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CHAPTER 1  INTRODUCTION 

Software defects or bugs are expensive and pervasive throughout software. The 

number of defects left in the code is an important measure of software quality [1]. As 

software development occupies a large amount of human effort, there is no guarantee of 

producing bug-free software with human intervention. By studying the US software 

population in development and maintenance, the work of bug fixing has become one of the 

dominant form of software engineering since the beginning of software development [2]. In 

the software life span, the bug fixing is performed in certain stages, which leads to the 

production of quality software. According to the staged model [3], software evolution and 

servicing stages play an important role in bug fixing process. Adding new features to the 

system and correction of existing mistakes take place iteratively during the software 

evolution stage while the software servicing stage entirely focuses on corrections of 

software faults [3]. As the software developers spend most of their development time on 

post-delivery activities, such as, bug fixes, numerous studies have been conducted to 

investigate the different types of software maintenance cost. According to the study carried 

out by Lientz and Swansons on 487 data processing organizations, defect repairs hold 20% 

of the total maintenance effort [4]. 

Hence, locating a bug in a source file is as important as all the other tasks involve in 

software development. As the base of software evolution and servicing, software change 

consists of several important phases, such as, initiation, concept location, impact analysis, 

refactoring, actualization, verification, and conclusion [1]. Among these phases, determining 

the code location to begin the software change, which is called concept location, is one of 

the activities undertaken by the developers during the software evolution and servicing. The 
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concept location is a search process (Figure 1-1) that aims to locate the code snippet where 

the developer has to modify according to the change request [1].  

 

Figure 1-1: Searching for concept location in the source code (adapted from [1]) 

Software change is initiated with a change request. The change request is a 

document that demands for a modification of the system, which indicates what has to be 

accomplished, but leaves out the fact how the adjustment should be made. The change 

request can be a new feature to be added to the existing system, or a modification to be 

made to an existing feature, or a bug report. If the request is a bug report, then it is the 

developer’s responsibility to locate the reported bug in the relevant source code and take 

the necessary actions to fix the problem. Finding the precise location in the defect source 
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code where the bug has been occurred, is called bug localization or bug location which is an 

instance of concept location. 

Bugs are reported by software users in corresponding bug tracking systems (Figure 

1-2). A bug report contains information, such as, bug identification number (bug ID), bug 

title, bug description, bug type, priority, software versions affected and fixed, current status 

of the bug, reporter of the bug (a tester or a user), assignee of the bug (developer) etc. 

(Figure 1-3). 

 

Figure 1-2: Bugs of JEdit reported in SourceForge bug tracking system 1 

Determining the bug location in the source code is one of the main tasks of the 

software developers. Out of all the attributes of a bug report, the bug title and the bug 

description carry the most prominent information for the bug localization process. Due to 

                                                           
1 http://sourceforge.net/tracker/?group_id=588&atid=100588 

http://sourceforge.net/tracker/?group_id=588&atid=100588
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that reason, the bug title and the description are considered as one of the dominant sources 

in studies that examine the relationship between the defect source files and the 

corresponding bug reports. 

 

 

Figure 1-3: Sample bug report of aTunes system 

1.1. Motivation 

The bug localization is a challenging task due to numerous reasons. One of them is 

that the initial developers of the source code might not be the ones to fix the bugs reported 

in latter times, as most of the software projects continue for a long time period. In that case, 

the assignee of the bug report may not be familiar with source code implementation and he 

or she may not be able to receive any support from the author of the program, which makes 

locating the bug more complicated. Sometimes bugs are reported after a considerably long 

period of time since the delivery of the software. So the author of the defect source code 

may not remember all the works he or she has done before. Such a situation can make the 

bug localization a difficult task, even if the author of the source code is assigned for the bug 

fixing. In addition to the above reasons, lack of sufficient documentation of the software 

system hinders the opportunity of saving search time of the fault location in the program. 

Bug Description 

Bug ID Bug Title 
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Hence, locating the bug is one of the challenging tasks for its assignees, which costs a 

major amount of bug fixing effort in terms of monetary and time. 

Various approaches are available for concept location, which can be used in bug 

localization process. Pattern-matching is one of them that checks a sequence of tokens for 

the presence of the piece of pattern such that the match is precise.  Grep is one of the 

popular concept location techniques used for program comprehension [5], based on pattern-

matching approach. Grep is a tool that allows developers to iteratively formulate queries in 

the form of regular expressions and query the source files. The tool outputs a set of 

matching lines, but it is the programmer’s responsibility to find the concept location by 

studying the surrounding lines of the code and decide whether the actual location of the 

concept is found. The tool iterates the process until the desired output is obtained. There is 

a family of Grep tools that has been developed with some additional options. The agrep [6], 

egrep [7] and fgrep [7] are few examples. Beside the pattern-matching approach, several 

text retrieval (TR) based approaches are proposed to partially automate the task of bug 

localization [8]. 

Text retrieval is a process of matching text documents against the user formulated 

queries which differs from text searching. The difference between searching and retrieval is, 

the outcome of searching is an exact match to the query, which indicates whether the match 

is found or not. In contrast to searching, retrieval process may obtain more than one 

solution, ordered by their relevancy to the query, i.e., the outcomes of retrieval do not need 

to be precisely matched with the query. Both pattern-matching and text retrieval approaches 

rely on natural language queries, often formulated either manually or automatically, based 

on the descriptions in the bug reports. Some TR based techniques show many advantages 
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over pattern-matching approach regarding the concept location, which provide better results 

than gerp. 

The use of TR techniques for the bug localization is based on the assumption that a 

bug report and its related fault code share an important vocabulary. This assumption is 

important to create an “effective query” that yields more accurate outcome. In order to 

construct such a query, the user must be able to predict the query terms in the form of 

words, phrases and combinations of words such that most of these terms occur in the 

relevant documents while they do not occur in most of the non-relevant documents [9]. 

Therefore, certain meaningful words that describe the bug are used in the query to generate 

more relevant results. We assume these words are shared between the bug and the 

corresponding fault code. Even though, there are no studies reported to show evidence to 

support this assumption, it has been shown that such information is beneficial to improve TR 

based techniques used for the bug localization [10]. 

1.2. Contribution 

Our contribution is to acquire evidence to support the implicit assumption that bug 

descriptions and the corresponding source code share some significant words which help to 

map the bug and the defect code. As this assumption has been the base for text retrieval 

techniques used for bug localization, its assurance would help to enhance the TR based 

techniques used to determine bug locations in relevant source files. To achieve this task, we 

proposed a technique to explore the common vocabularies obtained from the bug reports 

and the patched classes (Figure 1-4). We analyzed these vocabularies to identify significant 

patterns and the existence of the relationships between bug reports and source code. The 

results obtained from this analysis can be used to find evidence to support the idea of using 
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the common vocabularies with text retrieval techniques to determine bug location and ways 

to improve TR based techniques. 

 

 

Figure 1-4: Extraction of common words in source code and bug reports of a software system 

1.3. Thesis Statement 

The following thesis statement is supported by all the contributions made by this 

thesis as explained in Section 1.2. 

Text retrieval techniques are applied on bug localization process based on an implicit 

assumption that the bug description and the corresponding source code have a common 

vocabulary. As there is no considerable study has been conducted to find evidence to 

prove the fidelity of this assumption, such important information is useful to enhance the 

text retrieval approaches for the bug localization process. 

1.4. Thesis Outline 

The following chapters discuss in detail the research tasks carried out in this thesis.  
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Chapter 2 explains the background information related to information retrieval and 

text retrieval, a subsidiary area of study of information retrieval. It presents important steps 

involved in text retrieval process under the subsections. The description of the text retrieval 

process begins with corpus creation which is explained in Section 2.1. Then the text pre-

processing techniques, such as, tokenization and compound terms splitting, stop word 

removal, and stemming are explained under Section 2.2. A description of the indexing and 

query formulation steps is explained in Section 2.3 which presents two of the most popular 

indexing methods, Vector Space Model (VSM) and Latent Semantic Indexing (LSI). At the 

end, Section 2.4 elaborates how the searched documents are ranked depending on their 

relevance to the query and how to investigate the results obtained. 

Chapter 3 presents information about the thesis study. Thesis questions are listed 

and discussed under Section 3.1. Section 3.2 describes the data used for the thesis study, 

i.e., bug reports and source files collected from the different software systems. In this study, 

we build a tool to automate the text retrieval process described in Chapter 2 and to created 

vocabularies. Under the Section 3.3, we describe this automated process. Section 3.4 

describes the corpus creation using the tool, which indicates how the documents are 

obtained from the source files and the bug reports according to the desired granularity.. 

Section 3.5 presents the automated text pre-processing steps, such as, tokenization and 

compound terms splitting, stop word removal and stemming. As our study focuses on the 

use of common vocabularies in TR process, Section 3.6 describes the automated process of 

creating the vocabularies for the bug reports and the source code. The measures obtained 

from the data collection are presented under Section 3.7. Furthermore, how we planned to 

address the thesis questions is discussed in the same section. 
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 Chapter 4 involves a general discussion of the results and findings of the empirical 

study that we discussed in Chapter 3. Section 4.1 describes the observation  the sizes of the 

bug and source code documents. The execution of the study design is described in Section 

4.2 which discusses the answers obtained for each research question listed in Chapter 3.  

As it is important to identify the threats that can affect our conclusions, Subsection 4.2.4 

describes four types of threats that affect to any research study, namely construct validity, 

internal validity, external validity, and conclusion validity. Furthermore it discusses how we 

mitigate the influence of these threats in our study.  

 Chapter 5 presents some other works carried out related to the study we discussed 

in this thesis. There are several studies have been conducted to understand how the parts 

of the speech of the words can be used when describing bug reports. Some studies have 

built models to categorize bug reports based on different facts, such as, the part of the 

speech, the word frequency and the distribution across different severity levels. In addition 

to that, this chapter discusses the linguistic and statistical studies, focus on topics analysis 

and coherence analysis of bug reports. 

 Chapter 6 describes the conclusions drawn by the empirical study that we carried out 

(under Section 6.1). Furthermore, it summarizes the results we obtained. Section 6.2 

discusses the importance of validating our work and how to carry out the validation in future. 

Section 6.2 describes how to extend this work and which kind of improvements have to be 

made to the current process to reach the expected outcome.  
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CHAPTER 2  BACKGROUND ON TEXT RETRIEVAL 

Text retrieval is a branch of information retrieval (IR) which is a prominent method of 

information access in present. In the academic field of study, information retrieval is defined 

as finding unstructured text documents that satisfies an information need within large 

collections that are stored on computers [11]. Although the information retrieval has been 

employed over decades, the research interest on this field began rising steadily since 1950s 

[12, 13]. The wide use of information retrieval systems in modern search engines, are found 

in commercial and intelligence applications as long ago as the 1960s [12]. For instance, the 

STAIRS (Storage and Information Retrieval System) developed at IBM in the late 1950’s, 

was a turning point in the field of information retrieval research studies [9, 14]. Interaction 

with IR systems begins with an information problem which leads to an information need. 

Information need means what the user needs to know more about a certain topic [11]. The 

query is a formal statement of the information need, which is created by the user who has 

the requirement of solving the information problem. This query is compared with the 

representation of the text and this process may result in multiple matches to the query with 

different degrees of relevancy.  

