
Wayne State University

Wayne State University Theses

1-1-2015

A Customer Choice Modeling Framework For
Assortment Planning Of Configurable Products In
Automotive Industry
Farah Dubaisi
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Industrial Engineering Commons, Marketing Commons, and the Statistics and
Probability Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Dubaisi, Farah, "A Customer Choice Modeling Framework For Assortment Planning Of Configurable Products In Automotive
Industry" (2015). Wayne State University Theses. Paper 416.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/638?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/416?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages

A CUSTOMER CHOICE MODELING FRAMEWORK FOR THE ASSORTMENT

PLANNING OF CONFIGURABLE PRODUCTS IN THE AUTOMOTIVE INDUSTRY

by

FARAH DUBAISI

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2015

 MAJOR: MANUFACTURING ENGINEERING

 Approved By:

__

Advisor Date

© COPYRIGHT BY

FARAH DUBAISI

2015

All Rights Reserved

i

ACKNOWLEDGEMENTS

The authors wish to acknowledge her parents Talal Dubaisi and

Elham Dubaisi as well as her sister Sarah Dubaisi and Brother Najib

Dubaisi for their continuous support and motivation.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

LIST OF FIGURES ... iii

LIST OF TABLES .. v

INTRODUCTION .. 1

LITERATURE REVIEW ... 4

METHODOLOGY ... 10

Assumptions .. 10

Model Formulation ... 13

Data Preprocessing .. 13

Neural Network Regression Model ... 17

Customized Neural Network Script ... 19

RESULTS AND VALIDATION .. 23

Conditional Turn Rate Analysis .. 23

Regression Approach ... 24

Classification Approach .. 26

Unconditional Analysis ... 27

Mean as Transformation Function ... 28

Regression Model .. 28

Classifier Balanced Model ... 29

Discussion .. 29

Risk Adjusted Turn Rate Transformation Function .. 31

Simulator ... 35

Simulator Description .. 36

CONCLUSION ... 44

APPENDIX A ... 47

APPENDIX B ... 48

REFERENCES ... 67

ABSTRACT .. 68

AUTOBIOGRAPHICAL STATEMENT ... 70

iii

LIST OF FIGURES

Figure 1 Sales and Inventory Mix Rates as A Function of Time.. 9

Figure 2 Variation of I4 and V6 Engine's Turn Rates as a Function of Time 10

Figure 3 Standard Deviation As a Function of The Mean of the Neural Network Output 24

Figure 4 Conditional Regression Neural Network Predictions Versus Manual Historical Turn

Rates .. 25

Figure 5 Conditional Classifier Balanced Neural Network Predictions Versus Manual Historical

Turn Rates ... 26

Figure 6 Conditional Classifier Imbalanced Neural Network Predictions Versus Manual

Historical Turn Rates .. 27

Figure 7 Averaged Turn Rates Versus Manual Historical Turn Rates For Regression Model 28

Figure 8 Averaged Turn Rates Versus Manual Historical Turn Rates For Classifier Balanced

Model .. 29

Figure 9 Relative Estimation Error as a Function of Configuration Popularity 30

Figure 10Risk Adjusted Turn Rates Versus Manual Historical Turn Rates For Regression Model

... 33

Figure 11Risk Adjusted Turn Rates Versus Manual Historical Turn Rates For Classifier

Balanced Model .. 33

Figure 12 Exponent of Risk Adjusted Turn Rates Versus Manual Historical Turn Rates For

Regression Model ... 34

Figure 13 Exponent of Risk Adjusted Turn Rates versus Manual Historical Turn Rates for

Classifier Balanced Model .. 35

Figure 14 Flow Chart for Count Simulator ... 39

file:///C:/Users/Farah/Documents/Research/Thesis/first%20draft%20modified.docx%23_Toc418715949
file:///C:/Users/Farah/Documents/Research/Thesis/first%20draft%20modified.docx%23_Toc418715949
file:///C:/Users/Farah/Documents/Research/Thesis/first%20draft%20modified.docx%23_Toc418715950
file:///C:/Users/Farah/Documents/Research/Thesis/first%20draft%20modified.docx%23_Toc418715950

iv

Figure 15 EWW, EWR, and EWC Variation as a Function of Week Period For Classifier

Simulation ... 40

Figure 16EWW, EWR, and EWC Variation as a Function of Week Period For Regression

Simulation ... 41

Figure 17 Flow Chart for Sales Simulator .. 42

Figure 18 List of Markets Considered .. 47

v

LIST OF TABLES

Table 1 Core Entities Used in Our Model .. 12

Table 2 List of Variants for Each Feature Family .. 15

Table 3 Parameter Definition on The Performance Function ... 21

Table 4 Risk Adjusted Turn Rate Alfa Optimization Results... 32

Table 5 Sample Simulator Example ... 37

Table 6 Count Simulator Results When Simulating The Classifier Turn Rates 40

Table 7Count Simulator Results When Simulating The Regression Turn Rates 40

1

INTRODUCTION

In order to survive in this highly competitive market, retail stores should come up with

effective and efficient ways to manage their operations to yield the highest profit and customer

satisfaction possible. Activities such as ordering of products, inventory management, and

establishing relationships with suppliers, significantly contribute to operational cost incurred by

the retailer. Thus optimizing them will lead to a boost in the company’s profits. These days a major

market focus is being directed toward ‘Assortment Planning’ which is defined as specifying the

set of products and the level of product variations to be carried at each retail store in a way that

will maximize the store’s profit, subject to storage space constraints, customer service level,

product availability, competition, and many other possible constraints depending on the retail store

and type of product being studied. One important tradeoff that should be considered in assortment

planning, is that increasing variety increases customer satisfaction but has a negative effect on

operational cost. To mitigate this problem, the retail store managers should be able to understand

the customer buying behavior at the point of sale, and their reactions toward not finding their

desired product variant, whether this variant is stocked out or is not carried by the store.

Being able to predict the probability of selling a given product offered within a specific

inventory mix, is a valuable asset not only for the retailers but also for the supply chain as a whole.

In this context, retailers will adjust their carried assortment by ordering more of the higher sellers

and less of the slow moving configurations. This in turn will reduce their holding and operating

costs by fairly cutting down the average weeks a configuration stays on lot. Moreover, it will

increase the level of customer satisfaction by lowering the possibility of stock outs. Finally, it will

increase the revenue since more vehicles will be sold at full price and less promotions will be

necessary to get rid of stationary inventory. As for the rest of the supply chain, manufacturers and

2

suppliers will focus their production efforts and budgets on producing the popular configurations

and will cut on the undesired ones to be able to replenish their retailers’ inventories as quickly as

needed. This will lead to a significant reduction in the complexity cost and starvation points in

downstream stages of the supply chain.

Driven by the above mentioned benefits of estimating the selling probability, this thesis

focuses on estimating the turn rate of configurations present in an existing assortment. As a

definition, inventory turnover rate is a measure of the number of times inventory is sold or used in

a time period. In other words, it’s the probability that a vehicle will sell within 1 time period from

its arrival to lot. This is numerically calculated as follows:

(𝑇𝑢𝑟𝑛 𝑅𝑎𝑡𝑒)𝑖 =
1

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑒𝑘𝑠 𝑜𝑛 𝑙𝑜𝑡)𝑖

Where i is the configuration index.

Given that vehicles are configurable products, its attractiveness can be represented as a function

of its individual features in accordance to the majority of customer choice models in the

configurable products literature. The most widely used choice models in the literature of economy

are the multinomial logit MNL, multinomial probit MNP, and mixed multinomial logit models.

All of which equally estimate the deterministic portion of the configuration’s attraction as a linear

relationship between the individual features constituting it. However, they differ in the way they

compute the error term which is added to the later to account for randomness and interactive

relationship between features. In this thesis, we relied on Ford Mix Rate Modulated Patent to

calculate the deterministic portion of the configuration attraction, which is compared to the turn

rate variable explained above. This model is constructed to generate a matrix that combines the

item configuration data with the inventory mix data at the feature level to output a configuration

feature vector whose elements indicate the availability of an item feature in the inventory carried

3

on lot. Consequently, each feature will be represented as a function of its availability in the

configuration, regardless to any other feature in the configuration. This in turn will allow us to

study its contribution on the final output which is the turn rate. However, this methodology has

introduced another problem, which is the dependency of the turn rates on the corresponding

inventory mixes that were available on lot. That means that for each inventory mix scenario we

will have a new set of turn rates associated to each configuration. This will leave us with infinite

variable space given that we have unlimited possible inventory mixes. Therefore, the second part

of the thesis focused on removing this conditionality and generalizing the turn rates so that we

have one turn set applicable to any kind of inventory mix.

The thesis will be organized as follows, a literature review section that will discuss other

methodologies used by researchers to estimate probability of sales. In addition to in depth

explanation about Ford’s patent and neural networks. Afterwards, a methodology section will be

presented where all the details and assumptions followed by our model are explained. And lastly

the results will be presented and validated in the result and validation section. We will wrap up

this thesis with an insight of future applications and elaborations to our turn rate estimator model.

4

LITERATURE REVIEW

In the assortment planning literature, Ryzin and Mahajan 1999 where among the first to

focus on the tradeoff between the higher revenues achieved by larger product variation and the

extra operation costs imposed by this larger variety, including the inventory-related costs. In Ryzin

and Mahajan1998 they studied assortment planning problem related to non-configurable products

with a stochastic demand single period setting using Multinomial Logit (MNL) consumer choice

model which is a utility based model based on the assumption that customers buy the variant that

maximizes their derived utility. Their model optimized the initial inventory mix that should be

carried by a retail store in order to maximize the store’s profit, taking into account the effects of

stock outs by studying customer behaviors at those instances. Facing a stock out, a customer is

expected to either substitute to another variant, stock-out based substitution, or walk away. In

Ryzin and Mahajan 1999, the same inventory allocation model was elaborated to account for

assortment based substitution as well, which is the probability that a customer substitute his

primary preference with another variant having in mind that his preference is permanently not

carried by the store. Only one level of substitution was allowed, after which the customer is

supposed to walk away. In both papers the price allocated to the variants was assumed to be

exogenous to the model. A basic set of inputs for their formulation was the utility vector which

includes the set of utilities assigned to each product variant in the offered assortment along with

the no purchase utility. They interpreted these parameters as a measure of the net benefit to the

consumer from purchasing each variant (or not purchasing) which is also called consumer surplus

and is numerically represented as follows:

Uij= uij+€ij

5

Where uij’s are the deterministic portion of the utilities and are further decomposed to a quality

index minus the price of variant j,

uij=aij-pij.

€ij’s are the set of mutually independent random error terms that account for the unobserved

heterogeneity in the customers’ taste. According to the IIA assumption, Independence of

Individual Alternatives, this error term follows a Gumbel distribution with mean 0 and variance

µ*π/6.

Kok and Fisher 2007 also derived an exogenous probabilistic choice model for commodity

non-configurable products and utilized a novel substitution estimating approach by applying the

estimation maximization technique to the sales data. They modeled the consumer buying behavior

as a function of three decision variables: 1- Whether or not to buy from a subcategory, 2- which

variant to buy, 3- how many to buy. This technique has been heavily used in marketing literature

and can be expressed mathematically in the following manner:

𝑑𝑗 = 𝐾𝜋𝑃𝑗

Where K is the number of customers, 𝜋 is the probability of purchasing incidence, Pj is the choice

probability of variant j and qj is the quantity purchased by per purchase incidence. To account for

substitution, the effective demand of variant j is expressed as follows:

𝐷𝑗 = 𝑑𝑗 + ∑ ∝ 𝑘𝑗 ∗ 𝑑𝑘

𝐾𝜙𝑁

+ ∑ ∝ 𝑘𝑗 ∗ 𝐿𝑘

𝐾∈𝑁

Where dj is the direct demand to variant j, ∝ 𝑘𝑗 is the probability of a customer substituting from

variant k to j, dk is the direct demand for variant k,and Lk is the unmet demand of variant K. The

first summation represents the assortment based substitution where the customer substitute from a

variant that doesn’t belong to the carried assortment N to variant j in N. However, the second

summation represents the stock out based substitution, where a customer replace a variant k which

6

belong to N but is currently out of stock. The distinctive aspect about this paper is that it involves

a real life assortment planning problem along with real sales data, an approach to estimating the

parameters of the model, and a workable algorithm validated by the real data. They presented an

iterative optimization heuristic for the assortment planning and inventory problem with one-level,

stock-out based substitution subject to shelf space, lead time, and discrete maximum inventory

level constraints.

