, 1H),  3.48 (bs, 2H), 3.78 (bs, 2H),  4.02-4.12 (m, 1H), 4.96 (bs, 

2H),  7.35 (t, J = 7.2 Hz, 1H), 7.41-7.47 (m, 4H), 7.56-7.61 (m, 4H). The product was 
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converted into corresponding hydrochloride salt, m.p.255 oC. Anal. (C29H37N5OS . 5.0 

HCl . 1.0 C2 H5OC2H5) : C, H, N. 

(5-bromo-2-methoxyphenoxy)(tert-butyl)dimethylsilane (39) : A mixture of 

compound 38 (4.5 g, 22.16 mmol), was reacted with tert-butylchlorodimethylsilane 

(4.08 g, 26.59mmol), and triethylamine  (9.21 ml, 66.48 mmol) in CH3CN (200 mL) 

by following the procedure C to furnish 39 (5.62 g, 80%). 1H NMR (CDCl3, 400 MHz): 

δ 0.16 (s, 6H), 1.0 (s, 9H), 3.78 (s, 3H), 6.71(d, J = 8.8 Hz, 1H), 6.98-7.03 (m, 2H).  

tert-butyl4-(3-(tert-butyldimethylsilyloxy)-4-methoxyphenyl)piperazine-1-

carboxylate (41): A suspension of (5-bromo-2-methoxyphenoxy)(tert-

butyl)dimethylsilane 39  (2.5 g, 7.88 mmol), monoboc piperazine  40 (1.46 g, 7.88 

mmol), sodium t-butoxide (1.51 g, 15.76 mmol,) and Dichlorobis(tri-o-tolylphosphine)

palladium (II) (875 mg, 0.75 mmol) in toluene (100 ml) was refluxed for 12 hours  

followed by procedure A. The crude residue was purified by flash chromatography 

on silica gel column using solvent system hexane/ ethyl acetate (7:3) to yield 

compound 41 (1.85g, 55%). 1H NMR (CDCl3, 400 MHz): δ 1.49 (s, 9H), 3.07 (bs, 

4H), 3.61 (t, J = 4.8 Hz, 4H),  6.96 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 7.2 Hz, 1H), 7.41 

(t, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H).  

2-methoxy-5-(piperazin-1-yl)phenol (42): To a stirring solution of compound 41 

(1.5 g, 3.54 mmol) in CH2Cl2 (30 mL), TFA (10 mL) was added slowly at room 

temperature and the reaction mixture was stirred for three hours. Followed by 

procedure B to provide the compound 42 (629 mg, 85%). 1H NMR (CDCl3, 400 

MHz): δ 3.25-3.31 (m, 4H), 3.34-3.37 (m, 4H); 3.83 (s, 3H), 6.95 (dd, J = 8.8 Hz, 3.2 

Hz 1H), 6.67(d, J = 2.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H). 
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1-(3-(tert-butyldimethylsilyloxy)-4-methoxyphenyl)piperazine (43): A mixture of 

compound 42 (629 mg, 3.02 mmol), was reacted with tert-butylchlorodimethylsilane 

(546 mg, 3.62 mmol), and triethylamine (1.25 ml, 9.06 mmol) in CH3CN (100 mL) by 

following the procedure C. The crude residue was purified by flash chromatography 

on silica gel column using solvent system dichloromethane: methanol (1: 9) to 

furnish 43 (730 mg, 75%). 1H NMR (CDCl3, 400 MHz): δ 0.14 (s, 6H), 0.98 (s, 9H), 

3.26-3.28 (m, 4H), 3.31-3.34 (m, 4H),  3.75 (s, 3H), 6.46-6.49 (m, 2H), 6.76 (d, J = 

8.8 Hz, 2H).   

Procedure P: 1-(4-(3-(tert-butyldimethylsilyloxy)-4-methoxyphenyl)piperazin-1-

yl)-2-chloroethanone (44 ): Into the solution of substituted phenyl piperazine 43 

(700 mg, 2.17 mmol) and triethylamine (10 ml) in anhydrous dichloromethane (50 

ml) was added chloroacetyl chloride (0.26 ml, 3.26 mmol) at -40°C under nitrogen 

atmosphere. Reaction mixture was stirred for half an hour, diluted with 

dichloromethane. The organic layer was washed with water, dried over Na2SO4 and 

evaporated in vacuo. The crude residue was purified by flash chromatography on 

silica gel column using solvent system hexane/ ethyl acetate (4:1) to yield 44 (432 

mg, 50%).1H NMR (CDCl3, 400 MHz): δ 0.15 (s, 6H), 0.99 (s, 9H), 3.05 (t, J = 5.6 

Hz, 2H), 3.10 (t, J = 4.8 Hz, 2H), 3.68 (t, J = 5.6 Hz, 2H), 3.76 (s, 3H), 3.79 (t, J = 4.0 

Hz, 2H), 4.10 (s, 2H),  6.49-6.53 (m, 2H), 6.78 (d, J = 8.8 Hz, 2H).   

Procedure Q: 2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)-1-(4-(3-(tert-butyldimethylsilyloxy)-4-

methoxyphenyl)piperazin-1-yl)ethanone (45): Into a suspension of compound 44 

(430 mg, 1.08 mmol), K2CO3 (447 mg, 3.24 mmol) and catalytic amount of KI in 

acetonitrile (50 ml) was added (±)-pramipexole (205 mg, 0.97 mmol). Reaction 

mixture was refluxed for 3 hours. The crude reaction mixture was filtered, washed 
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with ethyl acetate, evaporated in vacuo and purified by flash chromatography on 

silica gel column using solvent system ethyl acetate/methanol (95:5) to yield 45 ( 

247 mg, 40%).1H NMR (CDCl3, 400 MHz): δ 0.15 (s, 6H), δ 0.88 (t, J = 7.2 Hz, 3H),  

0.99 (s, 9H), 1.44-1.53 (m, 2H), 1.71-1.80 (m, 1H), 2.00-2.04 (m, 1H), 2.48-2.73 (m, 

6H), 2.95-3.12 (m, 5H), 3.41-3.51 (m, 2H) 3.67-3.85 (m, 7H), 4.87 (bs, 2H), 6.47 (dd, 

J = 8.0 Hz, 2.4 Hz 1H), 6.51 (d, J = 2.4 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H).  

Procedure R:  5-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-2-methoxyphenol (46) :  Into the solution 

of 45 (140 mg, 0.24 mmol) in dry THF (10 ml) at 0°C was added (2.43 ml, 2.43 

mmol) solution of borane-THF complex (1 M solution) with stirring under nitrogen 

atmosphere. The reaction mixture was stirred at room temperature for 36 hours and 

quenched with methanol. The solvent was evaporated. The white solid complex was 

suspended in 6 N HCl in methanol, stirred for 3 hours at room temperature. 

Methanol was evaporated under vacuo. Reaction mixture was made alkaline using 

saturated NaHCO3 Solution. The aqueous layer was extracted with ethyl acetate 

(3�100 ml), dried over Na2SO4, concentrated under vacuo and purified by flash 

chromatography on silica gel column using solvent system ethyl acetate/methanol 

(9:1) to to yield 46 ( 65 mg, 60%). 

1H NMR (CDCl3, 400 MHz):δ 0.94 (t, J = 7.2 Hz, 3H), 1.52-1.60 (m, 2H), 1.74-1.85 

(m, 1H), 2.05-2.07 (m, 1H), 2.49-2.80 (m, 11H), 2.86-2.93 (m, 2H),3.07 (t, J = 4.4 

Hz, 4H), 3.23-3.31 (m, 2H), 3.77 (s, 3H), 4.89 (bs, 2H), 6.41(dd, J = 8.8 Hz, 2.4 Hz 

1H), 6.98-7.03 (d, J = 3.2 Hz, 1H), 6.81 (d, J = 9.2 Hz, 1H).  