 

As a subfield of information retrieval, text retrieval follows a similar framework on 

information presented in the form of text (Figure 2-1). In other words, text retrieval is an 

activity of matching text documents against the use-r formulated queries. The usage of text 

retrieval techniques in software engineering tasks has been drastically increased recently  

due to the remarkable benefits that it yields on the subject of retrieving textual information in 

numerous software artifacts, such as, requirement specifications, source code, design and 

technical documentations and user manuals [15].  
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Figure 2-1: Framework of an information retrieval system (adapted from [16]) 

The following subsections describe some essential steps involved during the text retrieval 

process. 

2.1. Corpus Creation 

Text retrieval techniques are applied on the text content stored in a batch of 

documents. As all the text content of these documents are not important for the retrieval 

purpose, the first step determines the granularity or the level of details required from the 

document [1, 11, 17]. For instance, granularity of a user manual can be defined as a 

chapter, a sub section, a paragraph, a sentence etc. and for a source file, it can be defined 

as a class, a method, a code block, a line of code etc. [17]. In terms of the bug reports, bug 

title, bug description, comments, attachments, such as, patched files and error messages, 

etc. can be used as the components to define the level of details of a certain software 

defect. Determining the granularity of a document is important, because the results of text 

retrieval process rely on the level of details we select. This idea can be depicted using the 

class definition presented in Code Segment 2-1. If we consider the granularity of this source 

code as a class definition, then the number of occurrences of the word “shape” is seven. But 
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if the granularity is defined as a method definition, then the frequency of the word “shape” in 

each method, is one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the corpus creation, some of the text content found in the document may not 

be relevant for the text retrieval process as it leads to inaccurate results. On the other hand, 

the contribution of some artifacts may distort the actual results. Hence, such irrelevant 

elements are eliminated from the text documents. 

  
 
1. class Shape { 
2.  
3. private int shape_id; 
4. private string shape_name; 
5. private Type shape_type; 
6.  
7. public void Shape () { 
8.  
9.    // empty block 
10.  
11. } 
12.  
13. public void Shape (string name) { 
14.  
15.    // empty block 
16.  
17. } 
18.  
19. public void Shape (string name, int x, int y) { 
20.  
21.    // empty block  
22.  
23. } 
24. } 

Code Segment 2-1: Granularity of a Source File 
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2.2. Text Pre-processing 

The corpus obtained during the previous step, is normalized by applying the text pre-

processing techniques, to obtain accurate results. Following subsections describe common 

text pre-processing steps used in TR process.  

 

 

Figure 2-2: Text pre-processing steps 

 

2.2.1. Tokenization and Compound Terms Splitting  

 Tokenization is a process of breaking down a stream of characters into pieces called 

tokens. A token can be a word, a phrase, a symbol or any other atomic unit of a language, 

which conform to a set of certain syntax properties. In tokenization process, a particular text 

can be disjoined into words or meaningful elements by eliminating white spaces, line breaks, 

punctuation, brackets, and other delimiters, such as, hyphen, underscore, comma, etc. For 
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example, the compound text “color-red, number_two” can be divided into four single words 

such that “color”, “red”, “number”, and “two”. 

 Compound terms are formed as a result of composition of two or more words, which 

can be generated by following a particular naming convention. For instance, according to 

the convention established by Sun Microsystems, Java class names and method names 

follow CamelCase notation and variables follow lowerCamelCase style. Each word in a 

compound term that followed the camel case style is separated by an uppercase letter. For 

instance, the compound term “CamelCase” can be split into two words such that “Camel” 

and “Case”. A compound term that follows Hungarian notation always begins with a prefix 

that encodes the actual data type or a mnemonic that describes the purpose of the variable. 

The first letter of the prefix is always a lower case letter and all the other words in this 

compound term begin with upper case letters. For example, the compound term 

“strHungarianNotation” can be broken down into three words such that “str”, “Hungarian”, 

and “Notation”. 

  Since words can be combined without any restrictions, it increases the 

vocabulary size. This vast increment of the vocabulary size leads to the sparse data 

problem. Table 2-1 and Table 2-2, created from Code Segment 2-2, illustrate this issue. If 

the vocabulary of this code segment neglects keywords, then the size of compound terms 

vocabulary will be much larger than the size of single terms vocabulary. This situation could 

be understood by looking at Table 2-1 and Table 2-2. Table 2-2 contains more words 

compared to the Table 2-1, but with less frequency. Hence, the compound terms vocabulary 

results the sparse data problem 
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Table 2-1: Single terms vocabulary 

Word Frequency 
shape 6 
name 3 
type 3 
print 2 

 

 

 

 

 

  
1. class Shape { 
2.  
3. private String shapeName; 
4. private String shapeType; 
5.  
6. public void Shape () { 
7.     
8.    // empty block 
9.  
10. } 
11.  
12. public void printShapeName (String name) { 
13.     
14.    // empty block 
15.  
16. } 
17.  
18. public void printShapeType (String type) { 
19.     
20.    // empty block 
21.  
22. } 
23. } 

Code Segment 2-2: Compound Terms in Source Code 
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Table 2-2: Compound terms vocabulary 

Word Frequency 

Shape 2 
shapeName 1 
shapeType 1 
type 1 
name 1 
printShapeName 1 
printShapeType 1 

  

2.2.2. Stop Word Removal 

 Words which are filter out from the text documents due to their unproductiveness and 

irrelevance to the text retrieval process, are known as stop words. This filtering may take 

place prior or after the text pre-process. In English, many of the frequently used words are 

considered as stop words, such as, “a”, “the”, “of”, “and”, etc. Access modifiers (e.g. 

“private”, “public”), primitive data types (e.g. “int”, “boolean”, “double”), control flow statement 

(e.g. “if”, “for”, “switch” “while”, “do”) and keywords of exceptions, class and interface 

declarations (e.g. “catch”, “exception”, “class”, “interface”) are few of the example for the 

keywords found in the programming languages. Since the stop words are considered as 

noise, removing them from the text documents reduces the indexing size. And the reduction 

of indexing size improves the efficiency of text retrieval process. 

2.2.3. Stemming 

 Stemming is a process of reducing all the words with the same root (stem), to a base 

form, by chopping each derived and inflected word. For example, “give”, “gives”, “gave”, 

given” and “giving” are forms of the same lexeme as they have a similar semantic 

interpretation. In spite of all these morphological variants, they can be written as “give”, in 

general. In the text retrieval process, stemming is beneficial, because it reduces the 
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vocabulary size of the corpus or indexing files, which prevents having sparse data problem. 

Hence, stemming conduces to improves retrieval effectiveness by matching more words in a 

document despite of their lexical form. 

 Different varieties of methods have been followed to address the problem of 

conflation, such as, affix removal, character string truncation, letter bargain, word 

segmentation and linguistic morphology [18].  Affix removal algorithms are the most 

common methods among them, which remove suffixes or prefixes from the words that form 

the same meaning of the stem [19]. The Lovins stemmer (1968) and the Porter stemmer 

(1980) are two of the most common suffix removal stemming algorithms used in information 

retrieval.  Julie Beth Lovins has published the first stemmer in 1968 which was a great 

influence for later works related to this area. Then, Porter stemmer written by Martin Porter 

in 1980 was widely used for English stemming, which consists of about 60 rules. The Porter 

stemmer has been created based on the fact that the most of the suffixes in the English 

language have been built up by the conflation of smaller and simpler suffixes. As a result of 

the extension of his work, the Snowball framework has been built for writing stemming 

algorithms not only for English, but also for other languages, such as, Romance, Germanic, 

Russian, Turkish, Uralic and Scandinavian. According to the conclusions of Chris Paice, the 

error rate of the Porter stemmer is less than Lovins stemmer [20]. 

 There are two main errors found in stemming which are under-stemming and over-

stemming. Under-stemming occurs when two words with the same morphological 

interpretation are not stemmed to the same root. That is known as a false-negative. Due to 

the loss of matching words, under-stemming causes the low sensitivity by spreading a single 

concept over variety of different stems. On the other hand, over-stemming means stemming 
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two words with different stems to the same root which is known as a false-positive [20]. 

Over-stemming results lower precision due to the dilution of the stems’ meaning. 

2.3. Indexing and Query Formulation 

Indexing is a process of creating systematic arrangement of entries that are used to 

locate information in a document. This arrangement of entries is called an index. The corpus 

indexing maps the documents in the corpus with the frequency of unique terms occurring in 

the documents. The document-term matrix is a mathematical representation of an indexing, 

which represents the documents as rows, the unique terms as the columns and the 

frequency of each term in a particular document in the matrix cells. Table 2-3 illustrates the 

idea behind the document-term matrix. 

Table 2-3: Document-term matrix 

 Term 1 Term 2 Term 3 … Term N 
Document 1 t11 t12 t13 … t1N 
Document 2 t21 t22 t23 … t2N 
… … … … … … 
Document M tM1 tM2 tM3 … tMN 

 

There are popular models used to represent the document-term matrix, such as, 

Vector Space Model (VSM) and Latent Semantic Indexing (LSI). Both VSM and LSI render 

text by following the bag of words model which presents the text as a collection of words, 

regardless of the order or grammar. VSM is an algebraic representation of the document-

term matrix, which is developed by Gerard Salton in 1975. This model represents the 

documents and the user queries in the form of vectors as follows. dj represents the 

document vector and q represents the query vector. 
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dj = (t1i, t1i, …, t1i)     𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟏: 𝐃𝐨𝐜𝐮𝐦𝐞𝐧𝐭 𝐕𝐞𝐜𝐭𝐨𝐫      

q  = (t1j, t1j, …, t1j)      𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟐: 𝐐𝐮𝐞𝐫𝐲 𝐕𝐞𝐜𝐭𝐨𝐫 

 In VSM, the term is a basic concept, such as, a single word, set of words or a phrase. Each 

of these terms defines a distinct dimension in n-dimensional space. Each entry in the matrix 

corresponds to the weight of a term in the document.  Different methods are followed to 

decide the weight, such as, term frequency (TF) and inverse document frequency (IDF). If a 

term exists in a specific document, then the value corresponds to that document in the 

relevant dimension is non-zero. If the term is not found in the document, then that value 

becomes zero.  

In general, the query vector is treated as a document, so the same process is 

followed regarding the query vector. Completion of the query and the document 

representation, leads to the requirement of finding the similarity between the document 

vectors and the query vector. This can be calculated by using Cosine Similarity. VSM is a 

simple and efficient model, which facilitates ranking documents according to their relevance. 

But it may carry some drawbacks. One of them is that the multiple words refer to the similar 

context. This is called synonymy which leads to poor recall. Another major problem in VSM 

is polysemy which causes by the words having more than one distinct meaning. This 

problem leads to poor precision. 

Latent semantic indexing (LSI) was proposed to overcome the issues of synonymy 

and polysemy in VSM [21]. This technique is used to analyze the relationships between a 

collection of documents and the terms which are represented as term-document matrix. As 

the initial step in LSI process, term-document matrix should be constructed and then 

weighting functions are applied to the matrix. 
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2.4. Ranking and Investigation of Results 

At the end of the query formulation followed by computation of semantic similarities 

between the query and each document in the corpus, a list of documents is retuned as the 

output of the retrieval process. The documents listed in the results set are ranked according 

to their relevancy to the query, formulated starting from the most relevant document to the 

least relevant one. The similarity measure chosen during the indexing process is used for 

this ranking procedure, hence, it is important to select the matching similarity measure to 

obtain better results. 