Yucel et al. 2009 branch out from the Kok et al and introduce a mix integer optimization

model for the joint problem of product assortment, inventory management, and supplier selection.

The output of this model is the optimal order quantities for each product, as well as the product

types that should be included in the assortment. Another novel approach of demand estimation was

presented in Ozturk et al. 2009. A special focus on how to estimate stock out based substitution

has been given in this paper. Their base model utilized the point of sale data and inventory

transaction records to estimate the probability of substitution as well as sale probability under the

assumptions of discrete time stochastic customer arrival rate, length of the POS interval is short

enough to ensure that the probability of having two arrivals during the same interval is negligible

and can be assumed zero, and only one level of substitution is allowed with probability psi δ. With

the above stated assumptions, arrival rate 𝜆i and sale probabilities of each variant i offered in an

initial inventory Io, 𝑆𝑖, 𝐼𝑜 can be expressed as follows:

𝜆i = lim(𝑇 → ∞)
1

𝑇
 ∑ 𝐴𝑖(𝑛)

Where Ai (n) is an indicator binary variable that is equal to 1 if a customer demanding product i

arrived in period n, and 0 otherwise

𝑆𝑖, 𝐼𝑜 = 𝜆𝑖 + ∑ 𝛼𝑖𝑗 ∗ 𝜆𝑗(1 − 𝜃𝑗, 𝐼𝑜)

7

Where, αij= δ*
𝜆𝑗

∑ 𝜆𝑙
 is the probability of substituting product i with j. The latter is defined according

to the market share based model

𝑆𝑖, 𝐼𝑜 Is the probability that a customer will purchase item i at POS interval n. Io is the inventory

status at the beginning of the POS interval, ϴj is a binary indicator variable that is equal to 1 if

product i is available in Io and zero otherwise.

All of the above papers focus on consolidated commodity products such as beverages, food,

detergents, shampoo, etc… Goker et al. 2009 on the other hand discusses the assortment selection

and pricing for configurable products such as computers, mobile phones, cars, etc… They

categorized the components that constituted the product into required components and optional

ones. They defined a variant’s surplus which is the difference between the customer utility from a

variant and the costs incurred by the firm for the variant. The variants that the company should

choose to include in the configuration are those with the highest surplus. They also defined an

attraction factor that rates the attraction of the whole configuration, and with that the company can

choose which configuration to include in their assortment. The MNL choice model has been

implemented to estimate demand without accounting for any type of demand substitution.

On the other hand, Ford came up with a different assortment planning approach, at the level

of dealers. Their goal was to generate order recommendation to dealers that better addresses the

given dealer’s market, and maximize their profits through reducing holding costs impacted by the

average weeks a vehicle is set to spend on lot, and costs associated with exchanging vehicles

between dealers. Ideally when a dealer orders the right configuration mix, they are expected to sell

faster, encounter less stock outs and apply less price promotions to get rid of slow moving items.

In their Smart Inventory Management System, SIMS, model they utilized statistical analysis and

neural network to predict vehicle turn rates in a given inventory mix. In the beginning a dealer’s

8

market is defined as a circle of 25 miles radius around the target dealer, this will allow the

inventory of the target dealer to be viewed in context of other inventory available in dealer market.

Accordingly a weighted market inventory for the target dealer is calculated using a weighting

function that associates metrics to the inventory available at competing dealers based on their

distance from the target dealer and adds the above product to the inventory available at the target

dealer. In other words, if a given dealer has 10 blue Fusions while another competing dealer 10

miles away with a weight w= 0.2 has 4 fusions, then the weighted market inventory will be

10+0.2*4=10.8. The weighting function is a monotonically decreasing function with a value 100%

when distance is zero, and slightly higher than zero for distances more than 140 miles. Similar

analysis is done for sales data. Secondly, the inventory and sales data are broken into the feature

level, then configuration feature vectors are normalized according to the mix rate modulated

technique which will be explained in further details later in this paper.

For computational simplicity, they applied PCA technique to reduce the dimensionality of

the feature vector that will be later inputted into the neural network. In addition to the mix rate

modulated feature vectors, a set of context variables will be inputted to the neural network which

will capture all the market related characteristics such as dealer latitude and longitude, dealer item

market inventory, retail/stock order type indicator, numbers of weeks on lot, dealer fraction of item

market inventory, and market turn rate. A vector of binary variables representing the sold status of

a given vehicle on lot on a given week, is passed to the neural vector in the form of target variable.

Using survival analysis techniques, the neural network will be able to predict the turn rate of a

vehicle with a given normalized feature vector, after being trained on a set of historical inputs and

known outputs. During the training process the model will assign certain parameters to each input

variable, to generate a predictive function for the designated output. The neural network training

9

process will then adjust these parameters in response to the applied input variables to better match

the output of the neural network with the real historical target values.

Later in the SIMS model, after they assign a turn rate for every configuration, mixed integer

optimization model called “Feature Allocation Optimization” was formulated with an objective to

minimize the difference between the target inventory mix rate and the current mix rate at the

feature level subject to production and material availability constraints. The target inventory mix

rate is set in a way that guarantees a balanced inventory where inventory mix for a given feature

is aligned with its sales mix. For example the graph below shows the projected sales and mix rates

of two variants of the engine. To attain a balanced inventory the top 2 curves should overlap as

well as the bottom 2 curves.

Figure 1 Sales and Inventory Mix Rates as a Function of Time

10

METHODOLOGY

Assumptions

1- Ignoring the Differences in The Buying Behavior From One Consumer to Another

The model considers that the customer’s choice is fully determined by the inventory mix

available on lot, and is independent of the customer’s personal characteristics. It does not

differentiate customers belonging to different age groups, financial statuses, region of residency,

and so on. On the average, all customers in the US market are expected to have the same choice

behavior when exposed to the same inventory mix.

2- Ignoring Seasonality in Sales Data

According to Ford’s analysis of their sales data, seasonality has a negligible effect on the

projected turn rate of a variant of a given feature relative to other variants in the same feature

family. The graph below, for example, shows that the variation of the relative turn rate of I4 to V6

engine is fairly constant over time. Thus we can safely ignore seasonality effects without leaving

any bad impact on the accuracy and precision of the model.

Figure 2 Variation of I4 and V6 Engine's Turn Rates as a Function of Time

11

1- Decomposing the US Market into Regional Submarkets

We decomposed the US market into 17 different regional markets, which are listed in appendix

A. Dealers in a given regional market have access to the inventory available in the whole market

and they can easily trade vehicles without extra costs incurred on their end. So, whenever a

customer walks into a dealership he will have the freedom to pick from the inventory available in

all the dealerships located in this given region. On the other hand, no interaction is allowed across

separate markets.

2- Considering Most Popular Features in Defining the Available Configuration Set,

Core Entities

A configuration is best defined as a combination or arrangement of a set of feature variants.

Knowing that for The Car model there are two different technologies to start with, Standard and

Hybrid. For standard technology we have 4 different super-families, Power and Handling, Interior,

Exterior, and Safety, each having 4 different feature families on average, and 5 variants each on

average. Therefore, an assortment can include up to 2^80 possible configurations. Plenty of design

and manufacturing constraints will shrink down the size of the assortment into a set of buildable

configurations, nevertheless the assortment will still be a fairly large one. For this reason, we had

to reduce the dimensionality of the feature vector by focusing on primary features which are

assumed to have the highest influence on customer choice. Configurations are then encoded by a

binary vector, whose length is determined by how many features are being considered. For each

feature in the list, a value of 1 is assigned in a field associated with it, if the feature exist with

respect to the given configuration, and a value of zero otherwise. The table below shows all

considered features.

12

1- Cargo Cover 2- Radio

3- Ultimate Package 4- Rear Heated Seats

5- Heated Seats 6- Reverse-Sensing

System

7- Elite Package 8- Satellite Radio

9- Rear

Entertainment

System

10- Sound System

11- Roof Rack 12- Trailer Tow

Package

13- Moon Roof 14- Special Wheels

Table 1 Core Entities Used in Our Model

3- Ignoring Feature Interactions

This assumption states that the relative attractiveness of a given feature is independent of the

set of other features present in a configuration. In other words, it ignores the feature packaging

effects on the customer’s choice. For simplicity in our analysis, we considered a package as a unity

and treated it as a single feature. This assumption is derived from all Logit choice model which

restrict the explanatory variables to be independent and have fixed utilities. In our case, the

presence or absence of a given feature represents the independent variable, and the utility is

reflected by its associated customer attractiveness. For example, the attractiveness the moon roof

option is fixed over all possible configurations independent on what other features are offered with

it.

4- Removing Censored Data

 The SIMS model utilizes the survival analysis technique to estimate from a set of historical

sales data, how likely a given configuration will sell when present with a set of other

configurations. Some of the vehicle records available in the Car model dataset, doesn’t indicate a

day of sale because their selling incidence didn’t occur by the time of the close of the study. This

13

phenomenon is called “Censoring”, and will lead to underestimating the probability of sales of a

given configuration if not properly mitigated. As a definition, a record is said to be censored when

information on time to event is not available due to loss to follow-up or non-occurrence of outcome

event before the trial end. In our model, we eliminated those records from the dataset that was

inputted to the neural network after applying the mix rate modulation.

Model Formulation

Data Preprocessing

For preprocessing the dataset in hand, we applied the mix rate modulation technique in

order to normalize the configuration feature vector. A feature level inventory mix rate is best

defined as the ratio of vehicles available in stock at a given period and market, having a certain

feature, out of the total number of vehicles carried in the inventory. The modulation technique will

take these mix rates and will subtract them from the binary vector representation of the vehicles’

configurations available on lot in order to generate a compact representation of these

configurations, reflecting its’ relation to the inventory mix defined at the feature level. Elements

of these mix rate adjusted feature vectors are continuous variables bounded between -1 and 1 ,

because the mix rates themselves lies in the [0,1] interval and are positive whenever a feature is

available in the given configuration, and negative otherwise. This modulation is characterized by

its ease of reverse, since it’s almost always possible to recover the original binary configuration

vectors, except for one case where all items carried in the inventory on that particular period do or

don’t carry a particular feature. In this case in particular, we can remove that feature from our

analysis because there will be no variation encountered at its level.

Furthermore, the modulation holds the following property, Property1, which states that

the sum of the values across all features within a feature family for a given record are equal to

14

zero, and the average value across all records for a given feature in any given time interval must

be equal to zero. In order to satisfy this property, the configuration vector should include all

possible alternatives for a given feature. For example if we have 2 extra options for car seats,

“Front Heated Seats”, and “Front & Rear Heated Seats”, we should include 3 separate columns in

the input matrix each standing for one extra option, and the additional column will represent the

standard form of the feature, in our case it will be “No Heated Seats”. In this way all possible

configurations will be covered, and the sum of normalized values across all features for a given

record will be zero.

In our model, for the sake of reducing dimensionality of the input space, we only

considered features which were chosen by The OEM’s marketing department to have the highest

effect on the customer’s choice. Moreover, since we are not studying packaging effects and the

interaction between features, we considered the packages which were offered to the US market in

year 2007/2008 as a single feature.

In summary, the input feature vector will be a single row vector combining all the feature

variants listed in the table below. Notice that Elite Package column has been duplicated because

this package acts as an alternative to 2 different features, Rear Entertainment System and Roof

Rack. Thus for the elements of our input feature vectors to sum up to zero according to the Property

1, this package column should be counted twice.

