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INTRODUCTION 

In order to survive in this highly competitive market, retail stores should come up with 

effective and efficient ways to manage their operations to yield the highest profit and customer 

satisfaction possible. Activities such as ordering of products, inventory management, and 

establishing relationships with suppliers, significantly contribute to operational cost incurred by 

the retailer. Thus optimizing them will lead to a boost in the company’s profits. These days a major 

market focus is being directed toward ‘Assortment Planning’ which is defined as specifying the 

set of products and the level of product variations to be carried at each retail store in a way that 

will maximize the store’s profit, subject to storage space constraints, customer service level, 

product availability, competition, and many other possible constraints depending on the retail store 

and type of product being studied.  One important tradeoff that should be considered in assortment 

planning, is that increasing variety increases customer satisfaction but has a negative effect on 

operational cost. To mitigate this problem, the retail store managers should be able to understand 

the customer buying behavior at the point of sale, and their reactions toward not finding their 

desired product variant, whether this variant is stocked out or is not carried by the store.  

Being able to predict the probability of selling a given product offered within a specific 

inventory mix, is a valuable asset not only for the retailers but also for the supply chain as a whole. 

In this context, retailers will adjust their carried assortment by ordering more of the higher sellers 

and less of the slow moving configurations. This in turn will reduce their holding and operating 

costs by fairly cutting down the average weeks a configuration stays on lot. Moreover, it will 

increase the level of customer satisfaction by lowering the possibility of stock outs. Finally, it will 

increase the revenue since more vehicles will be sold at full price and less promotions will be 

necessary to get rid of stationary inventory. As for the rest of the supply chain, manufacturers and 
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suppliers will focus their production efforts and budgets on producing the popular configurations 

and will cut on the undesired ones to be able to replenish their retailers’ inventories as quickly as 

needed. This will lead to a significant reduction in the complexity cost and starvation points in 

downstream stages of the supply chain. 

Driven by the above mentioned benefits of estimating the selling probability, this thesis 

focuses on estimating the turn rate of configurations present in an existing assortment. As a 

definition, inventory turnover rate is a measure of the number of times inventory is sold or used in 

a time period. In other words, it’s the probability that a vehicle will sell within 1 time period from 

its arrival to lot. This is numerically calculated as follows:  

(𝑇𝑢𝑟𝑛 𝑅𝑎𝑡𝑒)𝑖 =
1

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑒𝑘𝑠 𝑜𝑛 𝑙𝑜𝑡)𝑖
 

Where i is the configuration index. 

Given that vehicles are configurable products, its attractiveness can be represented as a function 

of its individual features in accordance to the majority of customer choice models in the 

configurable products literature. The most widely used choice models in the literature of economy 

are the multinomial logit MNL, multinomial probit MNP, and mixed multinomial logit models. 

All of which equally estimate the deterministic portion of the configuration’s attraction as a linear 

relationship between the individual features constituting it. However, they differ in the way they 

compute the error term which is added to the later to account for randomness and interactive 

relationship between features. In this thesis, we relied on Ford Mix Rate Modulated Patent to 

calculate the deterministic portion of the configuration attraction, which is compared to the turn 

rate variable explained above. This model is constructed to generate a matrix that combines the 

item configuration data with the inventory mix data at the feature level to output a configuration 

feature vector whose elements indicate the availability of an item feature in the inventory carried 



3 

 

on lot. Consequently, each feature will be represented as a function of its availability in the 

configuration, regardless to any other feature in the configuration. This in turn will allow us to 

study its contribution on the final output which is the turn rate. However, this methodology has 

introduced another problem, which is the dependency of the turn rates on the corresponding 

inventory mixes that were available on lot. That means that for each inventory mix scenario we 

will have a new set of turn rates associated to each configuration. This will leave us with infinite 

variable space given that we have unlimited possible inventory mixes. Therefore, the second part 

of the thesis focused on removing this conditionality and generalizing the turn rates so that we 

have one turn set applicable to any kind of inventory mix. 

The thesis will be organized as follows, a literature review section that will discuss other 

methodologies used by researchers to estimate probability of sales. In addition to in depth 

explanation about Ford’s patent and neural networks. Afterwards, a methodology section will be 

presented where all the details and assumptions followed by our model are explained. And lastly 

the results will be presented and validated in the result and validation section. We will wrap up 

this thesis with an insight of future applications and elaborations to our turn rate estimator model. 
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LITERATURE REVIEW  

In the assortment planning literature, Ryzin and Mahajan 1999 where among the first to 

focus on the tradeoff between the higher revenues achieved by larger product variation and the 

extra operation costs imposed by this larger variety, including the inventory-related costs. In Ryzin 

and Mahajan1998 they studied assortment planning problem related to non-configurable products 

with a stochastic demand single period setting using Multinomial Logit (MNL) consumer choice 

model which is a utility based model based on the assumption that customers buy the variant that 

maximizes their derived utility. Their model optimized the initial inventory mix that should be 

carried by a retail store in order to maximize the store’s profit, taking into account the effects of 

stock outs by studying customer behaviors at those instances. Facing a stock out, a customer is 

expected to either substitute to another variant, stock-out based substitution, or walk away. In 

Ryzin and Mahajan 1999, the same inventory allocation model was elaborated to account for 

assortment based substitution as well, which is the probability that a customer substitute his 

primary preference with another variant having in mind that his preference is permanently not 

carried by the store. Only one level of substitution was allowed, after which the customer is 

supposed to walk away. In both papers the price allocated to the variants was assumed to be 

exogenous to the model. A basic set of inputs for their formulation was the utility vector which 

includes the set of utilities assigned to each product variant in the offered assortment along with 

the no purchase utility. They interpreted these parameters as a measure of the net benefit to the 

consumer from purchasing each variant (or not purchasing) which is also called consumer surplus 

and is numerically represented as follows: 

Uij= uij+€ij  
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Where uij’s are the deterministic portion of the utilities and are further decomposed to a quality 

index minus the price of variant j,  

uij=aij-pij. 

€ij’s are the set of mutually independent random error terms that account for the unobserved 

heterogeneity in the customers’ taste. According to the IIA assumption, Independence of 

Individual Alternatives, this error term follows a Gumbel distribution with mean 0 and variance 

µ*π/6.  

Kok and Fisher 2007 also derived an exogenous probabilistic choice model for commodity 

non-configurable products and utilized a novel substitution estimating approach by applying the 

estimation maximization technique to the sales data. They modeled the consumer buying behavior 

as a function of three decision variables: 1- Whether or not to buy from a subcategory, 2- which 

variant to buy, 3- how many to buy. This technique has been heavily used in marketing literature 

and can be expressed mathematically in the following manner: 

𝑑𝑗 = 𝐾𝜋𝑃𝑗 

Where K is the number of customers, 𝜋 is the probability of purchasing incidence, Pj is the choice 

probability of variant j and qj is the quantity purchased by per purchase incidence. To account for 

substitution, the effective demand of variant j is expressed as follows: 

𝐷𝑗 = 𝑑𝑗 + ∑ ∝ 𝑘𝑗 ∗ 𝑑𝑘

𝐾𝜙𝑁

+ ∑ ∝ 𝑘𝑗 ∗ 𝐿𝑘

𝐾∈𝑁

 

Where dj is the direct demand to variant j,  ∝ 𝑘𝑗 is the probability of a customer substituting from 

variant k to j, dk is the direct demand for variant k,and Lk is the unmet demand of variant K. The 

first summation represents the assortment based substitution where the customer substitute from a 

variant that doesn’t belong to the carried assortment N to variant j in N. However, the second 

summation represents the stock out based substitution, where a customer replace a variant k which 
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belong to N but is currently out of stock. The distinctive aspect about this paper is that it involves 

a real life assortment planning problem along with real sales data, an approach to estimating the 

parameters of the model, and a workable algorithm validated by the real data. They presented an 

iterative optimization heuristic for the assortment planning and inventory problem with one-level, 

stock-out based substitution subject to shelf space, lead time, and discrete maximum inventory 

level constraints.  

Yucel et al. 2009 branch out from the Kok et al and introduce a mix integer optimization 

model for the joint problem of product assortment, inventory management, and supplier selection. 

The output of this model is the optimal order quantities for each product, as well as the product 

types that should be included in the assortment. Another novel approach of demand estimation was 

presented in Ozturk et al. 2009. A special focus on how to estimate stock out based substitution 

has been given in this paper. Their base model utilized the point of sale data and inventory 

transaction records to estimate the probability of substitution as well as sale probability under the 

assumptions of discrete time stochastic customer arrival rate, length of the POS interval is short 

enough to ensure that the probability of having two arrivals during the same interval is negligible 

and can be assumed zero, and only one level of substitution is allowed with probability psi δ.  With 

the above stated assumptions, arrival rate 𝜆i and sale probabilities of each variant i offered in an 

initial inventory Io,  𝑆𝑖, 𝐼𝑜 can be expressed as follows:   

𝜆i = lim( 𝑇 → ∞)
1

𝑇
 ∑ 𝐴𝑖(𝑛)  

Where Ai (n) is an indicator binary variable that is equal to 1 if a customer demanding product i 

arrived in period n, and 0 otherwise 

𝑆𝑖, 𝐼𝑜 =  𝜆𝑖 + ∑ 𝛼𝑖𝑗 ∗ 𝜆𝑗(1 − 𝜃𝑗, 𝐼𝑜) 
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Where, αij= δ*
𝜆𝑗

∑ 𝜆𝑙
  is the probability of substituting product i with j. The latter is defined according 

to the market share based model 

𝑆𝑖, 𝐼𝑜 Is the probability that a customer will purchase item i at POS interval n. Io is the inventory 

status at the beginning of the POS interval, ϴj is a binary indicator variable that is equal to 1 if 

product i is available in Io and zero otherwise. 

All of the above papers focus on consolidated commodity products such as beverages, food, 

detergents, shampoo, etc… Goker et al. 2009 on the other hand discusses the assortment selection 

and pricing for configurable products such as computers, mobile phones, cars, etc… They 

categorized the components that constituted the product into required components and optional 

ones. They defined a variant’s surplus which is the difference between the customer utility from a 

variant and the costs incurred by the firm for the variant. The variants that the company should 

choose to include in the configuration are those with the highest surplus. They also defined an 

attraction factor that rates the attraction of the whole configuration, and with that the company can 

choose which configuration to include in their assortment. The MNL choice model has been 

implemented to estimate demand without accounting for any type of demand substitution. 

On the other hand, Ford came up with a different assortment planning approach, at the level 

of dealers. Their goal was to generate order recommendation to dealers that better addresses the 

given dealer’s market, and maximize their profits through reducing holding costs impacted by the 

average weeks a vehicle is set to spend on lot, and costs associated with exchanging vehicles 

between dealers. Ideally when a dealer orders the right configuration mix, they are expected to sell 

faster, encounter less stock outs and apply less price promotions to get rid of slow moving items. 

In their Smart Inventory Management System, SIMS, model they utilized statistical analysis and 

neural network to predict vehicle turn rates in a given inventory mix. In the beginning a dealer’s 
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market is defined as a circle of 25 miles radius around the target dealer, this will allow the 

inventory of the target dealer to be viewed in context of other inventory available in dealer market.  

Accordingly a weighted market inventory for the target dealer is calculated using a weighting 

function that associates metrics to the inventory available at competing dealers based on their 

distance from the target dealer and adds the above product to the inventory available at the target 

dealer. In other words, if a given dealer has 10 blue Fusions while another competing dealer 10 

miles away with a weight w= 0.2 has 4 fusions, then the weighted market inventory will be 

10+0.2*4=10.8. The weighting function is a monotonically decreasing function with a value 100% 

when distance is zero, and slightly higher than zero for distances more than 140 miles. Similar 

analysis is done for sales data. Secondly, the inventory and sales data are broken into the feature 

level, then configuration feature vectors are normalized according to the mix rate modulated 

technique which will be explained in further details later in this paper.  

