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1 

INTRODUCTION 

Cold startability of diesel engines can be defined as the ability of an engine to 

quickly start and run with minimum assistance from the starting motors and to 

continue to run without hesitation. The incomplete combustion and misfire of 

diesel engines during starting result in unwanted white smoke (Unburned 

hydrocarbons), long cranking period and increase in fuel consumption. 

Wide attention has been paid on the diesel engine emissions as their population 

increases, corresponding emission control regulations have been enacted to 

control the emissions and the standards become more and more stringent.  HC 

emissions under the cold start conditions are a significant part of overall 

emissions. The drop in ambient temperature combined with the low ignition 

quality of the fuel  result in long cranking periods, the emission of large 

amounts of HCs which appear as white smoke, instable combustion and 

complete failure to start. 

This study explains the opposing effect of recirculated cranking gases on 

unburned hydrocarbons, cranking periods and fuel consumption. By using low 

rates of CGR (Cranking Gases Recirculation), a prompt cold start with minimal 

hydrocarbon emissions and less fuel consumption will result. The advantages of 

the new technique are demonstrated on the cold starting of a multi-cylinder diesel 

engine at different ambient temperatures. This new concept has been explained 

and validated using 0D and 3D simulation. 
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GOAL 

Reducing the cranking periods required before the engine fires and the unburned 

hydrocarbons emissions which appear as white smoke are among the most 

critical issues in the design of diesel engines . 

The technique proposed is contingent on the fact that a  stoichiometric fuel-

vapor-air mixture is formed in the cylinder in order to promote prompt 

combustion. This can be achieved by recirculating some of the HC species 

emitted during cranking to enhance the autoignition process and improve cold 

startability at different ambient temperatures. 

In the proposed technique, the cranking gases are recirculated to the intake 

manifold. The rate of recirculated gases is controlled using 2 valves. The first is a 

butterfly valve, referred to as gas recirculation (GR) valve, installed between the 

exhaust and intake manifold. The second is a butterfly (BF) valve, installed in the 

exhaust system after the turbocharger to increase the back pressure, hence the 

rate of recirculated gases. Since there is no combustion during cranking, these 

gases contain evaporated hydrocarbons and partial oxidation products, mostly 

formaldehyde HCHO.  

In order to apply the technique of CGR, it is necessary to understand the effect of 

cranking gases species on ignition delay using the simulation. 
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CHAPTER 1 

LITERATURE REVIEW 

Diesel engines are becoming important prime movers that power different types 

of machinery and transportation equipment. However, long cranking periods, the 

emission of large amounts of unburned hydrocarbons (HCs) which appear as 

white smoke, unstable combustion and even complete engine failure to start [1-4] 

are considered as major problems that need to be solved. 

1.1 Factors Affecting Cold Start 

Previous research work in diesel engine showed that several factors affect the 

combustion and emissions in the diesel engines. Several factors , such as 

ambient temperature and pressure [1, 5-10, 11], the combustion chamber design 

[11, 12, 13], the fuel properties [14, 15, 16], the injection process [1, 6, 7, 17], 

cranking speed [6, 7, 11, 17], residuals composition, equivalence ratio, surface 

temperature and the inlet charge temperature [ 14, 18-20, 21-40], affect the 

combustion process and engine-out emissions. 

1.1.1 Ambient Temperature 

Probably, the effect of ambient temperature is the most critical or 

important factor affecting the starting of the Diesel engine, which can lead to 

large cranking period, excessive white smoke in the exhaust, oil starvation and 

poor idle stability. It is obvious that the lower the ambient temperature, the less 

the chance the engine has to start. Zahdeh, Henein and Bryzik [41] verified this 
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behavior in a single-cylinder direct injection (DI) engine, which had a 

compression ratio of 17 and a total piston displacement of 673 cm3. The testing 

was done at an ambient temperature of 263 K and the engine was observed to 

operate on an 8-stroke-cycle (where combustion failed every second cycle)  and 

on a 12-stroke-cycle (where combustion  failed in two consecutive cycles after a 

firing cycle).  

Later, Gonzalez [42] verified that borderline conditions of misfire and skipped 

cycles occur at ambient temperatures below 263 K, while at temperatures below 

241 K specific starting kits were needed for a positive start. 

Regardless of the compression ratio and cranking speeds. the startability 

improves with the increased ambient temperature. If the compressed air 

temperature at the time of fuel injection is high enough for the fuel to evaporate 

and form a combustible fuel air mixture, an excellent chance of a successful start 

exists.  This depends on many parameters such as cranking speed and injection 

timing. Phatak and Nakamura [43] supported their conclusion by the fact that a 

cold engine with warm air continued to fire after the first few cranking cycles. This 

is quite likely because of a continuous increase in the charge temperature since it 

is unlikely that, in such short time, engine parts such as piston, head and cylinder 

were warmed up sufficiently to influence combustion. 

1.1.2 Engine Speed 

Under cold starting, the engine goes through several speeds; cranking is 

followed by acceleration after firing and deceleration to idle speed. The cranking 
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speed and period depends upon the ambient temperature, the quality of the fuel 

and the design parameters of the combustion chamber and the injection system. 

Austen and Lyn [17] found that the effect of cranking speed on compression 

pressure and temperature is very important especially at low speeds, below 200 

rpm. An increase from 100 to 200 rpm causes an increase of about 70°C in the 

compression temperature which confirms the importance of maintaining high 

cranking speeds under cold starting conditions as it is one of the most effective 

means of obtaining high compression temperatures. According to Phatak and 

Nakamura [11] at higher cranking speeds, the loss of time for auto-ignition 

reactions far outweighs any marginal gains in peak temperatures because of 

reduced blowby. 

Matsui and Sugihara [44] found that for extremely small and constant amount of 

fuel injected, HC emissions increased remarkably as the engine speed went up. 

1.1.3 Altitude 

At higher altitudes, the ambient pressure and temperatures are lower than 

at sea level. Accordingly, the compression pressure and temperature are lower 

and auto-ignition and combustion reactions are slower. This might lead to longer 

cranking periods and more white smoke. 

Kato et al. [45 stated that for each fuel, there is an altitude limit beyond which the 

white smoke starts to appear and increase dramatically. The lower the cetane 

number, the lower the altitude at which white smoke becomes a problem. 
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1.1.4 Fuel Injection Timing 

 Injection timing directly effects the ignition delay and HC emissions.  

Under steady state warmed up operation the optimum injection timing is 

designed in such a way that it gives minimum ignition delay. As the injection 

timing is changed from the position giving the minimum ignition delay, HC 

emissions increase. 

Austen and Lyn [17] found that an optimum timing for normal operation is 

generally too early  for optimum cold start which lies between 10° and 20° BTDC 

by static timing. At extremely low speeds such as cranking speed, because of the 

increase in heat loss and blow-by, cylinder air temperature is lower than that at 

high speed. Therefore, the required time for ignition delay becomes longer at 

starting, but the required crank angle degrees for ignition delay becomes much 

less. 

Greeves et al. [46] investigated the effect of injection timing and ignition delay on 

HC emissions on four different engines. They found that the injection timing 

corresponding to minimum ignition delay gave minimum HC emissions. They 

also found that as the injection timing is retarded from this point, the HC 

emissions increased at the same rate as the ignition delay.  

Yu et al. [47], on the other hand, found that HC emissions decrease with 

advancing the timing from 3.5 ATDC to 4 BTDC. Their experiments covered a 

very narrow range and it was not clear whether these timings were before or after 

the minimum optimum injection timing corresponding to the minimum ignition 
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delay. They attributed the effect of timing on HC emissions to the changes in the 

ignition delay since timing had a little direct effect on the mixing rate. For retarded 

timing, the start of combustion is delayed into the expansion stroke and as a 

result of rapid drop in the gas temperature and pressure, quenching of the 

oxidation reactions might occur resulting in higher HC emissions. 

Keppeler [48] reported that the pilot injection quantity should reduce the ignition 

delay by providing radicals in the combustion chamber. It is desired that this fuel 

does not burn before the start of main injection, to avoid an excessive increase of 

the particulate emission. His tests recommended a dwell of 10 deg and of 30 deg 

for the various tests performed.  

Osuka et al. [49] reduced starting time and white smoke emission by using pilot 

injection. They indicated that the cool flame produced during pilot injection 

promoted ignition of the later main injection.  Han et al [7] found that the 

mismatch between the injection parameters and the instantaneous engine speed 

could lead to a misfire. The mismatch included the injection timing and the shift 

from main injection to pilot-main injection. 

1.1.5 Injection Rate 

The injection rate is a measure of how much fuel is injected per cycle. The 

amount of fuel injected per cycle affects the overall equivalence ratio of the 

charge and this affects the course of combustion and emissions. During cold 

starting, the amount of fuel injected during the cranking period is directly related 

to the concentration of HC emitted upon firing. 



8 
 

 

Heywood [14] and Bosch [50] refer to the importance of governor characteristics; 

increased fuel quantity is required in starting ignition as compared to an idling 

combustion. Unfortunately, this quantity is also the source of unburned 

hydrocarbons. Since the total amount of fuel injected is not completely burnt, the 

residual fuel shows up as the major part emissions. 

Karim et al. [51] studied the effect of injection rate on HC emissions under very 

cold ambient temperatures (down to -40C). He indicated that in order to keep the 

idling speed constant, the fueling rate needed to be increased rapidly as the air 

intake temperature was lowered to very low temperatures, during which the 

ignition delay was being increased at high rate. The corresponding smoke 

density increased significantly as the temperature was lowered. At such low 

temperatures, the injected fuel was high and a greater fraction of injected fuel 

was not fully utilized and thus would appear in the form of white smoke aerosol. 

Yu et al. [47] studied the effect of fuel flow rate on HC emissions. Their results 

sho0wed that under idling and low load conditions, hydrocarbon emissions 

decreased as the fuel flow rate increases. They indicated that reduction in HC 

emission is attributed to the decrease in ignition delay resulting less local over 

mixing.   

Campbell et al. [52] found that increasing the fuel injection rate at the same 

injection timing reduces the smoke opacity originated from HC emissions.  

Nakakita et al. [53] indicated that with increased injection pressure, the ignition 

delay is shortened and consequently HC emissions decreased. 
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Tatsuya and Kawase [54] showed that as the injector nozzle spring constant 

increase, white smoke emissions were improved. They related the effect of 

higher nozzle injection rate with fuel droplet size and distribution. Higher spring 

constant gave an accelerated fuel atomization with smaller fuel droplets that took 

less time to evaporate thus improving HC emissions.  

1.1.6 Chamber Design 

Tsunemoto, et al [13], studied the influence of combustion chamber shape 

and depth on the adhering fuel to the chamber walls in a direct injection diesel 

engine. They concluded that, in shallow combustion chambers, the distance from 

injection nozzle to the combustion chamber wall with bowl and cavities is far, and 

fuel evaporates before impinging on the wall reducing the amount of remaining 

fuel. The work of Phatak and Nakamura [43] indicated that the combustion 

chamber design and the resulting fuel-air mixing process have a significant 

influence on the cold startability of a DI diesel engine.  

1.1.7 Common Rail Pressure 

The high emission level during start-up process of common rail diesel 

engine is still a problem for ultra-low emission control. The electronic map-loaded 

engine start-up process goes through the initialization of injection and rail 

pressure build-up process and then the fuel injection rate is not stable. The time 

taken to build up the common rail pressure can be further subjected to engine 

speed variety.  
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Woermann, Theuerkauf and Heinrich [55] summarized the real reaction on the 

rapid change of the demand rail pressure. The ECU control algorithm adjusts the 

system pressure to the demand by stimulating the regulation valve. After two 

seconds, the actual pressure remains stable inside a narrow band. In terms of 

calibration complexity, it is easy to optimize parameters of the control algorithm 

implemented in the ECU.  

Roy, Tsunemoto [56] investigated injection pressure and split injection and 

concluded that with the high-pressure at idle, there is an optimum injection 

pressure where the ignition delay is the shortest, which causes less fuel to 

adhere to the combustion chamber walls. Moreover, the fuel air mixture is 

improved and more homogeneous. The shorter ignition delay and the more fine 

the particles in the homogeneous mixture are produced, the less aldehydes and 

total hydrocarbons content in the exhaust. 

Osuka et al. [49] mentioned that the injection parameters of the initial phase of 

engine start-up have large effects on the start-up time and smoke emissions. 

Common rail is being aggressively pursued for development because of its high 

injection pressure, flexible multiple injection and the minimal changes needed to 

the engine body. 

1.1.8 Cetane Number 

Studies have confirmed that cetane number affects the starting and white 

smoke in modern heavy duty diesel engines. The effect of cetane number is most 

significant at the minimum starting temperature because below this temperature, 
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the engine will be inoperable. Clerc [16] reported that a decrease in fuel cetane 

number from 45 to 40 would increase minimum starting temperature of light-duty 

and heavy-duty engines by less than 3°C. 

1.2 Cold Start Aids 

Henein [57] and Bielaczyc [58] brought forward a cold starting strategy for DI 

diesel engines by cutting off fuel injection during the first few revolutions of cold 

starting process.  The results of experiments suggested that emissions were 

significantly improved when compared with the standard cold start procedure, 

where a large amount of fuel is injected upon motoring the engine.  

Lindl, Schmitz [59] investigated the effect of different starting aids such as glow 

plug, electrical intake air heater and intake manifold, by observing the 

acceleration to a governed engine speed, the HC-emission or the exhaust gas 

opacity. The results of the various studies indicates the necessity of aids for a 

reliable cold start (even for modern diesel engines) for the desired starting 

convenience, smoothness during the ramp-up and warm-up phase, the reduction 

in noise and the need to meet future emission standard regulations. This resulted 

in the minimization of specific fuel consumption.  

Intake manifold burner, electric intake air heaters or glow plugs with fast preheat 

time of less than 4 seconds can provide post-heat temperature level of 1400 K 

Girotra et al [60] used split injection to improve the cold starting of a direct 

injection, 4-cylinder diesel engine. The improvement in cold starting was found to 
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depend on the amount of fuel delivered in each injection event as well as the 

dwell between the two events.   

Gruenwald [61] conducted preliminary experiments on the engine used in this 

investigation to explore the effect of HCR (Hydrocarbon Recirculation) on cold 

starting of the engine.  

1.3 Effect of Adding Formaldehyde on Ignition Delay  

The kinetic effect of formaldehyde (HCHO) on autoignition has been studied by 

Sjöberg and Dec [31] in HCCI combustion. The authors found that HCHO has an 

advancing effect on autoignition for iso-octane, but a retarding effect for PRF80 

mixture. 

Jansons [40] reported formaldehyde has a retarding effect on autoignition under 

lean conditions in an optically accessible diesel engine.  

In conclusion, the literature review shows that no investigations have been done 

on the opposing effect of recirculated gases during the cranking period on cold 

starting of multi-cylinder D.I. diesel engines at different low ambient 

temperatures. 

This investigation is aimed at gaining a better understanding of the effect of CGR 

on the autoignition process and reducing the cranking period.    
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CHAPTER 2 

EXPERIMENTAL SETUP AND INSTRUMENTATIONS 

2.1 Introduction 

Introducing a combination of HCs and HCHO into the intake manifold has been 

investigated experimentally by recirculating part of the exhaust gases to the 

intake manifold and checking the effect of different recirculated percentage on 

the cranking period and the exhaust hydrocarbons. 

Figure 2.1 shows the layout of the setup and instrumentation.  The engine is 1.2L 

Ford DIATA 4-cylinder, 16-valve, 70 mm bore, 78 mm stroke, direct injection, 

turbocharged, intercooled, water cooled and 19.5 compression ratio diesel 

engine equipped with a common rail injection system.   The engine is installed in 

a cold room and is motored by its electric starter and battery system.  Each of the 

cylinders is instrumented with a flush mounted piezo pressure transducer and a 

charge amplifier.  The engine was soaked for at least 8 hours at the desired 

ambient temperature before starting the test by turning on the electric starter 

which cranks the engine at 200 rpm. The data recording began as soon as the 

crankshaft started to rotate at every 0.05 CAD, and continued till after the electric 

starter disengaged and the engine ran at idle speed.  After each test the engine 

was run till it was warmed up before it was shut down. Each test had been 

repeated at least three times to ensure the reproducibility of the results. The 

CGR percentage was controlled by the openings positions of the CGR valve and 

the exhaust butterfly valve.  Two types of recirculation are examined.  The first is 
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ET4 ET3 ET2 ET1 

a low pressure recirculation of engine-out gases into the intake manifold where 

their rate is controlled by a gas recirculation (GR) valve installed between the 

exhaust and intake manifold.  The second is a high pressure recirculation 

obtained by restricting the flow of the engine-out gases using a butterfly (BF) 

valve installed in the exhaust system after the turbocharger in order to increase 

the back pressure and the rate of recirculated gases. Since there is no 

combustion during cranking, these gases contain evaporated hydrocarbons and 

partial oxidation products, mostly formaldehyde HCHO. The unburned 

hydrocarbons were measured in ppm at the intake and the exhaust manifolds 

using two channels of the fast FID analyzer instrument. The results reported in 

this thesis are for the effect of low and higher rates of recirculated gases at 

different ambient temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 - Layout of experimental setup and instr umentation. 
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2.2 CGR system and engine features 

80 miles per gallon was the goal to be achieved in 2000 by the hybrid concept 

car “Ford PRODIGY’. Part of this electric hybrid vehicle project was the state-of-

the-art Ford DIATA engine where DIATA stands for Direct Injection Aluminum 

Through-bolt Assembly. The DIATA engine specifications are given in appendix I. 

The goal of this project was to downsize the engine as much as possible, while 

improving vehicle fuel economy with minimal emissions and undesirable NVH 

(Noise Vibration and Harshness) behavior. Ford product design guidelines and 

FEV publications were the main source of the engine features materials while the 

cold start diesel engine lab at Wayne State University is the source of CGR 

system materials. 

2.2.1 CGR system 

The CGR (Cranking Gases Recirculation) system is composed of 2-

butterfly valves. The first is the GR (Gases Recirculation) valve which connects 

the exhaust manifold to the intake manifold to control the amount of gases 

recirculated. The GR valve is controlled by using 2 gears for accurate 

measurements as shown in figure 2.2. This valve should be cleaned regularly to 

avoid any carbon deposit on the valve which can affect the valve area and the 

opening percentage. The second is the exhaust butter-fly valve which is mounted 

in the exhaust system after the turbocharger to restrict the flow of gases in order 

to increase the rate of gases recirculated. The exhaust butter-fly valve is 

electronically controlled as shown in figure 2.3.  
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Figure 2.2 – GR valve and its opening controller. 

