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PREFACE  
 

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been routinely 

used to evaluate and quantify the effectiveness of new drugs on tumor vascular characteristics 

using gadolinium-DTPA as a contrast agent in MRI scans. It is a non-invasive tumor diagnostic 

method, with which the perfusion in tissue can be visualized and can also provide important 

functional information about tissue microvasculature. The most important requirement for DCE-

MRI is the need to compare results from different institutions. 

 

This work will provide us with 

more reproducible DCE results by introducing a fixed T1(0) approach and by introducing new 

DCE parameters to quantify cancer treatment efficacy. This work also enhanced the ability of 

DCE-MRI as a non-invasive tool to decide the best treatment dose among a number of different 

doses of the antiangiogenic drug, sunitinb.  
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Chapter One 

Introduction 

1.1 Background and Project Motivation 

Magnetic resonance imaging (MRI) was introduced to the medical field in the late 1970s, 

and it is one of the most accurate, non-invasive and safe imaging modalities. It has been proven 

to be one of the most promising methods to image human anatomy, and it functions with 

reasonable resolution, which can reach the sub-millimeter level and give adequate structured, 

detailed images (Haacke et al., 1999). MRI uses the magnetic properties of hydrogen protons in 

tissues. The MRI signal depends on the density of hydrogen protons and their magnetic moment 

interactions with the external magnetic field and the radio-frequency excitation (Bradley; 

Faulkner, 1996). MRI has a number of advantages, such as high resolution 3D capability and 

therefore the flexibility to produce different cross-sectional images in any plane (Hedley and 

Yan, 1992). The most obvious and important advantages of MRI compared to other imaging 

modalities is the absence of ionization radiation. This will spare the patients any additional risk 

caused by such exposure and eventually allow regular and more frequent monitoring of lesions 

inside the human brain, for example, compared to computed tomography (CT) or positron 

emission tomography (PET) (Peters, 2000; Weiss et al., 2008). Clinical MRI has minimal risks 

for imaging normal organs and tissues in human. Thus, MRI has proven to be a secure method to 

explore the human body with highly detailed images. 

MRI is a powerful means to non-invasively measure the vasculature and hemodynamic 

parameters in tissues, using intrinsic endogenous or exogenous contrast agents. Many MRI 

sequences have been developed to enhance image contrast, such as T1-weighted and T2-

weighted imaging, and/or to quantify tissue hemodynamic properties if the scan is repeated with 
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time, such as diffusion and perfusion imaging. Perfusion imaging can be performed using two 

different techniques: Dynamic Contrast Enhanced (DCE) MRI and Dynamic Susceptibility 

Contrast (DSC) or so-called Perfusion Weighted Imaging (PWI). Both techniques (i.e., DCE and 

DSC) use a bolus of contrast agent, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA, 

Magnevist, Berlex Laboratories, Wayne, NJ), that travels through the major vessels, then passes 

through the capillaries and produces a transient signal enhancement (DCE) or signal loss due to 

susceptibility effects (DSC) (Cha, 2004; Ludemann et al., 2009).  

DCE-MRI has been used in many studies as a valuable tool to evaluate and quantify the 

effectiveness of new drugs on the vasculature of tumors. It is a non-invasive tumor diagnostic 

method, where the perfusion in tissue can be visualized by the flow of contrast agent and provide 

important functional information about the tissue microvasculature, including tissue permeability 

and blood volume (Galbraith et al., 2002). Increasing evidence suggests that microcirculatory 

parameters derived from DCE-MRI can potentially be useful for tumor characterization and for 

monitoring cancer therapy outcomes. However, no study discusses the use of DCE-MRI for 

monitoring vascular changes induced by treatment in different sites of the organ or the tumor. 

In general, three main methods to analyze data are used in DCE-MRI: histogram analysis, 

extracting Ktrans, Kep and ve and parametric maps (Tofts and Kermode, 1991; Guo and Reddick, 

2009). However, this quantification is difficult. DCE has many parameters that make it a very 

complex technique, such as measuring the contrast agent concentration in the plasma or the so-

called Arterial Input Function (AIF) and choosing the pharmacokinetic model (Galbraith et al., 

2002; Cutajar et al., 2009). Therefore, in this proposal, we will present new approaches to 

overcome these limitations in DCE-MRI and enhance the quantification of tissue hemodynamic 

parameters. 
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The second chapter will briefly discuss cell cycle and tumor biology in order to 

understand the hemodynamic differences between normal and tumor tissue. The third chapter 

will explain the theory behind DCE-MRI, experiment requirements, DCE-MRI limitations and 

sources of error. The fourth chapter is our published manuscript that uses DCE-MRI to select the 

best treatment dose of the antiangiogenic drug sunitinib that affects the KCI-18 kidney tumors 

with less impact on other healthy tissues (Neoplasia, 11, 910-920, 2009). Chapter five will 

include our accepted manuscript that report the use of DCE-MRI to monitor the vascular changes 

induced by pre-treatment with sunitinib to schedule the initiation of chemotherapy (Translational 

Oncology Journal, 

Chapter six will include our paper which we will submit to the Journal of Magnetic 

Resonance Imaging. In this chapter we introduce new hemodynamic parameters that serve as a 

measure to help study the treatment effect throughout the kidneys. And finally, chapter seven 

will include our conclusion and future directions. 

in press 2010) 

 

1.2 Project Aims: 

The ability to assess blood perfusion and other tissue hemodynamic changes in tumors is 

critical for the diagnosis and selection of proper treatment procedures. DCE-MRI has been 

routinely used for tumor diagnosis by adding functional vascular information in addition to 

anatomical detailed images. DCE-MRI is now a well-established diagnostic tool; however it has 

some limitations. Numerous studies are investigating ways to enhance the ability of DCE-MRI 

and to eliminate the sources of error. Therefore, in this project, we aim to first elucidate the 

ability of DCE-MRI as a tool to select a dose of antiangiogenic drug to regularize the vasculature 

of the tumor, and second, to develop new DCE parameters to clearly quantify the micro-vascular 
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behavior of tumors and normal tissue in order to assess the treatment effect on tumors as well as 

normal tissue.  

After discussing DCE theory in the first two sections of chapter three, Section 3.3 

introduces a new algorithm to quantify vascular changes using a fixed T1(0) instead of 

calculating the original T1(0) for a region of interest. We hypothesized that using a fixed value 

for T1(0) would eliminate most of the effects of the noise from the calculations of T1(t). Further, 

it would increase the accuracy of the DCE-MRI method and would make it possible to utilize 

data even when the multiple flip angle (FA) data used to find T1(0) was faulty. 

Chapter four describes the use of DCE-MRI not only to study the effect of the 

antiangiogenic drug, sunitinib, on the tumor and normal tissue but also as a tool to determine the 

dose which causes regularization of the tumor vasculature with minimal impact on normal 

healthy tissues. Chapter five uses DCE-MRI to monitor the vascular changes induced by pre-

treatment with sunitinib in KCI-18 kidney tumors to schedule the initiation of chemotherapy. 

In chapter six, we discuss a number of new DCE parameters that we developed as well as 

our hypothesis that DCE-MRI parametric maps have the potential to evaluate tissue physiology. 

The treatment effect on both normal and tumor tissues can be described by these parametric 

maps. We also introduced a new definition for full width at the half maximum (FWHM) from the  

initial area under the curve (IAUC) histogram that has the potential to describe further the effect 

of different treatment doses on tumor and normal tissues. We also hypothesized that the blood 

volume fraction (λ) can be derived from the ratio of the concentration of the contrast agent in the 

tissue to the concentration of the contrast agent of the blood vessel. This work will provide 

clinicians with a new tool to enhance the ability to make clinical decisions regarding tumor 

treatment.  
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Chapter Two 

Introduction to Kidney Anatomy and Tumor Biology 

2.1 Kidney Anatomy and Physiology:  

 Kidneys are located in the abdominal cavity, one on each side of the spine. The main 

function of the kidney is to maintain homeostasis or equilibrium between internal volume and 

electrolyte status and that of the environment’s influences, diet and intake. It functions to maintain 

our intra and extracellular fluid status at a constant despite the wide variety of daily fluid and 

electrolyte intake. 

 The kidney has a bean-shaped structure. Figure 2.1 shows the kidney’s main region. 

Kidneys are surrounded by tough fibrous tissue called the renal capsule. The outer, reddish region, 

next to the capsule, is the renal cortex, which surrounds a region called the renal medulla. The 

renal medulla consists of a series of renal pyramids, which contain straight tubular structures and 

blood vessels. The cortex and medulla make up the parenchyma of the kidney. The calyx

   

 collects 

urine from each pyramid. The urine flows in to the renal pelvis which located at the center of the 

kidney.  

 

   

 

 

Figure 2.1: Kidney’s main region: the renal 
cortex, the renal medulla, the calyx and the 
renal pelvis. The cortex and medulla make 
up the parenchyma of the kidney. Once the 
urine is formed, it is collected through the 
calyx and flows to the renal pelvis which 
located at the center of the kidney. 
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 The basic structural and functional unit of the kidney is the nephron which is located 

between the kidney’s parenchyma (Figure 2.2). Nephrons are responsible for blood filtration and 

waste extraction. Each nephron has a region called glomerulus which is a capillary tuft and where 

the first filtration step occurs. The glomerulus is surrounded by the Bowman capsule and both, 

the glomerulus and Bowman’s capsule, are located in the cortex of the kidney (Figure 2.2). 

 

 Each Bowman's capsule is a tiny filter. Blood containing waste substances, proteins, 

sugars, etc., is forced to the kidneys by the pumping action of the heart. Under pressure, a 

solution is driven out of the capillaries of the glomerulus through the walls of the capsule into its 

hollow interior (Figure 2.2). The solution in the capsule is blood plasma minus the large 

molecules. These molecules are big to pass through the capillary wall. From the capsule the fluid 

passes along the tubule to the calyx till it reaches the renal pelvis. 

 

Figure 2.2: The nephron is located in the 
kidney’s parenchyma. Each nephron is 
composed of an initial filtering component 
(the renal corpuscle) and a tubule 
specialized for reabsorption and secretion.   
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Renal Blood Flow (RBF) 

 Kidneys receive the highest blood flow per gram of organ weight in the body via the renal 

artery. Renal blood flow (RBF) is the fraction of the total cardiac output that flows through the 

kidneys. The kidney is constantly fed by roughly 20% of the cardiac output or a renal fraction of 

0.2. Thus, a very substantial portion of the total cardiac output flows through the kidneys. During 

various stress conditions or disease, the renal fraction can vary considerably and be markedly 

affected.  

 

2.2 Cell Cycle and Tumor Biology 

The term proliferative cell cycle includes a series of steps that occur and lead to cell division 

and duplication. The cell cycle is a repeated process and has a series of regulatory checkpoints. 

Over the last 25 years, the major progress of many studies was to identify the different factors 

and molecules that regulate the cell cycle. Regulation of the cell cycle is very crucial to detect 

and repair any genetic changes and to prevent uncontrolled cell division (Berges and Isaacs, 

1993) (Udvardy, 1996; Pardee, 2006). 

A dis-regulation of the cell cycle may lead to tumor formation. The word tumor 

(medically: neoplasm) describes a disease that contains an abnormal growth of cells. It can be 

either benign or malignant. Benign tumors are limited in size, are non-invasive and do not 

metastasize. However, malignant tumors, which form cancer, show rapid growth, invade 

adjacent tissues and spread to other locations. Cancer cells result from genetic changes during 

cell division. Genetic changes vary from gaining or losing chromosomes to mutations affecting 

the DNA nucleotide. Mutations happen in either oncogenes (genes that when mutated help to 
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turn normal cells into cancer cells), or tumor suppressor genes that are able to transform the 

normal cells into cancer cells (McAllister, 1965; Pardee, 2006). 

 

2.2.1 Angiogenesis 

Angiogenesis is the process of formation of new blood vessels from pre-existing vessels. 

Under normal conditions, it is fundamental in any reproductive cycle such as restoring blood 

flow to tissues after injury to enhance wound healing. However, in tumor cells, where rapid 

proliferation is expected, the formation of new blood vessels is needed to provide the tumor with 

nutrients and oxygen and allow tumor expansion (Kirsch et al., 2000). 

Angiogenesis happens by activating the endothelial cells that lead to the formation of 

new blood vessels. This process is regulated by angiogenesis stimulators and inhibitors which 

binding to the tyrosine kinase receptors on the surface of endothelial cells (Neeman et al., 2007). 

This stimulates the endothelial cell growth. The best-studied examples are the vascular 

endothelial growth factors (VEGF) family (A, B, C and D) which bind to three different cell 

specific VEGF receptors (VEGFR) with different affinity. Another example is the acidic and 

basic fibroblast growth factors (FGF1 and FGF2) and their receptors. The functional 

involvement of these growth factors and their receptors has been extensively studied (Kirsch et 

al., 2000; Ashkenazi and Herbst, 2008). When the angiogenesis stimulating growth factors are 

produced in excess of the inhibitors, then blood vessel growth takes place whereas when the 

inhibitors are produced in excess, then angiogenesis halts.  

In the early stages of tumor growth, the tumor can sustain itself through the passive 

diffusion of nutrients and oxygen, but when the tumor volume exceeds the critical value of two 

cubic millimeters, oxygen and nutrients have difficulty diffusing to the center of the tumor; 
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hence, the tumor starts forming a new network of blood vessels to act as carriers for oxygen and 

nutrients in order to sustain its rapid growth (Folkman, 2006). However, these blood vessels that 

result from tumor angiogenesis are characterized as poorly differentiated and fragile compared to 

normal mature blood vessels. These vessels are leaky due to the defective basement membrane 

and lack of smooth muscle cell lining and are sometimes unable to match the rapid growth of 

cancer cells, which results in areas of hypoxia and necrosis (Folkman, 2006). These structural 

defects of tumor vessels cause increased interstitial tissue pressure, impaired blood supply, and 

decreased oxygen supply in tumors compromising the delivery and efficacy of cytotoxic drugs 

and radiotherapy (Jain, 2001). 

 

2.2.2 Metastasis 

The leakiness of tumor blood vessels could induce tumor metastasis. Metastasis is 

defined as the transfer process of the tumor cells from the original tumor site to another site or a 

different organ. The outcome of this process varies according to the host and the tumor 

properties. Tumor cells can spread by three major routes. The first route involves direct 

extension, in which a tumor growing in a body cavity releases cells or fragments that seed 

serosal and/or mucosal surfaces to develop new growth. The second and third routes are via the 

lymphatic and hematogenous compartments of the circulatory system. Both the thin walled 

venules and the lymphatic channels show little resistance to tumor cell penetration. However, in 

arteries the walls are more resistant because they contain more elastic and collagen fibers.  After 

infiltration to the blood stream, tumor cells undergo several interactions with platelets and other 

blood cells until they reach the capillary beds (Fidler, 1978). Numerous studies (Zeidman and 

Buss, 1952; Zeidman, 1957; Fisher and Fisher, 1967; Hagmar et al., 1984; Barbour and Gotley, 
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2003) have demonstrated that the rate of tumor cells passing through capillary beds does not 

depend on their size; rather, it depends on their ability to deform during transcapillary transport. 

Once they reach the extravascular environment, they continue to proliferate. 

 

2.3 Tumor Treatment:  

Cancer can be treated with many methods such as surgery, antiangiogenic drugs, 

chemotherapy and radiotherapy. This section will briefly discuss treatment methods where DCE-

MRI can be used to monitor the effects on cancer growth. 

 

2.3.1 Surgery  

Cancer surgery is used to remove cancerous growths from the human body. Depending on the 

type of cancer and if it is localized to an organ with no metastasis, surgical removal might be 

sufficient to cure cancer patients.  

 

2.3.2 Antiangiogenesis drugs 

Antiangiogenic drugs are designed to block the neovascularization process by preventing 

VEGF from binding with the receptors on the surface of the endothelial cells and thus inhibit 

formation of new blood vessels.  

There are numerous angiogenesis inhibitors being tested in cancer patients. These 

angiogenesis inhibitors are categorized based on their mechanism of action. One category of 

angiogenesis inhibitors directly inhibits the growth of endothelial cells. Another category of the 

angiogenesis inhibitors are those that act on steps in the angiogenesis signaling cascade 
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(Cavallaro and Christofori, 2000; Zogakis and Libutti, 2001). For example, anti-VEGF 

antibodies block the VEGF receptors from binding with the VEGF growth factor. 

 

 2.3.3 Chemotherapy 

Chemotherapy is a general term that involves using chemicals drugs that attack the 

genetic material inside the cell nucleus (DNA) and damage it. These chemicals invade the rapid 

dividing cells and, hence, stop the cell division and replication. Several classes of 

chemotherapeutic agents contain metal cations that are essential for their biological activities 

such as zinc and calcium (Tobias and Whitehouse, 1976; Levin, 1998).  

 

2.3.4 Radiotherapy  

Radiation therapy uses ionizing radiation beams to target the malignant tumor cells and 

stop its growth. The radiation beams are designed to react with the water inside the cell and 

ionize it, creating a free radical that can damage the DNA of the dividing cell and prevent it from 

growing or dividing. Tumor cells are unable to repair the DNA damage as they are not as 

differentiated as normal cells. Hence, 

The radiation dose that is given to the patient will depend on the tumor location, type and 

stage as well as many other factors such as combining the treatment with chemotherapy or 

surgery and if the patient is treated with radiotherapy before or after the surgery. 

this DNA damage causes the tumor cell to die or have 

slower proliferation (Mehta et al., 2000).  

 

 

 



12 

 

2.3.5 Cancer Treatment Decisions 

After cancer diagnosis, the ideal treatment is to remove the cancer completely by surgery. 

However, the choice of the treatment depends on many factors, such as the type of the cancer, 

rate of progression, stage and location. When the tumor has metastasized, it is not feasible to use 

surgery; chemotherapy or antiangiogenic drugs would be a better choice. Nevertheless, 

chemotherapy and antiangiogenic drugs have their limitations. Chemotherapy is limited by its 

toxicity to normal tissues, especially tissues with rapid growth. The problem with antiangiogenic 

drugs is, beside targeting the normal vessels, they target only one of many factors that cause 

angiogenesis in tumors while other factors continue stimulating the growth of new blood vessels 

(Loiselle and Rockhill, 2009).  

Radiotherapy can be used to treat most types of solid cancer. Radiotherapy treatment 

dosage will depend on the radio-sensitivity of the cancer under treatment and the toxicity to 

normal tissues/organs surrounding the tumor.  

Combined treatments are also considered; some studies (Wolff et al., 2002; Ma and 

Waxman, 2008; Loiselle and Rockhill, 2009) have reported better results by combining different 

chemotherapy drugs, chemotherapy with radiotherapy or antiangiogenic drugs, or surgery with 

any other modality.  
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Chapter Three 

Theory of Dynamic Contrast-Enhanced Magnetic Resonance Imaging 

3.1 Magnetic Relaxation: 

The source of the MRI signal is the hydrogen nuclei contained in the body’s water, which 

counts for almost 60% of the human body. Hydrogen nuclei behave as small bar magnets pointed 

in all directions with equal probability. However, when a subject is placed in an external 

magnetic field, each hydrogen nucleus tends to align and possesses a magnetic moment. This 

magnetization can be measured by an MRI scanner. The strength of the MR signal is 

proportional to many factors such as hydrogen nucleus (i.e., water proton) density inside the 

tissue scanned, strength of the magnet and the time required for magnetization that has been 

disturbed by a radiofrequency (rf) pulse to re-align together, which is called the longitudinal 

magnetization or spin lattice relaxation time T1. Magnetization is given by the following 

equation:  












−∗=

−
11)( 0

T
t

z eMtM           [3.1] 

where Mz represents magnetization parallel to the main magnet, M0

In living tissue there are many proteins and other macromolecules mixed with water. 

These macromolecules can produce magnetic fields at the molecular level affecting proton 

orientations which can shorten T1 values compared to pure water and result in image contrast. 

Several paramagnetic ions, which have unpaired electrons, can be injected into the human body 

to generate a powerful magnet that affects the relaxation time in order to produce image contrast 

(LAUFFER, 1987; Caravan et al., 1999). Therefore, paramagnetic ions are used as MRI contrast 

 is the original magnetization 

and T1 is the spin lattice relaxation time (Haacke et al., 1999).  
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agents (CA) because they change the relaxation time of water protons and enhance the image 

contrast in T1-weighted images. Gadolinium is one example where it has seven unpaired 

electrons in its outer orbit. These electrons can affect the water protons and alter their 

orientations/directions, resulting in a shorter T1 value (Caravan et al., 1999). CA is typically 

administered as a bolus of fluid via a catheter injection into a peripheral vein such as the 

antecubital vein in humans and the tail vein in mice.  

 

3.2 Theory of DCE-MRI:  

DCE-MRI is based on running dynamic T1-weighted images through a volume of interest 

and repeating it with time. Every time the whole volume of interest is imaged is called a time 

point. The total number of time points is determined by the DCE protocol followed. T1-weighted 

images are collected by applying short echo time (TE) and short repetition time (TR). Images 

continue to be acquired before, during and after CA injection. Each time point is approximately 

seven to eight seconds. The changes in the signal intensity of these images will depend on the 

CA concentration which affects the T1 value of any tissue that has blood flow. In tumor tissue, 

where the blood vessels leak into the surrounding extravascular space, the T1 value will be 

shorter compared to the normal leak-free vessel tissues; hence, there will be higher signal 

intensity in the tumor tissue compared to the normal tissue. 

Figures 3.1 and 3.2 show a DCE-MRI example for imaging a mouse with an established 

renal carcinoma in the right kidney. Signal enhancing took place after the CA was injected at 

time point 10 (Figure 3.1). More signal enhancement can be seen in the mouse’s normal kidneys 

that have more blood flow compared to other surrounding tissues with less blood flow. For data 

analysis, the full kidney was selected as a region on interest (ROI) for the kidney tumor (KT) 
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(blue contour on left of T1 image) and the contralateral left normal kidney (NK) (red contour on 

right of T1 image) as shown in Figure 3.2.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: DCE-MRI example of mouse kidneys. A) Dynamic image pre-contrast, B) 
Dynamic image post-contrast, C) Subtracted Image, D) Flip Angle 5 Image, E) Flip Angle 
30 Image and F) T1 image.  Images A-F are used when processing a case wit DCE-MRI. 
Note the signal enhancement on the right kidneys with established tumor (blue contour) 
compared to the left normal kidneys (pink contour).  
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Figure 3.1: Signal enhancement after 
contrast agent injection. Contrast agent 
was injected at time point 10. DCE image 
are then acquired for 20 more time points.  
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To perform DCE analysis we need to acquire T1-weighted images with high temporal 

resolution, extract the original T1 value for the tissue before CA injection (i.e. T1(0)) and define 

a method to extract tissue hemodynamic parameters. Dynamic DCE images are collected using a 

sequence called fast low angle short (FLASH). A FLASH sequence is a fast gradient echo 

imaging technique where the repetition times (TRs) for the data acquisition are very small 

compared to the T1 relaxation times of the tissues being imaged combined with a low flip angle 

rf pulse (Cron et al., 1999). Because of such short TR value, there will not be enough time for 

longitudinal magnetization to grow back to its equilibrium value M0, nor for the transverse 

magnetization to completely decay between each data acquisition step. Transverse magnetization 

might lead to coherent signal buildup; therefore, in a FLASH sequence it is purposefully 

destroyed or ‘spoiled’ before each subsequent acquisition step.  