For computational simplicity, they applied PCA technique to reduce the dimensionality of 

the feature vector that will be later inputted into the neural network. In addition to the mix rate 

modulated feature vectors, a set of context variables will be inputted to the neural network which 

will capture all the market related characteristics such as dealer latitude and longitude, dealer item 

market inventory, retail/stock order type indicator, numbers of weeks on lot, dealer fraction of item 

market inventory, and market turn rate. A vector of binary variables representing the sold status of 

a given vehicle on lot on a given week, is passed to the neural vector in the form of target variable. 

Using survival analysis techniques, the neural network will be able to predict the turn rate of a 

vehicle with a given normalized feature vector, after being trained on a set of historical inputs and 

known outputs. During the training process the model will assign certain parameters to each input 

variable, to generate a predictive function for the designated output. The neural network training 
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process will then adjust these parameters in response to the applied input variables to better match 

the output of the neural network with the real historical target values. 

Later in the SIMS model, after they assign a turn rate for every configuration, mixed integer 

optimization model called “Feature Allocation Optimization” was formulated with an objective to 

minimize the difference between the target inventory mix rate and the current mix rate at the 

feature level subject to production and material availability constraints. The target inventory mix 

rate is set in a way that guarantees a balanced inventory where inventory mix for a given feature 

is aligned with its sales mix. For example the graph below shows the projected sales and mix rates 

of two variants of the engine.  To attain a balanced inventory the top 2 curves should overlap as 

well as the bottom 2 curves. 

 

Figure 1 Sales and Inventory Mix Rates as a Function of Time
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METHODOLOGY 

Assumptions 

1- Ignoring the Differences in The Buying Behavior From One Consumer to Another 

The model considers that the customer’s choice is fully determined by the inventory mix 

available on lot, and is independent of the customer’s personal characteristics. It does not 

differentiate customers belonging to different age groups, financial statuses, region of residency, 

and so on. On the average, all customers in the US market are expected to have the same choice 

behavior when exposed to the same inventory mix. 

2- Ignoring Seasonality in Sales Data 

According to Ford’s analysis of their sales data, seasonality has a negligible effect on the 

projected turn rate of a variant of a given feature relative to other variants in the same feature 

family. The graph below, for example, shows that the variation of the relative turn rate of I4 to V6 

engine is fairly constant over time. Thus we can safely ignore seasonality effects without leaving 

any bad impact on the accuracy and precision of the model. 

 

Figure 2 Variation of I4 and V6 Engine's Turn Rates as a Function of Time 
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1- Decomposing the US Market into Regional Submarkets 

We decomposed the US market into 17 different regional markets, which are listed in appendix 

A. Dealers in a given regional market have access to the inventory available in the whole market 

and they can easily trade vehicles without extra costs incurred on their end. So, whenever a 

customer walks into a dealership he will have the freedom to pick from the inventory available in 

all the dealerships located in this given region. On the other hand, no interaction is allowed across 

separate markets. 

2- Considering Most Popular Features in Defining the Available Configuration Set, 

Core Entities 

A configuration is best defined as a combination or arrangement of a set of feature variants. 

Knowing that for The Car model there are two different technologies to start with, Standard and 

Hybrid. For standard technology we have 4 different super-families, Power and Handling, Interior, 

Exterior, and Safety, each having 4 different feature families on average, and 5 variants each on 

average. Therefore, an assortment can include up to 2^80 possible configurations. Plenty of design 

and manufacturing constraints will shrink down the size of the assortment into a set of buildable 

configurations, nevertheless the assortment will still be a fairly large one. For this reason, we had 

to reduce the dimensionality of the feature vector by focusing on primary features which are 

assumed to have the highest influence on customer choice. Configurations are then encoded by a 

binary vector, whose length is determined by how many features are being considered. For each 

feature in the list, a value of 1 is assigned in a field associated with it, if the feature exist with 

respect to the given configuration, and a value of zero otherwise. The table below shows all 

considered features. 
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1- Cargo Cover 2- Radio 

3- Ultimate Package 4- Rear Heated Seats 

5- Heated Seats 6- Reverse-Sensing 

System 

7- Elite Package 8- Satellite Radio 

9- Rear 

Entertainment 

System 

10- Sound System 

11- Roof Rack 12- Trailer Tow 

Package 

13- Moon Roof 14- Special Wheels 

Table 1 Core Entities Used in Our Model 

3- Ignoring Feature Interactions 

This assumption states that the relative attractiveness of a given feature is independent of the 

set of other features present in a configuration. In other words, it ignores the feature packaging 

effects on the customer’s choice. For simplicity in our analysis, we considered a package as a unity 

and treated it as a single feature. This assumption is derived from all Logit choice model which 

restrict the explanatory variables to be independent and have fixed utilities. In our case, the 

presence or absence of a given feature represents the independent variable, and the utility is 

reflected by its associated customer attractiveness. For example, the attractiveness the moon roof 

option is fixed over all possible configurations independent on what other features are offered with 

it. 

4- Removing Censored Data 

  The SIMS model utilizes the survival analysis technique to estimate from a set of historical 

sales data, how likely a given configuration will sell when present with a set of other 

configurations. Some of the vehicle records available in the Car model dataset, doesn’t indicate a 

day of sale because their selling incidence didn’t occur by the time of the close of the study. This 
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phenomenon is called “Censoring”, and will lead to underestimating the probability of sales of a 

given configuration if not properly mitigated. As a definition, a record is said to be censored when 

information on time to event is not available due to loss to follow-up or non-occurrence of outcome 

event before the trial end. In our model, we eliminated those records from the dataset that was 

inputted to the neural network after applying the mix rate modulation. 

Model Formulation 

Data Preprocessing 

For preprocessing the dataset in hand, we applied the mix rate modulation technique in 

order to normalize the configuration feature vector.  A feature level inventory mix rate is best 

defined as the ratio of vehicles available in stock at a given period and market, having a certain 

feature, out of the total number of vehicles carried in the inventory. The modulation technique will 

take these mix rates and will subtract them from the binary vector representation of the vehicles’ 

configurations available on lot in order to generate a compact representation of these 

configurations, reflecting its’ relation to the inventory mix defined at the feature level. Elements 

of these mix rate adjusted feature vectors are continuous variables bounded between -1 and 1 , 

because the mix rates themselves lies in the [0,1] interval and are positive whenever a feature is 

available in the given configuration, and negative otherwise. This modulation is characterized by 

its ease of reverse, since it’s almost always possible to recover the original binary configuration 

vectors, except for one case where all items carried in the inventory on that particular period do or 

don’t carry a particular feature. In this case in particular, we can remove that feature from our 

analysis because there will be no variation encountered at its level. 

Furthermore, the modulation holds the following property, Property1,  which states that 

the sum of the values across all features within a feature family for a given record are equal to 
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zero, and the average value across all records for a given feature in any given time interval must 

be equal to zero. In order to satisfy this property, the configuration vector should include all 

possible alternatives for a given feature. For example if we have 2 extra options for car seats, 

“Front Heated Seats”, and “Front & Rear Heated Seats”, we should include 3 separate columns in 

the input matrix each standing for one extra option, and the additional column will represent the 

standard form of the feature, in our case it will be “No Heated Seats”. In this way all possible 

configurations will be covered, and the sum of normalized values across all features for a given 

record will be zero. 

In our model, for the sake of reducing dimensionality of the input space, we only 

considered features which were chosen by The OEM’s marketing department to have the highest 

effect on the customer’s choice. Moreover, since we are not studying packaging effects and the 

interaction between features, we considered the packages which were offered to the US market in 

year 2007/2008 as a single feature.  

In summary, the input feature vector will be a single row vector combining all the feature 

variants listed in the table below. Notice that Elite Package column has been duplicated because 

this package acts as an alternative to 2 different features, Rear Entertainment System and Roof 

Rack. Thus for the elements of our input feature vectors to sum up to zero according to the Property 

1, this package column should be counted twice. 

 

 

 

 

 



15 

 

Feature Variant 1 Variant 2 Variant 3 

F1 Ultimate Package Heated Seats Non 

F2 Elite Package Rear Entertainment 

System 

Non 

F3 Elite Package Roof Rack Non 

F4 Moon Roof Non  

F5 Radio Non  

F6 Rear Seats Non  

F7 Reverse Sensing 

System 

Non  

F8 Satellite Radio Non  

F9 Sound System Non  

F10 Trailer Tow Package Non  

F11 Special Wheels Standard Wheels  

Table 2 List of Variants for Each Feature Family1 

Now that the feature vector is defined, it will be encoded as a binary array explained in assumption 

4 and will contain 27 elements. Each vehicle in the dataset will be associated with a feature vector 

to describe which features it conveys. In the Car model sales dataset, we had 579 unique 

configurations. For simplicity we ranked those configurations randomly from 1 to 579, so that we 

can refer to each one by its assigned ranking rather than a 27 element binary vector. 

Next step in the mix rate modulation process, is to categorize sales records based on their 

location, then discretize on a weekly basis. Take Boston area for example, we have 1128 vehicles 

                                                           
1 The cells with “Non” values stand for the No feature option, empty cells means there is no third variant for that 
particular feature 
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arriving into the market in the period 2006/2007, total of 44 weeks. Those vehicles were randomly 

ranked from 1 to 1128 to keep track of each as it get transmitted from one week to another. We 

recorded all the vehicles available at a given week N, where N extend from 9 to 44, by considering 

those vehicles that arrived before week N and was either sold during week N or later. After 

attaining the inventory mix at week N, mix rates for every feature in the feature vector will be 

calculated by averaging the value of the feature element within the feature vector across all 

vehicles available on lot at that particular field. In other words, the mix rate of feature I is the 

fraction of vehicles carrying I out of the total number of vehicles available on lot. This mix rate is 

later subtracted from the 1 or 0 encoded in the feature field of each vehicle available in the 

inventory set yielding to a negative value in those vehicles that doesn’t carry the feature, and a 

positive value less than 1 otherwise. 

Meanwhile, another variable which indicates whether or not a given vehicle was sold on 

that given week is defined. We called this binary indicator variable as sold status, and assigned it 

a value of 1 if the vehicle sold week matches the current week in hand, and 0 otherwise. For 

example if a vehicle V arrives on week 5 and got sold on week 9, it will show up in the inventories 

of the weeks 5 through 9, and it will have a sold status =0 on weeks 5,6,7,8 and sold status=1 on 

the 9th week. 

The same procedure is repeated for every week, and every region out of the 17 US regions. 

Using Matlab as a tool, the weekly mix rate modulated vectors for each region, were generated 

and stored in a matrix. We will refer to this matrix as ‘Global’ throughout this thesis. Moreover, 

the Matlab code will also generate a ‘Sold Status’ vector that indicates the sold status of each 

vehicle in the record. 
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Neural Network Regression Model 

As previously mentioned, Neural Network is the tool used in our regression model to 

calculate the expected inventory turn rates at the configuration level. The input to the neural 

network is the Global matrix, which includes the set of mix rate modulated feature vector available 

in the 17 regional markets over the period extending from week 9 till 44. On the other hand, the 

Sold Status vector will constitute the neural network target variable. 