 

 

 

 

 

 

 

Figure 2.3 – Exhaust butterfly valve and its electr onic controller. 
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2.2.2 Valve Train 

The valve train concept includes dual overhead camshafts (DOHC), roller 

finger followers and hydraulic lash adjusters. A bore hole in each camshaft 

distributes oil to the camshaft bearings, as well as to the high-pressure fuel pump 

coupling. The hydraulic lash adjusters receive their oil via two drilled oil galleries. 

The camshaft at the exhaust side is driven directly from the crankshaft by a 

primary chain and as second chain synchronizes the two camshafts. 

2.2.3 Fuel Injection 

Injectors are arranged close to the cylinder center line, where a clamping 

mechanism is used, which allows for disassembly of the injectors without 

opening the valve cover. All high and low pressure fuel lines are located outside 

the oil room. The rail is mounted on top of the intake manifold plenum chamber to 

enable the use of short injection lines. The nozzle geometry details are given in 

appendix II. 

2.2.4 Combustion Bowl 

The combustion bowl design is very similar to the designs used for 

engines in 2.0 liter class, but downsized to account for the smaller engine 

displacement. The mixture formation is improved due to the higher in-bowl swirl 

of the smaller combustion bowl. However, as a part of the downsizing process, 

the surface-to-volume ratio was increased by approximately 25%, which 

increases the relative heat losses of the combustion chamber walls. 
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2.2.5 Port Deactivation 

A suitable method to improve maximum torque at low engine speeds is 

the usage of port deactivation at full load. The deactivation flap arrangement with 

the bigger port of the two always open and the smaller port is the controllable 

port with a flap valve. All of the intake ports with flap valve are coupled together 

and can be controlled through a single lever. Opening the smaller port counters 

the flow from other port reducing the swirl ratio inside the cylinder. Using the flap 

valve, the swirl ratio can be changed from 1.5 to 4, which is when the short port 

is completely closed and larger port is open. 

2.3 Instrumentation and measurements 

A Ford DIATA engine is used for the investigation. The cylinder head is designed 

by FEV and the block is developed at Ford Motor Company. 

The following engine parameters can be measured: 

• In Cylinder pressure 

• Intake manifold pressure 

• Pressure before and after turbocharger  

• Exhaust temperature 

• Air intake temperature 

• Needle lift 

• Fuel pressure 

• Turbocharger speed 
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• Engine RPM 

• Unburnt  Hydrocarbon Emissions 

• NOx emissions 

• Fuel consumption 

• Air mass flow 

• Blow-By flow 

2.3.1 In- Cylinder pressure 

A quartz crystal pressure transducer (Kistler 6061B) water-cooled 

pressure sensor is used for in-cylinder pressure measurements. A dual-mode 

charge amplifier (Kistler 5010B) is used with this transducer as shown in figure 

2.4. These transducers are mounted in the glow plug holes in the cylinder head. 

They have inbuilt cooling jackets to keep the transducer temperature low. The 

transducers and the respective charge amplifiers are factory calibrated.  

The pressure at the end of the intake stroke is used as the reference pressure 

which is equal to the value of the intake manifold pressure transducer. 

Figure 2.5 shows a sample of the cylinder pressure versus the cycle number. 
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Figure 2.4 – In cylinder pressure transducers and t heir charge amplifiers. 

 

 

 

 

 

 

 

 

 

Figure 2.5 – Cylinder pressure.  

2.3.2 Intake manifold pressure: 

An Omega sensor (PX-176/177) is used for the intake manifold pressure 

measurements as shown in figure 2.6. 
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Figure 2.6 – Intake manifold transducer and its cha rge amplifier. 

Using the following calibration equation:  ( )068948.0
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calculate the air intake pressure as shown in figure 2.7 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Intake manifold pressure.  
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2.3.3 Pressure before and after turbocharger (Exhau st Pressure): 

Omega (PX-176/177) sensors are used for exhaust pressure 

measurements before and after turbocharger as shown in figure 2.8 and 2.9. 

 

 

 

 

 

 

Figure 2.8 – Before turbocharger pressure transduce r and its charge 

amplifier. 

 

 

 

 

 

 

 

Figure 2.9 – After turbocharger pressure transducer  and its charge 

amplifier. 
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The pressures before and after the turbocharger are calculated using the 

following calibration equation as shown in figure 2.10 and 2.11.  
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Figure 2.10 – Pressure before turbocharger. 

 

 

 

 

 

 

 

 

Figure 2.11 – Pressure after turbocharger. 
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2.3.4 Exhaust Temperature: 

Omega K-type 0.005-inch thermocouples are used with a 5B37 module for 

exhaust temperature measurements for each cylinder as shown in figure 2.12. 

 

 

 

 

Figure 2.12 – Thermocouple for exhaust temperature and its charge 

amplifier. 

Figure 2.13 shows the exhaust temperature using the following calibration 

equation:  100290
100

−






 ∗
Signal

   °C 

 

 

 

 

 

 

 

 

Figure 2.13 – Exhaust temperature. 
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2.3.5 Air Intake Temperature: 

An Omega K-type 0.005-inch thermocouples is used with a 5B37 module 

for air intake temperature measurements as shown in figure 2.14. 

 

 

 

 

 

Figure 2.14 – Thermocouple for intake temperature a nd its charge 

amplifier. 

Figure 2.15 shows the intake temperature using the following calibration 

equation: 100290
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Figure 2.15 – Intake temperature. 
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2.3.6 Needle lift: 

Micro Epsilon Needle lift sensors (ES-04) are used with their respective 

amplifiers to check the needle lift movement as shown in figure 2.16. 

 

 

 

 

 

Figure 2.16 – Needle lift sensor and its charge amp lifier. 

 

Figure 2.17 shows the traces of the needles lifts. 

 

 

 

 

 

 

 

Figure 2.17 – Pressure after turbocharger. 
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Fuel Pressure Vs Cycle No.
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2.3.7 Fuel Pressure: 

Kistler-integrated sensors are used with their respective amplifiers (0-

3000bar) for the fuel pressure measurements for each cylinder fuel line and the 

common rail as shown in figure 2.18. 

 

 

 

 

 

 

Figure 2.18 – Fuel pressure sensor and its charge a mplifier. 

The following calibration equation is used to calculate the pressure in the fuel 

lines as shown in figure 2.19: ( )3100∗∗Signal    bar 

 

 

 

 

 

 

 

Figure 2.19 – Pressure in fuel lines. 
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2.3.8 Turbocharger speed: 

A Micro Epsilon speed sensor (ES-04) is used with its respective amplifier 

for the turbocharger speed measurements as shown in figure 2.20. 

 

 

 

 

Figure 2.20 – Turbocharger speed sensor and its cha rge amplifier. 

The following calibration equation is used to calculate the turbocharger 

speed as shown in figure 2.21: 
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Figure 2.21 – turbocharger speed. 
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2.3.9 Engine RPM: 

The speed of the processor of the mother board –used for collecting the 

data- is used to calculate the engine RPM as shown in figure 2.22. 

The following methodology is used to calculate the rpm: 

 

Calibration equation:  


























 ∗
6000000

6
1
time

  rpm 

If cell-1<Cell-2 

Time = Cell-2 - Cell-1 

Else time = 65536+ Cell-2- Cell-1 

 

 

 

 

 

 

 

 

Figure 2.22 – Engine speed. 
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2.3.10 Unburnt Hydrocarbon Emissions: 

A fast response Cambustion FID (Flame Ionization Detector) is used for 

real-time HC emissions measurements as shown in figure 2.23. A 15000 ppm 

sample gas and Zero air gas are used to calibrate the system. 

 

 

 

 

 

 

Figure 2.23 – Fast response FID.   

 

 

 

 

 

 

 

 

 

Figure 2.24 – Unburned hydrocarbons concentration. 

 

HC Vs. Cycle No.

0
2000
4000

6000
8000

10000
12000

14000
16000

-1 0 1 2 3 4 5 6

Cycle No.

H
C

 (
pp

m
)

HC



31 
 

 

To calculate the unburned hydrocarbons concentration, the following 

calibration equation is used as shown in figure 2.24:  

(Signal * Calibration gas in ppm/ Calibrated Volt )   ppm 

2.3.11 NOx Emissions: 

A Cambustion CLD (chemiluminescence detector) is used for real-time 

NO emissions measurements as shown in figure 2.25. A 962 ppm sample gas 

and Zero air gas are used to calibrate the system. 

 

 

 

 

 

 

Figure 2.25 – Fast response Nox. 

To calculate the unburned hydrocarbons concentration, the following calibration 

equation is used as shown in figure 2.26: (Signal * Calibration gas in ppm/ 

Calibrated Volt) 
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Figure 2.26 – No concentration. 

2.3.12 Fuel consumption: 

A FCI FlexCOR series mass flow meter with Coriolis measurement 

technology is used for the fuel consumption measurements as shown in figure 

2.27. 

 

 

 

 

 

Figure 2.27 – Fuel consumption, mass flow meter. 
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The following calibration equation is used for the fuel consumption 

calculation: ((13.116*Signal)-25.635)   g/min 

 

 

Figure 2.28 – Fuel consumption. 

2.3.13 Air mass flow: 

A 96FP series mass flow meter is used for the air flow mass 

measurements as shown in figure 2.29. 

 

 

 

 

 

 

Figure 2.29 – Air mass flowmeter. 
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Mass Air Flow Vs Cycle no.
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The following calibration equation is used for the air mass flow calculation as  

shown in figure 2.30 : 0337.0
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Figure 2.30 –Air Mass flow. 

2.3.14 Blow-By flow: 

 A J-TEC flow meter with its respective filter is used for the Blow-By 

flow measurements as shown in figure 2.31. 

 

 

 

 

 

 

Figure 2.31 – Blow-by flow meter and its filter. 
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The volumetric capacity of the blow-by is calculated using the following 

calibration equation as shown in figure 2.32: 0027.0
100

0128.1 +






 ∗
Signal

  cu.ft/min 

 

 

 

Figure 2.32 – Blow-by volumetric capacity. 

2.4 Engine control 

Some of the engine variables can be controlled and others can be only monitored 

as shown below. 

2.4.1 Variables that can only be monitored: 

• BE_ACT: Air Temperature (deg. C) 

• BE_ECT: Coolant Temperature (deg. C) 

• BE_MAF: Air Mass Sensor Reading, (kg/hr) 

• BE_MAP: Intake Air Pressure, (kPa) 
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• BE_RPM: Engine Speed (rev/min) 

• CRD_P_RAIL_FBK: Actual Fuel Rail Pressure, (bar) 

2.4.2 Engine variables that can be controlled:  

• Injection timing (for pilot and main injection) 

• Injection pressure 

• Injection quantity (for pilot and main injection)  

These Variables (**D)  can be controlled through Parameters (**C)  and Maps 

(**M) using GREDI software : 

1- CRD_P_RAIL_DMD:  Desired Fuel Rail Pressure, (bar)  controlled by 

Parameters: CRC_P_RAIL_DYNO_ADD  &  CRC_P_RAIL_DYNO_MUL 

And a Map: CRM_P_RAIL_MAX 

2- CRD_PLT_Q_DMD:  Desired Pilot Fuel Injection Quantity, (mg/stoke) 

controlled by  Parameters: CRC_PLT_Q_DYNO_MUL & 

CRC_PLT_Q_DYNO_ADD 

3- CRD_PLT_TIM_DMD:  Desired Pilot Injection Timing, (deg. Before Main 

Inj. Start) controlled by Parameters: CRC_PLT_TIM_MUL & 

CRC_PLT_TIM_ADD 

4- FQD_FUEL_DMD:  Desired Main Fuel Quantity, (mg/stroke) Controlled by 

a Map: FQM_CR_CLD_ADD 
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5- TID_DMD: Desired Main Injection Timing, (deg. BTDC) controlled by 

Parameters: TIC_DYNO_ADDER & TIC_DYNO_MULT 

2.5 Detailed Steps with illustrations for a complet e single run 

1- Disconnect both sides, engine side and sample head side (sample head 

connection and electrical connection) of the HC and NO probes. 

 

 

 

 

 

 

 

 

 

 

2- Clean the probes with a 0.022” wire. 
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3- Clean the sample head with the yellow dot wire for the HC and the red red 

wire for the NO. 

 

 

 

 

4- Connect the probes back 

5- Turn on the main power  for the cold room controller 

 

 

 

 

 

 

 

 

6- Program the cold room for the required temperature.  

For example, set the cold room for a -20 C and soak it for 8 hours 

1)    Go to the profile menu.  

2)    Enter create profile menu 

3)    Step 1 is going to be a Ramp time step, step does not wait, set time 
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for 1 second, set the set point to -20 C 

4)    Step 2 will be a Soak Step, Step waits for, Wait,  -19 C, soak time set 

for 8 hours, PID 1, Guaranteed Soak No  

5)    Step 3 Set to End, All off. 

N.B.: It can be adjusted to run automatically at a specified time by adding 

a step, start automatically and adjust the starting time, between step 2 and 

step 3 mentioned above.  

  

 

 

 

 

 

 

7- Run the NOx machine 

1) Open the knobs of the nitrogen cylinder with 960 ppm concentration 

and the zero air cylinders.  
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2) Switch on the machine (the two red switches ) 
 

 

 

 

 

 

 

 

 

3) Leave it about 20 to 30 minutes till it stabilizes and the temperature 

reaches around 300 C  

 

 

 

 

 

 

8- Run the HC machine 

1) Open the knobs of the HC cylinder with 15000 ppm concentration, the 

zero air cylinder, the nitrogen cylinder and the hydrogen cylinder. 

Check the pressures 
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2) Hit the start button till the temperature start to rise automatically  
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3) Leave it about 20 to 30 minutes till it stabilizes and the temperature 

reaches around 300 C (±50) 

 

 

 

 

 

9- Turn on the main power switch 
 

 

 

 

 

 

10- Turn on the two PCs 
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11- Switch the 4 cylinder pressure amplifiers to operate mode 
 

 

 

 

 

 

12- Calibrate the NO machine 

1) Switch the knob to ZERO position and adjust the ZERO adjustable 

bolt to zero 

 

 

 

 

 

2) Switch the knob to SPAN position and adjust the SPAN adjustable 

bolt to 5 
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13- Calibrate the HC machine 

1) Switch the knob to ZERO position and adjust the OFFSET 

adjustable bolt to zero 

 

 

 

 

 

2) Switch the knob to SPAN position and adjust the SPAN adjustable 

bolt to 5 

3)  

 

 

 

14-  Switch-on the fuel pump 
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15- Open the GREDI software 
 

 

 

 

 

 

16- Switch-on the ECU switch 
 

 

 

 

 

17- Connect the ECU online through the software  at the same time while 

doing step 16 

18- Open the RTcam software 
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19- Switch on the battery switch 
 

 

 

 

 

 

 

20- Hit the starter switch till the engine runs 
 
 
 
 
 
 
 
 
 
 
 
 
 

21- Leave the engine until it warms up and then turn off the ECU and the fuel 
pump switches. 
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CHAPTER 3 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

3.1 Introduction 

Introducing a combination of HCs and HCHO into the intake manifold has been 

investigated experimentally by recirculating part of the exhaust gases to the 

intake manifold and checking the effect of different recirculated percentage on 

the cranking period, fuel consumption and the exhaust hydrocarbons. 

3.2 Baseline Test  

The baseline test was at an ambient temperature of 15°C and a fuel injection rate 

of 25 mg per stroke. Figures 3.1.a shows the instantaneous engine speed and 

the gas pressure in each of the four cylinders in the first 22 cycles (44 

revolutions). Figure 3.1.b shows the mole fraction of the HC emissions. The 

details of these traces for the first five cycles are given in Figures 3.2.a and 3.2.b. 

The numbering of the cycles starts when the piston of cylinder 4 is at TDC, end 

of compression. The recording of the crankshaft rotation starts with its motion. 

Data before the zero point indicates that the crankshaft was not at TDC of 

cylinder 4. Figure 3.1.a shows the engine started with cylinder 3 in partial 

compression. This agrees with previous findings that gasoline and diesel engines 

stop rotation after shut down with one of the cylinders in the compression stroke. 

[44]. Cylinder 3 was followed by a sequence of cylinders 4, 2 and 1 in the first 
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two cycles. Cylinder 2 fired in the third cycle causing the engine speed to 

increase from 200 rpm to 400 rpm.  

 

 

Figure 3.1.a - Gas pressure and instantaneous engin e speed with 25 
mg/stroke. SOI: 12° BTDC, T amb:15°C, 0%CGR. 

 

Figure 3.1.b - HCs emissions with 25 mg/stroke. SOI : 12° BTDC, 
Tamb:15°C, 0%CGR. 
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Figure 3.2.a - First 5 cycles of gas pressure and i nstantaneous engine 
speed with 25 mg/stroke. SOI: 12° BTDC, T amb:15°C, 0%CGR. 
 

Figure 3.2.b - First 5 cycles of HCs emissions with  25 mg/stroke. SOI: 12° 
BTDC, Tamb:15°C, 0%CGR. 
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This was followed by partial combustion in cylinder 1 and complete misfire in 

cylinder 3. Cylinder 2 fired again in the fourth cycle and caused the engine to 

accelerate and reach 400 rpm, followed by continuous firing in the other three 

cylinders. The engine reached 1100 rpm during flare up and decelerated to the 

idle speed in cycle 17.  

Figures 3.1.b and 3.2.b show the HC in the engine-out gases. HC increased from 

900 ppm at the start of cycle number 2 to 4000 at the end of this cycle. HC 

increased to 7,800 ppm in cycle number 3, after which HC dropped, during 

engine acceleration, to 2,000 ppm at the end of cycle 7. The total mass of HC 

emitted after the first 22 cycles was 112.52 mg.  

3.3 Effect of Low Rates of CGR on Cranking Period a nd Unburned HC 

Emissions  

This set of experiments was conducted at an ambient temperature of 15°C with 

25 mg/stroke fuel injection and without any back pressure on the engine. The 

percentage of CGR was varied from 0% (Base line test) to 20%, 40%, 60%, 80% 

and 100% by using the GR valve during the starting process up to the 25th cycle 

for this set of experiments.  