The product was converted into corresponding hydrochloride salt, m.p.250 oC. Anal. 

(C23H44N5O4S . 5.0 HCl . 2.0 H2O) : C, H, N. 



190 

 

Procedure S: 3-(tert-butyldimethylsilyloxy)-4-methoxyphenylboronic acid (47) : 

Into a stirred solution of bromo compound 39  (11.0 g, 34.66 mmol) in dry THF at -78 

oC,  1M n-BuLi (20.80 mL, 52.0 mmol) was added. The reaction mixture was stirred 

for 1 hr minutes followed by addition of triisopropylborate (24.14 mg, 103.98 mmol) 

and allow to stir for over night. Next day, the reaction mixture was quenched by 

addition of saturated NH4Cl and extracted with CH2Cl2 (3 x 100 mL). The combined 

organic layer was washed with brine and concentrated to yield the compound 47 

(7.3 g, 75%), which was used without purification in the next step.   

tert-butyl 4-(3'-(tert-butyldimethylsilyloxy)-4'-methoxybiphenyl-4-yl)piperazine-

1-carboxylate (48): Substituted boronic acid, 47 (2.5 g, 8.85mmol) was reacted with 

iodo compound 1 (3.43 g, 8.85 mmol), Na2CO3 (1.87 g, 17.7 mmol, 2 M solution in 

water) and Pd(PPh3)4 (442 mg, 0.442 mmol) in dimethoxy ethane/ethanol (50 mL:50 

mL) followed by procedure A. The crude residue was purified by flash 

chromatography on silica gel column using solvent system hexane/ ethyl acetate 

(8:2) to yield  of compound 48 (1.60g, 50% yield).1H NMR (CDCl3, 400 MHz): δ 0.18 

(s, 6H), 1.01 (s, 9H), δ 1.49 (s, 12H), 3.14-3.20 (m, 4H), 3.54-3.65 (m, 4H), 3.85 (s, 

3H), 6.96-7.04 (d, J = 8.4 Hz, H), 6.98-7.03 (m, 5H), 7.48 (d, J = 9.2 Hz, 2H). 6.82 

(dd, J = 8.0 Hz, 1.6 Hz,  1H), 6.99 (d, J = 8.0 Hz, 2H), 7.09 (bs, 1H),  7.15 (d, J = 7.2 

Hz, 1H), 7.32 (t, J = 7.8Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H). 

4-methoxy-4'-(piperazin-1-yl)biphenyl-3-ol (49): To a stirring solution of compound 

48(1.5 g, 3.01 mmol) in CH2Cl2 (20 mL), TFA (10 mL) was added slowly at room 

temperature and the reaction mixture was stirred for three hours. Followed by 

procedure B to provide the compound 49  (812  mg, 95%). 1H NMR (CDCl3, 400 

MHz): 3.04-3.07 (m, 4H), 3.17-3.19 (m, 4H), 3.94 (s, 3H); 6.95 (d, J = 8.4 Hz, 2H), 

6.98(d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H),  7.49 (d, J = 8.0 Hz, 2H). 
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1-(3'-(tert-butyldimethylsilyloxy)-4'-methoxybiphenyl-4-yl)piperazine (50): A 

mixture of compound 49 (800 mg, 2.81 mmol), was reacted with tert-

butylchlorodimethylsilane (508 mg, 3.37 mmol), and triethylamine (1.16 ml, 8.43 

mmol) in CH3CN (100 mL) by following the procedure C. The crude residue was 

purified by flash chromatography on silica gel column using solvent system 

dichloromethane: methanol (2: 8) to furnish 50 (952 mg, 85%). 1H NMR (CDCl3, 400 

MHz): δ 0.18 (s, 6H), 1.02 (s, 9H), 3.05-3.11 (m, 4H), 3.20-3.22 (m, 4H),  3.82 (s, 

3H), 6.88 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 9.2 Hz, 2H),  7.07 (d, J = 2.4 Hz, 1H), 7.10 

(dd, J = 8.0 Hz, 1.6 Hz ,1H), 7.44 (d, J = 8.8 Hz, ,2H).   

1-(4-(3'-(tert-butyldimethylsilyloxy)-4'-methoxybiphenyl-4-yl)piperazin-1-yl)-2-

chloroethanone (51) : Into the solution of substituted biphenylphenyl piperazine 50 

(800 mg, 2.01 mmol) and triethylamine (10 ml) in anhydrous dichloromethane (50 

ml) was added chloroacetyl chloride (0.24 ml, 3.01 mmol) at -40°C under nitrogen 

atmosphere followed by procedure A. The crude residue was purified by flash 

chromatography on silica gel column using solvent system hexane/ ethyl acetate 

(8:2)  to yield 51 (480 mg, 50%).1H NMR (CDCl3, 400 MHz): δ 0.18 (s, 6H), 1.01 (s, 

9H), 3.21 (t, J = 5.6 Hz, 2H), 3.26 (t, J = 4.8 Hz, 2H), 3.70 (t, J = 5.2 Hz, 2H), 3.79-

3.83 (m, 5H), 4.11 (s, 2H),  6.88 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 9.2 Hz, 2H),  7.07 

(d, J = 2.4 Hz, 1H), 7.10 (dd, J = 8.8 Hz, 2.4 Hz ,1H), 7.46 (d, J = 8.8 Hz, 2H).   

2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino)-1-(4-(3'-(tert-

butyldimethylsilyloxy)-4'-methoxybiphenyl-4-yl)piperazin-1-yl)ethanone (52): 

Into a suspension of compound 51 (450 mg, 0.95 mmol), K2CO3 (392 mg, 2.85 

mmol) and catalytic amount of KI in acetonitrile (50 ml) was added (±)-pramipexole 

(182 mg, 0.86 mmol) and reaction mixture was refluxed for 3 hours followed by 

procedure Q.  The crude residue was purified by flash chromatography on silica gel 
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column using solvent system ethyl acetate/methanol (98:2) to yield 52 (198 mg, 

30%).1H NMR (CDCl3, 400 MHz): δ 0.17 (s, 6H), δ 0.89 (t, J = 7.2 Hz, 3H),  0.99 (s, 

9H), 1.42-1.55 (m, 2H), 1.70-1.80 (m, 1H), 2.00-2.04 (m, 1H), 2.47-2.73 (m, 6H), 

3.07-3.22 (m, 5H), 3.40-3.50 (m, 2H) 3.70-3.90 (m, 7H), 4.76 (bs, 2H), 6.88 (d, J = 

9.2 Hz, 1H), 6.97 (d, J = 8.4 Hz, 2H),  7.05 (d, J = 2.4 Hz, 1H), 7.10 (dd, J = 8.0 Hz, 

2.4 Hz ,1H), 7.45 (d, J = 8.0 Hz, 2H).   

4'-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)ethyl)piperazin-1-yl)-4-methoxybiphenyl-3-ol (53): Into the 

solution of 52 (110 mg, 0.17 mmol) in dry THF (10 ml) at 0°C was added (1.7 ml, 1.7 

mmol) solution of borane-THF complex (1 M solution) with stirring under nitrogen 

atmosphere followed by procedure R.  Crude reside was purified by flash 

chromatography on silica gel column using solvent system ethyl acetate/methanol 

(9:1) to yield 53 (52 mg, 60%).  1H NMR (CDCl3, 400 MHz):δ 0.95 (t, J = 7.2 Hz, 3H), 

1.52-1.63 (m, 2H), 1.76-1.86 (m, 1H), 2.06-2.09 (m, 1H), 2.51-2.74 (m, 11H), 2.86-

2.96 (m, 2H), 3.22 (t, J = 4.8 Hz, 4H), 3.28-3.31 (m, 2H), 3.86 (s, 3H), 4.87 (bs, 2H), 

6.92-7.02 (m, 5H), 7.43 (d, J = 9.2 Hz, 2H). The product was converted into 

corresponding hydrochloride salt, m.p.248 oC. Anal. (C29H39N5O2S . 5.0 HCl . 1.0 

C2H5COOCH2CH3) : C, H, N. 