  Several limitations are imposed on this predictive model due to the nature of the sales 

dataset, and the kind of output we are anticipating. Consequently, the built in neural network tools, 

offered by Matlab, didn’t generate the required level of accuracy in its generic form. For this 

reason, we customized our own neural network script that better mitigates the some of the 

encountered limitations. 

Limitation 1: Limited Number of Records 

The feature vectors inputted into the neural network is made up of 27 elements, as described 

in the data preprocessing section above. This large variable space requires a significantly huge 

number of records in order to capture the contribution of each input to the final outputted result 

which is the sold status in our case. The limited number of sales record available in our dataset 

will definitely introduce accuracy problems to the neural network. 

Limitation 2: Data Sparsity and Class Imbalance 

From the historical sales records, it is observed that on average a vehicle is expected to 

remain 6 weeks on lot before it gets sold. Thus, for each vehicle we will have 6 sold statuses equal 

to zero and only one sold status equal to one. The generated sold status vector will then have 6 

times more zeros than ones. This sparse target vector will enforce limitations on the neural 

network’s ability to learn how to classify vehicles as sold or not. Getting rid of censored data is 
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one way to mitigate this problem. Another way is to replicate the records which have a sold status 

equal 1, six times each, so that a balance in the target vector is created. In that way the neural 

network will have better ability of predicting the sold status of a given feature vector. Note that 

class imbalance only effects the ability of a neural network to classify its outputs onto one of the 

classes mentioned in the target vector. However, it doesn’t have any effects on the regression fit 

model which will still generate accurate turn rates even if the target vector is not balanced. 

 Limitation 3: Variation in the Popularity of Configuration 

Certain vehicles are significantly more popular than others and thus they should be given 

higher importance in the penalty function calculation. In other words, errors encountered in the 

predicted turn rates of those popular configuration must be highly penalized, as compared to those 

rarely ordered vehicles. Therefore, we introduced a weight vector into the neural network’s penalty 

function in that way the neural will be trained to give more importance to those vehicles with 

higher weights. The weights are defined according to the formula below: 

𝑊𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑊𝑒𝑒𝑘𝑠 𝑓𝑜𝑟 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑊𝑒𝑒𝑘𝑠 𝑅𝑒𝑐𝑜𝑟𝑑𝑠
 

  In this context, vehicle weeks represents how many times a given vehicle appears on lot before 

it gets sold and is numerically calculated by taking the product of the vehicle count by their 

associated weeks on lot: 

Vehicle Weeks for Configuration A= ∑ 1𝑥𝑊𝑂𝐿𝑖𝑛
𝑖=1  

Where n is the number of times a dealer received vehicles of configuration A, WOLi is the weeks 

on lot spent by each vehicle I, and 1 is the count of vehicles received at each incident n, since each 

sales record represents 1 vehicle only. For example if we received 10 vehicles of configuration A, 

and each one remains 3 weeks before it got sold, the number of vehicle weeks for configuration A 

will be the product of the count with the weeks spent on lot, 10x3=30. 
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Customized Neural Network Script 

Before inputting the Global matrix into the training function, it’s preferable to standardize 

the feature vector so that the mean of all inputs across one record is equal to zero. Standardizing 

the inputs and target variable is desirable because it rescales those variables so that their variability 

reflects their importance, makes training faster, and reduce the chances of getting stuck in local 

optima. Also, weight initialization, weight decay and Bayesian estimation can be done more 

conveniently with standardized inputs. For this matter, we utilized the ‘mapstd’ process function, 

which process the matrix by transforming the mean and standard deviation for each row to 0 and 

1, for both the input and the output layers. 

To start creating the neural network, one should first define the network object. For this 

purpose we used ‘newff’ function which by default creates a 2 layer feedforward neural network 

and requires 3 obligatory input arguments, input vector, target vector, and number of neurons in 

the hidden layers. Note that the output layer size is determined from the target vector. In addition 

to 3 other optional arguments which can be used to customize the functions used in the neural 

network including transfer function to be used in each layer and the utilized training function. If 

only three arguments are supplied, the default transfer function for hidden layers is ‘tansig’ and 

the default for the output layer is ‘purelin’. The default training function is ‘trainl’. The reason we 

chose newff to create a feedforward neural network although it has been obsolete since 2010, is 

that newff is the easiest to customize than any other feedforward function including ‘fitnet’, which 

is the new data fitting function, and ‘patternnet’, which is the pattern recognition function. 

We already know that the optimal number of hidden neurons lies somewhere in the middle 

of the interval extending from the number of outputs to the number of inputs, in this case the 

interval is [1,27]. A good initial guess will be 10 neurons, thus we initialized our model based on 
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that and then iteratively ran the network, recorded the average turn rate across all records and 

compared it to the average historical turn rate. After several trials, we figured out that the most 

precise results were generated when the number of hidden neurons was equal to 15. 

For the hidden layer, we kept the default transfer function which is the ‘tansig’ function. 

The fact that ‘mapstd’ was used as a post processing function, limited our options to using either 

linear transfer functions or hyper tangent function at the output layer. However, since the output 

represents the probability of sales, the range of output variables should be bounded by 0 and 1. 

Therefore, the use of ‘purelin’ transfer is a must to satisfy both constraints. Knowing that, if 

linearity wasn’t mandatory, ‘logsig’ transfer function would have generated more accurate results 

due to its higher flexibility and degrees of freedom. 

The penalty function used in this network is the ‘mse’ which compute the mean squared 

normalized error between the network outputs and the target outputs t. In Matlab, the syntax of 

this function is the following: 
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perf = mse(net,t,y,ew)  

net Neural network 

t Matrix or cell array of targets 

y Matrix or cell array of outputs 

ew Error weights vector defined 

above 

Table 3 Parameter Definition on the Performance Function 

Now this penalty function is passed to the neural network through the performance function, 

(net.performFcn), which is later used as part of the neural network training. During training, the 

weights and biases of the network are iteratively adjusted to minimize the network performance 

function using the backpropagation technique derived from the chain rule of calculus. 

Backpropagation perform gradient computation backwards through the network, and moves 

weights in the direction in which the performance function decreases more rapidly. 

We had two different approaches to solve this problem, the first one is to treat it as a 

regression model that tries to fit a relation between the individual feature elements and the targeted 

binary sold status, SS, and will generated a continuous output, Yc, ranging between 0 and 1 

representing the probability of sales for each record. In this case, the performance function will 

penalize the neural network by calculating the error between the Yc and SS. The second approach 

treats the problem as a classification problem, where the objective is to correctly classify each 

vehicle as being sold or not at a given week. Note that the train function will still fit a regression 

function between inputs and target vectors, and will still generate a continuous variable Yc, 

however the performance equation should now penalize the error between the classified output of 

the neural network with the SS target variable. In this matter, class imbalance problem should be 
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mitigated by applying the balancing technique described above, and Yc should be converted to a 

binary classified variable which we called Yclassified. For this conversion we defined a threshold 

T=0.5 for Yc values, beyond which the vehicle is considered as sold. In other words, if Yc exceeds 

0.5 then its corresponding Yclassied will be equal to 1, otherwise it will be zero. Below are the 

functions used to define Yclassified and the performance arguments: 

Yclassified= round(y-T); 

Performance = perform(net,t,Yclassified); 

 

To study the effect of class balancing on the neural network, we ran a benchmark classifier 

model, where data were inputted with its unbalanced format, and the classification threshold was 

set to be=0.14, which is the average historical turn rate for all configurations calculated manually. 

We then compared the accuracy of this model with the balanced classifier model.
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RESULTS AND VALIDATION 

Using Matlab 2014a student version, we ran the two neural network codes explained above 

to evaluate the first set of results which is the conditional turn rate for each vehicle-weeks record 

in the dataset. We call those outputs conditional because their values are directly related to the 

inventory mix which was available on lot on a particular week in a given market location. For 

example the same vehicle which stayed on lot from week 3 till 7, will have 5 different turn rates 

values depending on the inventory mix that was available with it during each week. The goal now 

is to find a correct way of converting those conditional turn rates into unconditional, where each 

configuration is characterized by a single turn rate independent from the inventory accompanying 

it, this is consider the second set of outputs from our model. 

Conditional Turn Rate Analysis 

First, we ran the neural network in a “For loop” of 20, 60, and 100 iterations, and took the 

average of the turn rates across those iterations. Averaging is the simplest and most effective way 

to diminish the effects of randomness and noise in the generated readings. By averaging a set of 

replicated measurements, the signal-to-noise ratio, S/N will be proportionally increased with the 

square root of the number of measurements. This relation is expressed in the formula below: 

𝑆′

𝑁′
=

𝑛𝑥𝑆

√𝑛𝑥𝜎^2
= √𝑛

𝑆

𝑁
 

Where S’ and N’ are the averaged signal and noise values, n is the number of readings, and S and 

N is the signal and noise strength for a single reading. 

First step in the validation process, was to make sure that the neural network is precise 

where the coefficient of variation which is the ratio of the standard deviation to the mean of the 

turn rates predicted for a given configuration, is far less than 1. Then evaluate its accuracy as 

compared to the historical data. Resulting plots are shown in the sections below. 
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Regression Approach 

For each record, we took the average turn rate of all the predicted values outputted from 

the neural network across the 100 iterations. We then recorded the standard deviation for those 

discrete values, and plotted it as a function of the mean. The scatter plot below proves that the 

coefficient of variation is fairly smaller than 1. 

 

Figure 3 Standard Deviation As a Function of The Mean of the Neural Network Output 

 

 Due to the complexity of manually calculating the weekly conditional turn rates, we came up with 

a simplified way to perform the comparison between the neural network’s outputs and the 

historical turn rates where we defined a variable called manual turn rate as shown below: 

(𝑀𝑎𝑛𝑢𝑎𝑙 𝑇𝑢𝑟𝑛𝑅𝑎𝑡𝑒)𝑖 =
1

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑒𝑘𝑠 𝑜𝑛 𝐿𝑜𝑡)𝑖
 

Where, average weeks on Lot for configuration i is calculated by first grouping all vehicles 

received on lot belonging to configuration I, then recording how many weeks on lot each one spent, 

and later averaging those values.  
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The result will be a vector of 579 items, where each configuration is characterized by one 

manual turn rate. We refer to this vector to populate the turn rates for every vehicle available on 

lot in a given week and then compare them to the neural network estimates for that particular week. 

Definitely the neural network outputs won’t perfectly match the manually calculated turn rates 

because they are conditional to the weekly inventory mix whereas the latter is an averaged value 

independent of the current week’s inventory mix. However, this analysis can be accepted given 

the fact that the turn rate for a given configuration is supposed to slightly vary as the inventory 

mix changes. We expect the trend of the predicted versus historical turn rate plot to be as close as 

possible to a straight line. The graphs below show the various plots for the 20, 60 and 100 iteration 

model, where the R squared estimator is used to evaluate accuracy. 

 

Figure 4 Conditional Regression Neural Network Predictions Versus Manual Historical Turn 

Rates 
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Classification Approach 

Similar analysis was also applied to the balanced and unbalanced classifier model’s outputs 

and results are plotted below. For the unbalanced model, we only made one run of 60 iterations 

because our purpose here is not to track the improvement in results as the number of iterations are 

increased, but to have a benchmark to measure the effect of data balancing. 