Figure 3.3.a shows traces for the 100% GR valve opening with 25 mg/stroke fuel 

injection. Cylinder 2 was the first to fire in cycle number 2. Figure 3.3.b shows HC 

in the intake follow the same tend as the HC in the exhaust. HC emissions 

reached 4,600 ppm during acceleration and dropped to 1000 ppm during idling. 

During idling the HC followed the same pattern, where cylinder 3 had incomplete   
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Figure 3.3.a - Gas pressure and instantaneous engin e speed with 25 
mg/stroke. SOI: 12° BTDC, T amb:15°C, 100%CGR. 

 

Figure 3.3.b - HCs emissions with 25 mg/stroke. SOI : 12° BTDC, 
Tamb:15°C, 100%CGR. 
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Figure 3.4.a - Effect of different CGR (0, 20, 40, 60, 80 and 100%) on 
Cranking Period with 25 mg/stroke. SOI: 12° BTDC, T amb:15°C. 
 

Figure 3.4.b - Effect of different CGR (0, 20, 40, 60, 80 and 100%) on HC at 
the Exhaust manifold with 25 mg/stroke. SOI: 12° BT DC, Tamb:15°C. 
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combustion and produced a sharp increase in HC emissions, followed by a drop 

as the other three cylinders fired. The intake HC reached 750 ppm during 

cranking and stabilized at 350 ppm during idling. The total HC emitted during the 

first 22 cycles was 58.12 mg.  

In figure 3.4.a shows the effect of CGR on the cranking period with fuel injection 

rate of 25mg/stoke. The cranking period was reduced from 4 cycles without CGR 

to 2 cycles at 100%. Also, Figure 3.4.b shows HC emissions decreased from a 

total of 112.52 mg during the first 22 cycles without CGR to 58.12 mg with 100% 

GR valve opening. 

3.4 Effect of High Rates of CRG on Cranking Period and Unburned HC 

Emissions at Reduced Fuel Injection 

The following sets of experiments show the effect of different CGR% and BF 

valve opening on reducing fuel injection, cranking period and hydrocarbons. 

3.4.1 Effect of applying the highest rates of CGR:  

Initially, attempts were made to start the engine applying the highest CGR rate, 

at an ambient temperature of 16°C, delivering 25 mg /stroke of fuel. For this, the 

BF valve was completely closed and the GR valve was fully opened. The results 

given in figure 3.5.a show the engine completely failed to start after a few 

attempts. Figure 3.5.b shows a sharp increase in HC in the exhaust and intake. 

Exhaust HC reached 15000 ppm, the upper limit of the instrument after 7 cycles.  
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Figure 3.5.a - Gas pressure and instantaneous engin e speed with 25 
mg/stroke. SOI: 12° BTDC, T amb:16°C, 100%CGR and 100% BF close. 

 

Figure 3.5.b - HCs emissions with 25 mg/stroke. SOI : 12° BTDC, 
Tamb:16°C, 100%CGR and 100% BF close. 
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Figure 3.6.a - Gas pressure and instantaneous engin e speed with 20 
mg/stroke. SOI: 12° BTDC, T amb:16°C, 100%CGR and 100% BF close. 

 

Figure 3.6.b - HCs emissions with 20 mg/stroke. SOI : 12° BTDC, 
Tamb:16°C, 100%CGR and 100% BF close. 
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The mass of HC emitted during 22 cycles was 635.96 mg, or 28.9% of the fuel 

delivered.  

Figure 3.6.a shows the results after reducing the fuel injection from 25 mg/stroke 

to 20 mg/stroke. It is noticed that the attempts to fire increased, indicating that 

the mixture in the previous run was very rich, and reducing the fuel injection 

produced a better ignitable mixture. Figure 3.6.b shows exhaust HC reached the 

instrument limit of 15000 ppm after 19 cycles. The mass of HC emitted in the 22 

cycles was 581.296 mg, or 26.42 % of the delivered fuel. 

3.4.2 Effect of applying controlled rates of CGR at  3 °C ambient 

temperature:  

After observing the results at 16°C ambient temperatur e, experiments were 

conducted at 3 °C ambient temperature and 25 mg/stroke . Without any CGR the 

engine failed to start, even by increasing fuel injection up to 40 mg/stroke.  

But by opening the GR valve 40% and BF valve 50% the engine fired in cycle 

number 14 as shown in figure 3.7.a. Figure 3.7.b shows the HC reached 11,900 

ppm before firing in cycle 14, after which HC dropped to 3500 ppm during idling. 

The total HC emitted after 22 cycles amounted to 301.88 mg.  

Increasing the GR valve opening to 60% while the BF valve was kept 50% 

closed, reduced the cranking period to 5 cycles and the HC reached 4500 ppm at 

the end of the cranking period, as shown in figures 3.8.a and 3.8.b. The total HC 

emitted amounted to 120.24 mg during the first 22 cycles.  
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Figure 3.7.a - Gas pressure and instantaneous engin e speed with 25 
mg/stroke. SOI: 12° BTDC, T amb:3°C, 40%GR valve and 50% BF valve. 

 

Figure 3.7.b - HCs emissions with 25 mg/stroke. SOI : 12° BTDC, T amb:3°C, 
40%GR valve and 50% BF valve. 
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Figure 3.8.a - Gas pressure and instantaneous engin e speed with 25 
mg/stroke. SOI: 12° BTDC, T amb:3°C, 60%GR valve and 50% BF valve. 

 

Figure 3.8.b - HCs emissions with 25 mg/stroke. SOI : 12° BTDC, T amb:3°C, 
60%GR valve and 50% BF valve. 
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Further increases in the GR valve opening produced opposite effects till the 

engine completely misfired.  

3.4.3 Effect of applying controlled rates of CGR at  -3 °C ambient 

temperature:  

More experiments were conducted at a lower temperature of -3 °C. Again the 

engine failed to start even by increasing the fuel injection up to 50 mg/stroke at 

0% CGR.   

As shown in figure 3.9.a. the engine fires successfully at cycle number 24 by 

opening the GR valve 80% and BF valve 50%. Figure 3.9.b shows the HC 

reached 11,920 ppm before firing in cycle 24, after which HC dropped again 

during idling. The total HC emitted after 22 cycles amounted to 359.92 mg.  

The engine failed to fire during the first attempt at all other GCR valve openings. 
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Figure 3.9.a - Gas pressure and instantaneous engin e speed with 25 
mg/stroke. SOI: 12° BTDC, T amb: -3°C, 80%GR valve and 50% BF valve. 

 

Figure 3.9.b - HCs emissions with 25 mg/stroke. SOI : 12° BTDC, T amb: 
-3°C, 80%GR valve and 50% BF valve. 
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3.4.4 Effect of varying fuel injection rate at a co nstant CGR rate  

These run were conducted to find out the fuel savings that can be achieved by 

applying CGR. The exhaust BF valve was kept 50% closed to raise the back 

pressure and the GR valve was 60% opened. Figures 3.10.a and 3.10.b show 

increasing the fuel injection from 20 mg/stoke to 21 mg/stoke reduced the 

cranking period from 20 revolutions to 9 revolutions and the HC dropped from 

287.43 mg in the first 22 cycles to 128.8 gm. An increase to 22 mg/stoke reduced 

the cranking period by 2 revolutions, and HC by 29.08 mgs. A further increase to 

23 mg/stoke caused the cranking period to increase by 2 revolutions as well as 

the HC emissions to increase from 99.72 mg to 130.44 mg during the first 22 

cycles.  

From the above experimental investigation, there is an optimum opening for the 

recirculation valves at which the cranking period and HC emissions are minimum; 

any further increase in the amount of gases recirculated has an opposite effect. 

Since the fuel vapor in CGR is expected to enhance the autoignition process, it 

became important to find out the role of the partial oxidation products at different 

rates of fuel injection on autoignition and combustion. This has been achieved by 

diesel cycle simulation. 
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Figure 3.10.a - Effect of different fuel quantity ( 20, 21, 22, 23 & 24 
mg/stroke/ 12°BTDC) on cranking period with 60% CGR  and 50% BF 

valve close during cold start. T amb:16 °C. 
 

Figure 3.10.b - Effect of different fuel quantity ( 20, 21, 22, 23 & 24 
mg/stroke/ 12°BTDC) on HC with 60% CGR and 50% BF v alve close 

during cold start. T amb:16 °C. 
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CHAPTER 4 

SIMULATION RESULTS AND DISCUSSIONS 

4.1 Introduction 

In order to understand the behavior of recirculated gases, two approaches are 

taken to simulate the effect of adding hydrocarbons species and formaldehyde 

(HCHO) gases to the fresh charge on the ignition delay and combustion during 

starting of the DIATA direct injection diesel engine. In the first one the charge is 

heterogeneous and homogeneous in the second one. The study has been 

carried at different equivalence ratios and concentrations.  

Table 4.1 shows the specifications of the DIATA diesel engine. 

Table 4.1 – DIATA engine specifications:  

No. of Cylinders 4 
Working Cycle Four Stroke Diesel 
Firing Order 1-3-4-2 
No. of Valves 16 
Displacement 1.2 liters 
Bore x Stroke 70 x 78 mm 
Max BMEP 16 Bar 
Compression Ratio 19.5 : 1 
Fuel system Direct Injected Common 
Air system Inter cooled, EGR, VGT 
Configuration Injectors centered 
Piston Bowl Shape Mexican Hat 
Number of Spray Holes 6 
Spray Hole Diameter (mm) 0.124 
Cone Angle 150° 
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4.2 Heterogeneous Charge  

A preliminary study of the effect of some HCs species and HCHO with different 

mole fractions on ignition delay at 25 mg/stroke has been investigated using a 

CFD code combined with a chemical kinetic model. This cycle simulation is 

closer to the real engine conditions than the model which will be explained in the 

next section of this dissertation.  The CFD model using STAR-CD’s pro-STAR 

and es-ice coupled with chemical kinetics model using DARS-CFD is used in the 

cycle simulation of DIATA engine. The Mexican hat bowl shape, no swirl and the 

6 holes injector with 0.124mm hole diameter and 150 degrees cone angle were 

taken into consideration as mentioned in table 4.1. 

“es-ice” is designed to facilitate moving-grid, transient analysis of internal 

combustion engines and is used in conjunction with STAR-CD’s pro-STAR. After 

the model and solution control parameter set-up is completed in pro-STAR, the 

CFD calculations are performed by the STAR solver and the results displayed 

and analyzed via pro-STAR.  

 

 

 

 

 

Pro-STAR 

es-ice DARS-CFD 
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The following assumptions and approaches have been used for the CFD model: 

1- 33 species reduced  n-Heptane mechanism for the chemical kinetic model 

2- No blow-by. 

3- Reitz model for droplet break-up 

4- Bai model for droplet-wall interaction 

5- Huh model for atomization 

6- The temperatures of the combustion dome regions, piston crown regions 

and cylinder wall regions are assumed constants  

4.2.1 Effect of adding three different concentratio ns of HCHO to the intake 

charge on ignition delay at 25 mg/stroke fuel injec ted using CFD 

simulation.  

Three different HCHO concentrations have been studied. Figure 4.1 shows the 

retarding effect on autoignition from 8 CAD to 20 CAD caused by increasing the 

HCHO concentration from 0 to 150. The increase in ignition delay can help in 

explaining the longer cranking period that happens with increasing the CGR%. 
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Figure 4.1- Effect of adding HCHO on ignition delay  at 25 mg/stroke 

injection. 

4.2.2 Effect of adding different HCs with different  concentrations to the 

intake charge on ignition delay at 25 mg/stroke fue l injected using CFD 

simulation.  

Also some HCs species have been added to check their effects on ignition delay. 

Since each run takes from seven to ten days using two processors computer, a 

few cycle simulations were conducted to show the effects of different 

hydrocarbons on ID.  

Table 4.2 shows that adding CH2 has an enhancing effect on the autoignition 

process.  The ignition delay decreases from 8 to 6 CAD as the CH2 mole fraction 

increases from 0 to 150 ppm.  Meanwhile C2H4 has a retarding effect on 

autoignition where ID increased by 2 CAD as its mole fraction increased from 0 

to 150 ppm. 

The results of adding C3H4, given in table 4.3, show adding 150 ppm to 1000 

ppm of C3H4 has no effect on ignition delay. An additional 500 ppm of C3H4 
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increased ID by three CADs.  Table 3 shows that some of the HCs species have 

no effect on ignition delay at low concentrations but a retarding effect at higher 

concentrations which agrees with the chemical kinetic model explained later in 

this dissertation. 

Tables 4.2 and 4.3 show some HCs species and the effect of increasing their 

mole fractions on ignition delay, knowing that the base line ignition delay without 

any additives is 8 CAD.  

Table 4.2 – Effect of adding 150 ppm HC species  co ncentration on  ignition 

delay. 

HC specie  Ignition Delay with 150 ppm 

No-additives 8 CAD 

CH2 6 CAD 

CH3 7 CAD 

CH4 8 CAD 

C2H4 10 CAD 

C3H6 8 CAD 

C3H7 8.7 CAD 
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Table 4.3 – Effect of adding 150, 1000 and 1500 ppm  HC species  

concentration on  ignition delay.  

The detailed simulation results show that some species have an enhancing effect 

on autoignition while others have a retarding effect.   

Due to the long processing time for each run, switching to faster software is 

necessary. The results of the faster software will be compared with trends found 

in the CFD model. 

4.3 Homogeneous Charge  

A Zero-D model is used in this simulation and does not account for variations in 

thermodynamics properties of the contents of the combustion chamber. The 

model with Chemkin was used just to investigate the chemical kinetic effects of 

HC specie  

Ignition Delay with adding 

0 ppm 150 ppm 1000 ppm 1500 ppm 

C3H4 8 CAD 8 CAD 8 CAD 11 CAD 

C3H5 8 CAD 8 CAD 8 CAD 10 CAD 



69 
 

 

formaldehyde (HCHO) and some HCs species on the autoignition process during 

cold starting of the engine.  

An HCCI model with DIATA dimensions is used for this simulation, assuming that 

all the fuel is injected in a vapor form.  Woschni correlation is used for the heat 

transfer calculations with the walls at 300K.  N-Heptane is used as the fuel and 

its widely accepted autoignition mechanism is applied [62]. During compression 

at 12° BTDC, n-heptane and HCHO are instantaneously added in an idealized 

injection, evaporation and mixing process.  The gas kinetics calculations start at 

a cylinder gas pressure of 28 bar and temperature of 617K.  The engine speed is 

kept at 200 rpm. 

Clearly, such a model overlooks wall temperature distribution, spray evaporation, 

and the kinetic effects of fuel components other than n-heptane. Results from 

such a model may not reasonably be used to simulate conditions inside an 

engine. Nevertheless, the model provides useful insight to the effect of some 

HCs species and formaldehyde on autoignition and combustion and help in 

explaining some of the observations made during the cold start experiments in 

which the CGR (Cranking Gases Recirculation) technique was applied.  

The calculation domain covered three equivalence ratios 0.8, 1.0 and 1.2 and a 

range of 0 to 900 ppm of the HCs and the HCHO species. 
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4.3.1 Effect of adding 0 to 900 ppm HCHO to the int ake charge on ignition 

delay using Chemkin at different equivalence ratios .  

The simulation covered a wide range of formaldehyde concentrations and their 

effects on the ignition delay at different equivalence ratios (0.8, 1 and 1.2) at 200 

rpm were determined. 

Figure 4.2 shows the effect of different equivalence (0.8, 1.0 and 1.2) ratios on 

ignition delay while adding different amounts of HCHO to the intake charge. It is 

obvious that for the same amount of HCHO added, the ignition delay increases 

as the equivalence ratio increases.   

 

 

 

 

 

Figure 4.2.a - Gas pressure vs CAD at different equ ivalence ratios (0.8, 1.0 

and 1.2) without adding HCHO. 

The longer ignition delay trend is consistent while increasing the HCHO 

concentration to 100 ppm to the intake charge as shown in figure 4.2.b. As the 

equivalence ratio increases the ignition delay increases. Also by comparing 
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figure 4.2.b with 4.2.a it can be noticed that for the same equivalence ratio, the 

ignition delay increases as the amount of HCHO increases. 

 

 

 

 

 

Figure 4.2.b - Gas pressure vs CAD at different equ ivalence ratios (0.8, 1.0 

and 1.2) with adding 100ppm HCHO. 

Figure 4.2.c shows that by increasing the HCHO up top 250, the combustion 

failed at equivalence ratio of 1.2. By increasing the amount of HCHO more to 300 

ppm, the combustion failed at equivalence ratio of 1.0 as shown in figure 4.2.d.   

 

 

 

 

Figure 4.2.c - Gas pressure vs CAD at different equ ivalence ratios (0.8, 1.0 

and 1.2) with adding 250ppm HCHO. 
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Figure 4.2.d - Gas pressure vs CAD at different equ ivalence ratios (0.8, 1.0 

and 1.2) with adding 300ppm HCHO. 

And finally the combustion failed at all equivalence ratios when the HCHO 

concentration reached 350 ppm as shown in figure 4.3. 

 

 

 

 

 

Figure 4.3 - Gas pressure vs CAD at different equiv alence ratios (0.8, 1.0 

and 1.2) with adding 350ppm HCHO. 
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Figure 4.4 - Effect of adding HCHO on ignition dela y at equivalence ratios 

of 0.8, 1.0 and 1.2. 

Figure 4.4 shows the interrelationship between the equivalence ratio and HCHO 

mole fraction and their combined effect on the ignition delay period. At any 

HCHO mole fraction, increasing the equivalence ratio from 0.8 to1.2 increases 

the ignition delay period. At richer mixtures, misfiring occurs because combustion 

starts late in the expansion stroke. It is interesting to notice that leaner mixtures 

tolerate higher mole fractions of HCHO before misfiring takes place. It can be 

concluded from figure 4.4 that there is a trade off between the amount of HCHO 

added, which represent the rates of CGR, and fuel injection for minimum ignition 

delay. 

The above results suggest that autoignition reactions are affected by the mole 

fractions of both the fuel vapor and aldehydes in the recirculated gases during 

cranking.    This explains the trend shown in figure 6 where ID decreased as the 

Misfiring  

Zone 
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fuel delivery increased from 20 mg/stroke to 22 mg/stroke, after which ID 

increased again with fuel delivery of 23 mg/stroke. 

4.3.2 Effect of adding 0 to 900 ppm of different sp ecies of HCs to the intake 

charge on ignition delay at different equivalence r atios.  