The changes in the DCE signal with time, S(t), for a given flip angle, can be obtained 

from the following FLASH equation:  

*2/
)(1/

)(1/
0

)cos1(
)1(sin

)( TTE
tTTR

tTTR

e
e

e
tS −

−

−

∗
−

−
=

θ
θρ

θ        [3.2] 

where 0ρ  is the spin density, θ is the flip angle, T2 is the transverse relaxation time, TR is the 

repetition time and TE is the echo time.  

The changes in CA concentration with time can be calculated from the following 

equation: 









−=

)0(1
1

)(1
1*1)(

TtTa
tC          [3.3] 

where “ a ” is the proportionality constant referred to as the longitudinal or T1 relaxtivity with 

units of (mM)-1s-1, and it is a property specific to the composition of the CA. T1(0) is the tissue 

T1 value prior to CA injection, and T1(t) represents T1 changes with time. C(t) calculation needs 



17 

 

both the T1(0) value and T1(t) function which will be explained in the following two sections 

(Roberts et al., 2006; Haacke et al., 2007). 

 

3.2.1 T1(0) calculations: 

 In order to calculate the initial T1(0) for a region of interest, two flip angle images are 

collected with θ1 and θ2 

)cos1(
)1(sin

)0(
1

)0(1/

)0(1/
10

1 θ
θρ

θ TTR

TTR

e
e

S −

−

−
−

=

respectively prior to CA injection. The signal from these two sequences 

will equal 

         [3.4] 

and  
)cos1(
)1(sin

)0(
2

)0(1/

)0(1/
20

2 θ
θρ

θ TTR

TTR

e
e

S −

−

−
−

=        [3.5] 

Given that TR, θ1 and θ2

cmxy +=

 are known, re-arranging the above equations in the form of 

( ) we have 

)0(1/

1

1)0(1/
0

1

1 )0()1()0( TTRTTR e
Tan
Se
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S −− +−=

θ
ρ
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θθ  

)0(1/

2

2)0(1/
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2
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S −− +−=

θ
ρ
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The slope m of the above equations is equivalent to )0(1/ TTRe− ; plotting these two points 
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1

1 )(
θ
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θ

θ
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2
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θ

θ
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,
2

2 )(
θ

θ
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)) and finding the slope of the line connecting them gives us 

the value of T1(0) ( see Figure 3.3). 
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For more than two flip angles, we calculate )
tan

)(
,

)(
(

θθ
θθ tS

Sin
tS  for each angle and use linear 

regression to find the slope and, accordingly, the T1(0) value, where for cmxy +=  

∑ ∑
∑ ∑ ∑

−

−
= 22 )()(

)(
xxn

yxxyn
m   

and 

 
n

xmy
c ∑ ∑−
=  

 However, there are multiple problems with this approach. First, the extraction of T1 is a 

noisy procedure. Second, the noise manifests itself as both a broadening of the histogram of data 

in the IAUC. Third, rf profiles in either 2D or 3D affect the resultant T1 calculation. Therefore, a 

new algorithm using a fixed T1(0) value has been proposed in our paper published in Magnetic 

Resonance in Medicine in 2007 ( Section 3.3).  
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Figure 3.3: T1(0) calculations.  Each point 
represents the ratio between the signal to 
flip angle used (

θ
θ

Tan
tS )( ,

θ
θ

Sin
tS )( ). The slope of 

the line connecting the two points (i.e., 
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θ
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1 )(
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tS ),(

2

2 )(
θ

θ
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tS ,

2

2 )(
θ

θ

Sin
tS )) is equal to 

)0(1/ TTRe− . According to a given TR; T1(0) 
can be calculated. For more than two flip 
angles, linear regression will be used to 
find the slope.  
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3.2.2 T1(t) calculations: 

For a given TR, T1(t) can be calculated from rearranging equation # 3.2 as a ratio between the 

signal at any time “t” to the initial signal before CA injection as in the following equation:  

 

)1(
)cos1(*
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)1(

)0(
)(
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Simplifying the equation and assuming y=
)0(
)(

s
ts  and x=

)1(
)cos1(
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TTR
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e
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−

−

−
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We get T1(t)= 









−

−
−

θcos*
ln

yx
yx

TR        [3.6] 

 

Figure 3.4-A shows the resulting T1(t) curve and its variation after CA injection. The C(t) value 

can be found by substituting the T1(t) values and T1(0) in equation # 3.3 ( see Figure 3.4-B).  

 

 

 

 

 

 

 

 

Figure 3.4: A) T1(t) curve, which represents the T1 value for the region of interest (ROI) with 
time. Notice after CA injection, the T1 value shortens.  B) The C(t) curve, which represents the 
CA concentration in the selected ROI.  
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3.2.3 Model free DCE quantification 

After calculating C(t) for each fixed T1(0), the initial area under the curve (IAUC) is 

calculated from the following equation: 

∑ ∆=
2

1
)(

t

t
ttCIAUC        [3.7] 

For each pixel, the next step in the process is to calculate the cumulative initial area under 

the curve (CIAUC), which represent the cumulative number of pixels counted within an ROI that 

corresponds to a given contrast uptake (xi) and normalize them to the total number of pixels 

(where xi = IAUC(i) for (1 ≤ i ≤   N bins) in a given ROI) and n(xi) is the number of pixels with a 

value in that bin: 

∑

∑

=

== N

i
i

m

i
i

xn

xn
mCIAUC

1

1

)(

)(
)(        [3.8] 

where N represents the last bin or maximum IAUC.  

We define the R50 value as that value of xi where CIAUC(m) = 50% (the median value 

of the histogram) (Roberts et al., 2006). Although this value serves as the reference for the pre-

drug treatment, when a fixed T1 is used we define instead the NR50, which is a normalized 

version of the R50 as defined below:  

prepostpre RRRNR 50/)5050(50 −=        [3.9] 

where R50pre represents the R50 value before drug treatment and  R50post

If the drug successfully reduces the vascular content, the CA uptake will be reduced. 

Therefore, the R50 will shift to the left (to a smaller value) and the NR50 will be a positive 

number between 0 and unity. If the tumor has not responded and/or the vascularity has increased, 

 represents the R50 

value after drug treatment.  
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the NR50 will be zero or negative. Figures 3.5 and 3.6 show the IAUC and CIAUC graphs 

respectively. 

 

 

 

 

 

 

 

 

 
Figure 3.5: IAUC histogram, which represents the histogram of the number of pixels as a 
function of CA uptake in mmol-sec.  
 

 

 

 

 

 

 

 

 

 
Figure 3.6: Cumulative distribution (CIAUC) of CA uptake.  
 
 

Iauc graphs/16 time points

0

1

2

3

4

5

6

0 2 4 6 8 10Iauc in mmol-sec

%
 n

um
be

r o
f p

ix
el

s

CIauc graphs/16 time points

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6 8 10

CIauc in mmol-sec

%
 n

um
be

r o
f p

ix
el

s



22 

 

3.3 New Algorithm for Quantifying Vascular Changes in Dynamic Contrast-Enhanced 

MRI Independent of Absolute T1

We introduce here a novel method to avoid the need to find absolute T1 values and 

dramatically improve the signal-to-noise ratio (SNR) in processed DCE-MRI data. We 

hypothesized that using a fixed value for T1(0) would eliminate most of the effects of the noise 

from the calculations of T1(t). Further, it would increase the accuracy of the DCE-MRI method 

and would make it possible to utilize data even when the multi flip angle (FA) data used to find 

T1(0) is faulty.  

 Values (Haacke et al., 2007) 

To avoid the effects of noise from the multiple FA images in calculating T1(0), we 

proposed to force all T1(0) values from the selected region of interest (ROI) to be equal to a 

fixed value close to that of the actual T1 value of the tissue. This approach should dramatically 

enhance the SNR of the calculations and make the method much more robust in a clinical setting. 

 

3.3.1 Materials and Methods: 

 We test our hypothesis using simulated data. We started by creating a series of images 

with a range of T1 values (250 ms, 500 ms, 1000 ms and 1500 ms) at two different FA of 5º and 

13º. Then a series of eight DCE images with known values of C(t) was generated. 

btat eeCtC −−−= )1()( 0        [3.10] 

T1(t) is found for T1(0) starting values of 250 ms up to 2000 ms in increments of 250 ms. The 

values of TR = 3.8 ms and ρo (to mimic real human data) were inserted into Eq. [1]. Two noise 

values were added (Gaussian noise determined with the Box-Mueller method (16)) to the FA 5° 

and 13° images (SD=40 a.u., and SD =80 a.u. with mean =0). With these datasets the effects of 

noise were simulated for T1, IAUC, CIAUC, and R50. 
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The 50% mark (R50) of the CIAUC was used to represent a vascular measure for each of 

the two experimental conditions of pre (a=1/4, large values of a represent rapid uptake) and post 

(a=1/8, small values of a represent slow uptake) CA injection. The two R50 values pre drug 

treatment and post drug treatment were used to quantify the normalized change in contrast 

uptake (presumably due to vascular changes in the tissue). The normalized NR50 is calculated 

from NR50 = (R50pre – R50post) / R50pre

 

, and this value is examined with a fixed T1(0) ranging 

from 250 to 2000 ms in 250 ms increments. If NR50 remains constant independent of T1(0), then 

the method can be considered a robust technique which can be used for all tissues in the body.  

Estimating T1 from Simulated Data 

The simulated data were then analyzed as discussed above to find T1(t) in the noisy data, extract 

C(t), find IAUC, and finally find the CIAUC. For the conventional approach, two FAs of 5° and 

13° are used to obtain T1(0). Alternatively, we chose instead to fix T1(0) to one of 750 ms, 1000 

ms, 1250 ms, 1500 ms, 1750 ms, or 2000 ms. All simulations are performed for a single input T1 

representing a homogeneous tumor. 

 

3.3.2 Results 

The effect of noise on T1(0) is demonstrated in Figure 3.7 for various T1(0) values and 

SNR. Clearly, the noise plays a key role in broadening the T1(0) estimates because there is noise 

present in the multi-FA images (here we used 2 FAs, 5° and 13°) and noise present in the 

dynamic images. The larger the noise value, the broader the distributions become and the more 

skewed they become toward higher T1(0) values. Practically, such a large spread in T1(0) will 

further distort the CIAUC if the analysis method discards what look like noise points or points 
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which have a T1 that is too high. Therefore, the estimates for the calculated values are a 

conservative estimate as to how inaccurate they can become. 

 

 

 

 

Using a fixed T1(0), the spread in T1(t) is dramatically narrowed, leading to better 

estimates of the IAUC (Figure 3.8) and CIAUC (Figure 3.9). The behavior of the bad points is 

clearly observed with a spike at CIAUC at zero in Figure 3.9-b when T1act is 1000 ms and the 

noise level is SD = 80 a.u. The same figure also shows a normalized curve for the same values 

which clearly discards the counting of the bad points in the calculation of the CIAUC values. As 

expected, when T1(0) fixed is greater than the original T1(0), C(t) is reduced and the IAUC 

shifts to the left. We also observe that the IAUC narrows relative to the ideal values. 

 

Figure 3.7: Histogram of T1(0) calculated 
for a noise SD = 40 a.u. using T1(0) equal 
250 ms, 500 ms, and 1000 ms. Note the 
asymmetry of the T1 values about the 
mode with a large tail to the right toward 
higher T1. This skewness leads to an 
overestimate (bias) of the estimated mean 
value for T1. 
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Figure 3.8. Histograms of the number of pixels as a function of contrast uptake in mMs. 
Simulated data were created with T1(0) fixed to 1000 ms and calculated for a T1(0)act of 500 
ms, with SD=40 a.u., SD=80 a.u., co

  

 = 2 and the exponential constant value of a = 1/4. Note the 
shift to the left of the IAUC for T1(0) fixed to 1000 ms and the spread of the IAUC for growing 
noise levels. The spread of the IAUC is significant when the calculated approach was used. This 
demonstrates the robustness to noise of the T1(0) fixed method. 

Figure 3.9. Cumulative distribution functions as a function of contrast uptake in mM.s. 
Simulated data were created with T1(0) fixed to 1000 ms (a), and calculated (b), with no noise 
and levels of noise SD=40 a.u., SD =80 a.u., co
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(1000,cal) SD=40 (R50=10.62)
(1000,cal) SD=80 (R50=11.7*)
(500,cal) SD=40 (R50=9.77)
(500,cal) SD=80 (R50=8.92)
(250,cal) no noise (R50=10.00)
(250,cal) SD=40 (R50=9.87)
(250,cal) SD=80 (R50=9.73)

b

 = 2, and the exponential constant value of a=1/4. 
T1act=250 ms, 500 ms and 1000 ms. Observe in (a) that the 50% CIAUC mark crosses for the 
T1(0) fixed, while it deviates from the 50% of the total number of pixels when being calculated 
from the FLASH equation (b). Only one no noise plot is shown since they all overlap each other 
(dotted line). Note that the CIAUC plots are broader for the calculated T1(0) case. The 50% 
CIAUC values are shown in the table to explain the above description. (*This value is calculated 
from the zero-removed dataset.) 
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Since the goal of the DCE experiments is to determine the percentage of vascular change, 

it would appear that the use of a fixed T1(0) method may be suitable to draw the correct 

conclusions despite the fact that the calculated C(t) will not be physiological. The only important 

element of this calculation is the correct prediction of the tissue response to vascular change 

from the drug treatment. 

To test this hypothesis we used the two different models of CA uptake described above. 

Table 3.1 shows the ratio of the IAUC value at its peak over the full width at half magnitude 

(FWHM) for different values of tissue T1(0) and fixed T1(0). This measure shows that although 

the IAUC histogram may shift to the left, the FWHM narrows in proportion to the shift, making 

the ability to measure R50, and hence NR50, just as sensitive to the measure that would have 

taken place had the exact values of T1(0) been used. In fact, it can be seen that using a larger 

T1(0) often increases this ratio, which means that it remains a very sensitive means by which to 

judge the NR50 even for larger T1(0) values than the actual T1(0). 

The NR50 variations for the different choices of fixed T1(0) in the pre/post-tumor 

treatment model described earlier are shown in Table 3.2. When the correct value of T1(0) is 

used, the NR50 in this model is 0.34. When a higher value is used this drops to 15% to 20% less 

than 0.34 or between 0.27 and 0.30. The key element here is that these values are close to 30% 

and do not vary wildly. The standard error of these measurements is consistently 3% (6%) for 

fixed T1(0) and 6% (12%) or more for the calculated data with an SD of 40 a.u. (80 a.u.) when 

evaluated with a fixed T1(0) of 1000 ms. 
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Table 3.1: The IAUC value at the peak of the histogram over the Full Width at Half Magnitude 
(FWHM) for varying values of tissue T1(0) (referred to here as T1(0)act) and the forced fixed 
value of T1(0) (the value of T1(0) is given in ms). 

 
IAUC(peak value)/FWHM 

 a=1/4 a=1/8 
T1(0)act,T1(0)fixed SD=40 a.u. SD=80 a.u. SD=40 a.u. SD=80 a.u. 

250, 250 2.28 1.17 2.25 0.90 
250, 500 3.64 1.30 2.48 1.21 
250, 750 4.17 1.17 2.33 1.06 
250, 1000 4.77 1.46 2.36 1.64 
250, 1250 3.92 1.27 2.13 1.20 
250, 1500 4.00 1.32 3.11 1.13 
250, 1750 3.76 1.44 2.94 1.30 
250, 2000 3.93 1.45 3.15 1.37 
500, 500 1.36 1.24 1.48 1.06 
500, 750 2.57 1.12 1.94 1.14 
500, 1000 3.03 1.52 2.39 1.37 
500, 1250 3.10 1.13 2.46 1.31 
500, 1500 3.11 1.17 2.39 1.31 
500, 1750 3.20 1.24 3.25 1.05 
500, 2000 2.91 1.33 3.45 1.39 
1000, 1000 1.07 0.84 1.00 1.09 
1000, 1250 1.01 0.81 1.42 1.35 
1000, 1500 1.45 0.81 1.49 1.21 
1000, 1750 1.78 0.86 1.90 1.04 
1000, 2000 1.68 0.81 1.84 1.17 
1500, 1250 0.94 0.82 0.93 0.82 
1500, 1500 0.88 0.84 1.26 0.84 
1500, 1750 0.87 0.72 1.26 0.83 
1500, 2000 0.96 0.84 1.26 0.82 
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Table 3.2: The NR50 = [R50 (a=1/4) - R50 (a=1/8)] / R50 (a=1/4), for no noise, and noise levels 
of SD= 40 a.u. and SD= 80 a.u.. From Table 1, the SNR ranges from 

 

5:1 to 37:1 depending on 
the T1 of the tissue. The table below exemplifies the fact that lower T1 values lead to higher 
SNR and vice versa. 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

3.3.3 Discussion and Conclusion 

Robustness of the Fixed T1 Method  

Current DCE analysis requires the calculation of T1(0) and subsequently T1(t). Noise in 

the experiments leads to very poor behavior of the extracted C(t) values and the IAUC. This 

sensitivity to T1(0) and the effect of the noise on the spread of T1(0) estimates can be effectively 

eliminated by forcing T1(0) to a fixed value, preferably greater than the actual T1(0) of the tissue 

under investigation. The results indicate that the IAUC became much more stable. The spread in 

T1(0) (ms) fixed 

T1(0)act (ms)   250 500 750 1000 1250 1500 1750 2000 cal 

No 

Noise 

250 0.34 0.29 0.27 0.27 0.27 0.26 0.27 0.26 0.34 
500  0.34 0.30 0.28 0.27 0.26 0.26 0.26 0.34 
1000    0.34 0.31 0.29 0.28 0.28 0.34 
1500      0.34 0.32 0.30 0.34 

SD=40 

a.u. 

250 0.34 0.29 0.28 0.27 0.27 0.26 0.26 0.26 0.35 
500    0.34 0.29 0.28 0.27 0.26 0.25 0.25 0.34 
1000    0.34 0.31 0.29 0.28 0.28 0.35 
1500      0.34 0.32 0.30 0.35 

SD=80 

a.u. 

250 0.34 0.29 0.28 0.27 0.27 0.27 0.26 0.26 0.34 
500  0.36 0.31 0.30 0.29 0.28 0.28 0.27 0.30 
1000    0.33 0.31 0.29 0.28 0.27 0.31 
1500      0.31 0.30 0.29 0.16 
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T1 and therefore in the IAUC in the noisy cases was so broad that T1 values ranged from almost 

zero to 3000 ms. This broad spread was dramatically reduced using the fixed T1(0) approach. 

Clearly, any programmatic issues dealing with noise and cutoff issues would bias the distribution 

and cause much worse shifts than what was shown in the simulated results. These problems do 

not occur when using the fixed T1(0) approach. (A stable IAUC can be very important if one is 

evaluating the histograms for shifts rather than the CIAUC. If this approach is taken, issues 

related to noise spikes and erroneous shifts in the CIAUC can be avoided.)  

Through our simulations we observed that a single T1(0) can be used for the entire 

image. This is not necessary, though, as each tissue could in theory have its own T1(0) fixed in 

the ROI analysis. Performing this operation on both pre- and post- drug treatment cases should 

make it possible to obtain a reliable estimate for the relative changes shown by the R50 changes 

of the tissue. This also has the advantage that if data at different FAs are corrupt or not collected, 

the DCE acquisition still has value. Using the relative changes in R50 via NR50 may also reduce 

any inherent errors in calculating T1 that come from variations in T2* caused by the CA itself 

(17). 

By using a fixed T1(0), we are forced to consider relative changes in R50 since we no 

longer have absolute T1(t) information. This is accomplished using the NR50. Ideally, the NR50 

would prove to be identical between the two methods, and this is not far from the case, as shown 

in Table 3.2 The ideal changes expected in the two different models of C(t) uptake should have 

an NR50 equal to 0.34 (or a 34% shift to the left of the R50). In practice, with the fixed T1(0) 

approach they are closer to 0.27 to 0.30. We evaluated a number of practical cases and found that 

the error in tumor R50 variability can be as high as 0.17; thus, we chose 0.34 as a 2 SD model. 

Therefore, to err on the safe side, it would be wise to keep 0.34 as the P = 0.025 cutoff point 
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above which we could consider the effect of a vascular shift to be real. This choice is in 

agreement with a very recent publication (Roberts et al., 2006) and earlier works (Galbraith et 

al., 2002; Dale et al., 2003) suggesting that 30% is a adequate cutoff in a clinical environment. 

Our results show, however, that the actual white noise contribution is only 6–12% with SNR 

available on 1.5T systems today. Therefore, this 30% value is quite conservative and likely to be 

quite safe in drawing conclusions about actual changes in the NR50. 

In the simulations, we used a specific set of T1 values as reasonable estimates of the 

clinical situation. Measuring the T1(0) value of the muscle, liver, and tumor in a series of 22 

DCE-MRI experiments, we found that T1(0) for the muscle was 855 ms (SD = 180 ms), T1(0) 

for the liver was 680 ms (SD = 150 ms), and T1(0) for the tumor was 1400 ms (SD = 230 ms). 

Therefore, we chose to use the rather general values of 500 ms, 1000 ms, 1500 ms, and 2000 ms 

to cover the spectrum of values for tissue and tumors. 

We also evaluated the effect of bin size in estimating the IAUC and the CIAUC as well 

as the R50 and NR50. For values of 0.01–0.05 mM.s, we obtained the same NR50 values to 

within 0.01, but large effects were observed when the bin size was 0.1 or higher. 

Finally, tissue T1(0) heterogeneity will affect both the fixed and calculated approaches. 

To investigate this we simulated a variety of heterogeneous models with varying T1(0) from 

250–1500 ms and found that the NR50 behaves in a similar fashion to the homogeneous case 

presented here. 
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3.4 DCE-MRI Requirements: 

To conduct a successful DCE-MRI experiment several requirements should be met when 

designing an experimental protocol such as the following: high temporal and spatial resolution, 

volume coverage, image signal to noise ratio (SNR), access to arterial input function (AIF), and 

suitable contrast agent (CA) dosage. 

 

3.4.1 High temporal and spatial resolution: 

Vascular heterogeneity within the tumor can affect the temporal and spatial resolution 

required of DCE-MRI in several ways. High temporal resolution is very important to decrease 

the error in estimating DCE parameters. One impact is the need to sample the entire volume to 

take full advantage of this non-invasive method. If the study aims to characterize the tumor, 

failure to sample the entire tumor could result in sampling errors of the type associated with 

invasive assays, i.e. the region sampled is not representative of the entire tumor. Tumor 

simulations suggest to sample the AIF every 1 sec and tissue signal every 4 sec in order to keep 

the error in model parameters below 10%. This is due to the highly permeable and highly 

vasculature tumor (Henderson et al., 1998). 

High spatial resolution is needed to overcome problems such as partial volume effect 

which might lead to masking important pathology details (Furman-Haran et al., 2001).  It should 

be in the order of standard structural MRI data acquisitions.  

 

3.4.2 Volume coverage and image SNR: 

For tumor volume acquisition, it is very important to cover the whole tumor volume, 

especially when a comparison study is planned (Zhu et al., 2000).  However, the imaging 
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protocol should optimize the above mentioned requirements (i.e., high temporal and spatial 

resolution and adequate volume coverage) with an acceptable signal-to-noise ratio (SNR). Image 

SNR can affect the quality of parametric maps that can be produced from the original DCE 

images.  

 

3.4.3. Arterial Input Function (AIF):  

Upon reviewing the literature, we encountered three main approaches to measure AIF: by 

inserting an arterial catheter into the subject and take blood samples to measure it, by assuming 

AIF is the same for all subjects (Tofts and Kermode, 1991), or by obtaining AIF from DCE data. 