The ordered list of documents is studied to ensure whether the relevancy of the 

documents with the highest ranks, really contain the information that we are looking for, i.e., 

checking the existence of the relevancy between that document and the query. It’s 

programmer’s responsibility to decide whether the documents that he or she is looking for 

are listed among the set of top ranked results. If the certain documents are not found in that 

set, then a new query has to be reformulated with different keywords and follow the ranking 

procedure. If the desired results are produced, then the search is considered as successful 

and the process is terminated.   
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CHAPTER 3  STUDY OF THE RELATIONSHIP BETWEEN 

BUG REPORTS AND SOURCE CODE 

 As we discussed before, most of the TR based techniques are applied on the bug 

localization process based on the implicit assumption that the bug reports and the relevant 

source files share a common vocabulary. We conducted this empirical study with the 

objective of exploring the accuracy of this assumption. We analyzed the common 

vocabularies of the bug reports and the source code to find evidence to support this 

assumption. 

3.1. Research Questions 

To accomplish our objective, we address the following research questions during this 

study: 

RQ1 To what extent are the vocabularies of bug reports reflected in the identifiers and 

comments of classes? 

The use of the effective queries helps to save a lot of retrieval time. To formulate such 

an effective query, it is important to understand how well a bug report is described in 

the relevant fault code. Therefore, we built the research question RQ1 to find out how 

well bug vocabularies reflect the content of source classes.  

 

RQ2 What is the code location (i.e., class name, method name, attribute name, etc.) of the 

shared words between bug reports and patched classes? 

The words occurring in certain code locations of the source code may appear more 

frequently in the bug reports than the other code locations. When formulating the 
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queries, it is beneficial to have this information as it helps to improve the bug 

localization. We built RQ2 to find out the existence of such code locations. 

 

RQ3 Is the number of shared words between bug reports and classes, an adequate 

measure to support bug localization? 

We use the terms share between the bug reports and the source code as a 

measurement when addressing the research questions RQ1 and RQ2. It is important 

to determine the accuracy of our approach as it influences the conclusions we draw. 

Therefore, RQ3 was formulated to assess this measurement. 

The planning of these research questions are described in Section 3.7 in detail.           

3.2. Data Collection 

Table 3-1: Software systems used for the study of common vocabularies 

System Version Number of Classes Number of Bug 
Reports 

Number of 
Patched Classes 

ADempiere 3.1.0 1,896 16 16 
Art of Illusion 2.4.1 570 10 13 
aTunes 1.10 439 17 22 
Eclipse 2.0 7,689 13 14 
Eclipse 3.5 22,980 40 74 
JEdit 4.2 801 18 27 
Total 34,376 114 166 

 

The objective of our study is to explore the vocabularies of the bug reports and the 

source code to assess the existence of any relationship between them. To follow this 

examination, we used the bug reports and the source files that belong to six open source 

software systems listed in Table 3-1. The source code belong to the given systems and the 

versions, were downloaded from their online repositories. We extracted the titles and 
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descriptions from the bug reports of the same versions manually and stored them in a 

repository for future use. 

These Java based software systems belong to different problem domains and they 

have been used for previous studies [22, 23], conducted regarding the text retrieval 

approach. ADempiere2 is an industrial strength open source software solution that 

addresses business areas, such as, enterprise resource planning (EPR), supply chain 

management (SCM), customer relationship management (CRM) and point of sale (POS) 

solution. ADempiere 3.1.0 version used in our study was released on Oct 16, 2006. Art of 

Illusion3 is an open source 3D modeling and rendering studio, which is a Java language 

based free software package. Art of Illusion 2.4.1 version was released on Feb 28, 2007. 

aTunes4 is a free open source audio player and organizer, which supports audio file formats, 

such as, mp3, Ogg, wma, flac, wav and mp4. It facilitates the users to edit tags, organize 

playlist and rip audio CDs easily. This full-featured software system is implemented in Java 

language and its version 1.10 was released on Sep 27, 2008. Eclipse5 is a multi-language 

integrated development environment (IDE), which is written mostly in Java programming 

language. It consists of a base workspace and an extensible plug-in system to add new 

features to the system. In our study, we employed two versions of Eclipse software system, 

i.e., version 2.0 and version 3.5. JEdit6 is another open source, Java language based 

software system, which is a text editor that runs in any operating system with Java support, 

including Windows, Linux, Mac OSX and BSD. 

As shown in Table 3-1, our data set consists of 114 bug reports and 34,375 source 

classes in total. Eclipse 3.5 system is the largest source file collection out of all the software 

                                                           
2 http://adempiere.org/site/ 
3 http://www.artofillusion.org/ 
4 http://www.atunes.org/ 
5 http://www.eclipse.org/ 
6 http://www.jedit.org/ 

http://adempiere.org/site/
http://www.artofillusion.org/
http://www.atunes.org/
http://www.eclipse.org/
http://www.jedit.org/
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systems and it contains over 20,000 Java classes. The largest bug reports count was 40 

reports, which also belong to the same Eclipse version. Out of all the source classes, 166 of 

them were patched while fixing those bugs. 

 

Figure 3-1: The count of the related patch classes for the bug reports 

Most of the bug reports in the data collection (88.77%), were related to one or two 

patched classes (Figure 3-1). The summary of the data set we used is available in Appendix 

A and C. 

3.3. Automating Text Retrieval Process 

We followed the text retrieval process described in Chapter 2 to extract vocabularies 

from bug reports and source code. As we explained in Section 3.2, the data set we collected 

from different software systems contains 114 bug reports and over 30,000 source files 

including patched files. It takes considerably long period of time to create the vocabularies 

for each of these files manually. Hence, we built a software tool that automates the steps of 

text retrieval process and builds the vocabularies. In other words, this tool creates two 

separate corpora for the bug reports and the source files, then, applies text pre-processing 
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techniques on the documents belong to each corpus and creates vocabularies from these 

documents. The following sections elaborate how the tool we built performed during each 

text retrieval activity. 

3.4. Automated Corpus Creation 

  As the first task of text retrieval process, we create the corpora for the source files 

and the bug reports by extracting desired text from them. In our study, we consider the bug 

reports as queries and the source code as documents that were matched with queries. The 

source files belong to each software system were the initial input to our tool to create the 

source code  corpus while the bug reports’ corpus was built using the content of each bug 

report extracted before. 
 

3.4.1. Determination of the Granularity 

We define the granularity of the source code document as class level. Hence, class 

or interface definition of each source file was extracted by the tool and this block of code 

was used as the input document for further process. In future reference, we use the term 

“class” to represent both class and interface definitions of a source file. 

 

 

 

 

 

 

  
 
1. class OuterClass { 
2.     ... 
3.     ... 
4.     
5.  
6.  
7.  
8.  
9.  
10.  
11. } 

  class NestedClass { 
... 
... 
... 

  } 
 

Document of 
OutClass 

Document  of 
NestedClass 

Code Segment 3-1: Nested Classes 
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If the source file contained only a single class, only one document is created. In case 

of having multiple classes in a single source file, separate documents are created for each 

and every class definition. If nested classes exist in a source file, then for each class, an 

individual document is created. In that case inner classes are considered as a part of the 

outer class, i.e., the content of the nested class included in the document created from the 

outer class. This idea is illustrated in Code Segment 3-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
1. /* 
2. * Data Handler 
3. * Created on 03-21-2013  
4. */ 
5. package dataview; 
6.  
7. import java.sql.Connection; 
8. import java.sql.DriverManager; 
9. //import java.sql.ResultSet; 
10.  
11. /** 
12. * Class that utilizes database access. 
13. */ 
14. class DataAccess { 
15. … 
16. … 
17. … 
18.  
19. @Override 
20. public void Create() { 
21.    … 
22.    … 
23.    … 
24. } 
25.  
26. … 
27. … 
28. … 
29. } 

Code Segment 3-2: Eliminations of content in source file - Package declaration, import 
statements, comments and annotations 
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  According to the granularity we defined for the source files, all the content resides out 

of the class definition, were eliminated from the source code documents. For instance, text 

contents of lines 5, 7, and 8 in Code Segment 3-2 were turned down in this elimination 

process. The required granularity of the source files was the class definition. Hence, the tool 

filtered out the rest of the code from each source file except the class.  

Hence, the elements that reside out of that scope, such as, Java package 

declaration and import statements were ignored when creating the source code documents. 

During this filtering procedure, the documentation (javadocs) that describes the class 

definition is concerned as a part of the document. But the rest of the comments (e.g. line 

comments, block comments and javadocs) lie outside the class definition was eliminated. 

This situation can be depicted by using Code Segment 3-2. The block comment spreads 

over line1 to 4 and the line comment resides in line 9 are ignored as they do not belong to 

the class definition. However, the documentation (javadoc) written in line 11 to 13 are left in 

the document as it belong to the class definition, even it does not reside in the class body. 

We decide whether a certain comment belongs to the class definition, if it lies just above the 

class declaration statement such that no blank lines exist in between the comment and the 

class declaration statement. Code Segment 3-2 illustrates such a valid block comment (from 

line 11 to 13) that belongs to the class definition. 

In our study, the bug title and the description together are defined as the granularity 

of the bug report. Our tool read these bug titles and description from the repository that they 

were stored. Therefore, bug titles and the descriptions do not require any nose reduction as 

they were already filtered out before. We formulate queries using these bug reports. 
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3.4.2. Noise Reduction 

This step eliminates noise that can be found in the documents and queries. Noise 

can produce misleading outcome due to its irrelevancy to our study purpose. As we focus on 

the content of the source class definition, we check for noise found inside the class body. As 

we convert source classes to SrcML [24] document when creating the vocabularies (Section 

3.6) considering the locations of the words. As SrcML [24] tool has an issue regarding the 

conversion of class and method annotations, it causes inaccurate results if we don’t remove 

those annotations from the class. Therefore, we considered class and method annotations 

as an unwanted content. Even if they lie inside a class, For this reason, annotations were 

removed from the source documents in our corpus. For example, the annotation 

“@Override” (line 19) in Code Segment 3-2, is removed from the code segment. 

3.5. Automated Text Pre-processing 

  Text pre-processing or corpus normalization is inevitable in this study as the words 

extracted from the documents at this stage, are the fundamental units used to create 

vocabularies for further analysis. We discuss about the steps involved in text pre-processing 

in Section 2.2. Following subsections describe how each step in the text pre-processing is 

applied on our data set to obtain the desired outcome. 

3.5.1. Automated Tokenization and Compound Terms Splitting 

 As we considered Java language based source files, identifier names do not consist 

of certain characters like white space, brackets, punctuation etc, but they may contain 

numbers. Hence, our tool tokenizes identifier names by numbers and delimiters (hyphen 

and underscore). However, code artifacts, such as, comments and string literals can contain 

white space, line breaks, punctuation and brackets, in addition to delimiters. So those 

characters are used to tokenize such elements. At the same time, the source code may 
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contain compound terms due to the various naming conventions as we discussed in Section 

2.2.1.  These compound terms are split by the uppercase letter during this process.  

 Bug reports may contain some terms appeared in the source code, such as, identifier 

names when the bug is described using the words in the error messages and the 

exceptions. In that case, it is essential to apply the same pre-processing techniques on bug 

documents since they also contain compound words and terms to be tokenized. In our 

study, we considered words that are made up of only alphabetical characters. Hence, any 

string which consists of numeric characters were split by those numeric values. For 

example, an identifier name “title2desc4” is split into two words “title” and “desc”, by numeric 

characters “2” and “4”. This rule is applied on both bug reports and source files similar to the 

other compound terms splitting rules. 

