
Wayne State University

Wayne State University Theses

1-1-2013

On The Relationship Between The Vocabulary Of
Bug Reports And Source Code
Amunugamage Buddhini Wathsala Bandara
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Bandara, Amunugamage Buddhini Wathsala, "On The Relationship Between The Vocabulary Of Bug Reports And Source Code"
(2013). Wayne State University Theses. Paper 289.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56687034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/289?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages

ON THE RELATIONSHIP BETWEEN THE VOCABULARY OF BUG

REPORTS AND SOURCE CODE

by

AMUNUGAMAGE WATHSALA BANDARA

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2013

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

ii

DEDICATION

To my parents and husband for their endless love, support and encouragement throughout
my life.

iii

ACKNOWLEDGEMENTS

It is a great pleasure to show my gratitude to all those who helped me in numerous

ways to make this thesis successful. Without their support this thesis might not have been

written.

First and foremost, I would like to express my sincere gratitude to my academic

advisor Prof. Andrian Marcus for his continuous support on my Masters study and thesis.

His guidance, support, knowledge, patience, and supervision helped me in all the time of

research and writing of this thesis.

Besides my advisor, I would like to thank my thesis committee members. My sincere

thank goes to Prof. Václav Rajlich for the knowledge I have gained about Software

Engineering and for being open up to help regarding the subject matters. It is my pleasure to

work with Prof. Chandan Reddy during my Masters program and I wish to express my

deepest gratitude for the support and knowledge I acquired from him.

I have been blessed to have friends like Sonia Haiduc and Laura Moreno since the

beginning of my studies. The immense help, guidance and constructive comments I’ve

received from Sonia were a great help to succeed this thesis. It was a great pleasure to

work with Laura and the support I received from her was indescribable. I’m sincerely

grateful to them for all the things they have done for me.

I thank my friends Oscar Chaparro, Asha Bandara and Zeyad Hailat for their

comments and advices about thesis writing. The feedback I’ve received from them was

undeniable as it was a great advantage to improve my work. I’m also thankful for Nariman

Ammar for her willingness to help me and for providing me supporting materials at the very

beginning of writing my thesis.

iv

Last but no means least, I’m so grateful for my husband Ruchira Liyanage for his

comments regarding my writing. His constant support, patience, devotion and love always

were a great motivation for me to get through the hard times of my thesis.

v

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. v

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

LIST OF CODE SEGMENTS .. xii

CHAPTER 1 INTRODUCTION ... 1

1.1. Motivation ... 4

1.2. Contribution .. 6

1.3. Thesis Statement .. 7

1.4. Thesis Outline ... 7

CHAPTER 2 BACKGROUND ON TEXT RETRIEVAL .. 10

2.1. Corpus Creation .. 11

2.2. Text Pre-processing .. 13

2.2.1. Tokenization and Compound Terms Splitting .. 13

2.2.2. Stop Word Removal .. 16

2.2.3. Stemming .. 16

2.3. Indexing and Query Formulation ... 18

2.4. Ranking and Investigation of Results .. 20

vi

CHAPTER 3 STUDY OF THE RELATIONSHIP BETWEEN BUG REPORTS AND SOURCE

CODE 21

3.1. Research Questions ... 21

3.2. Data Collection ... 22

3.3. Automating Text Retrieval Process ... 24

3.4. Automated Corpus Creation .. 25

3.4.1. Determination of the Granularity .. 25

3.4.2. Noise Reduction .. 28

3.5. Automated Text Pre-processing .. 28

3.5.1. Automated Tokenization and Compound Terms Splitting 28

3.5.2. Automated Stop Word Removal .. 29

3.5.3. Automated Stemming .. 31

3.6. Creating Vocabularies ... 31

3.6.1. Annotated Terms Vocabularies ... 32

3.6.2. Not-annotated Vocabularies .. 35

3.7. Planning of Research Questions ... 38

CHAPTER 4 ANALYSIS OF THE RESULTS AND DISCUSSION....................................... 42

4.1. Observations about the Document Size .. 42

4.1.1. Bug Reports .. 42

4.1.2. Source Classes ... 43

4.2. Addressing Research Questions ... 43

vii

4.2.1. Research Question 1 ... 43

4.2.2. Research Question 2 ... 47

4.2.3. Research Question 3 ... 49

4.2.4. Threats to Validity .. 51

CHAPTER 5 RELATED WORK .. 53

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ... 55

6.1. Conclusions .. 55

6.2. Future Work .. 56

APPENDIX A: Summary of the Data Set ... 57

APPENDIX B: Stop Words .. 59

APPENDIX C: Summary of the Terms in Code Locations ... 62

APPENDIX D: SrcML Document ... 68

APPENDIX E: Summary of the Terms in Bug Reports .. 70

References ... 73

ABSTRACT ... 77

viii

LIST OF FIGURES

Figure 1-1: Searching for concept location in the source code (adapted from [1])………….. 2

Figure 1-2: Bugs of JEdit reported in SourceForge bug tracking system……………………. 3

Figure 1-3: Sample bug report of aTunes system………………………………………………. 4

Figure 1-4: Extraction of common words in source code and bug reports of a software

system……………………………………………………………………………………………….. 7

Figure 2-1: Framework of an information retrieval system (adapted from [8])……………... 11

Figure 2-2: Text pre-processing steps………………………….………………………………. 13

Figure 3-1: The count of the related patch classes for the bug reports…………..………… 24

Figure 3-2: Vocabularies based on location information……………………………………... 32

Figure 3-3: The automated process of creating locater terms and not-annotated

vocabularies…………………………………………………………... 37

Figure 4-1: Common vocabulary size of bug reports and source classes in each system

without outliers……………………………………………………………………….…………… 45

Figure 4-2: Simpson similarity index between bug reports and source classes of each

software system………………………………………………………………………………… 46

Figure E.1: The summary of the bug reports in all the software systems...………………... 70

Figure E.2: The total number of terms of the bug report in each system……..……………. 71

Figure E.3: The unique terms (%) of the bug reports in each software system……..…….. 72

ix

LIST OF TABLES

Table 2-2: Compound terms vocabulary……………………………………..……………… 16

Table 2-3: Document-term matrix .. 18

Table 3-1: Software systems used for the study of common vocabularies……………… 22

Table 3-2: Source code locations……………………………………………….……….…… 33

Table 3-3: Annotated terms vocabulary…………………………………….……...………… 33

Table 3-4: Bug title and description extracted from Art of Illusion bug #34 ……………… 34

Table 3-5: Not-annotated vocabulary……………………………………….…………...…… 35

Table 3-6: Shared words (without locations) between source class (left) and bug report