Nevertheless, these approaches have many problems, such as being invasive, having poor 

temporal resolution, being relative ambiguous concerning the actual time, influencing of both 

inter and intra subject variations in AIF, and, finally, requiring the presence of a large vessel 

within the FOV as well as the need to devoid partial volume or flow effect (Parker et al., 1996; 

Cha, 2004). These problems make AIF very difficult to calculate. 

 

3.4.4. Contrast agent dose and administration time: 

In DCE-MRI a clinical protocol demonstrates that both the dose and bolus administration 

is needed. Many studies (Hulka et al., 1995; Henderson et al., 1998) demonstrate that shorter 

injection of the CA is desirable. Shorter injection time can help reduce the effects of noise 

modeling errors. However, we need to acquire high temporal resolution to cope with these 

values.  

Higher CA dosing can enhance the signal intensity in T1-weighted images up to some 

limit. Some sequences suffer from high susceptibility sensitivity, which might lead to a drop in 
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signal intensity as a result from high CA concentration in the arteries in the region of interest 

(Tofts, 1996).  

 

3.5 DCE-MRI Artifacts: 

As we mentioned earlier the main source of error in DCE experiments is estimating the 

T1(0) value (Parkera et al., 2000). Usually two points are collected to calculate T1(0)  which has 

more exponential components than liner components. This explains our use of the fixed T1(0) 

approach (Haacke et al., 2007). Another complication in DCE is to choose a model that describes 

the behavior of the CA uptake and clearance by the tumor. It is still not clear if complicated yet 

well-characterized models are more or less useful in understanding and assessing the treatment 

results compared to simple yet more noisy models. Other imaging artifacts also affect the DCE 

results such as patient motion, errors in CA relaxivity and water exchange rates. Further, CA 

increase the susceptibility effect and changed the T2* value; hence, this will result in inaccurate 

T1(t) measurements (Roberts, 1997).  
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4.1 Abstract 

To investigate further the antiangiogenic potential of sunitinib for renal cell carcinoma 

(RCC) treatment, its effects on tumor vasculature were monitored by dynamic contrast-enhanced 

magnetic resonance imaging (DCE-MRI) using an orthotopic KCI-18 model of human RCC 

xenografts in nude mice. Tumor-bearing mice were treated with various doses of sunitinib, and 

vascular changes were assessed by DCE-MRI and histologic studies. Sunitinib induced dose 

dependent vascular changes, which were observed both in kidney tumors and in normal kidneys 

by DCE-MRI. A dosage of 10 mg/kg per day caused mild changes in Gd uptake and clearance 

kinetics in kidney tumors. A dosage of 40 mg/kg per day induced increased vascular tumor 

permeability with Gd retention, probably resulting from the destruction of tumor vasculature, and 

also caused vascular alterations of normal vessels. However, sunitinib at 20 mg/kg per day 

caused increased tumor perfusion and decreased vascular permeability associated with thinning 

and regularization of tumor vessels while mildly affecting normal vessels as confirmed by 

histologic diagnosis. Alterations in tumor vasculature resulted in a significant inhibition of KCI-

18 RCC tumor growth at sunitinib dosages of 20 and 40 mg/kg per day. Sunitinib also exerted a 

direct cytotoxic effect in KCI-18 cells in vitro. KCI-18 cells and tumors expressed vascular 

endothelial growth factor receptor 2 and platelet-derived growth factor receptor β molecular 

targets of sunitinib that were modulated by the drug treatment. These data suggest that a sunitinib 

dosage of 20 mg/kg per day, which inhibits RCC tumor growth and regularizes tumor vessels 

with milder effects on normal vessels, could be used to improve blood flow for combination with 

chemotherapy. These studies emphasize the clinical potential of DCE-MRI in selecting the dose 

and schedule of antiangiogenic compounds. 
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4.2 Introduction 

Renal cell carcinoma (RCC) incidence has increased in recent years with approximately 

54,390 new cases each year in the United States. The disease is responsible for an estimated 

13,010 deaths each year (Jemal et al., 2008). Nearly half of the patients present with localized 

disease that can be treated by surgical removal (Haas and Hillman, 1996). However, one third of 

the patients have metastatic disease at first presentation, and 20%to 30%of the patients treated 

for localized RCC subsequently develop metastatic disease that frequently involves the lungs 

(Haas and Hillman, 1996). The median survival of patients with metastatic RCC ranged from8 to 

11months (Haas and Hillman, 1996; Flanigan et al., 2001). The treatment of metastatic RCC 

remains a significant challenge, but recent developments in antiangiogenic therapy have 

improved targeting these highly vascularized tumors. 

The vascular endothelial growth factor (VEGF), produced by tumor cells and associated 

stromal cells, is a key growth factor in the angiogenic process, which promotes the proliferation, 

migration, and invasion of endothelial cells and plays a role in vascular permeability. Targeting 

the tumor vasculature with antiangiogenic therapy has been shown to suppress the growth of 

established tumors in mice, leading to several clinical trials with different angiogenesis inhibitors 

(Kerbel and Folkman, 2002). Numerous antiangiogenic compounds recently developed include 

anti-VEGF antibodies and inhibitors of receptor tyrosine kinases (RTKs). The drug sunitinib 

(SU11248 or Sutent) is a small-molecule RTK inhibitor that has demonstrated antitumor and 

antiangiogenic activities in mouse xenograft models. Sunitinib targets and inhibits signaling of 

several RTKs including platelet-derived growth factor receptor (PDGFR), VEGF receptor 

(VEGFR), c-kit protooncogene, and FMS-like tyrosine kinase 3 (Abrams et al., 2003; Murray et 

al., 2003; O'Farrell et al., 2003; Xu et al., 2005). Sunitinib exhibits direct antitumor activity by 
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inhibiting RTKs that are expressed by cancer cells and are involved in signaling for cancer cell 

proliferation. Sunitinib also exhibits antiangiogenic activity by inhibition of signaling through 

VEGFR-2 and PDGFR-β RTKs expressed on endothelial cells or stromal cells. Initial clinical 

trials with sunitinib for metastatic RCC showed significant responses in multiple metastatic sites 

and in primary tumors resulting in 40%partial response rate with a median time to progression of 

8.7 months (Motzer et al., 2006). These studies justified approval of sunitinib by the FDA in 

January 2006 for RCC treatment. In a phase 3 multinational study of 750 patients with metastatic 

RCC, randomized to sunitinib or interferon α, the response rate to sunitinib was 31%, with 

median progression-free survival (PFS) of 11.7 months and a median survival of 28 months 

(Motzer et al., 2007). A recent update of this trial documented an objective response rate of 47% 

with 11 months of median PFS for sunitinib versus 12% objective response rate and 5 months of 

PFS for interferon α (Kollmannsberger et al., 2007). Although the results with sunitinib therapy 

are impressive, long-term control of the disease is still not achieved. In addition, several trials 

documented adverse effects of cardiotoxicity in some of the patients, probably as a result of 

alterations to normal vasculature (Jain, 2005; Chu et al., 2007; Schmidinger et al., 2008; Telli et 

al., 2008). Therefore, further investigations with sunitinib dose adjustments are warranted to 

decrease the impact on vital organs such as the heart and the kidney. 

The goal of our study was to investigate the effect of lower and potentially less toxic 

doses of sunitinib on tumor vasculature to establish the conditions for combination therapies to 

determine whether a combined strategy could maintain and improve efficacy. Disruption of the 

tumor vasculature to deprive tumor cells from nutrients by sunitinib, given in conjunction with 

cytotoxic therapies, could be more effective in preventing progression of metastatic RCC. 

However, this approach could be a paradox given that complete destruction of tumor vasculature 
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could compromise the efficacy of chemotherapy or radiotherapy because both depend on blood 

flow to the tumor for delivering oxygen and drugs (Jain, 2001). To improve the blood flow in 

tumors, the concept of “normalization” of tumor vasculature is based on the regularization of 

tumor vessels by pruning or destroying immature and inefficient blood vessels through 

elimination of excess endothelial cells, and it has shown promise for combination therapies 

(Browder et al., 2000; Lee et al., 2000; Wildiers et al., 2003). The process of tumor angiogenesis 

involves proliferation of abnormal vessels that are enlarged, disorganized, and leaky due to the 

defective basement membrane. These structural defects of tumor vessels cause increased 

interstitial tissue pressure, impaired blood supply, and decreased oxygen supply in tumors 

compromising the delivery and efficacy of cytotoxic drugs and radiotherapy (Jain, 2001). The 

challenge is to develop imaging technologies that monitor early vascular changes and induction 

of tumor vasculature normalization by antiangiogenic drugs for scheduling cytotoxic therapy.  

We selected to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) 

to investigate the effect of sunitinib therapy on RCC tumor vasculature using a preclinical 

papillary RCC murine model. DCE-MRI is a noninvasive approach, currently used in humans 

that can detect early changes in the tumor induced by antiangiogenic therapy as reported in 

human studies (Checkley et al., 2003; Hahn et al., 2008) and in preclinical animal models 

(Marzola et al., 2005). This method measures a combination of tumor perfusion and vessel 

permeability and allows the detection of changes in tumor vascularity, which occur at a much 

earlier stage in the treatment of tumors with antiangiogenic drugs than does shrinkage of tumor 

mass (Checkley et al., 2003; Hahn et al., 2008). Contrast agents typically consist of gadolinium 

(Gd)-based chelates with paramagnetic properties that are used to enhance signal from the tissue 

in clinical MRI. The contrast agent, injected intravenously, enters the extravascular extracellular 
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space through the capillary bed as a function of perfusion and permeability. The contrast agent 

that accumulates over time in the tumor can be then analyzed by MRI (Checkley et al., 2003; 

Hahn et al., 2008). Recent animal studies suggest that parametric images providing information 

on the morphology and function of the microvasculature of tumors can be obtained by Gd-

DTPA–based DCE-MRI (Hillman et al., 2007).  

DCE-MRI was performed using an orthotopic RCC model in athymic nude mice, which 

was established by subcapsular renal implantation of Karmanos Cancer Institute-18 (KCI-18) 

cells, a tumor cell line generated from a human papillary RCC specimen in our laboratory 

(Hillman et al., 2007). Vascular changes induced by various doses of sunitinib in tumor-bearing 

kidneys and normal contralateral kidneys were monitored by DCE-MRI and by histologic studies 

of tissue sections. 
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4.3 Materials and Methods 

4.3.1 Orthotopic KCI-18/IK RCC Tumor Model 

The human RCC cell line designated KCI-18 was established in our laboratory from a 

primary renal tumor specimen obtained from a patient with papillary RCC (nuclear grade 3/4) 

(Hillman et al., 2007). Cells were cultured in Dulbecco’s modified Eagle medium with 

supplements (Hillman et al., 2007). After serial passages of KCI-18 cells in the kidney of nude 

mice, highly tumorigenic KCI-18/IK were generated (Hillman et al., 2007). KCI-18/IK cells 

were washed with Hank’s balanced salt solution and subcapsularly injected at a concentration of 

5 × 105 cells in 30 μl of Hank’s balanced salt solution in the right kidney in 5- to 6-week-old 

female BALB/C nu/nu nude mice (Harlan, Indianapolis, IN) (Hillman et al., 2007). Mice were 

housed and handled under sterile conditions in facilities accredited by the American Association 

for the Accreditation of Laboratory Animal Care. The animal protocol was approved by the 

Animal Investigation Committee of Wayne State University. 

 

4.3.2 Experimental Protocol 

After injection of KCI-18/IK cells, a few mice were killed at early time points to assess 

tumor growth before initiating treatment. Small tumors were detectable by days 9 to 10 in the 

kidney. By days 10 to 12, mice bearing established kidney tumors (KTs) were treated with 

sunitinib (Pfizer, Inc,New York,NY). The drug was prepared in a carboxymethyl cellulose 

suspension vehicle, at dosages of 10, 20, or 40 mg/kg per day (SU10, SU20, or SU40, 

respectively) and given orally by gavage, once a day. Control mice were treated with vehicle 

only. Treatment was continued for 7 to 18 days. On the basis of initial experiments, early time 

points of 7-day sunitinib treatment were selected for DCE-MRI studies or for monitoring RTKs 
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expression to avoid incorrect analysis of advanced and large necrotic tumors in control mice. For 

DCE-MRI experiments, three mice per treatment group were imaged. To assess the therapeutic 

response of KTs to an optimal dosage of 40 mg/kg per day of sunitinib, 10 mice per experimental 

group were treated daily for 18 days. For sunitinib dose-response studies, eight mice per 

experimental group were treated daily with 10, 20 or 40 mg/kg per day of sunitinib. Mice were 

killed by day 28 after tumor cell injection, when the tumor burden in control animals was large 

(>1.5 cm × 1 cm in size compared with 0.7 cm × 0.25 cm for normal kidneys [NK]) to compare 

with tumor sizes in treated groups. Tumor-bearing kidneys were resected and weighed (Hillman 

et al., 2007). 

 

4.3.3 Tissue Preparation for Histologic Diagnosis 

At completion of experiments, mice were killed and KTs as well as the contralateral NKs 

were resected and processed for histologic diagnosis. All tissues were fixed in 10% buffered 

formalin, embedded in paraffin, and sectioned (Hillman et al., 2007). Sections were stained with 

hematoxylineosin (H&E) (Hillman et al., 2007). Tissue sections were also immunostained with 

anti-CD31 antibody (Ab; Thermo Scientific, Fremont, CA) using an avidin-biotin 

immunoperoxidase technique (Haacke et al., 2007; Hillman et al., 2007; Raffoul et al., 2007). 

 

4.3.4 DCE-MRI Monitoring of Tumor Perfusion and Permeability and Tumor Size in KTs 

Mice from control and sunitinib-treated groups were imaged by DCE-MRI. Mice were 

anesthetized by intraperitoneal injections of 0.35 ml of pentobarbital and 0.35 ml of ketamine at 

a concentration of 52.5 mg/kg then a catheter was inserted into their tail vein, which was 

attached to a syringe containing Gd-DTPA contrast agent (Magnevist, Berlex, Wayne, NJ). Mice 
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were positioned on a cradle heated by temperature controlled water and were given a second low 

dose of anesthetics of 15 mg/kg each in 0.1 ml to avoid motion problems while in the magnet. A 

2-cm-diameter receive-only surface coil was placed over the tumor, and the cradle was placed 

inside an 11-cm inner-diameter transmit-only volume coil. DCE-MRI of mice was performed in 

the MR Research Facility at Wayne State University using a Bruker Biospec AVANCE animal 

scanner (Bruker, Karlsruhe, Germany) equipped with a 4.7-T horizontal bore magnet and 

actively shielded gradients. Anatomic imaging was done using a two-dimensional T2-weighted 

spin-echo scan (repetition time = 2000 milliseconds, echo time = 52.4 milliseconds) to get an 

overview of the kidney. Baseline imaging data of the kidneys were obtained using the short-

repetition time DCE scan for 30 time points (7 seconds between time points). On time point 10, 

100 μl o f Gd-DTPA (0.125 mmol/kg) was injected into the tail vein catheter. This dose was 

selected based on preliminary Gd dose-searching experiments to obtain appropriate contrast for 

image analysis. Then, imaging data were acquired for 20 more time points. The imaging 

parameters for this multislice two-dimensional gradient echo scan were as follows: repetition 

time = 54.7 milliseconds, echo time = 2.9 milliseconds, flip angle = 30 degrees, field of view = 

32 mm × 32 mm, slice thickness = 1.5 mm with 0.5-mm gap, matrix size = 128 × 128. Five 

slices were collected for each animal. Data were processed to determine changes in contrast 

agent uptake using the SPIN DCE software (Detroit, MI) (Haacke et al., 2007). For data analysis, 

the full kidney was selected as the region of interest (ROI) for the KT and the contralateral left 

NK. A threshold was selected to remove noise-only pixels in the image. Gd concentrations [C(t)] 

in the tissue were calculated for all pixels in the ROI and for each time point. Data from the C(t) 

curves were compiled for each pixel for 16 time points (112 seconds) after Gd injection to create 

the initial area under the curve (IAUC). The distribution of IAUC for the entire ROI is then 
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shown as a means to visualize the effects in every pixel in a single plot. The CIAUC is the 

cumulative initial area under the curve of the IAUC histogram. For quantitative analysis of 

vascular permeability, R50 (median) values are derived from CIAUC curves and correspond to 

the concentration of Gd at which 50% of the pixels have been included (Haacke et al., 2007). To 

evaluate the kinetics of uptake, washout, and leakage into the kidney tissue and tumor, the 

parametric color maps are used to show the initial rate of uptake, peak concentration and 

clearance of Gd in the tissue, and individual structures in each slice. The parameters measured in 

DCE-MRI for sunitinib-treated tumors were compared with those obtained for control tumors 

and NKs. 

 

4.3.5 Statistical Analysis 

Evaluation of the shape of the frequency distribution of tumor weights indicated that a 

log transformation was required to meet the assumptions of normal theory tests. Two-sample t-

tests were used to assess the significance of differences in tumor weight between mice treated 

with SU40 and control mice. A linear model with indicator variables to parameterize dose was 

used to investigate the relationship of vehicle, SU dose, and tumor weight. The paired difference 

in weight between the NK and KT was calculated and compared between experimental groups. 

Adjustment for multiple comparisons between treatments was made using Holm’s procedure to 

protect against inflated type I errors (Raffoul et al., 2007). 
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4.4 Results 

4.4.1 DCE-MRI of KTs 

To investigate the effect of sunitinib on tumor vasculature, mice bearing KTs were 

imaged by MRI before and after contrast Gd injection. We report the data of a representative 

experiment comparing three dosages of sunitinib, namely, 10, 20, and 40 mg/kg per day, to 

control mice treated with vehicle. These sunitinib dosages were selected based on previous 

animal studies demonstrating that 40 mg/kg per day of sunitinib, given daily, is a biologically 

active dosage. 

For data analysis, the full kidney was selected as the ROI both for the right KT and the 

left NK (Figure 4.1-A, T1). Gd concentrations [C(t)] were calculated for all pixels in each ROI 

and for each time point, and the average C(t) over all pixels was plotted (Figure 4.1-B)(Haacke et 

al., 2007). C(t) values, obtained after Gd injection, were integrated during 16 time points (112 

seconds) to create the IAUC112 histograms (Figure 4.1-C) and CIAUC (Figure 4.1-D). In 

control mice, Gd uptake was rapid in both the KT and NK. However, the kinetics of clearance of 

Gd in the KT were slow compared with faster clearance in the NK (C(t) in Figure 4.1-B). Indeed, 

the IAUC/CIAUC curves for the KT showed a pronounced shift to the right compared with NK, 

indicative of a greater retention of Gd (Figure 4.1, C and D). DCE-MRI of mice treated with 

SU40 revealed a pattern of Gd uptake that remained at a plateau with more retention of Gd in 

both kidneys compared with control mice. Retention of Gd was still greater in the KT treated 

with sunitinib than in the NK as observed by a shift to the right in IAUC/CIAUC curves relative 

to NK, but this shift was less pronounced than in control tumors (Figure 4.1, C and D). In mice 

treated with SU20, patterns of Gd uptake and clearance were identical in the KT and the NK 

(Figure 4.1-B). SU20 mice had IAUC and CIAUC overlapping with those of the NK, indicative 



45 

 

of improved tumor perfusion (Figure 4.1, C and D). Interestingly, the KT IAUC curve looked 

more regular and shifted to the left compared with KTs in control or SU40-treated mice, 

indicating decreased Gd retention. SU10 also seemed to change the kinetics of uptake and 

clearance in KTs, showing a shift to the left in IAUC curves compared with control or SU40-

treated mice but less than with SU20-treated tumors (Figure 4.1, C and D). In the NK, SU10 

caused milder changes in Gd uptake and clearance than SU20 or SU40 and resulted in an IAUC 

pattern comparable to that of NK in control mice (Figure 4.1, C and D). It should be noted that 

compared with tumors from control mice, sunitinib treatment at all tested dosages caused 

significant shifts to the left of IAUC curves of KTs, which were more pronounced with lower 

SU20 and SU10 doses than with a higher SU40 dose (as visualized relative to the black bar on 

top of each graph in Figure 4.1-C). 

Vascular changes in NKs were observed with higher SU20 and SU40 dosages and were 

expressed by a shift to the right in IAUC curves compared with NKs of control mice. These data 

presented for one mouse per treatment group were consistently observed for two additional mice 

per group in the same experiment showing reproducibility of our findings. 
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Figure 4.1. DCE-MRI of KCI-18 KTs. Mice bearing established tumors in the right kidneys were 
treated every day for 7 days with vehicle only (control) or with sunitinib at dosages of 40, 20, or 
10 mg/kg per day (SU40, SU20, or SU10, respectively). Then, mice were imaged by DCE-MRI 
for 30 time points at 7-second intervals. (A) Baseline images were collected for the first during 
10 time points before Gd contrast agent injection. At time point 10, Gd was injected in the tail 
vein, and images were collected for 20 more time points. For data analysis, the full kidney was 
selected as the ROI for the KT (blue contour on left of T1 image) and the contralateral left NK 
(red contour on right of T1 image). A threshold was selected to remove noise only pixels in the 
image. (B) The kinetics of Gd contrast uptake are represented in C(t) curves. (C) Data from the 
C(t) curves were compiled for 16 time points (112 seconds) after Gd injection to draw IAUC112. 
The small black bar indicates the peak position of NK in control mice and can be used as a 
reference for curve shifting in NKs and KTs treated with sunitinib. (D) The CIAUC graphs were 
derived from IAUC curves. In panels B, C, and D, blue lines are for KTs and pink lines are for 
NKs. Data from a representative mouse from each treatment group are presented. 
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To compare the patterns of Gd uptake in KTs versus NKs, R50 values for three mice per 

treatment group were derived from CIAUC curves for both KTs and NKs (Figure 4.2). The R50 

(median) values correspond to the concentration of Gd at which 50% of the pixels have been 

included (Figure 4.2-A) (Haacke et al., 2007). A trend in lower R50 values was observed in 

SU10- and SU20-treated mice compared with control mice and SU40-treated mice for both R50 

of KTs (Figure 4.2-B) and NKs (Figure 4.2-C). R50 values of KTs were then normalized to the 

R50 values of contralateral NKs for each mouse and shown as normalized R50 values (NR50) 

for three mice per group (Figure 4.2-D) (Haacke et al., 2007).We found that NR50 of KTs 

relative to NKs were consistently much smaller in SU20-treated mice in a range of 0.04 to 0.08 

compared with a wide range of 0.12 to 0.43 in SU10-treated, SU40-treated, or control mice 

(Figure 4.2-D). When NR50 was calculated as R50 values of KTs from sunitinib-treated mice 

relative to KTs from control mice, NR50 of SU20-treated mice was consistently lower than that 

of SU40-treated mice (Figure 4.2-E). A trend to lower NR50 values was also observed with 

SU10-treatedmice (Figure 4.2-E). To assess the effect of sunitinib on contralateral NKs, R50 

values of NKs from mice treated with sunitinib were normalized to NKs from control mice 

(Figure 4.2-F). TheseNR50 data of NKs showed lower values for SU10- and SU20-treated mice 

compared with SU40-treated mice (Figure 4.2-F). 
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Figure 4.2. R50 quantitation of DCE-MRI data of KCI-18 KTs. (A) The R50 value is derived 
from CIAUC curves (as shown for control mouse) and corresponds to the Gd concentration at 
which 50% of the pixels have been included. (B) R50 of KTs from three mice per treatment 
group. (C) R50 of contralateral NK from the same three mice per treatment group shown in panel 
B. (D) NR50 of KT versus NK: NR50 represents normalization of R50 values of KTs relative to 
R50 values of contralateral NK calculated as [R50KT − R50NK] / R50NK for each mouse and 
shown for three mice per group. (E) NR50 of KTSU versus KTCONT: Normalization of R50 
values of KTs from mice treated with sunitinib (KTSU) relative to the mean R50 values of KTs 
from control mice (KTCONT) calculated as [R50 KTSU − R50 KTmean cont] / R50 KTmean 
cont for each mouse and shown for three mice per treatment group. (F) NR50 of NKSU versus 
NKCONT: Normalization of R50 values of NKs of mice treated with sunitinib relative to the 
mean R50 values of NKs from control mice calculated as [R50 NKSU − R50 NKmean cont] / 
R50 NKmean cont for each mouse and shown for three mice per treatment group. Data are 
presented for three mice per treatment group from the same experiment shown in Figure 4.1. 
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4.4.2 DCE-MRI Analysis of Gd Kinetics of Uptake and Clearance Using Parametric Color 

Maps 

The parametric color maps from control mice showed accumulation of Gd in the 

periphery of the tumor with no uptake in the core of the tumor (Figure 4.3). In the NK of control 

mice, Gd uptake was distributed in the entire kidney with a higher uptake in the medullary 

central area than in the peripheral cortex, probably reflecting normal secretion of contrast agent 

(Figure 4.3). The negative slope image (Nslope) represents the clearance kinetics of Gd and 

shows low levels in control mice. The kidneys of SU40-treated mice showed a strong 

accumulation of Gd in most of the KT with persisting high levels in the peak, slope, and washout 

slope images (Figure 4.3). This effect was also observed in the NK with increased levels of Gd in 

both cortex and medulla, indicating that this high dosage of sunitinib also alters the perfusion of 

NK tissue. Parametric color maps of SU20-treatedmice showed a significant accumulation of Gd 

in the KT including Gd uptake in the tumor (Figure 4.3). These levels were high in the peak, 

slope, and Nslope images. Similar findings were observed in NK treated with SU20 (Figure 4.3). 

