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Chapter 1 Motivation 

New products are facing shrinking life-cycles due to a rapid rate of innovation, increasing global 

competition, and fast changing consumer preferences. Such products arise frequently in the electronics 

(Lee 2010), semiconductors (Mallik and Harker 2004, Kempf, Erhun et al. 2013), toy (Wong, Arlbjørn et 

al. 2005) and fashion (Christopher, Lowson et al. 2004) industries, where a large proportion of the 

product mix consists of short life-cycle (SLC) products. A typical demand pattern for such products, as 

shown in Figure 1.1, is characterized by rapid growth (ramp-up), maturity, and a decline phase (ramp-

down). 

 

Figure 1.1: Typical demand profile for a short life-cycle product 

  Although these products provide opportunities for companies to enjoy significant profit 

margins, inaccurate and unreliable forecasts, due to the lack of history for their demand, can lead to 

very risky investment decisions. Over investment can lead to poor utilization of production capacity 

(overage cost) while under investment can lead to product shortages and loss of goodwill and market 

share (underage cost). In addition to the lack of history, other factors including significant capacity 

investment costs, long procurement lead-times, high rate of obsolescence, irreversibility of capacity 

investments, and volatile demand signals make capacity planning for SLC products complicated and 

challenging. 
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Capital expenditure can be considered the foremost factor that makes investment decisions for 

SLC products profoundly risky and challenging. Historically, SLC products in the semiconductor industry 

suffer from this problem more than other industries. In 2011, it was announced that the main integrated 

circuit manufacturers alone spent 34-36 billion USD on capital expenditures (Kanellos 2003, AMD 2006, 

Osborne 2011)1. 

The other issue that makes capacity planning for SLC products more challenging is the long 

procurement lead-time of new capacity. For example, in the semiconductor industry, the lead-time for 

procuring new equipment can be up to 16 months (Benavides, Duley et al. 1999, Peng, Erhun et al. 

2012).This problem may not be very critical for a manufacturer who faces a predictable demand from 

the market, but it certainly increases the difficulty of capacity expansion for SLC products. This is due to 

the fact that in these markets, demand forecasting is not a trivial task and therefore it is often 

inaccurate.  

Another factor that complicates investment in SLC products is irreversibility. Irreversibility, 

which prevents manufacturers from disinvestment, is the result of technological complexity or from 

sustaining competitive advantages. As an example, many equipment and machines in the semiconductor 

industry are custom-made for a specific manufacturer and they cannot be sold to and used by other 

manufacturers. In some cases, even using them for other types of products in the same company is not 

possible. Furthermore, the high obsolescence rate of SLC products exacerbates the issue. SLC products, 

especially in the electronics and the semiconductor industries (see (Aizcorbe 2007) for more detail), are 

changing rapidly that make the depreciation rate of machines and tools very high. This issue cannot be 

alleviated by reusing current manufacturing infrastructure in new generations of SLC products since they 

                                                           
1
 Intel and AMD are among the main players in this business. Intel has spent, on average, 5.3 billion USD 

annually on capital additions to its property, plant, and equipment (Peng, Erhun et al. 2012). Additionally, building 
a fab costs Intel almost 6 billion USD, up from 100 million USD in 1985 (Kanellos 2003). In another example, AMD 
spent 2.5 billion USD on building a single plant in 2006 (AMD 2006).  



3 
 

 
 

are highly specialized and retrofitting is as costly as procuring new manufacturing capacities (Pangburn 

and Sundaresan 2009).  

These challenges could be coped better by the SLC manufacturers if not for the significant 

volatility in demand. In most cases, customers send signals to a manufacturer regarding the due date 

and volume of their final demand. However, these signals are subject to significant volatility since 

customers’ prediction of their final order is a function of other factors that change through time 

dramatically. Eventually, customers finalize the quantity and due date of their orders, but the time 

between the finalization and the order due date is shorter than the lead time of capacity procurement 

significantly (Kempf 2004, Higle and Kempf 2011). 

Considering these issues, capacity planning for SLC products has a significant effect on the 

profitability of a manufacturer and may even endanger the survival of a company (Baljko 1999, Savage 

1999, Greek 2000, Singhal and Hendricks 2002). HP (world's largest IT company), Intel (world's largest 

chip maker), Apple (one of the world’s largest consumer electronics company), Taiwan Semiconductor 

Manufacturing Company (world's largest semiconductor foundry), and Bandai (a global leader in 

consumer toys) are just few examples of companies that have suffered from this problem. HP lost 

millions of dollars in unnecessary capacity and excess inventory after a surge in demand for LaserJet 

printers  (Lee, Padmanabhan et al. 1997). Facing shortages of Pentium III processors in 1999, Intel 

planned to introduce a new production plant in early 2000 (Foremski 1999). However, later that year, 

Intel could not reach the projected revenues; an incident that the company cites was due to order 

cancellations and economic slowdowns (Gaither 2001). As for companies suffering from production 

shortages, Wall Street Journal reported few years ago that Apple is not able to satisfy demand for iPad 

and iPhone products due to a supply shortage of LCD displays that go into these products (Lee 2010). 

South Korean LCD-maker LG, the main supplier for Apple, has acknowledged the problem and hoped to 

have supplies ramped up by the 2nd quarter of 2011. LG Chief Executive stated: “Apple is ordering more 



4 
 

 
 

and more displays but it isn’t something we can respond to quickly. I am not sure whether we can … 

meet orders from other companies for similar products…” To address the shortage concerns, LG Display 

said it will invest about $512 million to build a new production line that can produce mobile displays 

used in iPad and similar products. In another example, in 2011, Qualcomm, AMD, and NVIDIA were 

affected by a shortage of supply from Taiwan Semiconductor Manufacturing Company for the 28-

nanometer Kepler GPUs (Dignan 2012). This shortage led to an increase of 10 percent foundry capacity 

of Taiwan Semiconductor Manufacturing Company in 2012. Looking into the toy industry, Japanese toy 

manufacturer Bandai Co. introduced a virtual pet game in 1996 called the Tamagotchi. Although the 

product was not advertised in the mass media, demand outpaced supply quickly. Bandai decided to 

expand its manufacturing capacity to produce 2-3 million units per month. Subsequent to expansion, it 

was met with a sharp decline of demand leading to tremendous unsold inventory resulting in an after-

tax loss of 123 million USD in fiscal year 1998 (Higuchi and Troutt 2004). 

With these challenges and obstacles, firms might be more cautious in capacity decisions and 

might attempt to build up inventory before product launch in order to avoid investments during a life-

cycle (Ho, Savin et al. 2002, Kumar and Swaminathan 2003). However, this option has some drawbacks, 

since carrying inventory imposes a cost, while delaying a product launch costs firms in the sense that 

they lose sales in the short run and may also reduce the market share in the future (Urban, Carter et al. 

1986).  For example, recently, HP discontinued the production of HP Touchpad and cleared their ample 

inventory (estimated to be two million tablets) with extensive markdowns that cost HP 400 million USD 

(O'Flaherty 2011). 

1.1 Problem Statement 

Since “short” is a relative term in referring to short life-cycle products, we consider the length of 

capacity procurement lead time in relation to the length of the product life-cycle as a measure for 

characterizing and labeling a life-cycle. SLC products are those that have a relatively long capacity 
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procurement lead time. This definition helps us to apply this work not only to products with life-cycles 

measured in quarters but also to other products with longer life-cycles but, based on the length of their 

capacity procurement lead time, with similar characteristics to SLC products. As an example, two 

products with the life-cycle of ten years and ten quarters can both can be categorized as SLC when the 

former has a capacity procurement lead time of three years and the later with a lead time of three 

quarters.  

Moreover, being that “capacity” is a general term in the literature, we limit our discussion in this 

dissertation to “capital equipment capacity.” In addition, it will be assumed that each unit of capacity 

can be used for producing one unit of a product in each period of a life-cycle.  

In our setting, a make-to-order (MTO) middle-echelon manufacturer produces a perishable 

(non- storable) SLC product that needs significant investment for capacity procurement and 

maintenance. Additionally, the manufacturer has a forecast of future demand over the course of the 

product life-cycle. Not to mention, expensive capacity decisions are its main issue that affects 

profitability. The manufacturer has to bear two types of costs for the capacity: marginal expansion cost 

and capacity maintenance cost. Marginal expansion cost is a one-time cost that the manufacturer pays 

at the time of procurement per each unit of new capacity. Maintenance capacity is the cost of 

maintaining a unit of capacity per period for each unit of installed capacity. We assume that these costs 

(cost per unit capacity) do not change over the product life-cycle. Any other fixed costs (e.g., cost of 

setting up the production facility) are assumed to be sunk costs or negligible. 

Moreover, the manufacturer is penalized a marginal shortage cost for its inability to meet 

market demand (this is in addition to the cost of missing revenue from the lost demand). In some 

industries, this marginal cost is significantly higher than the marginal cost of idle capacity (Peng, Erhun 

et al. 2012). Measuring this shortage cost is not easy and manufacturers typically assume different 
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values based on the effect of the shortage on their image in a market, their competitors’ ability to 

attract their unmet demand, the effect of unsatisfied orders on future demand, and so on.  

Based on these costs, the manufacturer's goal is to maximize the expected discounted (net 

present value of) profit for the SLC product by balancing over and under expansions of capacity over the 

course of the product life-cycle. Over-expansion costs are related to capacity expansion and 

maintenance costs and under-expansion costs are associated with shortage penalty and unrealized 

revenue of unmet demand.  

In terms of the timing of expansion decisions, it is assumed that the manufacturer is able to 

expand capacity both before launching a product and during the product’s life-cycle. However, without 

loss of generality, we assume that capacity expansion epochs during a life-cycle are limited to a subset 

of some predetermined epochs. Note that the decision maker may choose to increase or not increase 

capacity at these predetermined epochs. This assumption is very common in the real world, since 

expansion decisions are typically made monthly, quarterly, or yearly, depending on the length of the 

product life-cycle. We also assume that the lead-time for procuring and installing new capacity is fixed 

and known.  

Figure 1.2 illustrates the sequence of events in period s , one of the predetermined expansion 

periods where expansion is allowed. In this period, based on observed demand and available capacity, 

the decision maker updates the information regarding the market potential and initializes new capacity 

procurement if needed. The newly procured capacity can be utilized after a fixed expansion lead-time 

(L). Production and demand fulfillment decisions are taken after any new expansion decision. We 

assume that the SLC product is made to order, hence, production does not exceed demand in any period 

(no finished goods inventory is allowed). We also assume that any unmet demand is lost and will not be 

backordered. 
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Figure 1.2: Timeline of events for capacity expansion decisions 

In addition, product price and shortage penalty are assumed to be monotonically changing 

(decreasing) during a life-cycle. This assumption makes the model more realistic, since manufacturers 

are often unable to command prices toward the end of a life-cycle that match the prices at product 

launch. Other than in the case of a pure monopoly (which is quite rare in the real world), manufacturers 

have to provide mark downs at the final stages of a life-cycle due to the introduction of new generation 

products, competitors’ entry, etc. Similarly, at the end of a life-cycle, the effect of product shortage on 

future market demand is less severe than in the beginning of a life-cycle. We assume that the rate of 

decay in a product’s price and shortage cost are the same. 

In the main model of this dissertation, we assume that the salvage value of installed capacity is 

negligible. However, in the extension chapter, we provide an extension to the model that takes into 

account the salvage value of an installed capacity. Also, in our main model, the manufacturer only 

produces one product and any installed capacity will be used to manufacture that product. This 

assumption will be relaxed in the extension chapter where we present a model in which the installed 

capacity can be employed for producing the next generation version of the current product. 

Although the decision maker can pick from different supply modes with different procurement 

characteristics, a procurement option should be selected before launching a product. It is assumed that 

the chosen option has unlimited supply and cannot be changed during a life-cycle. This restriction will be 
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removed in the extension chapter in which we entertain the possibility of simultaneously working with a 

fast but expensive supply supplier as well as a slow but cheaper one (dual mode supply).  

As explained earlier, the main challenge of the manufacturer in this setting is capacity planning. 

An example of expansion decisions for a given (deterministic) SLC demand and specific expansion costs 

is shown in Figure 1.3. In this work, it is assumed that the time of product entry to the market is fixed 

and the decision maker will procure initial capacity in such a way to make it available at the first period 

of a life-cycle. Once the product is launched, the manufacturer only expands capacity in predetermined 

expansion periods. Due to the fact that available capacity changes dynamically during a life-cycle, we call 

this strategy dynamic capacity planning. Note that based on procurement lead-time and length of a life-

cycle and cost of capacity maintenance, initial capacity decision might be the last one.   

 

Figure 1.3: Illustration of dynamic capacity planning when the demand is not stochastic 

In this dissertation, we propose a novel stochastic capacity expansion model that can be used by 

a manufacturer in order to optimally determine policies for specifying timing and size of capacity 

procurement considering the following additional factors: 

a. Lead-times for capacity expansion 
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b. Non-deterministic non-stationary demand and diffusion process 

c. Irreversibility (at least partial) in capacity investments 

d. Costs associated with lost sales and unutilized capacity 

This model attempts to find answers, before and during a life-cycle, for when and how much 

capacity to expand in a dynamically changing and stochastic environment. The proposed model also can 

be used for any other product that has a finite life-cycle with stochastic stationary/non-stationary 

demands. We believe that the proposed model converts the complicated capacity planning problem to a 

more tractable and efficient one when compared to other classic stochastic methods (e.g., stochastic 

programming and Markov Decision Processes).  

Due to the importance of demand modeling in SLC products, in addition to a model for capacity 

planning, we also present a new model in the class of stochastic Bass formulations. This stochastic Bass 

model addresses shortcoming of models from extant literature and will be used for numerical 

experiments of the proposed capacity expansion model. 