(right) given in Code Segment 3-3………………………………………………….………… 38

Table 3-7: The common vocabulary (the intersection between source class and bug

report illustrated in Table 3-5)………………………………………………………..…..…… 39

Table 3-8: Shared words (with locations) between source class (left) and bug report

(right) given in Code Segment 3-3…………………………………………………….……… 40

Table 4-1: Categorization of the percentage of pairs (common vocabularies) by the

number of shared terms………………………………………………………………..……… 44

Table 4-2: Shared terms statistics in code locations in the patched classes…….……. 48

Table 4-3: Number of cases that the share terms approach is better, equal or worse

than LSI and Lucene.. 50

Table 4-4: Average and median effectiveness of the Shared Terms (ST), LSI and

Lucene approaches……………………………………………………………………..……… 50

Table A.1: The total number of unique terms in the source classes (class vocabulary

size).. 57

Table A.2: The total number of terms in the source classes (class document Size)……. 57

x

Table A.3: The total number of unique terms in the bug reports (bug vocabulary size)... 57

Table A.4: The total number of terms in the bug reports (bug document Size)…....……. 58

Table A.5: The total number of unique terms shared between the bug reports and the

patched classes (common vocabulary size)………………………………………………… 58

Table A.6: The total number of terms shared between the bug reports and the patched

classes…………………………………………………………………………………………... 58

Table C 1: Shared terms in arguments……………………………………………………..... 62

Table C 2: Shared terms in attributes. …………………………………………………..…... 62

Table C 3: Shared terms in comments.. ……………………………..……………………… 62

Table C 4: Shared terms in literals.. ……………………………………………………..….. 63

Table C 5: Shared terms in method calls……………………………………………………. 63

Table C 6: Shared terms in method name.. ………………………………………….……... 63

Table C 7: Shared terms in parameter. …………………………………………..…………. 64

Table C 8: Shared terms in types. ………………………………………………………....... 64

Table C 9: Shared terms in variables.………………………………………...……………… 64

Table C 10: Total terms in arguments..……………………………………….……………… 65

Table C 11: Total terms in attributes. ………………………………………..………………. 65

Table C 12: Total terms in comments. ………………………………………………………. 65

Table C 13: Total terms in literals…………………………………………..……………..….. 65

Table C 14: Total terms in method calls. ……………………………………………………. 65

Table C 15: Total terms in method names………………………………………..…………. 65

Table C 16: Total terms in parameter.. ……………………………………………………… 67

Table C 17: Total terms in types. ……………………………………….………………........ 67

Table C 18 Total terms in variables...………………………………………………………… 67

xi

Table E.1: The total number of terms of the bug report in each system. …………...…… 71

Table E.2: The unique terms (%) of the bug reports in each software system................. 72

xii

LIST OF CODE SEGMENTS

Code Segment 2-1: Granularity of a Source File…………………………………………..... 12

Code Segment 2-2: Compound Terms in Source Code……………………………............. 15

Code Segment 3-1: Nested Classes…………………………………………….................... 25

Code Segment 3-2: Eliminations of content in source file - Package declaration, import

statements, comments and annotations……………………... 26

Code Segment 3-3: Stop words (strikethrough) shared between code snippet (Left) and

bug report (Right)…………………………………………………………................................ 29

Code Segment 3-4: A simple Java method………………………....................................... 33

1

CHAPTER 1 INTRODUCTION

Software defects or bugs are expensive and pervasive throughout software. The

number of defects left in the code is an important measure of software quality [1]. As

software development occupies a large amount of human effort, there is no guarantee of

producing bug-free software with human intervention. By studying the US software

population in development and maintenance, the work of bug fixing has become one of the

dominant form of software engineering since the beginning of software development [2]. In

the software life span, the bug fixing is performed in certain stages, which leads to the

production of quality software. According to the staged model [3], software evolution and

servicing stages play an important role in bug fixing process. Adding new features to the

system and correction of existing mistakes take place iteratively during the software

evolution stage while the software servicing stage entirely focuses on corrections of

software faults [3]. As the software developers spend most of their development time on

post-delivery activities, such as, bug fixes, numerous studies have been conducted to

investigate the different types of software maintenance cost. According to the study carried

out by Lientz and Swansons on 487 data processing organizations, defect repairs hold 20%

of the total maintenance effort [4].

Hence, locating a bug in a source file is as important as all the other tasks involve in

software development. As the base of software evolution and servicing, software change

consists of several important phases, such as, initiation, concept location, impact analysis,

refactoring, actualization, verification, and conclusion [1]. Among these phases, determining

the code location to begin the software change, which is called concept location, is one of

the activities undertaken by the developers during the software evolution and servicing. The

2

concept location is a search process (Figure 1-1) that aims to locate the code snippet where

the developer has to modify according to the change request [1].

Figure 1-1: Searching for concept location in the source code (adapted from [1])

Software change is initiated with a change request. The change request is a

document that demands for a modification of the system, which indicates what has to be

accomplished, but leaves out the fact how the adjustment should be made. The change

request can be a new feature to be added to the existing system, or a modification to be

made to an existing feature, or a bug report. If the request is a bug report, then it is the

developer’s responsibility to locate the reported bug in the relevant source code and take

the necessary actions to fix the problem. Finding the precise location in the defect source

3

code where the bug has been occurred, is called bug localization or bug location which is an

instance of concept location.

Bugs are reported by software users in corresponding bug tracking systems (Figure

1-2). A bug report contains information, such as, bug identification number (bug ID), bug

title, bug description, bug type, priority, software versions affected and fixed, current status

of the bug, reporter of the bug (a tester or a user), assignee of the bug (developer) etc.

(Figure 1-3).

Figure 1-2: Bugs of JEdit reported in SourceForge bug tracking system 1

Determining the bug location in the source code is one of the main tasks of the

software developers. Out of all the attributes of a bug report, the bug title and the bug

description carry the most prominent information for the bug localization process. Due to

1 http://sourceforge.net/tracker/?group_id=588&atid=100588

http://sourceforge.net/tracker/?group_id=588&atid=100588

4

that reason, the bug title and the description are considered as one of the dominant sources

in studies that examine the relationship between the defect source files and the

corresponding bug reports.

Figure 1-3: Sample bug report of aTunes system

1.1. Motivation

The bug localization is a challenging task due to numerous reasons. One of them is

that the initial developers of the source code might not be the ones to fix the bugs reported

in latter times, as most of the software projects continue for a long time period. In that case,

the assignee of the bug report may not be familiar with source code implementation and he

or she may not be able to receive any support from the author of the program, which makes

locating the bug more complicated. Sometimes bugs are reported after a considerably long

period of time since the delivery of the software. So the author of the defect source code

may not remember all the works he or she has done before. Such a situation can make the

bug localization a difficult task, even if the author of the source code is assigned for the bug

fixing. In addition to the above reasons, lack of sufficient documentation of the software

system hinders the opportunity of saving search time of the fault location in the program.