In contrast, KTs from SU10-treated mice showed no uptake of Gd in the core of the tumor, but 

some was seen at its periphery similar to KTs from control mice (Figure 4.3). Low levels were 

observed in the peak, slope, and Nslope images. The NK of mice treated with SU10 showed 

more Gd in the medulla than in the cortex (Figure 4.3) as seen in NK of control mice. These 

findings were consistently observed in two additional mice per group. 
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Figure 4.3. DCE-MRI of KTs: Parametric color maps. Parametric color maps were constructed 
based on uptake and concentration of Gd in the tissue, represented by the colors blue, green, 
yellow, and red with gradual increase of Gd from lowest values (blue) to highest values (red). 
Data are presented for the same representative mouse from each treatment group shown in Figure 
4.1. The KT is on the left, and the contralateral NK is on the right of the MR images. The color 
coding in the kidneys are shown for IAUC, the peak, and the slope of C(t). The Nslope 
represents the clearance of Gd after reaching the peak in the tissue. 
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4.4.3 Therapeutic Response of KTs to Sunitinib 

Previous studies using sunitinib in mouse tumor models have demonstrated that dosages 

of 40 or 80 mg/kg per day were optimal and biologically active, leading to tumor inhibition and 

inhibition of phosphorylation of RTKs on cancer cells and endothelial cells (Abrams et al., 

2003). Therefore, for our initial studies, we selected to test an optimal dosage of 40 mg/kg per 

day of sunitinib to investigate the therapeutic response of KTs using our KCI-18 RCC model. 

After intrarenal injection of KCI-18 cells, by days 10 to 12, mice developed established KTs 

with a mean (SD) volume of 150 (7) mm3 and mean (SD) weight of 186 (4) mg compared with 

NK volume of 125 (2) mm3 and weight of 148 (12) mg. At that time point, mice were treated 

daily with 40 mg/kg per day of sunitinib. On day 28 after cell injection, the right KT and the left 

NK were weighed (Figure 4.4-A). On average, KTs in control animals were 822 mg heavier than 

the contralateral NK. After sunitinib treatment, KTs were significantly smaller compared with 

control mice (P =0001; Figure 4.4-A). On average, SU40-treated tumors were 75%smaller than 

tumors in control mice but were still significantly larger compared with the contralateral NKs, 

with a mean (SD) difference of 209 (105) mg (P < .0001; Figure 4.4-A, inset). The weight 

disparity between the tumor-bearing and the NK was significantly smaller in mice treated with 

SU40 compared with control animals (P = .0002). By gross observation, control mice showed 

very large and extremely vascularized tumors that invaded the entire kidney and grew into the 

abdominal cavity (Figure 4.4-A, inset). After sunitinib treatment, the shape of the kidney was 

preserved in KTs indicating that SU40 therapy controlled the growth and invasion of the tumor 

through kidney tissue, but the kidneys looked ischemic. DCE-MRI findings suggest that lower 

doses of sunitinib have a different effect on tumor perfusion; therefore, in additional separate 

experiments, a dose-response study of sunitinib was tested, and a representative experiment is 
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presented in Figure 4.4-B. The therapeutic efficacy of lower dosages of 10 or 20 mg/kg per day 

of sunitinib was evaluated and compared with that of 40 mg/kg per day. SU10 did not 

significantly control KT growth (P = .43); tumors were only 25% smaller than control tumors on 

average (Figure 4.4-B) and appeared more hemorrhagic by gross observation. Both SU20 and 

SU40 significantly inhibited KT growth; average growth inhibition was 57% and 66%, 

respectively, relative to control tumors (P = .003 and P = .0007, respectively; Figure 4.4-B). On 

average, tumors of SU20-treated mice were 43% smaller than tumors of SU10-treated mice, but 

the difference is only marginally significant (P = .05). Although the tumors of SU40- treated 

mice were not significantly smaller than those of SU20-treated mice (P = .55), the variation in 

tumor size from mouse to mouse was smaller in SU40-treated mice (Figure 4.4-B). The extent of 

tumor growth inhibition mediated by SU40 was comparable in these two series of independent 

experiments presented in Figure 4.4, A and B, confirming reproducibility of our findings. 
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Figure 4.4. KCI-18 KT response to sunitinib. Mice bearing established KTs were treated daily 
with sunitinib for 18 days, then tumors were resected and weighted. (A) Response to optimal 
dose of sunitinib. The kidney weights and their median are reported for 10 mice per group 
treated with vehicle (control) or sunitinib at 40 mg/kg per day (SU40) compared with the 
contralateral NK weights in each experimental group. Inset contains pictures of KTs of control 
mice or SU40-treated mice compared with NKs. (B) Sunitinib dose-response. The kidney 
weights and their median are reported for eight mice per group treated with vehicle (control) or 
sunitinib at dosages of 40, 20, or 10mg/kg per day (SU40, SU20, or SU10, respectively) 
compared with the contralateral NK weights in each experimental group. *P < .05. Data 
presented were obtained from separate representative experiments. 
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4.4.4 Effect of Sunitinib on the Vasculature of KTs 

For histologic studies, KT sections were stained with H&E or by immunostaining with 

anti-CD31 Ab for the detection of blood vessels. KTs presented as high-grade carcinomas, 

consisting of tumor cells with large pleomorphic nuclei, prominent nucleoli, abundant 

eosinophilic cytoplasm, and large cytoplasmic inclusions (Figure 4.5-A, Control) (Hillman et al., 

2007). These tumors were highly vascularized with a sinusoidal vascular pattern and abnormal 

enlarged vessels as seen both by H&E staining and anti- CD31 staining (Figure 4.5, A and B, 

Control). Tumors treated with SU40 showed areas of tumor destruction and necrosis associated 

with hemorrhages but also remaining areas of viable tumor cells (Figure 4.5-A). The destruction 

of tumor vasculature was confirmed by anti-CD31 staining with disruption of the vessel walls, 

release of red blood cells in the tumor, and minimal staining of endothelial cells by anti-CD31 

(Figure 4.5-B). KTs treated with SU20 clearly showed more regularized and thinner vessels by 

H&E, and staining of endothelial cells in the vessel walls by anti-CD31 (Figure 4.5, A and B) in 

contrast to the enlarged abnormal vessels observed in KTs from control mice. However, tumors 

treated with SU10 still contained enlarged abnormal vessels as confirmed by anti-CD31 staining 

(Figure 4.5, A and B), and some of them were comparable to those observed in control mice. 
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Figure 4.5. Histologic diagnosis of KCI-18 KTs treated with various dosages of sunitinib. KTs 
resected from mice for the experiments described in Figure 4.4 were processed for histologic 
diagnosis, and tumor sections were stained either with H&E (A) or with anti-CD31 
immunostaining (B). H indicates hemorrhages; N, necrosis; T, tumor; V, vessels. Control 
untreated tumors consisted of tumor cells with large pleomorphic nuclei and were highly 
vascularized with a sinusoidal vascular pattern and abnormal enlarged vessels. Tumors treated 
with SU40 showed areas of tumor destruction and necrosis associated with hemorrhages and 
areas of viable tumor cells. Tumor sections stained with anti-CD31 reveal destruction of tumor 
vasculature and disruption of the vessel walls. KTs treated with SU20 showed more regularized 
and thinner vessels both by H&E and by anti-CD31 staining. SU10-treated tumors show enlarged 
abnormal vessels as confirmed by anti-CD31 staining with staining of areas of endothelial cells 
lining vessel walls. Original magnifications, ×40. 
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4.4.5 Effect of Sunitinib on Vasculature of NK Tissue 

Histologic analysis of NKs obtained from control mice showed multiple regular and thin 

vessels by H&E (Figure 4.6-A) and clear structures of vessels delineated by anti-CD31 staining 

of endothelial cells in vessel walls (Figure 4.6-B). In contrast, NKs obtained from mice treated 

with the high SU40 dosage showed dilatation of blood vessels as seen by H&E (Figure 4.6-A). 

Some enlarged vessels showed disruption of vessel walls as observed by anti-CD31 staining 

(Figure 4.6-B). The effect of SU20 on normal vessels in NKs was mild and caused dilatation 

only in a few vessels, whereas most looked normal as seen by anti-CD31 staining, in contrast to 

the numerous vessels enlarged by SU40 treatment (Figure 4.6, A and B). No effect on vessels in 

the NK was observed with SU10; the vessels looked thin and regular and were comparable to 

those seen in NKs of control mice (Figure 4.6, A and B). It should be noted that although 

disruptions in normal vessels were observed after sunitinib therapy, the mice treated with 

dosages of 20 to 40 mg/kg per day showed no apparent signs of drug toxicity. 
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Figure 4.6. Histologic diagnosis of NKs from mice treated with various doses of sunitinib. The 
contralateral left NKs (not bearing a tumor) resected from mice of the experiments described in 
Figure 4.4 were processed for histologic diagnosis, and kidney tissue sections were stained either 
with H&E (A) or with anti-CD31 immunostaining (B).NKs obtained from control mice showed 
multiple regular and thin vessels (V) by H&E and clear structures of vessels delineated by anti- 
CD31 staining of endothelial cells in vessel walls. After high SU40 dosage, dilatation of blood 
vessels was observed as seen by H&E. Enlarged vessels sometimes showed disruption of vessel 
walls seen by anti-CD31 staining. The milder effect of SU20 on normal vessels in NKs caused 
dilatation only in a few vessels, whereas most looked normal as seen by anti-CD31 staining. No 
effect on vessels in the NK was observed with SU10; the vessels looked thin and regular. 
Original magnifications, ×40. 
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4.5 Discussion 

To design novel targeted therapies for metastatic RCC, extensive research is ongoing to 

test drugs that target both the tumor cells and the tumor vasculature to inhibit processes that 

stimulate tumor growth in the tumor microenvironment. Antiangiogenic therapy causing 

excessive vascular regression could compromise the delivery of drugs or oxygen in the tumor 

when combined with conventional cytotoxic therapies (Jain, 2001; Jain, 2005). Using a 

preclinical RCC model, we have investigated, by DCE-MRI, vascular changes in KTs induced 

by the antiangiogenic drug sunitinib to select doses that could induce transient vessel 

normalization by pruning inefficient blood vessels and thereby improve tumor blood flow and 

subsequent drug delivery to tumor cells by chemotherapy (Browder et al., 2000; Wildiers et al., 

2003; Tong et al., 2004). 

A dose-dependent therapeutic efficacy of sunitinib for KCI-18 RCC tumor xenografts 

was demonstrated with dosages of 20 and 40 mg/kg per day, causing a significant 

inhibition/arrest of tumor growth and limited invasion of the kidney by tumor cells, in agreement 

with previous preclinical animal studies (Abrams et al., 2003; Murray et al., 2003; O'Farrell et 

al., 2003; Xu et al., 2005). Sunitinib exerted a direct cytotoxic effect at doses greater than 0.5 μM 

in KCI-18 cells in vitro. As documented in clear cell RCC and papillary RCC human tumor 

specimens (Lam et al., 2005; Xu et al., 2005), we found that KCI-18 cells and tumors also 

expressed the VEGFR-2 and PDGFR-β RTKs targets of sunitinib. Increasing doses of sunitinib 

caused a lower expression of these receptors on KTs, probably due to the modulation of these 

receptors. These findings suggest that sunitinib could inhibit KCI-18 tumor growth through 

targeting of RTKs signaling on tumor cells and/or on endothelial cells or stromal cells resulting 

in direct antitumor and antiangiogenic activities as shown in other studies. Interestingly, 
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modulation of RTKs receptors by sunitinib was also observed on NK tissues, confirming the 

effect of the drug on the vasculature of normal tissues. In agreement with our findings, recent 

animal studies (Ebos et al., 2007) and clinical trials of sunitinib for metastatic RCC or breast 

cancer reported decreased soluble VEGFRs’ plasma levels (Burstein et al., 2008; Rini et al., 

2008), which suggested modulation of VEGF pathway biomarkers by sunitinib. Furthermore, 

previous pharmacokinetic studies in mouse xenograft models demonstrated plasma levels of 50 

to 100 ng/ml for 12 hours when mice were treated with the same efficacious dosages of 20 to 40 

mg/kg per day of sunitinib as used in our studies, resulting in the inhibition of VEGFR-2 and 

PDGFR-β RTKs. Comparable plasma levels of 50 to 100 ng/ml of sunitinib were also measured 

in pharmacokinetic studies of patients receiving 50-mg daily doses (Britten et al., 2008). 

Sunitinib also induced dose-dependent vascular changes, which were observed both in 

KTs and in NK tissues by DCE-MRI. In control mice, the clearance of Gd in the KT was slow 

compared with faster clearance in the NK, probably as a result of leakiness from the abnormal 

enlarged tumor vessels observed histologically. Parametric maps from control mice showed 

accumulation of Gd in the periphery of the tumor with no uptake in the core of the tumor, 

indicative of poor vascularity and perfusion in the core of the tumor as shown in other MRI 

studies of xenograft tumors (Checkley et al., 2003; Marzola et al., 2005). In contrast, the NK of 

control mice showed distribution of Gd in the entire kidney with lower uptake in the peripheral 

cortex and a higher uptake in the medulla probably due to greater numbers of vessels in that area 

and reflecting normal secretion of contrast agent. Compared with control tumors, KTs from mice 

treated with a low dosage of 10 mg/kg per day of sunitinib showed mild changes in Gd uptake 

and clearance kinetics of KTs. These SU10- treated tumors had also poor tumor perfusion in the 

core of the tumor and histologically showed enlarged abnormal vessels similar to findings 
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observed in control tumors. Likewise, SU10 caused minimal effect on NK tissue vasculature 

with no changes in vascular permeability or vessel morphology compared with control mice. 

A therapeutic high dosage of 40 mg/kg per day induced vascular permeability changes 

resulting in retention of Gd in both left and right kidneys. Gd retention was greater in the KT 

than in the NK. This increased vascular permeability of Gd in the tumor could be due to the 

damaged vasculature and leakage of Gd into surrounding kidney tissue with slow kinetics of 

washout. Histologic studies confirmed destruction of tumor vasculature of SU40-treated KTs and 

disruption of the vessel walls causing hemorrhages. It should be noted that increased levels of Gd 

were also observed in both cortex and medulla of NKs, indicating that this high SU40 dosage 

alters the kinetics of uptake and contrast clearance of NK tissue. These data are supported by 

histologic observation of dilatation and disruption of normal vessels detected by anti-CD31 Ab 

staining of NK tissue. We conclude that the dosage of 40 mg/kg per day of sunitinib causes 

excessive vascular damage and vascular permeability in KTs and alterations of NK vessels. This 

in turn suggests that this dosage is not appropriate for combination chemotherapies. 

After treatment with an intermediate sunitinib dosage of 20 mg/kg per day, improved Gd 

clearance was observed with less Gd retention than that seen with SU40 or in control mice. 

Interestingly, in SU20- treated mice, Gd uptake and clearance in the C(t) curves, IAUC, and 

CIAUC showed identical patterns in the KT compared with the NK as confirmed by the low R50 

value of KTs relative to the R50 value of NKs (Figure 4.2-D). A clear shift to the left of IAUC 

curves of SU20- treated mice was observed compared with control mice and SU40- treated mice 

as shown also by the low R50 value of KTs treated with SU20 relative to the R50 value of 

control KTs (Figure 4.2-E). These data suggest a return to more “normal vasculature” with lower 

permeability (i.e., less leaky vessels) after treatment with SU20. Interestingly, a similar pattern 
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was observed in NKs of mice treated with sunitinib compared with those of control mice 

showingNR50 values lower for SU20-treated mice than for SU40-treated mice, indicating a 

milder effect of SU20 dosage on vasculature of NK tissue (Figure 4.2-F). Parametric maps 

revealed increased Gd uptake in the core of the tumor and surrounding kidney tissue in SU20-

treated mice. Histologically, the vessels of KTs treated with SU20 clearly showed more 

regularized and thinner vessels, indicating pruning or normalization of tumor vessels compared 

with the enlarged vessels of control KTs. The effect of SU20 on vessels in NKs was mild and 

caused dilatation only in a few vessels. 

To assess our results statistically, one way ANOVA was performed on the data from 

Figure 4.2-D to examine the differences in the normalized ratio of the mean value of the CIAUC 

curve (NR50) between the kidney tumor (KT) and normal kidney (NK) for all mice treated with 

a dose of 40, 20 or 10 mg/kg/day sunitinib or treated with vehicle only.  The subject inclusion 

criterion for analysis is defined by the changes of R50 values for the kidney tumors relative to 

R50 values in the normal kidney. There were a total of 12 mice used in the final analysis, 3 per 

each group. With this sample size, there is only a marginally significant difference between the 

KT group treated with sunitinib at a dose of 20 mg/kg/day and the control group (F (12, 3) = 

1.83, p = 0.058). There was no significant difference between controls and other mice treated 

with a sunitinib dose at either 10 or 40 mg/kg/day. Clearly an increased sample size might show 

more significant results. This would be necessary if we have to verify the claim that RCC 

treatment with an intermediate dose of 20 mg/kg/day sunitinb offers enhancement in kidney 

tumor perfusion with less impact in the normal kidney over a conventional treatment dose of 40 

mg/kg/day sunitinb 
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In summary, imaging of tumor vasculature changes by DCE-MRI and histologic 

diagnosis indicates that a lower dosage of 20 mg/kg per day of sunitinib could cause “pruning” 

or normalization of the tumor vasculature allowing for better tumor perfusion and decreased 

leakiness of vessels. Moreover, this dosage caused only mild vascular changes in normal tissues 

and thus could be less toxic to normal vessels, suggesting that this dosage could be used for 

combination with chemotherapy or radiotherapy.  

Our histologically verified studies demonstrate that the use of DCE-MRI is a useful 

means for monitoring vascular changes induced by sunitinib in both tumors and normal tissues. 

These data can be used to select the dose and schedule of sunitinib and potentially other 

antiangiogenic drugs causing transient normalization of tumor vasculature for combination 

therapies. 
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DCE-MRI Imaging of Sunitinib-Induced Vascular Changes to Schedule Chemotherapy in 
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5.1 Abstract 

In an attempt to develop better therapeutic approaches for metastatic renal cell carcinoma 

(RCC), the combination of the anti-angiogenic drug sunitinib with gemcitabine was studied. 

Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), we have previously 

determined that a sunitinib dose of 20mg/kg/day increased kidney tumor perfusion and decreased 

vascular permeability in a pre-clinical murine RCC model. This sunitinib dose causing 

regularization of tumor vessels was selected to improve delivery of gemcitabine to the tumor. 

DCE-MRI was used to monitor regularization of vasculature with sunitinib in kidney tumors to 

schedule gemcitabine. We established an effective and non-toxic schedule of sunitinib combined 

with gemcitabine consisting of pre-treatment with sunitinib for 3 days followed by four 

treatments of gemcitabine at 20mg/kg given 3 days apart while continuing daily sunitinib 

treatment. This treatment caused significant tumor growth inhibition resulting in small residual 

tumor nodules exhibiting giant tumor cells with degenerative changes, which were observed both 

in kidney tumors and spontaneous lung metastases, suggesting a systemic anti-tumor response. 

The combined therapy caused a significant increase in mouse survival. DCE-MRI monitoring of 

vascular changes induced by sunitinib, gemcitabine and both combined showed increased tumor 

perfusion and decreased vascular permeability in kidney tumors. These findings, confirmed 

histologically by thinning of tumor blood vessels, suggest that both sunitinib and gemcitabine 

exert anti-angiogenic effects in addition to cytotoxic anti-tumor activity. These studies show that 

DCE-MRI can be used to select the dose and schedule of anti-angiogenic drugs to schedule 

chemotherapy and improve its efficacy. 
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5.2 Introduction    

Recent developments in anti-angiogenic therapy have improved targeting metastatic renal 

cell carcinoma (RCC). The incidence of RCC has increased in recent years with approximately 

54,390 new cases each year in the United States of America. The disease is responsible for an 

estimated 13,010 deaths each year (Jemal et al., 2008). Nearly half of the patients present with 

localized disease that can be treated by surgical removal (Haas and Hillman, 1996; Motzer et al., 

1996). However, one third of the patients have metastatic disease at first presentation, and 20-

30% of the patients treated for localized RCC subsequently develop metastatic disease which 

frequently involves the lungs (Haas and Hillman, 1996; Motzer et al., 1996).  

The drug sunitinib (SU11248 or Sutent) is a small molecule receptor tyrosine kinase 

(RTK) inhibitor that has been approved by the FDA in January 2006 for RCC treatment based on 

significant responses in multiple metastatic sites and in primary tumors in initial clinical trials for 

metastatic RCC (Motzer et al., 2006). We and others have demonstrated that sunitinib targets and 

inhibits signaling of several RTKs including PDGFR, VEGFR, KIT and FLT3 in mouse 

xenograft models (Hillman et al., 2009). Sunitinib exhibits direct anti-tumor activity by 

inhibiting RTKs that are expressed by cancer cells and are involved in signaling for cancer cell 

proliferation (Abrams et al., 2003; Mendel et al., 2003; Murray et al., 2003; O'Farrell et al., 

2003; Sohal et al., 2003; Hillman et al., 2009). Sunitinib also exhibits anti-angiogenic activity by 

inhibition of signaling through VEGFR-2 and PDGFR-β RTKs expressed on endothelial cells or 

stromal cells (Mendel et al., 2003; Huang et al., 2010).  