This dissertation is organized as follows: in the second chapter, we review the literature for 

capacity planning and stochastic Bass model and provide a brief overview for the tools and methods that 

will be used in this work. The proposed stochastic Bass diffusion model will be presented in chapter 3. In 

chapter 4, the stochastic optimal expansion model, with necessary lemmas, propositions, corollaries and 

algorithms will be provided. Chapter 5 contains three extensions of the stochastic optimal expansion 

model. Finally, in chapter 6 the numerical results of the experiments that have been conducted for the 

model will be presented. In our final chapter, we discuss the implications of our results and future 

research directions. 
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Chapter 2 Literature Review 

We begin this chapter by reviewing the literature on capacity planning for short life-cycle (SLC) 

products. Then, we provide an overview of the Bass diffusion model and the major contributions 

regarding its stochastic versions. Since the proposed stochastic optimal expansion model is inspired by 

the newsvendor model, a short description of this model is presented at the end of this chapter. 

2.1 Capacity Planning 

Capacity planning related research can be broadly categorized into two groups: strategic and 

tactical. At the strategic level, capacity planning involves deciding upon the firm's own capacity 

investment and that of its supply chain partners.  The literature extensively considers settings that 

model independent decision makers in a supply chain context  (Wu, Erkoc et al. 2005). Research in this 

area employs game-theoretic models addressing issues such as contracting, coordination (Cachon 2003, 

Bernstein and DeCroix 2004, Armony and Plambeck 2005, Plambeck and Taylor 2005), and risk-

associated mechanisms (Birge 2000, Van Mieghem 2003, Ding, Dong et al. 2007). An excellent review of 

coordinating contracts is provided by Cachon (Cachon 2003). However, in our work, strategic capacity 

planning is referred to a case at which a decision maker only expands capacity once (before product 

launch). 

2.1.1 Strategic Capacity Planning for Innovative Products 

The literature considering strategic capacity expansion for SLC products is limited. Ho et al.  (Ho, 

Savin et al. 2002) proposed a model for capacity expansion and for the timing of the product launch for 

SLC products. In their work, the Bass diffusion model parameters are assumed to be known and capacity 

decisions are made before product launch and cannot be changed during the life-cycle. They show that a 

myopic sales plan is always optimal in their specific setting. In a similar work, Kumar and Swaminathan 

(Kumar and Swaminathan 2003) showed that the demand for an SLC product is not exclusively 
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exogenous and that the sales plan (myopic or build-up), as well as size of capacity installed, can change 

the demand curve. Thus, they concluded that the optimal capacity sizing decisions would be quite 

different depending on whether one used a myopic sales plan or the build-up plan. However, in another 

work (Shen, Duenyas et al. 2011), it has been shown that the proofs of (Ho, Savin et al. 2002) are not 

correct and consequently, a myopic sales plan is not an optimal strategy. In all of these works, it is 

assumed that there is no uncertainty in the demand (Bass model parameters that represent the effect of 

innovation as well as imitation and the market potential are assumed to be known and fixed). In a very 

similar work, Yan and Liu (Yan and Liu 2009) modified the Bass diffusion model in order to consider the 

capacity constraint and derived an optimal capacity level (a one-time decision), an optimal production 

policy and an optimal sales policy for a manufacturer who does not face any demand uncertainty. 

Capacity planning for SLC products in which the decision maker only expands capacity before 

the product launch  was considered by Pangburn and Sundaresan (Pangburn and Sundaresan 2009). 

However, their model focuses on rapid obsolescence rate of products and an inverse-demand curve has 

been used for "parsimonious" demand modeling. 

2.1.2 Dynamic Capacity Planning 

Research on dynamic capacity models with stochastic demand goes back to the work of Manne 

(Manne 1961), in which he models demand growth using a Brownian motion. The resulting regenerative 

process leads to uniform capacity augmentation that occurs whenever the demand backlog goes beyond 

a threshold value. Following Manne's work, many extensions and modifications have been proposed 

(Giglio 1970, Bean, Higle et al. 1992). In the context of the semiconductor capacity planning, Karabuk 

and Wu (Karabuk and Wu 2002) considered the coordination between production and marketing in the 

same corporate organization in order to allocate capacity on a period-by-period basis based on realized 

uncertainties and acquired capacities. In addition, Vlachos  (Vlachos, Georgiadis et al. 2007) presented 
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the development of a system dynamics model for remanufacturing capacity expansion of a reverse 

supply chain for product recovery.  

Although dynamic capacity expansion has been addressed in the literature, very few works have 

considered the life-cycle of a product and regime switching behavior of a SLC product demand (ramp-up, 

maturity, and ramp-down). Kamath and Roy (Kamath and Roy 2007), using retail sales data for the 

capital augmentation decisions, claimed that the information-feedback-based methodology is general 

enough to be used in designing decision support systems for capacity augmentation in SLC 

environments. However, their model is a system dynamics model and it does not explicitly address the 

uncertainty in the demand. In another work (Cantamessa and Valentini 2000), a simple Mixed-Integer 

Linear programming model is developed to find the optimum initial capacity and fixed capacity 

augmentation in each period of a new product life-cycle. They, too, assume that the Bass model 

parameters that represent the effect of innovation, as well as imitation and the market potential are 

known and fixed.  

Angelus and Porteus (Angelus and Porteus 2002) study simultaneous capacity and production 

planning problem for a SLC product in which the company can invest and disinvest capacity. In their 

model, it is assumed that there is no lead-time for the capacity expansion and there are no backlogs for 

unmet demand. They show that the optimal capacity plan can be reduced to a "target interval policy" 

that is a one-dimensional invest/stay-put/disinvest (ISD) policy. The target interval policy specifies a 

lower and upper capacity target. In the case when no carry-over inventory is allowed, it was shown that 

the target interval is an optimal policy. The authors do not consider the complete life-cycle, rather they 

only consider the one-period-ahead demand distribution. Moreover, they assumed that investment and 

disinvestment in any period of a life-cycle is possible and that there is no lead-time for capacity 

investment (or disinvestment). Figure 1 shows an example of an expansion decision in this model. 
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In summary, to the best of our knowledge, the literature on capacity planning for innovative SLC 

products is relatively limited. Not only is it limited, but also the few models proposed in the literature 

have major shortcomings. Regime switching and non-deterministic diffusion of innovative products are 

critical factors for capacity decisions that are often either ignored (Kamath and Roy 2007) or addressed 

by questionable assumptions, such as:  

a. A decision maker is aware of fixed diffusion parameters and demand behavior is 

deterministic (Cantamessa and Valentini 2000, Ho, Savin et al. 2002). 

b. Investment and disinvestment are possible in any period of a life-cycle with zero lead-time. 

Thus, the decision maker does not need to consider the total life-cycle (Angelus and Porteus 

2002). 

c. Demand is a non-decreasing stochastic process (usually geometric Brownian motion with a 

positive drift). This assumption is very common in capacity planning for semiconductor industry 

literature (Cakanyildirim, Roundy et al. 2001, Cakanyildirim and Roundy 2002) and totally 

ignores the fact that the demand of SLC products can be, and usually is, stochastically 

decreasing after the period of peak demand (Ryan 2004). 

2.2 Bass Diffusion Model 

For modeling the adoption process of new products and technologies, in particular for SLC 

products, the marketing science and econometric literature offers different models, including trend 

curve models (cumulative lognormal (Stapleton 1976), Weibull (Nawaz Sharif and Kabir 1976), extended 

Logistic (Mahajan, Muller et al. 1990)), linearized trend model (Mansfield 1961, Nawaz Sharif and Kabir 

1976), and Non-linear auto-regressive models (Logistic/Mansfield model (Mahajan, Muller et al. 1993), 

Bass (Bass 2004), non-symmetric responding logistic (Easingwood, Mahajan et al. 1981), Gompertz 

(Hendry 1972)), just to name a few (see (Mahajan, Muller et al. 1990, Meade and Islam 1998, Peres, 
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Muller et al. 2010) for a complete review). Among all these models, the Bass model has been widely 

adopted, both in the industry and in academia, and used in many forecasting situations and applications. 

Moreover, unlike most of the available models that only consider either market innovators (Fourt and 

Woodlock 1960) or market imitators (Mansfield 1961), the Bass model considers both innovators and 

imitators at the same time.   

The main assumptions of the basic Bass model are (Bass 2004) are as follows: a) the diffusion 

process is binary, meaning that the potential consumers either adopt or wait to adopt; b)the population 

of the market potential does not change; c) eventually, the entire potential market will buy the product; 

d) no repeat purchase is allowed; e) the impact of the word-of-mouth is independent of adoption time; 

f) there is no supply restriction from the manufacturer; g) price has no effect on the adoption of a new 

product. However, different extensions of the Bass model have been proposed in which the price has 

impact on adoption (see (Radas 2006) for the complete review of the extensions). 

In the Bass diffusion model, demand at each period is formulated as: 

 

 ( |     )    ( )  

(   ) 

   (   ) 

(  
 
 
  (   ) )

    (2.1) 

where p and q represent “external influence” and “internal influence”, respectively and   is the 

potential market population in units. In this formulation,  ( ) is the instantaneous rate of product 

adoption at each period. The cumulative number of products adopted by time   can be formulated as: 

∑ ( |     )

 

   

  ( )   
    (   ) 

  
 
   (   ) 

   

As Equation 2.1 shows, this model describes how a new product is adopted as an interaction between 

two groups of users. The first group consists of users who are independent of the numbers of previous 

adopters, while the second group contains users who are buying the product due to the word-of-mouth 
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or other influences from those already using the product. Bass described a force for the first group, 

represented by p (external influence), as the coefficient of innovation, and a force for the second group 

by q (internal influence), as the coefficient of imitation (Figure 2.1).  

Time

V
o

lu
m

e

New Adaptors

Imitators

Innovators

 

Figure 2.1: An example for a diffusion process 

2.2.1 Stochastic Versions of the Bass Diffusion Model 

While the Bass diffusion model yields a deterministic market adoption curve, there is a 

recognized need for a stochastic version of the model (Eliashberg and Chatterjee 1986). In this section, 

we review the popular stochastic diffusion models from the literature and discuss their shortcomings:  

a. Wu and et. al. (2010) proposed an extension of the Bass model in which forecasting is 

conducted based on demand-leading indicators in a Bayesian framework, combining it with 

different diffusion  models. In their model, future demand in each period follows a Gaussian 

distribution. Because a Gaussian distribution can yield negative values, this model may cause 

some problems in simulation-based decision support systems. Moreover, the model needs 

“leading indicator” variables, which might not be available in certain cases.  

b. Boswijk and Franses (2005) proposed a stochastic Bass model that was inspired by a class of 

stochastic processes used in financial engineering literature for modeling the interest rate. In 

their model, the cumulative number of adopters at time  ,  ( ), is a random variable with mean 

 ̅( )   ( ( ))     ( ) and  ̅( )   ( ( ))     ( ) where  ̅( )  
  ̅( )

  
 and  ( )  
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  ( )

  
.   In their work, two formulations for the stochastic bass model were proposed based the 

following process: 

  ( )   ( ̅( )     ( ))     ( )   ( ) 

where    ,    ,       , and  ( ) is a standard Brownian motion.  The mean reversion 

component of the model implies that  ( ) mean-reverts to  ̅( ) in the long run. In addition, 

they provide estimation procedures for estimating the parameters of their model. However, the 

authors do not provide any formulation for the distribution of demand at each future period. 

Moreover, they have assumed that the Bass diffusion parameters are fixed during a life-cycle.  

c. Niu (2002) developed a stochastic formulation of the Bass model that is a pure birth model 

with the following birth rates: 

   (   ) (   
 

   
) 

In his model, it was shown that when population size goes to infinity, the fraction of customers 

who have bought a product by time   converges in probability to the fraction of customers in 

the deterministic Bass Model ( ( )): 

   
   

  ( )      
   

 (
 

 
)   ( ) 

 ( )    

This model also assumes that the Bass model parameters do not change through time and does 

not provide any distribution for future demands.  

d. In another work by Kanniainen and et. al. (2011), it is assumed that future demand can be 

characterized by a continuous time process, represented logarithmically as the sum of two 

components: a deterministic Bass function at time   and a stochastic mean-reverting process 

(  ) such that          ( |     )     and                 .   and   are mean 

reversion and standard deviation parameters of the process and    is a Brownian motion 
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process. They show that the future demand in each period follows a lognormal distribution with 

the following moments: 

  (    )   ( )  (   )  (   ) 

    (    )  (  
 (   )   )  

 (   )  
 (   )  ( ) 

where  

  (   )     ((         ) 
  (   )) 

and 

   (   )     (
  

  
(      (   )) ) 

The overall stochastic demand is essentially the deterministic Bass model with a white noise. 

This assumption might not be correct, since a white noise cannot be the only reason that makes 

real demand deviate from what a deterministic Bass model has forecasted. Moreover, in their 

paper, the forecasting accuracy of the model is not presented. 