Balanced 

 

Figure 5 Conditional Classifier Balanced  Neural Network Predictions Versus Manual 

Historical Turn Rates 
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Unbalanced 

 

Figure 6  Conditional Classifier Imbalanced Neural Network Predictions Versus Manual 

Historical Turn Rates 

Unconditional Analysis 

The main objective of this research is to estimate turn rate for a vehicle configuration, 

depending on its feature vector. Thus for our output to be useful in real future applications, it 

should be undocked from the inventory mix that was available at the period when the configuration 

turn rates were calculated so that it becomes applicable at any given inventory scenario. For this 

reason, we should convert the first set of neural network outputs which are conditional upon the 

weekly inventory mix which was available in the historical dataset to an unconditional form where 

each configuration is characterized with one turn rate independent of the available inventory mix.  
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Mean as Transformation Function 

Averaging the generated conditional turn rates for each configuration over the study period, 

37 weeks, and the 17 different market locations is the simplest way to convert it to an unconditional 

form, given that the single records are characterized by low variability and fall in a small interval 

around the mean. The plots of the averaged turn rates versus the manual turn rates shown below 

reveal a high correlation among the two parameters which proves that the neural network’s outputs 

are directionally correct. 

Regression Model 

 

Figure 7 Averaged Turn Rates Versus Manual Historical Turn Rates For Regression Model 
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Classifier Balanced Model 

 

Figure 8  Averaged Turn Rates Versus Manual Historical Turn Rates For Classifier Balanced 

Model 

Discussion 

Looking only at the conditional plots in the section above, one can claim that the classifier 

model over performs the regression model due to the significant difference in the R squared of the 

linear fit of NN Outputs versus Manual Historical Averaged turn rates, 0.32 versus 0.07. However, 

after plotting the averaged NN Outputs and plotted it against the manual averaged turn rate, the 

goodness of the fit improved significantly in both of the models and they converged to a very close 

level of accuracy 62% versus 71%. This urged us to use different approaches to evaluate the 

accuracy of those models. On the other hand, as we compare the R squared parameter for the trend 

lines of the graphs for both forms of classifier model, balanced and unbalanced, we notice that the 

accuracy of the fit significantly increased from 0.44 to 0.499 for the unconditional averaged turn 

rates and from 0.0717 to 0.315 for the conditional un-averaged turn rates, as we introduced the 
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data balancing into the classifier model. This signifies the important effect of data balancing on 

the classifier’s accuracy. 

  To justify the reason why we chose to measure the weighted average error rather than the regular 

average error, we plotted the relative error associated with each configuration versus its popularity 

in the dataset. The graph below visualize the relationship between these 2 parameters. 

 

Figure 9 Relative Estimation Error as a Function of Configuration Popularity 

 

It is shown in the graph above that the majority of configuration have a popularity level 

less than 0.05. This extremely low repetition of those configuration is blocking the ability of the 

neural network to learn about their sale’s behaviors and thus leading to significantly high errors. 

However, for those more popular configurations with a popularity higher than 0.02, the error level 

considerably dropped to values below 0.2. As a conclusion, it is extremely important to input those 

weights in the error estimation function to be able to bias the average error value in favor of the 

popular configurations. Arriving to this conclusion gives us a positive intuition towards the ability 

of neural network to predict turn rates, since whenever we feed it with enough measurements for 
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a certain configuration, it is able to predict the correct output with 90% accuracy. Therefore, if we 

received a better dataset in the future and we applied the same methodology we should arrive to 

better results. 

Risk Adjusted Turn Rate Transformation Function 

Another way to perform this conversion is by using the formula below: 

𝑌ℎ𝑎𝑡 = 𝜇 − 𝛼 × 𝜎  

 Where Yhat is the unconditional estimate of the turn rate for configuration X, µ is the mean of all 

the records associated to configuration X, α is the importance factor given to the variability of the 

records, and 𝜎 is the standard deviation. This parameter has been referred to as the risk adjusted 

average turn rate by the Ford’s Patent.   

The privilege of using the risk adjusted turn rate, is the fact that it takes into account the 

variability of the turn rate estimates and generate an averaged value characterized by low variance. 

As we notice from the Standard Deviation versus mean scatter plot below, high average turn rates 

are associated with high σ, whereas low averages are associated with low σ. Therefore, the optimal 

turn rate value to be picked is somewhere in the middle of this range. The only decision variable 

in this context is the scaling factor α which should be optimized to generate the most accurate 

averaged turn rate. 

In order to decide on the optimal value of alfa, we built an optimization model in excel 

whose objective function is maximizing the correlation factor between the Rhat estimates and the 

manually calculated historical turn rates. And its subject to boundary constraints that bounds Rhat 

between 0 and 1. Below is the exact formulation of the maximization problem: 

 

Objective Function: Maximize 
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Where �̅� 𝑎𝑛𝑑 �̅� are the sample mean for x and y 

St.: Constraints: 0 ≤ 𝑌ℎ𝑎𝑡𝑖 ≤ 1 for every I 

Alfa is allowed to vary from -∞ 𝑡𝑜 + ∞ 

The results are presented in the table below: 

 Regression Classifier 

Alfa Value -4.7292 -1.30622 

Maximum Correlation 0.778726 0.854114 

Average Total Error 0.369895 0.185302 

Table 4 Risk Adjusted Turn Rate Alfa Optimization Results 

Average Total Error= ∑
|𝑅𝑖−𝑅𝑖ℎ𝑎𝑡|

max (𝑅𝑖,𝑅𝑖ℎ𝑎𝑡)𝑖  

Where i is the set of weeks going from 9 till 34. 

The plot below visualize the correlation between the estimated turn rates and the real historical 

turn rates. 
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Figure 10Risk Adjusted Turn Rates versus Manual Historical Turn Rates for Regression Model 

 

Figure 11Risk Adjusted Turn Rates versus Manual Historical Turn Rates for Classifier Balanced 

Model 
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Exponential Transformation Function 

 

From the graphs above, we noticed that a logarithmic fit generated a higher R squared than 

the linear fit. Inspired by this result, we came up with another transformation function which takes 

the exponent of the risk adjusted turn rates. 

𝑌ℎ𝑎𝑡 = 𝑒𝑌ℎ𝑎𝑡 𝑅𝑖𝑠𝑘 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑  

The graph below shows the improvement in the correlation between the estimated unconditional 

turn rates and the manual historical averaged turn rates. 

 

 

 

 

 

Figure 12  Exponent of Risk Adjusted Turn Rates Versus Manual Historical Turn Rates 
For Regression Model 
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Discussion 

To summarize the results above, we noticed that factoring the variability of the turn rate 

records into the transformation equation, had raised the correlation between the estimated and the 

real historical turn rates. This proves that the risk adjusted value is in fact an effective 

representation. Moreover, the further increase in R squared resulting from the exponential 

transformation indicated that the rate of increase in the manual historical turn rate  is faster than 

that of the neural network outputs which makes it more in line with the logarithm of the manual 

turn rates rather the manual turn rates themselves. 

Simulator 

 

For the sake of evaluating the accuracy of this conversion, we built a simulator that 

generates random customer choices at a given week, allocated based on the estimated 

unconditional turn rates, Yhat of the available configurations, then records the vehicle count for 

every configuration and compares it to the real historical counts. At this level we are going to 

simulate the outputs of the three different transformation functions listed above and verify which 

one is going to behave better under random choice simulation. 

For example, if in the real life scenario we had 3 Black cars, 4 Red, and 6 Yellow at a given week, 

and 2 Blacks, 1 Red were sold we will be left with 1 Black, 3 Red and 6 Yellow at the end of the 

Figure 13 Exponent of Risk Adjusted Turn Rates versus Manual Historical Turn Rates for 
Classifier Balanced Model 



36 

 

week. Now the simulator will take this initial inventory (3 Black cars, 4 Red, and 6 Yellow), and 

generate 3 random choices based on the estimated turn rates of each configuration, which may or 

may not match the actual sold vehicles. According to the laws of probability, the vehicle with the 

highest turn rate are more likely to be chosen by the simulator and thus sell faster. Now, if those 

turn rates were representative of the real life customer preferences, the simulated inventory should 

converge to the actual one.  If for example the simulator suggested 1 Black, 1 Red, and 1 Yellow 

sold vehicles, we will end up with 2 Blacks, 3 Reds, and 5 Yellow. Now, the weighted average 

error is calculated as follows: 

𝐸𝑟𝑟𝑜𝑟 =  
3

13
×

𝑎𝑏𝑠(1 − 2)

max (1,2)
+

4

13
×

𝑎𝑏𝑠(3 − 3)

max (3,3)
+

6

13
×

𝑎𝑏𝑠(6 − 5)

max (6,5)
 

The above equation gives a higher weight to the relative errors of those popular vehicles by 

multiplying it with the ratio of the vehicle count of this given configuration to the total number of 

vehicles available on lot during that week. 

Simulator Description 

We only considered the sales data for Boston market for simulation purposes, starting from 

week 9 through week 43. The first step in the simulator calculates the vehicle counts in the 

historical dataset for every configuration in every week of the period extending from week 9 till 

43 which will act as a benchmark to determine the deviation of the simulated inventories from the 

actual ones.  Afterwards, a vector of weights is generated for every week, representing the ratios 

of vehicle count for each configuration to the total number of vehicles available on lot on a 

particular week. These weights will later be multiplied by the relative error of simulated and 

historical inventory as shown in the equation above. 

Second step the actual simulating portion. To initialize the inventory at the beginning of 

every week, we equated the inventory level at the beginning of every week t to the real historical 
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inventory at the end of week t-1. This will reset the inventory level at the beginning of every week 

to the real inventory that was available in the historical data in order to eliminate the propagation 

of simulation error from one week to another. After initializing the simulator will add the vehicles 

that arrived at the beginning of week t then it will count how many vehicles were sold on that week 

in order to know how many random numbers to generate. Accordingly, N random numbers 

between 0 and 1 will be generated representing N random customers walking into the dealer market 

and buying a vehicle.  

Now to classify those random numbers into actual vehicle choices, we need to generate 

choice intervals based on the available set of configurations. This step is done by first identifying 

M which is the number of unique configurations available after adding the arrivals on week 10, 

then pulling the associated unconditional turn rates Rhat calculated in the previous step, and later 

normalizing those Rhat’s to generate M choice sub intervals between 0 and 1 based on which the 

random numbers are assigned to configuration choices. The example below demonstrate the 

normalization and choice allocation procedure. 

Take the same inventory mix mentioned previously, with the following assigned Rhats, 

Configuration Count Rhat 

Black 3 0.32 

Red 4 0.2 

Yellow 6 0.15 

Table 5 Sample Simulator Example 

Now to normalize the Rhat’s we divide each by the sum of Rhat’s associated with the available 

configurations, 

𝑌1 =
𝑅ℎ𝑎𝑡1

𝑅ℎ𝑎𝑡1+𝑅ℎ𝑎𝑡2+𝑅ℎ𝑎𝑡3
=

0.32

0.32+0.2+0.15
=0.4776; 

𝑌2 = 𝑌1 +
𝑅ℎ𝑎𝑡2

𝑅ℎ𝑎𝑡1+𝑅ℎ𝑎𝑡2+𝑅ℎ𝑎𝑡3
=0.4476 +

0.2

0.32+0.2+0.15
=0.7762; 

𝑌3 = 𝑌2 +
𝑅ℎ𝑎𝑡3

𝑅ℎ𝑎𝑡1+𝑅ℎ𝑎𝑡2+𝑅ℎ𝑎𝑡3
=0.7762 +

0.15

0.32+0.2+0.15
=1; 
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 0                                           0.4776                    0.7762                     1 

Now if the generated number lies between 0 and 0.4776 it will be assigned to the black 

configuration, if it was between 0.4776 and 0.7762 it will be assigned to the Red configuration, 

and Yellow otherwise. Notice that the biggest interval refers to the vehicle with the highest Rhat. 

Suppose that the generated random numbers were 0.2, 0.5, and 0.8, then the associated 3 random 

customers choices will be as follows: Black, Red, and Yellow. 