3.5.2. Automated Stop Word Removal 

As we explained in Section 2.2.2, stop words are filtered out from text documents 

since they are not useful and relevant to the text retrieval process. . 

 

 

 

 

 

 

 

  
 

1.     … 
2.     … 
3.   public String GetGrade(int score) { 
4.  
5.       if (score >= 60) { 
6.          return “pass”; 
7.       } 
8.       else { 
9.          return “fail”; 
10.       } 
11.     … 
12.     … 
13.     … 
14. } 

 

 
[1]  
Return grade for invalid score 

Description: 

… 
However if score exceeds 100, it 
still returns PASS and does not 
indicate any error message. The 
score should be validated 
before… 
… 
… 
… 
 

 

 

    

Code Segment 3-3: Stop words (strikethrough) shared between code snippet (Left) and bug 
report (Right) 
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We created a list of stop words to be removed from both bug and source code 

documents. This list contained the most frequently used English words, as well as the 

keywords used in programming languages (Appendix B). Our automated text retrieval 

procedure compares each word picked from the document, with its stop word list and filters 

out unnecessary words. The set of strikethrough words in Code Segment 3-3 is an example 

for stop words. 

Sometimes the keywords found in the source files, can be found in the bug reports 

with or without the same meaning. Code Segment 3-3 illustrates this situation by comparing 

a code snippet and a bug report. The words “if” and “return” appear in both code snippet and 

bug report. In the source code, these words are considered as keywords. In contrast to that, 

in bug report “if” acts as a subordinating conjunction used in English grammar while “return” 

is applied as a verb. Yet both words are eliminated from the code document and the bug 

document because, we apply the same stop removal method on both types of documents. 

In addition to the removal of the frequently used English words and programming 

keywords, we filter out words that are made up of single characters. After tokenization and 

compound words splitting, single characters may remaine as words. For instance, let’s 

consider an identifier name “cellA1_s”. As a result of tokenization, we obtain two terms 

“cellA1” and “s”. Then we split the compound term “cellA1” and it results two words “cell” and 

“A”. At the end of the whole tokenization and compound word splitting process, we have 

three words “cell”, “s” and “A”. Since the last two words are only single characters, they do 

not provide any valuable contribution to our study. Therefore, such words are considered as 

noise.  
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3.5.3. Automated Stemming 

 Stemming is an activity that reduces family of words to their root, by cutting off the 

derived and inflected words. As we discussed in Section 2.2.3, there are variety of different 

algorithms have been implemented to handle the stemming programmatically. In our study, 

we followed Porter Stemmer7, a suffix removal stemming algorithm that reduces the same 

lexeme to the stem. This algorithm chops off the end characters of a string to map it into the 

root form. For example, all the words "divide”, “dividing”, “divided” are mapped to “divid” after 

applying Porter Stemmer. 

3.6. Creating Vocabularies 

   Vocabularies are formed by words in the documents and the frequencies of their 

occurrences. To answer all the thesis questions RQ1, RQ2 and RQ3, it is essential to create 

vocabularies from the source files and the bug reports with and without considering the 

location. The location means a particular artifact in the document. The source code and the 

bug reports carry different types of locations. For example, the words of a source code 

document can be extracted from variables, comments, literals etc. In our study, the words 

come from bug reports, belong to either bug title or bug description. Figure 3-2 presents the 

types of vocabularies we created for our study. We call the vocabularies that keep location 

information, as annotated vocabularies and the vocabularies that do not carry location 

information as not-annotated vocabularies.  

                                                           
7 http://tartarus.org/~martin/PorterStemmer/ 

http://tartarus.org/~martin/PorterStemmer/
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Figure 3-2: Vocabularies based on location information 

 

3.6.1. Annotated Terms Vocabularies 

Annotated terms vocabulary is a mapping of each word to its location and the 

frequency of each location. The elements of annotated vocabulary are listed as follows. 

 Words found in the document (source code or bug report) 

 The location of the word 

 The frequency of the words occurring in each location 

 The locations of the words found in the source files are determined based on the 

SrcML [24] toolkit by executing it as a part of our tool. After creating the corpus for the 

source files, we converted source documents to SrcML documents which are comprised of 

the elements derived from the programming language. The content of SrcML documents is 

encoded on XML (Appendix D). As the elements of SrcML files correspond to the various 

artifacts found in the source code, such as, classes, methods and comments, we determine 

the code locations of each word in these XML files according to the predefined list of source 

code locations (Table 3-2). 
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Table 3-2: Source code locations 

Location Artifacts in Source Code 
Argument Argument name 
Attribute Attribute name 
Class Name Interface or a class name of the source code document 
Comment Line comment or block comment or docs (e.g. javadoc) 
Literal String literals 
Method Call Method call 
Method Name Method Name 
Parameter Method parameter name 
Type Class or interface names found inside the class definition we 

considered as source code document 
Variable Local variable name 

 

 As shown in Table 3-2, we consider ten code locations which are meaningful for 

further processing of our study. The first column of this table indicates the name of the code 

location and the second column describes the corresponding artifact.  

 

 

 

 

 

 

  

   

 

  
 
1. private static double  GetResult(int a, int b) { 
2.  
3.     double denominator = (a + b) * 0.2; 
4.  
5.     if (denominator != 0) { 
6.           return a / Math.abs(denominator); 
7.     } 
8.     else { 
9.          System.out.println(“No Result. Divide by zero.”); 
10.    } 
11.    return -1; 
12. } 

Code Segment 3-4: A simple Java method 
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Table 3-3: Annotated terms vocabulary  

Word Location Frequency 
ab Method Call 1 
denomin Argument 1 

Variable 2 
divid Literal 1 
get Method Name 1 
math Type 1 
print Method Call 1 
result Literal 1 

Method Name 1 
zero Literal 1 

  

 Table 3-3 lists the mapping of the words obtained from Code Segment 3-4, to the 

code locations and frequencies. These words are extracted after applying text pre-

processing techniques described in Section 3.5. For instance, variable is one of the 

locations that the word “denominator” occurring in the Code Segment 3-4. The frequency of 

the word “denominator” in location variable is two as it appeared twice as a variable in lines 

3 and line 5. In addition to that, this word occurred once as an argument in Line 6. Hence, 

the frequency of the occurrence of the word “denominator” in the location variable is two 

while its occurrence in the location argument is one. Table 3-3 shows the annotated 

vocabulary created for code snippet in Code Segment 3-4. 

 Compared to the source code vocabularies, the bug vocabularies consist of two 

locations, title and description. For example, consider the word “concave” occurring in both 

title and description as shown in Table 3-4. It appears once in the title and once in the 

description. So the frequencies of the occurrence of word “concave” in the bug title and 

description is one. 
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Table 3-4: Bug title and description extracted from Art of Illusion bug #348 

Location Content 

Title Closing concave boundary 

Description When closing a boundary in the triangle mesh editor, often impossible 
geometry is created. This happens when the boundary is planar, but 
concave. 
The algorithm used for converting closed curves to triangle meshes does 
not suffer from this problem. Why not use this algorithm to close 
boundaries too? 

 

3.6.2. Not-annotated Vocabularies 

Not-annotated vocabularies map each distinct word found in a document (source 

code or bug report) with its frequency. Table 3-5 shows the not-annotated vocabulary 

created for Code Segment 3-4. Compared to annotated vocabulary (Table 3-3), not-

annotated vocabulary sums up all the location frequencies of each word. e.g. the frequency 

of the word “denomin” in not-annotated vocabulary is 3, which is divided between two 

locations (argument and variable) in annotated vocabulary (Table 3-3). 

 

Table 3-5: Not-annotated vocabulary 

Word Frequency 
ab 1 
denomin 3 
divid 1 
get 1 
math 1 
print 1 
result 2 
zero 1 

 

                                                           
8 http://sourceforge.net/p/aoi/bugs/34/ 

http://sourceforge.net/p/aoi/bugs/34/
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The Figure 3-3 summarizes the automated process of creating vocabularies. When 

creating the not-annotated vocabularies, the output of the corpus creation step was used as 

the direct input for text pre-processing. In contrast to that, when creating the annotated 

vocabulary, an additional step was taken place in between corpus creation and text pre-

processing, which is the conversion of documents (source classes) to SrcML documents. 

For future reference, we define the document size or query size as the total number 

of words occurring in the document. In that case, each word is counted even if it is occurred 

repeatedly in the document.  The size of the vocabulary is determined by the total number of 

unique words appeared in the document. In this case, the repeated occurrences are not 

counted. For instance, the document size for Code Segment 3-4 is eleven and its 

vocabulary size is eight.   
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Figure 3-3: The automated process of creating locater terms and not-annotated vocabularies  
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3.7. Planning of Research Questions 

We obtain vocabularies for each source class and bug report of all the software 

systems.  This subsection describes how we address the thesis questions using these 

vocabularies. 

Table 3-6: Shared words (without locations) between source class (left) and bug report (right) 
given in Code Segment 3-3 

 

 

 

 

 

 

 

Planning RQ1: 

Question: To what extent are the vocabularies of bug reports reflected in the identifiers and 

comments of classes? 

 To answer this question, we selected both bug vocabularies and source class 

vocabularies belong to each software system. In this case, we did not consider the location 

of words. We extracted the shared words between each possible pair of bug vocabulary and 

source class vocabulary of a specific system. This collection of shared words is an 

intersection between the two vocabularies, which is called the common or shared 

Word Frequency  Word Frequency 
fail 1  error 1 
get 1  exce 1 
grade 1  grade 1 
pass 1  indicate 1 
score 2  invalid 1 
string 1  messag 1 

 pass 1 
 score 1 
 2 
 valid 1 
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vocabulary of the bug report and the source class. For example, Table 3-6 illustrates the 

vocabularies of the source class and the bug report presented in Code Segment 3-3. These 

two vocabularies share two words “grade” and “score” which is the common vocabulary of 

the document (source class) and the query (bug report). Then we compute the size of this 

common vocabulary (i.e., the number of unique words) and the frequency of the occurrence 

of each word in the bug report and the source class. For instance, the common vocabulary 

for the vocabularies mentioned in Table 3-6 is illustrated in Table 3-7. 

Table 3-7: The common vocabulary (the intersection between source class and bug report 
illustrated in Table 3-5) 

Word The frequency of the 
occurrence in source class 

The frequency of the 
occurrence in bug report 

grade 1 1 
score 2 3 

 

For the same pair of bug vocabulary and the source class vocabulary, we measured 

the Simpson Similarity Index, given by the number of shared words between the bug reports 

and the source class divided by the minimum size of their vocabularies. The analysis of 

these measures and the results of this analysis are discussed in Section 4.2.1. 

Planning RQ2: 

Question: What is the code location (i.e., class name, method name, attribute name, etc.) of 

the shared words between bug reports and patched classes? 