6.2. In vitro binding assay:    

All final compounds were tested for their in vitro affinity for human D2L, D3 

receptors, expressed in HEK 293 cells. Binding affinities were assessed according to 

previously published procedure 65, 153, 165, 166.  In this competitive binding assay, the 

affinity of the compounds were determined by their ability to compete for [3H]-

Spiperone for binding to the D2L or D3 receptors. HEK 293 cells expressing D2L or 
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D3 receptors were homogenized and used fresh as a source of membrane bound 

receptors. Approximately 20 (for D2L) or 50 (for D3) μg of protein were incubated 

with each test compound and [3H]-spiperone (0.4 nM) for 1 h at 30oC in 50 mM Tris-

HCl (pH 7.4) with 0.9% NaCl, and 0.025% ascorbic acid in the absence of GTP, in a 

total volume of 0.8 ml. (+)-Butaclamol (2 μM) was used to define nonspecific binding.  

Assays were terminated by addition of ice-cold buffer and filtration through glass 

fibre filtermats with cold saline as wash buffer in the MACH 3-96 Tomtec harvester 

(Wallac, Gaithersburg, MD).  IC50 values were estimated by nonlinear regression 

analysis with the logistic model in the least squares fitting program ORIGIN, and 

converted to inhibition constants (Ki) by the Cheng-Prusoff equation165. In this 

conversion, the Kd values for [3H]-spiperone binding were 0.057 nM for D2 receptors 

and 0.125 nM for D3 receptors. 

6.3. In vitro [35S]-GTPγS-binding functional assay: 

GTPγS (guanosine 5´-[γ-[35S] thio] triphosphate)-binding functional assay is an in 

vitro assay which is used to measure the agonist efficacy of ligands for G-protein 

coupled receptors (GPCRs). Agonist efficacy is a measure of how well an agonist 

can stimulate G-proteins linked to a receptor. This assay is based on direct 

measurement of guanine nucleotide exchange on G-proteins. A heterotrimeric G-

proteins consisting of α, β, γ subunits bound to guanosine diphosphste (GDP) 

represents resting state which remains coupled to the receptor. Ligand receptor 

interaction causes conformational change in the receptor that triggers the exchange 

of guanosine diphosphate (GDP) by guanosine triphosphate (GTP) and subsequent 

dissociation of α-subunit which then interacts with adenylyl cyclase and initiates 

cascade of downstream events 167. The normal GTP binding event to the α-subunit 

of G-proteins in response to the ligand receptor interaction in GPCR is replaced by 
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the binding of nonhydrolizable analogue of GTP, [35S]GTPγ[S]  to the α-subunit of G-

proteins167, 168. GTPγS can not be hydrolyzed by intrinsic GTPase activity of α 

subunit of heterotrimeric G-proteins. The time course of [35S]GTPγ[S] binding follows 

a pseudo-first-order reaction with [35S]GTPγ [S] binding reaching equilibrium after 

approx. 3 h169. The [35S]GTPγ [S]-binding event is the rate-determining step in the 

assay. Agonists regulate the maximal level of [35S]GTPγ [S] bound, rather than the 

rate constant for binding. The [35S]GTPγ[S]-binding assay therefore determines 

agonist efficacy on the basis of the amount of [35S]GTPγ [S] bound rather than the 

rate of binding. Therefore, the more efficacious the ligand is in stimulating the 

receptor, the more radioligand will be bound to the G-proteins as a result of the 

stimulation. Generally, the parameter Emax provides a good estimate of efficacy, 

based on which a ligand can be full agonist or partial agonist or antagonist. EC50 is 

the concentration of agonist that produces half maximal response which correlates 

with the affinity of the agonist for particular receptor under the assay condition.  

Cell culture:  

Chinese hamster ovary (CHO) cells expressing human D2 receptors were grown in 

Dulbecco’s modified Eagle’s medium enriched with 5% bovine calf serum, 1% L-

glutamine, 0.5% penicillin/ streptomycin, and 2 µg/mL puromycin.  AtT-20 cells 

expressing human D3 receptors were grown in Gibco F10 medium with 10% horse 

serum, 5% fetal bovine serum, 1% L-glutamine, 50 ug/mL gentamicin, and 500 

ug/mL G418.   

Assay procedure:  

The general procedures used for measuring [35S]GTPγS binding are modified from 

protocols described for DA receptors167, 170  and other G protein-coupled 



195 

 

receptors167, 168.  To make membranes, cells were washed with phosphate-buffered 

saline (PBS), and then centrifuged in PBS at 1000 g for five minutes at 4°C.  The 

supernatant was removed, and cells were resuspended in 50 mM Tris HCl, 1mM 

EDTA, pH 7.4 (resuspension buffer), by polytron, and then centrifuged at 35,000 g 

for 15 minutes at 4°C twice. The cell mass was resuspended with assay buffer (D2: 

20mM HEPES, 3mM MgCl2, 150mM NaCl, 0.2mM EDTA, 0.001% bovine serum 

albumin (BSA); D3: 20mM HEPES, 3mM MgCl2, 100mM NaCl, 0.2mM EGTA, 

0.001% BSA).  The [35S]GTPγS binding assays were performed in triplicates. The 

final 1-mL volume was composed of 100 µL of 10% (v/v) dimethylsulfoxide (DMSO) 

as vehicle, drug dilution (in 10% DMSO), or DA (1 mM for D2 cells, and 100 µM for 

D3 cells) as indicator of binding plateau; 400 µL [35S]GTPγS dilution (4.3 pmol in 10 

mL assay buffer per 24-well filter mat); and 500 µL cell suspension (cells suspended, 

per 24-well filter, in 12.5 mL assay buffer and 7.5 µL GDP, for final concentration of 

3 μM in assay).  This solution was incubated at room temperature in a shaking water 

bath for 60 minutes.  Cells were harvested using Brandel GF/B filtermats and a 24-

pin Brandel harvester (Biomedical Research & Development Laboratories, Inc., 

Gaithersburg, MD) with cold resuspension buffer as the washing fluid.  A Beckman 

LS 6500 scintillation counter was used to determine 35S radioactivity at 70% 

efficiency.  Nonspecific binding of [35S]GTPγS measured in the presence of 10 μM 

GTPγS was a very small fraction (5% or less) of basal binding in the absence of 

drug (vehicle) and did not impact the EC50 (concentration producing half-maximal 

stimulation) of the test drug estimated by nonlinear logarithmic fitting (logistics 

model) with Origin Pro 7.0.  The plateau binding (maximal binding stimulation) with 

test drug was expressed as percent of maximal binding observed with the full 

agonist DA (% Emax). 
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6.4.  Reversal of Reserpine-Induced Hypolocomotion in Rats DA Agonists: 

Animals: 

In rodent studies, animals were male Sprague-Dawley rats from Harlan 

(Indianapolis, IN) weighing 220-225 g unless otherwise specified. They were 

maintained in sawdust-lined cages in a temperature and humidity controlled 

environment at 22 ± 1°C and 60 ± 5 % respectively, with a 12-h light/dark cycle, with 

lights on from 6:00 AM to 6:00 PM. They were group housed with unrestricted 

access to food and water. All experiment was performed during the light component. 

All animal use procedures were in compliance with the Wayne State University 

Animal Investigation Committee consistent with AALAC guidelines. 