15

Feature Variant 1 Variant 2 Variant 3

F1 Ultimate Package Heated Seats Non

F2 Elite Package Rear Entertainment

System

Non

F3 Elite Package Roof Rack Non

F4 Moon Roof Non

F5 Radio Non

F6 Rear Seats Non

F7 Reverse Sensing

System

Non

F8 Satellite Radio Non

F9 Sound System Non

F10 Trailer Tow Package Non

F11 Special Wheels Standard Wheels

Table 2 List of Variants for Each Feature Family1

Now that the feature vector is defined, it will be encoded as a binary array explained in assumption

4 and will contain 27 elements. Each vehicle in the dataset will be associated with a feature vector

to describe which features it conveys. In the Car model sales dataset, we had 579 unique

configurations. For simplicity we ranked those configurations randomly from 1 to 579, so that we

can refer to each one by its assigned ranking rather than a 27 element binary vector.

Next step in the mix rate modulation process, is to categorize sales records based on their

location, then discretize on a weekly basis. Take Boston area for example, we have 1128 vehicles

1 The cells with “Non” values stand for the No feature option, empty cells means there is no third variant for that
particular feature

16

arriving into the market in the period 2006/2007, total of 44 weeks. Those vehicles were randomly

ranked from 1 to 1128 to keep track of each as it get transmitted from one week to another. We

recorded all the vehicles available at a given week N, where N extend from 9 to 44, by considering

those vehicles that arrived before week N and was either sold during week N or later. After

attaining the inventory mix at week N, mix rates for every feature in the feature vector will be

calculated by averaging the value of the feature element within the feature vector across all

vehicles available on lot at that particular field. In other words, the mix rate of feature I is the

fraction of vehicles carrying I out of the total number of vehicles available on lot. This mix rate is

later subtracted from the 1 or 0 encoded in the feature field of each vehicle available in the

inventory set yielding to a negative value in those vehicles that doesn’t carry the feature, and a

positive value less than 1 otherwise.

Meanwhile, another variable which indicates whether or not a given vehicle was sold on

that given week is defined. We called this binary indicator variable as sold status, and assigned it

a value of 1 if the vehicle sold week matches the current week in hand, and 0 otherwise. For

example if a vehicle V arrives on week 5 and got sold on week 9, it will show up in the inventories

of the weeks 5 through 9, and it will have a sold status =0 on weeks 5,6,7,8 and sold status=1 on

the 9th week.

The same procedure is repeated for every week, and every region out of the 17 US regions.

Using Matlab as a tool, the weekly mix rate modulated vectors for each region, were generated

and stored in a matrix. We will refer to this matrix as ‘Global’ throughout this thesis. Moreover,

the Matlab code will also generate a ‘Sold Status’ vector that indicates the sold status of each

vehicle in the record.

17

Neural Network Regression Model

As previously mentioned, Neural Network is the tool used in our regression model to

calculate the expected inventory turn rates at the configuration level. The input to the neural

network is the Global matrix, which includes the set of mix rate modulated feature vector available

in the 17 regional markets over the period extending from week 9 till 44. On the other hand, the

Sold Status vector will constitute the neural network target variable.

 Several limitations are imposed on this predictive model due to the nature of the sales

dataset, and the kind of output we are anticipating. Consequently, the built in neural network tools,

offered by Matlab, didn’t generate the required level of accuracy in its generic form. For this

reason, we customized our own neural network script that better mitigates the some of the

encountered limitations.

Limitation 1: Limited Number of Records

The feature vectors inputted into the neural network is made up of 27 elements, as described

in the data preprocessing section above. This large variable space requires a significantly huge

number of records in order to capture the contribution of each input to the final outputted result

which is the sold status in our case. The limited number of sales record available in our dataset

will definitely introduce accuracy problems to the neural network.

Limitation 2: Data Sparsity and Class Imbalance

From the historical sales records, it is observed that on average a vehicle is expected to

remain 6 weeks on lot before it gets sold. Thus, for each vehicle we will have 6 sold statuses equal

to zero and only one sold status equal to one. The generated sold status vector will then have 6

times more zeros than ones. This sparse target vector will enforce limitations on the neural

network’s ability to learn how to classify vehicles as sold or not. Getting rid of censored data is

18

one way to mitigate this problem. Another way is to replicate the records which have a sold status

equal 1, six times each, so that a balance in the target vector is created. In that way the neural

network will have better ability of predicting the sold status of a given feature vector. Note that

class imbalance only effects the ability of a neural network to classify its outputs onto one of the

classes mentioned in the target vector. However, it doesn’t have any effects on the regression fit

model which will still generate accurate turn rates even if the target vector is not balanced.

 Limitation 3: Variation in the Popularity of Configuration

Certain vehicles are significantly more popular than others and thus they should be given

higher importance in the penalty function calculation. In other words, errors encountered in the

predicted turn rates of those popular configuration must be highly penalized, as compared to those

rarely ordered vehicles. Therefore, we introduced a weight vector into the neural network’s penalty

function in that way the neural will be trained to give more importance to those vehicles with

higher weights. The weights are defined according to the formula below:

𝑊𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑊𝑒𝑒𝑘𝑠 𝑓𝑜𝑟 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑊𝑒𝑒𝑘𝑠 𝑅𝑒𝑐𝑜𝑟𝑑𝑠

 In this context, vehicle weeks represents how many times a given vehicle appears on lot before

it gets sold and is numerically calculated by taking the product of the vehicle count by their

associated weeks on lot:

Vehicle Weeks for Configuration A= ∑ 1𝑥𝑊𝑂𝐿𝑖𝑛
𝑖=1

Where n is the number of times a dealer received vehicles of configuration A, WOLi is the weeks

on lot spent by each vehicle I, and 1 is the count of vehicles received at each incident n, since each

sales record represents 1 vehicle only. For example if we received 10 vehicles of configuration A,

and each one remains 3 weeks before it got sold, the number of vehicle weeks for configuration A

will be the product of the count with the weeks spent on lot, 10x3=30.

19

Customized Neural Network Script

Before inputting the Global matrix into the training function, it’s preferable to standardize

the feature vector so that the mean of all inputs across one record is equal to zero. Standardizing

the inputs and target variable is desirable because it rescales those variables so that their variability

reflects their importance, makes training faster, and reduce the chances of getting stuck in local

optima. Also, weight initialization, weight decay and Bayesian estimation can be done more

conveniently with standardized inputs. For this matter, we utilized the ‘mapstd’ process function,

which process the matrix by transforming the mean and standard deviation for each row to 0 and

1, for both the input and the output layers.

To start creating the neural network, one should first define the network object. For this

purpose we used ‘newff’ function which by default creates a 2 layer feedforward neural network

and requires 3 obligatory input arguments, input vector, target vector, and number of neurons in

the hidden layers. Note that the output layer size is determined from the target vector. In addition

to 3 other optional arguments which can be used to customize the functions used in the neural

network including transfer function to be used in each layer and the utilized training function. If

only three arguments are supplied, the default transfer function for hidden layers is ‘tansig’ and

the default for the output layer is ‘purelin’. The default training function is ‘trainl’. The reason we

chose newff to create a feedforward neural network although it has been obsolete since 2010, is

that newff is the easiest to customize than any other feedforward function including ‘fitnet’, which

is the new data fitting function, and ‘patternnet’, which is the pattern recognition function.

We already know that the optimal number of hidden neurons lies somewhere in the middle

of the interval extending from the number of outputs to the number of inputs, in this case the

interval is [1,27]. A good initial guess will be 10 neurons, thus we initialized our model based on

20

that and then iteratively ran the network, recorded the average turn rate across all records and

compared it to the average historical turn rate. After several trials, we figured out that the most

precise results were generated when the number of hidden neurons was equal to 15.

For the hidden layer, we kept the default transfer function which is the ‘tansig’ function.

The fact that ‘mapstd’ was used as a post processing function, limited our options to using either

linear transfer functions or hyper tangent function at the output layer. However, since the output

represents the probability of sales, the range of output variables should be bounded by 0 and 1.

Therefore, the use of ‘purelin’ transfer is a must to satisfy both constraints. Knowing that, if

linearity wasn’t mandatory, ‘logsig’ transfer function would have generated more accurate results

due to its higher flexibility and degrees of freedom.

The penalty function used in this network is the ‘mse’ which compute the mean squared

normalized error between the network outputs and the target outputs t. In Matlab, the syntax of

this function is the following:

21

perf = mse(net,t,y,ew)

net Neural network

t Matrix or cell array of targets

y Matrix or cell array of outputs

ew Error weights vector defined

above

Table 3 Parameter Definition on the Performance Function

Now this penalty function is passed to the neural network through the performance function,

(net.performFcn), which is later used as part of the neural network training. During training, the

weights and biases of the network are iteratively adjusted to minimize the network performance

function using the backpropagation technique derived from the chain rule of calculus.

Backpropagation perform gradient computation backwards through the network, and moves

weights in the direction in which the performance function decreases more rapidly.

We had two different approaches to solve this problem, the first one is to treat it as a

regression model that tries to fit a relation between the individual feature elements and the targeted

binary sold status, SS, and will generated a continuous output, Yc, ranging between 0 and 1

representing the probability of sales for each record. In this case, the performance function will

penalize the neural network by calculating the error between the Yc and SS. The second approach

treats the problem as a classification problem, where the objective is to correctly classify each

vehicle as being sold or not at a given week. Note that the train function will still fit a regression

function between inputs and target vectors, and will still generate a continuous variable Yc,

however the performance equation should now penalize the error between the classified output of

the neural network with the SS target variable. In this matter, class imbalance problem should be

22

mitigated by applying the balancing technique described above, and Yc should be converted to a

binary classified variable which we called Yclassified. For this conversion we defined a threshold

T=0.5 for Yc values, beyond which the vehicle is considered as sold. In other words, if Yc exceeds

0.5 then its corresponding Yclassied will be equal to 1, otherwise it will be zero. Below are the

functions used to define Yclassified and the performance arguments:

Yclassified= round(y-T);

Performance = perform(net,t,Yclassified);

To study the effect of class balancing on the neural network, we ran a benchmark classifier

model, where data were inputted with its unbalanced format, and the classification threshold was

set to be=0.14, which is the average historical turn rate for all configurations calculated manually.

We then compared the accuracy of this model with the balanced classifier model.

23

RESULTS AND VALIDATION

Using Matlab 2014a student version, we ran the two neural network codes explained above

to evaluate the first set of results which is the conditional turn rate for each vehicle-weeks record

in the dataset. We call those outputs conditional because their values are directly related to the

inventory mix which was available on lot on a particular week in a given market location. For

example the same vehicle which stayed on lot from week 3 till 7, will have 5 different turn rates

values depending on the inventory mix that was available with it during each week. The goal now

is to find a correct way of converting those conditional turn rates into unconditional, where each

configuration is characterized by a single turn rate independent from the inventory accompanying

it, this is consider the second set of outputs from our model.

Conditional Turn Rate Analysis

First, we ran the neural network in a “For loop” of 20, 60, and 100 iterations, and took the

average of the turn rates across those iterations. Averaging is the simplest and most effective way

to diminish the effects of randomness and noise in the generated readings. By averaging a set of

replicated measurements, the signal-to-noise ratio, S/N will be proportionally increased with the

square root of the number of measurements. This relation is expressed in the formula below:

𝑆′

𝑁′
=

𝑛𝑥𝑆

√𝑛𝑥𝜎^2
= √𝑛

𝑆

𝑁

Where S’ and N’ are the averaged signal and noise values, n is the number of readings, and S and

N is the signal and noise strength for a single reading.

First step in the validation process, was to make sure that the neural network is precise

where the coefficient of variation which is the ratio of the standard deviation to the mean of the

turn rates predicted for a given configuration, is far less than 1. Then evaluate its accuracy as

compared to the historical data. Resulting plots are shown in the sections below.

24

Regression Approach

For each record, we took the average turn rate of all the predicted values outputted from

the neural network across the 100 iterations. We then recorded the standard deviation for those

discrete values, and plotted it as a function of the mean. The scatter plot below proves that the

coefficient of variation is fairly smaller than 1.