After specifying these random choices, the inventory counts will be adjusted accordingly 

by subtracting the chosen vehicles from the current inventory to generate I1, which will be later 

inputted as an initial inventory to the next iteration at week 11. The same steps are then repeated 

for every week till week 43, and the vehicle counts are recorded at each week. In order to minimize 

the effect of randomness and noise, we run this simulator for 100, 500, 1000, 5000, and 10000 

iterations and recorded the average of vehicle counts across all the iteration. Then the weighted 

relative errors between the averaged simulated vehicle counts and the historical counts, is 

measured and projected in order to evaluate the accuracy of Rhat estimates used. The flow diagram 

explains the steps followed for this purpose. 

 

     Black          Red   Yellow 
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Figure 14 Flow Chart for Count Simulator 

Three different error functions were used to evaluate the output of the simulators: 

 EWW:  

o Weighted Relative Error=∑ 𝑤𝑖 ∗
|𝐶𝑖−𝐶ℎ𝑎𝑡𝑖|

max(𝐶𝑖,𝐶𝑖ℎ𝑎𝑡)𝑖  where wi is the ratio of number of 

vehicles belonging to configuration I relative to the global number of vehicles 

availble in the market 

 EWR 

o Relative Error=∑
|𝐶𝑖−𝐶ℎ𝑎𝑡𝑖|

max(𝐶𝑖,𝐶𝑖ℎ𝑎𝑡)𝑖   

 EWC: 

o Error in Vehicle Count=|𝐶𝑖 − 𝐶ℎ𝑎𝑡𝑖| 

 

 

 

 

 

Calculate vehicle counts for all carried 
configurations on a weekly basis

Step 1

Count how many unique 
configurations are there on lot and 

normalize their turn rates (Rhat) 
accordingly

Step 4

Set up the choice intervals and assign 
each random number to a 

configuration choice

Step 5

Subtract chosen vehicles from In and 
record the count of vehicle for that 

week

Step 6

Set the initial inventory at week t 
equal to the historical inventory 

found at the end of week t-1

Step 2

Add the vehicles arriving at the 
beginning of week t then Count how 
many vehicles were and generate an 

equivilent number of random 
variables in the interval [0,1]

Step 3
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Results Summary and Discussion 

Classifier: 

 EWW EWR EWC 

Mean 0.45 0.388 2.812 

Risk Adjusted 0.44 0.378 2.809 

Exponential 0.43 0.376 2.806 

Table 6 Count Simulator Results When Simulating The Classifier Turn Rates 

 

Figure 15 EWW, EWR, and EWC Variation as a Function of Week Period For Classifier 

Simulation 

Regression:  

 EWW EWR EWC 

Mean 0.24 0.32 1.22 

Risk Adjusted 0.23 0.30 1.21 

Exponential 0.22 0.29 1.21 

Table 7Count Simulator Results When Simulating The Regression Turn Rates 
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Figure 16EWW, EWR, and EWC Variation as a Function of Week Period For Regression 

Simulation 

 

Sales-Based Simulator 

In this model, our measuring criterion is the count of sold vehicles of each configuration 

on a given week, instead on inventory counts. In further details, we start the first step by recording 

how many vehicle were sold of each configuration on weeks 9 through 43 in real historical dataset 

which will act as a benchmark to determine the deviation of the simulated inventories from the 

actual ones.  Afterwards, a vector of weights is generated for every week. This stage requires 

several steps, starting by summing up the total number of vehicles sold for every configuration 

over the whole time horizon Si. Then we will filter out the inventory of every week and identify 

the unique configurations available on that week. Finally, we calculate the week specific weights 

as follows: 
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𝑊𝑖𝑡 =
𝑆𝑖

∑ 𝑆𝑗
 Where i is one of the configurations available on lot, and the set of j’s is the set of 

configuration available on week t. 

These weights will later be multiplied by the relative error of simulated and historical inventory to 

attain a single scalar value representing the deviation at a given week. 

The third step of the simulator, is the actual customer choice simulation step which is very 

similar to the simulation step explained in the model above. To count the number of sold vehicles, 

we define a vector Vcount of zero values assigned to each vehicle-week record from week 9 till 

43. Then every time a choice is randomly picked we increment the Vcount element corresponding 

to that particular vehicle-week record by one.  Finally, the model is evaluated via several error 

functions which are listed below: 

1- |Si-Sihat|/∑Sij 

2- Wij*|Si-Sihat|/∑Sij 

3- Wij*|Si-Sihat|/max (Si, Sihat) 

 

Figure 17 Flow Chart for Sales Simulator 

Step 1
•Count number of vehicles 
sold of each configuration as 

every week

Step2
•Calculate sold 
quantity weights

Step 3
•Input initial inventory for week t 

from historical inventory level at 
week t-1

Step 4

•Generate Random Customer 
Choices and count number of sold 

vehicles at week t

•Calculate the deviation between 
historical and simulated counts
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   Results of this simulator turned out to be highly in accurate with an average error of 87% 

for both the classifier and regression regardless to the transformation method used. The reason 

behind this extreme results lies behind the high level of randomness in predicting the customer 

choices. As we noticed the selling incidence of a given vehicle is an extremely low probability 

occurrence, where the majority of the configuration has a turn rate below 0.07. Counting the 

vehicle available on lot at the end of the week rather than the number of vehicles sold during the 

week for each configuration had yield to lower levels of errors since |Ci-Cihat| is relatively small 

compared to Ci or Cihat, whereas |Si-Sihat|  is very close to both Si and Sihat. Therefore, we 

ignored the results of the later. 

Discussion 

Comparing the three error estimates generated by the classifier and regression models in 

the count simulator, we noticed that the Regression was superior to the classifier when simulated 

under a random customer choice behavior. EWW was 23% in the regression as compared to 45% 

in the classifier. As for EWR and EWC they were 0.32 and 1.22 in the regression as compared to 

0.38 and 2.88 in the later.   For that reason, we believe that data balancing that has been done in 

the classifier model has helped in improving the correlation   between the estimated turn rates and 

manual historical turn rates, and improving the precision of these estimates by reducing their 

variance. However, it led to a deviation in the accuracy of the output which   explains why the 

regression model behaved better in the simulator.
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CONCLUSION 

   Applying the mix rate modulated transformation enabled us to translate the inventory 

information from the configuration level to the feature level, which is the key to studying the 

feature effect on the probability of sales of a given configuration. Even though both of our models, 

regression and classifier haven’t exceeded a 70% accuracy in predicting probability of sales, they 

were directionally correct in terms of better predicting more popular configurations, and giving 

higher turn rates for those configurations who actually have fast selling rates. Similarly, giving 

low turn rate values for slow selling configurations. Another good point about both models, is the 

relatively low coefficient of variation, which means that the neural network is capable of 

correlating vehicles belonging to the same configurations regardless to their mix rate modulated 

transformation, by assigning them turn rates that falls into a small confidence interval. With a 

better dataset, that is less sparse and extends to a larger period, the neural network is expected to 

reach higher levels of accuracy. In addition to optimizing the processing, training, and performance 

functions used in the neural network might also help boosting the accuracy of the model.  

The simulator on the other hand, provides an insight about the accuracy of the different 

transformation methods applied to both models’ outputs. And it proved that even though the 

classifier model yielded a better correlation with historical values, the regression model generated 

more accurate outputs which yielded to relatively low error value when simulated. More effort 

should be put into improving the conditional turn rates’ estimation methodology either through 

optimizing the neural network models or through applying different estimation methods. 

Moreover, the transformation functions should be further improved by creating a close loop 
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feedback optimization model that minimizes the error of the simulator by varying the 

transformation function. 

Our future goals extend to the strategic planning level by creating a tool to help the 

company decide on the optimal complexity of its assortments. This objective is attained by 

determining the utility associated with every standalone variant of a feature, and eliminating the 

low utility variants after studying the customer substitution behavior in the absence of those 

variants. Moreover, knowing those individual feature utilities will give the company the privilege 

of predicting the probability of sales of any configuration based on its feature constituents even if 

it was never offered in the assortment before. Branching out from this paper, those utility factors 

can be computed by equating the utility score of a given configuration to its unconditional turn 

rate calculated above. As a definition, the utility score of a given configuration is the linear or 

nonlinear combination of the dot products of a set of weights, or utilities, corresponding to the 

explanatory variables, features, constituting the given configuration. For example, if an MNL 

model is to be utilized, the corresponding score for configuration i is (𝑒∑ 𝛽𝑖𝑋𝑖)𝑖. Then an error 

minimization optimization model is to be formulated to compute the values of the β’s. Below is a 

possible formulation of this optimization model: 

Objective Function: Minimize ∑
(𝑒∑ 𝛽𝑖𝑋𝑖)1

∑ (𝑒∑ 𝛽𝑖𝑋𝑖)𝑙𝑗 +𝑈0
  − 𝑅ℎ𝑎𝑡𝑖𝑖  

Where i is any configuration in any given assortment and j is the set of all configurations offered 

in that assortment 

Constraint: 𝛽𝑖′𝑠 are non-negative 

Xi vector for each configuration ` is given 

𝑈0 is the walk away probability. 
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  As we mentioned in the introduction above, the primary purpose of this thesis is to feed in the 

value of the β parameters in a more sophisticated assortment planning model that will optimize the 

level of complexity in a way that maximizes the company’s profits.
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APPENDIX A 

 

The Table Below show the list of regions considered in our model. 

Location Number Location Name 

1 Boston 

2 New York 

3 Philadelphia 

4 Pittsburgh 

5 Memphis 

6 Orlando 

7 Atlanta 

8 Washington 

9 Chicago 

10 Twin Cities 

11 Detroit 

12 Cincinnati 

13 California 

14 Denver 

15 Northwest 

16 Kansas City 

17 Southwest 

Figure 18 List of Markets Considered
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APPENDIX B 

Data Processing and Coding Procedure 

Data Preprocessing 

 

The Sequence for Running Matlab codes: 

We extract the following columns from any data set received 

Arrival Date Sales Date Dealer Location Set of Features being considered 

 

We first convert the dates from days to weekly periods. In other words, if our dataset starts from 

January 1st, we count this to be our origin in the timeline. Then if a vehicle was received on 

March 1st, we can say the vehicle was received on week 9 of the time horizon. Similarly, for the 

sales dates.  

Second, we assign a number indicator for each location to be able to input it to Matlab as an 

integer. 

Third, we calculate week on lot for each vehicle by subtracting Sales Week from Arrival Week 

Finally, we modify the feature vector by adding all possible variants of a given feature, even if 

one of the variants was a no-feature option. For example, the “Heated Seats” feature can come in 

the following varients: 

1- Front Heated Seats 

2- Front and Rear Heated Seats 

3- Part of the Climate Package 

4- No heated Seats 

Thus we must make sure that all of those variants are mentioned as separate columns in the 

configuration definition of the dataset in order to cover all possible configurations in the 

assortment. Refer to excel file “Simplified Configurations” for better understanding. 