In a phase III multinational study of 750 patients with metastatic RCC, randomized to 

sunitinib or interferon alfa (IFNα), the response rate to sunitinib was 31%, with median 

progression free survival (PFS) of 11.7 months and a median survival of 28 months (Motzer et 
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al., 2007). A recent update of this trial documented an objective response rate (ORR) of 47% 

with 11 months median PFS for sunitinib vs 12% ORR and 5 months PFS for IFNα (Motzer et 

al., 2009). Although the results with sunitinib therapy are impressive, long-term control of the 

disease is still not achieved. Additionally, several trials documented adverse effects of 

cardiotoxicity in some of the patients, probably as a result of alterations to normal vasculature 

(Chu et al., 2007; Kollmannsberger et al., 2007; Schmidinger et al., 2008; Telli et al., 2008). 

Therefore, further investigations with sunitinib dose adjustments and combination with other 

cytotoxic drugs are warranted to decrease the impact on vital organs such as the heart and the 

kidney.  

The process of tumor angiogenesis involves proliferation of abnormal vessels that are 

enlarged, disorganized and leaky due to defective basement membrane. These structural defects 

of tumor vessels cause increased interstitial tissue pressure, impaired blood supply and decreased 

oxygen supply in tumors compromising the delivery and efficacy of cytotoxic drugs and 

radiotherapy (Jain, 2001; Jain, 2005). To increase the efficacy of chemotherapy, we have 

recently investigated various doses of sunitinib to cause only partial destruction of immature and 

inefficient blood vessels leading to “normalization” of tumor vasculature and improve the blood 

flow in tumors (Hillman et al., 2009). We used dynamic contrast-enhanced magnetic resonance 

imaging (DCE-MRI) to image vascular changes induced by sunitinib within the tumor, in an 

orthotopic KCI-18 model of human RCC xenografts in nude mice. DCE-MRI is a non-invasive 

approach, currently used in humans, that can detect early changes in the tumor induced by anti-

angiogenic therapy as reported in human studies (Yankeelov et al., 2007; Hahn et al., 2008) and 

in preclinical animal models (Checkley et al., 2003; Marzola et al., 2005). This method measures 

a combination of tumor perfusion and vessel permeability and allows the detection of changes in 
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tumor vascularity, which occur at a much earlier stage in the treatment of tumors with anti-

angiogenic drugs than does shrinkage of tumor mass.  

By assessing vascular changes by DCE-MRI, we showed that a suboptimal daily 

sunitinib dose of 20mg/kg/day mildly affected normal vessels but caused better tumor perfusion 

and decreased vascular permeability, in agreement with histological observations of thinning and 

regularization of tumor vessels (Hillman et al., 2009). The goals of the current study were to 

determine if using sunitinib at doses which regularize the blood flow in the tumor in conjunction 

with the cytotoxic drug gemcitabine could improve its therapeutic efficacy for RCC. 

Gemcitabine is a pyrimidine analogue that inhibits DNA synthesis. The antitumor activity of 

gemcitabine depends on a series of sequential phosphorylations leading to accumulation of 

gemcitabine diphosphate and triphosphate which interfere with DNA elongation by competing 

with dCTP and also inhibit ribonucleotide reductase, thus reducing the pool of 

deoxyribonucleotide triphosphates. A few clinical trials have used gemcitabine in combination 

with other chemotherapy drugs including fluorouracil, thalidomide and capecitabine or with the 

cytokine interferon alpha for metastatic renal cell carcinoma (Desai et al., 2002; Perez-Zincer et 

al., 2002; Amato and Khan, 2008; Tannir et al., 2008). These trials resulted in modest clinical 

benefit.  

Although gemcitabine is a potent anti-tumor drug, its activity may be reduced by poor 

access to tumor cells caused by tumor vessel leakiness and increased interstitial tissue pressure 

(Jain, 2001; Jain, 2005). In the current study, we have investigated whether improving blood 

flow by sunitinib, at doses which regularize tumor vessels, could enhance the efficacy of 

gemcitabine for RCC in murine xenografts kidney tumors. DCE-MRI was used to monitor 

vascular changes induced by pre-treatment with sunitinib in KCI-18 kidney tumors to schedule 
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initiation of chemotherapy. We determined the dose and schedule of the combination of anti-

angiogenic therapy with sunitinib and cytotoxic therapy with gemcitabine that result in 

significant long lasting anti-tumor response. Vascular changes caused by gemcitabine treatment 

as a single modality or combined with sunitinib were evaluated by DCE-MRI.  
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5.3 Materials and Methods   

5.3.1 Orthotopic KCI-18/IK RCC Tumor Model 

The human RCC cell line designated KCI-18 was established in our laboratory from a 

primary renal tumor specimen obtained from a patient with papillary RCC (nuclear grade III/IV) 

(Hillman et al., 2004). Cells were cultured in DMEM medium with supplements (Hillman et al., 

2004). Following serial passages of KCI-18 cells in the kidney of nude mice, highly tumorigenic 

KCI-18/IK RCC cell lines were generated (Hillman et al., 2004). KCI-18/IK cells were washed 

with HBSS and subcapsularly injected at a concentration of 5x105

 

 cells in 30 µl HBSS in the 

right kidney in 5-6 week old female BALB/C nu/nu nude mice (Harlan, Indianapolis, IN) 

(Hillman et al., 2004). Mice were housed and handled under sterile conditions in facilities 

accredited by the American Association for the Accreditation of Laboratory Animal Care. The 

animal protocol was approved by Wayne State University Animal Investigation Committee. 

5.3.2 Experimental Protocol 

After injection of KCI-18/IK cells, a few mice were sacrificed at early time points to 

assess tumor growth before initiating treatment. Small tumors were detectable by day 9-10 in the 

kidney. On day 10, mice bearing established kidney tumors were treated with sunitinib (Pfizer 

Inc, New York, NY). The drug was prepared in a carboxymethyl cellulose suspension vehicle, at 

a dose of 20 mg/kg/day (SU20) and given orally by gavage, once a day (Hillman et al., 2009). 

Control mice were treated with vehicle only. After sunitinib pre-treatment for 3 days, mice were 

treated with various doses of gemcitabine administered 2-3 times a week by intraperitoneal (i.p.) 

injections. Gemcitabine (Gemzar, from Eli Lilly, Indianapolis, IN) was reconstituted in PBS and 

prepared at doses of 10-50mg/kg. Sunitinib treatment was continued daily for the duration of the 
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experiment. To assess the therapeutic response of kidney tumors to a combination of sunitinib 

and gemcitabine, 6-8 mice per experimental group were treated. Mice were killed by day 28 after 

tumor cell injection, when the tumor burden in control animals was large (greater than 1.5cm x 

1cm in size compared to 0.7cm x 0.25cm for normal kidney) to compare with tumor sizes in 

treated groups (Hillman et al., 2009). The tumor-bearing right kidneys and the contralateral left 

normal kidneys were resected and weighed (Hillman et al., 2009). For survival studies, 12 mice 

per experimental group were treated with sunitinib at 20mg/kg/day for 3 days on day 10-12 after 

KCI-18 cell injection in the kidney. Then, mice received five gemcitabine treatments at 20 mg/kg 

given 3-4 days apart, on days 13, 16, 20, 23 and 27. Sunitinib was continued daily for five days a 

week, for 6 weeks, up to 50 days. Mice were monitored daily for survival and sick animals were 

killed and autopsied (Haacke et al., 2007). On day 50, all remaining mice were killed and tumor-

bearing kidneys were resected and weighted.  

 

5.3.3 Tissue Preparation for Histology 

At completion of experiments, mice were killed and tumor-bearing kidneys, normal 

contralateral kidneys and the lungs were resected and processed for histology. All tissues were 

fixed in 10% buffered formalin, embedded in paraffin and sectioned (Hillman et al., 2009). 

Sections were stained with hematoxylin-eosin (H&E) (Hillman et al., 2009).  

 

5.3.4 DCE-MRI Monitoring of Tumor Perfusion and Permeability and Tumor Size in 

Kidney Tumors 

Based on initial experiments, early time points between 3 and 11 days after initiation of 

sunitinib treatment (day 14 through day 21 post tumor cell implantation) were selected for DCE-
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MRI studies to avoid incorrect analysis of advanced and large necrotic tumors in control mice. 

Three mice from control, sunitinib and gemcitabine treated groups were imaged by DCE-MRI. 

Mice were anesthetized by i.p. injections of 0.35 ml pentobarbital and 0.35ml ketamine at a 

concentration of 52.5mg/kg then a catheter was inserted into their tail vein, which was attached 

to a syringe containing Gd-DTPA contrast agent (Berlex, Wayne, NJ). Mice were positioned on 

a cradle heated by temperature-controlled water and were given a second low dose of 15mg/kg 

anesthetics (in 0.1ml volume) to avoid motion problems while in the magnet (Hillman et al., 

2009). A 2-cm diameter receive-only surface coil was placed over the tumor and the cradle was 

placed inside an 11-cm inner diameter transmit-only volume coil. DCE-MRI of mice was 

performed in the MR Research Facility at Wayne State University, using a Bruker Biospec 

AVANCE animal scanner equipped with a 4.7 –T horizontal bore magnet and actively shielded 

gradients. Anatomical imaging was done using a 2D T2 weighted spin echo scan (TR = 2000ms, 

TE = 52.4ms) to get an overview of the kidney (Hillman et al., 2009). Baseline imaging data of 

the kidneys were obtained using the short TR DCE scan for 30 time points (7 sec between time 

points). On time point 10, 100 µl of Gd-DTPA (0.125 mmole/kg) was injected into the tail vein 

catheter. This dose was selected based on preliminary Gd dose searching experiments to obtain 

appropriate contrast for image analysis (Hillman et al., 2009). Then, imaging data were acquired 

for 20 more time points. The imaging parameters for this multi-slice 2D gradient echo scan were: 

TR = 54.7ms, TE = 2.9ms, FA = 30o, FOV= 32mm x 32mm, slice thickness = 1.5mm with 

0.5mm gap, matrix size = 128x128. Five slices were collected for each animal. Data were 

processed to determine changes in contrast agent uptake using the SPIN DCE software (Detroit, 

MI) (Haacke et al., 2007). For data analysis, the full kidney was selected as the region of interest 

(ROI) for the tumor-bearing kidney and the contralateral left normal kidney. A threshold was 
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selected to remove noise only pixels in the image (Hillman et al., 2009). Gd concentrations [C(t)] 

in the tissue were calculated for all pixels in the ROI and for each time point (Raffoul et al., 

2007). Data from the C(t) curves were compiled for each pixel for 16 time points (112sec) after 

Gd injection to create the initial area under the curve (IAUC). The distribution of IAUC for the 

entire ROI is then shown as a means to visualize the effects in every pixel in a single plot. The 

CIAUC is the cumulative initial area under the curve of the IAUC histogram (Hillman et al., 

2009). For quantitative analysis of vascular permeability, R50 (median) values are derived from 

CIAUC curves and correspond to the concentration of Gd at which 50% of the pixels have been 

included (Raffoul et al., 2007). To evaluate the uptake, wash-out and leakage of Gd into the 

tumor and surrounding kidney tissue, the parametric color maps are used to show the total Gd 

uptake (AUC) in individual structures. The parameters measured in DCE-MRI for sunitinib and 

or gemcitabine treated tumors were compared to those obtained for control tumors and normal 

kidneys.   

 

5.3.5 Statistical Analysis 

Evaluation of the shape of the frequency distribution of tumor weights indicated that a 

log transformation was required to meet the assumptions of normal theory tests. Linear models 

were used to assess the statistical significance of differences in tumor weight between 

experimental groups and proportional hazards models were used for survival data. In both 

models, indicator variables were used parameterize dose. Adjustment for multiple comparisons 

between treatments was made using Holm’s procedure to protect against inflated type I errors. 

Kaplan-Meier methods were used to graphically compare survival in each of the groups. The 
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log-rank test was used to test differences in survival distributions between groups again using 

Holm’s procedure to control for type I error rate.  
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5.4 Results 

5.4.1 Direct Cytotoxic Effect of Sunitinib Combined With Gemcitabine in KCI-18 Cells in 

Vitro    

We have previously shown that sunitinib exerts a direct cytotoxic effect on KCI-18 RCC 

in vitro, in a dose-dependent manner (Hillman et al., 2009). We found that a dose of 1 µM 

sunitinib caused a significant 40% inhibition in cell survival in a clonogenic assay, as confirmed 

in this additional experiment (Table 5.1). This dose was selected to investigate whether this 

effect is enhanced by the addition of gemcitabine. Following pilot titration experiments, 

suboptimal doses of gemcitabine were tested alone and combined with sunitinib in a clonogenic 

assay. Gemcitabine  at doses of 1 and 2.5 µM caused significant inhibition of KCI-18 cell 

survival of  about 50% (p<0.001) and 70% (p<0.0001) respectively, compared to control cells 

treated with vehicle (Table 1). This cell growth inhibition was significantly enhanced to 80% and 

90% by co-treatment of 1 µM sunitinib with 1 µM and 2.5 µM gemcitabine, compared to 

gemcitabine alone (p<0.01) and sunitinib alone (p<0.01) and to control cells (p<0.0001) (Table 

5.1). 

 

Table 5.1: Inhibition of KCI-18 cell growth by sunitinib combined with gemcitabine in vitro. 
KCI 18 cells were treated with gemcitabine at 1nM and 2.5 nM or sunitinib at 1 μM, or both 
drugs in combination for 24 hrs, and then cells were plated in a colony formation assay for 10 
days. The mean survival fraction was calculated from triplicate wells. *p<0.001;**p<0.0001.  
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5.4.2 Therapeutic Response of Kidney Tumors by Combined Sunitinib and Gemcitabine in 

Vivo  

Using DCE-MRI and histological studies, we have previously demonstrated that 

sunitinib, given at a dose of 20mg/kg/day for 7 days, caused trimming and regularization of 

tumor vessels with improved tumor perfusion (Hillman et al., 2009). This dose was therefore 

selected for combination with chemotherapy. To schedule administration of gemcitabine mice, 

which had established kidney tumors [150 mm3 (SD 7), 186 mg (SD 4)] compared to normal 

kidney sizes [125 mm3 (SD 2), 148 mg (SD 12)] on day 10 after tumor implantation, were treated 

daily with sunitinib at 20mg/kg/day (SU20) for 3 days and then imaged by DCE-MRI (Figure 5.1 

A). As observed in our previous studies, the IAUC distribution pattern of Gd uptake and 

clearance in control mice was different for kidney tumors than for normal kidneys (Hillman et 

al., 2009). Slower clearance of Gd was observed in the tumor-bearing kidney compared to faster 

clearance in the normal kidney and the CIAUC curve for the tumor-bearing kidney showed a 

pronounced shift to the right compared to normal kidney, indicative of a greater retention of Gd 

(Figure 5.1A). In contrast, treatment with SU20 for 3 days showed identical patterns of Gd 

uptake and clearance in the kidney tumor than in the normal kidney, as previously shown 

(Hillman et al., 2009). IAUC and CIAUC histograms of the kidney tumor overlapped those of 

the normal kidney and shifted to the left compared to control tumor kidneys, indicating 

decreased Gd retention and improved tumor perfusion (Figure 5.1A). Based on these data 

showing that vascular regularization is detectable by DCE-MRI after 3 days of daily treatment 

with SU20, we designed the treatment schedule for combination therapy with gemcitabine as 

presented in Figure 5.1B. Gemcitabine treatment was initiated at 3 days after pre-treatment with 

SU20 for established KCI-18 kidney tumors. The schedule and dose of gemcitabine treatment 
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were determined based on dose titration experiments. Following 3-5 injections of gemcitabine at 

the dose of 50mg/kg, given two days apart together with daily SU20, a complete tumor growth 

inhibition was observed, but this treatment was too toxic to the mice resulting in 50% death. 

Therefore, we tested lower doses of 10, 20 and 40 mg/kg of gemcitabine (G10, G20, G40) given 

twice a week, 3 days apart while SU20 was continued daily for the duration of the experiment 

(Figure 5.1B). In separate experimental groups of 6-8 mice per group, the response to 

gemcitabine treatment alone was compared to SU20 alone and both combined in a relatively 

short-term experiment of 28 days, to compare tumor size at a time point when control tumors are 

very large. The tumor-bearing right kidney and the normal left kidney were weighed and the 

mean tumor weights were compared between each treatment group and control group (Figure 

5.1C). Following SU20 treatment alone, kidney tumors were significantly smaller by 43% 

compared to control mice tumors (p= 0.001); but these tumors were still large (Figure 5.1C), as 

previously reported (Hillman et al., 2009). Compared to control, treatment with G10 caused 

about 30% inhibition (p=0.04) and increased to 52.5% when combined with SU20 (p<0.001).  

The effect of G20 was even greater causing 64% tumor growth inhibition (p<0.001) and 74% 

when combined with SU20 (p<0.001) (Figure 5.1C). Although the difference in the mean tumor 

weight of G20 + SU20 was not significant compared to G20 (p=0.33), the tumor weight data 

(n=8) in the combined treatment was more consistent and less variable than with G20 only. The 

average weight of tumor-bearing kidneys of mice treated with SU20 + G20 was only 223mg (SD 

37) and their shape and size consistently looked closer to those of normal kidneys (166 mg, SD 

22) with a mean difference of only 57 mg (Figure 5.1C). This combined therapy using 

20mg/kg/day of sunitinib combined with four treatments of gemcitabine at 20mg/kg given 3 days 

apart, for a total of 80mg/kg did not cause any signs of toxicity to the mice. However, when the 
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dose of gemcitabine was increased to 40mg/kg, for a total of 160 mg alone or together with 

SU20, it was associated with toxicity and weight loss. Treatment with G40 resulted in significant 

tumor growth inhibition of 71% (p<0.001) when given alone but no further increase was 

observed with combination with SU20 compared to G40 alone (p=0.53) (Figure 5.1C). The 

difference between the G20 and G40 groups was not statistically significant (p=0.51). It should 

be noted that the size of the normal contra-lateral kidneys was not affected by the single or 

combined therapy at every dose of gemcitabine tested (Figure 5.1C, inset). 
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Figure 5.1: KCI-18 kidney tumor response to sunitinib combined with gemcitabine. (A)  DCE-
MRI of early vascular changes induced by sunitinib. Mice bearing established kidney tumors 
were treated daily with sunitinib at 20mg/kg/day (SU20) for 3 days and imaged by DCE-MRI. 
(B) Treatment schedule for combination therapy. Mice bearing established kidney tumors were 
pre-treated with sunitinib at 20mg/kg/day (SU20) for 3 days on day 10-12 after KCI-18 cell 
injection in the kidney. Then, mice received gemcitabine treatments at 10, 20 or 40 mg/kg given 
3 days apart, twice a week for 2 weeks on days 13, 16, 20 and 23. Sunitinib was continued daily 
for up to 28 days for a short-term experiment (2C) or for 50 days for a longer-term experiment 
(2D). (C) Response of tumor-bearing kidneys to single and combined therapy. On day 28, tumor-
bearing kidneys and contralateral normal kidneys were resected and weighted. The weights of 
the tumor-bearing kidneys and their median are reported for 6-8 mice per group treated with 
vehicle (control) or sunitinib at 20mg/kg/day (SU20), or gemcitabine at 10 (G10), 20 (G20) or 40 
(G40) mg/kg; each drug alone and in combination compared to the normal contralateral kidney 
weights (NK). Inset shows weights of the normal contralateral kidneys for each treatment group. 
*p<0.001. (D) Survival of KCI-18 kidney tumor-bearing mice treated with sunitinib combined 
with gemcitabine. Mice bearing established kidney tumors were pre-treated with sunitinib (SU) 
at 20mg/kg/day for 3 days on day 10-12 after KCI-18 cell injection in the kidney. Then, mice 
received five gemcitabine (Gem) treatments at 20 mg/kg given 3-4 days apart, over 3 weeks on 
days 13, 16, 20, 23 and 27 and sunitinib was continued daily, 5 days per week, for up to 50 days 
as shown in Figure 5.2B.  Mice were followed survival and Kaplan-Meier survival curves of 
mice treated with vehicle (Con for control) sunitinib (SU) or gemcitabine (Gem) or both 
combined (Gem+SU) were constructed.   
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5.4.3 Survival of Kidney Tumor-Bearing Mice Treated with Combined Sunitinib and 

Gemcitabine   

From the experiments presented in Figure 5.1, we have determined the sequence, 

schedule and doses for a safe and therapeutic combination of sunitinib and gemcitabine for 

treating KCI-18 kidney tumor-bearing mice. We showed that a dose of sunitinib of 20mg/kg/day 

combined with gemcitabine at 20mg/kg/treatment for 4 treatments result in optimal and 

consistent tumor growth inhibition, when this effect was assessed on day 28 after tumor 

implantation (Figure 5.1C). These conditions were selected to evaluate the effect of single and 

combined therapies on mouse survival during a longer term experiment of 50 days. Mice bearing 

established kidney tumors were pre-treated with 20mg/kg/day sunitinib for 3 days (day 10-12) 

followed by four injections of gemcitabine at 20mg/kg given 3 days apart (days 13,16,20, 23) 

following the same schedule shown in Figure 5.1B.  An additional gemcitabine injection was 

administred on day 23 because of the longer duration of the experiment. Sunitinib was continued 

daily for 5 days a week for 6 weeks, up to day 50 (Figure 5.1B). Mice were monitored on a daily 

basis and sick mice showing weight loss and/or limited mobility, as a result of large kidney 

tumors, were euthanized, necropsied and the tumor weights were measured. Survival of animals 

receiving sunitinib alone was not statistically different from control mice (p=0.08; median SU = 

36 days; median controls = 29 days) (Figure 5.1D). In both groups, mice had large kidney tumors 

at necropsy, the mean tumor weights of control mice was 1157 mg (SD 426)  and that of 

sunitinib treated mice was 675 (SD 226). Animals treated with gemcitabine alone for a total dose 

of 100mg/kg had median survival of 43 days, significantly longer survival than controls 

(p<0.001) and than the sunitinib group (p=0.009) but only 33% of the mice survived up to day 

50. These mice had large tumors with mean weight of 794 mg (SD 338) when necropsied. The 
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combination of sunitinib and gemcitabine resulted in longer survival compared to control mice 

(p<0.001) and mice treated with sunitinib (p<0.001) but not significantly different from animals 

treated with gemcitabine alone (p=0.13) (Figure 5.1D). Nevertheless, a higher proportion of 70% 

of the mice (7/10) treated with the combined therapy survived by day 50 compared to 33% with 

gemcitabine alone and 0% with sunitinib alone. Interestingly, these mice had large tumors with a 

mean of 767 mg (SD 267), probably due to regrowth of kidney tumors which was not controlled 

by maintenance therapy with sunitinib at 20mg/kg/day. 