The effects of the following HCs species on ignition delay have been studied. 

The HCs species are: C2H, C2H2, C2H3, C2H4, C2H5, C2H6, C3H2, C3H3, 

C3H6, C3H8, C4H10, C4H6, CH2, CH3, CH4 and C3H7. 

Depending on the HCs species mole fractions, their effects on ignition delay can 

be categorized into 3 categories. First category contains HCs species that have 

enhancing effect on autoignition.  Second category contains HCs species that 

have retarding effect on autignition. While the third category contains HCs 

species that have no effect on ignition delay. 

Figure 4.5 shows the effect of increasing the mole fraction of C3H6 on the 

ignition delay.  Increasing the C3H6 mole fraction from 0 to 400 ppm, caused the 

ignition delay to decrease from 25 CAD to 21 CAD at equivalence ratio of 1. A 

further increase to 900 ppm had no effect on the ignition delay at the three 

equivalence ratios.   Also, the increase in equivalence ratio at any mole fraction 

of C3H6   causes ignition delay to increase. For instance the ignition delay 

increases from 20.5 to 22.5 as the equivalence ratio increases from 0.8 to 1.2 at 

300 ppm C3H6.  This might explain the experimental observations described 

earlier about the effect of low rates of CGR on reducing the cranking period by 

enhancing the autoignition reactions.   At the same time, the longer cranking 
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periods observed  at higher rates of CGR could be explained by the higher mole 

fractions of species such as C3H6 introduced at the higher rates of CGR.  

 

 

 

 

Figure 4.5 - Effect of adding C3H6 on ignition dela y at equivalence ratios of 

0.8, 1.0 and 1.2. 

Figure 4.6 shows the effect of adding C2H6 on the ignition delay. The ignition 

delay increases from 25 CAD to 30 CAD as C2H6 increased from 0 to 900 ppm 

at equivalence ratio of 1.  Also it can be noticed that alt lower concentrations, 

down to 300 ppm, there is no effect on ignition delay which can explain the 

experimental observation about the increase in the cranking period at the high 

flow rates of GCR.  Figure 4.6 shows the increase in the equivalence ratio from 

0.8 to 1.2 at any mole fraction of C3H6 increases the ignition delay period.  
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Figure 4.6 - Effect of adding C2H6 on ignition dela y at equivalence ratios of 

0.8, 1.0 and 1.2. 

The results of adding C2H5, given in figure 4.7, show adding 100 ppm C2H5 

reduced ID from 25 CAD to 11 CAD.  An additional 100 ppm of C2H6 reduced ID   

by two CADs.  Further increase in C3H6 has no effect on ID. Figure 4.7 shows 

that changing the equivalence ratio from 0.8 to 1.2 has a very minimal effect or 

almost no effect on ignition delay. 

 

 

 

 

 

Figure 4.7 - Effect of adding C2H5 on ignition dela y at equivalence ratios of 

0.8, 1.0 and 1.2. 
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The effect of adding   the following hydrocarbon species to the charge is shown 

in figure 4.8 at three equivalence ratios:  C2H, C2H2, C2H3, C3H2, C3H3, CH2, 

CH3 and C3H7.    It is noticed that these hydrocarbons enhance the autoignition 

reactions as evidenced for the shorter ID periods 

Figure 4.9 shows the retarding effect and no effect on ignition delay of the 

following hydrocarbons at three equivalence ratios: C2H4, C3H8, C4H10, C4H6 

and CH4.   

The simulation results indicate that autoignition reactions are affected by the 

mole fractions of both the fuel vapor and aldehydes in the recirculated gases 

during cranking. At low concentrations the enhancing effect of HCs on ignition 

delay dominate over the retarding effect. But at higher concentrations most of the 

HCs species had no effect on ID, but some hydrocarbons slow down the 

autoignition reactions and increase ID.   This in addition to the retarding effect of 

HCHO would have an impact on the autoignition reactions during the cranking 

period.  

The simulation results explain the effect of increasing the equivalence ratio on 

the ignition delay period and the effect of injecting large amounts of fuels during 

cranking. 
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Figure 4.8 - Effect of adding C2H, C2H2, C2H3, C3H2 , C3H3, CH2, CH3 and 

C3H7 on ignition delay at equivalence  ratios of 0.8, 1.0 and 1.2. 
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Figure 4.9 - Effect of adding C2H4, C3H8, C4H10, C4 H6 and CH4 on ignition 

delay at equivalence ratios of 0.8, 1.0 and 1.2. 

The results of the two levels of sophistication in diesel cycle simulation can 

explain the following experimental observations: a) at low species concentrations 
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which means low CGR% the enhancing effect on autoignition dominates and b) a 

higher species concentrations which means at higher CGR%, the retarding effect 

on autoignition dominates. This explains the trend shown in figure 5 where ID 

decreased as the CGR opening % increased from 0% to 20%, after which ID 

increased again with CGR opening percentage 40% and up. 

4.4 Investigation of Ignition Delay. 

The aim of this study is to a- determine the effect of temperature on ignition 

delay, b- determine the species that affect combustion the most, c- develop a 

new technique to determine if the engine will fire or misfire in a certain cycle, 

based on the concentration of some species at a certain time, d- investigation of 

the effect of added species to the intake on ignition delay and check the 

applicability of this new technique on it.  

4.4.1 Effect of temperature on ignition delay. 

During cold start of diesel engine, the temperature is one of the most important 

factors affecting the ignition delay. Figure 4.10 shows the pressure traces versus 

time as the cylinder gas temperatures at SOI at -12 BTDC decreased from 346 

°C to 342 °C. It is  obvious that the ignition delay increased as the temperature 

decreased till the engine misfired at 343 °C. 
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Figure 4.10 – Effect of different cylinder gas temp eratures at SOI on ignition 

delay  

4.4.2 Species that affect the start of combustion. 

By examining the species that affect the start of combustion, two species were 

found to play a major role in whether the engine will fire or misfire.  These 

species are H2O2 and HCHO.  Figure 4.11.a and 4.11.b show the mole fractions 

of these two species at 344°C at 343°C respectively. By comparing figure 4.11.a 

and 4.11.b, it is clear that OH only appeared at 344 when the engine fired.  It can 

also be noticed that in case of firing, H2O2 reached a much higher mole fractions 

earlier than in the case of misfiring. In the firing cycle, HCHO increased to a level 

higher than in the misfiring cycle, but decayed very quickly as H2O2 started to 

increase. In the firing cycle, as HCHO started to drop down to zero level, H2O2 

dropped but OH started to rise at sharp rate.  This is not the case in the misfiring 
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cycle, where HCHO reached a high level plateau while H2O2 increased at a very 

slow rate without forming OH as explained earlier. 

 

 

 

 

 

 

 

 

 

Figure 4.11.a – In-Cylinder pressure and the corres ponding H2O2, HCHO, 

OH vs time at SOI temperature of 344 °C 

 

 

 

 

 

 

 

 

 Figure 4.11.b – In-Cylinder pressure and the corres ponding H2O2, HCHO, 

OH vs time at starting temperature of 343 °C  
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The study of the H2O2 was necessary to show its variation with the cylinder gas   

temperature at SOI.   

a) At 344°C SOI temperature: 

Using Chemkin reaction path analyzer, it was observed that the reaction 

most responsible for the production of H2O2 is H2O2+O2 <==> 2HO2, as shown 

in figure 4.12. The overall reaction moves in the backward direction to produce 

H2O2.  

Figure 4.12 – Absolute rate of the reaction of H2O2  at starting 

temperature of 344 °C  

The calculated values of the rate of the reaction for this reaction at times 0.015 

seconds, 0.01750 second and 0.01875 second are tabulated below. It should be 

noted that at 344C SOI temperature, combustion occurs at 0.01875 second. 
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Reaction : H2O2 + O2 <==> 2HO2 
Rate of Forward 

Reaction 
Rate of Backward 

Reaction 

Absolute 
Rate of 

Production 
of H2O2 

Starting 
Temperature 

Time Rf = Kf [ H2O2] * [O2] Rb = 2 Kb *[HO2]^2 Rb-Rf 

344 C 
0.015 sec 2.76E-14 2.21E-07 2.21E-07 

0.0175 sec 1.68E-13 3.92E-06 3.92E-06 
0.01875 sec 8.51E-13 1.63E-05 1.63E-05 

 

b) At 343.5° C SOI temperature: 

Considering the reaction H2O2+O2 <==> 2HO2, the calculated values of 

the rate of the reaction for this reaction at time 0.015second, 0.01750 second, 

0.01875 second and 0.02125 second are tabulated below. At SOI temperature of 

343.5C combustion occurs at 0.02125 second. 

 

Reaction : H2O2 + O2 <==> 2HO2 Rate of Forward 
Reaction 

Rate of Backward 
Reaction 

Absolute Rate of 
Production of 

H2O2 

Starting 
Temperature 

Time Rf = Kf [ H2O2] * [O2] Rb = 2 Kb *[HO2]^2 Rb-Rf 

343.5 C 

0.015 seconds 2.19E-14 1.65E-07 1.65E-07 

0.0175 seconds 8.00E-14 1.92E-06 1.92E-06 

0.01875 seconds 2.21E-13 5.30E-06 5.30E-06 

0.02125 seconds 5.98526E-12 8.06692E-05 8.0662E-05 

 

c) At 343° C SOI Temperature 

Considering the reaction H2O2+O2 <==> 2HO2, the calculated values of 

the rate of the reaction for this reaction at time 0.015 second, 0.01750 second, 

0.01875 second, 0.02125 second and 0.03 second are tabulated below. At 343° 

C SOI temperature, the engine does not fire.  
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Reaction : H2O2 + O2 <==> 2HO2 Rate of Forward 
Reaction 

Rate of Backward 
Reaction 

Absolute 
Rate of 

Production 
of H2O2 

Intake 
Temperature Time Rf = Kf [ H2O2] * 

[O2] Rb = 2 Kb *[HO2]^2 Rb-Rf 

343 

0.015 seconds 1.74856E-14 1.29222E-07 1.29E-07 

0.0175 seconds 4.22392E-14 9.61431E-07 9.61E-07 

0.01875 seconds 8.16253E-14 2.22266E-06 2.22E-06 

0.02125 seconds 2.20992E-13 5.22401E-06 5.22E-06 

0.03 seconds 4.60626E-14 1.18055E-06 1.18E-06 

 

The change in temperature with time is shown in the figure 4.13.a. It is 

evident that the rise in temperature due to combustion is earlier as the SOI 

temperature is increased. 

 Figure 4.13.a -Temperature vs time at different SOI  temperatures. 

The change in pressure with time is shown in figure 4.13.b. It is evident 

that the rise in pressure due to combustion is earlier as the SOI temperature is 

increased. 
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Figure 4.13.b - Pressure vs time at different SOI t emperatures. 

 

4.4.3 A new parameter to indicate if firing will oc cur in a cycle based on the 

ratio between HCHO and H2O2 mole fractions. 

By taking a close look on these two species, it was found that the ratio of HCHO 

to H2O2 with the corresponding piston position is a parameter that can indicate 

whether the engine will fire or misfire. Figure 4.14 shows the pressure trace with 

the corresponding HCHO to H2O2 ratio at 344 °C when the engine fired.  Figure 

4.15 shows the ratio at 343 °C when the engine misfir ed.  
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Pressure and HCHO/H2O2 vs Time
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Figure 4.14 – In-Cylinder pressure and the correspo nding HCHO/H2O2 vs 

time at SOI temperature of 344 °C  

Figure 4.15 – In-Cylinder pressure and the correspo nding HCHO/H2O2 vs 

time at SOI temperature of 343 °C  
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HCHO/H2O2 vs Starting temperatures
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It is clear that the ratio of HCHO to H2O2 is higher in the case of misfiring and 

lower in the case of firing. For instance, at time 0.02 sec the ratio of HCHO to 

H2O2 is 115.29 in the case of misfiring at 343 °C and the ratio is 20 in the case 

of firing at 344 °C. By applying the same concept, it w as found that as the 

temperature decreased from 344°C to 343°C, the igniti on delay increased and 

the ratio of HCHO to H2O2 increased as shown in figure 4.16 for time 0.02 s. 

The same trend is observed at different times. 

Figure 4.16 – Comparison between the HCHO/H2O2 at d ifferent SOI 

temperatures varying from 343 °C to 344 °C  

4.4.4 Effect of adding hydrocarbon species on ignit ion delay and applying 

the HCHO/H2O2 parameter to indicate if firing will occur. 

For this investigation, two species Propane (C3H8) and Propene (C3H6) were 

chosen as two different cases as both these species were found to have opposite 

effects on ignition delay. This study was also based on the ratio of HCHO to 

H2O2 as discussed in section 4.4.3. 
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Pressre and HCHO/H2O2 vs Time at 0 ppm C3H6 Addition and Temp of 344 C
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4.4.4.1 Effect of adding Propene (C3H6) on ID  

It is observed that with the increase in mole fraction of C3H6 addition, the 

ratio of HCHO to H2O2 parameter decreases along with a reduction in the 

ignition delay as shown in figure 4.17.a and 4.17.b. 

 Figure 4.17.a - HCHO/H2O2 vs time without C3H6 addi tion. 

 

 

 

 

Pressure and HCHO/H2O2 vs Time at 0 ppm C3H6 Addition and Temp of 344 C 
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Pressre and HCHO/H2O2 vs Time at 600 ppm C3H6 Addition and Temp of 344 C
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HCHO/H2O2 vs Time at Different C3H6 Addition at 344  C
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 Figure 4.17.b - HCHO/H2O2 vs time with the addition  of 600 ppm C3H6  

Figure 4.18 shows the change in HCHO to H2O2 ratio with the addition of   

different Propene mole fractions.  It can be noticed that the higher C3H6 addition, 

the lower HCHO/H2O2 at a certain time. 

 

Figure 4.18 - Ratio of HCHO to H2O2 vs time at diff erent C3H6 addition.  
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4.4.4.2 Effect of adding Propane (C3H8) on ID 

From figure 4.19 and referring to figure 4.9 (C3H8 addition), it was evident 

that the addition of propane increases the ignition delay. With Zero ppm of 

propane, the ignition started at about 10.5 CAD ATDC. Increasing propane to 

300ppm did not have a noticeable effect on ignition delay.  At 400 ppm of 

propane addition, the ignition was retarded by 1.5 CAD. With 600ppm for 

propane addition, the ignition was further retarded by 1.5 CAD.  Adding 900 ppm 

and higher ppm of propane caused the engine to misfire.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 - Effect of Propane addition on Ignitio n Delay at 

Equivalence Ratio 1.0 
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Pressre and HCHO/H2O2 vs Time at 0 ppm C3H8 Addition and Temp of 344 C
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Considering the ratio between HCHO and H2O2, figure 4.20.a, figure 4.20.b and 

figure 4.20.c show an increase in ratio of HCHO to H2O2 with the increase in the 

propane mole fraction. This follows the trend described in the case of propane 

addition and explains the increase in ignition delay observed in figure 4.9. 

Figure 4.20.a - Ratio of HCHO to H2O2 vs time at 0 ppm C3H8 

addition. 
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Pressre and HCHO/H2O2 vs Time at 0 ppm C3H8 Addition and Temp of 344 C
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Pressre and HCHO/H2O2 vs Time at 1000 ppm C3H8 Addition and Temp of 344 C
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Figure 4.20.b - Ratio of HCHO to H2O2 vs time at 60 0 ppm C3H8 

addition. 

Figure 4.20.c - Ratio of HCHO to H2O2 vs time at 10 00 ppm C3H8 

addition. 

Pressure and HCHO/H2O2 vs  Time at 600 ppm C3H8 Addition and Temp of 344  C 
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4.4.5 Summary and conclusions 

The above investigation indicates that the HCHO to H2O2 ratio is a useful 

parameter to predict whether the engine will fire or misfire.  By analyzing the data 

of hundreds runs at different temperatures and mole fractions of added species it 

was found that the ratio of HCHO to H2O2 can be a useful parameter to detect if 

firing will occur.  This parameter varies with time (or CAD) after injection. Figure 

4.21 shows the firing and misfiring zones at different times with the 

corresponding CAD. The area above the curve represents the misfiring zone and 

the area below the curve represents the firing zone. 

 

 

 

 

 

 

 

 

 

Figure 4.21 – Firing and Misfiring zones based on [H CHO / H2O2] 

parameter. 

It should be noted that the HCHO/H2O2 ratio increases after the SOI, reaches a 

peak value, and drops back, whether the engine is firing or misfiring.   The 

analysis of many cycles indicated that the engine never fires when the rate of 
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formation of HCHO is higher than the rate of formation of H2O2, causing their 

ratio to increase till it reaches the peak.  Accordingly, the curve in figure 4.21 

applies only to the time (CAD) when HCHO/H2O2 drops after its peak. 

 4.4.5.1 Check the applicability of firing and misf iring zones of 

HCHO/H2O2 graph on the cases of different concentra tions of 

formaldehyde addition. 

 a) Without HCHO addition when the engine fired. 

Pressure and HCHO/H2O2 vs time at zero ppm HCHO Addition @ 344 ˚C.
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Figure 4.22 - Ratio of HCHO to H2O2 vs time at 0 pp m HCHO addition.  

Figure 4.22 shows the HCHO/H2O2 and the pressure curve versus time in case 

of no formaldehyde addition.  

For example: The value of HCHO/H2O2 at time 0.01875 is 88.8, this value is 

located in the firing zone of graph 4.21. 
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b) With 300 ppm HCHO addition when the engine fired. 

Pressure and HCHO/H2O2 vs time at 300 ppm HCHO Addition @ 344 ˚C.
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Figure 4.23 - Ratio of HCHO to H2O2 vs time at 300 ppm HCHO addition.  

 

Figure 4.23 shows the HCHO/H2O2 ratio and the pressure trace versus time in 

case of 300 ppm formaldehyde addition.  

The value of HCHO/H2O2 at time 0.02 is 103, which is located in the firing zone 

of graph 4.21 indicating engine firing 
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 c) With 500 ppm HCHO addition when the engine misfired. 

Pressure and HCHO/H2O2 vs time at 500 ppm HCHO Addition @ 344 ˚C.
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Figure 4.24 - Ratio of HCHO to H2O2 vs time at 500 ppm HCHO addition.  

 

Figure 4.24 shows the HCHO/H2O2 ratio and the pressure trace versus time in 

case of 500 ppm formaldehyde addition.  