2.3 Newsvendor Problem 

The newsvendor problem (a.k.a. the newsboy problem) pertains to a classical mathematical 

model in operations management under the category of finite inventory process [REF]. In this model, 

the aim is to maximize the expected profit by finding an optimal order quantity for a make-to-order 

product in a single period probabilistic demand framework (retailed has a forecast for the demand 

distribution). The ordered quantity is stored in a retailer’s inventory and will be used for satisfying 

demand. In this problem, one day, one week, one season, or any other time frame can be considered as 

one period (Ayhan, Dai et al. 2003).  
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While the newsvendor model has a number of extensions, in the basic model, the retailer’s 

selling price is r and the unit price for product procurement is   . The salvage value for each unit unsold 

at the end of the period is assumed to be   , which is assumed to be less than   . In case the retailer has 

to pay to dispose of any unsold product,     . Let   be the random variable that represents the 

demand and   be the cumulative distribution function of demand, meaning   (   )    ( ). In 

each period, the retailer is looking for an optimal amount order ( ) that maximizes the following 

expected profit function: 

 ( )  (    )  (   (   ))  (     )  

In order to make this function more intuitive, it can be rewritten as: 

 ( )  (    )  (   (   ))  (     ) (   (     )) 

where (    ) is considered the profit margin of each product sold and (     ) is the marginal cost of 

each unsold product. Although a naive decision maker might suggest an order quantity that is equal to 

the expected value of the demand, it can be shown that the optimal order quantity,   , is not 

necessarily equal to  ( )  Furthermore, based on the shortage and overage costs, it can be more or less 

than expected value of demand. It was proven that    solves the following equation (assuming F is 

continuous): 

 (  )  
    
    

 

where  
    

    
  is called the newsvendor critical fractile. This fractile is the ratio of the cost of being under-

stocked and the total costs of being either over-stocked or under-stocked is (
    

(    ) (     )
). Finally, it is 

worth mentioning that in the case of a discrete demand distribution    is the smallest   such that: 

  ( )   
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Chapter 3 Stochastic Bass Diffusion Model 

While the Bass model (Equation 3.1) yields a deterministic market adoption curve, there is a 

recognized need for a stochastic version of the model (Chatterjee 1986). Surprisingly, very few papers 

(Skiadas and Giovanis 1997, Boswijk and Franses 2005, Kanniainen, Makinen et al. 2010) have addressed 

this issue and the proposed models have not been examined for different products and settings. 

Moreover, the Bass model parameters in the extant stochastic Bass models are assumed to be fixed 

during a life-cycle. This assumption ignores the fact that even though diffusion parameters (p and q) 

might be fixed during a life-cycle and can be estimated by using similar previous products or managerial 

judgments, market potential (m) might change due to unpredictable exogenous/endogenous factors. 

Some of these factors include competitors’ actions (exogenous), economic circumstances (exogenous) 

and production/quality issues (endogenous). For example, competitors’ actions, e.g. leaving (entry to) a 

market, can expand (shrink) a firm’s market share significantly and may lead to an overwhelming 

unsatisfied demand (unutilized capacity). On the other hand, macroeconomic factors such as the 

unemployment rate have a major effect on the demand of many manufacturers and any change in this 

rate might lead to a realized demand that is different from what was predicted. Another factor includes 

unpredictable production/quality issues that might occur during a life-cycle. Any defect in a product or 

shortage in production may cause significant shifts in the potential total market. These three factors are 

just a few examples that can conceivably change a market potential for the product during its life-cycle. 

 

 ( |     )    ( )  

(   ) 

   (   ) 

(  
 
 
  (   ) )

    (3.1) 

In this work, by letting market potential to change during a life-cycle, we propose a new 

stochastic Bass diffusion model that addresses the shortcoming (fixed market potential) of the available 

stochastic models in the literature. We have assumed that at each period an estimation of current 
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market potential can be provided by a marketing department or a third party market research company 

and that this estimation is a valid and a precise estimation for the current market potential. However, 

we assume that the market potential can change during a product’s life-cycle based on a geometric 

random walk with known parameters: 

           (3.2) 

where   ’s are independent random variables that are not necessarily identically distributed. This is 

attributed due to the fact that percentage changes in the market potential (   
  

    
) are significantly 

smaller at the end of a life-cycle compared to that of the beginning of a life-cycle (stochastically 

decreasing).  

Without loss of generality and in order to accommodate the effect of time in   , let    

  
 

 

√ 
 

     
 

√ 
 

   where   and   are known parameter to the decision maker. In this formulation,   

controls the values of    and depends on the newness, as well as the characteristics of a product or the 

uncertainty of the competitors’ actions. A decision maker who predicts less uncertainty for future 

demand picks a smaller   compared to that of a decision maker who expects a volatile demand. In 

addition,   is a parameter that controls the decay of    through time and it is assumed to be    . 

Larger values of   decrease the decay speed of    through time.  

Note that if changes in    are not a stochastically decreasing process, i.e. receiving more signal 

from the market through time does not reduce the uncertainty of the demand, it can be defined 

as            . In this formulation,    values are not decreasing through time. However, we believe that 

this case is not a realistic assumption and     makes the model more suitable for real-world 

applications.  

Some examples of    paths are illustrated in Figure 1 to Figure 4. These plots illustrate the effect 

of different  ’s and  ’s through time. In these four figures, a solid line is used for  
 

√ 
 

 and a dashed line 
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is used for  
  

√ 
 

. Figure 1 and Figure 2 depict the paths during a 13-period life-cycle without     , since 

it is a fixed value.  In Figure 1,       and      ; in Figure 2,       and    . 

 

Figure 3.1: Value of Xt during a life-cycle for β=1.4 and γ=2 

 

Figure 3.2: Value of Xt during a life-cycle for β=1.4 and 

γ=4

Similarly, Figures 3 and 4 show the plots for the case in which      . 

 

Figure 3.3: Value of Xt during a life-cycle for β=1.2 and 

γ=2  

 

Figure 3.4: Value of Xt during a life-cycle for β=1.2 and γ=4

3.1 Log-normality of Future Demand 

By expanding Equation 3.2, the process can be rewritten as      ∏   
 
   ; 

consequently,              ∑      
 
   , where    is the current estimation of a market 
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potential that is assumed to be correct. It can be shown that the mean and variance of       are as 

follows: 

 
 (     )   
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   (3.3) 
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Since the   ’s are not identically distributed, which is apparent from the t in the variance 

equation, the central limit theorem cannot be used for deriving the distribution of      . However, if it 

could be proven that the    process satisfies the Lindeberg condition, it can be shown that       

follows a normal distribution; therefore,    has a lognormal distribution in each period of the life-cycle.  

In the Lindeberg condition, it is stated that when                are independent random 

variables with mean 0 and variance   
 if for every    ,  
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case, instead of               , the random variables are                         and 
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   . As a result, the Lindeberg condition of the problem 

can be rewritten as: 
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If it can be shown that there is a finite period ( ̃) such that |       ̃|    
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on condition A (in Equation 3.6), which is much smaller than   
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when    . Based on the definition of   , this condition needs to be satisfied for all possible values of 

  , which are  
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. In the case of     , the result is obvious due to the fact that condition A is 

not satisfied anywhere (        
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The indication is that condition A holds only for those periods that   
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Equation 3.5 goes to zero (
 

 
  ) when t goes to infinity. Therefore, we have showed that: 
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Based on Equation 3.12 and the definition of a lognormal distribution,    is a lognormal distribution 

with the following mean and variance: 
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Note that in each period, after estimating the current market potential, the distributions of the 

future market potentials are updated. For example, if the market potential at period    is   , then the 

distribution of the future market potential would be: 

 

          (       
 

 
(     ) ∑

 

(    )
 
 

 

      

) (3.15) 

At this stage, we can derive the distribution of demand at each period by revisiting the Bass 

diffusion model and using the properties of a lognormal distribution: 

  ( |      )     ( (  )      ( )     (  )) (3.16) 

Equation 3.16 implies that the future demand in each period of a life-cycle follows a lognormal 

distribution. Note that the log-normality of demand is an appealing property in real-world applications 

due to its non-negativity feature.  

3.2 Illustration of Volatility Levels in the Proposed Stochastic Bass Model 

In order to show the effect of β and   on the market potential (m), the demand and market 

potential realizations for different  ’s and β’s are illustrated in Figure 5 through Figure 12. In each of 

these figures, five independent demand realizations (D1-D5), along with their associated market 

potential realizations (m1-m5) are presented. Moreover, each plot contains 95% confidence bands, in 

both demand and market potential realizations, depicted by dashed lines. p, q, and the initial market 

potential of the Bass diffusion model are assumed to be 0.001, 0.35, and two million, respectively. Note 
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that the initial market potential is simply the initial estimation of the market potential and, in each 

period, this value changes based on a geometric random walk. 

 

Figure 3.5: Demand realizations for β=1.2 and γ=2 

 

Figure 3.6: Market potential realization for β=1.2 and γ=2 
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Figure 3.7: Demand realizations for β=1.2 and γ=4 

 

 

Figure 3.8: Market potential realization for β=1.2 and γ=4 

 

Figure 3.9: Demand realizations for β=1.4 and γ=2 
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Figure 3.10: Market potential realization for β=1.4 and γ=2 

 

 

Figure 3.11: Demand realizations for β=1.4 and γ=4 
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Figure 3.12: Market potential realization for β=1.4 and γ=4 
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Chapter 4 Optimal Capacity Expansion Model under Stochastic Non-

stationary Demand 

As discussed earlier, capacity planning for short life-cycle (SLC) products is a non-trivial task and 

has tremendous impact on the profitability and even survival of a company. It is clear that if the 

manufacturer is aware of future demand without any uncertainty, capacity expansion decisions are 

relatively trivial. However, in the real world, decision makers do not have this privilege and often just 

have a distribution or bounds (upper and lower) on future demand for each period of a product’s life-

cycle. These characteristics make the dynamic capacity planning problem one of a multistage stochastic 

optimization that cannot be solved easily and efficiently. Note that the multistage property comes from 

a fact that the decision maker needs to decide about new capacity procurements for several stages (or 

epochs) of the life-cycle. 

In this chapter, after developing the mathematical formulation of the problem, we first discuss 

the obstacles for using classical and widely used control methodologies such as Markov Decision 

Processes (MDP) and stochastic programming for solving this problem (see (Puterman 2009) and (Birge 

and Louveaux 1997) for more information about MDP and stochastic programming). We then offer an 

efficient and optimal approach for making these capacity expansion decisions for SLC products. The 

terminology and notations used in this study are as follows: 

   : Stochastic demand for period s (discrete process) 

    : Filtration of the stochastic demand process at period   (               ) 

   ( ): Probability density function of demand at period s 

   ( ): Cumulative distribution function of demand at period s 

   
 ( ): Complement of cumulative distribution function of demand distribution (    ( )) 

   : Expected value of demand at period s 
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  : Variance of demand at period s 

   : Available capacity at period s 

   : Initial Capacity at the beginning of a life-cycle 

   : Production amount in period   

 L: Expansion lead-time 

  : Initial product sales price 

   : Product sales price at period t 

   : Initial marginal shortage penalty of unmet demand 

   
 : Marginal shortage penalty at period t 

   : Marginal capital expansion cost 

   : Marginal holding/maintenance cost of installed capacity 

  : discounting factor 

  : Depreciation parameter of price and shortage penalty cost (           and   
  

    
   ) 

  : Last period of a life-cycle 

   : Set of life-cycle periods from s to the end of a life-cycle (              ) 

   
 :  Ordered predetermined periods in which a decision maker can expand capacity 

(  
    ) 

    
    : i-th element of   

   

   
  : Optimal expansion amount at period s 

   
 : Optimal expansion vector (policy) for all periods in   

  

   ( ): Profit function for period s  and onward periods 

 ( )      (   )  
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At the end of each period of the SLC product life-cycle, for example s, historical demand 

information from period 0 (product launch period) to s is available to a decision maker and future 

demands are unknown. Mathematically speaking,   is a filtration of the discrete demand process   , 

where                . We suppose that the decision maker can use    in order to estimate the 

parameters of demand distribution ( ̂   ) for each period of the remaining life-cycle. As a result, 

     (    |  )   ( | ̂ ) and      (    |  )   ( | ̂ ). For notation simplicity, instead of 

 ( | ̂ ) and  ( | ̂ ), we use   ( )  and   ( ).  

If current period, s, would be a period at which a make-to-order manufacturer can expand 

capacity (    
 ), s/he needs to have an optimal policy (     

 
 ) that is a sequence of optimal expansion 

decisions for current and future periods. In our setting, after receiving demand information at period s, 

the decision maker updates     ( )  and     ( ) of the remaining periods of a life-cycle in order to 

include any available information in deriving the optimal expansion policy (     
 

 ). Clearly, this policy 

should be revisited at future expansion periods when more updated (demand) information arrives. Note 

that   
        

 
     is the only optimal expansion amount that will be ordered from a supplier at period 

  and it can be used for production at period      . 

After ordering   
  at period  , the manufacturer employs the available capacity (  ) in order to 

satisfy market demand at this period (  ). Since there is no inventory, the production amount (  ) in 

each period cannot exceed the demand (      (     )) and the manufactured products are shipped 

to the customers after production. Note that if a decision maker does not plan to expand capacity at 

period  , meaning (    
 ), production amount is the only decision that a manufacturer makes.       

As a result, based on this problem setting and a given and fixed cost structure, the decision 

maker is looking for an optimal expansion policy that maximizes its expected discounted profit for the 

full product life-cycle that can be formulated as follows: 
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(4.1) 

where      
    .  

The first, second and third terms of the equation correspond to sales revenue, total shortage 

penalty cost and total capacity expansion/maintenance costs, respectively. In this formulation   
  is an 

ordered set and, for simplification purposes, it is assumed that the last element of the set is    . Note 

that any expansion period in this set that leads to a delivery time after the last period of a life-cycle 

should be omitted from the set. 

This problem can be modeled as a stochastic dynamic programming model where the decision 

epochs are those periods where capacity expansion is allowed. In order to employ common recursive 

methods for solving this problem, the value function of this problem is: 
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(4.2) 

where    is the next available capacity expansion epoch (    
     and      

    ). Given that 

disinvestment is not an option for the decision maker, the optimal policy should only recommend non-

negative capacity expansions (     
 

    and      
 

   ). 