    

5.4.4 In situ Effects of Sunitinib and Gemcitabine on Kidney Tumors and Lung Metastases   

Tumor-bearing kidneys and normal contralateral kidneys from mice treated with sunitinib 

at 20mg/kg/day, gemcitabine at 20mg/kg and both combined were obtained on day 28 from 

experiments described in Figure 5.1B, C. These tissues were processed for histology and H&E 

staining. Kidney tumors from control mice presented as a high grade carcinoma, consisting of 

tumor cells with large pleomorphic nuclei, prominent nucleoli, abundant eosinophilic cytoplasm 

and large cytoplasmic inclusions (Hillman et al., 2004; Hillman et al., 2009). These tumors were 

highly vascularized with a sinusoidal vascular pattern consisting of abnormal enlarged vessels 

(Figure 5.2A). Focal extravasation of red blood cells (RBC) between tumor cells was observed 

probably due to leakiness of vessels and disrupted basement membrane as previously reported 

(Hillman et al., 2004; Hillman et al., 2009). Kidney tumors treated with sunitinib showed 

considerable thinning, regularization and organization of tumor vessels with endothelial cells 

lining the vessels (Figure 5.2A). A marked decrease in the number of tumor vessels was noted 

(Figure 5.2A). These findings are consistent with our previous observations (Hillman et al., 

2009). Kidney tumors of mice treated with gemcitabine showed abnormal giant tumor cells 
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exhibiting degenerative changes in their cytoplasm and nuclei, which were indicative of cell 

death (Figure 5.2A). These giant cells, comprising about 70% of the tumor, contained 

cytoplasmic vacuoles and pink eosinophilic inclusions and showed degenerative changes in 

nuclei with focal karyopyknosis (Figure 5.2A). Compared to control tumors, the vascularity of 

these gemcitabine-treated tumors was reduced and had lower numbers of enlarged vessels. A few 

focal enlarged vessels were still observed along with few foci of RBC’s extravasation (Figure 

5.2A). Kidney tumors treated with sunitinib and gemcitabine showed a higher frequency of about 

90% abnormal giant tumor cells harboring the same cytoplasmic and nucleus degenerative 

changes as those seen in gemcitabine alone (Figure 5.2A).  The tumor vessels looked more 

trimmed and more organized than those seen after gemcitabine treatment alone although focal 

dilatation was still observed compared to sunitinib treated tumors. In lower magnifications, these 

tumors looked like residual small nodules mostly consisting of giant tumor cells, which were 

surrounded by normal epithelial renal cells (data not shown). The histology of tumors treated 

with 40mg/kg of gemcitabine alone or with sunitinib was comparable to that shown in Figure 

5.2A for tumors treated with 20mg/kg gemcitabine.   

Tissue sections from the normal contralateral left kidneys (not implanted with tumor) 

were also evaluated after single and combined sunitinib and gemcitabine treatments (Figure 

5.2B).  Normal kidneys from untreated control mice showed preserved kidney tissue architecture 

with intact and regular blood vessels. As observed previously, sunitinib at 20 mg/kg/day caused 

mild dilatation of a few vessels (Hillman et al., 2009). Interestingly, gemcitabine caused 

dilatation of some of the vessels and mild focal extravasation of RBCs (Figure 5.2B). Following 

combined sunitinib and gemcitabine treatment, focal areas of dilated vessels were seen but at a 

lower frequency than with gemcitabine alone (Figure 5.2B).  
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Figure 5.2: Histology of kidney tumors and normal kidneys from mice treated with sunitinib and 
gemcitabine. Kidney tumors and normal contralateral kidneys from mice treated with sunitinib 
(20mg/kg), gemcitabine (20mg/kg) and both combined, obtained on day 28 from experiments 
described in Figure 5.1, were processed for histology and H&E staining.  The main findings were 
labeled on the prints with T for tumor, V for vessels, G for giant tumor cells. (A) Kidney tumors. 
Control untreated tumors consisted of tumor cells with large pleomorphic nuclei, were highly 
vascularized with a sinusoidal vascular pattern of abnormal enlarged dilated vessels with focal 
extravasation of RBCs. Sunitinib (SU) treated tumors showed thinning and organization of tumor 
vessels as well as a decrease in the numbers of tumor vessels.  Kidney tumors of mice treated 
with gemcitabine (Gem) contain numerous abnormal and giant tumor cells with cytoplasmic 
vacuoles or eosinophilic inclusions and degenerative changes in nuclei with focal karyopyknosis. 
Note some of the vessels in these tumors were still enlarged with foci of RBCs extravasation; 
however to a lesser degree than in the untreated tumors.  Tumors treated with sunitinib and 
gemcitabine (SU + Gem) consisted mostly of abnormal degenerating giant tumor cells. 
Trimming of tumor vessels was evident. (B) Normal contralateral left kidneys. The normal 
kidney from control mice showed intact, regular and thin blood vessels. Sunitinib at 20mg/kg 
showed a mild effect of dilatation in a few vessels. Gemcitabine caused dilatation of some of the 
blood vessels. This effect was milder with combined sunitinib and gemcitabine with fewer 
vessels dilated.  All magnifications X40. 
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Spontaneous metastasis to the lungs from primary KCI-18 kidney tumors has been 

previously observed in this RCC metastatic model (Hillman et al., 2004). To assess the effect of 

therapy on spontaneous lung metastases, lungs were resected on day 28 from kidney tumor-

bearing mice treated with sunitinib and gemcitabine and processed for H&E staining. In control 

kidney-tumor bearing mice, all mice presented with metastatic lung tumor nodules showing the 

typical morphology of KCI-18 RCC tumor cells with large pleomorphic nuclei and prominent 

nucleoli (Figure 5.3). Areas of dilated vessels with extravasation of RBC’s were observed as 

seen in primary kidney tumors (Figure 5.3). The average number of lung nodules was 26 per 

mouse consisting of a mixture of large and small nodules. In sunitinib-treated mice, all mice had 

metastatic lung nodules but the majority of the nodules were very small often containing less 

than 10 cells per nodule and an average of 14 per mouse. The lung tumor nodules showed an 

overall decrease in the number of tumor cells and/or areas of tumor destruction as well as a 

marked decrease in vascularization (Figure 5.3). Mice treated with 20 or 40 mg of gemcitabine 

had a lower frequency of lung nodules detectable in 3 out of 7 mice and presenting as 1-5 small 

lung nodules per mouse. These lung tumor nodules exhibited giant tumor cells with cytoplasmic 

vacuoles, eosinophilic inclusions and degenerative nuclei identical to those observed in primary 

kidney tumors treated with gemcitabine (Figure 5.3).  Few trimmed vessels were seen. The effect 

of combined sunitinib and gemcitabine on metastatic lung nodules was more drastic with large 

areas of hyalinization and fibrosis and few remaining giant tumor cells with degenerative 

changes (Figure 5.3). Lung tumor nodules were detectable only in 3 out of 11 mice treated with 

sunitinib combined with 20 or 40 mg/kg gemcitabine and the majority of these nodules were 

very small often containing less than 5 cells per nodule and large areas of fibrosis.       
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Figure 5.3: Histology of spontaneous lung metastases from mice treated with sunitinib and 
gemcitabine. Lungs from mice treated with sunitinib (20mg/kg), gemcitabine (20mg/kg) and 
both combined, obtained on day 28 from experiments described in Figure 5.1, were processed for 
histology and H&E staining. The main findings were labeled on the prints with T for tumor, V 
for vessels, G for giant tumor cells, F for fibrotic areas and L for normal lung alveoli. Metastastic 
lung tumor nodules from untreated mice (Control) consisted of tumor cells with pleomorphic 
nuclei and prominent nucleoli and contained areas of dilated vessels. Sunitinib (SU) –treated 
mice had decreased number of tumor cells and vessels in lung tumor nodules. Lung tumor 
nodules from gemcitabine (Gem) treated mice showed giant tumor cells with cytoplasmic 
vacuoles and eosinophilic inclusions and decreased vascularization. Gemcitabine combined with 
sunitinib (SU + Gem) contained large eosinophilic areas of hyalinization, fibrosis and a few giant 
abnormal tumor cells. Figures were enlarged to show changes in lung tumor nodules. 
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5.4.5 DCE-MRI Evaluation of Vascular Changes Induced by Gemcitabine Treatment in 

Kidney Tumors 

 To monitor the effect of gemcitabine treatment by DCE-MRI, mice with established 

kidney tumors were treated on day 13 with gemcitabine at a safe and therapeutic dose of dose of 

20mg/kg, given 3-4 days apart, as determined from experiments described in Figure 5.1. Mice 

were then tested by DCE-MRI after 1, 3 or 4 doses of gemcitabine (day 14, 18 and 21 

respectively). For data analysis, the full kidney was selected as the ROI both for the right tumor-

bearing kidney and the left normal kidney (Figure 5.4A). As described above in Figure 5.1A, the 

IAUC and CIAUC curves for the tumor-bearing kidney in control mice, showed a pronounced 

shift to the right compared to normal kidney, indicative of a greater retention of Gd (Figure 5.4B, 

C, D). Interestingly, gemcitabine treatment caused improved clearance of Gd in the tumor 

bearing kidney compared to kidney tumors from control mice (Figure 5.4B). This was observed 

by a shift of the IAUC and CIAUC curves towards those of normal kidneys (Figure 5.4C, D). 

Furthermore, the patterns of Gd uptake and clearance were identical in the tumor-bearing kidney 

and the normal kidney with IAUC and CIAUC curves overlapping, and thus indicative of 

improved blood perfusion in the tumor (Figure 5.4). Gemcitabine also changed the pattern of 

uptake and clearance in the normal kidney compared to the normal kidney of control mice, 

showing a slower wash out of Gd (Figure 5.4B) and a wider IAUC distribution (Figure 5.4C). 

These data suggest that gemcitabine is also causing vascular changes in the normal kidney. It 

should be noted that vascular changes both in the kidney tumors and normal kidneys are 

consistently observed with 1, 3 or 4 doses of gemcitabine. These findings suggest that one dose 

of gemcitabine is sufficient to induce vascular changes which are reproducible with additional 

treatments of gemcitabine.      
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 DCE-MRI parametric maps were derived from the C(t) curves for each pixel and  

represent the total Gd uptake (AUC) for the tumor and surrounding kidney tissue (Figure 5.4E). 

Parametric maps from control mice showed accumulation of Gd in the periphery of the tumor 

with no uptake in the tumor core, indicative of poor tumor perfusion (Figure 5.4E), as previously 

reported (Hillman et al., 2009). In the normal kidney of control mice, Gd uptake was distributed 

in the entire kidney with a higher uptake in the medullary central area than in the peripheral 

cortex, probably reflecting normal secretion of contrast agent (Figure 5.4E). Interestingly, 

gemcitabine caused striking changes observed by parametric maps with uptake of Gd in the core 

of the tumor, indicative of tumor perfusion (Figure 5.4E). The uptake of Gd in the tumor-bearing 

kidney was similar to that seen in the normal kidney (Figure 5.4E). These data were consistently 

reproduced following 1, 3 or 4 treatments of gemcitabine injections (Figure 5.4E). 
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Figure 5.4: DCE-MRI imaging of vascular changes induced by gemcitabine in KCI-18 kidney 
tumors. In separate experiments, mice bearing established kidney tumors were treated with 
gemcitabine at 20mg/kg (Gem20) or with vehicle (control). Mice were imaged by DCE-MRI at 
24 hrs following gemcitabine treatment after receiving either1 dose (Day 14), 3 doses (Day 18) 
or 4 doses (Day 21), given 3 days apart. (A) T1 images: Baseline images prior to Gd contrast 
agent injection.  The full kidney was selected as the ROI for the tumor-bearing kidney (blue 
contour on left of T1 image) and the contralateral normal kidney (red contour on right of T1 
image). (B) C(t) kinetics of Gd contrast uptake and clearance: The first 10 time points represent 
baseline data. Gd was injected at time point 10 and images were collected for 20 more time 
points. (C) IAUC graphs: Data from the C(t) curves were compiled for 16 time points (112sec) 
after Gd injection to draw IAUC112. The small black bar indicates the peak position of normal 
kidney in control mice and can be used as a reference for curve shifting in normal kidneys and 
kidney tumors treated with gemcitabine. (D) CIAUC graphs: CIAUC curves were derived from 
IAUC curves. In A, B, C and D panels, blue lines are for kidney tumors and pink lines are for 
normal kidneys. (E) AUC parametric map: Parametric color maps were constructed based on 
uptake and concentration of Gd in the tissue, represented by the colors blue, green, yellow and 
red with gradual increase of Gd from lowest values (blue) to highest values (red). The tumor-
bearing kidney is on the left and the normal contralateral kidney is on the right of the MR 
images. The color coding in the kidneys are shown for integrated AUC. Data from a 
representative mouse from each treatment group are presented. 
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5.4.6 DCE-MRI of Kidney Tumors Treated with Sunitinib and Gemcitabine 

 The effect of sunitinib, gemcitabine and both combined on kinetics of Gd uptake and 

clearance in tumors was evaluated by DCE-MRI. In this experiment, KCI-18 kidney tumor-

bearing mice were pre-treated daily with sunitinib at a dose of 20 mg/kg per day (SU20), for 3 

days on days 10, 11, 12 after KCI-18 cell implantation in the right kidney. On day 13, 

gemcitabine (GEM) was injected i.p. at 20 mg/kg, and this injection was repeated on day 15 and 

day 17 while continuing daily treatment with SU20. After these 3 doses of gemcitabine, on day 

18, mice were imaged by DCE-MRI as previously described (Hillman et al., 2009). For data 

analysis, the full kidney was selected as the ROI both for the right tumor-bearing kidney and the 

left normal kidney (Figure 5.5A). Analysis of the kinetics of uptake and clearance of Gd showed 

that in control mice, the clearance of Gd in the tumor-bearing kidney was slow compared to 

faster clearance in the normal kidney (Figure 5.5B, C, D). Following treatment with SU20, the 

C(t) curves of the kidney tumors overlapped those of normal kidneys and showed similar uptake 

and improved Gd clearance with much less Gd retention than that of kidney tumors in control 

mice (Figure 5.5B). The tumor-bearing kidney IAUC curve looked more regular and shifted to 

the left compared to control kidney tumors indicating decreased Gd retention (Figure 5.5C). Gd 

uptake and clearance in the C(t) curves, IAUC and CIAUC showed identical patterns in the 

tumor-bearing kidney compared to the normal kidney (Figure 5.5B, C, D). These findings are 

consistent with our previous studies (Hillman et al., 2009) and suggest a return to more “normal 

vasculature” with lower permeability (i.e., less leaky vessels). Following treatment with 

gemcitabine, the vascular changes described in Figure 5.4 were reproduced in this experiment, 

including improved clearance of Gd in the tumor bearing kidney, and slower clearance of Gd in 

the normal kidney (Figure 5.5B, C, D). Following combined therapy of SU20 with gemcitabine, 
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the patterns of Gd uptake and clearance resembled those of gemcitabine alone both in kidney 

tumors and normal kidneys with a tendency to decreased clearance of Gd (Figure 5.5B, C, D). As 

observed for SU20 alone, the IAUC and CIAUC curves of kidney tumor and normal kidney 

overlapped and showed a pattern close to that of normal kidney in control mice (Figure 5.5C, D).  

DCE-MRI parametric maps were derived from the C(t) curves for each pixel and  

represent the total Gd uptake (AUC) for the tumor and surrounding kidney tissue (Figure 5.5E). 

As described for Figure 5.4, parametric maps from control mice consistently showed 

accumulation of Gd in the periphery of the tumor with no uptake in the tumor core, indicative of 

poor tumor perfusion (Figure 5.5E). Parametric maps of SU20 treated mice showed a significant 

accumulation of Gd in the tumor-bearing kidney including Gd uptake in the tumor and also Gd 

accumulation in the normal kidney (Figure 5.5E), as shown previously (Hillman et al., 2009). 

Gemcitabine caused striking changes observed by parametric maps with tumor perfusion and an 

uptake of Gd similar to normal kidney (Figure 5.5E), as shown in separate experiments in Figure 

5.4E. These findings were reproduced with the combined SU20 and gemcitabine including tumor 

perfusion but less Gd accumulation than that seen with SU20 alone (Figure 5.5E).   
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Figure 5.5: DCE-MRI imaging of vascular changes induced by gemcitabine and sunitinib in 
KCI-18 kidney tumors. Separate experimental groups of 3 mice per group were treated with 
vehicle only (control), or sunitinib only (SU20) or gemcitabine only (Gem20) or sunitinib + 
gemcitabine (SU20+Gem20). Mice bearing established kidney tumors were pre-treated with 
sunitinib at 20mg/kg/day (SU20) for 3 days on day 10-12 after KCI-18 cell injection in the 
kidney. Then, mice received three gemcitabine treatments at 20 mg/kg (Gem20) given on days 
13, 15 and 17 while continuing daily sunitinib treatments. At 24 hrs after the last gemcitabine 
treatment (day 18), mice were imaged by DCE-MRI for 30 time points at 7 sec intervals. (A) T1 
images: Baseline images prior to Gd contrast agent injection. The full kidney was selected as the 
ROI for the tumor-bearing kidney (blue contour on left of T1 image) and the contralateral normal 
kidney (red contour on right of T1 image). (B) C(t) kinetics of Gd contrast uptake and clearance: 
The first 10 time points represent baseline data. Gd was injected at time point 10 and images 
were collected for 20 more time points. (C) IAUC graphs: Data from the C(t) curves were 
compiled for 16 time points (112sec) after Gd injection to draw IAUC112. The small black bar 
indicates the peak position of normal kidney in control mice and can be used as a reference for 
curve shifting in normal kidneys and kidney tumors following treatment. (D) CIAUC graphs: 
CIAUC graphs were derived from IAUC curves. In B, C and D graphs, blue lines are for kidney 
tumors and pink lines are for normal kidneys. Data from a representative mouse from each 
treatment group are presented. (E) AUC parametric map: Parametric color maps were 
constructed based on uptake and concentration of Gd in the tissue, represented by the colors 
blue, green, yellow and red with gradual increase of Gd from lowest values (blue) to highest 
values (red). The tumor-bearing kidney is on the left and the normal contralateral kidney is on 
the right of the MR images. The color coding in the kidneys are shown for integrated AUC. 
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5.4.7 DCE-MRI Quantitation of Vascular Changes of Kidney Tumors Treated with 

Sunitinib and Gemcitabine  

To quantitate the vascular changes induced by sunitinib and gemcitabine and study the 

reproducibility of our findings, R50 values for 5 mice per treatment group were derived from 

CIAUC curves for both kidney tumors and normal kidneys (Hillman et al., 2009). The R50 

(median) values correspond to the concentration of Gd at which 50% of the pixels have been 

included (Figure 5.6A) (Hillman et al., 2009).  Lower R50 values were consistently observed in 

mice treated with SU20, gemcitabine and both combined compared to control mice for kidney 

tumors (Figure 5.6B). Compared to R50 values of normal kidneys in control mice, a trend to 

lower R50 was also observed for normal kidneys suggesting a mild systemic effect of both drugs 

affecting blood flow (Figure 5.6C). To compare the vascular changes induced by the drugs in 

kidney tumors to those induced in normal kidneys, R50 values of kidney tumors were 

normalized to the R50 values of normal contralateral kidneys for each mouse (NR50 KT v/s NK) 

(Figure 5.6D) (Hillman et al., 2009). These values were consistently much smaller in mice 

treated with each drug and both combined compared to control mice (Figure 5.6D). 

Normalization of R50 values of treated kidney tumors versus control kidney tumors (NR50 

KTtreat v/s KTcont) showed negative values with each drug alone and both combined (Figure 

5.6E). To assess the effect of SU20 and gemcitabine on normal contralateral kidneys, R50 of 

normal kidneys from treated mice were normalized to normal kidneys from control mice (Figure 

5.6F). These NR50 data of normal kidneys showed also negative values for mice treated with 

each drug separately and both combined (Figure 5.6F) but less than those of NR50 KTtreat v/s 

KTcont. These data indicate a relatively mild effect by either drug alone and combined on normal 
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kidney vasculature (Figure 5.6F) in contrast to a more pronounced effect on vasculature of 

kidney tumors (Figure 5.6E).   

 

Figure 5.6: R50 quantitation of DCE-MRI data of KCI-18 kidney tumors. Mice were treated with 
vehicle (control, Con), sunitinib at 20mg/kg/day (SU), gemcitabine at 20 mg/kg (Gem) or both 
sunitinib and gemcitabine, and then imaged by DCE-MRI as described in Figure 5.5. Data 
obtained from MRI images were quantitated. (A) R50 value calculation: The R50 value is 
derived from CIAUC curves (as shown for control mouse) and corresponds to the Gd 
concentration at which 50% of the pixels have been included. (B) Tumor-bearing kidney R50: 
R50 of kidney tumors from 5 mice per treatment group. (C) Normal kidney R50: R50 normal 
contralateral kidney for each mouse shown in B. (D) NR50 of KT vs NK: NR50 represents 
normalization of R50 values of kidney tumors (KT) relative to R50 values of normal 
contralateral kidney (NK) calculated as [R50KT - R50NK] / R50NK for each mouse. (E) NR50 of 
KTTREAT vs KTCONT: Normalization of R50 values of kidney tumors from treated mice (KTTREAT) 
relative to the mean R50 values of kidney tumors from control mice (KTCONT) calculated as [R50 
KTTREAT– R50 KT mean cont] / R50 KT mean cont for each mouse. (F) NR50 of NKTREAT vs NKCONT: 
Normalization of R50 values of normal kidneys of treated mice relative to the mean R50 values 
of normal kidneys from control mice calculated as [R50 NKTREAT – R50 NK mean cont] / R50 NK 

mean cont for each mouse. Data are presented for 5 mice per treatment group in each panel. 
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5.5 Discussion                

The concept of normalization of tumor vessel via elimination of excess endothelial cells 

to improve the blood flow, reduce vessel leakiness, interstitial pressure and increase drug 

delivery to tumor cells, has shown promise for combination with anti-cancer drugs [37-39]. We 

have previously determined the doses and schedule of the anti-angiogenic drug sunitinib which 

cause thinning and regularization of tumor vessels in kidney tumors of the KCI-18 RCC 

orthotopic tumor model in nude mice (Hillman et al., 2009). We found that daily treatment with 

20mg/kg/day of sunitinib caused better tumor perfusion and decreased vascular permeability by 

DCE-MRI (Hillman et al., 2009). These observations on vascular changes were in agreement 

with in situ histological studies demonstrating thinning and regularization of tumor vessels 

(Hillman et al., 2009). In addition, this dose caused only mild changes in vessels in normal 

kidney tissue and was not toxic to the mice (Hillman et al., 2009). Based on these findings, the 

dose of 20mg/kg/day of sunitinib was selected to regularize the blood flow in the tumor and then 

schedule chemotherapy with gemcitabine. The conditions for combining anti-angiogenic therapy 

with chemotherapy were investigated. 

Dose searching studies using 10, 20 or 40 mg/kg of gemcitabine showed that a schedule 

of injections given 3 days apart was less toxic than every two days. Doses of 20 and 40 mg/kg 

gemcitabine were more effective than 10 mg/kg and caused significant kidney tumor growth 

inhibition. To schedule the combination of gemcitabine with sunitinib, regularization of tumor 

vessels was monitored by DCE-MRI of kidney-tumor bearing mice treated with sunitinib only. 