The value of HCHO/H2O2 at time 0.0175 is 186, which is located in the misfiring 

zone of graph 4.21 indicating engine misfire. 

From the above three cases, it can be concluded that the firing and misfiring 

zones of HCHO/H2O2 shown in figure 4.21 can be applied to a wide range to 

predict if the engine will fire or misfire.  
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4.5 Reaction Path Analysis for OH Formation and Ign ition Delay with 

Formaldehyde addition: 

This study was conducted to determine the effect of formaldehyde addition on 

the ignition delay. Ignition delay is defined as the time from the start of injection 

to the start of combustion. During the cold start of a diesel engine, ignition delay 

becomes a critical parameter in determining whether the engine will fire and 

accelerate to the idling speed or fail to start. Based on how low the ambient 

temperatures are, the engine take different cranking periods during the cold start 

to fire stably. During these cranking cycles, engine may misfire or completely fail 

to start. The exhaust at this stage mainly consists of fuel vapor and partially 

oxidized products such as formaldehyde. This leads to the production of white 

smoke emissions in addition to fuel wastage.  Therefore, it is very important to 

understand the effect of different parameters on ignition delay in order to reduce 

the problems associated with start of diesel engines at low ambient 

temperatures.    This work utilizes cycle simulation to investigate the effect of 

formaldehyde content of the recirculated gases on the ignition delay considering  

n-Heptane combustion mechanisms. 

In a mixture of fuel (NC7H16) and air, HCHO was added successively in 

quantities of 100 ppm at each run. The values of pressure and temperature at 

SOI were kept constant at 28 bar and 344° C respectivel y, based on the 

experimental data. The DIATA engine specs are input to the program as shown 

in figure 4.25 
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The studies were conducted using the Chemical Kinetics Simulations by 

Chemkin Pro Release 15092. 

 

 

 

Figure 4.25 - DIATA Engine Specs 

 

It was observed through reaction path analysis that fuel has maximum interaction 

with the OH radical. The rate of the reactions between fuel NC7H16 and the OH 

radical is much higher than the reaction between the fuel and any other species. 

The same is depicted in figure 4.26 below indicated by the length of the colored 

bars representing all OH and NC7H16 reactions. The direction of the colored 

bars representing fuel and OH reactions is towards the left of the reference line 

indicating the OH consumption and thus a forward reaction causing the fuel to 

breakdown to the species NC7H15-1, NC7H15-2, NC7H15-3 and NC7H15-4.    



100 
 

 

Figure 4.26- Reactions involving NC7H16. 

The rate of consumption of the fuel by OH can be described by the following four 

reactions: 

I. NC7H16 + OH <==> NC7H15-1 + H2O 
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II. NC7H16 + OH <==> NC7H15-2 + H2O 
III. NC7H16 + OH <==> NC7H15-3 + H2O 
IV. NC7H16 + OH <==> NC7H15-4 + H2O 

Assuming Kf1, Kf2, Kf3 and Kf4 to be the forward reaction rate constants and 

Kb1, Kb2, Kb3 and Kb4 to be the backward reaction rate constants for  reactions 

I, II, III, IV respectively.  The rate of consumption of fuel by OH radical can be 

given by: 

 

Addition of formaldehyde was parameterized with an increment of 100 ppm in 

each successive run starting from 0 ppm to 1000 ppm. 
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Figure 4.27- Effect of HCHO addition on Ignition De lay at Equivalence Ratio 

1.0 

From Figure 4.27, it is evident that the addition of formaldehyde increases the 

ignition delay. With Zero ppm of formaldehyde, the ignition starts at about 12 

CAD ATDC. With addition of 100 ppm of formaldehyde, start of ignition is not 

greatly affected and combustion starts nears 12CAD ATDC. With the addition of 

another 100 ppm, the ignition is retarded to 13.5 CAD.   Adding another 100 

ppm, to a total of 300 ppm retarded  ignition by 5 CAD to 18CAD ATDC.  At 400 

ppm of formaldehyde,  the engine fails to fire.  
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4.5.1 Investigation of the  delay in ignition cause d by adding  folmaldehyde   

Plots for pressure and OH concentrations are shown in figure 4.28 and figure 

4.29. It is interesting to notice that the rise in pressure due to combustion is 

accompanied by the rise in OH concentration. The plot below shows that OH 

concentration follows almost the exact pattern of the pressure. 

 

Figure 4.28 - In-cylinder Pressure and OH mole frac tions at different HCHO 

concentrations versus CAD 

Pressure & OH Mole Fraction vs CAD with 
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Figure 4.29 - In-cylinder Pressure and OH mole frac tions at different HCHO 

concentrations versus Time 

From figures 4.28 and 4.29, it can be concluded that addition of formaldehyde 

has a direct effect on OH formation. Since OH is a main contributor to the start of 

combustion, the effects of formldehyde on OH formation needs to be examined.  

Considering two cases, no formaldehyde added in the first case while 200 ppm 

formaldehyde added in the second case.  The comparison of these two different 

conditions can help in understanding the effect of adding HCHO in retarding the 

ignition process..  

 

 

Pressure & OH Mole Fraction vs Time with 
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4.5.2 Investigation using Reaction Path Analysis: 

In any detailed chemistry model, understanding of the dominant reaction paths 

can be helpful in the analysis  of the kinetic model results. 

Applying the CHEMKIN-PRO Reaction Path Analyzer (RPA) to the results 

provides a visual representation of the reaction paths that form or deplete 

chemical species. 

There are many interactive visualization options within the RPA that allow to drill 

down into the information provided. Reaction path analysis can be used to look in  

the reactions involving a species at a particular interval of time.  

This approach is used in this work, recognizing the effect on the reaction 

occurrence of the addition of 200 ppm HCHO.  The study was performed at time 

intervals 0.01750 sec, 0.018750 sec and 0.020 sec from the start of injection of  

NC7H16. Using reaction path analysis, the process was studied in details. 

Simulation results indicated that combustion occurred at 0.01875 seconds. 

Therefore, the time intervals were selected as one before and one after 0.01875 

second. 

The objective  was to compare between the reactions with and without HCHO  at 

two times.  

The comparison between the two cases shows a bright picture of  the kinetics of 

the reactions. Although, most of the reactions were common for both cases, the 

rates of the reactions were different at the given interval of time for the case 
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without formaldehyde and the case with 200 ppm formaldehyde. The formation or 

consumption of the species are explained in the following sections. 

4.5.2.1 At 0.01750 seconds: 

Figure 4.30.a shows the rate of formation of OH at 0.01750 seconds with 

zero and 200 ppm HCHO while figure 4.30.b gives the comparison by 

superposition for the two cases of HCHO addition.  According to Chemkin code 

the most important reactions for OH are as follows:   

• CH2CHO + 02 ==> CH2O + CO + OH    ------  (a) 

• CH2O + OH <==> HCO + H2O               ------  (b) 

• HOCH2O <==> CH2O + OH                   ------  (c) 
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Figure 4.30.a - Rate of formation of OH at 0.01750 seconds with zero and 

200ppm HCHO 

Color code was used in order to easily identify the reactions involving a particular 

species. The color black was chosen for the reactions involving no formaldehyde 

addition and blue for reactions involving 200ppm formaldehyde addition. Within 
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this black and blue color code, the color red was chosen to easily identify the 

reactions involving the specie CH2CHO and the color green to identify the 

reactions involving HCHO for both the cases. In any diagram, the colored bars 

towards the left of the reference line indicate the reactions involved in 

consumption of a specie while those towards right of the reference line indicate 

the reactions involved in production of that specie.    

For the diagram involving the superposition of the two cases, the color code blue 

for the reactions involving 200ppm formaldehyde addition was changed to pink in 

order to show a better recognizable difference among the length of the colored 

bars for both the cases. Larger the length of the colored bars towards left of the 

reference line, more is the absolute rate of consumption of the OH radical 

whereas larger the length of the color bars towards right of the reference line, 

more is the absolute rate of production of OH by any given reaction.
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Figure 4.30.b - Comparison using superposition betw een the rate of 

formation of OH at 0.01750 seconds with zero and 20 0ppm HCHO 
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The change in temperature in two cases is shown in the tabular format below.  

Time  Temperature (K) at 0  ppm HCHO  Temperature (K) at 200  ppm  HCHO  

0.0175 648.53 K 642.92 K 

 

With the addition of Formaldehyde, both the compression pressure and the 

compression temperature decreases as a result of higher specific heat. This later 

explains why the temperature at a specific time with formaldehyde addition is 

lower than the temperature without formaldehyde addition. Figure 4.31 depicts 

the reduction in pressure and temperature with the formaldehyde addition. 

 

 

Figure 4.31  – Effect of HCHO addition on the pressure and tempe rature 
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Temperature at start of combustion for no formaldehyde addition, i.e. at 0.01875 

seconds is 658K whereas the temperature at start of combustion for 200ppm 

formaldehyde addition, i.e. at 0.02125 seconds is 663K. 

 

The reaction (a), CH2CHO + 02 ==> CH2O + CO + OH, goes only in forward 

direction. This forward reaction favors the formation of OH. By considering the 

rate of the reaction for both the cases, the following rate of formation of OH is 

obtained through this reaction. 

Time 

At 0 ppm HCHO and 0.0175 seconds; 

Rf :  CH2CHO + 02 ==> CH2O + CO + OH 

At 200 ppm HCHO and 0.0175 seconds; 

Rf :  CH2CHO + 02 ==> CH2O + CO + OH 

0.0175 1.94E-05 units 1.06E-05 units 

The value for the rate of the reaction can also be calculated using the species 

concentrations and the Arrhenius equation. The value of the reaction rate 

constant K can be calculated using the Arrhenius Equation as follows: 

 

The values of the constants A, n and E can be obtained from the mechanism file 

available online at Lawrence Livermore National Laboratory website.  

Considering the reaction CH2CHO + O2  ==> CH2O + CO + OH , the values of 

A, n, and E for the forward reaction are tabulated below. The value of Kf for the 

above reaction calculated at 0.0175 seconds is 6.95E08 cubic cm/ mol sec. The 

temperature value considered for the calculations is 648.53 K. 
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Reaction A n E 

CH2CHO + O2  ==> CH2O + CO + OH 8.95E+13 -0.6 10120 

 

The mole fraction of CH2CHO and O2 can be obtained from the Chemkin data 

export option.  The values for mole fraction of CH2CHO and O2 at the time 

interval 0.01750 seconds with no formaldehyde addition is shown in the table 

below.  

Time Species  Mole Fraction 

0.0175 
CH3CHO 3.70E-07 

O2 2.04E-01 

 

The value for the concentration of a species can be obtained by multiplying its 

mole fraction with the total concentration. The total concentration can be 

calculated as: 

 

 where [i] is the total concentration, P is the Pressure and T is the temperature. 

Considering the value of pressure and temperature at 0.0175 seconds, the total 

concentration is calculated as 5.99 E-04 mol/cubic cm.   

  

The rate of reaction is calculated as Rf = Kf [CH2CHO] [O2]. The calculated 

value of Rf equals 1.9E-06 mol/cubic cm sec. This value is in accordance with 

the value obtained from the Chemkin Reaction Path Analyzer.  

Time Species  Concentration (mol/cubic cm) 

0.0175 
CH3CHO 2.16E-10 

O2 1.22E-04 
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Considering the same reaction for the case of 200ppm formaldehyde addition, 

the values of A, n and E remains the same but he temperature changes to 

642.92 K. Following the calculations performed in the case of no formaldehyde 

addition, the rate of the forward reaction CH2CHO + O2 => CH2O + CO + OH is 

calculated as 1.03E-06 which is very close to the value obtained from the RPA. 

The above results were obtained from Reaction Path Analyzer. It is evident that 

the rate of formation of OH with HCHO is lower than without HCHO.  

Now considering reaction (b), CH2O + OH <==> HCO + H2O, the forward 

reaction decreases the amount of OH formed and the backward reaction favors 

the OH formation.  Therefore from equation (b), the rate of formation of OH can 

be described as  

  

From the equation above, it is evident that any increase in the quantity of 

formaldehyde will decrease the rate of formation of OH. Hence, the formation of 

OH is lower in the case of formaldehyde addition. The rates of reactions obtained 

from Reaction Path analysis are:  

 

Time 
At 0 ppm HCHO and 0.0175 seconds; At 200 ppm HCHO and 0.0175 seconds; 

 Rf :   CH2O + OH <==> HCO + H2O  Rf :  CH2O + OH <==> HCO + H2O 

0.0175 9.74E-06 mol/cubic cm 5.56E-06 mol/cubic cm  
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Time 
At 0 ppm HCHO and 0.0175 seconds; At 200 ppm HCHO and 0.0175 seconds; 

 Rb :   CH2O + OH <==> HCO + H2O  Rb :  CH2O + OH <==> HCO + H2O 

0.0175 -2.22E-18 mol/cubic cm -7.03E-19 mol/cubic cm 

The values for reaction rate constants were calculated:  

Time 
At 0 ppm HCHO and 0.0175 seconds; At 200 ppm HCHO and 0.0175 seconds; 

 Kf :   CH2O + OH <==> HCO + H2O  Kf :  CH2O + OH <==> HCO + H2O 

0.0175 6.81501E+12 6.76752E+12 

   

Time 
At 0 ppm HCHO and 0.0175 seconds; At 200 ppm HCHO and 0.0175 seconds; 

 Kb :   CH2O + OH <==> HCO + H2O  Kb :  CH2O + OH <==> HCO + H2O 

0.0175 92.03468997 74.3782223 

From the table above, it is quite evident that the rate of forward reaction for 0 

ppm formaldehyde is higher than the rate of forward reaction with 200 ppm 

formaldehyde. The rates of backward reaction are very small for comparison.  

Now with the formaldehyde addition, the mass average temperature dropped to 

643K from 648K. This drop in temperature caused a change in the value of 

reaction rate constant K.  

 Now considering reaction (c), HOCH2O <==> CH2O + OH, the forward reaction 

favors the OH formation while the backward reaction reduces the OH 

concentration.  Also, any increase in the quantity of formaldehyde increases the 
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rate of backward reaction. Hence, OH formation is reduced with the presence of 

200 ppm of formaldehyde when compared to 0 ppm formaldehyde. 

From the reaction path analysis: 

Time 
At 0 ppm HCHO and 0.0175 seconds; At 200 ppm HCHO and 0.0175 seconds; 

 Rf :   HOCH2O <==> CH2O + OH  Rf :  HOCH2O <==> CH2O + OH 

0.0175 6.47E-09 mol/cubic cm 3.56E-09 mol/cubic cm 

      

Time 
At 0 ppm HCHO and 0.0175 seconds; At 200 ppm HCHO and 0.0175 seconds; 

 Rb :   HOCH2O <==> CH2O + OH  Rb :  HOCH2O <==> CH2O + OH 

0.0175 -5.21E-06 mol/cubic cm -3.20E-06 mol/cubic cm 

By adding the forward and the backward rate of reactions, the result is still a 

negative number symbolizing that the overall reaction moves in the backward 

direction, i.e. net rate of backward reaction for formaldehyde addition is lower as 

compared to no formaldehyde addition.  (-0.00000520353; -0.00000319644 

respectively, negative sign only symbolizes the backward reaction.).  

 The total OH mole fraction at time 0.01750 seconds is: 

Time Mole_fraction_OH at 0ppm HCHO  Mole_fraction_OH at200ppm HCHO  

0.01750  7.99E-09 5.12E-09 

 

In figure 4.32, solid lines with black color represent reactions with 0 ppm 

formaldehyde, the red and the green solid lines represent reactions with 200 ppm 

formaldehyde addition. Now, with 200 ppm formaldehyde addition, reaction (a) 
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proposes less OH formation, reaction (b) proposes comparatively less OH 

consumption and reaction (c) proposes comparatively less OH consumption.  

 

Figure 4.32 - Comparison of Net rate of OH producti on at zero and 200ppm 

HCHO and by 3 major reactions at 0.01750 seconds 

Since, the net OH mole fraction is lower in case of formaldehyde addition at 

0.01750 seconds, and from the above results, it is evident that the effect of 

reaction (a) is dominating at this time interval.  

4.5.2.2 At 0.01875 seconds: 

Figure 4.33.a shows the rate of formation of OH at 0.018750 seconds with 

zero and 200 ppm HCHO while figure 4.33.b represents the comparison by 

superposition for the two cases  of HCHO addition. There are three main 

reactions involving Formaldehyde and OH. These 3 reactions are: 

• CH2CHO + 02 ==> CH2O + CO + OH    ------  (a) 

• CH2O + OH <==> HCO + H2O                ------  (b) 

• HOCH2O <==> CH2O + OH                    ------  (c) 
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Figure 4.33.a - Rate of formation of OH at 0.018750  seconds with zero and 

200ppm HCHO 
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Figure 4.33.b - Comparison using superposition betw een the rate of 

formation of OH at 0.018750 seconds with zero and 20 0ppm HCHO 
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The reaction (a), CH2CHO + 02 ==> CH2O + CO + OH, goes only in forward 

direction. This forward reaction favors the formation of OH. By considering the 

rate of the reaction for both cases, the following rate of OH formation  is given by 

    Time 
At 0 ppm HCHO and 0.01875 seconds; At 200 ppm HCHO and 0.01875 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + OH Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

0.0185 5.21E-05 1.86E-05 

The above results were obtained from Reaction Path Analyzer. It is quite evident 

that the rate of formation of OH is less in case of formaldehyde addition. 

Considering reaction (b), CH2O + OH <==> HCO + H2O  

The rate of reactions obtained from Reaction Path analysis are :  

Time 
At 0 ppm HCHO and 0.01875 seconds; At 200 ppm HCHO and 0.01875 seconds; 

 Rf :   CH2O + OH <==> HCO + H2O  Rf :  CH2O + OH <==> HCO + H2O 

0.01875 4.98E-05 1.49E-05 

   

Time 
At 0 ppm HCHO and 0.01875 seconds; At 200 ppm HCHO and 0.01875 seconds; 

 Rb :   CH2O + OH <==> HCO + H2O  Rb :  CH2O + OH <==> HCO + H2O 

0.01875 -2.69E-17 -3.15E-18 

 

From the table above, it is quite evident that the rate of forward reaction for 0 

ppm formaldehyde is higher than the rate of forward reaction with 200 ppm 

formaldehyde. The rates of backward reaction are very small for comparison.  