Now we will attain the following columns which will be inputted into the first Matlab Code: 

  

Arrival Week Sales Week Weeks on 

Lot 

Dealer 

Location 

Indicator 

Set of Modified Features 

being considered 

 

Code 1: Generate the Mix Rate Modulated Weekly Inventories 

The code below will take the above variables and will output the mix modulated feature vector 

for every week’s inventory 
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clc 

clear all 

 

myfile='simplifiedconfigurations.xls'; 

sheet=2; 

xlRange='T3:AT31104';% range of features 

xlRange1='E3:E31104';% range for arrival week 

xlRange2='G3:G31104';% range for sold week 

xlRange3='Q3:Q31104';% range for location indicator 

INV=xlsread(myfile, sheet, xlRange); % inventory data with features 

A=xlsread(myfile, sheet, xlRange1);% arrival week vector 

S=xlsread(myfile, sheet, xlRange2);%sold week vector 

L=xlsread(myfile, sheet, xlRange3);%Location Indicator vector 

X=size(INV,1); % no of records 

period=1;% this is the week increments at which we are grouping the market’s inventories 

Global=[];% Matrix containing all sales records for all regions 

Config=unique(INV,'rows'); 

%set of available configurations this vector will assign an indicator for each configuration 

available in the assortment in order for us to track how this configuration behaves differently as it 

appears in different inventory scenarios 

Configuration=[]% Configuration pointer 

for G=1:X 

[~,indx]=ismember(INV(G,:),Config,'rows'); 

Configuration(G)=indx; 

End 

 

INV1=[L,Configuration',A,S,INV]; 

% We Add the Configuration indicator to the matrix. 

 

for i=1:17 % Different Locations 

temp=[]; 

INV2=[];% The Matrix that contain sales record for a specific region 

for x=1:X 

if(INV1(x,1)==i) 

INV2=[INV2;INV1(x,:)]; 

end 

end 

Lamda=size(INV2,1);% Size of the regional INVENTORY 

Vehicle=[1:Lamda];% Vehicle Identification Number to track each vehicle as it moves from one 

week to another 

INV2=[Vehicle',INV2]; 

Totalweeks=max(INV2(:,4)); 

% Last week being studied in the Market region i 

Y=size(INV2,2); % number of columns 

% Now we need to categorize the inventory as of what is available on lot on each week starting 

week 9 
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for n=9:period:(Totalweeks) 

Vector=[]; %V 

SoldStatus=[];% This vector is a binary indicator =1 if the vehicle got sold on that week or =0 if 

not sold 

CurrentWeek=[]; 

WeeksonLot=[];%Average days on Lot 

M=[];% This matrix lists all the vehicles available on week n 

D=1;% Index increments for Soldstatus 

 

for j=1:Lamda 

if (INV2(j,4)<n+period) && ((INV2(j,5)>=n) || (INV2(j,5)==0)) % if the vehicle has arrived on 

or before this week and sold on or later than this week (i.e. if vehicle is/was on the lot this week) 

M=[M;INV2(j,:)]; 

 

if (INV2(j,5)<n+period) && (INV2(j,5)>=n) % if vehicle is sold in the current period/week 

SoldStatus(D)=1; 

else 

SoldStatus(D)=0; 

end 

CurrentWeek(D)=n; 

WeeksonLot(D)=abs(INV2(j,4)-n)/period; 

D=D+1; 

 

else 

continue 

end 

 

end 

% The steps below are applying the mix rate modulated technique explained in the thesis 

SizeM=size(M,1); 

SumM=sum(M); % total feature inventory 

Mixrate=SumM/SizeM; % average of each feature in the inventory 

InputData=M;% The matrix that contains the sales record over all the weeks in a given location 

for k=6:Y 

InputData(:,k)=InputData(:,k)-Mixrate(k); 

end 

InputMatrix=horzcat(CurrentWeek',WeeksonLot',InputData,SoldStatus'); 

temp=[temp;InputMatrix]; 

end 

 

[GlobalRow,GlobalCol]=size(temp); 

Recursive=1; % to determine which row of the Inputtemp matrix is to be evaluated 

 

% The Steps below are to remove the censored data 
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temp(find(temp(:,7)==0),:)=[];% filter out all rows that have a sold week =0 which means they 

weren’t sold within the period of study 

temp(find(temp(:,7)>(Totalweeks)),:)=[]; 

Sizetemp=size(temp,1); % determine how many records are left after removing the sensored data 

 

Global=[Global;temp]; % Compile weekly inventories for every week in the time horizon 

End 

 

% The Steps Below are only applied if data balancing is required 

SizeGlobal=size(Global,1); %number of rows in Global Matrix 

for L=1:SizeGlobal 

if(Global(L,end)==1) 

Replicate=repmat(Global(L,:),6,1); 

Global = [Global;Replicate]; 

else 

continue 

end 

end 

SizeGlobal=size(Global,1); %number of rows in Global Matrix 

filename = 'Neural Network Input Global.xlsx'; 

xlswrite(filename,Global,1) 

Input=[Global(:,2),Global(:,[8:end-1])]; % This matrix is the input to train the neural network 

Output=Global(:,end); % This is the set of target values needed for training the neural network 

Location=Global(:,4); 

Configset=Global(:,5); 

AvgweeksonLot=Global(:,2); 

V=Global(:,3); 

save('Records.mat','Location','Global','INV1','Input','Output','Configset') 

 

Code2: Weight Calculation 

For the reasons specified in the thesis, we need to input weights into the penalty function of the 

neural network training code in order to give more importance to more popular configurations 

and less importance to the rare ones. 

clc 

clear all 

load('Records.mat','Global','Configset') 

 

 % this will load the Global matrix generated by the previous code and the row listing all the 

configurations available on every week. 

  

AvgweeksonLot=Global(:,2); 

V=Global(:,3); % Vehicle Indicator variable 

Location=Global(:,4); 

Configset=Global(:,5); 

Output=Global(:,end);% Sold Status 
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Matrix=[Configset, V, Output,AvgweeksonLot,Location]; % this matrix contain the associated 

configuraion number and vehicle number and sold status for each record in the dataset 

E=size(Matrix,1); 

TotalConfig= max(Matrix(:,1)); % Total number of configurations available in the dataset 

Popularity=zeros(TotalConfig,1); % Number of vehicles available from each configuration 

for f=1:TotalConfig % Chooses a given configuration 

    Group=[]; % The matrix that will group all records of the same configuration together 

     

    for g=1:E 

        if Matrix(g,1)==f 

            Group=[Group;Matrix(g,:)]; 

        end 

    end 

    H=size(Group,1);% Number of vehicles available of each configuration 

    Popularity(f,1)=H; 

end 

for i=1:size(Popularity,1) 

    if Popularity(i)==0 

        Popularity(i)=Popularity(i); 

    else 

        Popularity(i)=1/Popularity(i); 

    end 

end 

  

Con=[1:TotalConfig]; 

Popularity=[Con',Popularity]; 

  

ew=zeros(size(Configset,1),1); 

for j=1:size(Configset,1) 

    ew(j,1)=Popularity(find(Popularity(:,1)==Configset(j)),2); 

end 

  

save('weights.mat','Popularity', 'ew') 

 

Code3: Neural Network Script 

This is the generic Newff script with some adjustment 

clc 

clear all 

% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by Neural Fitting app 

% Created Wed Apr 08 22:40:15 EDT 2015 

% 

% This script assumes these variables are defined: 

% 
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%   Input - input data. 

%   Output - target data. 

load('Records.mat','Input','Output') 

load('weights.mat','Popularity','ew'); 

OutputVector1=zeros(size(Input,1),30);% output as probability 

OutputVector2=zeros(size(Input,1),30);% output as a categorical variable 

%for i=1:40 

train_inp= Input(:,[2:end]); 

% %standardise the data to mean=0 and standard deviation=1 

% %inputs 

% mu_inp = mean(train_inp); 

% sigma_inp = std(train_inp); 

% for i=1:size(train_inp,2) 

% train_inp(:,i) = (train_inp(:,i) - mu_inp(1,i) )/ sigma_inp(1,i); 

%end 

x = train_inp'; 

t = Output'; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations. 

%trainFcn = 'trainlm';  % Levenberg-Marquardt 

  

for i=1:100 

%% NEW CODE 

net=newff(minmax(x), [15,1],{'tansig','purelin'},'trainlm'); 

 

%net = init(net); % For Repeating Initialization - Note that newff Performs Initialization as well! 

The transig, purelin and trainlm are the training functions of inputs and outputs 

% Choose Input and Output Pre/Post-Processing Functions     

% For a list of all processing functions type: help nnprocess      

net.inputs{1}.processFcns = {'removeconstantrows','mapstd'};  

% The mapstd will normalize the inputs and outputs such that their mean=0 and std=1      

net.outputs{2}.processFcns = {'removeconstantrows','mapstd'};   

net.trainParam.show = 50; 

net.trainParam.lr = 0.001; 

net.trainParam.epochs = 30; 

net.trainParam.goal = 1e-5; 

  

%% END OF NEW CODE 

  

% Create a Fitting Network 

% hiddenLayerSize = 20; 

% net = fitnet(hiddenLayerSize,trainFcn); 



54 

 

% % Choose Input and Output Pre/Post-Processing Functions 

% % For a list of all processing functions type: help nnprocess 

% net.input.processFcns = {'removeconstantrows','mapminmax'}; 

% net.output.processFcns = {'removeconstantrows','mapminmax'}; 

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean squared error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

  'plotregression', 'plotfit'}; 

 

% Now for the classifier model we need to convert the continuous variable into a classified 

variable based on a threshold which is specified to be 0.5 for a balanced dataset and 0.14 for an 

unbalanced dataset. 

 

T=0.5; 

% Train the Network 

[net,tr] = train(net,x,t,[],[],ew'); 

%[net,tr]=train(net,ptr,ttr,[],[],val,test); 

% Test the Network 

y = net(x); 

ytst = round(y-T+0.5);% This is the classified version of the outputs 

e = gsubtract(t,ytst); 

performance = perform(net,t,ytst); % the performance function here will minimize the difference 

between ytst which is the classified output and the target values which are also classifier 

variables 

  

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t  .* tr.valMask{1}; 

testTargets = t  .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y) 

valPerformance = perform(net,valTargets,y) 

testPerformance = perform(net,testTargets,y) 
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% View the Network 

%view(net) 

  

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, plotfit(net,x,t) 

%figure, plotregression(t,y) 

%figure, ploterrhist(e) 

  

% Deployment 

% Change the (false) values to (true) to enable the following code blocks. 

if (false) 

  % Generate MATLAB function for neural network for application deployment 

  % in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply 

  % to examine the calculations your trained neural network performs. 

  genFunction(net,'myNeuralNetworkFunction'); 

  y = myNeuralNetworkFunction(x); 

end 

if (false) 

  % Generate a matrix-only MATLAB function for neural network code 

  % generation with MATLAB Coder tools. 

  genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

  y = myNeuralNetworkFunction(x); 

end 

if (false) 

  % Generate a Simulink diagram for simulation or deployment with. 