Bug Description

Bug ID Bug Title

5

Hence, locating the bug is one of the challenging tasks for its assignees, which costs a

major amount of bug fixing effort in terms of monetary and time.

Various approaches are available for concept location, which can be used in bug

localization process. Pattern-matching is one of them that checks a sequence of tokens for

the presence of the piece of pattern such that the match is precise. Grep is one of the

popular concept location techniques used for program comprehension [5], based on pattern-

matching approach. Grep is a tool that allows developers to iteratively formulate queries in

the form of regular expressions and query the source files. The tool outputs a set of

matching lines, but it is the programmer’s responsibility to find the concept location by

studying the surrounding lines of the code and decide whether the actual location of the

concept is found. The tool iterates the process until the desired output is obtained. There is

a family of Grep tools that has been developed with some additional options. The agrep [6],

egrep [7] and fgrep [7] are few examples. Beside the pattern-matching approach, several

text retrieval (TR) based approaches are proposed to partially automate the task of bug

localization [8].

Text retrieval is a process of matching text documents against the user formulated

queries which differs from text searching. The difference between searching and retrieval is,

the outcome of searching is an exact match to the query, which indicates whether the match

is found or not. In contrast to searching, retrieval process may obtain more than one

solution, ordered by their relevancy to the query, i.e., the outcomes of retrieval do not need

to be precisely matched with the query. Both pattern-matching and text retrieval approaches

rely on natural language queries, often formulated either manually or automatically, based

on the descriptions in the bug reports. Some TR based techniques show many advantages

6

over pattern-matching approach regarding the concept location, which provide better results

than gerp.

The use of TR techniques for the bug localization is based on the assumption that a

bug report and its related fault code share an important vocabulary. This assumption is

important to create an “effective query” that yields more accurate outcome. In order to

construct such a query, the user must be able to predict the query terms in the form of

words, phrases and combinations of words such that most of these terms occur in the

relevant documents while they do not occur in most of the non-relevant documents [9].

Therefore, certain meaningful words that describe the bug are used in the query to generate

more relevant results. We assume these words are shared between the bug and the

corresponding fault code. Even though, there are no studies reported to show evidence to

support this assumption, it has been shown that such information is beneficial to improve TR

based techniques used for the bug localization [10].

1.2. Contribution

Our contribution is to acquire evidence to support the implicit assumption that bug

descriptions and the corresponding source code share some significant words which help to

map the bug and the defect code. As this assumption has been the base for text retrieval

techniques used for bug localization, its assurance would help to enhance the TR based

techniques used to determine bug locations in relevant source files. To achieve this task, we

proposed a technique to explore the common vocabularies obtained from the bug reports

and the patched classes (Figure 1-4). We analyzed these vocabularies to identify significant

patterns and the existence of the relationships between bug reports and source code. The

results obtained from this analysis can be used to find evidence to support the idea of using

7

the common vocabularies with text retrieval techniques to determine bug location and ways

to improve TR based techniques.

Figure 1-4: Extraction of common words in source code and bug reports of a software system

1.3. Thesis Statement

The following thesis statement is supported by all the contributions made by this

thesis as explained in Section 1.2.

Text retrieval techniques are applied on bug localization process based on an implicit

assumption that the bug description and the corresponding source code have a common

vocabulary. As there is no considerable study has been conducted to find evidence to

prove the fidelity of this assumption, such important information is useful to enhance the

text retrieval approaches for the bug localization process.

1.4. Thesis Outline

The following chapters discuss in detail the research tasks carried out in this thesis.

8

Chapter 2 explains the background information related to information retrieval and

text retrieval, a subsidiary area of study of information retrieval. It presents important steps

involved in text retrieval process under the subsections. The description of the text retrieval

process begins with corpus creation which is explained in Section 2.1. Then the text pre-

processing techniques, such as, tokenization and compound terms splitting, stop word

removal, and stemming are explained under Section 2.2. A description of the indexing and

query formulation steps is explained in Section 2.3 which presents two of the most popular

indexing methods, Vector Space Model (VSM) and Latent Semantic Indexing (LSI). At the

end, Section 2.4 elaborates how the searched documents are ranked depending on their

relevance to the query and how to investigate the results obtained.

Chapter 3 presents information about the thesis study. Thesis questions are listed

and discussed under Section 3.1. Section 3.2 describes the data used for the thesis study,

i.e., bug reports and source files collected from the different software systems. In this study,

we build a tool to automate the text retrieval process described in Chapter 2 and to created

vocabularies. Under the Section 3.3, we describe this automated process. Section 3.4

describes the corpus creation using the tool, which indicates how the documents are

obtained from the source files and the bug reports according to the desired granularity..

Section 3.5 presents the automated text pre-processing steps, such as, tokenization and

compound terms splitting, stop word removal and stemming. As our study focuses on the

use of common vocabularies in TR process, Section 3.6 describes the automated process of

creating the vocabularies for the bug reports and the source code. The measures obtained

from the data collection are presented under Section 3.7. Furthermore, how we planned to

address the thesis questions is discussed in the same section.

9

 Chapter 4 involves a general discussion of the results and findings of the empirical

study that we discussed in Chapter 3. Section 4.1 describes the observation the sizes of the

bug and source code documents. The execution of the study design is described in Section

4.2 which discusses the answers obtained for each research question listed in Chapter 3.

As it is important to identify the threats that can affect our conclusions, Subsection 4.2.4

describes four types of threats that affect to any research study, namely construct validity,

internal validity, external validity, and conclusion validity. Furthermore it discusses how we

mitigate the influence of these threats in our study.

 Chapter 5 presents some other works carried out related to the study we discussed

in this thesis. There are several studies have been conducted to understand how the parts

of the speech of the words can be used when describing bug reports. Some studies have

built models to categorize bug reports based on different facts, such as, the part of the

speech, the word frequency and the distribution across different severity levels. In addition

to that, this chapter discusses the linguistic and statistical studies, focus on topics analysis

and coherence analysis of bug reports.

 Chapter 6 describes the conclusions drawn by the empirical study that we carried out

(under Section 6.1). Furthermore, it summarizes the results we obtained. Section 6.2

discusses the importance of validating our work and how to carry out the validation in future.

Section 6.2 describes how to extend this work and which kind of improvements have to be

made to the current process to reach the expected outcome.