Figure 3 Standard Deviation As a Function of The Mean of the Neural Network Output

 Due to the complexity of manually calculating the weekly conditional turn rates, we came up with

a simplified way to perform the comparison between the neural network’s outputs and the

historical turn rates where we defined a variable called manual turn rate as shown below:

(𝑀𝑎𝑛𝑢𝑎𝑙 𝑇𝑢𝑟𝑛𝑅𝑎𝑡𝑒)𝑖 =
1

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑒𝑘𝑠 𝑜𝑛 𝐿𝑜𝑡)𝑖

Where, average weeks on Lot for configuration i is calculated by first grouping all vehicles

received on lot belonging to configuration I, then recording how many weeks on lot each one spent,

and later averaging those values.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6

St
an

d
ar

d
 D

ev
ia

ti
o

n

Mean

Standard Deviation Versus Mean

25

The result will be a vector of 579 items, where each configuration is characterized by one

manual turn rate. We refer to this vector to populate the turn rates for every vehicle available on

lot in a given week and then compare them to the neural network estimates for that particular week.

Definitely the neural network outputs won’t perfectly match the manually calculated turn rates

because they are conditional to the weekly inventory mix whereas the latter is an averaged value

independent of the current week’s inventory mix. However, this analysis can be accepted given

the fact that the turn rate for a given configuration is supposed to slightly vary as the inventory

mix changes. We expect the trend of the predicted versus historical turn rate plot to be as close as

possible to a straight line. The graphs below show the various plots for the 20, 60 and 100 iteration

model, where the R squared estimator is used to evaluate accuracy.

Figure 4 Conditional Regression Neural Network Predictions Versus Manual Historical Turn

Rates

26

Classification Approach

Similar analysis was also applied to the balanced and unbalanced classifier model’s outputs

and results are plotted below. For the unbalanced model, we only made one run of 60 iterations

because our purpose here is not to track the improvement in results as the number of iterations are

increased, but to have a benchmark to measure the effect of data balancing.

Balanced

Figure 5 Conditional Classifier Balanced Neural Network Predictions Versus Manual

Historical Turn Rates

27

Unbalanced

Figure 6 Conditional Classifier Imbalanced Neural Network Predictions Versus Manual

Historical Turn Rates

Unconditional Analysis

The main objective of this research is to estimate turn rate for a vehicle configuration,

depending on its feature vector. Thus for our output to be useful in real future applications, it

should be undocked from the inventory mix that was available at the period when the configuration

turn rates were calculated so that it becomes applicable at any given inventory scenario. For this

reason, we should convert the first set of neural network outputs which are conditional upon the

weekly inventory mix which was available in the historical dataset to an unconditional form where

each configuration is characterized with one turn rate independent of the available inventory mix.

28

Mean as Transformation Function

Averaging the generated conditional turn rates for each configuration over the study period,

37 weeks, and the 17 different market locations is the simplest way to convert it to an unconditional

form, given that the single records are characterized by low variability and fall in a small interval

around the mean. The plots of the averaged turn rates versus the manual turn rates shown below

reveal a high correlation among the two parameters which proves that the neural network’s outputs

are directionally correct.

Regression Model

Figure 7 Averaged Turn Rates Versus Manual Historical Turn Rates For Regression Model

29

Classifier Balanced Model

Figure 8 Averaged Turn Rates Versus Manual Historical Turn Rates For Classifier Balanced

Model

Discussion

Looking only at the conditional plots in the section above, one can claim that the classifier

model over performs the regression model due to the significant difference in the R squared of the

linear fit of NN Outputs versus Manual Historical Averaged turn rates, 0.32 versus 0.07. However,

after plotting the averaged NN Outputs and plotted it against the manual averaged turn rate, the

goodness of the fit improved significantly in both of the models and they converged to a very close

level of accuracy 62% versus 71%. This urged us to use different approaches to evaluate the

accuracy of those models. On the other hand, as we compare the R squared parameter for the trend

lines of the graphs for both forms of classifier model, balanced and unbalanced, we notice that the

accuracy of the fit significantly increased from 0.44 to 0.499 for the unconditional averaged turn

rates and from 0.0717 to 0.315 for the conditional un-averaged turn rates, as we introduced the

30

data balancing into the classifier model. This signifies the important effect of data balancing on

the classifier’s accuracy.

 To justify the reason why we chose to measure the weighted average error rather than the regular

average error, we plotted the relative error associated with each configuration versus its popularity

in the dataset. The graph below visualize the relationship between these 2 parameters.

Figure 9 Relative Estimation Error as a Function of Configuration Popularity

It is shown in the graph above that the majority of configuration have a popularity level

less than 0.05. This extremely low repetition of those configuration is blocking the ability of the

neural network to learn about their sale’s behaviors and thus leading to significantly high errors.

However, for those more popular configurations with a popularity higher than 0.02, the error level

considerably dropped to values below 0.2. As a conclusion, it is extremely important to input those

weights in the error estimation function to be able to bias the average error value in favor of the

popular configurations. Arriving to this conclusion gives us a positive intuition towards the ability

of neural network to predict turn rates, since whenever we feed it with enough measurements for

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

R
el

at
iv

e
Es

ti
m

at
io

n
 E

rr
o

r

Popularity

Error Versus Popularity

31

a certain configuration, it is able to predict the correct output with 90% accuracy. Therefore, if we

received a better dataset in the future and we applied the same methodology we should arrive to

better results.

Risk Adjusted Turn Rate Transformation Function

Another way to perform this conversion is by using the formula below:

𝑌ℎ𝑎𝑡 = 𝜇 − 𝛼 × 𝜎

 Where Yhat is the unconditional estimate of the turn rate for configuration X, µ is the mean of all

the records associated to configuration X, α is the importance factor given to the variability of the

records, and 𝜎 is the standard deviation. This parameter has been referred to as the risk adjusted

average turn rate by the Ford’s Patent.

The privilege of using the risk adjusted turn rate, is the fact that it takes into account the

variability of the turn rate estimates and generate an averaged value characterized by low variance.

As we notice from the Standard Deviation versus mean scatter plot below, high average turn rates

are associated with high σ, whereas low averages are associated with low σ. Therefore, the optimal

turn rate value to be picked is somewhere in the middle of this range. The only decision variable

in this context is the scaling factor α which should be optimized to generate the most accurate

averaged turn rate.

In order to decide on the optimal value of alfa, we built an optimization model in excel

whose objective function is maximizing the correlation factor between the Rhat estimates and the

manually calculated historical turn rates. And its subject to boundary constraints that bounds Rhat

between 0 and 1. Below is the exact formulation of the maximization problem:

Objective Function: Maximize

32

Where 𝑥̅ 𝑎𝑛𝑑 𝑦̅ are the sample mean for x and y

St.: Constraints: 0 ≤ 𝑌ℎ𝑎𝑡𝑖 ≤ 1 for every I

Alfa is allowed to vary from -∞ 𝑡𝑜 + ∞

The results are presented in the table below:

 Regression Classifier

Alfa Value -4.7292 -1.30622

Maximum Correlation 0.778726 0.854114

Average Total Error 0.369895 0.185302

Table 4 Risk Adjusted Turn Rate Alfa Optimization Results

Average Total Error= ∑
|𝑅𝑖−𝑅𝑖ℎ𝑎𝑡|

max (𝑅𝑖,𝑅𝑖ℎ𝑎𝑡)𝑖

Where i is the set of weeks going from 9 till 34.

The plot below visualize the correlation between the estimated turn rates and the real historical

turn rates.

33

Figure 10Risk Adjusted Turn Rates versus Manual Historical Turn Rates for Regression Model

Figure 11Risk Adjusted Turn Rates versus Manual Historical Turn Rates for Classifier Balanced

Model

y = 0.2293x + 0.0697
R² = 0.6064y = 0.0687ln(x) + 0.2488

R² = 0.5351

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2

N
N

 T
ra

n
sf

o
rm

ed
 T

u
rn

 R
at

es

Manual Turn Rates

Unconditional Regression NN Turn Rate Versus
Manual Turn Rate alfa=-4.729

y = 0.1823x + 0.1631
R² = 0.7295

y = 0.0628ln(x) + 0.3209
R² = 0.8503

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

N
N

 A
ve

ra
ge

d
 O

u
tp

u
t

Manual Historical Turn Rate

Averaged Unconditional NN Turn Rate Versus
Historical 100 Iterations- Alfa=-1.306

34

Exponential Transformation Function

From the graphs above, we noticed that a logarithmic fit generated a higher R squared than

the linear fit. Inspired by this result, we came up with another transformation function which takes

the exponent of the risk adjusted turn rates.

𝑌ℎ𝑎𝑡 = 𝑒𝑌ℎ𝑎𝑡 𝑅𝑖𝑠𝑘 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑

The graph below shows the improvement in the correlation between the estimated unconditional

turn rates and the manual historical averaged turn rates.

Figure 12 Exponent of Risk Adjusted Turn Rates Versus Manual Historical Turn Rates
For Regression Model

35

Discussion

To summarize the results above, we noticed that factoring the variability of the turn rate

records into the transformation equation, had raised the correlation between the estimated and the

real historical turn rates. This proves that the risk adjusted value is in fact an effective

representation. Moreover, the further increase in R squared resulting from the exponential

transformation indicated that the rate of increase in the manual historical turn rate is faster than

that of the neural network outputs which makes it more in line with the logarithm of the manual

turn rates rather the manual turn rates themselves.

Simulator

For the sake of evaluating the accuracy of this conversion, we built a simulator that

generates random customer choices at a given week, allocated based on the estimated

unconditional turn rates, Yhat of the available configurations, then records the vehicle count for

every configuration and compares it to the real historical counts. At this level we are going to

simulate the outputs of the three different transformation functions listed above and verify which

one is going to behave better under random choice simulation.

For example, if in the real life scenario we had 3 Black cars, 4 Red, and 6 Yellow at a given week,

and 2 Blacks, 1 Red were sold we will be left with 1 Black, 3 Red and 6 Yellow at the end of the

Figure 13 Exponent of Risk Adjusted Turn Rates versus Manual Historical Turn Rates for
Classifier Balanced Model

36

week. Now the simulator will take this initial inventory (3 Black cars, 4 Red, and 6 Yellow), and

generate 3 random choices based on the estimated turn rates of each configuration, which may or

may not match the actual sold vehicles. According to the laws of probability, the vehicle with the

highest turn rate are more likely to be chosen by the simulator and thus sell faster. Now, if those

turn rates were representative of the real life customer preferences, the simulated inventory should

converge to the actual one. If for example the simulator suggested 1 Black, 1 Red, and 1 Yellow

sold vehicles, we will end up with 2 Blacks, 3 Reds, and 5 Yellow. Now, the weighted average

error is calculated as follows:

𝐸𝑟𝑟𝑜𝑟 =
3

13
×

𝑎𝑏𝑠(1 − 2)

max (1,2)
+

4

13
×

𝑎𝑏𝑠(3 − 3)

max (3,3)
+

6

13
×

𝑎𝑏𝑠(6 − 5)

max (6,5)

The above equation gives a higher weight to the relative errors of those popular vehicles by

multiplying it with the ratio of the vehicle count of this given configuration to the total number of

vehicles available on lot during that week.

Simulator Description

We only considered the sales data for Boston market for simulation purposes, starting from

week 9 through week 43. The first step in the simulator calculates the vehicle counts in the

historical dataset for every configuration in every week of the period extending from week 9 till

43 which will act as a benchmark to determine the deviation of the simulated inventories from the

actual ones. Afterwards, a vector of weights is generated for every week, representing the ratios

of vehicle count for each configuration to the total number of vehicles available on lot on a

particular week. These weights will later be multiplied by the relative error of simulated and

historical inventory as shown in the equation above.

Second step the actual simulating portion. To initialize the inventory at the beginning of

every week, we equated the inventory level at the beginning of every week t to the real historical

37

inventory at the end of week t-1. This will reset the inventory level at the beginning of every week

to the real inventory that was available in the historical data in order to eliminate the propagation

of simulation error from one week to another. After initializing the simulator will add the vehicles

that arrived at the beginning of week t then it will count how many vehicles were sold on that week

in order to know how many random numbers to generate. Accordingly, N random numbers

between 0 and 1 will be generated representing N random customers walking into the dealer market

and buying a vehicle.