In order to address this question, we obtained annotated vocabularies for patched 

classes and compute the size of each location we considered (Table 3-2). For example, the 

size of the location method name in the source class vocabulary given in Table 3-8 is two. 

For the same vocabulary, the size of the class location is one. We extracted the set of 

shared words between each source class location and the bug report location, and the 
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frequency of the words in the location. We analyzed these vocabularies to answer RQ2. 

This analysis and the results obtained are discussed on Section 4.2.2. 

Table 3-8: Shared words (with locations) between source class (left) and bug report (right) 
given in Code Segment 3-3 

 

Planning RQ3: 

Question: Is the number of shared words between bug reports and classes an adequate 

measure to support bug localization? 

To address RQ3, we consider the size of the common vocabulary between the bug 

report and the source class that belong to each system. Also we compare the similarities 

between the source classes and the bug reports of the same system (these similarities are 

listed at the end of this section) with two text retrieval approaches, namely the Latent 

Semantic Indexing (LSI) and the Lucene implementation of the Vector Space Model. Both 

these approaches are widely used for bug localization. Since the bug reports are considered 

as queries, we retrieve the source classes, seeking for an existence of the relevancy 

Word Location Frequency  Word Location Frequency 
fail Literal 1  error Description 1 
get Method Name 1  exce Description 1 
grade Method Name 1  grade Title 1 
pass Literal 1  indicate Description 1 
score Parameter 2  invalid Title 1 
string Class 1  messag Description 1 

  pass Description 1 
 score Title 1 
 Description 2 
 valid Description 1 
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between the source code and the bug report. To apply these approaches, first, we created 

document-term matrices for both source classes and bug reports. 

For each query, i.e., the bug title and the description together, we rank the classes of 

each system based on three measures listed as follows.  

(1) The number of shared terms between the class and the bug report, i.e., size of the 

common vocabulary between the source class and the bug reports 

(2) The cosine similarity between the class and the query using LSI 

(3) The cosine similarity between the class and the query using Lucene 

The documents (source classes) are ranked according to the similarity measures from the 

highest to lowest that received using both LSI and Lucene implementation of VSM. Higher 

similarity measure of the document indicates that it is more relevant to the query. We 

compare the effectiveness of each technique, i.e., the rank of the first patched class in the 

list. Next chapter explains the results and findings we obtained by following the procedure 

mentioned above, the analysis and the results of RQ3 are presented in Section 4.2.3.. 
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CHAPTER 4  ANALYSIS OF THE RESULTS AND 

DISCUSSION 

In this chapter, we analyze the results that we obtained by following the approaches 

mentioned in Chapter 3 and discuss about the observations that we can made.  

4.1. Observations about the Document Size 

4.1.1. Bug Reports 

According to the analysis of bug reports’ size, most of the reports, in terms of 

percentage, 75% of them had 64 terms or less (Figure E.1, Table E.1 in Appendix). 

Compared to the other systems, Eclipse 3.5 had the largest bug report in the corpus which 

contained 250 terms (Figure E.2, Table E.1 in Appendix). The shortest report consisted of 8 

terms, which belonged to ADempiere 3.1.0 (Figure E.2, Table E.1 in Appendix). The 

average size of a bug report was 56 terms (Table E.1 in Appendix). Approximately, in 

average, two third of the terms (65.86%) in each bug report was unique (Table E.2 in 

Appendix). The largest bug report that belonged to Eclipse 3.5, also contained the largest 

set of unique terms, consisting of 114 terms ((Figure E.2, Table E.2 in Appendix). The bug 

report with the smallest set of unique terms belonged to aTunes 1.10, which contains of 5 

terms ((Figure E.2, Table E.2 in Appendix).  

To verify the correlation between the size of the bug report and the size of its 

vocabulary, we calculated the Spearman coefficient between those two variables. The 

output showed a strong monotonic relationship between the bug document size and its 

vocabulary size (r = 0.96 and p-value < 0.01), which indicate that the number of unique 

terms increases with the bug report size. In other words, the larger the bug report, the more 

unique terms it contains.  
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4.1.2. Source Classes 

 Compared to the bug reports, the code vocabularies contained a larger number of 

terms such that 75% of the classes had more than 82 terms. Average size of a class was 

464 terms which is approximately 85% more terms than the largest bug report in the corpus. 

Similar to the result obtained for the bug reports, the largest class in the collection belonged 

to Eclipse 3.5 system. There were more than one shortest class documents in the collection 

such that each consisted of one term. These documents belonged to Art of Illusion 2.4.1, 

Eclipse 2.0, and Eclipse 3.5. Furthermore, in average, less than 27.1% of the terms in 

classes were unique. Similar to the bug reports, we found the correlation between the 

number of unique terms and the document size of the source classes by calculating the 

Spearman correlation. The result showed a very strong correlation between these two 

variables (r = 0.95, p-value < 0.01) which indicate that larger the class, more unique terms it 

contains. 

4.2. Addressing Research Questions 

4.2.1. Research Question 1 

We computed the set of common vocabularies between source classes and bug 

reports for 1,077,074 pairs, considering every possible combination of these documents per 

each software system. We obtained the common vocabularies for all the pairs of documents 

and queries of each system, regardless of their relevance to each other. In other words, this 

set of common vocabularies contains both relevant and non relevant pairs. The result 

obtained by analyzing these vocabularies, indicated that 75% of the pairs (i.e., 808,928) 

shared between 1 and 13 terms. Yet 21.68% of the pairs did not have any shared terms 

while 3.22% (i.e., 34,646) pairs contained more than 10 shared terms (Table 4-1). This 
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result directs to the conclusion that bug reports share terms with a large number of classes 

belong to a software system which is almost 80% in our study. 

Table 4-1: Categorization of the percentage of pairs (common vocabularies) by the number of 
shared terms 

System 
Shared Pairs of <Bug Report, Source Class> 

No Terms 1 <= Number of Terms <= 13 Number of Terms > 13 

ADempiere 3.1.0 17.82% 81.89% 0.29% 
Art of Illusion 2.4.1 19.39% 78.91% 1.7% 
aTunes 1.10 31.5% 67.94% 0.56% 
Eclipse 2.0 18.83% 79.09% 2.09% 
Eclipse 3.5 22.03% 74.47% 3.5% 
JEdit 4.2 22.92% 75.76% 1.32% 
Total 21.68% 75.10% 3.22% 

 

The above analysis was performed to determine the relevancy of a source class to a 

bug report without considering whether they are related to each other or not. We followed 

the same procedure to check whether the same result could be obtained by analyzing the 

bug reports and their corresponding source classes (patched classes). Therefore, we 

analyzed all the pairs of bug reports and their patched classes which was a subset of the 

previous collection of pairs. This subset is referred as the patched subset while its 

complement is called as the non patched subset. The patched subset consisted of 166 

related elements. This analysis indicates that the 99.6% pairs, in other words, 165 out of 

166 total pairs, shared some common terms in the patched subset. Similarly, 78.32% of 

pairs belong to non-patched subset, shared a non-empty set of terms. The only pair of 

documents in the patched subset that didn’t share any term belonged to aTunes 1.10 

system and its patched class contained 54 unique terms while the bug report consisted of 

only 5 unique terms. Figure 4-1 illustrates the number of unique shared terms (common 
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vocabulary size) between bug reports and source classes (patched and non patched 

classes) belong to each system by omitting the outliers. 

 

Figure 4-1: Common vocabulary size of bug reports and source classes in each system 
without outliers (Appendix A) 

 
 

The results we obtained from Mann-Whitney test [25] showed the difference of 

shared terms in these patched and non patched subsets is statistically significant for all the 

software systems (p-value < 0.05). According to the results, the patched classes had 11.7 

average shared terms with their relevant bug reports. Meanwhile the other classes (non 

patched) shared 3.39 terms in average with the bug reports. Due to these observations, we 

conclude that bug reports share more terms with the patched classes than the non patched 

classes, in average.  
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To find out any difference in the size between the patched and non patched classes, 

the Spearman correlation similarity index was computed. The Simpson similarity index is 

suitable for the situations where there exits any size difference between two documents as it 

recognizes the overlap with respect to the smaller document in size. According to Figure 4-2 

(outliers have been ignored in the boxplots), for each system, the similarity between bug 

reports and patched classes had a higher significant level (p-value < 0.05) than the 

similarities computed between bug reports and non patched classes. We observed that in 

average, similarity value of non patched subset is 0.11 and for patched subset, it is 0.37. 

 

Figure 4-2: Simpson similarity index between bug reports and source classes of each software 
system 

Furthermore, we found that 75% of the pairs belong to the patches subset resided 

above the Simpson similarity of 0.24 while 88.59% of the pairs in the non patched set lied 

below the same similarity value. This observation confirmed the previous results we 
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obtained. Hence, we conclude that in average, bug reports have higher textual similarity with 

the patched classes than the non patched classes. 

RQ1 Answer: 

We conclude that the bug reports share terms with a large number of source classes 

(almost 80%) and the most of these terms are shared with the patched classes than the non 

patched classes. We also found that the bug reports have higher textual similarity with the 

patched classes than the non patched classes. 

4.2.2. Research Question 2 

Recent research studies  argue that the use of code location information for source 

code retrieval process, improves the bug localization [10]. Therefore, we analyzed the code 

locations of the terms shared between patched classes and relevant bug reports. Table 4-2 

indicates the results we obtained by this inspection. 

According to the results, it is apparent that the terms in the class vocabularies were 

not evenly distributed over the code locations, as the measurements of terms for different 

code locations disseminate with different values. Compared to the other code locations, the 

comments contributed the highest percentage of the terms for the patched class, which was 

26.98% of the vocabulary size (Table 4-2). Terms found in method calls and types also 

carried the next highest values which are 20.28% and 12.69% respectively (Table 4-2). This 

observation was somewhat we expected, as comments, method calls and types were more 

verbose when describing the defects in a bug report. Furthermore, we studied the 

contribution of each code location to the total shared terms of the class and we discovered 

that the majority of shared terms appeared in comments (27.33%, in average), method calls 

(16.99%, in average), and types (15.16%, in average) of the patched classes. The 

Spearman correlation showed a strong relationship between the number of terms and the 
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number of shared terms in all the code locations (r > 0.6, p-value < 0.01) except for the 

class names. Due to this outcome, we state that the code locations which are more verbose 

tend to contribute more to the common vocabulary between the patched class and its 

relevant bug report.  

Table 4-2: Shared terms statistics in code locations in the patched classes 

Code Location 
Average 

Percentage of 
Terms 

Average 
Percentage of 
Shared Terms 

Average Contribution to the 
Total Shared Terms 

Argument 11.71% 19.06% 11.34% 
Attribute 8.40% 20.10% 8.45% 
Comment 26.98% 19.86% 27.33% 
Literal 2.99% 21.40% 4.64% 
Method call 20.28% 15.78% 16.99% 
Method name 4.40% 21.52% 4.58% 
Parameter 4.25% 19.97% 3.81% 
Type 12.69% 20.69% 12.97% 
Class Name 0.55% 53.57% 1.70% 
Variable 7.86% 15.68% 7.11% 

 

A short location size does not mean it is contribution to the common vocabulary, is 

also small. For instance, a set of shared terms belong to a certain location may be smaller in 

the size, compared to the number of shared terms of the other locations. But in reality, the 

contribution of that smaller set of words to the shared vocabulary can be larger compared to 

its size as the majority of the words belong to that code location is a part of the common 

vocabulary. Because of that, we computed the number of common terms in each code 

location with respect to its size (i.e., the percentage of shared terms for each location) as 

listed in Table 4-2. According to the results we obtained, class names shared quite the 

highest percentage of the terms which is 53.57%. The other code locations contributed the 

percentage of the shared terms between 15% and 21% with their bug reports. We conclude 
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that the names of the patched classes are more likely to have shared terms with relevant 

bug reports than the terms belong to the other code locations.  