It is difficult to solve this multi-stage stochastic optimization problem using the Bellman 

equation (Equation 4.2) with known approaches. For example, if the decision maker were to employ an 

MDP approach, at least two variables should be included in the state space of the MDP: a variable for 

modeling the uncertainty of the demand and another variable for existing capacity. If demand is 

assumed to follow the proposed stochastic Bass diffusion model (see Chapter 3), the first dimension 

would be the market potential (Since   and   are assumed to fixed during a life-cycle). In this stochastic 

Bass model, although the process for market potential is discrete, depending on the number of periods, 

the size of the market potential set can grow exponentially, leading to computational and dimensionality 

issues of the state space. Available capacity is the other variable that needs to be in the state space. 

Based on the granularity of actions (expansion decisions), the action space can explode, as well. These 

issues might be solved by placing an upper bound on total expansion and employing high granularity for 

expansion decisions. However, these remedies can lead to suboptimal policies. 

Alternatively, the decision maker might decide to use a simulation based solution methodology, 

e.g. stochastic programming, to derive the optimal expansion policy. However, based on the volatility of 
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the demand and number of expansion periods, this problem might be unsolvable by currently available 

optimization packages. High volatility of demand leads to a need for more simulation scenarios that 

consequently increase the number of decision variables and constraints. Moreover, in case of more 

frequent capacity expansions, the complexity of the stochastic programming model surges considerably.         

Another simulation-based methodology that can be used for solving this problem is deriving the 

optimal policy by optimizing the sample-based expected profit. However, instead of using analytical 

expression of the expected profit (Equation 4.1), expected profit would be calculated by generating 

adequate simulation scenarios. In this case, based on the linear structure of the problem, the expected 

profit can be rewritten as an integer programming (IP) model: 

   
     

 ∑ ∑     ((     
 )       

                    )

  

   

 

   

 

                  

          

          

             

In this formulation,   is the set of scenarios generated and its size should depend on the level 

of uncertainty in the demand. Although the problem can be solved in this formulation, it is not an 

analytical model and it needs substantial number of simulation scenarios in order to shrink the 

optimality-gap of the solution.   

In the next section, we propose an analytical stochastic optimal expansion model that provides 

the optimal expansion policy in each period of predetermined expansion periods. We show that the 

model guarantees optimality of the derived expansion policies with respect to the expected discounted 

profit. We also propose an algorithm that provides an efficient procedure for finding the optimal policy 

and at the same time avoids computational difficulties of conventional methods.  
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4.1 Stochastic Optimal Expansion Model 

In this section, we present the necessary lemmas and propositions for deriving the optimal 

expansion policy. Later, we show that the expansion decision at each period can be independent of 

future expansion decisions if the decision maker is aware of the next period in which expansion is an 

optimal decision. After that, we show some analytical properties of the model and evaluate the effect of 

the model’s parameters on optimal expansion decisions. At the end, we propose an algorithm in which 

we employ the presented propositions in order to find the optimal expansion policy. We finish this 

chapter by illustrating the behavior of the proposed model in a deterministic case, where a decision 

maker is certain about future demands. 

In the following lemma and propositions, without loss of generality, we present the analytical 

properties of the problem for period   where the decision maker has the demand information of all 

periods from period 1 to s. Clearly when s=0, we are considering the entire planning horizon. 

4.1.1 Lemma 1  

  (the expected discounted profit function) is a strictly concave function. 

4.1.2 Proof of Lemma 1  

Let current period (s) be the first element of   
  and       

    . Note that     . 
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Using  ∫    ( )  ( ) 
 

 
  ∫    ( ) ( ) 

 

 
  ∫    ( ) ( ) 

 

 
  ( )   ∫    ( ) ( ) 

 

 
  when 

  is a random variable with PDF of  ( ) and by merging some of the arguments, the expected value of 

profit would be: 
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(4.3) 

Based on the Leibniz integral rule: 
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By defining second derivative as 
   

    
    

, the Hessian matrix is: 
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Due to the fact that   ( ) is the PDF of demand at different periods and always a nonnegative value,   is 

a negative-semidefinite matrix. Therefore,   is a concave function. 

□ 

As a result, the problem of maximizing   has a concave objective function and linear non-

negativity constraints (     
   ). The following proposition gives the KKT conditions to be satisfied by 

all optimal solutions of the optimization problem. 

4.1.3 Proposition 1 

Assuming   
               , the optimal expansion amounts at any period (     

 
 ) must 

satisfy the following equation: 
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where   
  

  

    
 and    are Lagrange multipliers. Consequently, if   would be the only period at which 

expanding capacity is an optimal decision (  
    and    (  

   )
   ), then   

  solves the following 

equation: 
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 (4.5) 

4.1.4 Proof of Proposition 1 

Let   and     both be an element of   
 , meaning (   

       
     ). Therefore, based on 

Equation 4.3 and KKT optimality condition for     : 
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Furthermore, the KKT optimality condition for        is: 
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Based on complementary slackness (      ) and by substituting Equation 4.8 in 4.7: 
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The generalization of this equation for any period     is: 
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If it is assumed that    is the last expansion (     and ∑   
  

     ), by summing up Equation 4.9 for 

all t's we have: 
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 (4.10) 

If a decision maker considers   as the last expansion period, the optimal expansion at this period 

should solve Equation 4.10. Note that in this equation it is assumed that the demand distributions are 

continuous. In case of discrete distribution,   
  is the smallest    such that:  

∑           
 (     )

 

       

 
     ∑      

       

    
 

These equations (discrete and continuous) can be easily solved by a root-finding or a nonlinear 

optimization algorithm combined with a non-negativity constraint (  
   ). Note that if a decision 

maker has no plan to expand capacity after  , these equations provide the optimal expansion amount if 

there is any (disinvestment would not be the optimal decision). However, if the decision maker is not 

aware of the optimal timing of the last expansion period, these equations cannot help a decision maker 

about the timing. As we will discuss later in this chapter, these equations (continuous and discrete 

cases) are used in one of the steps in the proposed algorithm for finding the optimal expansion policy.  
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Another important point related to Equation 4.10 is the fact that it can be viewed as a 

newsvendor solution of the expansion problem. In order to show the newsvendor critical fractile, let 

discounting factor be negligible, demand be stationary, and    and   
  be fixed through a life-cycle 

(   ). With these assumptions and by letting       , Equation 4.10 can be rewritten as: 

(    )  (     
 )  

     (    )

    
 

 (     
 )  

(    )(       )    
(    )(    )

 

This shows the critical fractile of the classical newsvendor problem where underage cost is 

(    )(       )     and overage cost is      (    ). In both underage and overage costs,  , 

  , and    are multiplied by the number of remaining periods of a life-cycle since they are not one-time 

costs. On the other hand, marginal expansion cost is a one-time cost and the length of the remaining 

periods of a life-cycle has no effect on it.    

Going back to Equation 4.10, it is clear that finding the optimal expansion decision at   when it is 

the last expansion period is a trivial task. However, calculating the optimal solution when   is not the last 

expansion period, even with assuming IID demand and equal intervals between expansions, is not a 

trivial task. This difficulty is related to the fact that the problem is not of infinite horizon and the state 

space (  ) is conditional on the previous expansion decisions. In the next proposition, we address this 

issue and propose an algorithm in order to find an optimal expansion decision at any period. 

4.1.5 Proposition 2 

(Separation Property) At the optimal solution, the expansion decision at any period   depends 

only on the timing of the next expansion and it is independent of all future expansion decisions.  

4.1.6 Proof Proposition 2 

Let    be a period after   at which expansion is an optimal decision, meaning ∑   
     

      and 

   
   . Then the optimality equation in Equation 4.9 from        until      can be expressed as: 
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Given that   
     

    and   
     

    and by summing up these equations,   
   solves the following 

equation that is independent of future expansions except the timing of the next expansion: 
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  (4.11) 

Note that in case of discrete distributions   
  is the smallest    such that: 

∑           
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  (       )    ∑         

       

    
 

□ 

By using the first order condition and the separation property that we discussed in Propositions 

1 and 2, we demonstrated that expansion at any period is only conditional on the next period in which 

expansion is an optimal decision. This is a form of decomposition.  

However, this interpretation is conditional on the timing of these expansion periods. Hence, 

while the problem is concave (profit is concave subject to affine constraints), through this conditioning, 

the first order conditions can be satisfied with more than one solution. This important property is the 

result of the fact that different permutations of expansion periods imposing different affine constraints 

lead to different optimal solutions. 
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4.1.7 Corollary 1 

At any period s, using Equation 4.11 and without knowledge of the next expansion period, a 

decision maker is able to determine whether a period is an expansion period or not. Meaning, if there is 

no solution for   
  in ∑           

 (     
 )

  
      

        
  (     

      )   ∑       
      

       

    
,   is not a period in 

which expansion is an optimal decision. It may be argued that the equation might have solution for 

period   
    , which means   

  has a solution in the following equation: 

∑           
 (     

 )

  
      

       

 
  (     

      )    ∑       
      

       

    
 

but no solution for   
  in   

     case implies that there is no need for extra capacity for periods between 

       and   
       and if any extra capacity would be needed for periods afterwards they can be 

procured at   
     epoch. This property helps in discarding some of the combinations of expansion 

periods and increases the speed of the solution algorithm significantly. 

4.1.8 Algorithm 1 

As discussed, capacity expansion for SLC products is a trivial task when demand is deterministic 

and it can be solved by a linear programming model with ease. However, in the stochastic case, it is a 

multistage stochastic problem that cannot be solved easily and efficiently due to its action and state 

spaces. In this section, by employing Propositions 3 and 4, we propose an algorithm that has the ability 

to reduce the problem to a much smaller action space that can be solved in an efficient manner. This 

algorithm has three main steps and should be repeated in each expansion period since the decision 

maker's belief might change with each new demand observation.  

a. Let    be the power set (collection of all subsets) of   
  where each element of    is a 

subset (permutation) of expansion timings. As an example, if a decision maker decides to 

expand capacity at periods 10, 30, and 50 and currently the product is at period 10 of the life-
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cycle (  
             ) then                                           , where 

|   |   |  
 |.  

b. Use Equations 4.10 and 4.11 in order to calculate the expansion policy (  
 ) for each element 

of    . These two equations can be considered as root finding problems or two optimization 

problems. Solving them as an optimization problem would result in better solutions since there 

might be multiple solutions for each equation. Given marginal expansion/maintenance costs, 

the lowest solution is more desirable for a decision maker. Therefore, the optimization 

formulation of these two equations when the distribution of demand is continuous can be 

rewritten as: 
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In case of discrete distributions, the optimization formulations are as follows: 
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For example, in subset {10, 30, 50}, we need to calculate                  . For 

calculating    , Equation 4.11 needs to be used where      and      . Then, for    , again 

Equation 4.11 would be called where      and       and            . After these two 

steps,     and     have been calculated. Finally, for    , Equation 4.10 is used where      

and                . Table 4.1 contains all possible subsets of this example and the 

equations that are necessary for finding the expansion amount. Note that if any of the equations 

would not be solvable in any element of    , the associated subset would be discarded and 

considered as an infeasible solution. At the end of this step, infeasible subsets (permutations) 

have been discarded and feasible subsets with their associated policies (expansion vectors:   ) 

are ready to be compared. Let   
  be a collection of feasible subsets in   . Note that each 

element of   
  has an associated   

  where     |  
 |. Each   

  contains expansion amounts in 

the subset's periods. 

 Subset 
Number 

Subset Expansion Policy Equations for solving 

1 Empty set - - 

2 {10}     Equation 4.10 

3 {20}     Equation 4.10 

4 {30}     Equation 4.10 

5 {10, 20}     and     Equations 4.11 and 4.10 

6 {10, 30}     and     Equations 4.11 and 4.10 

7 {20, 30}     and     Equations 4.11 and 4.10 

8 {10, 20, 30}    ,     and     Equations 4.11, 4.11 and 4.10 

Table 4.1: All possible expansion timing combinations for the example setting 
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c. As a final stage, equation of expected profit in Lemma 1 that provides the expected profits 

of each subset's expansion policy should be employed for identifying the optimal policy. 

Therefore,   
             

(  (  
 |  )). Note that expected profit equation contains an 

integration that cannot be solved analytically. As a result it should be solved by a software 

program that can provide numerical integration methods. 

In this algorithm, due to the limited number of expansion periods, the analysis of all possible 

expansion policies is a much simpler task compared to the multistage stochastic problem. 

4.2 Effect of Marginal Expansion Cost and Lead-time on Optimal Expansion 

Amount 

In this part, we provide some insights regarding the effect of marginal expansion cost (  ) and 

lead-time on optimal amount of expansion in a period. For simplicity and without loss of generality, we 

focus on a case in which the current period is the final expansion period. However, the results and 

insights that are provided in this section can be easily generalized for other scenarios.  

Based on the effect of    on the expected profit function and since it only exist in one side of 

Equation 4.10, it is obvious that any changes in this cost can only have indirect effect on the optimal 

expansion amount in a period. Note that there might be some cases, e.g. when    and    are completely 

being dominated by   and   , at which changes in    would not change an optimal decision.       

On the other hand, since procurement lead-time exists in both terms of Equation 4.10, it is not 

intuitively clear that how an alteration in   affects optimal expansion amount. In order to illustrate this 

property, we assume that the supplier provides a new procurement option that has a lead-time of    

and marginal expansion cost of   
 . In this option, the manufacturer can receive the capacity one period 

earlier than the regular one (      ) with a higher marginal expansion cost (  
    ). Note that the 
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manufacturer has to select one of the two supply options and cannot procure from both2. It is important 

to emphasize that here we do not compare the two supply options with respect to the expected 

profitability. We simply address the effect of procurement lead-time on the optimal expansion amount. 

Comparing the profit of different procurement options can be accomplished numerically based on 

Equation 4.3.    

As a first step, we are looking for the cost of the new capacity option (let’s call this cost  ) that 

makes the manufacturer indifferent (in terms of amount of capacity) to the two procurement options; 

meaning, for what marginal expansion cost of faster procurement case   
  would be the same in both 

options. Clearly, if   
    (  

   ), the manufacturer procures less (more) capacity from the faster 

option comparing to the regular option.  