Now to classify those random numbers into actual vehicle choices, we need to generate

choice intervals based on the available set of configurations. This step is done by first identifying

M which is the number of unique configurations available after adding the arrivals on week 10,

then pulling the associated unconditional turn rates Rhat calculated in the previous step, and later

normalizing those Rhat’s to generate M choice sub intervals between 0 and 1 based on which the

random numbers are assigned to configuration choices. The example below demonstrate the

normalization and choice allocation procedure.

Take the same inventory mix mentioned previously, with the following assigned Rhats,

Configuration Count Rhat

Black 3 0.32

Red 4 0.2

Yellow 6 0.15

Table 5 Sample Simulator Example

Now to normalize the Rhat’s we divide each by the sum of Rhat’s associated with the available

configurations,

𝑌1 =
𝑅ℎ𝑎𝑡1

𝑅ℎ𝑎𝑡1+𝑅ℎ𝑎𝑡2+𝑅ℎ𝑎𝑡3
=

0.32

0.32+0.2+0.15
=0.4776;

𝑌2 = 𝑌1 +
𝑅ℎ𝑎𝑡2

𝑅ℎ𝑎𝑡1+𝑅ℎ𝑎𝑡2+𝑅ℎ𝑎𝑡3
=0.4476 +

0.2

0.32+0.2+0.15
=0.7762;

𝑌3 = 𝑌2 +
𝑅ℎ𝑎𝑡3

𝑅ℎ𝑎𝑡1+𝑅ℎ𝑎𝑡2+𝑅ℎ𝑎𝑡3
=0.7762 +

0.15

0.32+0.2+0.15
=1;

38

 0 0.4776 0.7762 1

Now if the generated number lies between 0 and 0.4776 it will be assigned to the black

configuration, if it was between 0.4776 and 0.7762 it will be assigned to the Red configuration,

and Yellow otherwise. Notice that the biggest interval refers to the vehicle with the highest Rhat.

Suppose that the generated random numbers were 0.2, 0.5, and 0.8, then the associated 3 random

customers choices will be as follows: Black, Red, and Yellow.

After specifying these random choices, the inventory counts will be adjusted accordingly

by subtracting the chosen vehicles from the current inventory to generate I1, which will be later

inputted as an initial inventory to the next iteration at week 11. The same steps are then repeated

for every week till week 43, and the vehicle counts are recorded at each week. In order to minimize

the effect of randomness and noise, we run this simulator for 100, 500, 1000, 5000, and 10000

iterations and recorded the average of vehicle counts across all the iteration. Then the weighted

relative errors between the averaged simulated vehicle counts and the historical counts, is

measured and projected in order to evaluate the accuracy of Rhat estimates used. The flow diagram

explains the steps followed for this purpose.

 Black Red Yellow

39

Figure 14 Flow Chart for Count Simulator

Three different error functions were used to evaluate the output of the simulators:

 EWW:

o Weighted Relative Error=∑ 𝑤𝑖 ∗
|𝐶𝑖−𝐶ℎ𝑎𝑡𝑖|

max(𝐶𝑖,𝐶𝑖ℎ𝑎𝑡)𝑖 where wi is the ratio of number of

vehicles belonging to configuration I relative to the global number of vehicles

availble in the market

 EWR

o Relative Error=∑
|𝐶𝑖−𝐶ℎ𝑎𝑡𝑖|

max(𝐶𝑖,𝐶𝑖ℎ𝑎𝑡)𝑖

 EWC:

o Error in Vehicle Count=|𝐶𝑖 − 𝐶ℎ𝑎𝑡𝑖|

Calculate vehicle counts for all carried
configurations on a weekly basis

Step 1

Count how many unique
configurations are there on lot and

normalize their turn rates (Rhat)
accordingly

Step 4

Set up the choice intervals and assign
each random number to a

configuration choice

Step 5

Subtract chosen vehicles from In and
record the count of vehicle for that

week

Step 6

Set the initial inventory at week t
equal to the historical inventory

found at the end of week t-1

Step 2

Add the vehicles arriving at the
beginning of week t then Count how
many vehicles were and generate an

equivilent number of random
variables in the interval [0,1]

Step 3

40

Results Summary and Discussion

Classifier:

 EWW EWR EWC

Mean 0.45 0.388 2.812

Risk Adjusted 0.44 0.378 2.809

Exponential 0.43 0.376 2.806

Table 6 Count Simulator Results When Simulating The Classifier Turn Rates

Figure 15 EWW, EWR, and EWC Variation as a Function of Week Period For Classifier

Simulation

Regression:

 EWW EWR EWC

Mean 0.24 0.32 1.22

Risk Adjusted 0.23 0.30 1.21

Exponential 0.22 0.29 1.21

Table 7Count Simulator Results When Simulating The Regression Turn Rates

41

Figure 16EWW, EWR, and EWC Variation as a Function of Week Period For Regression

Simulation

Sales-Based Simulator

In this model, our measuring criterion is the count of sold vehicles of each configuration

on a given week, instead on inventory counts. In further details, we start the first step by recording

how many vehicle were sold of each configuration on weeks 9 through 43 in real historical dataset

which will act as a benchmark to determine the deviation of the simulated inventories from the

actual ones. Afterwards, a vector of weights is generated for every week. This stage requires

several steps, starting by summing up the total number of vehicles sold for every configuration

over the whole time horizon Si. Then we will filter out the inventory of every week and identify

the unique configurations available on that week. Finally, we calculate the week specific weights

as follows:

42

𝑊𝑖𝑡 =
𝑆𝑖

∑ 𝑆𝑗
 Where i is one of the configurations available on lot, and the set of j’s is the set of

configuration available on week t.

These weights will later be multiplied by the relative error of simulated and historical inventory to

attain a single scalar value representing the deviation at a given week.

The third step of the simulator, is the actual customer choice simulation step which is very

similar to the simulation step explained in the model above. To count the number of sold vehicles,

we define a vector Vcount of zero values assigned to each vehicle-week record from week 9 till

43. Then every time a choice is randomly picked we increment the Vcount element corresponding

to that particular vehicle-week record by one. Finally, the model is evaluated via several error

functions which are listed below:

1- |Si-Sihat|/∑Sij

2- Wij*|Si-Sihat|/∑Sij

3- Wij*|Si-Sihat|/max (Si, Sihat)

Figure 17 Flow Chart for Sales Simulator

Step 1
•Count number of vehicles
sold of each configuration as

every week

Step2
•Calculate sold
quantity weights

Step 3
•Input initial inventory for week t

from historical inventory level at
week t-1

Step 4

•Generate Random Customer
Choices and count number of sold

vehicles at week t

•Calculate the deviation between
historical and simulated counts

43

 Results of this simulator turned out to be highly in accurate with an average error of 87%

for both the classifier and regression regardless to the transformation method used. The reason

behind this extreme results lies behind the high level of randomness in predicting the customer

choices. As we noticed the selling incidence of a given vehicle is an extremely low probability

occurrence, where the majority of the configuration has a turn rate below 0.07. Counting the

vehicle available on lot at the end of the week rather than the number of vehicles sold during the

week for each configuration had yield to lower levels of errors since |Ci-Cihat| is relatively small

compared to Ci or Cihat, whereas |Si-Sihat| is very close to both Si and Sihat. Therefore, we

ignored the results of the later.

Discussion

Comparing the three error estimates generated by the classifier and regression models in

the count simulator, we noticed that the Regression was superior to the classifier when simulated

under a random customer choice behavior. EWW was 23% in the regression as compared to 45%

in the classifier. As for EWR and EWC they were 0.32 and 1.22 in the regression as compared to

0.38 and 2.88 in the later. For that reason, we believe that data balancing that has been done in

the classifier model has helped in improving the correlation between the estimated turn rates and

manual historical turn rates, and improving the precision of these estimates by reducing their

variance. However, it led to a deviation in the accuracy of the output which explains why the

regression model behaved better in the simulator.

44

CONCLUSION

 Applying the mix rate modulated transformation enabled us to translate the inventory

information from the configuration level to the feature level, which is the key to studying the

feature effect on the probability of sales of a given configuration. Even though both of our models,

regression and classifier haven’t exceeded a 70% accuracy in predicting probability of sales, they

were directionally correct in terms of better predicting more popular configurations, and giving

higher turn rates for those configurations who actually have fast selling rates. Similarly, giving

low turn rate values for slow selling configurations. Another good point about both models, is the

relatively low coefficient of variation, which means that the neural network is capable of

correlating vehicles belonging to the same configurations regardless to their mix rate modulated

transformation, by assigning them turn rates that falls into a small confidence interval. With a

better dataset, that is less sparse and extends to a larger period, the neural network is expected to

reach higher levels of accuracy. In addition to optimizing the processing, training, and performance

functions used in the neural network might also help boosting the accuracy of the model.

The simulator on the other hand, provides an insight about the accuracy of the different

transformation methods applied to both models’ outputs. And it proved that even though the

classifier model yielded a better correlation with historical values, the regression model generated

more accurate outputs which yielded to relatively low error value when simulated. More effort

should be put into improving the conditional turn rates’ estimation methodology either through

optimizing the neural network models or through applying different estimation methods.

Moreover, the transformation functions should be further improved by creating a close loop

45

feedback optimization model that minimizes the error of the simulator by varying the

transformation function.

Our future goals extend to the strategic planning level by creating a tool to help the

company decide on the optimal complexity of its assortments. This objective is attained by

determining the utility associated with every standalone variant of a feature, and eliminating the

low utility variants after studying the customer substitution behavior in the absence of those

variants. Moreover, knowing those individual feature utilities will give the company the privilege

of predicting the probability of sales of any configuration based on its feature constituents even if

it was never offered in the assortment before. Branching out from this paper, those utility factors

can be computed by equating the utility score of a given configuration to its unconditional turn

rate calculated above. As a definition, the utility score of a given configuration is the linear or

nonlinear combination of the dot products of a set of weights, or utilities, corresponding to the

explanatory variables, features, constituting the given configuration. For example, if an MNL

model is to be utilized, the corresponding score for configuration i is (𝑒∑ 𝛽𝑖𝑋𝑖)𝑖. Then an error

minimization optimization model is to be formulated to compute the values of the β’s. Below is a

possible formulation of this optimization model:

Objective Function: Minimize ∑
(𝑒∑ 𝛽𝑖𝑋𝑖)1

∑ (𝑒∑ 𝛽𝑖𝑋𝑖)𝑙𝑗 +𝑈0
 − 𝑅ℎ𝑎𝑡𝑖𝑖

Where i is any configuration in any given assortment and j is the set of all configurations offered

in that assortment

Constraint: 𝛽𝑖′𝑠 are non-negative

Xi vector for each configuration ` is given

𝑈0 is the walk away probability.

46

 As we mentioned in the introduction above, the primary purpose of this thesis is to feed in the

value of the β parameters in a more sophisticated assortment planning model that will optimize the

level of complexity in a way that maximizes the company’s profits.

47

APPENDIX A

The Table Below show the list of regions considered in our model.

Location Number Location Name

1 Boston

2 New York

3 Philadelphia

4 Pittsburgh

5 Memphis

6 Orlando

7 Atlanta

8 Washington

9 Chicago

10 Twin Cities

11 Detroit

12 Cincinnati

13 California

14 Denver

15 Northwest

16 Kansas City

17 Southwest

Figure 18 List of Markets Considered

48

APPENDIX B

Data Processing and Coding Procedure

Data Preprocessing

The Sequence for Running Matlab codes:

We extract the following columns from any data set received

Arrival Date Sales Date Dealer Location Set of Features being considered

We first convert the dates from days to weekly periods. In other words, if our dataset starts from

January 1st, we count this to be our origin in the timeline. Then if a vehicle was received on

March 1st, we can say the vehicle was received on week 9 of the time horizon. Similarly, for the

sales dates.

Second, we assign a number indicator for each location to be able to input it to Matlab as an

integer.