RQ2 Answer: 

We conclude that the verbose code locations tend to share more words between a 

patched class and a corresponding bug report. We also state that the class names are more 

likely to have shared terms with the relevant bug reports than the other code locations. 

4.2.3. Research Question 3 

To find out whether the number of shared terms between bug reports and classes 

provide an adequate measure to support the bug localization process, we developed a 

simple technique. In this technique, the number of shared terms (ST) was used as a 

measure for locating the source classes relevant to the bug reports. A corpus for each 

system was built as described in section 3.4. Then we indexed each corpus with Lucene 

and Latent Semantic Indexing (LSI) (d = 100 for LSI). For each query (bug report) of each 

system, the documents (source classes) were ranked using ST, LSI and Lucene 

respectively. Then the top ranked documents were compared for effectiveness. Table 4-3 

reports the number of cases that the shared terms perform better, equal or worse than 

Lucene and LSI. The average and median effectiveness for the above ST, LSI and Lucene 

approaches are listed in Table 4-4. In this technique, a lower effective measure indicated 

better results. 
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Table 4-3: Number of cases that the shared terms approach is better, equal or worse than LSI 
and Lucene 

System 
LSI Lucene 

Better Equal Worse Better Equal Worse 
ADempiere 3.1.0 9 (56%) 0 (0%) 7 (44%) 1 (6%) 1 (6%) 14 (88%) 
Art of Illusion 2.4.1 4 (40%) 0 (0%) 6 (60%) 0 (0%) 0 (0%) 10 (100%) 
aTunes 1.10 9 (53%) 0 (0%) 8 (47%) 1 (6%) 1 (6%) 15 (88%) 
Eclipse 2.0 11 (85%) 0 (0%) 2 (15%) 2 (15%) 1 (8%) 10 (77%) 
Eclipse 3.5 24 (60%) 0 (0%) 16 (40%) 9 (22%) 3 (8%) 28 (70%) 
JEdit 4.2 15 (83%) 0 (0%) 3 (17%) 5 (28%) 1 (6%) 12 (66%) 
Total 72 (63%) 0 (0%) 42 (37%) 18 (16%) 7 (6%) 89 (78%) 
 

Table 4-4: Average and median effectiveness of the shared terms (ST), LSI and Lucene 
approaches 

System 
ST LSI Lucene 

Average Median Average Median Average Median 
ADempiere 3.1.0 41 19 124 23 11 4 
Art of Illusion 2.4.1 87 35 84 30 52 10 
aTunes 1.10 26 10 31 18 9 3 
Eclipse 2.0 180 80 1152 681 49 3 
Eclipse 3.5 430 66 915 120 594 5 
JEdit 4.2 22 7 64 57 11 3 
Total 192 25 492 57 223 4 

 

The performance of ST were unanticipated as it worked much better than LSI in 63% 

of the cases with a better median and average effectiveness considering the data collected 

from all the software systems. Art of Illusion 2.4.1 was the only system where LSI showed a 

slightly better performance. But still the difference in median effectiveness (5 positions) is 

small compared to the improvements ST brings in the case of the other systems, e.g. 

Eclipse 3.5 indicates a difference of 601 positions. By conducting the Wilcoxon test, we 

observed a significant performance of ST compared to LSI (p-value < 0.05). Meanwhile 

Lucene performed better than both ST and LSI. The Wilcoxon test on the effectiveness 
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values indicated again that the difference in performance of the three approaches (i.e ST, 

LSI and Lucene) was statistically significant (p-value <0.05). After all, there were situations 

that ST gave better results than Lucene. JEdit 4.2 (28% of the cases), Eclipse 3.5 (22% of 

the cases), and Eclipse 2.0, (22% of the cases) were few of the examples that shows better 

performances of ST than Lucene. For some of the bugs, the difference in effectiveness was 

striking. For instance, the case of bugs 304784 and 29950 in Eclipse 3.5, the improvement 

over Lucene was of 7549 and 4960 positions, respectively. These outliers in Eclipse 3.5 

described the better average effectiveness obtained by ST for this system, compared to 

Lucene.  To explain these results, we need to conduct further studies. Based on the above 

results, we conclude that the bug localization is supported by the number of shared terms 

between bug reports and source classes better than LSI does, still it does not perform as 

well as Lucene. 

RQ3 Answer: 

We conclude that the number of shared words between the bug reports and the 

source classes supports the bug localization better than some other measures such as LSI, 

but still does not perform as well as Lucene.   

4.2.4. Threats to Validity 

 This section discusses the threats to the validity of our study , organized by the 

threats category [17, 26]. 

 Construct validity focuses on the relation between experiment and observation. The 

selection of appropriate measures and algorithms influences the accuracy of the whole 

study and the conclusions. In our case, we adapted effectiveness measure and statistical 

tests, such as, Mann-Whitney test, to evaluate results obtained regarding the bug 
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localization. Due to the good estimation provided by these measure and tests, they are 

widely used in the concept location tasks. 

 Internal validity considers the variables that can influence the outcome and whether 

there are sufficient evidences to support the conclusions. In this study, we concerned about 

the reliability of the documents and queries we used, to mitigate the threats that can affect to 

our results. We extracted the queries (bug titles and descriptions) from publicly available 

bug tracking systems. We followed a well-defined procedure to extract vocabularies from the 

source files and the bug reports. 

External validity concerns the generalization of the results we obtained.  We 

conducted our study on a collection of documents belong to six software systems which 

contained 166 patched classes along with 114 bug reports. As these inputs are relatively 

small, it is important to validate our work to identify the threats that can affect our 

conclusions. Therefore, this study needs to be replicated on comparatively larger data sets 

to see whether the same conclusions can be drawn. In other words, we need to expand this 

study for a larger number of bug reports and patched classes to see whether the same 

results can be obtained for the new input. 

 Conclusion validity concerns how accurate our approach with actual results we 

obtained.  We drew our conclusions referring to the intersection between the bug 

vocabularies and the source vocabularies. Our conclusions provided the evidence to 

support the assumption that the bug reports and the relevant source classes share a 

common vocabulary. We followed Mann-Whitney and Wilcoxon statistical tests to show the 

significance of the results we obtained. 
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CHAPTER 5  RELATED WORK 

It is importance to understand how the problems related to defect source code are 

described in bug reports, to improve the bug localization. Due to this importance, several 

studies related to the linguistic and statistical analysis, have been conducted to describe the 

text content found in bug reports.  

Title of a bug report is one of the important elements that used to describe a bug. 

Several interesting trends about the bug title, have been discovered by Ko et al. [27] after 

analyzing the bug title’s parts of speech of the words. The results of this study indicated 

which parts of the speech of the words are supportive when describing the bug reports. 

Another similar linguistic analysis of bug titles is carried out by Sureka and Indukuri et al. 

[28] to examine how people describe software bugs. This study aimed to identify the 

feasibility of building a predictive model to categorize the bug reports, based on the part of 

the speech, word frequency and the distribution across different severity levels, such as, 

bug importance (major, minor, enhancement, critical). This study revealed that bug titles, in 

general, do not carry enough information to build a highly accurate classifier which supports 

categorization of bug titles into different predefined severity levels. But it showed that some 

certain categories, such as, enhancement and critical determine the words which can be 

used to build a model with a reasonable accuracy. Han et al. [29] performed a qualitative 

and quantitative topic analysis on bug reports of Android systems to obtain evidence of 

Android fragmentation (hardware and software) within these bug reports. The study applied 

Latent Dirichlet Allocation (LDA) on original bug reports and Labeled LDA on manually 

labeled bug reports using feature oriented terms. Then it computed the average relevance 

between each individual bug report to each topic and analyzed the performance of two types 

of topics sets. According to the results, the study concluded that bug reports carry important 
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evidence regarding certain type of fragmentations. In addition to the above studies, some 

research workers paid attention on the development of automated methods to measurie the 

quality of bug reports. The research study followed by Linstead et al. [30]  focused on 

coherence which is a quality metric that measures the report quality by capturing the clarity 

of the reports through the analysis of text found in them. This study also adapted LDA for 

mining the text content of bug reports. 

Even though our study also focused on text analysis, it adapted bug reports for 

analysis process along with source code. Our objective was to determine any relationship 

exists between vocabularies of bug reports and source classes. Recent work [10] conducted 

regarding bug localization, proposed a novel approach for term weighting on information 

collected from structural text (source code). This study proposed boosting the query terms 

that occur in certain locations within the source code methods. Using this work as the base 

for our study, we extended the analysis process from method to source classes. 

Furthermore, we took an extensive list of code locations that comprised of class names, 

method names and comments.   
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CHAPTER 6  CONCLUSIONS AND FUTURE WORK 

 We conducted our study to find whether the bug reports and related defect source 

code share important terms. To accomplish our purpose, we analyzed the vocabularies 

shared between source classes (documents) and bug reports (queries). This chapter 

summarizes the conclusions we draw and discusses what extension can be made to this 

study to verify these conclusions and which kind of enhancements will be made in future.  

6.1. Conclusions 

 According to the analysis of common vocabularies between bug reports and source 

classes, we observed that the bug reports shared terms with a large number of classes and 

more terms are shared between the bug reports and the patched classes than non patched 

classes. Hence, these evidences establish the implicit assumption that the source code 

shares many terms with bug reports. Furthermore, we can state that the patched classes 

carry a higher number of shared terms than the rest of the classes in a software system. 

Moreover, due to the results captured by studying code locations of the common 

vocabularies, we draw the conclusion that class names are more likely to appear in common 

vocabularies with bug reports than the other code locations. Nevertheless, more frequent 

code locations have more terms in common with the bug report. By means of the above 

conclusions, we believe that TR based concept location techniques can be improved by 

using this information. We obtained results that support the idea of using shared terms to 

determine the relevant classes for a selected bug report. Not only that, but also we saw 

some TR techniques (Lucene in our study) works better than others while some techniques, 

(LSI in our case) may perform worse. 
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6.2. Future Work 

 We conducted our study on a relatively small collection of patched classes and bug 

reports. as we discussed in Section 4.2.4, it is important to validate our work to identify the 

threats that influence our conclusions. Therefore, in future, we replicate this study on 

comparatively larger data sets with considerations of additional text retrieval techniques 

under various configurations. 