10

CHAPTER 2 BACKGROUND ON TEXT RETRIEVAL

Text retrieval is a branch of information retrieval (IR) which is a prominent method of

information access in present. In the academic field of study, information retrieval is defined

as finding unstructured text documents that satisfies an information need within large

collections that are stored on computers [11]. Although the information retrieval has been

employed over decades, the research interest on this field began rising steadily since 1950s

[12, 13]. The wide use of information retrieval systems in modern search engines, are found

in commercial and intelligence applications as long ago as the 1960s [12]. For instance, the

STAIRS (Storage and Information Retrieval System) developed at IBM in the late 1950’s,

was a turning point in the field of information retrieval research studies [9, 14]. Interaction

with IR systems begins with an information problem which leads to an information need.

Information need means what the user needs to know more about a certain topic [11]. The

query is a formal statement of the information need, which is created by the user who has

the requirement of solving the information problem. This query is compared with the

representation of the text and this process may result in multiple matches to the query with

different degrees of relevancy.

As a subfield of information retrieval, text retrieval follows a similar framework on

information presented in the form of text (Figure 2-1). In other words, text retrieval is an

activity of matching text documents against the use-r formulated queries. The usage of text

retrieval techniques in software engineering tasks has been drastically increased recently

due to the remarkable benefits that it yields on the subject of retrieving textual information in

numerous software artifacts, such as, requirement specifications, source code, design and

technical documentations and user manuals [15].

11

Figure 2-1: Framework of an information retrieval system (adapted from [16])

The following subsections describe some essential steps involved during the text retrieval

process.

2.1. Corpus Creation

Text retrieval techniques are applied on the text content stored in a batch of

documents. As all the text content of these documents are not important for the retrieval

purpose, the first step determines the granularity or the level of details required from the

document [1, 11, 17]. For instance, granularity of a user manual can be defined as a

chapter, a sub section, a paragraph, a sentence etc. and for a source file, it can be defined

as a class, a method, a code block, a line of code etc. [17]. In terms of the bug reports, bug

title, bug description, comments, attachments, such as, patched files and error messages,

etc. can be used as the components to define the level of details of a certain software

defect. Determining the granularity of a document is important, because the results of text

retrieval process rely on the level of details we select. This idea can be depicted using the

class definition presented in Code Segment 2-1. If we consider the granularity of this source

code as a class definition, then the number of occurrences of the word “shape” is seven. But

12

if the granularity is defined as a method definition, then the frequency of the word “shape” in

each method, is one.

During the corpus creation, some of the text content found in the document may not

be relevant for the text retrieval process as it leads to inaccurate results. On the other hand,

the contribution of some artifacts may distort the actual results. Hence, such irrelevant

elements are eliminated from the text documents.

1. class Shape {
2.
3. private int shape_id;
4. private string shape_name;
5. private Type shape_type;
6.
7. public void Shape () {
8.
9. // empty block
10.
11. }
12.
13. public void Shape (string name) {
14.
15. // empty block
16.
17. }
18.
19. public void Shape (string name, int x, int y) {
20.
21. // empty block
22.
23. }
24. }

Code Segment 2-1: Granularity of a Source File

13

2.2. Text Pre-processing

The corpus obtained during the previous step, is normalized by applying the text pre-

processing techniques, to obtain accurate results. Following subsections describe common

text pre-processing steps used in TR process.

Figure 2-2: Text pre-processing steps

2.2.1. Tokenization and Compound Terms Splitting

 Tokenization is a process of breaking down a stream of characters into pieces called

tokens. A token can be a word, a phrase, a symbol or any other atomic unit of a language,

which conform to a set of certain syntax properties. In tokenization process, a particular text

can be disjoined into words or meaningful elements by eliminating white spaces, line breaks,

punctuation, brackets, and other delimiters, such as, hyphen, underscore, comma, etc. For

14

example, the compound text “color-red, number_two” can be divided into four single words

such that “color”, “red”, “number”, and “two”.

 Compound terms are formed as a result of composition of two or more words, which

can be generated by following a particular naming convention. For instance, according to

the convention established by Sun Microsystems, Java class names and method names

follow CamelCase notation and variables follow lowerCamelCase style. Each word in a

compound term that followed the camel case style is separated by an uppercase letter. For

instance, the compound term “CamelCase” can be split into two words such that “Camel”

and “Case”. A compound term that follows Hungarian notation always begins with a prefix

that encodes the actual data type or a mnemonic that describes the purpose of the variable.

The first letter of the prefix is always a lower case letter and all the other words in this

compound term begin with upper case letters. For example, the compound term

“strHungarianNotation” can be broken down into three words such that “str”, “Hungarian”,

and “Notation”.

 Since words can be combined without any restrictions, it increases the

vocabulary size. This vast increment of the vocabulary size leads to the sparse data

problem. Table 2-1 and Table 2-2, created from Code Segment 2-2, illustrate this issue. If

the vocabulary of this code segment neglects keywords, then the size of compound terms

vocabulary will be much larger than the size of single terms vocabulary. This situation could

be understood by looking at Table 2-1 and Table 2-2. Table 2-2 contains more words

compared to the Table 2-1, but with less frequency. Hence, the compound terms vocabulary

results the sparse data problem

15

Table 2-1: Single terms vocabulary

Word Frequency
shape 6
name 3
type 3
print 2

1. class Shape {
2.
3. private String shapeName;
4. private String shapeType;
5.
6. public void Shape () {
7.
8. // empty block
9.
10. }
11.
12. public void printShapeName (String name) {
13.
14. // empty block
15.
16. }
17.
18. public void printShapeType (String type) {
19.
20. // empty block
21.
22. }
23. }

Code Segment 2-2: Compound Terms in Source Code

16

Table 2-2: Compound terms vocabulary

Word Frequency

Shape 2
shapeName 1
shapeType 1
type 1
name 1
printShapeName 1
printShapeType 1

2.2.2. Stop Word Removal

 Words which are filter out from the text documents due to their unproductiveness and

irrelevance to the text retrieval process, are known as stop words. This filtering may take

place prior or after the text pre-process. In English, many of the frequently used words are

considered as stop words, such as, “a”, “the”, “of”, “and”, etc. Access modifiers (e.g.

“private”, “public”), primitive data types (e.g. “int”, “boolean”, “double”), control flow statement

(e.g. “if”, “for”, “switch” “while”, “do”) and keywords of exceptions, class and interface

declarations (e.g. “catch”, “exception”, “class”, “interface”) are few of the example for the

keywords found in the programming languages. Since the stop words are considered as

noise, removing them from the text documents reduces the indexing size. And the reduction

of indexing size improves the efficiency of text retrieval process.