  % Simulink Coder tools. 

  gensim(net); 

end 

 OutputVector1(:,i)=y; 

 OutputVector2(:,i)=ytst; 

 i 

end 

Mean=mean(OutputVector1'); 

  

save('Classifier1.mat','OutputVector1','OutputVector2','Mean') 

 

 

 

 

 

Code 4: Unconditional Turn Rates 
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This code is used to convert the Neural Network’s output to unconditional by applying any the 

risk adjusted Turn Rate transformation function mentioned in the thesis 

clc 

clear all 

 

% We first input the Global Matrix Outputted from the code1 

load('Recordsunbalanced.mat','Global') 

 

% Then we input the turn rates generated by the neural network Either classifier or regression 

code3 

 

load('Classifier1','Mean'); % conditional turn rates outputed from NN 

Location=Global(:,4); 

Configset=Global(:,5); 

TR=[Location,Configset, Mean];% A matrix showing the location, configuration, and turn rate 

estimate for each record 

E=size(TR,1);% Number of rows in matrix TR 

TotalConfig= max(TR(:,2)); % Total number of configurations available in the dataset 

alfa=2;% Penalty for variability  

Set=[]; % Unconditional turn rate estimates for every configuration 

for f=1:TotalConfig 

    Group=[]; % The matrix that will group all records of the same configuration together 

    for g=1:E 

        if TR(g,2)==f 

            Group=[Group;TR(g,:)]; 

        end 

    end 

    if size(Group,1)==0 % this will capture all the configurations that didn’t appear in the final 

matrix after removing censored data 

        Nu=0; 

        Sigma=0; 

    else 

    Nu= mean(Group(:,3)); % Average all the turn rates for all the vehicles belonging to 

configuration f and calculate their standard deviation 

    Sigma=std(Group(:,3)); 

    end 

    Rh=Nu-alfa*Sigma; % This is the risk adjusted turn rate 

    Set=[Set;[f,Nu,Sigma,Rh]]; % Matrix showing config number, turn rate, mean and std for 

every configuration 

End 

% Below are vectors that combine all the averaged turn rates, standard deviations, and Rhats for 

all configurations 

mean=Set(:,2); % The average of all turn rate estimates for a given configuration 

Std=Set(:,3);% The standard deviation for all turn rate estimates for a given configuration 

Configurationset=Set(:,1);% List of configurations 

Rhat=Set(:,4);% List of unconditional turnrates 
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save('Rhatfileclassifier1.mat','mean','Std','Configurationset','Rhat') 

scatter(Set(:,2),Set(:,3)) 

size(Set,1) 

    

Ans=mean-0.2*Std; 

 

Code5: Simulator 

  

Since we defined two criteria to evaluate the simulator results, we have two simulator codes, one 

that track the count of inventory for each week and calculate the error as: |CountHisotrical-

CountSimulator|/max (CountHistorical, CountSimulator). Whereas the second, keeps track of 

how many vehicles were sold of each configuration is recorded every week and the error is then 

calculated as: |SoldHisotrical-SoldSimulator|/max (SoldHistorical, SoldSimulator) 

A- Simulator Inventory Count based 

clc 

clear all 

load('Records.mat','INV1','Global') 

Cweek=Global(:,1); % current week 

Location=Global(:,4); 

Configset=Global(:,5); 

Numberofconfig=max(Configset);% gives total number of available configurations 

History=[Cweek,Configset,Location];% Real historical inventory present each week 

History=History(find(History(:,3)==1),:);% Filter those for location 1=Boston 

TotalReal=[];% The matrix that include the counts of all configurations on every week period 

weight=[]; 

for d=10:43 % This for loop will filter for every week and count how many vehicles of each 

configuration there is 

    Real=[];% Matrix that group the records at week d 

    Real=History(find(History(:,1)==d),:);  

    CountReal=unique(Real(:,2));% find out how many different configurations are present on 

week d 

    SizeCountReal=size(CountReal,1); 

    weeksReal=d*ones(SizeCountReal,1); % assign current week  

    CountReal=[weeksReal,CountReal]; 

    Vcountreal=[]; % the vector for vehicle counts 

    for c=1:SizeCountReal % count how many vehicles of configuration c are present on week d 

        Vcountreal=[Vcountreal;sum(Real(:,2)==CountReal(c,2))]; 

    end 

    CountReal=[CountReal,Vcountreal]; % Now this matrix shows the current week, 

configuration number, count of this configuration in this given week 

    for CC=1:Numberofconfig % this for loop will add all missing configurations and will 

associated a number zero for the count 

        Find=CountReal(find(CountReal(:,2)==CC),:); 
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        if size(Find,1)==0 

            CountReal=[CountReal;[d CC 0]]; 

        end 

    end 

    [values, order] = sort(CountReal(:,2)); 

    sortedCountReal = CountReal(order,:); % Sort the matrix in increasing order of configuration 

number 

 

% Now we wont to define a weight vector that will give higher importance for more popular 

vehicles when it comes to calculating the average weighted error in week d. 

     sumcount=sum(sortedCountReal(:,3));% sum of vehicles available on week d 

    weightweek=sortedCountReal(:,3)/sumcount;% fraction of vehicles of configuration CC out of 

the total number of vehicles available 

    weight=[weight;weightweek]; 

    TotalReal=[TotalReal;sortedCountReal]; 

end 

TotalReal=[TotalReal,weight]; 

 

 

% INV1 is the matrix that contains all records for all regions over the 

% whole time horizon without classifying them into weekly inventories as in Global Matrix. In 

other words, each vehicle is only mentioned once in INV1 regardless to how many weeks it 

stayed on lot %INV1=[[L,Configuration',A,S,INV]; 

load('Rhatfileclassifier1.mat','Configurationset','Rhat');% Here we loaded all available 

configurations with their associated unconditional turn rates Rhat 

X=size(INV1,1); 

Standard=[Configurationset,Rhat];% A matrix that shows all the configuration with their 

associated unconditional turn rate 

INV2=[];% The Matrix that contain sales record for region 1= Boston 

    for x=1:X 

        if(INV1(x,1)==1) 

            INV2=[INV2;INV1(x,:)]; 

        end 

    end 

Lamda=size(INV2,1);% Size of the regional INVENTORY 

VehicleCount=TotalReal(:,2); % save vehicle count for every iteration with the first column 

listing the configuration number 

 

% Now the actual simulation starts and its embedded in a loop of 100 iterations to average its 

output over all the iterations 

for sim=1:1000 % Repeat Simulator loop 

    SimulatedINV=[]; % This matrix is to track the simulated inventory changes at each week 

over the whole time horizon 

%Simulation starts here 

 for n=10:43 

    Initial=[]; 
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    Currentweek=[]; 

    for j=1:Lamda % loop that generates the initial inventory on week n 

        if (INV2(j,3)<=n) && ((INV2(j,4)>=n) || (INV2(j,4)==0)) % if the vehicle has arrived on or 

before this week and sold on or later than this week (i.e. if vehicle is/was on the lot this week) 

            Initial=[Initial;INV2(j,:)]; 

            Currentweek=[Currentweek;n]; 

        end 

    end 

Initial=[Currentweek,Initial]; 

 

Sold=sum(INV2(:,4)==n);% count how many vehicles were sold on week 10 in a given region  

% Now we want to generate random sales equivalent to the number of vehicles which were 

actually sold in the historical dataset. 

Rand=[]; 

Choice=[]; % Vector of randomly chosen configurations 

for y=1:Sold 

Rand=[Rand,rand(1,1)]; 

Cf=unique(Initial(:,3));% array that has all the configuration present at week n 

Rh=[]; 

SizeCf=size(Cf,1); 

In=1;% Increment for index in Rh vector 

for k=1:SizeCf % Assign Rhat to available configurations 

   index= find(Standard(:,1)==Cf(k)); 

   Rh(In)=Standard(index,2); 

   In=In+1; 

End 

% Here we want to normalize the Rhat for the available configurations in order to specify the 

choice interval which was defined in the thesis 

 

Sum=sum(Rh);% sum of Rh accross available configurations 

Fhat=[];% Vector of normalized Rhats associated with available configurations on week n 

Fhat(1,1)=Rh(1,1)/Sum; % Initialization of the normalization process 

for m=2:SizeCf % Loop to normalize Rhat 

    Fhat(1,m)=Fhat(1,m-1)+(Rh(1,m)/Sum); 

end 

Fhat=[0,Fhat]; 

  

    for x=1:SizeCf % this for loop is to assign choices to randomly chose probabilities 

    if Rand(1,y)>Fhat(1,x) && (Rand(1,y)<=Fhat(1,x+1)) 

        Choice=[Choice,Cf(x,1)]; 

        break 

    end 

    end 

    I=size(Initial,1); % number of rows in "Initial" Matrix 

    for z=1:I % Deduct randomly chosen sales from the Initial Inventory 

        if Initial(z,3)==Choice(y) 
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            Initial(z,:)=[]; 

            break 

        end 

    end 

end 

SimulatedINV=[SimulatedINV;Initial]; 

end 

  

  

% Counting how many vehicles of each configuration were available that week after deducting 

the simulated random choices, similar to the way we did it to the actual historical dataset above. 

Total=[]; 

for a=10:43 

    Group3=[];%Matrix that group the records at week a 

    Group3=SimulatedINV(find(SimulatedINV(:,1)==a),:); 

    Count=unique(Group3(:,3));% find out how many different configurations are present on 

week a 

    SizeCount=size(Count,1); 

    week=a*ones(SizeCount,1); % assign current week a 

    Count=[week,Count]; 

    Vcount=[]; 

    for b=1:SizeCount  % count how many vehicles of configuration b are present on week a 

        Vcount=[Vcount;sum(Group3(:,3)==Count(b,2))]; 

    end 

    Count=[Count,Vcount]; % Now this matrix shows the current week, configuration number, 

count of this configuration in this given week 

      for CC=1:Numberofconfig % this for loop will add all missing configurations and will 

associated a number zero for the count 

        Find1=Count(find(Count(:,2)==CC),:); 

        if size(Find1,1)==0 

            Count=[Count;[a CC 0]]; 

            [values, order] = sort(Count(:,2));% Sort the matrix in increasing order of configuration 

number 

            sortedCount = Count(order,:); 

        end 

    end 

    Total=[Total;sortedCount]; 

end 

VehicleCount=[VehicleCount,Total(:,3)]; 

sim 

end 

 

% Now we want to average the simulated counts across the 100 iterations of the simulator 

AverageNumberofVehicles=mean(VehicleCount(:,[2,end])'); 

HistoricalCountofVehicles=TotalReal(:,3); 
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Compare=[HistoricalCountofVehicles,AverageNumberofVehicles',weight]; % This matrix lists 

both the historical counts, averaged simulated counts, and the weights associated with each 

vehicleweek record in our dataset 

SizeCompare=size(Compare,1); 

ErrorWeek=zeros(SizeCompare,1); % This Vector include the weighted relative error for every 

week 

for f=1:SizeCompare 

    if max(Compare(f,1),Compare(f,2))==0 

    ErrorWeek(f,1)=0; 

    else 

    E=(Compare(f,3)*abs(Compare(f,1)-Compare(f,2)))/max(Compare(f,1),Compare(f,2)); 

    ErrorWeek(f,1)=E; 

    end 

end 

FinalMatrix=[TotalReal(:,1),TotalReal(:,2),Compare,ErrorWeek]; 

 

B- Simulator Inventory Sales based 

 

clc 

clear all 

load('Recordsunbalanced.mat','INV1','Global') 

Cweek=Global(:,1); % current week 

Location=Global(:,4); 

Configset=Global(:,5); 

Numberofconfig=max(Configset);% gives total number of available configurations 

% INV1 is the matrix that contains all records for all regions over the 

% whole time horizon %INV1=[[L,Configuration',A,S,INV]; 

Arrival=Global(:,6); % Arrival week for a given vehicle 

Sold=Global(:,7); % The week in which a vehicle was sold 

History=[Cweek,Location,Configset,Arrival,Sold];% Real historical inventory present each week 

stating the arrival and sold week of each vehicle History=History(find(History(:,2)==1),:);% 

Filter those for location 1=Boston 

TotalReal=[];% The matrix that include the count of sold vehicles from each configurations for 

every week period 

for d=10:43 

    Real=[];% Matrix that group the records at week d 

    Real=History(find(History(:,1)==d),:);  