 On the other hand, all the software systems we employed were implemented using 

Java based technologies. In other words, they were written in Java language. But it is 

important to extend this work on software systems which are written in other programming 

languages, such as, C++, as different languages carry different syntax. In future, we will 

extend our study on software systems written in different programming languages, with the 

enhancements mentioned before. 
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APPENDIX A : Summary of the Data Set 

Table A.1: The total number of unique terms in the source classes (class vocabulary size) 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 2,735 74 106.5 170.94 132 246.25 345 92.93 
Art of Illusion 2.4.1 1,837 60 129 141.31 129 158 211 46.72 
ATunes 1.10 2,439 14 77.25 110.86 105.5 136.5 218 54.95 
Eclipse Platform 2.0 2,026 83 110 144.71 126 159.75 375 72.66 
Eclipse Platform 3.5 13,180 20 108 178.11 146 214 538 113.63 
JEdit 4.2 5,764 26 113 213.48 175 355 531 141.59 
General 27,981 14 103 168.56 140.5 199 538 107.41 
 

Table A.2: The total number of terms in the source classes (class document Size) 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 34,032 390 631.75 2127 1022 2751.75 6411 2207.85 
Art of Illusion 2.4.1 13,902 268 894 1,069.38 945 1,325 1,887 511.05 
ATunes 1.10 19,997 50 353.75 908.95 811 1,259.5 2,405 654.73 
Eclipse Platform 2.0 16,229 285 842.75 1,159.21 1,029 1,616.75 2,667 630.85 
Eclipse Platform 3.5 135,551 31 558.75 1,831.77 1,056 2,216 8,943 2,010.48 
JEdit 4.2 62,382 54 632.5 2,310.44 1,109 3,923 15,098 3,039.36 
General 282,093 31 558 1,699.36 1,012 1,975.75 15,098 2,004.49 
 

Table A.3: The total number of unique terms in the bug reports (bug vocabulary size) 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 404 6 18.25 25.25 24 35 50 11.78 
Art of Illusion 2.4.1 485 17 26 37.31 36 43 66 16.48 
ATunes 1.10 543 5 13 24.68 18 29 58 16.79 
Eclipse Platform 2.0 546 16 25 39 35 46.25 106 22.37 
Eclipse Platform 3.5 2,742 8 17 37.05 32 49 114 23.94 
JEdit 4.2 1,019 11 28.5 37.74 33 41 67 16.04 
General 5,739 5 18 34.57 32 43 114 20.73 
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Table A.4: The total number of terms in the bug reports (bug document Size) 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 650 8 27 41 39 47 105 23 
Art of Illusion 2.4.1 719 23 36 55 44 69 108 28 
ATunes 1.10 798 9 17 36 24 41 101 28 
Eclipse Platform 2.0 843 22 38 60 55 64 171 37 
Eclipse Platform 3.5 5,282 10 25 71 51 111 250 56 
JEdit 4.2 1,798 11 40 67 46 61 156 46 
General 10,090 8 28 61 45 69 250 47 
 
 
Table A.5: The total number of unique terms shared between the bug reports and the patched 

classes (common vocabulary size) 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 150 2 6 9 10 12 18 5 
Art of Illusion 2.4.1 101 1 4 8 7 11 16 4 
ATunes 1.10 133 0 4 6 6 9 17 4 
Eclipse Platform 2.0 182 6 8 13 11 17 28 6 
Eclipse Platform 3.5 1,029 1 7 14 13 18 53 10 
JEdit 4.2 348 5 8 13 11 16 38 8 
General 1,943 0 6 12 10 15 53 8 
 
 
Table A.6: The total number of terms shared between the bug reports and the patched classes 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 313 3 12 20 15 27 46 12 
Art of Illusion 2.4.1 193 1 9 15 12 24 30 9 
ATunes 1.10 254 0 6 12 10 14 49 10 
Eclipse Platform 2.0 349 8 17 25 22 28 59 13 
Eclipse Platform 3.5 2,512 1 12 34 29 38 126 29 
JEdit 4.2 739 6 16 27 20 26 104 23 
General 4,360 0 10 26 21 31 126 24 
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APPENDIX B : Stop Words 

a cry in other sure whatever 
about default inasmuch others take when 
above definitely inc otherwise taken whence 
according despite indeed ought tell whenever 
accordingly did indicate our template where 
across do indicated ours tends whereafter 
actually does indicates ourselves than whereas 
afterwards doing inline out thank whereby 
again double instanceof outside thanks wherein 
against downwards insofar over thanx whereupon 
all due instead overall that wherever 
almost during int own thats whether 
alone dynamic_cast interface package the which 
along each into particular their while 
already eg inward particularly theirs whither 
also either is per them who 
although else it perhaps themselves whoever 
always elsewhere its please then whole 
am enough itself possible thence whom 
among enum just presumably there whose 
amongst entirely know probably thereafter why 
an especially knows provides thereby will 
and et lately private therefore willing 
another etc later protected therein with 
any ever latter public theres within 
anybody every latterly quite thereupon without 
anyhow everybody less rather these would 
anyone everyone long re they yet 
anything everything lest return thin you 
anyway everywhere like really think your 
anyways except liked reasonably this yours 
anywhere explicit likely regarding thorough yourself 
apart export look regardless thoroughly yourselves 
are extern looking regards those 

 around extends looks register though 
 as false ltd reinterpret_cast through 
 asm far mainly relatively throughout 
 assert few many respectively throw 
 at final may return throws 
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auto finally maybe said thru 
 be float me same thus 
 became for meanwhile saw to 
 because former merely say together 
 become formerly might saying too 
 becomes friend mine says took 
 becoming furthermore moreover secondly top 
 been further mostly see toward 
 beforehand give much seeing towards 
 behind given must seem transient 
 being gives mutable seemed tried 
 believe go my seeming tries 
 below goes myself seems true 
 beside going namely seen truly 
 besides gone namespace selves try 
 between goto native sensible trying 
 beyond got nearly serious typedef 
 bool gotten need seriously typeid 
 boolean had needs several typename 
 both happens neither shall un 
 break hardly never she under 
 but hasnt nevertheless short unfortunately 
 by have new should union 
 byte having no signed unless 
 came he nobody since unlikely 
 can hence none sincere unsigned 
 cannot her noone sizeof until 
 cant hereafter nor so unto 
 case hereby not some upon 
 catch herein nothing somebody us 
 certain hereupon normally somehow useful 
 certainly hers now someone using 
 char herself nowhere something usually 
 class hi normally sometime various 
 clearly him null sometimes very 
 co himself obviously somewhat via 
 come his of somewhere virtual 
 comes hither off static void 
 con hopefully often soon volatile 
 concerning how oh sorry want 
 consequently howbeit ok static_cast wants 
 consider however okay still was 
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considering hundred on strictfp way 
 const i once struct wchar_t 
 const_cast ie ones such we 
 continue if only super well 
 corresponding implements onto switch went 
 could immediate operator synchronized were 
 couldnt import or system what 
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APPENDIX C : Summary of the Terms in Code Locations 

Table C-1: Shared terms in arguments 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 428 0 10 27 17 50 66 23 
Art of Illusion 2.4.1 221 0 3 17 7 14 109 29 
ATunes 1.10 284 0 2 13 6 17 57 16 
Eclipse Platform 2.0 405 1 11 29 27 31 82 25 
Eclipse Platform 3.5 4,700 0 2 64 27 105 377 82 
JEdit 4.2 1,168 0 3 43 14 22 718 136 
General 7,206 0 3 43 16 46 718 81 
 
 
 

Table C-2: Shared terms in attributes 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 423 0 0 26 14 56 81 30 
Art of Illusion 2.4.1 180 0 0 14 0 13 75 23 
ATunes 1.10 206 0 0 9 1 8 81 19 
Eclipse Platform 2.0 521 0 13 37 24 45 129 39 
Eclipse Platform 3.5 1,873 0 0 25 7 37 227 43 
JEdit 4.2 518 0 0 19 1 15 263 51 
General 3,721 0 0 22 6 30 263 39 
  
 
 

Table C-3: Shared terms in comments 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 1,084 9 28 68 34 72 244 73 
Art of Illusion 2.4.1 263 0 11 20 15 18 62 19 
ATunes 1.10 525 0 3 24 12 27 97 30 
Eclipse Platform 2.0 685 7 16 49 27 44 201 55 
Eclipse Platform 3.5 9,730 0 31 131 75 137 1,157 192 
JEdit 4.2 2,795 1 8 104 33 149 786 162 
General 15,082 0 12 91 39 108 1,157 153 
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Table C-4:  Shared terms in literals 

System n min q1 mean median q3 max sd 
Adempiere 3.1.0 819 0 9 51 31 81 193 57 
Art of Illusion 2.4.1 49 0 1 4 5 5 10 3 
ATunes 1.10 139 0 0 6 2 6 49 12 
Eclipse Platform 2.0 278 0 5 20 16 30 67 20 
Eclipse Platform 3.5 536 0 0 7 0 6 111 17 
JEdit 4.2 253 0 1 9 4 10 61 14 
General 2,074 0 0 12 3 12 193 26 
  
 

Table C-5: Shared terms in method calls 

System n min q1 mean median q3 max sd 
Adempiere 3.1.0 1,316 0 8 82 36 64 657 162 
Art of Illusion 2.4.1 256 0 5 20 8 22 113 30 
ATunes 1.10 619 0 4 28 16 34 193 42 
Eclipse Platform 2.0 629 10 16 45 41 53 119 34 
Eclipse Platform 3.5 4,283 0 4 58 25 68 653 94 
JEdit 4.2 2,466 3 17 91 37 55 1,378 260 
General 9,569 0 6 58 24 56 1,378 133 
 
 
  

Table C-6: Shared terms in method name 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 183 0 2 11 5 16 54 15 
Art of Illusion 2.4.1 113 0 5 9 8 13 25 7 
ATunes 1.10 140 0 1 6 4 9 29 8 
Eclipse Platform 2.0 188 0 4 13 11 22 38 11 
Eclipse Platform 3.5 1,152 0 2 16 9 17 124 21 
JEdit 4.2 442 0 2 16 3 16 166 33 
General 2,218 0 2 13 7 14 166 20 
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Table C-7: Shared terms in parameter 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 122 0 0 8 2 14 29 11 
Art of Illusion 2.4.1 31 0 0 2 2 2 12 3 
ATunes 1.10 148 0 0 7 0 4 59 15 
Eclipse Platform 2.0 131 0 2 9 7 10 34 11 
Eclipse Platform 3.5 1,814 0 0 25 8 27 169 39 
JEdit 4.2 283 0 1 10 4 9 95 21 
General 2,529 0 0 15 4 14 169 29 

 
 

Table C-8: Shared terms in types 

System n min q1 mean median q3 max sd 
Adempiere 3.1.0 388 0 6 24 10 19 101 33 
Art of Illusion 2.4.1 290 0 16 22 19 25 80 19 
ATunes 1.10 233 0 1 11 4 10 65 16 
Eclipse Platform 2.0 444 2 13 32 20 37 89 29 
Eclipse Platform 3.5 5,404 0 11 73 37 109 321 82 
JEdit 4.2 888 0 11 33 28 47 150 31 
General 7,647 0 7 46 19 61 321 63 
 
 
 