 Administration of reserpine induces catalepsy in rodents primarily by blocking the 

vesicular monoamine transporter (VMAT) which helps in the internalization of 

monoamines into vesicles, resulting in metabolism of unprotected monoamines in 

the cytosol that ultimately causes depletion of monoamines in the synapse of the 

peripheral sympathetic nerve terminals158, 171. The ability of the compounds to 

reverse the reserpine induced hypolocomotion was investigated172. Ropinirole was 

used as standard reference compound in this study. 

6.5. Rotational experiment with 6-Hydroxy dopamine lesioned rats: 

This animal model for PD, also known as the Ungerstedt Rat rotation model for PD 

is an well accepted model to screen drug candidate for the treatment of PD 173. In 

this animal model, rats were administered surgically neurotoxic 6-Hydroxy dopamine 

in the MFB region of the one side of the brain which will selectively and completely 

degenerate the nigrostriatal dopaminergic system at the lesioned side. The selective 
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destruction of the pre synaptic dopaminergic neurons will cause development of post 

synaptic supersensitivity on the lesioned side. DA agonist, when administered 

systemically will produce contra lateral rotation in the rat that is toward non lesioned 

side. The result of this experiment will indicate in vivo agonist potency of the 

compound and its potential utility for the treatment of PD as well as the ability of the 

compound to cross blood brain barrier.  

Assay procedure: - Reversal of Reserpine-Induced Hypolocomotion in Rats: 

Administration of reserpine induces catalepsy in rodents primarily by blocking the 

vesicular monoamine trasporter (VMAT) which helps in the internalization of 

monoamines into vesicles, resulting in metabolism of unprotected monoamines in 

the cytosol that ultimately causes depletion of monoamines in the synapse of the 

peripheral sympathetic nerve terminals158, 171. The ability of the DA agonists to 

reverse the reserpine induced hypolocomotion was investigated172. Ropinirole was 

used as standard reference compound in this study. Rats were administered with 

reserpine (5.0 mg/kg, s.c.) or saline (s.c.) 18 h before the injection of test 

compounds, Ropinirole (5 µM/Kg s.c.) or vehicle (s.c.). Immediately after 

administration of the latter drugs, animals were individually placed in versamax 

animal activity monitor chamber (45X30X20 cm) (AccuScan Instruments, Inc. 

Columbus, OH) to start measuring locomotor activity. The rats were placed 

individually in chambers for 30 minutes for acclimatization purpose before the 

administration of the latter drug. Locomotion was monitored for 6 h. Consecutive 

interruption of two infrared beams situated 24 cm apart and 4 cm above the cage 

floor in the monitor chamber recorded movement. The data were presented as 

horizontal counts (HACTV) and total distance travelled (TOTDIST) at 30 min interval. 
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The data were collected at every 30 minutes. Data were analyzed by Graph Pad 

(Version 4, San Diego) program. 

Assay procedure: - Rotational experiment with 6-OHDA lesioned rats: 

Animals were administered apomorphone, potent dopamine receptor agonist, 14 

days post surgery to check for rotational behavior. In the second challenge with 

apomorphine (0.05 mg/kg) 21 days post lesion, contralateral rotations were recorded 

for 30 mins;  apomorphine produced rotations in all four rats (average rotation > 250) 

indicating successful unilateral lesion. In these rats, lesion was performed on the left 

side with the rotations produced upon agonist challenge occurring clockwise. In this 

study, apomorphine was also used as a reference compound. The number of 

rotations was measured over 10 hours. For control, vehicle was administered alone. 

The rotations were measured in a rotational chamber immediately after 

administration of drugs for a time period of 10 to 12 hours. The data were collected 

at every 30 minutes. Data were analyzed by Graph Pad (Version 4, San Diego) 

program.  

Statistical analysis:The data were analyzed by one way analysis of variance 

(ANOVA). If ANOVA was significant, post-hoc comparisons were made using 

Dannett’s method between control and drug treated groups.  

6.6. Evaluation of Antioxidant Activity.   DPPH Radical Scavenging Assay.   

DPPH Assay: The DPPH radical-scavenging effect was measured according to 

reprted method174. This method measures hydrogen atom or electron donating 

activity. DPPH (1,1-Diphenyl-2-picrylhydrazyl) is a stable free radical of a purple 

color which gets reduced to a yellow colored 1,1,-diphenyl-2-picryl hydrazine. Each 
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tested sample was mixed with DPPH radical in methanol and after 20 min incubation 

at room temperature (30 oC) in the dark, the absorbance was read at 517 nm.  

Assay procedure: 

To a 96-well plate, an amount of 100 μL of drug solutions (dissolved in methanol) 

ranging from 20 to 250 μM was added. To release the free bases from their salts, 

the stock solutions of the compounds were neutralized using saturated sodium 

bicarbonate solution. Next 100 μL of 200 μM methanolic solution of DPPH (1,1-

diphenyl-2-picrylhydrazyl) was added and the plate was shaken vigorously at 30 °C 

for 25 min. Control wells received 100 μL of methanol and 100 μL of 200 μM 

methanolic DPPH solution. Wells containing only 200 μL of methanol served as a 

background correction. The change in absorbance of all samples and standard 

(ascorbic acid) was measured at 517 nm. Radical scavenging activity was 

expressed as inhibition percentage and was calculated using the following formula: 

% scavenging activity = (absorbance of control − absorbance of sample)/ 

(absorbance of control)] × 100. 

6.7. Neuroprotection Studies: 

The hybridoma dopaminergic MN9D cells are derived from the somatic infusion of 

rostral mesencephalic neurons from embryonic C57BL/6J (E14) mice with N18TG2 

mouse cells.  They were cultured in T-75 flask (Greiner Bio One, Frickenhausen, 

Germany) coated with 1 mg/ml poly-L-lysine and maintained in DMEM (high glucose 

with phenol red) supplemented with 10% Fecal Clone III serum, penicillin (50 

units/ml) and streptomycin (50 μg/ml) at 37 °C under 5% CO2 atmosphere.  Stock 

solution of D-264 and D-433 were prepared in DMSO and stored at -20 oC for the 

period of experiments.  MN9D cells were pre-treated with various concentrations of 
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drugs for 1 h and then, co-treated with 100 μM MPP+ (prepared freshly before 

addition from a stock solution in DMSO stored at -20 oC) for 24 h.  The control cells 

were treated with the above medium having 0.01% DMSO only. 

Assessment of Cell Viability: Assay Procedure: 

To evaluate the neuroprotection ability of the test compounds in the presence of the 

neurotoxins MPP+, the quantitative and colorimetric MTT (3-4,5-dimethylthiazolyl-2)-

2,5-diphenyltetrazoliumbromide) tetrazolium salt assay was used to assess cell 

viability.  MN9D cells were seeded into poly-L-lysine coated 96-well plates at 1 × 104 

cells/well in 100 μL medium.  After the plate was equilibrated for 40 h, old medium 

was taken out from each well and 160 μL of fresh medium (containing 0.01% 

DMSO) was added to control wells and wells which were to be treated with MPP+.    

A solution of 160 μL of D-264 or D-433 in the above medium without DMSO in  20, 

10, 5, 1, 0.1, 0.01, 0.001 μM were added to wells which would be co-treated with 

MPP+. The plate was incubated for 1 h at 37 oC under 5% CO2 atmosphere.  At the 

end of incubation, required amount of MPP+ was added to each well (except the 

control wells) to maintain a final concentration of 100 μM. The plate was then 

incubated for 24 h at 37 oC under 5% CO2 atmosphere.  Next, 20 μL of MTT stock 

solution (prepared in Dulbecco’s phosphate-buffered saline) was added to each well 

to maintain a final concentration of 0.5 mg/ml and the plate was incubated for 

another 3 h at 37 oC under 5% CO2 atmosphere.  Next, the plate was centrifuged at 

1500 rpm for 10 min and the supernatants were removed carefully.  The formazan 

crystals were dissolved in 100 μL of a 1:1 mixture of DMSO/Methanol solution by 

shaking gently at 400 rpm for 30 min at room temperature on a Thermomix R shaker 

(Eppendorf, Hamburg, Germany).  Then, the absorbance was measured at 570 nM 

and 690 nM using an Epoch microplate reader (BioTek, Winooski, VT, USA).  
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Background corrected values (570 nM – 690 nM) were used to plot the graph.  Data 

from at least three experiments were analyzed using GraphPad software (Version 4, 

San Diego, USA). 