This indicates that rate of the consumption of OH is higher in the case of no 

formaldehyde addition. 
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Now considering reaction (c), HOCH2O <==> CH2O + OH, the forward reaction 

favors the OH formation while the backward reaction red OH concentration.  

Time 
At 0 ppm HCHO and 0.01875 seconds; At 200 ppm HCHO and 0.01875 seconds; 

 Rf :   HOCH2O <==> CH2O + OH  Rf :  HOCH2O <==> CH2O + OH 

0.01875 3.52E-08 9.57E-09 

      

Time 
At 0 ppm HCHO and 0.01875 seconds; At 200 ppm HCHO and 0.01875 seconds; 

 Rb :   HOCH2O <==> CH2O + OH  Rb :  HOCH2O <==> CH2O + OH 

0.01875 -2.95E-05 -8.06E-06 

By adding the forward and the backward rate of reactions, the result is still a 

negative number symbolizing that the overall reaction moves in the backward 

direction, i.e. net rate of backward reaction for formaldehyde addition is lower as 

compared to no formaldehyde addition.  The total OH mole fraction at time 

0.018750 seconds is: 

Time  Mole_frac tion_OH at 0ppm HCHO   Mole_fraction_OH  at 200ppm HCHO  

0.01875  1.65E-08 1.07E-08 

  

Also formaldehyde addition reduces the overall temperature by 14.47C 

Time  Temperature (K) at 0ppm HCHO   Temperature (K) at 200ppm HCHO  

0.01875 658.2793 K 643.8068 K 

In figure 4.34, solid lines with black color represent reactions with 0 ppm 

formaldehyde, the red and the green solid lines represent reactions with 200 ppm 

formaldehyde addition. Now with 200 ppm formaldehyde addition, reaction (a) 
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proposes less OH formation, reaction (b) proposes comparatively less OH 

consumption and reaction (c) proposes lesser OH consumption.  

 

Figure 4.34 - Comparison of Net rate of OH producti on at zero and 200ppm 

HCHO and by 3 major reactions at 0.018750 seconds  

Since, the net OH mole fraction is lower in case of formaldehyde addition at 

0.018750 seconds; it is evident that the effect of reaction (a) is dominating at this 

time interval. 

It is observed from the data that the combustion starts at about 0.01875 seconds 

for 0ppm formaldehyde addition along with the fuel. For any analysis after time 

0.01875 seconds, it should be kept into consideration that ignition has already 

started in case of 0ppm formaldehyde addition. 

4.5.2.3 At 0.0200 Seconds: 

Figure 4.35.a shows the rate of formation of OH at 0.018750 seconds with 

zero and 200ppm HCHO while figure 4.35.b represent the comparison by 

superposition for the two cases  of HCHO addition and it can observed that there 

are three main reactions involving Formaldehyde and OH. These 3 reactions are: 

• CH2CHO + 02 ==> CH2O + CO + OH    ------  (a) 
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• CH2O + OH <==> HCO + H2O                ------  (b) 

• HOCH2O <==> CH2O + OH                    ------  (c) 

 

Figure 4.35.a - Rate of formation of OH at 0.020 se conds with zero and 

200ppm HCHO 
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Figure 4.35.b - Comparison using superposition betw een the rate of 

formation of OH at 0.020 seconds with zero and 200pp m HCHO 
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Again, the reaction (a), CH2CHO + 02 ==> CH2O + CO + OH, goes only in forward direction. This 

forward reaction favors the formation of OH. Comparing the Rate of the Reaction for both the 

cases, the OH formation can be obtained through this reaction. 

    Time 

At 0 ppm HCHO and 0.02 seconds; At 200 ppm HCHO and 0.02 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + 

OH 
Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

0.02 1.77E-03 3.31E-05 

 

The above results were obtained from Reaction Path Analyzer. It is quite evident 

that the rate formation of OH is lower in case of f ormaldehyde addition. 

Now considering reaction (b), CH2O + OH <==> HCO + H2O  

The rate of reaction obtained from Reaction Path analysis are :  

Time 
At 0 ppm HCHO and 0.02 seconds; At 200 ppm HCHO and 0.02 seconds; 

 Rf :   CH2O + OH <==> HCO + H2O  Rf :  CH2O + OH <==> HCO + H2O 

0.02 2.58E-03 3.65E-05 

      

   

Time 
At 0 ppm HCHO and 0.02 seconds; At 200 ppm HCHO and 0.02 seconds; 

 Rb :   CH2O + OH <==> HCO + H2O  Rb :  CH2O + OH <==> HCO + H2O 

0.02 -5.05E-14 -1.4E-17 

 

From the table above, it is quite evident that the rate of forward reaction for 0 

ppm formaldehyde is higher than the rate of forward reaction with 200ppm 
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Formaldehyde. The rates of backward reaction are very small for comparison.  

This indicates that the rate of consumption of OH is higher in the case of no 

Formaldehyde addition. This can be related with higher rate of OH formation by 

reaction (a). 

Now considering reaction (c), HOCH2O <==> CH2O + OH, the forward reaction 

favors the OH formation while the backward reaction reduces the OH 

concentration.  

Time 
At 0 ppm HCHO and 0.02 seconds; At 200 ppm HCHO and 0.02 seconds; 

 Rf :   HOCH2O <==> CH2O + OH  Rf :  HOCH2O <==> CH2O + OH 

0.02 
2.71E-06 mol/cubic cm 2.43E-08 mol/cubic cm 

      

Time 
At 0 ppm HCHO and 0.02 seconds; At 200 ppm HCHO and 0.02 seconds; 

 Rb :   HOCH2O <==> CH2O + OH  Rb :  HOCH2O <==> CH2O + OH 

0.02 
-1.07E-03 mol/cubic cm -1.95E-05 mol/cubic cm 

By adding the forward and the backward rate of reactions, the result is still a 

negative number symbolizing that the overall reaction moves in the backward 

direction, i.e. net rate of backward reaction for formaldehyde addition is lower as 

compared to no formaldehyde addition. 

The total OH mole fraction at time 0.020 seconds is: 

Time  Mole_fraction_OH at 0  ppm HCHO   Mole_fraction_OH at  200 ppm HCHO  

0.01875 2.99E-07 1.18E-08 
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Also the Formaldehyde addition reduces the overall temperature by 14.47C 

Time  Temperature (K) at 0ppm HCHO   Temperature (K) at 200ppm HCHO  

0.01875 737.5097 K 648.5343 K 

 

In figure 4.36, solid lines with black color represent reactions with 0ppm 

Formaldehyde, the red and the green solid lines represent reactions with 200ppm 

formaldehyde addition It is evident that with 200ppm Formaldehyde addition, 

reaction (a) proposes less OH formation, reaction (b) proposes comparatively 

less OH consumption and reaction (c) proposes lesser OH consumption. Also, it 

is observed that there are some other reactions that occur in case of no 

formaldehyde addition. This can be explained as the increase in the temperature 

that is evident in both the cases. 

 

Figure 4.36 - Comparison using superposition betwee n the rate of 

formation of OH at 0.02175 seconds with zero and 20 0ppm HCHO and some 

other reactions contributing towards OH formation. 
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Since, the net OH mole fraction is lower in case of Formaldehyde addition at 

0.01750 seconds, it can be said that the effect of reaction (a) along with reaction 

set shown above is dominating the reactions (b) and (c). 

4.5.3 Summary: 

• It is evident that the start of combustion is retarded by 

formaldehyde addition. Therefore ignition delay is increased. 

• OH production rate is also retarded with the formaldehyde 

addition. 

• Using Chemical Kinetics, it can be inferred that the three reaction 

(a), (b), (c) together decide the total OH mole fraction and 

formaldehyde interaction at a given interval of time. {Are these the 

only reactions for  the formation and  disappearance of OH? 

• Reaction CH2CHO + 02 ==> CH2O + CO + OH, is the major 

contributor in the OH formation for all the three equations 

discussed in this thesis. The rate of this reaction is reduced with 

formaldehyde addition and hence OH formation is affected. 

• The addition of Formaldehyde lowers the average mass 

temperature. Therefore, a change in the value of reaction rate 

constant and the reaction rate is evident.  
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4.6 Reaction Path Analysis for OH Formation and Ign ition Delay with 

Propene addition: 

This study was conducted to determine  the effect of propene addition on the 

ignition delay. Fuel was N-Heptane (NC7H16). Addition of propene was 

parameterized with an increment of 100 ppm in each successive run starting 

from 0 ppm to 1000 ppm. 

 

Figure 4.37 - Effect of C3H6 addition on Ignition D elay at Equivalence Ratio 

1.0 

From figure 4.37, it is evident that the addition of propene decreases the ignition 

delay. With Zero ppm of propene, the ignition starts at about 12 CAD ATDC. With 

successive addition of 100ppm of propene, start of ignition is advanced by 1.5 

CAD and the ignition starts at about 10.5 CAD ATDC. With the addition of 
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another 100ppm, the ignition is further advanced and finally with a total of 

1000ppm addition of propene, the start of ignition is advanced by 4.5 CAD with 

the start of ignition occurring at 7.5 CAD ATDC.   

4.6.1 Investigation of Ignition delay Retard:   

Various plots were made for pressure and OH concentrations as shown in figures 

4.38 and 4.39. It was interesting to find that the rise in pressure due to 

combustion is accompanied by the rise in OH concentration. Figure 4.38 and 

4.39 show that OH concentration follows almost the same pattern of the 

pressure. The plot was made for two different concentrations of propene which 

are 0 ppm propene and 200ppm propene. 
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Figure 4.38 - In-cylinder Pressure and OH mole frac tions at different C3H6 

concentrations versus CAD 

 

 

Figure 4.39 - In-cylinder Pressure and OH mole frac tions at different C3H6 

mole fractions versus crank angle degrees 

From the figures 4.38 and 4.39, it can be concluded that addition of propene has 

a direct effect on OH concentration. OH being a main contributor to the start of 

combustion, the effects of propene on OH needs to be examined.  

Considering the two cases, no propene added in the first case while 200 ppm 

propene added in the second case.  The comparison between these two  

conditions can help in understanding the effect of adding C3H6 in reducing the 

ignition delay. 
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4.6.2 Investigation using Reaction Path Analysis: 

The RPA approach is used in this work, recognizing the effect on the reaction 

occurrence with the addition of zero and 200 ppm C3H6. The study was 

performed at time intervals 0.01750 sec, 0.018750 sec and 0.02 sec from the 

start of injection of the fuel NC7H16.  

Using reaction path analysis, the process was studied in details. It was observed 

that the start of combustion occurred at 0.01875 seconds. Therefore, the time 

intervals were selected as one before this period and one after this period. The 

approach was to compare the reactions involved in each of the case, i.e., zero 

propene and 200 ppm propene at various time intervals.  The comparison of the 

two cases shows a very bright picture that involves the kinetics of the reactions. 

Although, most of the reactions were common for both the cases, the rates of the 

reactions were different at the given interval of time for zero Propene and 

200ppm Propene. Therefore, formation or consumption of the species involved in 

the reaction varied greatly.  

Locating the start of combustion and the rise in pressure helps in identifying the 

duration of ignition delay. From the figure 4.38 and 4.39, it is quite evident that 

the start of combustion occurs earlier in case of Propene addition. Following 

tables describes the pressure and OH mole Fractions at different time Intervals. 
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Time 

(sec) 
CAD 

Pressure 

(bar)  

(0ppm 

C3H6) 

Pressure 

(bar) 

(200ppm 

C3H6) 

Mole fraction OH  

(0ppm C3H6) 

Mole fraction OH 

(200ppm C3H6) 

0.0175 9.00 3.19E+01 3.33E+01 7.99E-09 3.16E-08 

0.01875 10.50 3.10E+01 1.25E+02 1.65E-08 3.58E-03 

0.02 12.00 3.31E+01 1.04E+02 2.99E-07 1.27E-03 

 

It is very clear that the pressure difference at time 0.0175 seconds between 

0ppm Propene and 200ppm Propene is much lower than the pressure difference 

at time 0.01875 seconds. Also, rise in pressure is very high for 200ppm Propene 

from 0.01750 seconds to 0.01875 seconds. At 0.01875 seconds, the fuel and 

200ppm Propene mixture attains peak pressure, therefore, comparison of 0ppm 

Propene and 200ppm Propene, along with the fuel, is more vital between the 

time interval 0.01750 seconds and 0.01875 seconds.    

Considering the OH mole fractions, at all time intervals in the table above, OH 

mole fraction is higher for 200ppm Propene addition with fuel. Therefore, 

Propene addition favors the OH formation. With the Propene addition, the mass 

average temperature increased to 675.74 K from 648.53 K. This difference in 

temperature caused a change in the value of reaction rate constant K. The 

temperature change is shown in the tabular format below.  

Time  Temperature (K) at 0ppm C3H6  Temperature (K) at 200ppm C3H6  

0.0175 648.53 K 675.74 K 
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Following section describes the reason of higher OH mole fraction with 200ppm 

Propene using Reaction Path Analyzer.  

4.6.2.1 At 0.01750 Seconds: 

At the time 0.01750 seconds, the main reactions involving C3H6 are: 

1. C3H6 + OH  <==>  C3H5 -T  + H2O 

2. C3H6 + OH  <==>  C3H5 -A  + H2O 

3. C3H6 + OH  <==>  C3H5 -S  + H2O 

4. C3H6OH  <==> C3H6 + OH 

Following these reactions: 

1.   C3H6 + OH  <==>  C3H5 -T  + H2O 

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rf :   C3H6 + OH  <==>  C3H5 -T  + H2O  Rf :  C3H6 + OH  <==>  C3H5 -T  + H2O 

0.0175 2.65 E-09 mol/cubic cm 4.04 E-07 mol/cubic cm 

 

 
  

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rb :   C3H6 + OH  <==>  C3H5 -T  + H2O  Rb :  C3H6 + OH  <==>  C3H5 -T  + H2O 

0.0175 -1.35 E-16 mol/cubic cm -7.2 E-14 mol/cubic cm 
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2.   C3H6 + OH  <==>  C3H5 -A  + H2O 

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rf :   C3H6 + OH  <==>  C3H5 -A  + H2O  Rf :  C3H6 + OH  <==>  C3H5 -A  + H2O 

0.0175 2.9 E-08 mol/cubic cm 4.17E-6 mol/cubic cm 

   

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rb :   C3H6 + OH  <==>  C3H5 -A  + H2O  Rb :  C3H6 + OH  <==>  C3H5 -A  + H2O 

0.0175 -3.34E-17 mol/cubic cm -5.98E-15 mol/cubic cm 

 

 

3.  C3H6 + OH  <==>  C3H5 -S  + H2O 

 

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rf :   C3H6 + OH  <==>  C3H5 -S  + H2O  Rf :  C3H6 + OH  <==>  C3H5 -S  + H2O 

0.0175 1.89 E-09 mol/cubic cm 2.86 E-07 mol/cubic cm 

Time 

At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rb :   C3H6 + OH  <==>  C3H5 -S  + 

H2O 
 Rb :  C3H6 + OH  <==>  C3H5 -S  + H2O 

0.0175 -4.53 E-16 mol/cubic cm -1.24 E-13 mol/cubic cm 

 
 
 

 4.  C3H6OH  <==> C3H6 + OH 

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rf :   C3H6OH  <==> C3H6 + OH  Rf :  C3H6OH  <==> C3H6 + OH 

0.0175 1.05 E-11 mol/cubic cm 3.45 E-11 mol/cubic cm 
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Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rb :   C3H6OH  <==> C3H6 + OH  Rb :  C3H6OH  <==> C3H6 + OH 

0.0175 -3.66E-08 mol/cubic cm -4.76E-6 mol/cubic cm 

 

From all of the above four reactions, the rate of backward reaction for reaction 4 

is highest. Following this reaction, there are some other chain reactions that 

occur with the C3H6OH presence. These reactions are described in figure 4.40. 

 

Figure 4.40 - Reaction Path diagram for C3H6OH 

Figure 4.40 shows the Reaction path for the specie C3H6OH. Details of each 

reaction in the path are given below.  
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In the above reaction, rate of backward reaction is higher than the rate of the 

forward   reaction. Therefore, the overall reaction moves in the backward 

direction.  

 

The reaction above moves only in the forward direction at this time interval. This 

reaction contributes to the OH formation. 

 

Again, for the reaction above, the rate of forward reaction is higher than the 

backward reaction. Therefore overall reaction moves in the forward direction. 

This reaction also contributes to the OH formation.  
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Again, for the reaction above, the rate of forward reaction is higher than the 

backward reaction. Also, the reaction produces two radicals.  

 

Again, for the reaction above, the rate of forward reaction is higher than the 

backward reaction. Therefore overall reaction moves in the forward direction.  

 

Above reaction also moves in the forward direction. 

 

Again, for the reaction above, the rate of forward reaction is higher than the 

backward reaction. Therefore overall reaction moves in the forward direction. 

This reaction also contributes to the OH formation.  

Therefore, the formation of C3H6OH causes chain reactions that produce OH at 

various steps in the chain. Therefore, OH mole fraction increases as per the set 

of reactions mentioned above.  
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Figure 4.41.a shows the rate of formation of OH at 0.01750 seconds with zero 

and 200ppm C3H6 while figure 4.41.b represent the comparison by superposition 

for the two cases  of C3H6 addition and it can observed that there are three main 

reactions involving OH formation and consumption. These 3 reactions are: 

• CH2CHO + 02 <==> CH2O + CO + OH  ------  (a) 

• CH2O + OH <==> HCO + H2O              ------  (b) 

• HOCH2O <==> CH2O + OH                    ------  (c) 
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Figure 4.41.a - Rate of formation of OH at 0.01750 seconds with zero and 

200ppm C3H6 
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Figure 4.41.b - Comparison using superposition betw een the rate of 

formation of OH at 0.01750 seconds with zero and 20 0ppm C3H6 
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The reaction (a), CH2CHO + 02 ==> CH2O + CO + OH, goes only in forward 

direction. This forward reaction favors the formation of OH. By considering the 

Rate of the Reaction for both the cases, the OH formation can be obtained 

through this reaction. 