As mentioned, in case of being in the last expansion period, the decision maker uses Equation 

4.10 in order to find the optimal expansion amount. If, for notational simplicity, we assume that     

and     (no price depreciation and no discounting), the optimal expansion amount from the regular 

option (  
 ) solves the following equation: 

 

∑   (     
 )

 

       

 (     )   
     (     )

    
  (4.12) 

Similarly, the optimal expansion amount from the shorter lead-time option (  
 ) solves the following 

equation: 

 

∑   (     
 )

 

        

 (      )   
    (      )

    
  (4.13) 

where       . As expected, this equation shows that the new capacity from the faster option can 

be utilized at period    . Note that we are looking for a cost of marginal expansion from faster option 

                                                           
2
 Procurement from both options (dual source procurement) will be covered in the Chapter 5 of this dissertation. 
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( ) that leads to the same optimal expansion amount (  
    

 ). Therefore, Equation 4.13 can be 

rewritten as: 

 

    (     
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 )

 

       

 (       )   
    (       )

    
  (4.14) 

Now, by replacing Equation 4.11 in 4.14: 

    (     
 )  (     )   

     (     )

    
 (       )   

    (       )

    
 

with some simplifications:  

      (     
 )  

       
    

 

That means: 

          (    )(      (     
 ))     (4.15) 

This equation implies that if a manufacturer pays        for the faster procurement option, 

the optimal expansion amount procured from the faster option will not change from what the 

manufacturer would have procured from the regular option. If the marginal cost of expansion in the 

faster option would be less than       , the optimal expansion decision from the faster option 

changes and the decision maker procures more from it compared to the regular option (Figure 4.1). 

Note that in this figure,   is a marginal expansion cost for the faster option that leads to zero expansion 

amount: 

  
             (    )(       ∑   (  )

 

        

)    (      )  

 As expected and shown in Equation 4.15, product price (r) and shortage penalty (  ) increases 

    and maintenance cost decreases    . Although maintenance cost has a linear effect on    , the 



49 
 

 
 

effect of product price and shortage penalty depends on the chance of stock-out at period    . 

Intuitively, this is true since if demand is less than        
 , there is no financial benefit for any extra 

capacity.  

 

  

The other issue that needs more elaboration is the effect of demand uncertainty on    . The 

main issue that needs to be addressed is how demand uncertainty at period     might increase or 

decrease    . Intuitively, higher uncertainty should lead to a decrease in    . However, here we show 

that this intuition is not always correct and based on the position of        
 , to the expected demand 

at period     (    ),     might increase or decrease for different degrees of certainty.  

In order to illustrate this behavior, we consider two scenarios for the demand distribution at 

period    . In the first scenario,    is the distribution of demand at this period with mean   and 

variance of   
 . In the second scenario,    is the distribution of demand with mean   and variance of   

 .  

   and    are both from the same distribution with the same expected value but they have different 

variances (  
    

  ), meaning that in the scenario one the decision maker has less certainty about 

demand at period    . For illustrating the effect of uncertainty, we need to consider two cases: 

       
    and        

   :  

a. In case of        
   , based on the property of cumulative probability distribution 

functions that is illustrated in Figure 4.2, it can be shown that    (       
 )      (       

 ). 

As a result,     in the scenario of    (less uncertainty) would be less than     of    scenario. 

𝑐𝑒 𝜂 𝜈 

Optimal expansion increases (𝑧𝑠
  𝑎𝑠

 ) 

Optimal expansion decreases (𝑧𝑠
  𝑎𝑠

 ) 

Figure 4.1: Effect of new procurement option in optimal expansion amount 
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This property implies that, in case of        
   ,     for a decision maker who is more 

uncertain about demand at period     is greater than the case of less uncertain decision 

maker. In terms of  , we have showed that       
    

 when        
   .  

b. On the other hand, when        
     , as shown in Figure 4.2,     (       

 )  

    (       
 ). This property leads to a higher     in the scenario of    (less uncertainty) 

compared to    scenario. This property implies that       
    

. 

 

Figure 4.2: CDF of two distributions of demand: D1 and D2  

So far, we have discussed the effect of one-period shorter lead-time procurement option and its 

cost on optimal expansion amount. Here, we generalize the idea in order to cover the case in which the 

decision maker has a procurement option with n-period shorter lead-time compared to a regular option. 

Obviously, this shorter lead-time comes with a higher cost that the manufacturer needs to bear (  
 ). 

Similar to the one-period shorter lead-time case, we are looking for a cost of this faster procurement 

option that does not change the optimal procurement amount of the regular option. Let this cost be   . 

Again, by assuming no price depreciation and no discounting,   
  should solve the following 

equation for the option that has a lead-time of n-period shorter than L: 

0

0.5

1

D2

D1

𝑲    
  𝝁  

𝑲    
  𝝁  

𝝁  
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By replacing Equation 4.12 in Equation 4.16, we have: 
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With some simplification, the final equation would be: 
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 )

   

         

)      (4.18) 

It is very important to re-emphasize that, so far, we have not discussed the effect of new 

procurement option on the profitability. We only considered the effect of shorter lead-time with more 

expensive cost on   
 . Therefore,     does not provide any insight for a manufacturer about the financial 

superiority (profitability) of one procurement option to the other one in either side of    . It simply 

indicates the amount of change in the expansion cost for the shorter lead-time that does not make the 

optimal expansion amount different from the regular option. 

Although, what is truly interesting for a decision maker is the selection of optimal procurement 

option, comparing the options with respect to their expected profit is not a trivial task. The reason is 

related to the fact that there is no closed form solution for   
  and what we have is an equality equation 

(Equation 4.12) for   
 . Therefore, expected profit equation (Equation 4.3) of the two procurement 

options can only be compared numerically but not analytically. However, if it can be proved that the two 

procurement options has the same optimal expansion amount (as we discussed in Corollary 6), the 

analytical comparison of the expected profits of the two procurement options can be accomplished. 
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As we have showed in Corollary 6, let   be the marginal expansion cost of the one-period faster 

procurement option that leads to the same optimal expansion amount (  
 ) as the regular procurement 

option. As a result, the expected profit of the expansion decision at period   for the faster optimal 

expansion is (assuming no price depreciation and no discounting): 
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(4.19) 

On the other hand, the expected profit of expansion decision at period s for the regular procurement 

option is: 
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(4.20) 

Since we have showed that the same   
  is the optimal point of both Equations 4.19 and 4.20, 

these two expected profits can be compared in their optimal points. As a first step we concentrate on an 

extra cost of the faster procurement option that makes the decision maker indifferent to both options 

with respect to the expected profitability: 
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This equation can be simplified as: 
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Equation 4.21 implies that if the difference of   and    would be   (the right side of the 

equation), the decision maker would be indifferent to the two options with respect to expected profit. 

If      is less (more) than  , then the faster (regular) option should be the choice of the decision 

maker. 

Similarly, this result can be generalized for a faster option that has n period shorter lead-time 

compared to the regular option: 
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Similar to the one-period shorter lead-time: 
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Finally this equation can be rewritten as: 
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Equation 4.23 provides a level at which the decision maker would be indifferent to the two 

procurement options. However, as discussed, these results are based on an assumption that the optimal 

expansion amounts for both procurement options are the same. Although this assumption is very 

restrictive, it is not possible to relax it since there is no closed form solution for optimal expansion 

amount. Without a closed form solution of optimal expansion amount, expected profits of different 

procurement options are not comparable. 

4.3 Model Behavior in Deterministic Case 

As discussed, if a decision maker has complete information regarding the future demands, there 

is no need for any stochastic model and an IP model can be employed for deriving the optimal policy. 

However, in this section we provide a modified version of the proposed expansion model that can be 

used for deriving the policy in case of complete knowledge of the future demand.  

Based on Algorithm 6, in order to find the optimal policy, the subsets of all possible expansion 

timing combinations should be evaluated. After that, for each subset, Equations 4.10 and 4.11 will be 

used in order to calculate the expansion vector associated to that subset. The expansion vector with the 

highest expected profit would be the optimal policy. In the deterministic case, however, these two 

equations should be modified in order to consider the fact that the variance of demand distributions in 

each period is zero. Zero variance converts any distribution to a degenerate distribution. A degenerate 

distribution is the probability distribution of a random variable that only takes a single value. Since, the 

CDF of demand at each period can be rewritten as   ( )  {
             

             
. Therefore, Equations 4.10 

and 4.11 can be rewritten as:  
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       )
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Note that once the optimal policy is calculated, there is no need to proceed further since the life-cycle 

demand does not change. 
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Chapter 5 Extensions of the Stochastic Optimal Expansion Model 

In this chapter, we present some extensions of the proposed stochastic expansion model that 

can be used for solving similar SLC capacity planning problems with more complexity. The first extension 

tackles a problem in which a manufacturer is able to procure capacity from two different supply modes: 

A fast mode (short lead-time) with expensive marginal cost and a slower mode (longer lead-time) with 

less expensive marginal cost. The second extension extends the model in a way that augments its 

capabilities in order to consider the future generations of a product. At both extensions, as a first step, 

we provide the detail for a case in which the manufacturer is planning to expand capacity only one time 

during a life-cycle. Later, we provide the formulation for more than one expansion period. Finally, in the 

last extension, we make provisions for considering salvage value of capacity into the main model of 

Chapter 3 (single supply mode-single generation). 

5.1 Dual Mode Sourcing 

Some manufacturers, like Intel (Peng, Erhun et al. 2012), employ a dual-mode equipment 

procurement strategy in order to hedge against any unexpected surge in demand. In this strategy, they 

procure equipment from their supplier using two supply modes with complementary lead-times and 

prices: a base mode with longer lead-time (  ) and less expensive price (  
 ) compared to a flexible 

mode that is more expensive (  
 ) but has a shorter lead-time (  ). We let expansion amounts from base 

and flexible modes be   
  and   

 , respectively.  

Although shorter lead-times are always more favorable, higher marginal expansion costs 

prevents decision makers to procure only from flexible mode. Therefore, the challenge in this case is 

optimizing profit by balancing between base and flexible modes. This problem is handled in "execution" 

stage in (Peng, Erhun et al. 2012) by scenario generation and stochastic programming.  
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In this extension, we assume that the decision maker plans to expand capacity only two times: 

One time before product launch and another one during the life-cycle of the product that is 

predetermined and fixed. The base mode is used to procure capacity before launching a product and it is 

based on the belief of a decision maker (e.g., initial market potential estimate of the stochastic Bass 

model) and the next expansion period that s/he will expand capacity again. During a life-cycle, however, 

a decision maker can use both base and flexible modes for procurement. In the second part of this 

extension, we propose an algorithm for the multi-period dual source expansion scenario and generalize 

results for that case.  

Note that in the following proposition, the product is in the market and the decision maker 

needs to decide for optimal mix of capacity based on the available (initial) capacity.  

5.1.1 Proposition 1 (Single Period) 

(Single Period) If an optimal solution contains procurement from both base and flexible sources, 

the procurement amount from flexible source is independent of the amount from base source.  

5.1.2 Proof of Proposition 1 

The proof is similar to the proof of Lemma 1 from Chapter 3. Let current period,  , be the first 

and only element of   
 . 
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Based on Leibniz integral rule and the first order optimality condition (
  

   
    and 

  

   
   ),   

  
and 

  
  

solve the following equations: 
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Assuming that the optimal solution contains both sources, part of Equation 5.3 can be replaced by 

Equation 5.4. As a result, Equation 5.3 can be rewritten as: 
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 (5.5) 

□ 

Note that Proposition 1 of this chapter only provides the necessary conditions for obtaining the 

optimal expansion amounts from base and flexible modes given the assumption that procurement from 

both modes is the optimal decision. It means, if procurement from one of the modes would not be an 

optimal decision, both equations (Equation 5.4 and 5.5) would not be solvable together. However, it 

would not be clear that procurement from which mode(s) causes infeasibility. Following algorithm 

provides necessary steps for finding the optimal procurement amounts in this setting.    

5.1.3 Algorithm 1 (Single Period) 

Follow the following steps at period s in order to find the optimal policy: 

a. Use Equations 5.4 and 5.5 in order to find the optimal mix of procurement from both modes 

(  
  

and   
  

). If these equations are solvable together, there is no need for extra steps and 
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optimal mix would be   
  

and   
  

. If any of the equations (or both) is not solvable go the next 

step. 

b. Consider the following three cases and obtain procurement amount and expected profit for 

each of them: 

i. Assume that procurement from the base mode is the only option. Use Equation 

4.3 and Equation 4.10 in order to find the optimal capacity procurement from the 

base mode and its expected profit. 

ii. Similar to step (i), assume that procurement from the flexible mode is the only 

option; find the optimal capacity procurement amount from the flexible mode and its 

associated expected profit. 

iii. Assume that no expansion is the optimal decision and calculate the expected 

profit for this case as well. 

c. Now compare the expected profit of case (i), (ii), and (iii) of the previous step and select the 

case with the highest expected profit as the optimal decision. 

In the previous proposition, we presented the equations that   
  

 and   
  

need to solve when 

the decision maker chooses to expand capacity only once during a product’s life-cycle. The following 

proposition expands the results to a case in which capacity procurement is planned to occur twice 

during a product’s life-cycle and in both expansion periods both modes are available for the decision 

maker. 

5.1.4 Proposition 2 (Multiple Periods) 

If a decision maker plans to expand capacity at period s and s’ in a dual source mode, optimal 

expansion values (  
  

   
  

    
  

    
  

) can be obtained by solving Equations 5.6 to 5.9 consequently:   
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5.1.5 Proof of Proposition 2  
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After taking the expectations, the result would be straight forward:  
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By first order optimality condition, Equations 5.10 to 5.14 should be equal to zero in order to 

find the optimal values.   
  

 that is obtained by solving Equation 5.10 should be used in equation 5.11 

for finding   
  

. This procedure should be followed until all optimal values are computed. 