6.8. ASN Aggregation Studies:  

Chemicals: α-synuclein was purchased from rpeptide (Bogart, GA, USA). Dopamine 

hydrochloride, ammonium iron(II) sulphate hexahydrate, ferric cirate ascorbic acid, 

rifampicin, sodium thiosulphate, silver nitrate, sodium hydroxide, formalin (36.5-38% 

formaldehyde in water), and thioflavin-T were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Sodium carbonate, methanol. Glacial acetic acid, sodium 

phosphate, ethanol, and sodium chloride were purchased from Fisher scientific (New 

Jersey, USA).  

Cell-culture and treatments: PC12 Adh (ATCC® CRL1721.1™) cells, a rat adrenal 

pheochromocytoma cell line, were purchased from ATCC. RPMI 1640, heat-

inactivated horse serum, fetal bovine serum, penicillin-streptomycin, and trypsin 

were purchased from GIBCO (Grand Island, NY, USA).  PC12 cells were cultured in 

T-75 flask (Sarstedt Inc, Newtown, NC, USA) and maintained in RPMI 1640 medium 

supplemented with 10% heat-inactivated horse serum, 5% fetal bovine serum, 

penicillin (100 units/mL), and streptomycin (100ug/mL) at 37°C in 5% CO2 

atmosphere. 

Visualization of ASN aggregates by silver-staining    

Samples were analyzed on 12% SDS-PAGE (Bio-rad) and visualized with silver 

staining. Briefly, the gel were fixed in the fixing solution (50% MeOH, 12% HAc, 

0.05% formalin) for 2 hrs, followed by three times washing with 35% EtOH for 20 
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minutes each time point.  Then, the gels were exposed to sensitizer for 2 minutes 

and washed with water for 5 minutes.  Subsequently, the gels were stained with 

silver staining (0.2% AgNO3, 0.076% formalin) for 20 minutes and washed with water 

for 5 minutes. Finally, the gels were developed with developer (6% Na2CO3, 0.05% 

formalin, 0.0004% Na2S2O3) and left over in the stop solution (1% HAc). Gel images 

were taken using Biorad Gel Doc XR+ imaging system.      

Confirmation of β-sheet positive protein structure by Thioflavin-T assay 

42 µl of 500µM (1.1 mg of ThT  in 7 ml of PBS) ThT solution was mixed with 479 µl 

PBS to get 40 µM ThT solution. 10 µl of protein from each time point was mixed with 

10 µl of 40 µM ThT into 384 black well plate (solid bottom, corning) and fluorescence 

was measured using synergy hybrid H1 Fluorescence Microplate Reader (BioTek) at 

440 nm and 485 nm with autosensitivity mode. Control well received 10 µl PBS and 

10 µl of 40 µM ThT. However, when overflow was observed during the fluorescence 

reading the sensitivity mode of the reader was changed was to changed to 100.  

1. Generation of α-synuclein aggregates using cell-free system  

For cell-free system experiments, all solutions were prepared in 1X PBS. Shaking 

experiments were conducted on Thermomix R shaker (Eppendorf, Hamburg, 

Germany) at 1400 rpm and 37°C. 1mg α-synuclein was dissolved in 576.3µL 1X 

PBS to generate 120µM stock solution of protein (protein concentration was also 

verified by BCA protein assay). 400µM dopamine hydrochloride was made by 

dissolving 2mg dopamine hydrochloride in 26.36mL 1X PBS. 35µM ferric citrate was 

prepared by diluting 350µM ferric citrate, which was prepared by dissolving 1.78 mg 

ferric citrate (III) in 20mL 1X PBS.  H2O2 concentration was calculated using UV.  

Protocol A: Generation of dopamine-induced, SDS-resistant ASN oligomers 
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  alpha-synuclein (1 mg) was dissolved in 2 ml of PBS (without calcium and 

magnesium), followed by passing the solution through a 0.2 uM filter to ensure 

removal of preformed aggregates. The concentration of stock was 35 µM, 125 µL of 

this stock was combined with 125 µL of 400 µM DA, this gave give the final 

concentration of DA 200 µM and that of α-synuclein 17.5 µM. This mixture was then 

incubated at 37°C with shaking at 1400 rpm (Thermomixer comfort, Eppendorf) for 

72 hrs. Aliquots of the reactions were removed at each time point: 4, 8, 12, 24, 48 

and 72 hrs and we collected 10 µL for silver staining and 15 µL for Thioflavin T 

assay. 

Protocol B: Generation of dopamine and hydrogen peroxide induced, SDS-resistant 

ASN oligomers 

First 62.5 µL of 1200 µM H2O2 was mixed with 800 µM, 62.5 µL of DA to get total 

125 µL of 600 µM H2O2 and 400 µM of DA. This solution was mixed with 125 µL of 

35 µM α-synuclein. Overall, we got ASN: DA: H2O2: : 17.5: 200:300 µM respectively. 

Remaining protocol is similar to protocol A. 

Protocol C: Generation of iron-induced, SDS-sensitive ASN fibrils  

110 µL of 35 µM ferric citrate (III) was combined with 110 µL of 35 µM ASN. This 

gave the final concentration of ferric citrate (III) 17.5 uM and that of ASN was 17.5 

µM (based on molecular weight). This mixture was then incubated at 37°C with 

shaking at 1400 rpm for 6 days. The samples were collected at 0, 0, 24, 48, 72, 96, 

and 144 hrs. At each time point we collected 10 µL for silver staining and 15 µL for 

Thioflavin T assay. 

2. Assessment of potential lead compounds’, and comarision with 

refrence compounds for their ability to modify ASN  aggregation in cell-

free system 
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We evaluated the effects of ascorbic acid (anti-oxidant), rifampicin (known ASN 

aggregation inhibitor), and our lead compound D-520 on dopamine-induced ASN 

oligomerization employing cell-free system. All solutions were prepared in 1X PBS. 

Shaking experiments were conducted on Thermomix R shaker (Eppendorf, 

Hamburg, Germany) at 1400 rpm and 37°C.  

Protocol for ASN+DA: 2 mg of DA hydrochloride was dissolved in 26.36 ml of PBS 

to get 400 µM DA. 125 µL of 400 µM DA was mixed with 125 µL of 35 µM ASN to 

get 200 µM DA and 17.5 µM ASN. This mixture was then incubated at 37°C with 

shaking at 1400 rpm (Thermomixer comfort, Eppendorf) for 10 days. Aliquots of the 

reactions were removed at each time point: 0, 2, 4, 6, 8 and 10 days and we 

collected 10 µL for silver staining and 15 µL for Thioflavin T assay. 

Protocol for ASN+DA+AA: 2 mg of DA hydrochloride was dissolved in 13.18 ml of 

PBS to get 800 µM DA. Similarly, 2.81 mg of ascorbic acid (AA) was dissolved in 10 

ml of PBS to get 1600 µM of AA. Subsequently, 62.5 µL of 800 µM DA was mixed 

with1600 µM, 62.5 µL of AA to get total 125 µL of 400µM DA and 800 µM of AA. 