2.2.3. Stemming

 Stemming is a process of reducing all the words with the same root (stem), to a base

form, by chopping each derived and inflected word. For example, “give”, “gives”, “gave”,

given” and “giving” are forms of the same lexeme as they have a similar semantic

interpretation. In spite of all these morphological variants, they can be written as “give”, in

general. In the text retrieval process, stemming is beneficial, because it reduces the

17

vocabulary size of the corpus or indexing files, which prevents having sparse data problem.

Hence, stemming conduces to improves retrieval effectiveness by matching more words in a

document despite of their lexical form.

 Different varieties of methods have been followed to address the problem of

conflation, such as, affix removal, character string truncation, letter bargain, word

segmentation and linguistic morphology [18]. Affix removal algorithms are the most

common methods among them, which remove suffixes or prefixes from the words that form

the same meaning of the stem [19]. The Lovins stemmer (1968) and the Porter stemmer

(1980) are two of the most common suffix removal stemming algorithms used in information

retrieval. Julie Beth Lovins has published the first stemmer in 1968 which was a great

influence for later works related to this area. Then, Porter stemmer written by Martin Porter

in 1980 was widely used for English stemming, which consists of about 60 rules. The Porter

stemmer has been created based on the fact that the most of the suffixes in the English

language have been built up by the conflation of smaller and simpler suffixes. As a result of

the extension of his work, the Snowball framework has been built for writing stemming

algorithms not only for English, but also for other languages, such as, Romance, Germanic,

Russian, Turkish, Uralic and Scandinavian. According to the conclusions of Chris Paice, the

error rate of the Porter stemmer is less than Lovins stemmer [20].

 There are two main errors found in stemming which are under-stemming and over-

stemming. Under-stemming occurs when two words with the same morphological

interpretation are not stemmed to the same root. That is known as a false-negative. Due to

the loss of matching words, under-stemming causes the low sensitivity by spreading a single

concept over variety of different stems. On the other hand, over-stemming means stemming

18

two words with different stems to the same root which is known as a false-positive [20].

Over-stemming results lower precision due to the dilution of the stems’ meaning.

2.3. Indexing and Query Formulation

Indexing is a process of creating systematic arrangement of entries that are used to

locate information in a document. This arrangement of entries is called an index. The corpus

indexing maps the documents in the corpus with the frequency of unique terms occurring in

the documents. The document-term matrix is a mathematical representation of an indexing,

which represents the documents as rows, the unique terms as the columns and the

frequency of each term in a particular document in the matrix cells. Table 2-3 illustrates the

idea behind the document-term matrix.

Table 2-3: Document-term matrix

 Term 1 Term 2 Term 3 … Term N
Document 1 t11 t12 t13 … t1N
Document 2 t21 t22 t23 … t2N
… … … … … …
Document M tM1 tM2 tM3 … tMN

There are popular models used to represent the document-term matrix, such as,

Vector Space Model (VSM) and Latent Semantic Indexing (LSI). Both VSM and LSI render

text by following the bag of words model which presents the text as a collection of words,

regardless of the order or grammar. VSM is an algebraic representation of the document-

term matrix, which is developed by Gerard Salton in 1975. This model represents the

documents and the user queries in the form of vectors as follows. dj represents the

document vector and q represents the query vector.

19

dj = (t1i, t1i, …, t1i) 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟏: 𝐃𝐨𝐜𝐮𝐦𝐞𝐧𝐭 𝐕𝐞𝐜𝐭𝐨𝐫

q = (t1j, t1j, …, t1j) 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 − 𝟐: 𝐐𝐮𝐞𝐫𝐲 𝐕𝐞𝐜𝐭𝐨𝐫

 In VSM, the term is a basic concept, such as, a single word, set of words or a phrase. Each

of these terms defines a distinct dimension in n-dimensional space. Each entry in the matrix

corresponds to the weight of a term in the document. Different methods are followed to

decide the weight, such as, term frequency (TF) and inverse document frequency (IDF). If a

term exists in a specific document, then the value corresponds to that document in the

relevant dimension is non-zero. If the term is not found in the document, then that value

becomes zero.

In general, the query vector is treated as a document, so the same process is

followed regarding the query vector. Completion of the query and the document

representation, leads to the requirement of finding the similarity between the document

vectors and the query vector. This can be calculated by using Cosine Similarity. VSM is a

simple and efficient model, which facilitates ranking documents according to their relevance.

But it may carry some drawbacks. One of them is that the multiple words refer to the similar

context. This is called synonymy which leads to poor recall. Another major problem in VSM

is polysemy which causes by the words having more than one distinct meaning. This

problem leads to poor precision.

Latent semantic indexing (LSI) was proposed to overcome the issues of synonymy

and polysemy in VSM [21]. This technique is used to analyze the relationships between a

collection of documents and the terms which are represented as term-document matrix. As

the initial step in LSI process, term-document matrix should be constructed and then

weighting functions are applied to the matrix.

20

2.4. Ranking and Investigation of Results

At the end of the query formulation followed by computation of semantic similarities

between the query and each document in the corpus, a list of documents is retuned as the

output of the retrieval process. The documents listed in the results set are ranked according

to their relevancy to the query, formulated starting from the most relevant document to the

least relevant one. The similarity measure chosen during the indexing process is used for

this ranking procedure, hence, it is important to select the matching similarity measure to

obtain better results.

The ordered list of documents is studied to ensure whether the relevancy of the

documents with the highest ranks, really contain the information that we are looking for, i.e.,

checking the existence of the relevancy between that document and the query. It’s

programmer’s responsibility to decide whether the documents that he or she is looking for

are listed among the set of top ranked results. If the certain documents are not found in that

set, then a new query has to be reformulated with different keywords and follow the ranking

procedure. If the desired results are produced, then the search is considered as successful

and the process is terminated.

21

CHAPTER 3 STUDY OF THE RELATIONSHIP BETWEEN

BUG REPORTS AND SOURCE CODE

 As we discussed before, most of the TR based techniques are applied on the bug

localization process based on the implicit assumption that the bug reports and the relevant

source files share a common vocabulary. We conducted this empirical study with the

objective of exploring the accuracy of this assumption. We analyzed the common

vocabularies of the bug reports and the source code to find evidence to support this

assumption.

3.1. Research Questions

To accomplish our objective, we address the following research questions during this

study:

RQ1 To what extent are the vocabularies of bug reports reflected in the identifiers and

comments of classes?

The use of the effective queries helps to save a lot of retrieval time. To formulate such

an effective query, it is important to understand how well a bug report is described in

the relevant fault code. Therefore, we built the research question RQ1 to find out how

well bug vocabularies reflect the content of source classes.