□ 

Note that Proposition 3 assumes that procurement from both modes in both expansion periods 

are in the optimal solution. If any of the four expansion amounts would not be in the optimal solution, 

the four equations of Proposition 4 will not be solvable together. The following algorithm provides the 

steps that need to be followed when equations of Proposition 3 are not solvable.   

5.1.6 Algorithm 2 (Multiple Periods) 

(Multi-period dual expansion model) Similar to Algorithm 1 of Chapter 3, the following steps 

should be taken in order to compute the optimal expansion policy: 

a. Let    be the power set (collection of all subsets) of   
  where each element of    is a 

subset (permutation) of expansion timings. Note that in each period, a decision maker has to 

consider two sources for the expansions. As an example, if a decision maker decides to expand 

capacity at period 10 and 30 and currently the product is at period 10 of the life-cycle 

(  
                    ), then 

                                            , where |   |   |  
  | 
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b. Use Proposition 3 and develop necessary equations for each subset in    . Note that each 

combination, based on periods and modes, needs its specific equations and it is not possible to 

write a general formulation for all possible cases. For example, Proposition 3 can be used for a 

combination where the decision maker expands capacity in periods 10 and 30 from both 

sources. Note that if any of the equations would not be solvable in any subset (permutation), 

the associated subset would be discarded and considered as an infeasible solution. At the end of 

this step, infeasible subsets (permutations) have been discarded and feasible subsets with their 

associated policies (expansion vectors:   
  and   

 ) are ready to be compared. Let   
  be a 

collection of feasible subsets in   . Note that each element of   
  has an associated   

  where 

      |  
 |. Each   

  contains expansion amounts in the subset's periods.  

c. As a final stage, each expansion policy should be plugged in the expected profit equation ( ) 

in order to identify the optimal policy. Therefore   
             

(  (  
 |  )).  

5.2 Multi-generation Products 

After launching a new product in a market, many manufacturers continue improving their initial 

products and introduce the improved versions as new generations to the market. This strategy is very 

common in electronics and semiconductor industries including smartphones, tablets, processors and 

etc. In these industries, new generations are introduced in the market when the current generations of 

the product are still available, which leads to a cannibalization of the current generation.  

Unless a manufacturer considers dramatic changes in a new generation, the installed capacity 

for a current generation might be used for the next generation. As a result, considering solely the 

demand for the current generation of a product might lead to a procurement policy that is far from 

optimal. In this section, we generalize the proposed model for a case in which the decision maker is 



66 
 

 
 

planning for a product with two generations. However, the results can be considered as a framework for 

other scenarios in which the product has more than two generations.  

In this two-generation setting, it will be assumed that the launch and termination periods for 

both generations are fixed and known to the decision maker. We let period   
  and   

  be the launch 

periods of the first and second generation respectively. In addition,   
  and   

  are the termination 

periods of the first and second generation products (Figure 1).    
  can be set to zero in order to be 

considered as the starting point of the product introduction to the market.  

 

Figure 5.1: Launch and termination timings of a product with two generations 

In addition to the notations that we have introduced in Chapter 4, that are used here for the 

first generation, following notations will be used for the second generation: 

  ̃ : Stochastic demand of the second generation at period t 

  ̃ ( ): Probability density function of the second generation demand at period t 

  ̃ ( ): Cumulative distribution function of the second generation demand at period t 

  ̃ : Expected value of the second generation demand at period t 

  ̃ 
  : Variance of the second generation demand at period t 

  ̃: Initial product sales price for the product in the second generation 

  ̃ : Product sales price for the second generation at period t 

  ̃ : Initial marginal penalty of unmet demand for the second generation 

Generation 2 
Generation 1 

𝒕𝟐
𝑻 𝒕𝟏

𝑻 𝒕𝟐
𝑳  𝒕𝟏

𝑳

 𝟎
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  ̃ 
 : Marginal shortage penalty for the second generation at period t 

Note that marginal expansion cost (  ) of the single generation model is slightly different from a 

multi-generation setting. In the multi generation model, a cost that is associated to the reconfiguration 

of an installed capacity, for producing new generations, should also be included in this price. Since, the 

time of reconfiguration depends on the manufacturer’s production policy it is not trivial to predict 

precisely when the installed capacity will be reconfigured for producing new generation of a product. As 

a result, in this section we assume that the reconfiguration cost occurs at the time of capacity 

procurement.    

As a first step, we concentrate on a setting in which the decision maker only expands capacity 

once during life-cycles of the two generations. Later, we generalize the result to a case where the new 

capacity procurement is planned to occur twice. Providing a general formulation for any scenario (more 

than two expansion periods) is not trivial since different sequences of expansion periods and 

launching/termination periods need different formulations. However, we believe that these two cases 

can be generalized for any scenario where the decision maker is planning to expand capacity more than 

two times.      

For the case in which the decision maker plans to expand capacity only once, we assume that 

the first generation product is in period   of its life-cycle and based on the remaining periods of the first 

generation life and complete life-cycle of the second generation product, the decision maker needs to 

decide on the amount of new capacity that should be procured. In this period, the amount of available 

capacity is    and the manufacturer can utilize the new capacity after   periods (       
    

  

  
 ). Note that if     , the decision is considered as the initial capacity. Since holding capacity is not 

free (due to maintenance cost), there is no reason to expand capacity before   . Figure 2 illustrates the 

sequence of events/timings.  



68 
 

 
 

    

Figure 5.2: Sequence of timing of events in a case that a decision maker expands capacity only once after launching a product  

5.2.1 Proposition 3 (Single Period) 

If   (where        
    

    
 ) would be the last expansion period, the optimal expansion 

decision at this period should satisfy the following equation: 
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5.2.2 Proof of Proposition 3 

Similar to the Proposition 1 of Chapter 3, the expected profit of an expansion policy can be 

written as: 
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The first and second derivatives of   are: 
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We have showed that the expected value of the profit function is strictly concave. Therefore, based on 

the first order optimality condition: 
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□ 

5.2.3 Corollary 1 

If initial product price and shortage penalty for both generations would be the same, optimal 

expansion decision solves the following equation: 
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□ 

5.2.4 Corollary 2 

The result of Proposition 5 can be easily generalized for a multiple-generation scenario. Let us 

assume that the manufacturer is planning to launch   generations of a product and period   would be 

the only expansion period during the first generation.   
  and   

  are launch and termination periods of 

generation  . Also,    and   
 

 are initial product price and shortage penalty for generation   of a 

product, where          . In addition, (  
 
)  is the complement of CDF for demand of generation   

at period  . It can be shown that   
  solves the following equation: 
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□ 

Proposition 5 provides an equation that   
  has to solve when   is the final expansion period. In 

the following proposition, we generalize this results to a case where the decision maker, in addition to 

period  , plans to procure new capacity in another period (  ) as well. Here, we let    to be       , 

meaning that     will be utilized at the first period of the launching period of the second generation. 

Note that this is just an example that makes the formulation easier to read and any other expansion 

timings can be modeled in the same way. 

5.2.5 Proposition 4 (Multiple Periods) 

If   and   , where           
    

    
 , would be the two expansion periods, the 

optimal expansion decisions at these periods should satisfy the following equations: 
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(5.23) 

5.2.6 Proof of Proposition 4 

Similar to the previous proofs, it can be shown that expected profit can be written as: 
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As a result, at optimal solution: 
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and 
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By replacing Equation 5.28 in Equation 5.27, we have: 
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□ 

5.3 Impact of Capacity Salvage Value 

As we discussed in the introduction, irreversibility of investments is one of the main issues in the 

capacity planning for SLC products due to negligible salvage values of the highly customized tools and 

machines with very high obsolescence rates. However, there might be some cases where a 

manufacturer might be able to recover some of its investment by reselling its installed used capacity. In 

this section, we modify the model presented in Chapter 3 in order to include the salvage value into the 

formulation of the problem. Note that this extension only extends the main model of the dissertation in 

which a manufacturer only procures capacity for one generation of a product and from one supply 

option. 

If we let    be the unit salvage value of an installed capacity that can be sold at the end of a life-

cycle, the expected value of profit function (Equation 4.3) can be rewritten as:  
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(5.30) 

Based on Leibniz integral rule, the first derivative of the expected profit with respect to expansion 

decisions is: 
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(5.31) 

As a result, if    would be the last expansion period of a life-cycle, the optimal expansion amount at this 

period (  
 ) solves the following equation: 
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Note that this equation is very similar to Equation 4.10. Assuming no discounting (   ), it is 

obvious that if a manufacturer would be able to recover all his investment (     ), the optimal 

expansion would only depend on maintenance cost, underage penalty cost and product price.      

Although Equation 5.32 has a slight difference with the similar equation of the main model (no 

salvage value), it can be shown that in case of multiple expansion periods, salvage value has no effect on 

the equation that optimal expansion of period   should solve (Equation 4.11). If we let    be the next 

expansion period at which expanding capacity is an optimal decision, it can be proved that optimal 

expansion at period   (  
 ) should solve the following equation: 
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(5.33) 

That is exactly the same equation of the main model in Chapter 4. 
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Chapter 6 Numerical Experiments 

In this chapter, we conduct sensitivity analysis for factors that affect the optimal policies and 

performance of the proposed capacity expansion models from Chapters 4 and 5, through simulation. 

The factors that can potentially affect an expansion policy are usually imposed by the environment and 

should be studied individually or in combination with each other. Here, we focus on the factors that are 

related to a market, which a manufacturer operates in, or the type of procurement that it has to procure 

capacity from. 

Diffusion speed, demand volatility and underage penalty cost are among those factors that vary 

from one industry/market to another and have a major impact on expansion policies. In contrast, 

marginal capacity cost and procurement lead-time are specific to the technology that a manufacturer 

employs and the supply option that it is procured from. 

       Diffusion Speed p q 

Slow 0.001 0.25 

Medium 0.001 0.35 

Fast 0.004 0.4 

Table 6.1: Bass model parameters for three diffusion speeds 

For producing different demand scenarios with different diffusion speeds, the proposed 

stochastic Bass diffusion model of Chapter 3 is used. In this model that is based on the Bass model, p 

and q are the parameters that control the diffusion of a product. Three sets of diffusion parameters (p 

and q) are defined in order to illustrate the behavior of the model in three different diffusion speeds 

named slow, medium and fast (Table 6.1). Initial market potential is assumed to be two million 

customers. Note that these parameters are simply selected as an example and they can take any value 

with respect to different products. In order to show the adoption processes for these three levels, Figure 

6.1 illustrates the demand volumes at each period with very low volatility in market potential.  
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Figure 6.1: Demand curves in three diffusion speeds (no volatility) 

The other important factor is the volatility of demand. Volatility is the level of uncertainty that a 

decision maker has in regards to future demand. As explained in Chapter 3, demand uncertainty is 

modeled with two parameters in the proposed stochastic Bass diffusion model:   and  .   is the factor 

that controls the changes of the market potential in each period and   is the decay factor of   through a 

life-cycle. Based on the numerical examples that are presented in Chapter 3, three levels for   and one 

level for   are selected. These values provide different levels of volatility and unpredictability in demand 

that mimic well some of the real world examples.       

Volatility Level     

Low 1.2 4 

Medium 1.3 4 

High 1.4 4 

Table 6.2: Demand volatility levels 

The last factor, that is considered to be related to a market that a manufacturer operates in, is 

shortage penalty cost/unit (  ). As discussed in Chapter 4, in addition to missing revenue, manufacturers 

are penalized for not being able to meet market demand. In this chapter, we present the simulation 
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results for three levels of the initial values of this penalty cost/unit: $20, $30, and $40. Note that this 

cost is not fixed and decreases exponentially during a life-cycle by a decay factor ( ). 

Marginal capacity cost and procurement lead-time are among those factors that are specific to a 

supply option that the manufacturer procures the capacity from. We consider two different types of 

procurement options based on their lead-time length and marginal expansion cost. First option has a 

longer lead-time with a cheaper capacity cost ($200/unit capacity, 4 period lead-time) compared to an 

option with shorter lead-time but more expensive expansion cost ($225/unit capacity, 1 period lead-

time). Note that in the proposed model of Chapter 4, the decision maker only procures capacity from a 

specific supply option and cannot switch between different options once a product is launched. As a 

result, in our experiments, the decision maker selects one of the options before a product launch and 

continues procuring from it until the end of a life-cycle.  

In all experiments, the initial price is assumed to be $40 and it is monotonically decreasing 

throughout the life-cycle (       
    ). The decay factor (α) for both product price and underage 

penalty cost is the same and it is picked in a way to provide half of the initial values at the end of a life-

cycle with 35 periods (T = 35). 

Moreover, we assume that the decision maker expands capacity in those periods that are 

multiples of the expansion gap. In addition, s/he procures new capacity in period –   and the first period 

of a life-cycle. As an example, if the lead-time would be three periods and the expansion gap is assumed 

to be 6 periods, the decision maker procures new capacity in the following periods: 

                 . Period zero is assumed to be the last period before launching a product. Finally, it 

is assumed that a decision maker can expand capacity every three periods. Discounting factor is 

assumed to be negligible. The list of different levels of parameters and costs are presented in the 

following table: 
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Parameter Level(s) 

   $40 

   $20, $30, and $40 

   $0.5  

   and   ($200, 4 periods) and ($225, 1 periods) 

  .0025 

Expansion gap Every 3 periods 

  1 

Table 6.3: Parameters and settings for simulation experiments 

Note that each combination of these values (Tables 6.1, 6.2, and 6.3) is considered as one 

simulation setting. In the following sections, we have generated adequate number of demand scenarios 

(by using the stochastic Bass diffusion model of Chapter 3) for each simulation setting and used the 

proposed expansion model for capacity planning. At the end of each simulation scenario, we have 

collected the performance-related statistics including life-cycle profit, total sales, total lost sales, total 

installed capacity, and others. Average of the profits across all simulation experiment setting replications 

will be the measure for performance comparison. 