Third, we calculate week on lot for each vehicle by subtracting Sales Week from Arrival Week

Finally, we modify the feature vector by adding all possible variants of a given feature, even if

one of the variants was a no-feature option. For example, the “Heated Seats” feature can come in

the following varients:

1- Front Heated Seats

2- Front and Rear Heated Seats

3- Part of the Climate Package

4- No heated Seats

Thus we must make sure that all of those variants are mentioned as separate columns in the

configuration definition of the dataset in order to cover all possible configurations in the

assortment. Refer to excel file “Simplified Configurations” for better understanding.

Now we will attain the following columns which will be inputted into the first Matlab Code:

Arrival Week Sales Week Weeks on

Lot

Dealer

Location

Indicator

Set of Modified Features

being considered

Code 1: Generate the Mix Rate Modulated Weekly Inventories

The code below will take the above variables and will output the mix modulated feature vector

for every week’s inventory

49

clc

clear all

myfile='simplifiedconfigurations.xls';

sheet=2;

xlRange='T3:AT31104';% range of features

xlRange1='E3:E31104';% range for arrival week

xlRange2='G3:G31104';% range for sold week

xlRange3='Q3:Q31104';% range for location indicator

INV=xlsread(myfile, sheet, xlRange); % inventory data with features

A=xlsread(myfile, sheet, xlRange1);% arrival week vector

S=xlsread(myfile, sheet, xlRange2);%sold week vector

L=xlsread(myfile, sheet, xlRange3);%Location Indicator vector

X=size(INV,1); % no of records

period=1;% this is the week increments at which we are grouping the market’s inventories

Global=[];% Matrix containing all sales records for all regions

Config=unique(INV,'rows');

%set of available configurations this vector will assign an indicator for each configuration

available in the assortment in order for us to track how this configuration behaves differently as it

appears in different inventory scenarios

Configuration=[]% Configuration pointer

for G=1:X

[~,indx]=ismember(INV(G,:),Config,'rows');

Configuration(G)=indx;

End

INV1=[L,Configuration',A,S,INV];

% We Add the Configuration indicator to the matrix.

for i=1:17 % Different Locations

temp=[];

INV2=[];% The Matrix that contain sales record for a specific region

for x=1:X

if(INV1(x,1)==i)

INV2=[INV2;INV1(x,:)];

end

end

Lamda=size(INV2,1);% Size of the regional INVENTORY

Vehicle=[1:Lamda];% Vehicle Identification Number to track each vehicle as it moves from one

week to another

INV2=[Vehicle',INV2];

Totalweeks=max(INV2(:,4));

% Last week being studied in the Market region i

Y=size(INV2,2); % number of columns

% Now we need to categorize the inventory as of what is available on lot on each week starting

week 9

50

for n=9:period:(Totalweeks)

Vector=[]; %V

SoldStatus=[];% This vector is a binary indicator =1 if the vehicle got sold on that week or =0 if

not sold

CurrentWeek=[];

WeeksonLot=[];%Average days on Lot

M=[];% This matrix lists all the vehicles available on week n

D=1;% Index increments for Soldstatus

for j=1:Lamda

if (INV2(j,4)<n+period) && ((INV2(j,5)>=n) || (INV2(j,5)==0)) % if the vehicle has arrived on

or before this week and sold on or later than this week (i.e. if vehicle is/was on the lot this week)

M=[M;INV2(j,:)];

if (INV2(j,5)<n+period) && (INV2(j,5)>=n) % if vehicle is sold in the current period/week

SoldStatus(D)=1;

else

SoldStatus(D)=0;

end

CurrentWeek(D)=n;

WeeksonLot(D)=abs(INV2(j,4)-n)/period;

D=D+1;

else

continue

end

end

% The steps below are applying the mix rate modulated technique explained in the thesis

SizeM=size(M,1);

SumM=sum(M); % total feature inventory

Mixrate=SumM/SizeM; % average of each feature in the inventory

InputData=M;% The matrix that contains the sales record over all the weeks in a given location

for k=6:Y

InputData(:,k)=InputData(:,k)-Mixrate(k);

end

InputMatrix=horzcat(CurrentWeek',WeeksonLot',InputData,SoldStatus');

temp=[temp;InputMatrix];

end

[GlobalRow,GlobalCol]=size(temp);

Recursive=1; % to determine which row of the Inputtemp matrix is to be evaluated

% The Steps below are to remove the censored data

51

temp(find(temp(:,7)==0),:)=[];% filter out all rows that have a sold week =0 which means they

weren’t sold within the period of study

temp(find(temp(:,7)>(Totalweeks)),:)=[];

Sizetemp=size(temp,1); % determine how many records are left after removing the sensored data

Global=[Global;temp]; % Compile weekly inventories for every week in the time horizon

End

% The Steps Below are only applied if data balancing is required

SizeGlobal=size(Global,1); %number of rows in Global Matrix

for L=1:SizeGlobal

if(Global(L,end)==1)

Replicate=repmat(Global(L,:),6,1);

Global = [Global;Replicate];

else

continue

end

end

SizeGlobal=size(Global,1); %number of rows in Global Matrix

filename = 'Neural Network Input Global.xlsx';

xlswrite(filename,Global,1)

Input=[Global(:,2),Global(:,[8:end-1])]; % This matrix is the input to train the neural network

Output=Global(:,end); % This is the set of target values needed for training the neural network

Location=Global(:,4);

Configset=Global(:,5);

AvgweeksonLot=Global(:,2);

V=Global(:,3);

save('Records.mat','Location','Global','INV1','Input','Output','Configset')

Code2: Weight Calculation

For the reasons specified in the thesis, we need to input weights into the penalty function of the

neural network training code in order to give more importance to more popular configurations

and less importance to the rare ones.

clc

clear all

load('Records.mat','Global','Configset')

 % this will load the Global matrix generated by the previous code and the row listing all the

configurations available on every week.

AvgweeksonLot=Global(:,2);

V=Global(:,3); % Vehicle Indicator variable

Location=Global(:,4);

Configset=Global(:,5);

Output=Global(:,end);% Sold Status

52

Matrix=[Configset, V, Output,AvgweeksonLot,Location]; % this matrix contain the associated

configuraion number and vehicle number and sold status for each record in the dataset

E=size(Matrix,1);

TotalConfig= max(Matrix(:,1)); % Total number of configurations available in the dataset

Popularity=zeros(TotalConfig,1); % Number of vehicles available from each configuration

for f=1:TotalConfig % Chooses a given configuration

 Group=[]; % The matrix that will group all records of the same configuration together

 for g=1:E

 if Matrix(g,1)==f

 Group=[Group;Matrix(g,:)];

 end

 end

 H=size(Group,1);% Number of vehicles available of each configuration

 Popularity(f,1)=H;

end

for i=1:size(Popularity,1)

 if Popularity(i)==0

 Popularity(i)=Popularity(i);

 else

 Popularity(i)=1/Popularity(i);

 end

end

Con=[1:TotalConfig];

Popularity=[Con',Popularity];

ew=zeros(size(Configset,1),1);

for j=1:size(Configset,1)

 ew(j,1)=Popularity(find(Popularity(:,1)==Configset(j)),2);

end

save('weights.mat','Popularity', 'ew')

Code3: Neural Network Script

This is the generic Newff script with some adjustment

clc

clear all

% Solve an Input-Output Fitting problem with a Neural Network

% Script generated by Neural Fitting app

% Created Wed Apr 08 22:40:15 EDT 2015

%

% This script assumes these variables are defined:

%

53

% Input - input data.

% Output - target data.

load('Records.mat','Input','Output')

load('weights.mat','Popularity','ew');

OutputVector1=zeros(size(Input,1),30);% output as probability

OutputVector2=zeros(size(Input,1),30);% output as a categorical variable

%for i=1:40

train_inp= Input(:,[2:end]);

% %standardise the data to mean=0 and standard deviation=1

% %inputs

% mu_inp = mean(train_inp);

% sigma_inp = std(train_inp);

% for i=1:size(train_inp,2)

% train_inp(:,i) = (train_inp(:,i) - mu_inp(1,i))/ sigma_inp(1,i);

%end

x = train_inp';

t = Output';

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.

% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.

%trainFcn = 'trainlm'; % Levenberg-Marquardt

for i=1:100

%% NEW CODE

net=newff(minmax(x), [15,1],{'tansig','purelin'},'trainlm');

%net = init(net); % For Repeating Initialization - Note that newff Performs Initialization as well!

The transig, purelin and trainlm are the training functions of inputs and outputs

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess

net.inputs{1}.processFcns = {'removeconstantrows','mapstd'};

% The mapstd will normalize the inputs and outputs such that their mean=0 and std=1

net.outputs{2}.processFcns = {'removeconstantrows','mapstd'};

net.trainParam.show = 50;

net.trainParam.lr = 0.001;

net.trainParam.epochs = 30;

net.trainParam.goal = 1e-5;

%% END OF NEW CODE

% Create a Fitting Network

% hiddenLayerSize = 20;

% net = fitnet(hiddenLayerSize,trainFcn);

54

% % Choose Input and Output Pre/Post-Processing Functions

% % For a list of all processing functions type: help nnprocess

% net.input.processFcns = {'removeconstantrows','mapminmax'};

% net.output.processFcns = {'removeconstantrows','mapminmax'};

% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivide

net.divideFcn = 'dividerand'; % Divide data randomly

net.divideMode = 'sample'; % Divide up every sample

net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Choose a Performance Function

% For a list of all performance functions type: help nnperformance

net.performFcn = 'mse'; % Mean squared error

% Choose Plot Functions

% For a list of all plot functions type: help nnplot

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...

 'plotregression', 'plotfit'};

% Now for the classifier model we need to convert the continuous variable into a classified

variable based on a threshold which is specified to be 0.5 for a balanced dataset and 0.14 for an

unbalanced dataset.

T=0.5;

% Train the Network

[net,tr] = train(net,x,t,[],[],ew');

%[net,tr]=train(net,ptr,ttr,[],[],val,test);

% Test the Network

y = net(x);

ytst = round(y-T+0.5);% This is the classified version of the outputs

e = gsubtract(t,ytst);

performance = perform(net,t,ytst); % the performance function here will minimize the difference

between ytst which is the classified output and the target values which are also classifier

variables

% Recalculate Training, Validation and Test Performance

trainTargets = t .* tr.trainMask{1};

valTargets = t .* tr.valMask{1};

testTargets = t .* tr.testMask{1};

trainPerformance = perform(net,trainTargets,y)

valPerformance = perform(net,valTargets,y)

testPerformance = perform(net,testTargets,y)

55

% View the Network

%view(net)

% Plots

% Uncomment these lines to enable various plots.

%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, plotfit(net,x,t)

%figure, plotregression(t,y)

%figure, ploterrhist(e)

% Deployment

% Change the (false) values to (true) to enable the following code blocks.

if (false)

 % Generate MATLAB function for neural network for application deployment

 % in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply

 % to examine the calculations your trained neural network performs.

 genFunction(net,'myNeuralNetworkFunction');

 y = myNeuralNetworkFunction(x);

end

if (false)

 % Generate a matrix-only MATLAB function for neural network code

 % generation with MATLAB Coder tools.

 genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');

 y = myNeuralNetworkFunction(x);

end

if (false)

 % Generate a Simulink diagram for simulation or deployment with.