This solution was mixed with 125 µL of 35 µM ASN. Overall, we got ASN: AA: DA : 

17.5: 200:400 µM respectively. Remaining protocol is similar to above ASN+DA.  

Protocol for ASN+DA+Rifampicin: 1.0 mg of Rifampicin was dissolved in 1.52 ml 

of 1 x-PBS to get 800 µM stock solutions.  62.5 µL of 800 µM DA was mixed with 70 

µM, 62.5 µL of ASN to get total 125 µL of 400µM DA and 35 µM of ASN. This 

solution was mixed with 125 µL of 800 µM Rifa. Overall, we got ASN: DA: Rifa : 

17.5: 200:400 µM respectively. Remaining protocol is similar to above ASN+DA.  

Protocol for ASN+DA+D-520:  4.2 mg of D-520 was dissolved in 1% DMSO in 7ml 

1 x-PBS to get 800 µM stock solutions.  62.5 µL of 800 µM DA was mixed with 70 
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µM, 62.5 µL of ASN to get total 125 µL of 400µM DA and 35 µM of ASN. This 

solution was mixed with 125 µL of 800 µM D-520. Overall, we got ASN: DA: D-520: 

17.5: 200:400 µM respectively. Remaining protocol is similar to above ASN+DA. 

3. Generation of α-synuclein aggregates to assess extracellular toxicity in 

cell-culture models 

ASN aggregates were generated with primary goal to evaluate the effect various 

extracellular ASN species on cellular viability in PC12 cells. In this experiment, ASN 

aggregates were formed by two different methods, either to yield β-sheet positive 

fibrillar structure or to yield β-sheet negative dopamine-induced and co-valently 

modified oligomeric structure of ASN. All samples were prepared in 1X PBS. 

Shaking experiments were conducted on Thermomix R shaker (Eppendorf, 

Hamburg, Germany) at 1400 rpm and 37°C. 1mg α-synuclein was dissolved in 

576.3µL 1X PBS to yield 120µM stock solution. 180µM dopamine was prepared by 

dissolving 1mg dopamine hydrochloride in 29.24mL 1X PBS.  

Protocol A: Generation of ASN fibrils 

250µL α-synuclein (120µL) was mixed with 250µL 1X PBS to yield 60µM ASN. 70µL 

aliquot was taken from the mixture and then the solution was shaken for 10 days. 

70µL aliquots were collected at day 2, day 4, day 6, day 8, and day 10. Aliquots 

were used to assess cytotoxicity (40µL), Thioflavin-T assay (10µL). 

Protocol B: Generation of ASN oligomers co-valently modified with dopamine  

250µL α-synuclein (120µL) was mixed with 250µL 180µM dopamine to yield the 

mixture of 60µM ASN and 90µM dopamine. Remaining protocol is similar to above A 

(60µM ASN)   
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4. Evaluation of cytotoxicity of extracellular ASN aggregates (pre-formed) 

in cell-culture system 

Aliquots obtained from experiments mentioned above were used to evaluate the 

effect of (pre-formed) various species generated from ASN aggregation 

experiments on PC12 cell viability (extracellular toxicity). The main objective of 

this experiment was to optimize the time-point and the aggregation environment 

that would induce desired cytotoxicity (in ideal conditions, ~50% cell death). For 

cell-culture experiments, 40 µL aliquots (60µM ASN) from various time-points 

were diluted with 200µL PC12 cell media to make the final concentration of ASN 

10µM for cell culture experiments. 

Experimental protocol: Cell viability assay to assess extracellular toxicity of various 

ASN synuclein aggregation species quantitative and colorimetric MTT assay was 

used to evaluate cytotoxic effects of ASN. PC12 cells were seeded at 17000 

cells/well density in 100µL media in 96 well plate. Cells were allowed to adhere to 

the surface for 24 hours. Media was removed and the adhered PC12 cells were 

treated with 55µL ASN (10µM) containing media. Control cells were treated with 

appropriately diluted PC12 media. Treatment with extracellular ASN was conducted 

for 24 hours. After incubation, 6µL 5 mg/mL MTT was added to the cells and the 

plate was further incubated at 37°C in 95% air/5% CO2 atmosphere for 3 hours to 

produce dark blue formazan crystals. Afterwards, the plate was centrifuged at 1500 

rpm for 10 minutes and the supernatants were carefully removed. The formazan 

crystals were dissolved by adding 100µL of DMSO/methanol (50:50) mixture to each 

well and shaking the plate gently at room temperature at 400rpm for 30 minutes at 

room temperature using a Thermomix R shaker (Eppendorf, Hamburg, Germany). 

The absorbance values were measured using Epoch microplate reader (Biotek, 
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Winooski, VT, USA) at 570 nm with background correction done at 690nm. Data 

from at least 3 experiments were analyzed using Graphpad software (Version 4, San 

Diego, USA). Cell viability was defined as a percentage reduction in absorbance 

compared to untreated controls. 

5. Assessment of some lead compounds and standard drug’s ability to 

alter cytotoxicity induced by extracellular α-synuclein 

ASN alone (60µM) was able to induce around ~ 40% cell death after shaking for 6 

days. Therefore, we assessed the ability of some of our lead compound D-520 and a 

standard drug (rifampicin) to alter cytotoxicity induced by ASN (60µM) after shaking 

for 6 days. All solutions were prepared in 1X PBS. Shaking experiments were 

conducted on Thermomix R shaker (Eppendorf, Hamburg, Germany) at 1400 rpm 

and 37°C. 120µM ASN was prepared by dissolving 1mg α-synuclein in 576.3µL 1X 

PBS. 240µM rifampicin was prepared by dissolving 1mg rifampicin in 4.84mL 1X 

PBS. 240µM D-520 was prepared by dissolving 1mg D-520 in 5.6mL 1X PBS. 

Protocol for α-synuclein alone experiments 

70µL ASN (120µM) was mixed with 70µL 1X PBS to yield 60µM ASN. 50 µL aliquot 

was taken from the mixture and the remaining mixture was shaken for 6 days. After 

6 days, the mixture was frozen at -20°C until further use. From day 0 aliquot, 40µL 

was used for cell viability assay and 10µL was used for ThT assay, whereas, from 

day 6 aliquot, 40µL was used for cell viability assay, 10µL was used for ThT assay, 

and remaining volume was used for electron microscopy.  

Protocols for rifampicin, and D520 experiments     
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70µL ASN (120µM) was mixed with 70µL rifampicin (240µM)/70µL D-520 (240µM) to 

yield 60µM ASN and 120µM rifampicin/ D-520. 50 µL aliquot was taken from the 

mixture and the remaining mixture was shaken for 6 days. After 6 days, the mixture 

was frozen at -20°C until further use. From day 0 aliquot, 40µL was used for cell 

viability assay and 10µL was used for ThT assay, whereas, from day 6 aliquot, 40µL 

was used for cell viability assay, 10µL was used for ThT assay, and remaining 

volume was used for electron microscopy.  

Evaluation of ability of potential lead compounds’ and standard’s ability to 

alter cytotoxicity induced by extracellular α-synuclein 

The aliquots were diluted with PC12 media to get final concentration of ASN to 10µM 

in PC12 media. MTT assay was carried out as described above in evaluation of 

cytotoxicity of extracellular ASN aggregates (pre-formed) in cell-culture system. 

6.9. Molecular Modeling Studies: 

6.9.1. Biological data:  

The 3D-QSAR studies were performed on a chemically diverse hybrid D2/D3 agonist 

molecules belonging to aminothiazole, aminotetraline and conformationally rigid 

(table 8) analogs are reported in our earlier publications. 141, 143-152 The biological 

activity had been determined for dopamine D2 and D3 receptors by competitive 

radioligand binding assays. The same general protocol was used to determine the 

inhibition constant for displacing [3H]-spiroperidol binding to the cloned D2L and D3 

receptors expressed in HEK  cells. The IC50 values were converted into Ki with 

Cheng-Prusoff equation. These compounds covered a wide range of biological 

activity and spanned over 3.31 and 2.73 log units for D2 and D3 activities, 
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respectively. The negative logarithm (pKi) of respective equilibrium constants (Ki) for 

D2 and D3 receptors binding were used as dependent variable for QSAR studies. 