Time 

At 0 ppm C3H6 and 0.0175 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

At 200 ppm C3H6 and 0.0175 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

0.0175 1.94E-05 1.26E-04 

 

Now considering reaction (b), CH2O + OH <==> HCO + H2O,  

The rate of reaction obtained from Reaction Path analysis are :  

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rf :   CH2O + OH <==> HCO + H2O  Rf :  CH2O + OH <==> HCO + H2O 

0.0175 9.74E-06 1.25E-04 

 
 

 
 

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rb :   CH2O + OH <==> HCO + H2O  Rb :  CH2O + OH <==> HCO + H2O 

0.0175 -2.22E-18 -1.44E-16 

 

From the table above, it is quite evident that the rate of forward reaction for 

0ppm Propene is higher than the rate of forward reaction with 200ppm Propene. 

The rates of backward reaction are very small for comparison.  
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Now considering reaction (c), HOCH2O <==> CH2O + OH, the forward reaction 

favors the OH formation while the Backward Reaction Reduces the OH 

concentration 

From the reaction path analysis: 

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rf :   HOCH2O <==> CH2O + OH  Rf :  HOCH2O <==> CH2O + OH 

0.0175 6.47E-09 9.8E-08 

      

Time 
At 0 ppm C3H6 and 0.0175 seconds; At 200 ppm C3H6 and 0.0175 seconds; 

 Rb :   HOCH2O <==> CH2O + OH  Rb :  HOCH2O <==> CH2O + OH 

0.0175 -5.21E-06 -6.19E-05 

 

The total OH mole fraction at time 0.01750 seconds is: 

Time  Mole_fraction_OH at 0ppm C3H6  Mole_fraction_OH at 200ppm C3H6 

0.01750  7.99E-09 3.16E-08 

It is evident that with 200ppm Propene addition, reaction (a) proposes higher OH 

formation, reaction (b) proposes comparatively higher OH consumption and 

reaction (c) proposes comparatively higher OH consumption. since the mole 

fraction of OH is higher in the case of 200ppm Propene addition, it can be 

concluded that reaction (a) along with the chain reaction shown in figure 4.40 

dominate at this time interval and OH concentration is higher as compared to no 

Propene addition. 
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 4.6.2.2   At 0.01875 Seconds:  

Absolute rate of Formation of OH at 0.018750 seconds with Zero ppm 

C3H6 and 200ppm C3H6 respectively. 

 

Figure 4.42 - Rate of formation of OH at 0.018750 s econds with zero and 

200ppm C3H6 
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From figure 4.42, it is evident that the combustion of fuel is still in process for the 

case of no Propene addition. On the other side, the combustion process has 

almost finished for the fuel mixed with 200ppm Propene. Therefore the 

comparison of the reactions is not of much help in this time interval.  

4.6.3 Summary: 

• It is evident that the start of combustion is advanced by Propene addition 

indicating a decrease in ID. 

• OH production rate is also advanced with the Propene addition. 

• Using Chemical Kinetics, it can be inferred that the three reactions  (a), (b) 

and  (c) together with the C3H6OH chain reaction decide the total OH 

mole fraction. 

• The addition of Propene increases the average mass temperature 

and reaction rate constant.  

• More case studies for different Hydrocarbon species are given in appendix C and 

appendix D. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In the dissertation a new concept has been investigated and a control strategy 

has been developed for gases recirculation strategy of a diesel engine with 

common rail fuel injection system to improve diesel engine cold startability, and 

to reduce fuel delivery per cycle, cranking periods and HC emissions (or white 

smoke) during cold starting. These conclusions are based on an experimental 

investigation on a 1.2 liter, 4 cylinders diesel engine equipped with a common rail 

injection system in a cold room to determine the effects of the fuel injection and 

cranking gas recirculation (CGR) on the cranking period, fuel consumption and 

HC emissions. The experiments were conducted at ambient room temperatures 

of 16°C and 3°C. 

1. CGR is a viable approach, that at certain rates, can reduce the 

cranking period, fuel consumption and HC emissions (white smoke) 

during cold start without any external aid (unaided cold start). 

2. Low rates of CGR enhance the autoignition process, reduce the 

cranking period, fuel injection and engine-out hydrocarbons that 

appear as white smoke during cranking.   
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3. CGR at higher rates, produced by increasing the back pressure, 

hinders the autoignition reactions and increases the cranking period, 

fuel injection and hydrocarbons emissions. 

4. There is an optimum CGR valve opening beyond which the CGR 

percentage in the fresh charge increases and causes an increase in 

the cranking period.    

5. For the same amount of fuel injected, the lower the temperature the 

higher the CGR opening required to reduce the cranking periods. 

The simulation results explained many observations made from the experimental 

work. 

1. The diesel cycle simulation showed clearly the effect of the increase in 

HCHO mole fraction on slowing the autoignition  reactions till misfiring 

while the increase of some HCs species have an enhancing effect on 

autoignition. 

2. At low mole fractions, some HCs species enhance the autoignition 

process while others have no effect or little retarding effects.  

Accordingly, low rates of CGR reduce the cranking period in addition to 

lowering the demand on fuel delivery during cranking.  This is due to 

the increase in the fuel vapor concentration by the CGR, in spite of the 

presence of a low concentration of HCHO.   
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3. Some HCs species have small or no effect on enhancing the 

autoignition reactions.   Meanwhile, other HCs have retarding effects.   

The high mole fractions of these species in addition to the effect of 

HCHO at high rates of CGR dominate over the enhancing effects of 

other species and increase the cranking period at the same fuel 

delivery.  {Rafik: Can you summarize all the findings regarding  which 

HC enhance autignition reactions and which   hinder …} 

4. HCHO/H2O2 is a powerful parameter that can predict whether the 

engine increase will fire or misfire. .  

5.2 Recommendations 

1. Extend the experiments and the simulation to lower ambient 

temperatures and different fuels and determine the optimum fuel 

delivery rate. 

2.  Develop an electronically controlled CGR valve for a better control of 

the rate of recirculated gases.  

3. Determine  the effect of the partial closing of the CGR valve on the 

charge temperature and pressure. 

4. Extend the simulation to investigate the effect of different HCs and 

HCHO combinations on ignition delay. 

5. Investigate in more details the effect of recirculated gases on changing 

the compression temperature as it is one of the main factors affecting 

the cold start of diesel engines. 
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APPENDIX A  

 

 

 

 

 

 

 

 

Figure A.1-Valve Timing (Start of Lift) 

 

 

 

 

 

 

 

 

 

 

Figure A.2-Valve Timing (1mm Lift) 
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APPENDIX B 

 

 

 

 

 

 

 

 

Figure B.1 - Injectors Nozzle geometry details 
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APPENDIX C 

C.1 Reaction Path Analysis for OH Formation and Ign ition Delay with 

Ethane addition: 

This study was conducted to study the effect of Ethane addition on the ignition 

delay. Fuel was N-Heptane (NC7H16). Addition of Ethane was parameterized 

with an increment of 100 ppm in each successive run starting from 0 ppm to 

1000 ppm. 

 

Figure C.1 - Effect of C2H6 addition on Ignition De lay at Equivalence Ratio 

1.0 
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From Figure C.1, it is evident that the addition of ethane increases the ignition 

delay. Up to 500 ppm, the start of ignition occurs near 12 CAD ATDC. Increasing 

the ethane mole fraction above 500 ppm, increases ID, retarding the start of 

ignition from 12 to 13.5 CAD ATDC (500ppm to 900ppm).  At 1000pmm, ignition 

delay is increased to 15 CAD. 

C.1.1 Investigation of Ignition Retard:   

Various plots were made for pressure and OH concentrations as shown in figure 

C.2 and C.3. It was interesting to find that the rise in pressure due to combustion 

is accompanied by the rise in OH concentration. The plot below shows that OH 

mole fraction follows almost the same pattern as the pressure.  

 

Figure C.2 - In-cylinder Pressure and OH mole fract ions at zero and 600ppm 

C2H6 addition versus CAD 
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Figure C.3 - In-cylinder Pressure and OH mole fract ions at zero and 600ppm 

C2H6 addition versus Time 

From figures C.2 and C.3, it can be concluded that addition of ethane has a 

direct effect on the OH concentration. OH being a main contributor to the start of 

combustion, the effects of ethane on OH need to be examined.  

Considering two cases, no Ethane added in the first case while 600ppm Ethane 

added in the second case.  The comparison between these two conditions can 

help in understanding the effect of adding C2H6 on retarding the ignition.  
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C.1.2 Investigation using Reaction Path Analysis: 
 

The RPA approach is used in this work, recognizing the effect on the reaction 

occurrence with the addition of zero C2H6 and 600ppm C2H6. The study was 

performed at the time intervals 0.018750 seconds, 0.020 seconds and 0.02175 

seconds from the start of injection of the fuel NC7H16. It was observed that the 

combustion occurred at about 0.01875 seconds. 

The approach was to compare the reactions involved in each of the two cases at 

the various time intervals.  

The comparison of the two cases shows a very bright picture that involves the 

kinetics of the reactions. Although, most of the reactions were common for both 

the cases, the rates of the reactions were different at the given interval of time for 

zero Ethane and 600ppm Ethane. Therefore, formation or consumption of the 

species involved in the reaction varied greatly. Following are the results for 

comparisons of the two different ethane mole fractions.  
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C.1.2.1 At Time 0.01875 Seconds 

Absolute rate of Formation of OH at 0.01875 seconds with Zero ppm C2H6 and 

600ppm C2H6 respectively. 

 

 

Figure C.4.a - Rate of formation of OH at 0.01875 s econds with zero and 
600ppm C2H6  
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Figure C.4.b - Comparison using superposition betwe en the rate of 
formation of OH at 0.018750 seconds with zero and 60 0ppm C2H6  
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Figure C.4.a shows the rate of formation of OH at 0.018750 seconds with zero 
and 600ppm C2H6 while figure C.4.b represents the comparison by 
superposition for the two cases of C2H6 addition. It can be observed that main 
reactions involving OH and C2H6 are: 

• CH2CHO + 02 ==> CH2O + CO + OH    ------  (a) 

• CH2O + OH <==> HCO + H2O               ------  (b) 

• C2H6 + OH <==> C2H5 + H2O              ------  (c) 

• C2H6 + 02 <==> C2H5 + HO2               ------- (d) 

Now with the Ethane addition, the mass average temperature dropped to 647.8K 

from 658.3 K. This change in temperature is shown in the tabular format below.  

Time  Temperature at 0ppm C2H6  Temperature at 600ppm C2H6 

0.01875 658.279 647.835 

 

This drop in temperature caused a change in the value of reaction rate constant 

K. This can be shown by the Arrhenius Equation as follows: 

 

Now, reaction (a), CH2CHO + 02 ==> CH2O + CO + OH, goes only in forward 

direction. This forward reaction favors the formation of OH. Considering the rate 

of the reaction for both the cases, the OH formation can be observed through this 

reaction. 

    Time 
At 0 ppm C2H6 and 0.01875 seconds; 
Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

At 600 ppm C2H6 and 0.01875 seconds; 
Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

0.01875                                        5.21E-05                                                 2.55E-05 
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The above results were obtained from Reaction Path Analyzer. It is evident that 

the formation of OH is lower in case of Ethane addition. It can be due to change 

in the temperature or the availability of O2 atom. 

Considering reaction (b), CH2O + OH <==> HCO + H2O,  

Time 
At 0 ppm C2H6 and 0.01875 seconds; At 600 ppm C2H6 and 0.01875 seconds; 

 Rf :   CH2O + OH <==> HCO + H2O  Rf :  CH2O + OH <==> HCO + H2O 

0.01875 4.98 E-05 1.96 E-05 

   

Time 
At 0 ppm C2H6 and 0.01875 seconds; At 600 ppm C2H6 and 0.01875 seconds; 

 Rb :   CH2O + OH <==> HCO + H2O  Rb :  CH2O + OH <==> HCO + H2O 

0.01875 -2.69 E-17 -5.72 E-18 

 

From the table above, it is evident that the rate of forward reaction for 0 ppm 

Ethane is higher than the rate of forward reaction with 600 ppm Ethane. The 

rates of backward reaction are very small for comparison. Now the forward 

reaction consumes OH radical. Therefore, OH consumption is lower according 

to this equation in case of C2H6 addition. This can be explained in the following 

manner. The rate of reaction (a) is much higher for no Ethane addition. 

Therefore, the products of the reaction (a) are higher in concentration for the 

case of 0ppm Ethane addition. Reaction (a) produces formaldehyde which is 

one of the reactant in reaction (b). Thus, higher the quantity of formaldehyde, 

higher is the rate of forward reaction of reaction (b). 

Now considering reaction (c), C2H6 + OH <==> C2H5 + H2O, the forward 

reaction consumes the OH radical. Therefore any increase in the quantity of 

Ethane increases the rate of forward reaction with all other parameters 
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remaining constant. Hence, OH consumption increases with the presence of 

600 ppm of Ethane when compared to 0 ppm Ethane. 

From the reaction path analysis, the net rate of the reaction  

Time 
At 0 ppm C2H6 and 0.01875 seconds; At 600 ppm C2H6 and 0.01875 seconds; 

 Rf :   C2H6 + OH <==> C2H5 + H2O  Rf : C2H6 + OH <==> C2H5 + H2O 

0.01875 6.1E-11 2.88E-06 

      

Time 
At 0 ppm C2H6 and 0.01875 seconds; At 600 ppm C2H6 and 0.01875 seconds; 

 Rb :   C2H6 + OH <==> C2H5 + H2O  Rb :  C2H6 + OH <==> C2H5 + H2O 

0.01875 -2.76E-13 -8.4E-14 

There is a remarkable difference between the rates of the forward reaction in the 

two cases of ethane addition. There is a difference of the magnitude of E05 in the 

reaction rates. Therefore, the Ethane addition reduces the net OH radical mole 

fraction as per the above reaction. 

Now considering reaction (d), C2H6 + 02 <==> C2H5 + HO2, the forward 

reaction consumes the available oxygen inside the combustion chamber. It is 

interesting to see that this reaction does not occur at 600 ppm Ethane at 0.01875 

second. This can be due to reduction in temperature caused by  Ethane addition. 

For no ethane addition, the reaction occurs but the rate is very small. 

From the reaction path analysis, the net rate of the reaction  

Time 
At 0 ppm C2H6 and 0.01875 seconds; At 600 ppm C2H6 and 00.01875 seconds; 

 Rnet:   C2H6 + 02 <==> C2H5 + HO2  Rnet : C2H6 + 02 <==> C2H5 + HO2 

0.01875 2.22E-09 Reaction not occurring at these conditions.  
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The total OH mole fraction at time 0.01875 seconds is: 

Time Mole fraction OH at 0ppm C2H6 Mole fraction OH  at 600ppm C2H6 

0.01875 1.65E-08 9.59E-09 

It is evident that with 600 ppm Ethane addition, reaction (a) results in less OH 

formation, reaction (b) results in comparatively less OH consumption and 

reaction (c) results in higher OH consumption. Other than that, some other 

reactions also contribute to the OH formation; rates of these are higher in case of 

0 ppm Ethane. These reactions are shown in figure C.5. Solid lines with black 

color represent reactions with 0 ppm Ethane, the pink lines and the red lines 

represent reactions with 600ppm Ethane addition 

 
Figure C.5 - Comparison of Absolute rate of OH form ation by some other 

reactions for zero and 600ppm Ethane addition at 0.0 1875 seconds. 
 
Since, the net OH mole fraction is lower in case of Ethane addition at 0.01875 

second, and from the above results, it is evident that the effect of reaction (a) and 

(c) is dominating at this time interval. There is not much reduction in the OH 

interaction with the fuel at this time.  
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C.1.2.2 At 0.020 Seconds: 

Absolute rate of Formation of OH at 0.020 seconds with Zero ppm C2H6 

and 600 ppm C2H6 respectively. 

 

Figure C.7.a - Comparison using superposition betwe en the rate of 
formation of OH at 0.020 seconds with zero and 600pp m C2H6 
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Figure C.7.b - Comparison using superposition betwe en the rate of 
formation of OH at 0.020 seconds with zero and 600pp m C2H6  

 
 

Figure C.7.a shows the rate of formation of OH at 0.020 seconds with zero and 

600 ppm C2H6 while figure C.7.b represents  the comparison by superposition 
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for the two cases of C2H6 addition.  The main reactions involving OH and C2H6 

are: 

• CH2CHO + 02 ==> CH2O + CO + OH    ------  (a) 

• CH2O + OH <==> HCO + H2O               ------  (b) 

• C2H6 + OH <==> C2H5 + H2O              ------  (c) 

• C2H6 + 02 <==> C2H5 + HO2               ------- (d) 

Now with the Ethane addition, the mass average temperature dropped to 659.K 

from 737.5K. This change is shown in the tabular format below.  

{ Rafik: Temperature to forth digit is not reasonable to write even if the program 

prints it} If I were you, I would fix in all the previous cases}  

Time  Temperature at 0ppm C2H6  Temperature at 600ppm C2H6 

0.02 737.5097 659.026 

 

Now reaction (a), CH2CHO + 02 ==> CH2O + CO + OH, goes only in forward 

direction. This forward reaction favors the formation of OH. Considering the Rate 

of the Reaction for both the cases, the OH formation can be obtained through 

this reaction. 

Time 
At 0 ppm C2H6 and 0.0200 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + OH 
At 600 ppm C2H6 and 0.0200 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

0.0200 1.77 E-03 6.16 E-05 
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The above results were obtained from Reaction Path Analyzer. It is quite evident 

that the formation of OH is lesser in case of Ethane addition. It can be due to 

change in the temperature or the availability of O2 atom. 

Now considering reaction (b), CH2O + OH <==> HCO + H2O, 

The rate of reaction obtained from Reaction Path analysis is:  

Time 
At 0 ppm C2H6 and 0.0200 seconds; At 600 ppm C2H6 and 0.0200 seconds; 

 Rf :   CH2O + OH <==> HCO + H2O  Rf :  CH2O + OH <==> HCO + H2O 

0.0200 2.58 E-03 7.09 E-05 

   

Time 
At 0 ppm C2H6 and 0.0200 seconds; At 600 ppm C2H6 and 0.0200 seconds; 

 Rb :   CH2O + OH <==> HCO + H2O  Rb :  CH2O + OH <==> HCO + H2O 

0.0200 -5.05 E-14 -4.92 E-17 

 

From the table above, it is evident that the rate of forward reaction for 0ppm 

Ethane is higher than the rate of forward reaction with 600ppm Ethane. The 

rates of backward reaction are very small for comparison.  