6.1 Sensitivity Analysis 

In this section, first we illustrate the effect of shortage penalty cost (  ) combined with diffusion 

speeds and volatility levels on the performance of the proposed expansion model. Then, by considering 

the interaction of procurement lead-time and marginal expansion cost, we present the circumstances at 

which faster-but-expensive procurement option is more profitable for a manufacturer. 
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6.1.1 Diffusion Speed, volatility, and underage penalty cost  

As discussed, missing market demand has some consequences for manufacturers that in some 

cases can be measured and monetized in order to be included in the investment decisions. Figure 6.2 

illustrates the effect of three levels of shortage cost that are $20 (solid lines), $30 (dashed lines), and 

$40 (dot-dashed lines) combined with different diffusion speeds and volatility levels. In this figure, 

marginal expansion cost is $200/unit capacity. 

 

Figure 6.2: Average profit for shortage cost of $20 (solid lines), $30 (dashed lines), and $40 (dot-dashed lines) 

As it is clear in Figure 6.2, increasing diffusion speeds has a negative effect on the profitability of 

a product. In each volatility level, slow diffusion products have higher average life-cycle profits 

compared to the other two diffusion speeds. The reason is related to a fact that in slow diffusion speeds 

a manufacturer has more opportunities to adjust the available capacity compared to the faster diffusion 

speeds. In slow diffusion case, the time between launching a product and the period of the peak in a 

demand is longer than the other two diffusion speeds and the decision maker is able to modify/improve 

previous policies more frequently. In products with medium and fast diffusion speeds, on the contrary, 

the decision maker has very few opportunities for procuring new capacities and any miscalculation or 

mistake in an expansion policy leads to more severe consequences (increases with the level of 

uncertainty in the stochastic Bass demand diffusion model). 
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In terms of the volatility effect, it is obvious that a manufacturer can achieve a higher profit in a 

low volatile environment compared to a turbulent market. In case of low volatility, the decision maker 

can procure enough capacity with a high level of certainty and avoid any costly under- or over- 

expansions. On the other hand, it is again an intuitive expectation that in a volatile environment aligning 

capacity expansions with a stochastic demand is more challenging and consequently the chance of 

misalignment is higher. 

In addition, this figure shows that a high underage cost intensifies the effect of volatility levels 

on the average profit that a manufacturer can achieve in a setting. The differences of average profits are 

insignificant when the volatility is low and more profound when the volatility is high. Steeper slope of 

the dot-dashed lines (the highest shortage cost) in Figure 6.2 is the result of this relationship. Since in a 

low volatile environment the decision maker can procure enough capacity without any significant risk, 

level of shortage penalty cost cannot affect the profitability so much as the high volatility setting.  

6.1.2 Interaction of expansion cost and lead-time 

As explained in Chapter 4, the proposed expansion model assumes that marginal expansion cost 

(  ) and procurement lead-time ( ) are fixed during a life-cycle and a manufacturer cannot switch 

among different supply options once the product is launched. However, before launching a product the 

decision maker might have different options with respect to procurement lead-time and marginal 

expansion cost and s/he would be able to pick among them. In this section, by presenting results from 

related simulation experiments, we provide some insights on the superiority of different procurement 

options (based on their profitability) under different circumstances.  

Here we assume that the decision maker has two options before launching a SLC product: 1) 

Fast-but-expensive option (    period and        /unit capacity); 2) Slow-but-cheap option (    

periods and        /unit capacity). In the following figures, the fast-but-expensive option is showed 

in dashed lines and the slow-but-cheap option is showed in solid lines.  
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Figure 6.3 and Figure 6.4 illustrate the average profit of the two procurement options under 

different diffusion speeds and volatility levels when       and      . As it is obvious from Figure 

6.3 (low shortage penalty cost), cheaper procurement option leads to higher average profits under all 

settings when compared to the more expensive but faster option. However, the differences between 

two options shrink as volatility level increases, especially when the product has a fast diffusion speed.  

 

Figure 6.3: Average profit for a slow-but-cheap procurement option (solid lines) and fast-but-expensive option (dashed lines) 

when cu=$20 

 

Figure 6.4: Average profit for a slow-but-cheap procurement option (solid lines) and fast-but-expensive option (dashed lines) 
when cu=$40 
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When shortage penalty cost is higher (Figure 6.4), this shrinkage is more visible and there is 

clearly a cutoff point in fast diffusion speed at which the fast-but-expensive option is more profitable 

than the slow option. 

This cutoff point implies that a manufacturer has more incentive to switch to the faster option 

when s/he operates in a higher volatile environment and has a product with a faster diffusion speed. In 

products with fast diffusion speeds, decision makers have very few opportunities to expand capacity, 

and, as a result faster procurement options are more valuable for them. In addition, when the volatility 

is high, capacity planning is riskier since any initial demand estimations might be completely unreliable. 

In this case, fast-but-expensive option gives the manufacturer an ability to postpone the procurement as 

much as possible. The extra cost that the manufacturer has to pay for the faster delivery can be 

considered the cost of “postponement option.” 

6.2 Benchmark Comparison 

Up to this point, we only discussed the behavior and the performance of the proposed model 

under a variety of circumstances. In order to show the benefit of using the proposed expansion model, 

we compare its performances with a benchmark model that is certainty equivalent controller (CEC).      

6.2.1 Certainty Equivalent Controller  

It was discussed in Chapter 4 that deriving an optimal policy for a capacity planning problem 

under stochastic non-stationary demand is a challenging task. In these situations, a decision maker often 

tries to settle for a suboptimal control model that provides a reasonable balance between convenient 

implementation and adequate performance (Bertsekas 2005).  

CEC is one of the suboptimal control schemes that use the available information in order to fix 

the uncertain quantities with some values. Incorporating the fixed values, the decision maker applies at 

each stage the control that would be optimal (Bertsekas 2005). In each period, s/he needs to rerun this 

deterministic model with new information.  
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Here, we assume that the expected values of the demand are used for replacing the uncertain 

demand values. This replacement converts the problem to a deterministic dynamic programming model 

and the derived policy from this model is a suboptimal expansion vector. The objective function and the 

state transition equation of this deterministic dynamic programming model are defined as follows: 
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This formulation can be converted to a linear programming problem: 
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As mentioned, the CEC model only considers the expected value of demand and ignores the 

distributions of demand in future periods. Therefore, CEC performs well when the volatility of a demand 

is low and performs poorly in case of highly volatile demand. Although in a volatile environment CEC will 

certainly provide a poor performance, in some cases in which the volatility of the demand is extremely 

severe, CEC and the proposed expansion model might have non-differentiable performances. This issue 

will be discussed later in detail. 
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6.3 Policy Comparison 

In this section, we present policy comparisons of the proposed stochastic model (SM) and the 

linear programming formulation of the CEC model (LP). Figure 6.5, Figure 6.6, and Figure 6.7 illustrate 

the expansion policies of SM and LP for the three different volatility scenarios. In each figure, one 

demand realization is illustrated with a solid line and available production capacities, which are 

calculated by SM and LP, are showed with two different dashed lines. In addition, each plot reports the 

profit that can be achieved by employing each model. Note that the reported profits are only for one 

realization of a demand and therefore not adequate for comparing the proposed stochastic expansion 

model and CEC model.  In this section, the simulations are based on a setting in which the expansion gap 

is six periods, diffusion speed is medium,        ,        and        . 

 

Figure 6.5: Demand and available capacities of SM and LP under low demand volatility 
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Figure 6.6: Demand and available capacities of SM and LP under medium demand volatility 

 

Figure 6.7: Demand and available capacities of SM and LP under high demand volatility 

As can be seen from the plots, the expansion policies calculated by the stochastic expansion 

model (SM) and CEC model (LP) have systematic differences in different stages of a life-cycle. SM is 

expanding more than LP in the early periods of a life-cycle and LP ends up with higher installed capacity 

in all three plots. In order to compare the installed capacities in both models, Figure 6.8, Figure 6.9, and 

Figure 6.10 depict the average installed capacity for each of the three volatility cases. Note that 
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previously we showed the installed capacity in both models for only one realization of demand, but in 

the following plots (Figure 6.8, Figure 6.9, and Figure 6.10) we are illustrating the average installed 

capacity based on 5000 realizations of the stochastic Bass model in each volatility case. 

 

Figure 6.8: Average installed capacity calculated by SM and LP when demand has low volatility 

 

Figure 6.9: Average installed capacity calculated by SM and LP when demand has medium volatility 
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Figure 6.10: Average installed capacity calculated by SM and LP when demand has high volatility 

These plots show that our initial observation about installed capacity in these two models is 

correct, and clearly, the proposed stochastic model installs more capacity at the initial stages of a life-

cycle and less towards the end of a life-cycle compared to the deterministic model of CEC.  

In order to be able to compare the different policies under different volatility levels, Figure 6.11 

and Figure 6.12 present the average differences of the two models through a life-cycle. Figure 6.11 

depicts the difference of available capacity in each period of a life-cycle for the three different volatility 

settings: low, medium and high. Each line in this plot is associated to a volatility level in demand and 

represents the average of the difference between installed capacity in the proposed stochastic model 

and the CEC deterministic model (5000 realizations). Figure 6.12 shows this difference relative to the 

installed capacity of the proposed stochastic model.    
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Figure 6.11: Average differences of installed capacity by the two models (SM and LP) through a life-cycle  

As it is obvious from Figure 6.11, the proposed stochastic expansion model expands more than 

CEC model in the first two expansions of the life-cycle (since the difference is positive) and expands less 

in the last two expansion periods. Moreover, the gap between two models widens by with the level of 

volatility. Meaning, the difference between the two policies is larger when the demand has higher 

volatility and is smaller otherwise.   

This behavior can be explained by looking at the mechanics behind the proposed stochastic 

expansion model. In our model, not only one point (expected value in the CEC model) of the demand 

distributions but also the complete information of the distributions is considered for deriving the 

optimal expansion policy. This feature leads to a more aggressive policy (comparing to the CEC model) at 

the initial stages of a life-cycle since the model sees an opportunity of receiving demand volumes more 

than what it is expected (expected value of the distribution). Note that since expansion decisions are not 

one-time decisions, this aggressive policy can be converted to a more conservative policy (again 

comparing to the CEC model) later in a life-cycle.  Meaning, the proposed expansion model expands 

more at the beginning since there is a (significant) chance of receiving more orders than the expected 
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values and considering a fact that, if it would not be the case (receiving orders less than the expected 

values), the model will have a chance to balance out this aggressive policy with more conservative 

subsequent expansions.  

In the later expansion decisions, however, there will not be any opportunity to adjust expansion 

decisions and the model adopts a more conservative policy.  

 

Figure 6.12: Relative average differences of installed capacity by the two models (SM and LP) through a life-cycle 

In summary, at early stages of a life-cycle it is more profitable to emphasize on “What if the 

demand will be more than the expected values?” compared to the final stages at which it is more 
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different cost structures might change the level of capacity expansion difference between the two 

models, the direction of the differences is probably valid for most settings.         

Another point that is worth mentioning is the variability of expansion decisions. Figure 6.13 
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reason is related to the fact that the CEC model is a “point-based” deterministic optimization model 

(based on expected values) and any changes in the expected values of future demands can potentially 

change the optimal solution significantly. In contrast, the proposed expansion model is based on the 

distributions, and unless the distributions of future demands experience significant shifts, optimal 

expansion decisions have less variability. 

 

Figure 6.13: Standard Deviations of Installed Capacities in the CEC model (LP) and the stochastic optimal model (SM)  

So far we have examined the differences in the policies of CEC model and the proposed 

stochastic optimal expansion model. In this section, we present the performance (average life-cycle 

profit) of the proposed model accompanied by the CEC model in order to illustrate the advantages of 

using the proposed model under different settings   

Figure 6.14 and Figure 6.16 show this average for the CEC (dashed lines) and the proposed 

expansion models (solid lines). Each figure is based on a specific cost structure. In addition, Figure 6.15 

and Figure 6.17 show the ratios of the average profits of the CEC model to the average profits of the 

proposed expansion model. Each of these plots is associated to a cost structure used in Figure 6.14 and 

Figure 6.16. Note that each point in Figure 6.15 is the ratio of the associated average profit in the CEC 
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model to the associated average profit of the proposed expansion model in Figure 6.14. The same 

relationship is valid for Figure 6.16 and Figure 6.17.     

The setting of Figure 6.14 and Figure 6.15 are based a cost structure in which       , 

       ,         and a lead-time of 4 periods. Figure 6.16 and Figure 6.17 are based on the same 

setting except underage penalty cost that is       . Note that in both settings the gap between 

expansion decisions is three periods.  

 

Figure 6.14: Average life-cycle profits for the proposed model (solid line) and CEC (dashed line) when cu=$30, ce=$200, 

cm=$0.5 and L=4 

 

Figure 6.15: Performance ratio of the CEC model in comparison to the proposed model when cu=$30, ce=$200, cm=$0.5 and 

L=4 
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Figure 6.16: Average life-cycle profits comparison of the proposed model (solid line) and CEC (dashed line) when cu=$40, 

ce=$200, cm=$0.5 and L=4 

 

Figure 6.17: Performance ratio of CEC in comparison to the proposed model for the setting with cu=$40, ce=$200, cm=$0.5 and 

L=4 
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model might even perform slightly better than the proposed expansion model. This result is related to a 

fact that in the products with a slow diffusion speed, a decision maker has abundant number of 

opportunities to adjust expansion policies and any non-optimal policy can be improved in future 

periods. Moreover, in the proposed stochastic Bass model, magnitude of the changes in the market 

potential decreases through a life-cycle. This property helps the CEC model to pass the very volatile 

initial stages and, since it is a low diffusion product, to adjust any miscalculation when the market 

potential reaches a more stable state.       