    UniqueConfig=unique(Real(:,3));% find out how many different configurations are present on 

week d 

    SizeUniqueConfig=size(UniqueConfig,1); 

    weeksReal=d*ones(SizeUniqueConfig,1); % assign current week  

   SizeReal=size(Real,1);% How many vehicles available in week d 

   SoldVector=[];%States the configurations being sold on week d 
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% In this loop, if the sold week of a given record is equal to current week d then this recorded is 

counted as sold 

   for i=1:SizeReal 

        if Real(i,5)==d 

           SoldVector=[SoldVector,Real(i,3)];% This vector will list the configuration numbers of 

the vehicle being sold on week d 

       end 

   end 

   Countsold=[]; % the vector that will list the number of vehicles of each configuration sold on 

week d by counting how many times is configuration j repeated in the ‘SoldVector’ 

   for j=1:SizeUniqueConfig 

       S=sum(SoldVector==UniqueConfig(j));% Count how many vehicles were sold of each 

configuration 

       Countsold=[Countsold,S]; 

   end 

    Summary=[weeksReal,UniqueConfig,Countsold']; % This matrix will summarize what 

configurations are available on week d and how many of each where sold 

    for CC=1:Numberofconfig % this for loop will add all the configurations which aren’t 

available on week d and will associated a number zero for the count 

        Find=Summary(find(Summary(:,2)==CC),:); 

        if size(Find,1)==0 

            Summary=[Summary;[d CC 0]]; 

        end 

    end 

[values, order] = sort(Summary(:,2)); 

    sortedSummary = Summary(order,:); % Sort the matrix in increasing order of configuration 

number 

    TotalReal=[TotalReal;sortedSummary]; 

end 

 % Calculating Global Sold Vehicles quantities 

    for O=1:579 

    Sales(1,O)=sum(TotalReal(find(TotalReal(:,2)==O),3)); % This vector will sum the numbers 

of vehicles sold on configuration O over the whole time horizon 

    end 

List=[1:579]; % List all possible configurations available in the assortment 

Sales=[List',Sales']; 

% Calculating Global Sold Weights 

SizeHistory=size(History,1); 

weight=[];% Combines all the weeks in one matrix 

 for d=10:43 

    FilterHistory=[];% Returns all vehicles available on week d 

    w=[];% Returns the weights for each configuration in every week 

    conf=[];% This vector will list all the configurations that were available on week p 

    Beta=[];% This vector will return the global number of sold vehicles of the configurations 

which are available on a particular week 
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    for U=1:SizeHistory % This for loop will filter for weekly inventories 

        Filterhistory=History(find(History(:,1)==d),:);     

    end 

    conf=unique(Filterhistory(:,3)); 

    sizeconf=size(conf,1); 

    for q=1:sizeconf % This loop will populate the global quantity of vehicles sold of 

configuration q over the time horizon from the Sales matrix 

        Beta(q,1)=Sales(find(Sales(:,1)==conf(q)),2); 

    end 

    for r=1:sizeconf 

        w(r,1)= Beta(r,1)/sum(Beta);  

    end 

    P=d*ones(sizeconf,1); % week indicator 

    w=[P,conf,w]; 

    for s=1:579 

        if size(w(find(w(:,2)==s),:),1)==0 

            w=[w;[d s 0]]; 

        end 

    end 

    [values, order] = sort(w(:,2)); 

    sortedw = w(order,:); % Sort the matrix in increasing order of configuration number 

    weight=[weight;sortedw]; 

 end 

% From here on the code is very similar to the count simulator code in terms of counting how 

many vehicles got sold on a given week and generating equivalent numbers of random choices. 

With 2 differences: 1- Initial inventory at every week is taken from the real historical dataset. 

2- The error is calculated based on sold counts rather than inventory counts 

3- Generating a sold vehicle count vector is generated within the for loop of each week.  

 

load('Rhatfileclassifier1.mat','Configurationset','Rhat');% Here we load all available 

configurations with their associated Rhat 

X=size(INV1,1); 

Standard=[Configurationset,Rhat];% A matrix that shows all the configuration with their 

associated unconditional turn rate 

INV2=INV1(find(INV1(:,1)==1),[1:4]);% The Matrix that contain sales record for region 1= 

Boston 

Lamda=size(INV2,1);% Size of the regional  

 

%Now we need to generate a matrix similar to TotalReal to track the number of simulated sold 

vehicles, so we first define the first 2 columns to be equivalent to TotalReal and then we modify 

the values of all records of the third column of TotalReal 

 

Total=TotalReal; % In those 2 lines I want to define a matrix that lists all possible configuration 

at every week with its associated week, and a zero count of sales 

SizeTotal=size(Total,1); 
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VehicleCount=[Total(:,1),Total(:,2)]; % This matrix will track all the sales counts generated by 

every iteration of the simulator 

for sim=1:500 % Repeat Simulator loop 

Vcount=zeros(size(TotalReal,1),1); % This vector will track the count of sold vehicles according 

to the simulator results     

Incr=1; % this is an index increment used to fill up the values for Vcount vector 

    S=[];% Vector that will track total number of sales for all configurations each week 

SimulatedINV=[]; % This matrix is to track the simulated inventory changes at each week over 

the whole time horizon 

%Simulation starts here 

for n=10:43 

    Initial=[]; 

    Currentweek=[]; 

    for j=1:Lamda % loop that generates the initial inventory on week on each week 

        if (INV2(j,3)<=n) && ((INV2(j,4)>=n) || (INV2(j,4)==0)) % if the vehicle has arrived on or 

before this week and sold on or later than this week (i.e. if vehicle is/was on the lot this week) 

            Initial=[Initial;INV2(j,:)]; 

            Currentweek=[Currentweek;n]; 

        end 

    end 

Initial=[Currentweek,Initial]; 

SizeInitial=size(Initial,1); 

Sold=sum(INV2(:,4)==n);% count how many vehicles where sold on week 10 in a given region  

S=[S;Sold]; % Vector S tracks how many vehicles were sold each week  

Rand=[]; 

Choice=[]; % Vector of randomly chosen configurations 

for y=1:Sold 

Rand=[Rand,rand(1,1)]; 

Cf=unique(Initial(:,3));% array that has all the configuration present at week n 

Rh=[]; 

SizeCf=size(Cf,1); 

In=1;% Increment for index in Rh vector 

for k=1:SizeCf % Assign Rhat to available configurations 

   index= find(Standard(:,1)==Cf(k)); 

   Rh(In)=Standard(index,2); 

   In=In+1; 

end 

Sum=sum(Rh);% sum of Rh accross available configurations 

Fhat=[];% Vector of normalized Rhats associated with available configurations on week n 

Fhat(1,1)=Rh(1,1)/Sum; % Initialization of the normalization process 

for m=2:SizeCf % Loop to normalize Rhat 

    Fhat(1,m)=Fhat(1,m-1)+(Rh(1,m)/Sum); 

end 

Fhat=[0,Fhat]; 
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    for x=1:SizeCf % this for loop is to assign choices to randomly chose probabilities it will 

check in which interval of Fhat does the random number fall in and assign the choice based on 

that 

    if Rand(1,y)>Fhat(1,x) && (Rand(1,y)<=Fhat(1,x+1)) 

        Choice=[Choice,Cf(x,1)]; 

        break 

    end 

    end 

    % Counting how many vehicles of each configuration were sold that week 

    for i=Incr:Incr+578 % This for loop will increment the number of sales vehicles of the 

randomly chosen configuration on week n by 1 

        if Total(i,2)==Choice(y) 

            Vcount(i,1)=Vcount(i,1)+1; 

        end 

    end 

end 

Incr=Incr+579;% we are adding 579 so that at the next iteration, representing the next week, the 

for loop will start incrementing the values of Vcount associated with the current week n. Given 

that at each week we are counting the sales for all possible 579 configurations. Even if they 

aren’t available, they will be assigned a value of 0. 

end 

VehicleCount=[VehicleCount,Vcount]; 

sim 

end 

Iteration=sum(VehicleCount(:,[3:end])'); 

AverageNumberofVehicles=Iteration/size(VehicleCount(:,[3:end])',1);% Average Simulated 

Number of vehicles sold for every config in every week  

HistoricalCountofVehicles=TotalReal(:,3); % Real historical sold vehicles 

Compare=[Total(:,1),HistoricalCountofVehicles,AverageNumberofVehicles',weight(:,3)]; 

SizeCompare=size(Compare,1); 

ErrorWeek=[]; % This is the vector that will list the averaged errors for every week 

ErrorWeekPrime=[]; % The weighted relative error 

CW=10; %starting week to compute error 

for m=1:34 

    Group4=Compare(find(Compare(:,1)==CW),:);% Group the weekly inventory 

    Size4=size(Group4,1); 

    Error=[];% This vector will list the error associated with each configuration on week m 

    ErrorPrime=[]; 

    for f=1:Size4 

       if max(Group4(f,2),Group4(f,3))==0 

            E=0; 

            EPrime=0; 

       else 

           EPrime=Group4(f,4)*abs(Group4(f,2)-Group4(f,3))/max(Group4(f,2),Group4(f,3)); 

           E=abs(Group4(f,2)-Group4(f,3));%/max(Group4(f,2),Group4(f,3));% This is the absolute 

difference between historical and simulated sold counts 
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       end 

   Error=[Error,E]; 

   ErrorPrime=[ErrorPrime,EPrime]; 

    end 

    GlobalWeekError= sum(Error)/S(m); % This will calculate the averaged error for week m by 

dividing the sum of the error by the total number of sold vehicles on week m 

    GlobalWeekErrorPrime=sum(ErrorPrime); % This is the weighted relative error 

    ErrorWeek=[ErrorWeek,GlobalWeekError]; 

    ErrorWeekPrime=[ErrorWeekPrime,GlobalWeekErrorPrime]; 

    CW=CW+1; 

end 
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ABSTRACT 

A CUSTOMER CHOICE MODELING FRAMEWORK FOR THE ASSORTMENT 

PLANNING OF CONFIGURABLE PRODUCTS IN THE AUTOMOTIVE INDUSTRY 

by 
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May 2015 

Advisor: Alper Murat, PhD 

Major: Manufacturing Engineering 

Degree: Master of Science   

Due to the increased competition in the auto industry, proliferation of the vehicle models 

and increased customer need for choice and customization, it has become more critical than ever 

to offer a variety of features and customization flexibility while at the same time restraining and, 

even better, cutting down the costs. Product complexity, in the automotive industry, can be 

measured by the size of the assortment offered, i.e., set of vehicle configurations a customer can 

choose from (e.g., for a given model of a brand). While complexity fosters growth with increased 

alignment of product characteristics and customer needs, it results in decreased revenue (e.g., 

cannibalization) and profitability (e.g., increased total supply chain costs). Companies that manage 

complexity by improving their products’ true profitability have seen savings of 10 percent to 15 

percent on their cost of goods sold.  

In order to determine the optimal complexity that should be offered, the company must 

first understand its customers buying behavior, and their response at the instances where their 

primary vehicle configuration choice is not offered or is stocked out. In this thesis, we develop a 

customer choice modeling framework that predicts the likelihood of an average customer to buy a 

specific vehicle configuration in a given assortment offering. Our modeling approach utilizes 

neural networks to predict, based on the historical dealership level sales and inventory data, how 

likely a given configuration will sell when it’s offered along with a set of configurations. These 
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configuration level sale probability estimates are then used to estimate the attraction factor for each 

feature included in the vehicle configuration. The attraction factor of each feature represents 

feature’s individual contribution to the probability of sale of the configuration as a whole. With 

this feature level estimation, the probability of sales for any feature combination or vehicle 

configuration can be estimated (including those configurations not yet built or offered). We report 

on the performances of several modeling and neural network based estimation approaches using 

historical dataset from a major US automotive OEM. Our models are parametric and thus can be 

used within an assortment planning model to determine the optimal product assortment that 

optimizes complexity by considering true profitability of the configurations in the assortment.  
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