RQ2 What is the code location (i.e., class name, method name, attribute name, etc.) of the

shared words between bug reports and patched classes?

The words occurring in certain code locations of the source code may appear more

frequently in the bug reports than the other code locations. When formulating the

22

queries, it is beneficial to have this information as it helps to improve the bug

localization. We built RQ2 to find out the existence of such code locations.

RQ3 Is the number of shared words between bug reports and classes, an adequate

measure to support bug localization?

We use the terms share between the bug reports and the source code as a

measurement when addressing the research questions RQ1 and RQ2. It is important

to determine the accuracy of our approach as it influences the conclusions we draw.

Therefore, RQ3 was formulated to assess this measurement.

The planning of these research questions are described in Section 3.7 in detail.

3.2. Data Collection

Table 3-1: Software systems used for the study of common vocabularies

System Version Number of Classes Number of Bug
Reports

Number of
Patched Classes

ADempiere 3.1.0 1,896 16 16
Art of Illusion 2.4.1 570 10 13
aTunes 1.10 439 17 22
Eclipse 2.0 7,689 13 14
Eclipse 3.5 22,980 40 74
JEdit 4.2 801 18 27
Total 34,376 114 166

The objective of our study is to explore the vocabularies of the bug reports and the

source code to assess the existence of any relationship between them. To follow this

examination, we used the bug reports and the source files that belong to six open source

software systems listed in Table 3-1. The source code belong to the given systems and the

versions, were downloaded from their online repositories. We extracted the titles and

23

descriptions from the bug reports of the same versions manually and stored them in a

repository for future use.

These Java based software systems belong to different problem domains and they

have been used for previous studies [22, 23], conducted regarding the text retrieval

approach. ADempiere2 is an industrial strength open source software solution that

addresses business areas, such as, enterprise resource planning (EPR), supply chain

management (SCM), customer relationship management (CRM) and point of sale (POS)

solution. ADempiere 3.1.0 version used in our study was released on Oct 16, 2006. Art of

Illusion3 is an open source 3D modeling and rendering studio, which is a Java language

based free software package. Art of Illusion 2.4.1 version was released on Feb 28, 2007.

aTunes4 is a free open source audio player and organizer, which supports audio file formats,

such as, mp3, Ogg, wma, flac, wav and mp4. It facilitates the users to edit tags, organize

playlist and rip audio CDs easily. This full-featured software system is implemented in Java

language and its version 1.10 was released on Sep 27, 2008. Eclipse5 is a multi-language

integrated development environment (IDE), which is written mostly in Java programming

language. It consists of a base workspace and an extensible plug-in system to add new

features to the system. In our study, we employed two versions of Eclipse software system,

i.e., version 2.0 and version 3.5. JEdit6 is another open source, Java language based

software system, which is a text editor that runs in any operating system with Java support,

including Windows, Linux, Mac OSX and BSD.

As shown in Table 3-1, our data set consists of 114 bug reports and 34,375 source

classes in total. Eclipse 3.5 system is the largest source file collection out of all the software

2 http://adempiere.org/site/
3 http://www.artofillusion.org/
4 http://www.atunes.org/
5 http://www.eclipse.org/
6 http://www.jedit.org/

http://adempiere.org/site/
http://www.artofillusion.org/
http://www.atunes.org/
http://www.eclipse.org/
http://www.jedit.org/

24

systems and it contains over 20,000 Java classes. The largest bug reports count was 40

reports, which also belong to the same Eclipse version. Out of all the source classes, 166 of

them were patched while fixing those bugs.

Figure 3-1: The count of the related patch classes for the bug reports

Most of the bug reports in the data collection (88.77%), were related to one or two

patched classes (Figure 3-1). The summary of the data set we used is available in Appendix

A and C.

3.3. Automating Text Retrieval Process

We followed the text retrieval process described in Chapter 2 to extract vocabularies

from bug reports and source code. As we explained in Section 3.2, the data set we collected

from different software systems contains 114 bug reports and over 30,000 source files

including patched files. It takes considerably long period of time to create the vocabularies

for each of these files manually. Hence, we built a software tool that automates the steps of

text retrieval process and builds the vocabularies. In other words, this tool creates two

separate corpora for the bug reports and the source files, then, applies text pre-processing

25

techniques on the documents belong to each corpus and creates vocabularies from these

documents. The following sections elaborate how the tool we built performed during each

text retrieval activity.

3.4. Automated Corpus Creation

 As the first task of text retrieval process, we create the corpora for the source files

and the bug reports by extracting desired text from them. In our study, we consider the bug

reports as queries and the source code as documents that were matched with queries. The

source files belong to each software system were the initial input to our tool to create the

source code corpus while the bug reports’ corpus was built using the content of each bug

report extracted before.

3.4.1. Determination of the Granularity

We define the granularity of the source code document as class level. Hence, class

or interface definition of each source file was extracted by the tool and this block of code

was used as the input document for further process. In future reference, we use the term

“class” to represent both class and interface definitions of a source file.

1. class OuterClass {
2. ...
3. ...
4.
5.
6.
7.
8.
9.
10.
11. }

 class NestedClass {
...
...
...

 }

Document of
OutClass

Document of
NestedClass

Code Segment 3-1: Nested Classes

26

If the source file contained only a single class, only one document is created. In case

of having multiple classes in a single source file, separate documents are created for each

and every class definition. If nested classes exist in a source file, then for each class, an

individual document is created. In that case inner classes are considered as a part of the

outer class, i.e., the content of the nested class included in the document created from the

outer class. This idea is illustrated in Code Segment 3-1.

1. /*
2. * Data Handler
3. * Created on 03-21-2013
4. */
5. package dataview;
6.
7. import java.sql.Connection;
8. import java.sql.DriverManager;
9. //import java.sql.ResultSet;
10.
11. /**
12. * Class that utilizes database access.
13. */
14. class DataAccess {
15. …
16. …
17. …
18.
19. @Override
20. public void Create() {
21. …
22. …
23. …
24. }
25.
26. …
27. …
28. …
29. }

Code Segment 3-2: Eliminations of content in source file - Package declaration, import
statements, comments and annotations

27

 According to the granularity we defined for the source files, all the content resides out

of the class definition, were eliminated from the source code documents. For instance, text

contents of lines 5, 7, and 8 in Code Segment 3-2 were turned down in this elimination

process. The required granularity of the source files was the class definition. Hence, the tool

filtered out the rest of the code from each source file except the class.

Hence, the elements that reside out of that scope, such as, Java package

declaration and import statements were ignored when creating the source code documents.