For selectivity analysis between D2 and D3 binding, the differences between pKi for 

each compound at D2 and D3 were used as dependent variable in the model 

generation process. 175, 176 

In order to validate the QSAR models total 45 compounds were divided into a 

training set of 37 compounds and data set of 8 compounds were used for external 

prediction. Since the experimental activity varied significantly, different training and 

test sets were built for three cases. The compounds were rationally divided into 

training and test sets by considering the fact that test set molecules cover range of 

biological activity similar to the training set.  The basic criterion for selection of test 

set was binding affinity for D2/D3 as shown in table 8. Further, CoMFA based 

hierarchical clustering using molecular steric and electrostatic filed as parameters 

was also applied for selection of test set molecules. Thus, both the biological activity 

and structural features were used to validate the generated models. The structures 

and the respective biological activities of the molecules used in this study at D2/D3 

receptors along with their selectivity are shown in table 8.  

6.9.2. Hardware and Software:  

All the molecular modeling studies including CoMFA and CoMSIA reported herein 

were performed on a Hewlett-Packard xw4300 computer workstation with main 

memory of 2 GB and Intel® Pentium® 4 CPU of 3.4 GHz under the operating system 

Linux Red Hat 5. The molecular modeling software packages a) Sybyl 8.0 177 from 

Tripos Inc.177 and b) Molecular Operating Environment (MOE) 2011.10 from 

Chemical Computing Group, Inc.178  were employed for the present work.  
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6.9.3. CoMFA analysis:  

All the compounds in the present study were built using fragments in the Sybyl’s 

library. Each structure was fully geometry-optimized using Tripos force field with a 

distance-dependent dielectric function until a root mean square (rms) deviation of 

0.001 kcal/mol A ° was achieved. Partial atomic charges required for electrostatic 

interaction were computed by Gasteiger Hu¨ckel and MOPAC method. The 

conformational search for the most active compound at D2/D3 receptors, 4, was 

performed using systemic search approach. The rotatable bonds were searched 

from 0 to 359 ° in 10 ° increments. The conformations within ± 10 kcal/mol from the 

lowest energy conformation were chosen for further analysis. The minimum energy 

conformation thus obtained was further used in subsequent analysis. Further, based 

on the structural diversity the whole database was divided into three subsets: a) 

molecules containing aminotetraline as the head group (Ar1= A, B, C, compound 5 

and 6) table 7 b) aminothiazolidum containing compounds, (Ar1= D) table 7, and c) 

compounds possessing aminothiazolidum as head group and an amide bond at the 

piperazine nitrogen atom, distal to the agonist head group (compound 12-14, and 

41-45) table 7. Next, most active compounds from each subset (compounds 33 and 

42 from subset b and c respectively) were built on the minimum energy conformation 

of 4 (most active in whole database) and their geometry was optimized as 

mentioned above. Thereafter, the generated conformations of compounds 33 and 42 

were used as template to construct the remaining molecules of their respective 

subset, followed by energy minimization, and geometry optimization. For the 

selectivity analysis compound 42 was used as a template to align the whole 

database.     

6.9.4. Alignment: 
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Structural alignment is considered as one of the most critical step to successfully 

build a 3D-QSAR model.  However, in contrast to CoMFA, CoMSIA is not much 

sensitive to changes in orientation of aligned molecules in the lattice.    In our present 

work, the ligand alignments were achieved by two different methods.  

1. Atom-based alignment: for atom-base fitting, atoms indicated by asterisk (*) in 

table 7 were used for rms fitting onto the corresponding atoms of the 

template molecule (compound 4). The most active compound from each 

subset (compound 33 and 42 from subset b and c) was aligned on the 

template molecule, 4, and subsequently, each molecule of particular subset 

was aligned on this molecule.  

2. Flexible fitting alignment: The energy minimized conformations were imported 

in TriposMol2 (.mol2) format in MOE 2011.10 and stored in a molecular 

database. This database was used as an input in the Flexible Alignment 

functionality in MOE. It is an application in MOE for flexibly aligning small 

molecules by maximizing steric and other features, like shape, refractivity, 

hydrogen bond donor acceptor, and donor overlap while minimizing internal 

ligand strain. The most active compound, 4, was used as a template to align 

the whole database described above. Compound 42 was used as template 

to align the whole database for selectivity analysis (D2/D3). In the present 

study Flexible Alignment panel was used with following settings:  alignment 

mode flexible, iteration 1000, failure limit 50, energy cutoff 15 and 

configuration limit 1000. Other parameters values in the Flexible Alignment 

panel were kept at their default values.     

6.9.5. CoMFA studies:  
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All the superimposed molecules were kept in a 3D grid and CoMFA steric and 

electrostatic interaction fields were calculated at each lattice interaction points of a 

regularly spaced grid of 2.0 A°. An sp3 carbon atom with Van der Waals radius of 

1.52 A ° and +1.0 charge was used as a probe to calculate steric and electrostatic 

fields. Values of both the fields were truncated at +30 kcal/mol. The electrostatic 

fields were ignored at the lattice points with maximal steric interactions. In the end, 

the results from the both steric and electrostatic field sampling along with biological 

activity (pki) of the molecules were put into a spread sheet, and partial least square 

(PLS) was applied to get the final results.  

Another molecular modeling CoMSIA which is an extension of CoMFA methodology 

was also applied. CoMSIA is thought to be less affected by changes in molecular 

alignment and it uses Gussian-type distance dependence which provides smoother 

and easily interpretable contour maps.  Furthermore, in addition to steric and 

electrostatic fields, CoMSIA includes hydrophobic and hydrogen bond interaction as 

well. CoMSIA calculates similarity indices at the intersections of a surrounding 

lattice. R The similarity index A(F,K) for a molecule j with atom i at a grid point q was 

calculated.  

6.9.6. Partial Least Square (PLS):  

PLS was used to correlate the binding affinity at D2/D3 receptors with CoMFA and 

CoMSIA descriptors. PLS analyses were performed following standard 

implementation in SYBYL8.0. The statistical significance of the generated 3D-QSAR 

models was assessed using leave-one-out (LOO procedure). Optimal numbers of 

components were determined by selecting the smallest spress value and the last 

added component was considered if it increases the r2 
cv by more than 5% according 
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to the parsimony principle. 21 In order to speed up the analysis and reduce noise, 

minimum standard deviation threshold was set at 2.0 kcal./mol. The r2 
cv, spress , r2

conv 

, SE and Fratio were computed as defined in SYBYL8.0.  

6.9.7. Predictive r2 value  

The predictive r2 was computed for the test set molecules. and was regarded as  

                                                      r2
pred.=(SD-PRESS)/SD 

where SD is sum of square deviation between biological activities and the mean 

observed activity of the test set molecules and PRESS is sum of squared deviation 

between the observed and predicated activates of the test set molecule. Like r2 
cv, 

predictive r2 can assume a negative value reflecting a complete lack of predictive 

ability of the training set for the molecules included in the test set.   When Pr2=0, it 

indicates that the results are not by chance and are significant.  
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CHAPTER 7 

CONCLUSION 

Parkinson's disease (PD) is a progressive age-related neurodegenerative disorder of 

the central nervous system that is characterized by gradual loss of dopaminergic 

neurons in the substantia nigra region of the brain. It is increasingly evident that 

drugs aiming a single target may be inadequate for the treatment of complex 

diseases such as PD, which is multifactorial in nature. Thus, it is hypothesized that 

multifunctional drugs having multiple pharmacological activities addressing multiple 

pathogenic factors of PD will be effective as disease modifying agent for the 

treatment of this disease. 