DCE-MRI showed that one day sunitinib treatment at a dose of 20mg/kg/day was not sufficient 

to induce regularization of vasculature and resulted only in minor vascular changes (Hillman, 

personal communications). However, DCE-MRI of mice treated for 3 days with 20mg/kg/day 
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sunitinib confirmed that this schedule was sufficient to induce vascular changes of decreased Gd 

retention and improved tumor perfusion in KCI-18 kidney tumors, indicating normalization of 

blood vessels. Therefore, gemcitabine treatment was initiated after 3 consecutive daily 

treatments of sunitinib. When gemcitabine was administered after sunitinib and given at a dose 

of 20 mg/kg for four treatments, while continuing daily administration of sunitinib, the effect of 

the combined therapy was particularly effective causing about 74% reduction in tumor weight by 

day 28. This schedule and dosage of sunitinib given in conjunction with gemcitabine were well 

tolerated by the mice and were not associated with toxicity. This combined therapy significantly 

inhibited the growth of the tumor in the kidney and this effect was consistent in all mice tested in 

contrast to greater variability from mouse to mouse with each modality alone. The size and shape 

of the tumor-bearing kidneys were comparable to those of the normal contralateral kidneys. In 

agreement with our gross observations, only small residual tumor nodules surrounded by normal 

kidney tissue were histologically observed. Tumors treated with gemcitabine alone or both 

gemcitabine and sunitinib showed a high frequency of abnormal giant tumor cells with 

degenerative changes in their cytoplasm and nuclei, indicative of processes of cell death. Similar 

effects of the single and combined modalities were also observed histologically in the 

spontaneous lung metastases. In lungs of sunitinib-treated mice, the tumor nodules showed a 

decrease in size, cellularity and vascularization, probably as a result of the anti-angiogenic 

activity of sunitinib. Gemcitabine treatment caused a marked increase in giant tumor cells with 

degenerative processes in metastatic lung nodules, which looked identical to those observed in 

primary kidney tumors. This effect was more pronounced in lung tumor nodules treated with the 

combined therapy, as visualized by few remaining giant tumor cells surrounded by fibrotic areas. 

The frequency and size of metastatic lung tumor nodules were drastically reduced by 
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gemcitabine alone or combined with sunitinib compared to control mice.  These findings 

observed in spontaneous lung metastases suggest that sunitinib and gemcitabine act systemically 

affecting both the primary and metastatic tumors and therefore a combined approach of anti-

angiogenic drug and chemotherapy drug could be effective for metastatic RCC disease.  

Long-term survival studies, using a schedule of 3 days of 20mg/kg of sunitinib followed 

by five treatments of 20mg/kg of gemcitabine and continued daily administration of sunitinib 

resulted in a significant increase in mouse survival. Interestingly, even though sunitinib daily 

treatment was continued after gemcitabine therapy, kidney tumors recurred as observed by day 

50. These data suggest that 20mg/kg of sunitinib was not sufficient to maintain the initial 

dramatic inhibition of tumor growth induced by gemcitabine and prevent regrowth of tumor 

vessels. It should be noted that the total dose of gemcitabine ( 100-120mg/kg) used in our study 

is much lower than that used in pancreatic cancer pre-clinical models (480mg/kg) (Bocci G et al., 

2004). This low dose of gemcitabine in our RCC pre-clinical model  is very effective when 

combined with an anti-angiogenic drug as shown in the pancreatic cancer model (Bocci G et al., 

2004). These data also demonstrate that DCE-MRI is a useful means to monitor early vascular 

changes induced by sunitinib to assess improved blood flow and schedule initiation of 

chemotherapy. Recent clinical studies have successfully shown that early changes in DCE-MRI 

of cancer patients have the potential to predict response and guide therapy (Ah-See et al., 2008; 

Craciunescu et al., 2009; Galban et al., 2009). 

Our previous observations of uptake and clearance of Gd in control kidney tumors 

monitored by DCE-MRI were confirmed in the current study (Hillman et al., 2009). These 

patterns included slow clearance of Gd and accumulation of Gd in the periphery of the tumor 

with no uptake in the tumor core, as seen in parametric maps. These findings suggested poor 
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tumor perfusion, probably as a result of leakiness from abnormal enlarged tumor vessels as 

observed by histology of tumor sections and extravasation of RBC’s (Hillman et al., 2009). 

Imaging of kidney tumor-bearing mice treated with gemcitabine by DCE-MRI revealed that 

gemcitabine caused vascular changes both in the tumors and in normal kidneys. Kidney tumors 

treated with gemcitabine showed improved clearance of the Gd contrast agent relative to the 

normal contralateral kidney. Increased tumor perfusion caused by gemcitabine was also observed 

by parametric maps showing uptake of Gd in the core of the tumor in contrast (Hillman et al., 

2009). Histologically, gemcitabine-treated tumors showed a decrease in the number of enlarged 

vessels compared to control tumors. These findings on improved tumor perfusion associated with 

trimming of the enlarged vessels of the kidney tumors suggest that gemcitabine also exerted 

cytotoxic activity on endothelial cells. In agreement with our findings, recent studies 

demonstrated that endothelial cells are indeed destroyed by gemcitabine both in vitro and in vivo 

in an orthotopic pre-clinical model of pancreatic cancer (Laquente et al., 2008). These studies 

and our findings indicate that the mode of action of gemcitabine includes both cytotoxicity to  

tumor cells but also an anti-angiogenic effect, thus acting as well on the tumor microenvironment 

as shown for sunitinib (Laquente et al., 2008).  

Consistent with our previous studies, sunitinib treatment of kidney tumors with 20mg/kg 

showed patterns of uptake and improved Gd clearance by DCE-MRI, comparable to those of 

normal kidneys, suggesting a return to more “normal vasculature” with lower permeability (i.e., 

less leaky vessels) (Hillman et al., 2009). Histologically, kidney tumors treated with sunitinib 

showed considerable thinning, regularization and organization of tumor vessels, as previously 

reported (Hillman et al., 2009). Combination of sunitinib and gemcitabine, the patterns of Gd 

uptake and clearance resembled those of gemcitabine alone both in kidney tumors and normal 
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kidneys with a tendency to decreased clearance of Gd. Parametric maps showed increased tumor 

perfusion. These data were in agreement with in situ histological findings showing tumor vessels 

looking more trimmed and organized than those seen after gemcitabine treatment alone.  

Quantitation of vascular changes induced by sunitinib and gemcitabine confirmed the 

reproducibility of our findings. Lower R50 values were consistently observed in mice treated 

with SU20, gemcitabine and both combined compared to control mice for kidney tumors. A 

trend to lower R50 values was also observed for normal kidneys in treated mice relative to 

control mice. These findings were corroborated by in situ histological observation of dilatation of 

some of the vessels in normal kidney tissue sections. These data indicate a relatively mild 

systemic effect on normal kidney vasculature mediated by either drug alone and both drugs 

combined. This is in contrast to a more pronounced effect of the therapy on kidney tumor 

vasculature resulting in increased tumor perfusion and decreased vascular permeability.   

Our data suggest that both sunitinib and gemcitabine exert anti-angiogenic effects in 

addition to their cytotoxic anti-tumor activity. These effects on both the tumor vasculature and 

tumor cells were observed both in primary kidney tumors and spontaneous lung metastases 

indicating that a combined approach of anti-angiogenic drug and gemcitabine could be effective 

for metastatic RCC disease. These studies also emphasize the clinical potential of using DCE-

MRI to select the dose and schedule of anti-angiogenic drugs to schedule chemotherapy and 

improve its efficacy. 
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6.1 Abstract: 

Purpose: To develop new dynamic contrast enhanced (DCE) magnetic resonance imaging 

(MRI) parameters to quantify the vascular effects of different doses of the antiangiogenic drug 

sunitinib on renal cell carcinoma (RCC) kidney tumors in mice. 

 

Materials and Methods: Mice bearing established RCC xenograft tumors were treated with 

sunitinib doses of 10, 20 or 40 mg/kg/day respectively (SU10, SU20 or SU40) or treated with 

vehicle only (control). New DCE parameters, including fraction of active pixels (FAP),  contrast 

agent uptake to the peak (AUCtp), time to peak concentration (TTP), washout slope (Nslope) and 

full width half maximum (FWHM) were obtained from T1-weighted images. These parameters, 

as well as more conventional measures, were quantified for tumor-bearing kidneys and normal 

kidneys.  

 

Results: Treatments with SU20 and SU40 caused increased perfusion in the tumor core 

compared to control and SU10. Kidney tumors treated with SU20 had an almost identical pattern 

of contrast agent uptake rate, peak and clearance as those observed in normal kidneys. The effect 

of SU20 on normal kidneys was milder than that observed with SU40. Treatment with SU40 

caused increased contrast agent uptake by the cortex of the normal kidneys compared to the 

normal kidneys in control and SU10. FWHM also provided new information about the effect of 

different treatment doses and showed that kidney tumors treated with SU20 have almost the 

same values of FWHM as the normal kidneys in control mice. The other measures also painted a 

consistent picture of the treatment effect on the vascular system. 
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Conclusion: The new DCE parameters, including FAP, AUCtp, Nslope and FWHM have the 

potential to give a precise description of the treatment effect not only in the whole mouse kidney 

but also in different regions inside the kidney. The results of this work should enhance the 

reproducibility of DCE results.  
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6.2 Introduction: 

Numerous clinical studies have used dynamic contrast enhanced (DCE) magnetic 

resonance imaging (MRI) as a non-invasive method to diagnose lesions of different types 

(Huang et al., 2004; Ng et al., 2010), to grade lesions (Asaumi et al., 2003; Ludemann et al., 

2005; Bhooshan et al., 2010) and to evaluate drug effectiveness on tumor vascular characteristics 

(Hayes et al., 2002; Haris et al., 2008). Many of these studies have shown that DCE is a valuable 

tool to study tissue perfusion. DCE-MRI uses gadolinium diethylenetriamine penta-acetic acid 

(Gd-DTPA) as a contrast agent injected into the blood stream. Gd is assumed to be well mixed 

with the blood and travels through the major vessels and capillaries. The perfusion of the tissue 

can be assessed using dynamic T1-weighted images since Gd shortens the T1 value of the blood. 

Signal enhancement depends on the concentration of Gd in the blood. The kinetics of the 

changes in signal intensity before, during and after Gd injection, for a region of interest (ROI), 

indirectly provides Gd concentration in that ROI (Knopp et al., 2001). However, Gd 

concentration, in any selected ROI, depends on tissue hemodynamic parameters and vasculature 

(Tofts and Kermode, 1991; Preda et al., 2006; Yabuuchi et al., 2008). In tumors, Gd leaks from 

abnormal vessels into extracellular space. The number of blood vessels in tumors and the trans-

endothelial permeability of the vessels are often higher than the ones in normal tissue. Hence, 

more signal enhancement will occur in tumors. The role of DCE-MRI is to measure these 

hemodynamic parameters to help differentiate between normal and malignant tissues (Preda et 

al., 2006; Van Cann et al., 2008).  

The assessment of tissue hemodynamic characteristics can be executed by semi-

quantitative or quantitative methods (Galbraith et al., 2002; Yankeelov and Gore, 2009). Semi-

quantitative methods include histogram analysis of Gd uptake and washout and parametric maps. 



102 

 

These evaluations depend on many factors such as Gd injection, hardware settings, sequence 

choice and systemic changes in the blood circulation (Galbraith et al., 2002). On the other hand, 

quantitative methods are independent of these factors. In these methods, DCE data can be fitted 

to a pharmacokinetic model to estimate values for vessel wall permeability, vessel surface area, 

volume fraction of vascular plasma and the volume fraction of extracellular extravascular space 

(EES) (Murase, 2004; Yankeelov and Gore, 2009). Among other models, Toft’s model is often 

used to produce Ktrans

Renal cell carcinoma (RCC) develops in the kidney and metastasizes to other organs, 

most particularly the lungs (Whang and Godley, 2003). The vascular endothelial growth factor 

(VEGF) is a key growth factor in the angiogenic process, which promotes the proliferation, 

migration, and invasion of endothelial cells and plays a role in vascular permeability.  Sunitinib 

is an antiangiogenic drug which has recently shown a significant therapeutic effect (van 

Spronsen et al., 2005; Rini, 2009). It has been found to inhibit tumor growth by selective 

inhibition of the VEGF receptors and platelet-derived growth factor causing apoptosis in both 

tumor microvessels and in the tumor cells (Patard et al., 2006; Billemont et al., 2007; Papaetis et 

al., 2008; Sawhney and Kabbinavar, 2008; Gan et al., 2009). This treatment can deprive the 

tumor cells of nutrients, and hence inhibit its growth. However, higher doses of sunitinib, which 

cause complete destruction of tumor blood vessels, can also affect the normal vasculature of vital 

 (which represents the product of the capillary wall permeability and 

surface area per unit volume), ve (volume of the extravascular extracellular space (EES)) and 

EES maps (Tofts and Kermode, 1991; Tofts et al., 1995; Guo and Reddick, 2009). Nevertheless, 

DCE quantification is not easy, and these quantitative methods require an accurate arterial input 

function (AIF) and a pharmacokinetic model for data fitting (Yang et al., 2004; Cutajar et al., 

2009).  
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organs such as the heart, and could cause the blood vessels to leak more (Gan et al., 2009). These 

high doses of sunitinib could also alter blood flow and oxygen delivery to the tumor affecting the 

efficacy of combining this treatment with either chemotherapy or radiotherapy. In the current 

study, we report the development of four new DCE parameters that characterize the behavior of 

Gd uptake with time. The new proposed parameters were calculated from the DCE data of a 

preclinical model of the human RCC KCI-18 cell line implanted in the right kidney of immune 

deficient nude mice (Hillman et al., 2009). Mice bearing established KCL-18 kidney tumors 

were treated with different doses of sunitinib. Vascular changes induced by the drug were 

analyzed by DCE-MRI. We previously reported DCE-MRI studies in this model, in which we 

presented the parameters of the initial area under the curve (IAUC), the cumulative initial area 

under the curve (CIAUC) graphs and the R50 (median) value that represents the concentration of 

Gd at which 50% of the pixels have been included (Hillman et al., 2009). These DCE-MRI data 

were further analyzed by evaluating four new DCE parameters, including blood volume 

estimates, washout slope, fraction of active pixels as well as the full width at half maximum 

(FWHM). These parameters were compared to more conventional measures. 
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6.3 Materials and Methods: 

6.3.1 KCI-18/IK RCC Tumor Model: 

A preclinical model of RCC was established by implantation of Karmanos Cancer 

Institute-18 (KCI-18) human papillary RCC cell lines in the right kidney of immune deficient 

nude mice. Mice were housed and handled under sterile conditions in facilities accredited by the 

American Association for the Accreditation of Laboratory Animal Care. The animal protocol 

was approved by the Wayne State University Animal Investigation Committee. A few mice were 

killed at an early time point to assure tumor growth before initiating the treatment. By days 10 to 

12, after KCI-18 cell injection, mice were treated with sunitinib (Pfizer, Inc, New York, NY).  

Sunitinib treatment was prepared in a carboxymethyl cellulose suspension vehicle. Mice were 

divided into four groups: three groups were treated with sunitinib at different doses of 10, 20, or 

40 mg/kg/day (SU10, SU20, or SU40, respectively), and the fourth group was treated with 

vehicle only (control mice). Sunitinib treatment were given orally by gavage on a daily basis for 

7 days, and then mice were imaged by DCE-MRI, as previously detailed (Hillman et al., 2009).  

 

6.3.2 MR Imaging:  

Mice were anesthetized by intraperitoneal injections of 0.35 ml pentobarbital and 0.35ml 

ketamine at a concentration of 52.5mg/kg. A catheter was then inserted into their tail vein, which 

was attached to a syringe containing Gd-DTPA contrast agent (Berlex, Wayne, NJ). Mice were 

positioned on a cradle heated by temperature-controlled water and were given a second low dose 

of anesthetics of 15mg/kg each in 0.1ml to avoid motion problems while scanning the animal in 

the magnet. A 2-cm diameter receive-only surface coil was placed over the tumor, and the cradle 

was placed inside an 11-cm inner diameter transmit-only volume coil. MR imaging was 
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performed in the MR Research Facility at Wayne State University, using a Bruker Biospec 

AVANCE animal scanner (Bruker, Karlsruhe, Germany) equipped with a 4.7-T horizontal bore 

magnet and actively shielded. Anatomical imaging was done using a 2D T2-weighted spin echo 

scan (TR = 2000ms, TE = 52.4ms) to get an overview of the kidney.  The DCE-MRI images 

were collected at 30 time points (7 sec between time points) with the following parameters:  5 

slices, TR = 54.7 ms, TE = 2.9 ms, two flip angles 5 and 30 degrees, FOV = 32mm x 32mm, 

slice thickness = 1.5mm with 0.5 mm gap and matrix = 128x128. The contrast agent dose was 

0.1mmol/kg of body weight Gd-DTPA (Magnevist, Berlex Laboratories, Wayne, NJ) and was 

injected at time point 10 into the tail vein catheter. Then, images were acquired for 20 more time 

points. All DCE data analysis was done using our homemade software SPIN (signal processing 

in NMR, Detroit, MI) (Haacke et al., 2007).  

 

6.3.3 DCE Theory:  

The changes in the DCE signal with time, S(t), for a given flip angle, can be obtained from the 

FLASH equation  
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where 0ρ  is the spin density, θ is the flip angle and TR is the repetition time. For a given TR, 

T1(t) can be calculated from the equation above. Knowing T1(t) and using a fixed T1(0) equal to 

1000 ms (Haacke et al., 2007), the concentration of Gd with time can be calculated from 
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where “ a ” is the proportionality constant referred to as the longitudinal or T1 relaxivity with 

units of (mM)-1s-1, and it is a property specific to the composition of Gd. 
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Once C(t) is known , IAUC is calculated from 
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where t1 and t2 are user defined time points. CIAUC (which represents the cumulative number of 

pixels counted within an ROI that corresponds to a given contrast agent uptake (IAUCi for (0 ≤ i 

≤ N bins) in a given ROI) and normalized to the total number of pixels), is calculated from 
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where N is the last bin or maximum IAUC and n(IAUCi) is the number of pixels with a value of 

the IAUC bin.  

The R50 value was defined as the concentration of Gd at which CIAUC(m) = 50%, i.e., 

the median of the CIAUC histogram, and NR50 is defined as the normalized value of R50 as  

normalnormaltumor RRRNR 50/)5050(50 −=        [5.5] 

 

6.3.4 DCE Data Thresholding and Fraction of Active Pixel Determination:  

The drug effectiveness in semi-quantitative DCE-MRI analysis depends on the change of 

Gd uptake. A tumor might be composed of either cells which are alive or dead (necrotic) 

(Karahaliou et al., 2010). A set of subtracted images is created by subtracting a set of DCE 

images of a given time point after Gd injection from a set of DCE images of a time point before 

Gd injection. These images can help us differentiate between active or necrotic vascular areas of 

the tumor. Applying a threshold to the original DCE images and to the subtracted series is used 

to suppress pixels that are just noise or have no signal enhancement. The threshold value was 

estimated from the image background noise. The pixels excluded from dynamic DCE image 
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thresholding represent the noise pixels whereas the pixels excluded from subtracted images 

represent the no signal enhancement pixels (i.e., necrotic part of the tumor). As a further measure 

of interest, we define the fraction of active pixels (FAP) as the number of active pixels (i.e., the 

remaining pixels after applying the threshold) normalized to the total number of pixels in the 

ROI.  

 

6.3.5 DCE Parametric Maps: New Parameters AUCtp and TTP:  

The concentration time dependence, C(t), will vary according to the tissue hemodynamic 

properties. Given a general rise and fall of C(t), we calculate 6 different DCE parametric maps 

for each pixel in the image. These include the total Gd uptake (AUC), the rate of uptake (Pslope), 

the peak concentration (PEAK), the uptake to the peak (AUCtp), the time to peak concentration 

(TTP) and the clearance or washout slope of Gd (Nslope). Figure 6.1 shows the C(t) curve and 

the time points (ti, tpeak, tns, tend) that were used to calculate the DCE parametric maps. The 

definitions for these measures are given by 
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where ti is the Gd injection time point at which C(ti)-C(ti+1)> 2SD, tpeak is the time at the 

concentration peaks, tns is the time point at which (C(tpeak)-C(tns))/(tpeak-tns) > (C(tpeak)-

C(tend))/(tpeak-tend), and tend is the last acquired time point. C(ti) is Gd concentration at the injection 

time point, C(tpeak) is Gd concentration at the peak, C(tns)  Gd concentration at tns, and finally 

C(tend) is Gd concentration at the last acquired time point (Figure 6.1). AUC is defined the same 

as IAUC except that it is integrated from the injection time point (ti) to the last acquired time 

point (tend) where IAUC is integrated to a user defined time points (t1 and t2). 
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Figure 6.1: Kinetics of Gd uptake are represented in C(t) curves showing Gd injected at ti time 
point, peak of Gd uptake (tpeak), the time point at which (C(tpeak)-C(tns))/(tpeak-tns) > (C(tpeak)-
C(tend))/(tpeak-tend) (tns) and the last time point (tend) at which images were acquired. C(ti) is Gd 
concentration at the injection time point, C(tpeak) is Gd concentration at the peak, C(tns)  Gd 
concentration at tns,  and finally C(tend) is Gd concentration at the last acquired time point. The 
DCE parametric maps are obtained from C(t) curves.  
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In the case where there is no extravasation of the contrast agent prior to tpeak, AUCtp can 

be used as a measure of the blood volume fraction (λ) as follows: 
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where AUCtp for tissue has been normalized to AUCtp for blood. 

 

6.3.6 Full Width at Half Maximum (FWHM) 

 Another potential characteristic measure is the full width at half maximum (FWHM), 

which represents how fast the contrast agent is washed out across all pixels. FWHM is thought to 

be more resilient to the effects of contrast agent leakage. In order to calculate the FHWM, the 

IAUC data should be filtered to reduce noise using a direct form transposed II digital filter. This 

filter contains implementation of the standard difference equation.   

 After filtering IAUC data, FWHM is found from the difference between 

12 x-xFWHM =

the two half-

maximum points: 

          [5.13] 

where x2 and x1 represent the two half maximum times at which IAUC(x2) =IAUC(x1) as 

shown in Figure 6.2.  
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Figure 6.2: Determination of full width at half maximum (FWHM). For each mouse included in 
the study, IAUC data was filtered to reduce noise using an averaging filter. The maximum value 
of the IAUC histogram was found. FWHM is calculated from the difference between 

 

the two 
half-maximum points x1 and x2.  
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6.4 Results:  

6.4.1 Threshold of Data Images and Assessments of FAP 

The original DCE and subtracted images were used to draw two ROIs on both the right 

tumor-bearing kidney and the left normal kidney (Figure 6.3-a and 6.3-b). The necrotic area or 

poorly vascularized part of the tumor appears as a black area in the subtracted images. These 

pixels (i.e., necrotic part of the tumor) are thresholded out of C(t) to be processed since they shift 

the CIAUC curves to the left indicating less Gd uptake (Figure 6.3-d). The simplest and currently 

most effective means to threshold DCE images is to set the signal intensity for the pixel whose 

intensity falls out of a certain range to zero and exclude these pixels from further quantification. 

Using a fixed T1(0)= 1000ms, threshold= 20 (measured from background noise of the original 

DCE image), the concentration of Gd-DTPA, C(t), uptake in both kidneys was calculated over 

time. The IAUC and CIAUC graphs were integrated over 16 time points (112 sec) after Gd-

DTPA injection. The resulting, un-thresholded IAUC has a bimodal distribution (Figure 6.3-c) 

and hence shifts the CIAUC curve more to the left (Figure 6.3-d). However, after applying the 

threshold, the IAUC is more Gaussian distributed (Figure 6.3-e), and the resulting CIAUC is 

shifted back to the right compared to the CIAUC curve before applying the threshold (Figure 

6.3-f). This better indicates Gd uptake in active tissue. FAP values were calculated for all the 

cases. In general, FAP values for the normal kidneys are higher than the FAP values in the 

kidney tumor due to the presence of necrotic areas in the tumor (Table 6.1). R50 values after 

applying the threshold are larger than R50 values before applying the threshold (Figure 6.4-a and 

6.4-b). However, one could notice that the changes in R50 values before and after applying the 

threshold follow the same trend in normal kidneys where as it varies in kidney tumors.  
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Figure 6.3: Threshold application to DCE-MRI images. Two ROI were plotted on the right tumor 
bearing kidney and the left normal kidney as shown in a) Dynamic DCE image, and b) 
Subtracted image.  c) IAUC and d) CIAUC graphs before applying the threshold, IAUC graph 
shows a bimodal behavior resulting from noise, necrotic and active parts of the tumor (i.e., the 
selected ROI shown in b) leading to a false shift in the CIAUC graphs and smaller R50 values. e) 
IAUC and f) CIAUC graphs after applying the threshold. IAUC is more Gaussian after excluding 
the noise and the necrotic pixels from processing. Both necrotic and poorly vascularized parts of 
the tumor can be seen in the subtracted image. The solid line represents the kidney tumors and 
the dashed line represents the normal kidneys result.  
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Figure 6.4: the R50 values with and without applying the threshold for a) the tumor bearing 
kidneys and b) the normal kidneys. The open diamonds represent the R50 values before applying 
threshold and the full diamonds represent the R50 values after applying threshold. Each point 
represents the mean of the R50 values for 3 mice per group. 
 