During this filtering procedure, the documentation (javadocs) that describes the class

definition is concerned as a part of the document. But the rest of the comments (e.g. line

comments, block comments and javadocs) lie outside the class definition was eliminated.

This situation can be depicted by using Code Segment 3-2. The block comment spreads

over line1 to 4 and the line comment resides in line 9 are ignored as they do not belong to

the class definition. However, the documentation (javadoc) written in line 11 to 13 are left in

the document as it belong to the class definition, even it does not reside in the class body.

We decide whether a certain comment belongs to the class definition, if it lies just above the

class declaration statement such that no blank lines exist in between the comment and the

class declaration statement. Code Segment 3-2 illustrates such a valid block comment (from

line 11 to 13) that belongs to the class definition.

In our study, the bug title and the description together are defined as the granularity

of the bug report. Our tool read these bug titles and description from the repository that they

were stored. Therefore, bug titles and the descriptions do not require any nose reduction as

they were already filtered out before. We formulate queries using these bug reports.

28

3.4.2. Noise Reduction

This step eliminates noise that can be found in the documents and queries. Noise

can produce misleading outcome due to its irrelevancy to our study purpose. As we focus on

the content of the source class definition, we check for noise found inside the class body. As

we convert source classes to SrcML [24] document when creating the vocabularies (Section

3.6) considering the locations of the words. As SrcML [24] tool has an issue regarding the

conversion of class and method annotations, it causes inaccurate results if we don’t remove

those annotations from the class. Therefore, we considered class and method annotations

as an unwanted content. Even if they lie inside a class, For this reason, annotations were

removed from the source documents in our corpus. For example, the annotation

“@Override” (line 19) in Code Segment 3-2, is removed from the code segment.

3.5. Automated Text Pre-processing

 Text pre-processing or corpus normalization is inevitable in this study as the words

extracted from the documents at this stage, are the fundamental units used to create

vocabularies for further analysis. We discuss about the steps involved in text pre-processing

in Section 2.2. Following subsections describe how each step in the text pre-processing is

applied on our data set to obtain the desired outcome.

3.5.1. Automated Tokenization and Compound Terms Splitting

 As we considered Java language based source files, identifier names do not consist

of certain characters like white space, brackets, punctuation etc, but they may contain

numbers. Hence, our tool tokenizes identifier names by numbers and delimiters (hyphen

and underscore). However, code artifacts, such as, comments and string literals can contain

white space, line breaks, punctuation and brackets, in addition to delimiters. So those

characters are used to tokenize such elements. At the same time, the source code may

29

contain compound terms due to the various naming conventions as we discussed in Section

2.2.1. These compound terms are split by the uppercase letter during this process.

 Bug reports may contain some terms appeared in the source code, such as, identifier

names when the bug is described using the words in the error messages and the

exceptions. In that case, it is essential to apply the same pre-processing techniques on bug

documents since they also contain compound words and terms to be tokenized. In our

study, we considered words that are made up of only alphabetical characters. Hence, any

string which consists of numeric characters were split by those numeric values. For

example, an identifier name “title2desc4” is split into two words “title” and “desc”, by numeric

characters “2” and “4”. This rule is applied on both bug reports and source files similar to the

other compound terms splitting rules.

3.5.2. Automated Stop Word Removal

As we explained in Section 2.2.2, stop words are filtered out from text documents

since they are not useful and relevant to the text retrieval process. .

1. …
2. …
3. public String GetGrade(int score) {
4.
5. if (score >= 60) {
6. return “pass”;
7. }
8. else {
9. return “fail”;
10. }
11. …
12. …
13. …
14. }

[1]
Return grade for invalid score

Description:

…
However if score exceeds 100, it
still returns PASS and does not
indicate any error message. The
score should be validated
before…
…
…
…

Code Segment 3-3: Stop words (strikethrough) shared between code snippet (Left) and bug
report (Right)

30

We created a list of stop words to be removed from both bug and source code

documents. This list contained the most frequently used English words, as well as the

keywords used in programming languages (Appendix B). Our automated text retrieval

procedure compares each word picked from the document, with its stop word list and filters

out unnecessary words. The set of strikethrough words in Code Segment 3-3 is an example

for stop words.

Sometimes the keywords found in the source files, can be found in the bug reports

with or without the same meaning. Code Segment 3-3 illustrates this situation by comparing

a code snippet and a bug report. The words “if” and “return” appear in both code snippet and

bug report. In the source code, these words are considered as keywords. In contrast to that,

in bug report “if” acts as a subordinating conjunction used in English grammar while “return”

is applied as a verb. Yet both words are eliminated from the code document and the bug

document because, we apply the same stop removal method on both types of documents.

In addition to the removal of the frequently used English words and programming

keywords, we filter out words that are made up of single characters. After tokenization and

compound words splitting, single characters may remaine as words. For instance, let’s

consider an identifier name “cellA1_s”. As a result of tokenization, we obtain two terms

“cellA1” and “s”. Then we split the compound term “cellA1” and it results two words “cell” and

“A”. At the end of the whole tokenization and compound word splitting process, we have

three words “cell”, “s” and “A”. Since the last two words are only single characters, they do

not provide any valuable contribution to our study. Therefore, such words are considered as

noise.

31

3.5.3. Automated Stemming

 Stemming is an activity that reduces family of words to their root, by cutting off the

derived and inflected words. As we discussed in Section 2.2.3, there are variety of different

algorithms have been implemented to handle the stemming programmatically. In our study,

we followed Porter Stemmer7, a suffix removal stemming algorithm that reduces the same

lexeme to the stem. This algorithm chops off the end characters of a string to map it into the

root form. For example, all the words "divide”, “dividing”, “divided” are mapped to “divid” after

applying Porter Stemmer.

3.6. Creating Vocabularies

 Vocabularies are formed by words in the documents and the frequencies of their

occurrences. To answer all the thesis questions RQ1, RQ2 and RQ3, it is essential to create

vocabularies from the source files and the bug reports with and without considering the

location. The location means a particular artifact in the document. The source code and the

bug reports carry different types of locations. For example, the words of a source code

document can be extracted from variables, comments, literals etc. In our study, the words

come from bug reports, belong to either bug title or bug description. Figure 3-2 presents the

types of vocabularies we created for our study. We call the vocabularies that keep location

information, as annotated vocabularies and the vocabularies that do not carry location

information as not-annotated vocabularies.

7 http://tartarus.org/~martin/PorterStemmer/

http://tartarus.org/~martin/PorterStemmer/

32

Figure 3-2: Vocabularies based on location information

3.6.1. Annotated Terms Vocabularies

Annotated terms vocabulary is a mapping of each word to its location and the

frequency of each location. The elements of annotated vocabulary are listed as follows.