Our first objective was to design and develop a series of novel ligands for dopamine 

receptors that will possess enhanced blood brain barrier crossing ability compared to 

the first generation hybrid compound D-264 without compromising its DA receptor 

binding and neuroprotection properties. Our current structure activity relationship 

study is focused on introduction of methoxy and hydroxyl group at various positions 

on the accessory binding biphenyl ring of this hybrid molecule. The introduction of 

hydroxyl group or combination of hydroxyl/methoxy group at a suitable position could 

further potentiate its antioxidant and neuroprotection property. The molecules with 

high affinity and selectivity for binding at the dopamine D3 receptor compared to D2 

in in vitro binding assay were selected as potential candidate for in vitro functional 

assay to test its agonist potency. The compounds that produced appreciable 

stimulation of the dopamine receptors in in vitro functional assay system compared 

to D-264 were tested in in vivo assay to evaluate potential antiparkinsonian property. 

Next, objective was to carry out in vitro biochemical assay system to evaluate the 

antioxidant potency. In line with our multifunctional drug development obejective, 
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one of our important goal was to evaluate in vitro neuroprotection ability of the lead 

compounds. 

Among all synthesized compounds in the first series, compound D-433 and D-533 

exhibited the highest selectivity for the D3 over D2 receptor in both binding and 

functional assays. Lead compounds D-433 and D-533 also exhibited potent free 

radical quenching property, possibly indicating antioxidant activity. The lead 

compounds were tested in two PD animal models. Both the compounds exhibited 

higher blood brain barrier crossing ability compared to parent compounds D-264. 

Furthermore, in MTT assay lead compounds are able to protect MN9D cells from the 

exposure to neurotoxin MPP+ and   6-OHDA in a dose dependent manner.  

A substantial body of literature points to a pivotal role of ASN in producing oxidative 

stress leading to neurodegeneration. ASN is a component of Lewy bodies, a 

pathological hall mark of PD. These protein aggregates may be responsible for 

triggering the degeneration of dopaminergic neurons in the SN region of the brain. 

ASN forms toxic oligomers or fibrils. Currently, it is not known how the aggregation 

of ASN triggers cell death. The modulation of its aggregation is emerging as a novel 

therapeutic target to treat PD. One of the major aspects that might be targeted 

therapeutically is to inhibit the aggregation of ASN so anti-aggregative compounds 

or the compounds that can break the preexisting aggregates may be helpful. These 

ASN modulators have been proven to be neuroprotective in both in vitro and in vivo 

animal models of PD. Our final goal was to develop potent in vivo active dopamine 

D2/D3 receptor agonists which should modulate ASN aggregation in a way that will 

inhibit the toxicity of wild type ASN aggregates in the cell culture system 

Compounds D-519 and D-520 were selected as lead molecules from the second 
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series and they exhibited nanomolar to sub nanomolar range affinity at D2/D3 

receptors in the receptor binding assay and [35S]GTPγS binding assay. It was 

concluded from this in vivo study that both D-519 and D-520 was able to efficiently 

cross blood brain barrier and exhibited high in vivo agonist efficacy. D-519 and D-

520 can potentially chelate with Fe(III). Furthermore, D-520 is able to reverse the 

ASN aggregates induced toxicity at a significant level in PC-12 cells. Finally, three 

dimensional quantitative structure activity relationship (3DQSAR) studies CoMFA 

and CoMSIA were performed. Two alignment methods (atom base and flexible) and 

two charge calculation methods (Gasteinger-Huckel  and MOPAC) were used. The 

presence of carbonyl group attached to piperazine ring and hydrophobic biphenyl 

ring was found to be one of the most important factors responsible for the D3 

selectivity over D2. 
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ABSTRACT 

DESIGN, SYNTHESIS, BIOLOGICAL EVALUATION AND MOLECULAR 
MODELING STUDIES OF NOVEL MULTIFUNCTIONAL NEUROPROTECTIVE 
DRUGS FOR THE TREATMENT OF PARKINSON’S DISEASE: AN EFFORT 

TOWARDS THE IMPROVEMENT OF IN VIVO EFFICACY AND MODULATION OF 
ALPHA SYNUCLEIN AGGREGATION PROPERTY OF THE NEUROPROTECTIVE 

PARENT MOLECULE (D-264) 

by 

GYAN PRAKASH MODI 

May 2014 

Advisor:  Dr. Aloke K. Dutta 

Major:  Pharmaceutical Sciences 

Degree: Doctor of Philosophy  

                      Parkinson's disease (PD) is a progressive age-related 

neurodegenerative disorder of the central nervous system that is characterized by 

gradual loss of dopaminergic neurons in the substantia nigra region of the brain. The 

research from the past two decades in PD area has provided more insights into the 

basic pathogenetic factors of PD such as roles of oxidative stress, aggregation of α-

synuclein (ASN) proteins in the form soluble toxic aggregates and fibrils, increased 

concentration of iron in the PD brain. Levodopa (L-DOPA) became available in 1960 

for the treatment of PD and is still being considered as one of the main stream 

therapy. However, prolog use of L-DOPA gives rise to “on” and “off” episode along 

with motor fluctuations and eventual oxidation of dopamine (DA) derived from L-

DOPA further facilitates neurodegeneration.It is increasingly evident that drugs 

aiming a single target may be inadequate for the treatment of complex diseases 
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such as PD, which is multifactorial in nature. Thus, it is hypothesized that 

multifunctional drugs having multiple pharmacological activities addressing multiple 

pathogenic factors of PD will be effective as disease modifying agent for the 

treatment of this disease. Our aim in the first study was to enhance brain penetration 

of one of our lead molecule D-264. Our current structure activity relationship study is 

focused on introduction of methoxy and hydroxyl group at various positions on the 

accessory binding biphenyl ring of this hybrid molecule.The introduction of hydroxyl 

group or combination of hydroxyl/methoxy group at a suitable position could further 

potentiate its antioxidant and neuroprotection property. Among all synthesized 

compounds in the first series, compound D-433 and D-533 exhibited the highest 

selectivity for the D3 over D2 receptor in both binding and functional assays. Lead 

compounds D-433 and D-533 also exhibited potent free radical quenching property, 

possibly indicating antioxidant activity. The lead compounds were tested in two PD 

animal models. Both the compounds exhibited higher blood brain barrier crossing 

ability compared to parent compounds D-264. Furthermore, in MTT assay  lead 

compounds are able to protect MN9D cells from the exposure to neurotoxin MPP+ 

and   6-OHDA in a dose dependent manner. Compounds D-519 and D-520 were 

selected as lead molecules from the second series and they exhibited nanomolar to 

sub nanomolar range affinity at D2/D3 receptors in the receptor binding assay and 

[35S]GTPγS binding assay. It was concluded from this in vivo study that both D-519 

and D-520 was able to efficiently cross blood brain barrier and exhibited high in vivo 

agonist efficacy. D-519 and D-520 can potentially chelate with Fe(III). Furthermore, 

D-520 is able to reverse the ASN aggregates induced toxicity at a significant level in 

PC-12 cells. Finally, three dimensional quantitative structure activity relationship 

(3DQSAR) studies CoMFA and CoMSIA were performed. Two alignment methods 
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(atom base and flexible) and two charge calculation methods (Gasteinger-Huckel  

and MOPAC) were used. The presence of carbonyl group attached to piperazine ring 

and hydrophobic biphenyl ring was found to be one of the most important factors 

responsible for the D3 selectivity over D2. 
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