 
 

FAP values 
 

Normal Kidney  Tumor Kidney  

control  0.85 0.73 
    
SU10 0.83 0.63 
    
SU20 0.56 0.81 
    
SU40 0.79 0.6 

Table 6.1: FAP values for the normal kidney and tumor kidney (We are showing one mouse per 
group). 

 

Using the filtered DCE data, the uptake of Gd-DTPA was compared between the four 

different groups (SU10, SU20, SU40 and control) by evaluating the R50 and the NR50 values.  

We found that the contrast agent uptake by the tumor bearing kidney treated with a intermediate 

dose of 20 mg/kg/day was higher compared to the normal kidneys in untreated mice (control) or 

those treated with high and low doses of sunitinib, i.e., SU 40 and SU10 with slower kinetics of 

wash out (Hillman et al., 2009). However, in these mice treated with SU20, both tumor-bearing 

a b 
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kidneys and normal kidneys have similar kinetics of uptake and wash out of Gd-DTPA. This is 

confirmed also from the NR50 values (Figure 6.5) (Hillman et al., 2009). 
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Figure 6.5: NR50 values were calculated by normalizing the tumor-bearing kidney to the normal 
kidneys. Note that treatment with SU 20mg/kg/day improved tumor perfusion with comparable 
CA uptake as the normal kidneys. However, in control and mice treated by SU40 or SU10, the 
tumor uptakes more CA compared to the normal kidneys (Hillman et al., 2009). The figure 
shows 3 mice per group.  
 

 

6.4.2 Kidney Regional Analysis  

DCE parametric maps were used to evaluate the vascular kinetics of different kidney 

regions. Figure 6.6 shows the middle slice of the DCE parametric maps of a normal mouse (i.e., 

has no RCC injection).  DCE parametric maps were color coded in order to see variation more 

easily. The two kidneys appear consistence in the parametric maps. Nevertheless, the kidneys 

main regions also clearly appear. Normal kidneys have 4 main regions: the cortex, the medulla, 

the calyx and the pelvis. From the DCE parametric maps, we see that the calyx-pelvis region has 

high AUC, Pslope, PEAK and Nslope values indicated by the red color. AUCtp has a high values 
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inside the pelvis region, which might indicate that the slice has cut the renal artery. TTP values 

are shorter in the kidneys comparing to the surrounding tissues.  

 

 
         AUC         Pslope          PEAK 

 
       AUCtp           TTP           Nslope 
 

Figure 6.6: the DCE parametric maps. Mouse was imaged by DCE-MRI for 30 time points at 7-
second intervals. Baseline images were collected for the first during 10 time points before Gd 
contrast agent injection. At time point 10, Gd was injected in the tail vein, and images were 
collected for 20 more time points. The DCE parametric maps are obtained from C(t) curves. The 
total contrast agent uptake (AUC), rate of uptake (Pslope), peak concentration (PEAK), uptake to 
the peak (AUCtp), time to peak (TTP) and the rate of Gd clearance (Nslope) in the kidney ROIs 
are shown. 
  

 

Figure 6.7 shows the DCE parametric maps for a control mouse. The parametric maps 

succeed to differentiate the tumor core from its periphery.  Tumor core (in the right kidney) has 

low AUC, Pslope, PEAK and Nslope values indicated by the dark blue color in the parametric 



116 

 

maps as well as a relatively long TTP values. This suggests that the core of the tumor has poor 

blood supply. On the other hand, the periphery of the tumor has a high AUC value indicating a 

high blood supply.  Looking at the normal kidney results, we can see that calyx-pelvis region has 

a similar AUC, Pslope and PEAK values compared to the periphery of the tumor-bearing kidney 

but a higher Nslope values. This might suggest that the normal kidney is functioning normally.  

 
 

 
        AUC         Pslope          PEAK 

 
       AUCtp           TTP           Nslope 
 

Figure 6.7: DCE-MRI of KCI-18 KTs. Mouse bearing established tumors in the right kidneys 
was treated every day for 7 days with vehicle only (control). Then, the mouse was imaged by 
DCE-MRI for 30 time points at 7-second intervals. Baseline images were collected for the first 
during 10 time points before Gd contrast agent injection. At time point 10, Gd was injected in the 
tail vein, and images were collected for 20 more time points. The DCE parametric maps are 
obtained from C(t) curves. The total contrast agent uptake (AUC), rate of uptake (Pslope), peak 
concentration (PEAK), uptake to the peak (AUCtp), time to peak (TTP) and the rate of Gd 
clearance (Nslope) in the kidney ROIs are shown.(control 164-march 2010) 
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To quantify the regional response after sunitinib treatment in mice, two ROIs representing 

the periphery and core of kidney tumors and two ROIs representing the cortex and medulla of 

normal kidneys were drawn separately on AUC, Pslope, PEAK, AUCtp, TTP and Nslope maps 

for each mouse. Each ROI was quantified and the results are shown as mean ± SD in Table 6.2. 

Looking at the values from parametric quantifications of the control mice, we notice that the Gd 

uptake, Pslope, PEAK, TTP, AUCtp and Nslope by the tumor periphery is higher than that value 

by the normal cortex. However, the tumor core have lower Gd uptake, Pslope, PEAK, AUCtp 

and Nslope values compared to the normal medulla. These finding agrees with the pathology of 

RCC. 

 The results were compared between the four different groups (SU10, SU20, SU40 and 

control). The low dose of SU10 in the kidney tumors had no effect in the core of the tumor 

compared to the control mice. SU20 and SU40 treatment doses were found to enhance the blood 

perfusion and clearance of the core and only SU40 dose was found to increase the Pslope, PEAK 

and Nslope in the tumor periphery (see Table 6.2-a). In the normal kidneys, mice treated with 

SU10 and SU20 have almost the same AUC, Pslope and PEAK compared to control mice normal 

kidneys. However, increasing the treatment dose to 40 mg/kg/day affects the Gd-DTPA Pslope, 

PEAK and Nslope in the cortex and the medulla of normal kidneys compared to the control mice 

normal kidneys (see Table 6.2-b). These findings from Table 6.2 were confirmed by histological 

observations of tissues showing that using SU40 as a treatment dose caused tumor vessel 

destruction associated with hemorrhages in tumor-bearing kidneys and dilatation of blood 

vessels in normal kidneys (Hillman et al., 2009). Mice treated with SU20 had more regularized 

and thinner vessels in kidney tumors and mild dilatation in a few vessels in normal kidneys. In 

contrast, mice treated with SU10 had enlarged abnormal vessels in tumor-bearing kidneys and 
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regular vessels in normal kidneys similar to the findings from control mice (Hillman et al., 

2009). 

 

a) Tumor Bearing Kidneys: 

Parametric maps:   
AUC 

mmol.ms 

 
Pslope 

mmol/ms 

 
PEAK 

10-4 

 

mmol 
TTP 
ms 

 
AUCtp 

10-3 

 

mmol.ms 
Nslope 

mmol/ms 
Region: 

 
Periphery   

Control 0.23±0.12 26± 3 7 ± 0.4 110±10 25± 4 16±3 
SU10 0.18±0.06 21± 6 6 ± 2 132±17 31±11 9±3 
SU20 0.18±0.03 20 ± 2 5± 0.6 99±4 14±2 11±0.6 
SU40 0.22±0.04 37± 10 9 ± 3 103±11 27±10 25±9 

         
 
Core 
  

Control 0.06± 0.03 10 ± 1 2± 0.6 153±2 15±4 5±0.3 
SU10 0.05 ± 0.02 6 ± 1 2 ± 0.7 146±15 14±8 3±0.2 
SU20 0.10 ± 0.00 13± 6 3 ± 0.8 130±29 16±5 9±6 
SU40 0.10± 0.02 18 ± 10 5± 2.5 142±22 25±4 12±10 

 

b) Normal Kidneys: 

Parametric maps:   
AUC  

 
mmol.ms Pslope 

mol/ms 

 
PEAK 

10-3 

 

mmol 
TTP 
ms 

 
AUCtp 

10-3 

 

mmol.ms 
Nslope 

mmol/ms 
Region: 

 
Cortex  

Control 0.15± 0.05 22 ± 0.1 5 ± 0.2 99±4 17±3 14±0.1 
SU10 0.16± 0.08 18 ± 0.8 4 ± 0.4 112±14 18±6 9±1 
SU20 0.17 ± 0.02 19 ± 2 4 ± 0.5 100±3 14±1 11±2 
SU40 0.18 ± 0.03 33 ± 12 7 ± 3 94±6 19±8 20±11 

         
 
Medulla 

Control 0.17 ± 0.09 16± 0.2 5± 0.3 122±17 23±7 11±3 
SU10 0.13 ± 0.07 13 ± 0.8 3 ± 0.5 131±13 21± 8 7±1 
SU20 0.14 ± 0.01 14± 0.3 4 ± 0.3 108±8 15±3 10±2 
SU40 0.13 ± 0.01 20 ± 6 5 ± 1 102±3 16±3 13±3 

 

Table 6.2: DCE characteristic table. a) two ROIs representing the periphery and core of kidney 
tumors and b) two ROIs representing the cortex and medulla of normal kidneys were drawn, 
separately, on AUC, Pslope, PEAK, AUCtp, TTP and Nslope maps for each mouse. Each ROI 
was quantified and the results are shown as mean ± SD. 
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Blood Volume Fraction (λ) 

 For some cases the renal artery was clearly seen in the DCE images. These case where 

used to evaluate the blood volume fraction (λ). The result showed an increase of the blood 

volume fraction for the control kidney tumor compared to the normal kidney. However, for mice 

treated with dose of 20 mg/kg/day and 10 mg/kg/day the blood volume fraction of both kidneys 

appear to be the same (see Table 6.3). Interestingly, for the mouse treated with SU 40, we 

noticed a dramatical increase in the blood volume fraction for both normal and tumor-bearing 

kidneys (see Table 6.3). 

 

λ values 
 

Tumor Kidney Normal Kidney 

control  0.80 0.50 
    
SU10 0.52 0.49 
    
SU20 0.57 0.59 
    
SU40 0.98 0.94 

Table 6.3: blood volume fraction (λ) values for the normal kidney and kidney tumor. The table 
show the result for one mouse per group where the renal artery where clear. 
 

 

6.4.3 Full Width at the Half Maximum (FWHM) 

We found that the tumor-bearing kidneys in control, SU40 and SU10 treated mice had a 

very broad IAUC as indicated by the FWHM values; it exceeds 2 mmol.sec (Figure 6.8-a). For 

normal kidneys, FWHM ranges between 1.5 and 2 mmol.sec for all mice groups except the SU40 

treated group (Figure 6.8-b).  Increasing the sunitinib treatment dosage to 40 mg/kg/day, both 

normal and tumor-bearing kidneys have higher FWHM values. This might be explained by the 

increased permeability and poor clearance of the blood vessels in the tumor bearing kidneys 
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compared to the control normal kidneys or other treated normal kidneys with dosages of 10 and 

20 mg/kg/day of sunitinib. With SU20 mg/kg/day, the FWHM became narrower and behaved 

more like normal kidneys in both control and SU10-treated mice 

 

(Figure 6.8-a & 6.8-b). 
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Figure 6.8: FWHM results. FWHM values for a) tumor-bearing kidneys and b) normal kidneys. 
Notice that higher FWHM values for control, SU40 and SU10 mice compared to the SU20 mice 
in kidney tumors. In normal kidneys FWHM almost stayed at the same range between different 
groups of treatment. 

a b 



121 

 

6.5 Discussion 

Dynamic MRI scans with injection of GD-DTPA are considered to be a robust method 

used to study diseases that alter blood perfusion and tissue micro-vascular parameters of human 

tissue. However, tumor heterogeneity is one of the factors that lead to DCE results variation from 

center to another. The presence of necrotic cells in the tumor-bearing kidneys greatly affects the 

R50 values and shifts the CIAUC curves more to the left compared to the R50 values after 

applying the threshold as seen in Figure 5.3-d and Figure 5.3-f. The combined use of 

thresholding both the original DCE data and subtracted data proved to be a useful tool to 

differentiate between noise thresholded pixels from necrotic thresholded pixels. However, the 

noise in the subtracted images can be lowered by averaging the images acquired before Gd 

injection and subtracted it from a set of images after Gd injection instead of taking only one time 

point set of images and subtracted it from a set of images after Gd injection. FAP provided a new 

parameter to quantify the effect of sunitinib treatment on RCC tumors. Cases with high FAP for 

the normal kidneys will be more trusted than cases with low FAP. Higher FAP in the normal 

kidneys’ region indicates that more pixels will be considered as active pixels and included in 

further analysis and less noisy pixels will be excluded. Hence, FAP of the tumor ROI will give 

an indication of the necrotic part percentage of the tumor compared to its active part.  After drug 

treatment, the vessels may be affected in a way that changes the tissue which took up Gd and 

hence affect FAP values. Therefore, FAP measurement is expected to give an indication of drug 

effects on the tumor, where lower FAP indicates a more necrotic and less active tumor and a 

higher FAP, closer to 1, indicates a high percentage of active tumor cells compared to necrotic 

cells inside the ROI. 
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The newly developed DCE parametric maps are used to study the effect of sunitinib 

treatment on the main regions of the kidney. The main function of the kidney is to maintain 

homeostasis or equilibrium between internal volume and electrolyte status and that of 

environmental influence, diet and intake. It has two main regions: the cortex and the medulla that 

function to maintain the intra and extracellular fluid status at a constant rate despite the wide 

variety of daily fluid and electrolyte intake. Understanding the antiangiogenic treatment effects on 

kidney tissue might further help to better schedule treatment or better propose new treatment 

combinations.  Our result on the pre-clinical RCC tumor model demonstrates that DCE 

parametric maps have the potential to assess the effect of antiangiogenic drugs on blood flow and 

vascular changes in tumors as well as in normal tissues by creating a characteristic table that 

describes the contrast agent uptake and the washout behavior of the tumor and normal tissue. 

From quantifying the DCE parametric maps, we noticed that SU40 had a dramatic effect on 

Pslope and Nslope values in both the cortex and medulla of normal kidneys compared to those 

values for normal kidneys in control mice. These results indicate that this high dose causes 

significant vascular damage. On the other hand, the SU20 data from tumor-bearing kidney 

showed results similar to that of a healthy normal kidney, where both Pslope and Nslope values 

of tumor periphery and core return to similar values as seen for the cortex and medulla of the 

normal kidneys in control mice. Looking at results from normal kidneys treated with SU20, we 

see almost no effect on the Pslope and Nslope values compared to the control mice values, 

indicating that this dose may be safer and regularizes the tumor vessels. We also noticed that 

SU40 has a greater effect on the cortex compared to the medulla of normal kidneys; this agrees 

with the fact there is a higher blood supply in the kidney cortex compared to the medulla. 
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Interestingly, from SU20 data, the AUCtp value of the tumor periphery is back in the 

range of AUCtp values for normal kidneys of all mice, but still lower in the tumor core. This 

might present more proof supporting the hypothesis that blood vessels trim the use of SU20 as a 

treatment dose. For control, SU10 and SU40 AUCtp values are high in the tumor periphery 

which agrees again with the histological finding of highly vascularized areas in control and SU10 

treated mice and hemorrhage in SU40 treated mice (Hillman et al., 2009).  

The new DCE parameters introduced here (i.e., FAP, AUCtp, Nslope and FWHM) 

provides further guidance as to what could be considered normal versus abnormal tissue 

response to antiangiogenic therapy. These measures are expected to help in understanding 

treatment effects throughout the kidney which might help anticipate problems that patients might 

develop after treatment and try to provide them with a suitable solution. Regional analysis using 

DCE parametric maps has the potential to decrease the effect of tumor heterogeneity on DCE 

results and hence, enhances DCE reproducibility. Another advantage for DCE parametric maps 

over DCE model free analysis is that model free analyses are time dependant and the results will 

depend on the number of the time points included for further analysis. Moreover, in model free 

analysis, fixed number of time points is included for processing for all the cases which might 

As we showed earlier, FWHM values for the mice treated with SU20 return to the normal 

range; this agrees with the histology result and supports our hypothesis regarding vessel 

trimming as has been shown in our previously published results (Hillman et al., 2009).  FWHM 

measures of the IAUC curves may prove to be a useful indirect measure of vessel leakiness 

where it appears to be related to Gd uptake and washout (i.e., Pslope and Nslope) inside the ROI. 

FWHM studies the effects of drug treatment over all active pixels in the selected ROI and not 

only one pixel.  
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lead to lose each case privacy especially in very functionally important areas such as the kidneys. 

On the other hand, the measurements derived from the DCE parametric maps can quantify the 

physiological vascular changes in tissue are independent from integration time points. We think 

that regional analysis using DCE parametric maps should be considered by other centers when 

testing new antiangiogenic drugs.  

Estimating the blood volume fraction (λ) from the AUCtp map can be considered as a step 

closer to a dynamic susceptibility contrast (DSC) like analysis of tissue permeability like 

properties. 

In conclusion, this newly introduced DCE characteristic table has the potential to 

quantify the effect of antiangiogenic drug treatment, such as sunitinib, throughout the region of 

interest and should lead to a clear improvement in the ability of DCE-MRI as a quantifying 

method to study the tumor vasculature and other hemodynamic properties. 
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Chapter Seven 

Conclusion and Future Directions: 

 
 

Magnetic resonance imaging with an injection of gadolinium chelates is considered to be 

the most robust method used to study diseases that affect blood perfusion and tissue micro-

vascular parameters of human tissue. Observation of contrast enhancement is typically achieved 

using  a dynamic imaging technique where a contrast agent is injected during the acquisition of a 

dynamic image set and can give quantitative information about tissue hemodynamic parameters 

such as blood volume, blood flow and tissue permeability.  

The new algorithm we introduced in this project is to use a fixed T1(0) value. This 

approach will provide us with more reproducible DCE results. This algorithm has also enhanced 

the ability of DCE-MRI as a tool to be able to decide the best treatment dose among a number of 

different doses of the antiangiogenic drug, sunitinb, which can be mistakenly used in a high dose 

for tumor treatment and can harm normal healthy tissues. Also in this project we introduced a 

number of new parameters including fraction of active pixels (FAP), contrast agent uptake to the 

peak (AUCtp), time to peak concentration (TTP), washout slope (Nslope) and full width half 

maximum (FWHM). These new parameters are independent of the integration time points but on 

the other hand can be used to estimate Toft’s parameters, such as Ktrans

Scheduling for cancer treatment is one of the important tasks oncologists face. 

Understanding effects of antiangiogenic drugs on the tumor vasculature can help in better 

planning for treatment

 and Kep when AIF is not 

available.  

 regimens.  In chapter two, we discussed the tumor angiogenesis process 

where abnormal blood vessels start proliferation. These blood vessels are leaky and enlarged 

compared to normal blood vessels. The defects in tumor blood vessels might lead to 
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elevated interstitial tissue pressure; impaired blood supply; and decreased oxygen supply, in the 

tumors. These factors could lead to a decrease of the efficacy chemotherapy and radiotherapy. 

As we investigated in chapter four, DCE-MRI succeeded in determining the best 

treatment dose for RCC tumors with less impact on healthy kidney tissues. These results opened 

new avenues for further investigations with the pre-selected sunitinb dose (i.e., 20 mg/kg/day) 

combined with other cytotoxic drugs and/or radiotherapy.  From our study we found that DCE 

was a reliable tool to monitor vascular changes induced by various doses of suntinib in kidney 

tumors as well as in normal kidney tissue. We showed that a treatment of a daily sunitinb dose of 

20 mg/kg/day mildly affected the normal vessels but caused better tumor perfusion 

of contrast agent and decreased vascular permeability in agreement with histological 

observations of the thinning and regularization of tumor vessels. 

We have established the conditions for the combination of antiangiogenic therapy with 

sunitinib and cytoxic therapy with gemcitabine (a chemotherapy drug) that result in significant 

long-lasting anti-tumor response. We also used the idea of blood vessel normalization that is, 

using the antiangiogenic drug, sunitinb, and combining it with radiotherapy; we hypothesize that 

blood vessels trimming can enhance oxygen delivery to the tumor and hence enhance the 

radiotherapy treatment results (work under progress).  

Moreover, our future directions are to use these DCE-parametric maps (i.e, Pslope, Peak, 

TTP, AUCtp and FWHM) as a different mean to represent the usual Ktrans and Kep values that is 

extracted from Toft’s Model using a special Taylor series expansion approach. This will be very 

beneficial when AIF information is not available. 
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In conclusion, the results of this research should lead to a clear improvement in the ability 

of MRI as a quantifying method to quantify tumor vasculature and other hemodynamic 

properties. 
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 Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a non-

invasive method used to evaluate the biological activity in early clinical trials of novel drugs 

targeting the tumor vasculature using gadolinium-DTPA (Gd) as a contrast agent. However, it 

has some limitations, such as reproducibility, data acquisition times, the presence of noise, 

extracting contrast concentration, estimating T1 relaxation and estimating pharmacokinetic 

parameters.  

 In this work, a new approach to used fixed T1(0) which provides more reproducible 

DCE results has been introduced. Using this new algorithm to quantify the vascular changes in 

DCE-MRI, a pre-clinical renal cell carcinoma (RCC) tumor model was used to demonstrate the 

ability of DCE-MRI to quantify the vascular changes induced by various doses of sunitinib in 

tumor-bearing kidneys and normal contralateral kidneys. Usually, only the first minute of data 

are used for processing to calculate the initial area under the curve (IAUC) and/or the median 
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value of cumulative initial area under the curve (CIAUC) in order to monitor changes between 

pre and post drug treatment. However, in this work, the first two minutes was used to include the 

effect of the washout process of the kidneys. Moreover, DCE-MRI was used to investigate the 

vascular changes induced by pre-treatment with sunitinib in KCL-18 kidney tumors to 

schedule the initiation of chemotherapy. DCE results were confirmed with the histologic studies. 

 In this thesis, several new measures of vascular properties have been introduced, 

including: the fraction of active pixels (FAP);  contrast agent uptake to the peak (AUCtp); time 

to peak concentration (TTP); washout slope (Nslope); as well as full width half maximum 

(FWHM) of IAUC. The results from the pre-clinical RCC tumor model demonstrate that DCE 

parametric maps have the potential to assess the effect of antiangiogenic drugs on blood flow and 

physiological vascular changes in tumors as well as normal tissues. These new parametric maps 

provided further guidance as to what could be considered normal versus abnormal tissue 

response to antiangiogenic therapy. The results of this research should lead to a clear 

improvement in the ability of DCE-MRI as a quantitative method to evaluate tumor vasculature 

and other hemodynamic properties.  
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