6.4 Dual Sourcing Extension 

In Chapter 5, in which we covered the extensions to the proposed expansion model of Chapter 

4, three different extensions with necessary algorithms were presented. One of the extensions considers 

a scenario in which a decision maker has two procurement modes (base and flexible) during a life-cycle 

and can procure from any of them without any restriction. In this section, we assume that the base 

mode has a lead-time of four periods with        . On the hand, the flexible mode has a one-period 

lead-time with a marginal expansion cost of $225 (50 percent more than the base mode). In this section 

capacity maintenance cost is assumed to be 0.5 dollars per unit per period. Moreover, we concentrate 

on a case in which a decision maker uses the base mode for the initial capacity procurement (before 

product launch) and plans to expand capacity only once during a life-cycle, which is on the fourth period. 

In this section, the ratios of the procured capacity from flexible mode to the total procured capacity will 

be reported and discussed. 

Figure 6.18 shows this ratio for the two different shortage penalty costs combined with different 

diffusion speeds and volatility levels. In this figure, solid and dashed lines represent those settings in 

which        and       , respectively. 
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Figure 6.18: Ratio of the procured capacity from flexible mode to the total procured capacity for two shortage penalty costs: 

$20 (dashed lines) and $40 (solid lines) 

The effect of diffusion speed and volatility level on these ratios is very interesting. As it is clear 

from Figure 6.18, diffusion speed of a product has a direct effect on the amount of procurement 

capacity from the flexible mode. This intuitive point is related to the fact that a manufacturer with a fast 

diffusion product receives large volume of demand in a very short time (tall demand curve). As a result, 

using flexible mode is more profitable for them compared to a case where demand has a flatter curve 

(slow diffusion speed) and the decision maker has adequate time to use the base (cheaper) mode for 

capacity procurement. 

The other interesting observation is the effect of uncertainty on this ratio. Since the ratios 

decrease when the volatility levels increase, it is more profitable for a manufacturer in case of volatile 

environment to procure more from the base mode instead of the flexible mode. This interesting result is 

the consequence of the fact that decision makers are not willing to bear the extra cost of the flexible 

mode for a demand that they have less certainty about.  

Figure 6.18 also illustrates the effect of increasing shortage penalty cost on the procurement 

amount from the flexible mode. As expected, a higher stock-out cost increases the ratio and makes it 

more profitable for a decision maker to procure more from a flexible mode.                
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On the hand, Figure 6.19 depicts the effect of the marginal expansion cost for the flexible mode 

on the procurement amounts. In this figure, two marginal expansion costs for the flexible mode are 

presented: $195 that is 30% more than the base mode (solid lines) and $225 that is 50% more than the 

base mode (dashed lines). 

 

Figure 6.19: Ratio of the procured capacity from flexible mode to the total procured capacity for two marginal expansion 

costs of flexible mode: $195 (solid lines) and $225 (dashed lines) 

Although a cheaper flexible mode increased the amount of procurements from flexible mode in 

all settings, its effect on a product with a fast diffusion speeds is more profound compared to slow and 

medium diffusion speeds. Since a decision maker in a fast diffusion product has very short time to 

recover its investment, it is intuitively reasonable for him to procure more from a fast procurement 

mode.   
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Chapter 7 Conclusion and Future Research 

In this dissertation, we focus on demand modeling and capacity planning for innovative short 

life-cycle (SLC) products.  

As a first step, we developed a new model in the class of stochastic Bass formulations that 

addresses the shortcomings of the extant works in the literature. The proposed model considers the 

common fact that the market potential for a product is not fixed and might change during its life-cycle 

due to exogenous (e.g., economic- or competitors-related) or endogenous (e.g., quality-related) factors. 

Allowing this parameter (market potential in the Bass model) to follow a geometric random walk, we 

have showed that the future demand of a product in each period follows a lognormal distribution with a 

specific mean and variance.  

As a second step, we developed a novel stochastic optimal capacity expansion model that can 

be used by a make-to-order manufacturer, who faces stochastic stationary/non-stationary demand, in 

order to optimally determine policies for specifying the size of capacity installation and augmentation. In 

addition to the cost of expansion decisions, the proposed risk-neutral expansion model considers 

procurement lead-times, irreversibility of investments, and the costs associated with lost sales and 

unutilized capacity. We provide necessary and sufficient conditions for the derived optimal policy. We 

then present an exact solution method, which is more efficient than classical recursive methods.  

Additionally, three extensions of the proposed expansion model that can address more 

complicated settings are presented. The first extension increases the capability of the model in order to 

tackle capacity planning for a multi-sourcing scenario. Multi-sourcing is a case in which the 

manufacturer can procure capacity from two supply modes whose marginal expansion costs and lead-

times are complementary. The second extension addresses a scenario in which an installed capacity can 

be used for producing future generations of a product. The last extension accounts for salvage value of 
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the installed capacity in the model and provides the necessary and sufficient conditions for the optimal 

policy. 

Finally, using the proposed stochastic Bass model, we present the results and managerial 

insights gathered from numerical experiments that have been conducted for the stochastic optimal 

expansion models. The main insights and results of the simulations can be summarized as follows: 

a. Effect of product diffusion speed: In this work, ample number of simulations for three levels 

of diffusion speed (slow, medium, and fast) have been conducted. Based on the results, it was 

observed that increasing diffusion speed has a negative impact on the profitability of a product 

since a decision maker would have less opportunities for adjusting the available capacity in 

order to respond to demand volatilities. In products with fast diffusion speeds, since the 

demand curve is relatively peaked, any miscalculation or mistake in an expansion policy cannot 

be revised and it can lead to more severe consequences. In contrast, in products with a 

relatively slow diffusion, a manufacturer has more opportunities to adjust the available capacity 

since the time between launching a product and the period of the peak in a demand is longer 

and any mistake or miscalculation can be improved and revised in the later stages of a life-cycle.  

b. Effect of demand volatility: It is obvious that a manufacturer can achieve a higher profit in a 

low volatile environment compared to a turbulent market. In case of low volatility, the decision 

maker can procure enough capacity with a high level of certainty and avoid any costly under- or 

over- expansions. Contrastingly, in a highly volatile environment, aligning capacity expansions 

with stochastic demand is more challenging and consequently the chance of misalignment is 

higher. In addition, we have observed that higher underage costs intensify the effect of volatility 

levels on the average profit that a manufacturer can achieve.   

c. Comparison of derived optimal policies and performance of the optimal expansion model 

with sub-optimal policies recommended by a certainly equivalent controller (CEC) model: In 
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this work, we have compared the optimal policies that are derived from the proposed optimal 

expansion model to a model in which a decision maker converts the stochastic optimization 

problem to a deterministic one by replacing random variables/parameters by their expected 

values. Based on the numerical experiments, it was observed that the proposed stochastic 

expansion model expands more than the CEC model at the initial stages of a life-cycle and 

expands less in the later periods. The gap between installed capacities of the two models widens 

by the level of volatility. With respect to the performance (average life-cycle profit) of the two 

models, it is clear that in most cases the proposed expansion model outperforms the CEC model. 

The difference between the performances of the two models is more significant for the settings 

in which demand is highly volatile. The reason is related to the fact that the proposed expansion 

model considers the distribution of future demands and the CEC formulation is a deterministic 

optimization model that only considers the expected value of future demands. When a product 

has a high demand volatility level, deviation from any expected path is more likely. 

Consequently, the CEC model that uses the expected values of the future demand performs 

poorly in highly volatile environments. However, under scenarios with extreme volatility, it was 

observed that the performances of the both models are very close to each other.  

d. Supplier mode selection and procurement mix: We have studied the supply relationship 

management from two different perspectives. In the first case, we address a problem in which 

the manufacturer is involved in negotiating and selecting the best procurement option (based 

on cost and lead time) among a menu of options that are provided by a supplier. This selection 

and negotiation process happens before launching a product and the selected option cannot be 

changed during a life-cycle. In the second case, we investigate the optimal procurement mix 

through a life-cycle when a decision maker has two procurement options (flexible option that is 

fast but more expensive and base case option that is slow but less expensive).    
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i. Case 1 (supply option selection): In the numerical experiments, we have studied the 

tradeoff between marginal capacity cost and procurement lead-time and investigated 

the superiority of one procurement option to another under different settings. Note 

that in this setting we assume that a procurement option should be selected before 

launching the product and the manufacturer is not able to switch to another one 

during a life-cycle. Based on the results, we have showed that if the manufacturer has 

two procurement options (before launching), fast-but-expensive and slow-but-cheap, 

s/he has more incentive to select the faster option when facing a higher volatile 

environment with a product that has a faster diffusion speed. In products with fast 

diffusion speeds, decision makers have very few opportunities to expand capacity, 

and, as a result, faster procurement options are more valuable to them. In addition, 

when the volatility is high, capacity planning is riskier since any initial demand 

estimations might be completely unreliable. In this case, fast-but-expensive option 

gives the manufacturer an ability to postpone the procurement as much as possible. 

The extra cost that the manufacturer has to pay for the faster delivery can be 

considered the cost of “postponement option.” Additionally, we also have observed 

that higher marginal shortage penalty cost makes fast-but-expensive option more 

advantageous.   

ii. Case 2 (Procurement mix: dual mode sourcing): Finally, we have studied the dual-

mode sourcing option in which a decision maker can procure from two procurement 

modes with complementary marginal expansion costs and lead-times (flexible option 

that is fast but more expensive and base case option that is slow but less expensive). 

Using an extension of the proposed expansion model, we investigate the optimal mix 

of capacity procurement from the two supply modes under different settings. Based 
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on the numerical experiments, it was shown that diffusion speed of a product has a 

direct effect on the amount of procured capacity from the flexible mode. This intuitive 

result is related to the fact that the manufacturer with a fast diffusion product 

receives large volume of demand in a very short time. As a result, using flexible 

(faster) mode is more profitable for them compared to a case where the demand 

profile has a flatter curve (slow diffusion speed) and the decision maker has adequate 

time to use the base (cheaper) mode for capacity procurement. The other interesting 

observation is the effect of uncertainty on procurement mix. We have observed that, 

in cases of a highly volatile environment, it is more profitable for a manufacturer to 

procure more from the base mode instead of the flexible mode. This interesting result 

is the consequence of the fact that decision makers are not willing to bear the extra 

cost of the flexible mode for a demand that they have less certainty about. Moreover, 

as expected, a higher marginal shortage penalty cost makes it more profitable for a 

decision maker to rely more on the flexible mode. 

7.1 Future Research 

In this section, we identify promising directions for future research for the two main models of 

this work: The stochastic Bass diffusion model and the proposed stochastic optimal expansion model. In 

the proposed stochastic Bass model, changes in market potential are completely random and 

occurrence probability of different exogenous and endogenous factors cannot affect these changes. A 

very interesting future research might be a Markovian switching model that can provide a framework 

for a decision maker to define different regimes and their probabilities for the exogenous and 

endogenous factors. These regimes can have different volatility levels for market potential. Moreover, 

due to the lack of access to relevant demand data, we have not examined the prediction power of the 
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proposed model on a real-world product. It will be interesting if this test would be conducted for 

different industries and macroeconomic circumstances. 

With respect to the optimal expansion model, we have not considered possible restrictions of 

suppliers’ capacity for the fulfillments of a manufacturer’s orders. However, suppliers’ production 

capacity is not unlimited and in most cases the manufacturer has to bear a part of this investment cost, 

e.g. capacity reservation fee. One possible future research direction would be addressing this issue by 

including suppliers’ capacity restriction and reservation fees in the optimal expansion model. 

Additionally, we have assumed that a manufacturer, who uses the proposed stochastic optimal 

expansion model, is not able to store any product (a make-to-order manufacturer) and as a result it does 

not produce more than demand at any period. One extension to this model can be relaxing this 

restriction and enhancing the capabilities of the model by considering possibility of storage.  
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This dissertation focuses on demand modeling and capacity planning for innovative short life-

cycle products. We first developed a new model in the class of stochastic Bass formulations that 

addresses the shortcomings of models from the extant literature. The proposed model considers the 

common fact that the market potential of a product is not fixed and might change during a life-cycle due 

to exogenous (e.g., economic- or competitors-related) or endogenous (e.g., quality-related) factors. 

Allowing this parameter (market potential in the Bass model) to follow a geometric random walk, we 

have showed that the future demand of a product in each period follows a lognormal distribution with 

specific mean and variance.  

We also developed a novel stochastic capacity expansion model that can be used by a make-to-

order manufacturer, who faces stochastic stationary/non-stationary demand, in order to optimally 

determine policies for specifying the sizes of capacity procurement. In addition to the cost of expansion 

decisions, the proposed risk-neutral expansion model considers procurement lead-times, irreversibility 

of investments, and the costs associated with lost sales and unutilized capacity. We provide necessary 

and sufficient conditions for the derived optimal policy. We then present an exact solution method, 

which is more efficient than classical recursive methods.  
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Additionally, three extensions of the proposed expansion model that can address more 

complicated settings are presented. The first extension increases the capability of the model in order to 

tackle capacity planning for a multi-sourcing scenario. Multi-sourcing is a case in which the 

manufacturer can procure capacity from two supply modes whose marginal expansion costs and lead-

times are complementary. The second extension addresses a scenario in which an installed capacity can 

be used for producing future generations of a product. The last extension accounts for salvage value of 

the installed capacity in the model and provides the necessary and sufficient conditions for the optimal 

policy. 

Finally, using the proposed stochastic Bass model, we present the results and managerial 

insights gathered from numerical experiments that have been conducted for the stochastic capacity 

expansion models.  
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