Table C-9: Shared terms in variables 

System n min q1 mean median q3 max sd 
Adempiere 3.1.0 505 0 4 32 15 26 157 49 
Art of Illusion 2.4.1 82 0 0 6 6 11 15 5 
ATunes 1.10 151 0 1 7 3 10 43 10 
Eclipse Platform 2.0 200 0 5 14 14 22 33 12 
Eclipse Platform 3.5 2,175 0 0 29 7 30 279 51 
JEdit 4.2 876 1 4 32 15 27 403 76 
General 3,989 0 1 24 8 23 403 49 
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Table C-10: Total terms in arguments 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 3,595 9 54 225 90 476 734 252 
Art of Illusion 2.4.1 1,997 27 102 154 105 239 355 97 
ATunes 1.10 2,307 2 33 105 66 173 434 103 
Eclipse Platform 2.0 2,287 18 78 163 148 211 379 111 
Eclipse Platform 3.5 17,207 0 34 233 88 367 974 271 
JEdit 4.2 6,649 0 43 246 139 363 1,836 357 
General 34,042 0 43 205 105 300 1,836 252 
  
 
 

Table C-11: Total terms in attributes 

System n min q1 mean median q3 max sd 
Adempiere 3.1.0 1,919 0 20 120 65 187 374 130 
Art of Illusion 2.4.1 1,243 31 44 96 61 96 291 76 
ATunes 1.10 1,954 0 14 89 52 139 448 104 
Eclipse Platform 2.0 1,987 26 62 142 113 197 301 99 
Eclipse Platform 3.5 6,886 0 26 93 50 108 770 119 
JEdit 4.2 3,438 0 13 127 62 87 1,588 308 
General 17,427 0 26 105 61 128 1,588 160 
  
 
 

Table C-12: Total terms in comments 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 6,024 57 105 377 224 389 1,276 392 
Art of Illusion 2.4.1 1,553 36 78 119 78 158 270 80 
ATunes 1.10 4,331 6 96 197 147 211 727 178 
Eclipse Platform 2.0 3,316 42 108 237 139 175 1,209 296 
Eclipse Platform 3.5 50,533 8 157 683 316 543 8,527 1,400 
JEdit 4.2 19,415 9 94 719 300 1,407 3,931 923 
General 85,172 6 100 513 209 437 8,527 1,039 
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Table C-13: Total terms in literals 

System n min q1 mean media
n 

q3 max sd 

Adempiere 3.1.0 3,747 0 30 234 118 514 650 245 
Art of Illusion 2.4.1 245 0 2 19 24 27 37 13 
ATunes 1.10 475 0 6 22 14 26 111 26 
Eclipse Platform 2.0 608 0 15 43 45 55 104 34 
Eclipse Platform 3.5 1,614 0 0 22 2 15 421 56 
JEdit 4.2 1,756 0 8 65 35 128 231 64 
General 8,445 0 1 51 15 45 650 107 
  
 
 

Table C-14: Total terms in method calls 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 10,521 54 178 658 299 758 2,477 800 
Art of Illusion 2.4.1 3,002 37 225 231 251 266 478 116 
ATunes 1.10 5,875 6 93 267 232 284 1,167 263 
Eclipse Platform 2.0 3,418 46 220 244 252 262 415 101 
Eclipse Platform 3.5 22,270 0 36 301 142 347 1,729 385 
JEdit 4.2 13,050 15 122 483 344 615 3,760 717 
General 58,136 0 74 350 231 390 3,760 481 
  
 
 

Table C-15: Total terms in method names 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 862 3 13 54 29 48 212 64 
Art of Illusion 2.4.1 1,351 8 38 104 90 90 310 100 
ATunes 1.10 1,070 4 12 49 31 73 142 43 
Eclipse Platform 2.0 724 12 36 52 40 77 98 28 
Eclipse Platform 3.5 4,317 0 18 58 39 96 303 59 
JEdit 4.2 2,540 2 14 94 41 146 754 149 
General 10,864 0 17 65 40 90 754 82 
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Table C-16: Total terms in parameter 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 1,006 0 12 63 28 74 329 88 
Art of Illusion 2.4.1 642 9 20 49 49 77 83 28 
ATunes 1.10 607 0 6 28 20 46 74 24 
Eclipse Platform 2.0 603 3 16 43 26 77 122 40 
Eclipse Platform 3.5 5,964 0 19 81 44 102 375 90 
JEdit 4.2 2,956 1 16 109 53 195 531 121 
General 11,778 0 15 71 38 87 531 87 
  
 
 

Table C-17: Total terms in types 

System n min q1 mean median q3 max sd 
Adempiere 3.1.0 2,943 23 59 184 72 340 524 189 
Art of Illusion 2.4.1 2,253 64 121 173 172 175 333 82 
ATunes 1.10 2,517 9 51 114 107 167 268 78 
Eclipse Platform 2.0 2,005 44 120 143 145 163 232 48 
Eclipse Platform 3.5 17,665 4 41 239 123 449 1,004 242 
JEdit 4.2 6,517 8 58 241 209 444 1,064 237 
General 33,900 4 60 204 133 268 1,064 204 
  
 
 

Table C-18 Total terms in variables 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 3,099 2 46 194 77 282 675 230 
Art of Illusion 2.4.1 1,701 17 91 131 108 160 334 86 
ATunes 1.10 1,149 2 19 52 38 76 170 46 
Eclipse Platform 2.0 1,413 17 48 101 76 151 235 73 
Eclipse Platform 3.5 10,483 0 14 142 72 252 879 184 
JEdit 4.2 5,798 3 55 215 94 285 1,704 332 
General 23,643 0 20 142 73 187 1,704 202 
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APPENDIX D : SrcML Document 

D.1 Sample Source File  

 
package log; 
 
import java.io.File; 
import java.io.FileInputStream; 
import java.io.InputStream; 
import java.io.OutputStream; 
 
public class LogFile { 
 
 private static String dirName; 
  
 public LogFile() { 
  dirName = "NotificationLog"; 
 } 
  
 /* Copy log file 
 */ 
 public static void CopyLogFile(File logFile) throws IOException { 
    
  if (logFile != null) { 
   File logCopy = new File("notification_log_copy.txt"); 
   InputStream file = new FileInputStream(logFile); 
    
   file.close();     
   System.out.println("File copied."); 
  } 
 } 
} 
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D.2 SrcML Document created from the source file in A.1  
  <?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<unit xmlns="http://www.sdml.info/srcML/src" language="Java" filename="E:\ 
\Resources\TestMethods.java"><package>package <name>log</name>;</package> 

<import>import <name>java</name>.<name>io</name>.<name>File</name>;</import> 
<import>import <name>java</name>.<name>io</name>.<name>FileInputStream</name>;</import> 
<import>import <name>java</name>.<name>io</name>.<name>InputStream</name>;</import> 
<import>import <name>java</name>.<name>io</name>.<name>OutputStream</name>;</import> 
<class><specifier>public</specifier> class <name>LogFile</name> <block>{ 

 <decl_stmt><decl><type><specifier>private</specifier> <specifier>static</specifier> 
<name>String</name></type> <name>dirName</name></decl>;</decl_stmt> 

 <constructor><specifier>public</specifier> 
<name>LogFile</name><parameter_list>()</parameter_list> <block>{ 
 <expr_stmt><expr><name>dirName</name> = "NotificationLog"</expr>;</expr_stmt> 
 }</block></constructor> 
 <comment type="block">/* Copy log file 
 */</comment> 

 <function><type><specifier>public</specifier> <specifier>static</specifier> 
<name>void</name></type> 
<name>CopyLogFile</name><parameter_list>(<param><decl><type><name>File</name></type> 
<name>logFile</name></decl></param>)</parameter_list> <throws>throws 
<argument><expr><name>IOException</name></expr></argument></throws> <block>{ 

<if>if <condition>(<expr><name>logFile</name> != 
<name>null</name></expr>)</condition><then> <block>{ 

 <decl_stmt><decl><type><name>File</name></type> <name>logCopy</name> =<init> 
<expr>new 
<call><name>File</name><argument_list>(<argument><expr>"notification_log_copy.txt"</expr></argumen
t>)</argument_list></call></expr></init></decl>;</decl_stmt> 

 <decl_stmt><decl><type><name>InputStream</name></type> <name>file</name> =<init> 
<expr>new 
<call><name>FileInputStream</name><argument_list>(<argument><expr><name>logFile</name></expr>
</argument>)</argument_list></call></expr></init></decl>;</decl_stmt>     

  
 <expr_stmt><expr><call><name><name>file</name>.<name>close</name></name><argument_
list>()</argument_list></call></expr>;</expr_stmt>     

 <expr_stmt><expr><call><name><name>System</name>.<name>out</name>.<name>println</n
ame></name><argument_list>(<argument><expr>"File 
copied."</expr></argument>)</argument_list></call></expr>;</expr_stmt> 

 }</block></then></if> 

        }</block></function> 

}</block></class></unit> 
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APPENDIX E : Summary of the Terms in Bug Reports 

 

 

Figure E.1: The summary of the bug reports in all the software systems 
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Figure E.2: The total number of terms of the bug report in each system 

 

 

Table E.1: The total number of terms of the bug report in each system 

System n min q1 mean median q3 max sd 

Adempiere 3.1.0 650 8 27 40.62 39 47 105 23.24 
Art of Illusion 2.4.1 557 23 36 55.7 42 80 108 29.66 
ATunes 1.10 607 9 17 35.71 25 41 101 27.7 
Eclipse Platform 2.0 779 22 37 59.92 50 64 171 38.95 
Eclipse Platform 3.5 2,900 10 27 72.5 47 99 250 61.36 
JEdit 4.2 934 11 38 51.89 41 50 156 32.71 
General 6,427 8 28 56.38 41 64 250 45.48 
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Figure E.3: The unique terms (%) of the bug reports in each software system 

 

Table E.2: The unique terms (%) of the bug reports in each software system 

System n min q1 mean median q3 max sd 
Adempiere 3.1.0 1,041.754 47.61905 55.51 65.11 59.64 75 87.5 13.29 
Art of Illusion 2.4.1 708.369 61.11111 63.41 70.84 72.54 74.73 81.81818 7.55 
ATunes 1.10 1,218.176 50 65 71.66 72.5 77.78 94.11765 10.84 
Eclipse Platform 2.0 856.9377 51.64835 59.32 65.92 65.71 70.21 77.5 8.4 
Eclipse Platform 3.5 2,453.035 28.92562 54.24 61.33 60.19 70.89 92.85714 14.92 
JEdit 4.2 1,229.853 41.44144 62.59 68.33 70.82 74.38 100 13.53 
General 7,508.124 28.92562 56.78 65.86 66.4 74.8 100 13.12 
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The use of text retrieval techniques on concept location and bug localization yields 

remarkable benefits. The artifacts found in source code and bug reports contain important 

information related to the bug localization process. When locating the bugs, it is a 

programmer’s task to formulate effective queries such that most of the predicted terms in the 

query appear in the relevant defect code, but not in most of the non-relevant source files.  

These queries are built based on the textual content found in the bug reports, especially the 

bug title and the description.  A large body of research uses bug descriptions to evaluate 

bug localization techniques using text retrieval. All these studies are conducted under the 

implicit assumption that the bug description and the relevant source code files share 

important terms. This paper presents an empirical study that explores this conjecture. We 

found that bug reports share more terms with the patched classes than with the other 

classes in the software system. Moreover, the study revealed that the class names are more 

likely to share terms with the bug descriptions than other code locations. We also found that 
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more verbose parts of the source code, such as, comments share more words. Furthermore, 

we discovered that the shared terms may be better predictors for bug localization than some 

other text retrieval techniques, such as, LSI. 
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