Now considering reaction (c), C2H6 + OH <==> C2H5 + H2O, the forward 

reaction consumes the OH radical. From the reaction path analysis, the net rate 

of the reaction  

Time 
At 0 ppm C2H6 and 0.0200 seconds; At 600 ppm C2H6 and 0.0200 seconds; 

 Rf :   C2H6 + OH <==> C2H5 + H2O  Rf : C2H6 + OH <==> C2H5 + H2O 

0.0200 4.3E-08 5.31E-06 
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Time 
At 0 ppm C2H6 and 0.0200 seconds; At 600 ppm C2H6 and 0.0200 seconds; 

 Rb :   C2H6 + OH <==> C2H5 + H2O  Rb :  C2H6 + OH <==> C2H5 + H2O 

0.0200 -2.26E-10 -3.03E-09 

Therefore, the Ethane addition reduces the OH radical concentration as per the 

above reaction. 

Now considering reaction (d), C2H6 + 02 <==> C2H5 + HO2, the forward 

reaction consumes the available oxygen inside the combustion chamber. It is 

interesting to see that this reaction does not occur at 600 ppm Ethane at 0.020 

seconds. This can be due to reduction in temperature because of Ethane 

addition.  

From the reaction path analysis, the net rate of the reaction  

Time 
At 0 ppm C2H6 and 0.0200 seconds; At 600 ppm C2H6 and 0.0200 seconds; 

 Rnet:   C2H6 + 02 <==> C2H5 + HO2  Rnet : C2H6 + 02 <==> C2H5 + HO2 

0.0200 9.46E-07 Reaction not occurring at these conditions.  

      

 The total OH mole fraction at time 0.02000 seconds is: 

Time Mole fraction OH at 0ppm C2H6 Mole fraction OH at600ppm C2H6 

0.02000 2.99E-07 1.89E-08 

It is evident that with 600 ppm Ethane addition, reaction (a) results in less OH 

formation, reaction (b) results in comparatively less OH consumption and 

reaction (c) results in comparatively more OH consumption. Other than that, 

some other reactions also contribute to the OH formation; rates of these are 

higher in case of 0 ppm Ethane. Figure C.8 shows some of these reactions. Solid 
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lines with black color represent reactions with 0 ppm Ethane, the pink lines 

represent reactions with 600 ppm Ethane addition. 

 

 

Figure C.8 - Comparison of Absolute rate of OH form ation by some other 
reactions for zero and 600ppm Ethane addition at 0.0 20 seconds. 

Since, the net OH mole fraction is lower in case of Ethane addition at 0.02000 

second, and from the above results, it is evident that the effect of reaction (a) and 

(c) is dominating at this time interval. Also, with Ethane addition, the OH 

interaction with the fuel is reduced at this time. 
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C.1.2.3 At 0.02175 seconds: 

Absolute rate of formation of OH at 0.02175 seconds with Zero ppm C2H6 

and 600 ppm C2H6 respectively. 

 

Figure C.9 - Comparison using superposition between  the rate of formation 
of OH at 0.02175 seconds with zero and 600ppm C2H6  
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Figure C.9 represent the comparison by superposition, the rate of formation of 

OH at 0.021750 second with zero and 600 ppm C2H6 addition.  Since most of 

the combustion process has finished for the case of zero ppm Ethane addition, 

the comparison of reactions at this stage is not greatly helpful in determining OH 

mole fraction. From figure C.9, there are very few reactions that involve the OH 

radical for the case of no Ethane addition. On the other side, in case for 600 ppm 

Ethane, the combustion process has just started and therefore a lot of reactions 

involving the OH radical occur.  

C.1.3 Summary: 

• It is evident that the start of combustion is retarded by Ethane 

addition. Therefore ignition delay increased. 

• OH production rate is also retarded with the Ethane addition. 

• The addition of Ethane decreases the average mass temperature. 

Therefore, a change in the reaction rate constant and the reaction 

rate is evident.   
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APENDIX D 

D.1 Reaction Path Analysis for OH Formation and Ign ition Delay with 

Methane addition: 

This study was conducted to study the effect of Methane addition on the ignition 

delay. Fuel was N-Heptane (NC7H16). Addition of Methane was parameterized 

with an increment of 100ppm in each successive run starting from 0ppm to 

1000ppm. 

 
 

Figure D.1- Effect of CH4 addition on Ignition Dela y at Equivalence Ratio 
1.0 
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Figure D.2 - Effect of CH4 addition on Ignition Del ay at Equivalence Ratio 

1.0 
 

From the figure D.1, it is evident that up to 1000ppm, Methane has almost no 

significant effect on ignition delay. Therefore, Methane was added in steps of 

1000ppm, starting from 0ppm to 8000ppm as shown in figure D.2.  Now addition 

of 2000ppm of Methane increases the ignition delay. Up to 3000ppm, the start of 

ignition occurs near 12CAD ATDC, After 3000 ppm to up to 5000ppm of methane 

addition, the start of combustion is retarded from 12 to 13.5 CAD. Further 

addition of Methane retards the start of combustion and at 8000ppm, the mixture 

ignites at 18 CAD ATDC.  

D.1.1 Investigation of Ignition Retard:   

Various plots were made for pressure and OH concentrations as shown in figure 

D.3 and D.4. It was interesting to find that the rise in pressure due to combustion 

is accompanied by the rise in OH concentration. Figures D.3 and D.4 show that 

OH concentration follows almost the exact pattern as of the Pressure.   
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Figure D.3 - In-cylinder Pressure and OH mole fract ions at zero and 

5000ppm CH4 addition versus CAD 

 

 

Figure D.4 - In-cylinder Pressure and OH mole fract ions at zero and 

5000ppm CH4 addition versus CAD 
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From figures D.3 and D.4, it can be concluded that addition of Methane has a 

direct effect on the OH concentration. OH being a main contributor to the start of 

combustion, the effects of Methane on OH needs to be examined.  

D.1.2 Investigation using Reaction Path Analysis: 
 

The RPA approach is used in this work, recognizing the effect on the reaction 

occurrence with the addition of zero CH4 and 5000ppm CH4. The study was 

performed at the time intervals 0.020 sec and 0.02175 sec from the start of 

injection of the fuel NC7H16. Using reaction path analysis, the process was 

studied in details. It was observed that the start of combustion occurred at 

0.01875 seconds. 

The approach was to compare the reactions involved in each of the two cases at 

the various time intervals.  

The comparison of the two cases shows a very bright picture that involves the 

kinetics of the reactions. Although, most of the reactions were common for both 

the cases, the rates of the reactions were different at the given interval of time for 

zero Methane and 5000ppm Methane. Therefore, formation or consumption of 

the species involved in the reaction varied greatly. Following are the results for 

comparisons of the two different Methane concentrations. 

Locating the start of combustion and the rise in pressure helps in identifying the 

duration of ignition delay. From the figure D.3 and D.4, it is quite evident that the 
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start of combustion occurs earlier in case of no methane addition. Following table 

describes the Pressure and OH mole Fractions at different time Intervals. 

 

 
Time 
(sec) 

 
CAD 

 
Pressure 

(bar)  
(0ppm 
CH4) 

Pressure 
(bar) 

(5000ppm 
CH4) 

 
Mole fraction 

OH 
 (0ppm CH4) 

 
Mole fraction OH 

 (0ppm CH4) 

0.02 12.00 33.14132 29.12251 2.99E-07 1.27E-08 

0.02125 13.50 106.2382 28.42922 2.39E-03 3.08E-08 

0.0225 15.00 89.24704 111.5528 9.15E-04 4.99E-03 

 

The Pressure difference at time 0.020 second between 0ppm Methane and 5000 

ppm Methane is much lower than the pressure difference at time 0.02125 

seconds. Also, rise in pressure is very high for 0ppm Methane from 0.020 

seconds to 0.02125 second. In addition to this, at 0.02125 second, the fuel with 

0ppm Methane mixture attains peak pressure, therefore, comparison of 0ppm 

Methane and 5000ppm Methane, along with the fuel, is more vital between the 

time interval 0.0200 second and 0.02125 second.    

Considering the OH mole fractions, at all time intervals in the table above, OH 

mole fraction is higher for 0 pmm Methane addition with fuel. Therefore, Methane 

addition retards the OH formation rate. 
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Now with the Methane addition, the mass average temperature dropped at the 

time intervals 0.020 seconds and 0.02125 seconds. This drop in temperature 

caused a change in the value of reaction rates. This change in temperature is 

shown in the tabular format below.  

Time 
(sec)  Temperature at 0ppm CH4 (T1)  Temperature at 5000p pm CH4 (T6) T1-T6 

0.02 737.5097 K 650.1334 87.376 

0.02175 2390.927 K 668.63 1722.297 

Following part describes the reason of lower OH mole fraction with 5000ppm 

Methane using Reaction Path Analyzer.  

D.1.2.1 At 0.020 Seconds: 

Considering the reactions involving CH4, following main reactions are 

evident: 

1) CH4 + OH <==> CH3 + H2O 

2) CH3 + O2 (+M) <==> CH3O2 

3) CH3CHO <==> CH3 +HCO 

4) CH3CHO +OH <==> CH3 + HOCHO 

Above reactions are part of a chain mechanism that starts from reaction (1). 

Reaction (1) and reaction (4) involve the OH radical. Reaction 2 involves the 

oxygen atom. The reaction path for this chain reaction is described in   figure D.5. 
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Figure D.5-  Reaction Path diagram for CH4 

 

Starting with reaction 1: 
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Now reaction number (2), CH3 + O2 (+M) <==> CH3O2, the species CH3O2 

again forms a chain, shown in figure D.6, and finally produce HCHO according to 

the following process: 

 

Figure D.6 - Reaction Path diagram for CH3O2 
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By following the reaction path for the reaction 1, CH4 + OH <==> CH3 + H2O , it 

is observed that there are some other reactions (chain reactions, shown in figure 

D.6) that involve the consumption of OH radical, all of these reactions occurring 

due to presence of methane. Therefore, more the quantity of methane, more will 

be the OH consumption due to these reactions.  
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Absolute rate of Formation of OH at 0.020 seconds with Zero ppm CH4 and 

5000ppm CH4 respectively. 

 

Figure D.7.a - Rate of formation of OH at 0.020 sec onds with zero and 

5000ppm CH4 
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Figure D.7.b - Comparison using superposition betwe en the rate of 

formation of OH at 0.020 seconds with zero and 5000p pm CH4 
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Figure D.7.a shows the rate of formation of OH at 0.020 seconds with zero and 

5000ppm CH4 while figure D.7.b represent the comparison by superposition for 

the two cases  of CH4 addition and it can observed that main reactions involving 

OH are: 

• CH2CHO + 02 <==> CH2O + CO + OH  ------  (a) 

• CH2O + OH <==> HCO + H2O               ------  (b) 

• HOCH2O <==> CH2O + OH   ------  (c) 

Now reaction (a), CH2CHO + 02 ==> CH2O + CO + OH, goes only in forward 

direction. This forward reaction favors the formation of OH. Considering the rate 

of the reaction for both the cases, the OH formation through this reaction can be 

obtained. 

Time 
At 0 ppm CH4 and 0.020 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + OH 
At 5000ppm CH4 and 0.020 seconds; 

Rf :  CH2CHO + 02 <==> CH2O + CO + OH 

0.020 1.94E-05 3.66E-05 

 

Now considering reaction (b), CH2O + OH <==> HCO + H2O the rate of 

reaction obtained from Reaction Path analysis are :  

Time 
At 0 ppm CH4 and 0.020 seconds; At 5000 ppm CH4 and 0.020 seconds; 
Rf :   CH2O + OH <==> HCO + H2O Rf :  CH2O + OH <==> HCO + H2O 

0.020 9.74E-06 3.83E-05 

   

Time 
At 0 ppm CH4 and 0.020 seconds; At 5000 ppm CH4 and 0.020 seconds; 

Rb :   CH2O + OH <==> HCO + H2O Rb :  CH2O + OH <==> HCO + H2O 

0.020 -2.22E-18 -1.65E-17 
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From the table above, it is quite evident that the rate of forward reaction for 0ppm 

Methane is lesser than the rate of forward reaction with 5000ppm Methane. The 

rates of backward reaction are very small for comparison.  

Now considering reaction (c), HOCH2O <==> CH2O + OH, the forward reaction 

favors the OH formation while the Backward Reaction Reduces the OH 

concentration 

From the reaction path analysis: 

Time 

At 0 ppm CH4 and 0.020 seconds; At 5000ppm CH4 and 0.020 seconds; 

Rf :   HOCH2O <==> CH2O + OH Rf :  HOCH2O <==> CH2O + OH 

0.020 6.47E-09 2.57E-08 

   

Time 

At 0 ppm CH4 and 0.020 seconds; At 5000ppm CH4 and 0.020 seconds; 

Rb :   HOCH2O <==> CH2O + OH Rb :  HOCH2O <==> CH2O + OH 

0.020 -5.21E-06 -2.04E-05 

 

The total OH mole fraction at time 0.0200 seconds is: 

Time Mole fraction OH  at 0ppm CH4 Mole fraction OH at5000ppm CH4 

0.0200 2.99E-07 1.27E-08 

  

With 5000ppm Methane addition, reaction (a) proposes higher OH formation, 

reaction (b) proposes comparatively higher OH consumption and reaction (c) 

proposes comparatively higher OH consumption. 

Therefore, it can be inferred that the reactions shown in the figure D.5 and D.6 

along with the reactions (a), (b) and (c) result in lower OH concentration with 

Methane addition. 
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D.1.3 Summary: 

• It is evident that the start of combustion is retarded by Methane 

addition. Therefore Ignition delay is increased. 

• OH production rate is also retarded with the Methane addition. 

• The addition of Methane decreases the average mass 

temperature. Therefore, a change in the value of reaction rate 

constant and the reaction rate is evident.   
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ABSTRACT 

OPPOSING EFFECTS OF RECIRCULATED GASES DURING CRANK ING ON 
COLD START OF DIESEL ENGINES 

by 

RAFIK ROFAIL 

August 2011 

Advisor: Dr. Naeim Henein 

Major: Mechanical Engineering 

Degree: Doctor of Philosophy 

Enhancing cold start of DI diesel engines is the motivation behind this study. A 

new control strategy is proposed to reduce the cranking period and the white 

smoke emissions. In the strategy, the gases leaving the cylinder during the 

cranking period are recycled back into the intake manifold using two different 

methods.  In the first method the engine-out gases during cranking are 

recirculated into the intake manifold and their rate is controlled by a CGR 

(Cranking Gases Recirculation) valve, without applying any back pressure on the 

engine. In the second method a butterfly valve is installed in the exhaust system 

after the turbocharger to increase the back pressure and the rate of recirculated 

gases. Since there is no combustion during cranking, these gases contain 

evaporated hydrocarbons (HCs) and partial oxidation products such as 
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formaldehyde (HCHO). HCs and HCHO have two opposing effects. HCs 

enhance the autoignition process, while the HCHO has an opposite effect.  

These opposing effects are being investigated by three different 

approaches. The first is experimentally in a multi-cylinder proto-type engine. The 

second is using high speed imaging in an optically accessible engine. The third is 

by using CFD and chemical kinetic simulation to gain a better understanding of 

the effect of the recirculated gases on the autoignition process during cold 

starting of a direct injection diesel engine. Cold start experiments are conducted 

on a 1.2L Ford DIATA 4-cylinder, 16-valve, 70 mm bore, 78 mm stroke and 19.5 

compression ratio, water cooled, turbocharged and intercooled diesel engine. 

The engine is equipped with a common rail injection system, EGR system and a 

swirl control mechanism.  The engine is installed in a cold room and the ambient 

temperature is electronically controlled.  Before starting, the engine is soaked at 

the desired room temperature for at least eight hours.  The analysis of the data 

demonstrated the effect of two CGR methods on reducing the cranking period 

and HCs emissions. The images showed the effect of aldehydes on hindering the 

autoignition and combustion processes. The simulation covered a wide range of 

the hydrocarbons and aldehydes concentrations and their effect on the ignition 

delay.  

The simulation results agreed with the experimental findings. The results 

of this work will help in developing strategies to reduce the cranking period, fuel 

consumption and white smoke emitted during cold starting of diesel engines. In 

addition, a more understanding will be developed of the role of aldehydes in 
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combustion instability and misfiring after first firing experienced in cold starting of 

diesel engines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



194 
 

 

PUBLICATIONS 

� “Effect of HCR (Hydrocarbons Recirculation) on Cranking Period and 

Hydrocarbons Emissions during Cold Start of A Di Diesel Engine”, 

E11, Hurghada, Egypt, 2009.  

� “Opposing Effects of Recirculated Gases during Cranking for Cold 

Start of Diesel Engines”, Institute of Mecanical Engineers, London, 

UK, JAUTO1785, 2011. 

� “Simulation of the Effect of Recirculated Gases on Ignition Delay 

during Cold Starting of a Direct Injection Diesel Engine”, SAE 2011-

01-0838, 2011. 

 

 

 

 

 

 

 

 

 



195 
 

 

AUTOBIOGRAPHICAL STATEMENT 

Rafik N. Rofail was born on November 14th, 1979 in Cairo, Egypt. He joined Ain 

Shams University, college of engineering in Cairo, Egypt in September 1997. He 

received his Bachelor’s degree in 2002. His major was concentrated on 

automotive engineering. Then he worked in GB as a design engineer from May 

2003 to December 2003 then he worked as a demonstrator at Ain Shams 

University from December, 2003 to December, 2005. 

He came to the United States and enrolled in the graduate program in 

Mechanical Engineering Department of Wayne State University in January 2006. 

He worked in the Center for Automotive Research, under the supervision of 

professor Naeim A. Henein, as a graduate research assistant from January 2006 

to May 2011. During this period, he worked on the research projects related to 

DIATA diesel engine and its test rig setup, engine calibration and testing, diesel 

engine combustion and emissions testing and analysis, fuel injection system 

testing and simulation, diesel engine cold starting simulation. 

He earned his Master’s degree in December 2007 at the same university. 

Then he started working in his Ph.D. since January 2008 till May 2011 in 

Wayne State University. As an author, he has published 3 papers in the 

Society of Automotives Engineers (SAE), Institute of Mechanical Engineering 

Journal and EE11. 


	Wayne State University
	1-1-2011
	Opposing effects of recirculated gases during cranking on cold start of diesel engines
	Rafik N. Rofail
	Recommended Citation


	Microsoft Word - $ASQ100000_supp_undefined_3644358A-CA6E-11E0-937E-36483012225A.doc