 % Simulink Coder tools.

 gensim(net);

end

 OutputVector1(:,i)=y;

 OutputVector2(:,i)=ytst;

 i

end

Mean=mean(OutputVector1');

save('Classifier1.mat','OutputVector1','OutputVector2','Mean')

Code 4: Unconditional Turn Rates

56

This code is used to convert the Neural Network’s output to unconditional by applying any the

risk adjusted Turn Rate transformation function mentioned in the thesis

clc

clear all

% We first input the Global Matrix Outputted from the code1

load('Recordsunbalanced.mat','Global')

% Then we input the turn rates generated by the neural network Either classifier or regression

code3

load('Classifier1','Mean'); % conditional turn rates outputed from NN

Location=Global(:,4);

Configset=Global(:,5);

TR=[Location,Configset, Mean];% A matrix showing the location, configuration, and turn rate

estimate for each record

E=size(TR,1);% Number of rows in matrix TR

TotalConfig= max(TR(:,2)); % Total number of configurations available in the dataset

alfa=2;% Penalty for variability

Set=[]; % Unconditional turn rate estimates for every configuration

for f=1:TotalConfig

 Group=[]; % The matrix that will group all records of the same configuration together

 for g=1:E

 if TR(g,2)==f

 Group=[Group;TR(g,:)];

 end

 end

 if size(Group,1)==0 % this will capture all the configurations that didn’t appear in the final

matrix after removing censored data

 Nu=0;

 Sigma=0;

 else

 Nu= mean(Group(:,3)); % Average all the turn rates for all the vehicles belonging to

configuration f and calculate their standard deviation

 Sigma=std(Group(:,3));

 end

 Rh=Nu-alfa*Sigma; % This is the risk adjusted turn rate

 Set=[Set;[f,Nu,Sigma,Rh]]; % Matrix showing config number, turn rate, mean and std for

every configuration

End

% Below are vectors that combine all the averaged turn rates, standard deviations, and Rhats for

all configurations

mean=Set(:,2); % The average of all turn rate estimates for a given configuration

Std=Set(:,3);% The standard deviation for all turn rate estimates for a given configuration

Configurationset=Set(:,1);% List of configurations

Rhat=Set(:,4);% List of unconditional turnrates

57

save('Rhatfileclassifier1.mat','mean','Std','Configurationset','Rhat')

scatter(Set(:,2),Set(:,3))

size(Set,1)

Ans=mean-0.2*Std;

Code5: Simulator

Since we defined two criteria to evaluate the simulator results, we have two simulator codes, one

that track the count of inventory for each week and calculate the error as: |CountHisotrical-

CountSimulator|/max (CountHistorical, CountSimulator). Whereas the second, keeps track of

how many vehicles were sold of each configuration is recorded every week and the error is then

calculated as: |SoldHisotrical-SoldSimulator|/max (SoldHistorical, SoldSimulator)

A- Simulator Inventory Count based

clc

clear all

load('Records.mat','INV1','Global')

Cweek=Global(:,1); % current week

Location=Global(:,4);

Configset=Global(:,5);

Numberofconfig=max(Configset);% gives total number of available configurations

History=[Cweek,Configset,Location];% Real historical inventory present each week

History=History(find(History(:,3)==1),:);% Filter those for location 1=Boston

TotalReal=[];% The matrix that include the counts of all configurations on every week period

weight=[];

for d=10:43 % This for loop will filter for every week and count how many vehicles of each

configuration there is

 Real=[];% Matrix that group the records at week d

 Real=History(find(History(:,1)==d),:);

 CountReal=unique(Real(:,2));% find out how many different configurations are present on

week d

 SizeCountReal=size(CountReal,1);

 weeksReal=d*ones(SizeCountReal,1); % assign current week

 CountReal=[weeksReal,CountReal];

 Vcountreal=[]; % the vector for vehicle counts

 for c=1:SizeCountReal % count how many vehicles of configuration c are present on week d

 Vcountreal=[Vcountreal;sum(Real(:,2)==CountReal(c,2))];

 end

 CountReal=[CountReal,Vcountreal]; % Now this matrix shows the current week,

configuration number, count of this configuration in this given week

 for CC=1:Numberofconfig % this for loop will add all missing configurations and will

associated a number zero for the count

 Find=CountReal(find(CountReal(:,2)==CC),:);

58

 if size(Find,1)==0

 CountReal=[CountReal;[d CC 0]];

 end

 end

 [values, order] = sort(CountReal(:,2));

 sortedCountReal = CountReal(order,:); % Sort the matrix in increasing order of configuration

number

% Now we wont to define a weight vector that will give higher importance for more popular

vehicles when it comes to calculating the average weighted error in week d.

 sumcount=sum(sortedCountReal(:,3));% sum of vehicles available on week d

 weightweek=sortedCountReal(:,3)/sumcount;% fraction of vehicles of configuration CC out of

the total number of vehicles available

 weight=[weight;weightweek];

 TotalReal=[TotalReal;sortedCountReal];

end

TotalReal=[TotalReal,weight];

% INV1 is the matrix that contains all records for all regions over the

% whole time horizon without classifying them into weekly inventories as in Global Matrix. In

other words, each vehicle is only mentioned once in INV1 regardless to how many weeks it

stayed on lot %INV1=[[L,Configuration',A,S,INV];

load('Rhatfileclassifier1.mat','Configurationset','Rhat');% Here we loaded all available

configurations with their associated unconditional turn rates Rhat

X=size(INV1,1);

Standard=[Configurationset,Rhat];% A matrix that shows all the configuration with their

associated unconditional turn rate

INV2=[];% The Matrix that contain sales record for region 1= Boston

 for x=1:X

 if(INV1(x,1)==1)

 INV2=[INV2;INV1(x,:)];

 end

 end

Lamda=size(INV2,1);% Size of the regional INVENTORY

VehicleCount=TotalReal(:,2); % save vehicle count for every iteration with the first column

listing the configuration number

% Now the actual simulation starts and its embedded in a loop of 100 iterations to average its

output over all the iterations

for sim=1:1000 % Repeat Simulator loop

 SimulatedINV=[]; % This matrix is to track the simulated inventory changes at each week

over the whole time horizon

%Simulation starts here

 for n=10:43

 Initial=[];

59

 Currentweek=[];

 for j=1:Lamda % loop that generates the initial inventory on week n

 if (INV2(j,3)<=n) && ((INV2(j,4)>=n) || (INV2(j,4)==0)) % if the vehicle has arrived on or

before this week and sold on or later than this week (i.e. if vehicle is/was on the lot this week)

 Initial=[Initial;INV2(j,:)];

 Currentweek=[Currentweek;n];

 end

 end

Initial=[Currentweek,Initial];

Sold=sum(INV2(:,4)==n);% count how many vehicles were sold on week 10 in a given region

% Now we want to generate random sales equivalent to the number of vehicles which were

actually sold in the historical dataset.

Rand=[];

Choice=[]; % Vector of randomly chosen configurations

for y=1:Sold

Rand=[Rand,rand(1,1)];

Cf=unique(Initial(:,3));% array that has all the configuration present at week n

Rh=[];

SizeCf=size(Cf,1);

In=1;% Increment for index in Rh vector

for k=1:SizeCf % Assign Rhat to available configurations

 index= find(Standard(:,1)==Cf(k));

 Rh(In)=Standard(index,2);

 In=In+1;

End

% Here we want to normalize the Rhat for the available configurations in order to specify the

choice interval which was defined in the thesis

Sum=sum(Rh);% sum of Rh accross available configurations

Fhat=[];% Vector of normalized Rhats associated with available configurations on week n

Fhat(1,1)=Rh(1,1)/Sum; % Initialization of the normalization process

for m=2:SizeCf % Loop to normalize Rhat

 Fhat(1,m)=Fhat(1,m-1)+(Rh(1,m)/Sum);

end

Fhat=[0,Fhat];

 for x=1:SizeCf % this for loop is to assign choices to randomly chose probabilities

 if Rand(1,y)>Fhat(1,x) && (Rand(1,y)<=Fhat(1,x+1))

 Choice=[Choice,Cf(x,1)];

 break

 end

 end

 I=size(Initial,1); % number of rows in "Initial" Matrix

 for z=1:I % Deduct randomly chosen sales from the Initial Inventory

 if Initial(z,3)==Choice(y)

60

 Initial(z,:)=[];

 break

 end

 end

end

SimulatedINV=[SimulatedINV;Initial];

end

% Counting how many vehicles of each configuration were available that week after deducting

the simulated random choices, similar to the way we did it to the actual historical dataset above.

Total=[];

for a=10:43

 Group3=[];%Matrix that group the records at week a

 Group3=SimulatedINV(find(SimulatedINV(:,1)==a),:);

 Count=unique(Group3(:,3));% find out how many different configurations are present on

week a

 SizeCount=size(Count,1);

 week=a*ones(SizeCount,1); % assign current week a

 Count=[week,Count];

 Vcount=[];

 for b=1:SizeCount % count how many vehicles of configuration b are present on week a

 Vcount=[Vcount;sum(Group3(:,3)==Count(b,2))];

 end

 Count=[Count,Vcount]; % Now this matrix shows the current week, configuration number,

count of this configuration in this given week

 for CC=1:Numberofconfig % this for loop will add all missing configurations and will

associated a number zero for the count

 Find1=Count(find(Count(:,2)==CC),:);

 if size(Find1,1)==0

 Count=[Count;[a CC 0]];

 [values, order] = sort(Count(:,2));% Sort the matrix in increasing order of configuration

number

 sortedCount = Count(order,:);

 end

 end

 Total=[Total;sortedCount];

end

VehicleCount=[VehicleCount,Total(:,3)];

sim

end

% Now we want to average the simulated counts across the 100 iterations of the simulator

AverageNumberofVehicles=mean(VehicleCount(:,[2,end])');

HistoricalCountofVehicles=TotalReal(:,3);

61

Compare=[HistoricalCountofVehicles,AverageNumberofVehicles',weight]; % This matrix lists

both the historical counts, averaged simulated counts, and the weights associated with each

vehicleweek record in our dataset

SizeCompare=size(Compare,1);

ErrorWeek=zeros(SizeCompare,1); % This Vector include the weighted relative error for every

week

for f=1:SizeCompare

 if max(Compare(f,1),Compare(f,2))==0

 ErrorWeek(f,1)=0;

 else

 E=(Compare(f,3)*abs(Compare(f,1)-Compare(f,2)))/max(Compare(f,1),Compare(f,2));

 ErrorWeek(f,1)=E;

 end

end

FinalMatrix=[TotalReal(:,1),TotalReal(:,2),Compare,ErrorWeek];

B- Simulator Inventory Sales based

clc

clear all

load('Recordsunbalanced.mat','INV1','Global')

Cweek=Global(:,1); % current week

Location=Global(:,4);

Configset=Global(:,5);

Numberofconfig=max(Configset);% gives total number of available configurations

% INV1 is the matrix that contains all records for all regions over the

% whole time horizon %INV1=[[L,Configuration',A,S,INV];

Arrival=Global(:,6); % Arrival week for a given vehicle

Sold=Global(:,7); % The week in which a vehicle was sold

History=[Cweek,Location,Configset,Arrival,Sold];% Real historical inventory present each week

stating the arrival and sold week of each vehicle History=History(find(History(:,2)==1),:);%

Filter those for location 1=Boston

TotalReal=[];% The matrix that include the count of sold vehicles from each configurations for

every week period

for d=10:43

 Real=[];% Matrix that group the records at week d

 Real=History(find(History(:,1)==d),:);

 UniqueConfig=unique(Real(:,3));% find out how many different configurations are present on

week d

 SizeUniqueConfig=size(UniqueConfig,1);

 weeksReal=d*ones(SizeUniqueConfig,1); % assign current week

 SizeReal=size(Real,1);% How many vehicles available in week d

 SoldVector=[];%States the configurations being sold on week d

62

% In this loop, if the sold week of a given record is equal to current week d then this recorded is

counted as sold

 for i=1:SizeReal

 if Real(i,5)==d

 SoldVector=[SoldVector,Real(i,3)];% This vector will list the configuration numbers of

the vehicle being sold on week d

 end

 end

 Countsold=[]; % the vector that will list the number of vehicles of each configuration sold on

week d by counting how many times is configuration j repeated in the ‘SoldVector’

 for j=1:SizeUniqueConfig

 S=sum(SoldVector==UniqueConfig(j));% Count how many vehicles were sold of each

configuration

 Countsold=[Countsold,S];

 end

 Summary=[weeksReal,UniqueConfig,Countsold']; % This matrix will summarize what

configurations are available on week d and how many of each where sold

 for CC=1:Numberofconfig % this for loop will add all the configurations which aren’t

available on week d and will associated a number zero for the count

 Find=Summary(find(Summary(:,2)==CC),:);

 if size(Find,1)==0

 Summary=[Summary;[d CC 0]];

 end

 end

[values, order] = sort(Summary(:,2));

 sortedSummary = Summary(order,:); % Sort the matrix in increasing order of configuration

number

 TotalReal=[TotalReal;sortedSummary];

end

 % Calculating Global Sold Vehicles quantities

 for O=1:579

 Sales(1,O)=sum(TotalReal(find(TotalReal(:,2)==O),3)); % This vector will sum the numbers

of vehicles sold on configuration O over the whole time horizon

 end

List=[1:579]; % List all possible configurations available in the assortment

Sales=[List',Sales'];

% Calculating Global Sold Weights

SizeHistory=size(History,1);

weight=[];% Combines all the weeks in one matrix

 for d=10:43

 FilterHistory=[];% Returns all vehicles available on week d

 w=[];% Returns the weights for each configuration in every week

 conf=[];% This vector will list all the configurations that were available on week p

 Beta=[];% This vector will return the global number of sold vehicles of the configurations

which are available on a particular week

63

 for U=1:SizeHistory % This for loop will filter for weekly inventories

 Filterhistory=History(find(History(:,1)==d),:);

 end

 conf=unique(Filterhistory(:,3));

 sizeconf=size(conf,1);

 for q=1:sizeconf % This loop will populate the global quantity of vehicles sold of

configuration q over the time horizon from the Sales matrix

 Beta(q,1)=Sales(find(Sales(:,1)==conf(q)),2);

 end

 for r=1:sizeconf

 w(r,1)= Beta(r,1)/sum(Beta);

 end

 P=d*ones(sizeconf,1); % week indicator

 w=[P,conf,w];

 for s=1:579

 if size(w(find(w(:,2)==s),:),1)==0

 w=[w;[d s 0]];

 end

 end

 [values, order] = sort(w(:,2));

 sortedw = w(order,:); % Sort the matrix in increasing order of configuration number

 weight=[weight;sortedw];

 end

% From here on the code is very similar to the count simulator code in terms of counting how

many vehicles got sold on a given week and generating equivalent numbers of random choices.

With 2 differences: 1- Initial inventory at every week is taken from the real historical dataset.

2- The error is calculated based on sold counts rather than inventory counts

3- Generating a sold vehicle count vector is generated within the for loop of each week.

load('Rhatfileclassifier1.mat','Configurationset','Rhat');% Here we load all available

configurations with their associated Rhat

X=size(INV1,1);

Standard=[Configurationset,Rhat];% A matrix that shows all the configuration with their

associated unconditional turn rate

INV2=INV1(find(INV1(:,1)==1),[1:4]);% The Matrix that contain sales record for region 1=

Boston

Lamda=size(INV2,1);% Size of the regional

%Now we need to generate a matrix similar to TotalReal to track the number of simulated sold

vehicles, so we first define the first 2 columns to be equivalent to TotalReal and then we modify

the values of all records of the third column of TotalReal

Total=TotalReal; % In those 2 lines I want to define a matrix that lists all possible configuration

at every week with its associated week, and a zero count of sales

SizeTotal=size(Total,1);

64

VehicleCount=[Total(:,1),Total(:,2)]; % This matrix will track all the sales counts generated by

every iteration of the simulator

for sim=1:500 % Repeat Simulator loop

Vcount=zeros(size(TotalReal,1),1); % This vector will track the count of sold vehicles according

to the simulator results

Incr=1; % this is an index increment used to fill up the values for Vcount vector

 S=[];% Vector that will track total number of sales for all configurations each week

SimulatedINV=[]; % This matrix is to track the simulated inventory changes at each week over

the whole time horizon

%Simulation starts here

for n=10:43

 Initial=[];

 Currentweek=[];

 for j=1:Lamda % loop that generates the initial inventory on week on each week

 if (INV2(j,3)<=n) && ((INV2(j,4)>=n) || (INV2(j,4)==0)) % if the vehicle has arrived on or

before this week and sold on or later than this week (i.e. if vehicle is/was on the lot this week)

 Initial=[Initial;INV2(j,:)];

 Currentweek=[Currentweek;n];

 end

 end

Initial=[Currentweek,Initial];

SizeInitial=size(Initial,1);

Sold=sum(INV2(:,4)==n);% count how many vehicles where sold on week 10 in a given region

S=[S;Sold]; % Vector S tracks how many vehicles were sold each week

Rand=[];

Choice=[]; % Vector of randomly chosen configurations

for y=1:Sold

Rand=[Rand,rand(1,1)];

Cf=unique(Initial(:,3));% array that has all the configuration present at week n

Rh=[];

SizeCf=size(Cf,1);

In=1;% Increment for index in Rh vector

for k=1:SizeCf % Assign Rhat to available configurations

 index= find(Standard(:,1)==Cf(k));

 Rh(In)=Standard(index,2);

 In=In+1;

end

Sum=sum(Rh);% sum of Rh accross available configurations

Fhat=[];% Vector of normalized Rhats associated with available configurations on week n

Fhat(1,1)=Rh(1,1)/Sum; % Initialization of the normalization process

for m=2:SizeCf % Loop to normalize Rhat

 Fhat(1,m)=Fhat(1,m-1)+(Rh(1,m)/Sum);

end

Fhat=[0,Fhat];

65

 for x=1:SizeCf % this for loop is to assign choices to randomly chose probabilities it will

check in which interval of Fhat does the random number fall in and assign the choice based on

that

 if Rand(1,y)>Fhat(1,x) && (Rand(1,y)<=Fhat(1,x+1))

 Choice=[Choice,Cf(x,1)];

 break

 end

 end

 % Counting how many vehicles of each configuration were sold that week

 for i=Incr:Incr+578 % This for loop will increment the number of sales vehicles of the

randomly chosen configuration on week n by 1

 if Total(i,2)==Choice(y)

 Vcount(i,1)=Vcount(i,1)+1;

 end

 end

end

Incr=Incr+579;% we are adding 579 so that at the next iteration, representing the next week, the

for loop will start incrementing the values of Vcount associated with the current week n. Given

that at each week we are counting the sales for all possible 579 configurations. Even if they

aren’t available, they will be assigned a value of 0.

end

VehicleCount=[VehicleCount,Vcount];

sim

end

Iteration=sum(VehicleCount(:,[3:end])');

AverageNumberofVehicles=Iteration/size(VehicleCount(:,[3:end])',1);% Average Simulated

Number of vehicles sold for every config in every week

HistoricalCountofVehicles=TotalReal(:,3); % Real historical sold vehicles

Compare=[Total(:,1),HistoricalCountofVehicles,AverageNumberofVehicles',weight(:,3)];

SizeCompare=size(Compare,1);

ErrorWeek=[]; % This is the vector that will list the averaged errors for every week

ErrorWeekPrime=[]; % The weighted relative error

CW=10; %starting week to compute error

for m=1:34

 Group4=Compare(find(Compare(:,1)==CW),:);% Group the weekly inventory

 Size4=size(Group4,1);

 Error=[];% This vector will list the error associated with each configuration on week m

 ErrorPrime=[];

 for f=1:Size4

 if max(Group4(f,2),Group4(f,3))==0

 E=0;

 EPrime=0;

 else

 EPrime=Group4(f,4)*abs(Group4(f,2)-Group4(f,3))/max(Group4(f,2),Group4(f,3));

 E=abs(Group4(f,2)-Group4(f,3));%/max(Group4(f,2),Group4(f,3));% This is the absolute

difference between historical and simulated sold counts

66

 end

 Error=[Error,E];

 ErrorPrime=[ErrorPrime,EPrime];

 end

 GlobalWeekError= sum(Error)/S(m); % This will calculate the averaged error for week m by

dividing the sum of the error by the total number of sold vehicles on week m

 GlobalWeekErrorPrime=sum(ErrorPrime); % This is the weighted relative error

 ErrorWeek=[ErrorWeek,GlobalWeekError];

 ErrorWeekPrime=[ErrorWeekPrime,GlobalWeekErrorPrime];

 CW=CW+1;

end

67

REFERENCES

Mahajan, Siddharth, and Garrett van Ryzin. "Stocking retail assortments under dynamic

consumer substitution." Operations Research 49.3 (2001): 334-351.

Mahajan, Siddharth, and Garrett Van Ryzin. "Inventory competition under dynamic

consumer choice." Operations Research 49.5 (2001): 646-657.

Kok, A. G., and M. L. Fisher. "Demand Estimation and Assortment Optimization Under

Substitution: Methodology and Application." Operations Research (2007): 1001-021. Web.

26 Oct. 2014.

Yücel, Eda, Fikri Karaesmen, F. Sibel Salman, and Metin Türkay. "Optimizing Product

Assortment under Customer-driven Demand Substitution." European Journal of

Operational Research (2009): 759-68. Web. 26 Oct. 2014.

Karabati, Selçuk, Bariş Tan, and Ömer Cem Öztürk. "A Method for Estimating Stock-out-

based Substitution Rates by Using Point-of-sale Data." IIE Transactions (2009): 408-20.

Web. 26 Oct. 2014.

Rodríguez, Betzabé, and Göker Aydın. "Assortment Selection and Pricing for Configurable

Products under Demand Uncertainty." European Journal of Operational Research (2010):

635-46. Web. 26 Oct. 2014.

Puskorius, Gintaras V., and Brian R. Goodman. Turn Rate Calculation. Ford Motor Company,

assignee. Patent US 8214313 B1. 3 July 2013. Print

68

ABSTRACT

A CUSTOMER CHOICE MODELING FRAMEWORK FOR THE ASSORTMENT

PLANNING OF CONFIGURABLE PRODUCTS IN THE AUTOMOTIVE INDUSTRY

by

FARAH DUBAISI

May 2015

Advisor: Alper Murat, PhD

Major: Manufacturing Engineering

Degree: Master of Science

Due to the increased competition in the auto industry, proliferation of the vehicle models

and increased customer need for choice and customization, it has become more critical than ever

to offer a variety of features and customization flexibility while at the same time restraining and,

even better, cutting down the costs. Product complexity, in the automotive industry, can be

measured by the size of the assortment offered, i.e., set of vehicle configurations a customer can

choose from (e.g., for a given model of a brand). While complexity fosters growth with increased

alignment of product characteristics and customer needs, it results in decreased revenue (e.g.,

cannibalization) and profitability (e.g., increased total supply chain costs). Companies that manage

complexity by improving their products’ true profitability have seen savings of 10 percent to 15

percent on their cost of goods sold.

In order to determine the optimal complexity that should be offered, the company must

first understand its customers buying behavior, and their response at the instances where their

primary vehicle configuration choice is not offered or is stocked out. In this thesis, we develop a

customer choice modeling framework that predicts the likelihood of an average customer to buy a

specific vehicle configuration in a given assortment offering. Our modeling approach utilizes

neural networks to predict, based on the historical dealership level sales and inventory data, how

likely a given configuration will sell when it’s offered along with a set of configurations. These

69

configuration level sale probability estimates are then used to estimate the attraction factor for each

feature included in the vehicle configuration. The attraction factor of each feature represents

feature’s individual contribution to the probability of sale of the configuration as a whole. With

this feature level estimation, the probability of sales for any feature combination or vehicle

configuration can be estimated (including those configurations not yet built or offered). We report

on the performances of several modeling and neural network based estimation approaches using

historical dataset from a major US automotive OEM. Our models are parametric and thus can be

used within an assortment planning model to determine the optimal product assortment that

optimizes complexity by considering true profitability of the configurations in the assortment.

70

AUTOBIOGRAPHICAL STATEMENT

 Farah Dubaisi is a graduate Manufacturing Engineering student at Wayne State

University. Farah received her Bachelor degree in Mechanical Engineering at American

University of Beirut in spring 2013. Throughout her education, she worked hard to maintain a

high GPA, 3.9, on one hand, and attain practical industrial experience, on the other hand. She

have succeeded in completing two internships at TRW Automotive and NYX Incorporated, in

the capacity of project management. Farah developed her expertise in Excel and Matlab

modeling during her work towards this thesis.

	Wayne State University
	1-1-2015
	A Customer Choice Modeling Framework For Assortment Planning Of Configurable Products In Automotive Industry
	Farah Dubaisi
	Recommended Citation

	tmp.1445537526.pdf.7vTz4