 Words found in the document (source code or bug report)

 The location of the word

 The frequency of the words occurring in each location

 The locations of the words found in the source files are determined based on the

SrcML [24] toolkit by executing it as a part of our tool. After creating the corpus for the

source files, we converted source documents to SrcML documents which are comprised of

the elements derived from the programming language. The content of SrcML documents is

encoded on XML (Appendix D). As the elements of SrcML files correspond to the various

artifacts found in the source code, such as, classes, methods and comments, we determine

the code locations of each word in these XML files according to the predefined list of source

code locations (Table 3-2).

33

Table 3-2: Source code locations

Location Artifacts in Source Code
Argument Argument name
Attribute Attribute name
Class Name Interface or a class name of the source code document
Comment Line comment or block comment or docs (e.g. javadoc)
Literal String literals
Method Call Method call
Method Name Method Name
Parameter Method parameter name
Type Class or interface names found inside the class definition we

considered as source code document
Variable Local variable name

 As shown in Table 3-2, we consider ten code locations which are meaningful for

further processing of our study. The first column of this table indicates the name of the code

location and the second column describes the corresponding artifact.

1. private static double GetResult(int a, int b) {
2.
3. double denominator = (a + b) * 0.2;
4.
5. if (denominator != 0) {
6. return a / Math.abs(denominator);
7. }
8. else {
9. System.out.println(“No Result. Divide by zero.”);
10. }
11. return -1;
12. }

Code Segment 3-4: A simple Java method

34

Table 3-3: Annotated terms vocabulary

Word Location Frequency
ab Method Call 1
denomin Argument 1

Variable 2
divid Literal 1
get Method Name 1
math Type 1
print Method Call 1
result Literal 1

Method Name 1
zero Literal 1

 Table 3-3 lists the mapping of the words obtained from Code Segment 3-4, to the

code locations and frequencies. These words are extracted after applying text pre-

processing techniques described in Section 3.5. For instance, variable is one of the

locations that the word “denominator” occurring in the Code Segment 3-4. The frequency of

the word “denominator” in location variable is two as it appeared twice as a variable in lines

3 and line 5. In addition to that, this word occurred once as an argument in Line 6. Hence,

the frequency of the occurrence of the word “denominator” in the location variable is two

while its occurrence in the location argument is one. Table 3-3 shows the annotated

vocabulary created for code snippet in Code Segment 3-4.

 Compared to the source code vocabularies, the bug vocabularies consist of two

locations, title and description. For example, consider the word “concave” occurring in both

title and description as shown in Table 3-4. It appears once in the title and once in the

description. So the frequencies of the occurrence of word “concave” in the bug title and

description is one.

35

Table 3-4: Bug title and description extracted from Art of Illusion bug #348

Location Content

Title Closing concave boundary

Description When closing a boundary in the triangle mesh editor, often impossible
geometry is created. This happens when the boundary is planar, but
concave.
The algorithm used for converting closed curves to triangle meshes does
not suffer from this problem. Why not use this algorithm to close
boundaries too?

3.6.2. Not-annotated Vocabularies

Not-annotated vocabularies map each distinct word found in a document (source

code or bug report) with its frequency. Table 3-5 shows the not-annotated vocabulary

created for Code Segment 3-4. Compared to annotated vocabulary (Table 3-3), not-

annotated vocabulary sums up all the location frequencies of each word. e.g. the frequency

of the word “denomin” in not-annotated vocabulary is 3, which is divided between two

locations (argument and variable) in annotated vocabulary (Table 3-3).

Table 3-5: Not-annotated vocabulary

Word Frequency
ab 1
denomin 3
divid 1
get 1
math 1
print 1
result 2
zero 1

8 http://sourceforge.net/p/aoi/bugs/34/

http://sourceforge.net/p/aoi/bugs/34/

36

The Figure 3-3 summarizes the automated process of creating vocabularies. When

creating the not-annotated vocabularies, the output of the corpus creation step was used as

the direct input for text pre-processing. In contrast to that, when creating the annotated

vocabulary, an additional step was taken place in between corpus creation and text pre-

processing, which is the conversion of documents (source classes) to SrcML documents.

For future reference, we define the document size or query size as the total number

of words occurring in the document. In that case, each word is counted even if it is occurred

repeatedly in the document. The size of the vocabulary is determined by the total number of

unique words appeared in the document. In this case, the repeated occurrences are not

counted. For instance, the document size for Code Segment 3-4 is eleven and its

vocabulary size is eight.

37

dys

Figure 3-3: The automated process of creating locater terms and not-annotated vocabularies

38

3.7. Planning of Research Questions

We obtain vocabularies for each source class and bug report of all the software

systems. This subsection describes how we address the thesis questions using these

vocabularies.

Table 3-6: Shared words (without locations) between source class (left) and bug report (right)
given in Code Segment 3-3

Planning RQ1:

Question: To what extent are the vocabularies of bug reports reflected in the identifiers and

comments of classes?

 To answer this question, we selected both bug vocabularies and source class

vocabularies belong to each software system. In this case, we did not consider the location

of words. We extracted the shared words between each possible pair of bug vocabulary and

source class vocabulary of a specific system. This collection of shared words is an

intersection between the two vocabularies, which is called the common or shared

Word Frequency Word Frequency
fail 1 error 1
get 1 exce 1
grade 1 grade 1
pass 1 indicate 1
score 2 invalid 1
string 1 messag 1

 pass 1
 score 1
 2
 valid 1

39

vocabulary of the bug report and the source class. For example, Table 3-6 illustrates the

vocabularies of the source class and the bug report presented in Code Segment 3-3. These

two vocabularies share two words “grade” and “score” which is the common vocabulary of

the document (source class) and the query (bug report). Then we compute the size of this

common vocabulary (i.e., the number of unique words) and the frequency of the occurrence

of each word in the bug report and the source class. For instance, the common vocabulary

for the vocabularies mentioned in Table 3-6 is illustrated in Table 3-7.

Table 3-7: The common vocabulary (the intersection between source class and bug report
illustrated in Table 3-5)

Word The frequency of the
occurrence in source class

The frequency of the
occurrence in bug report

grade 1 1
score 2 3

For the same pair of bug vocabulary and the source class vocabulary, we measured

the Simpson Similarity Index, given by the number of shared words between the bug reports

and the source class divided by the minimum size of their vocabularies. The analysis of

these measures and the results of this analysis are discussed in Section 4.2.1.

Planning RQ2:

Question: What is the code location (i.e., class name, method name, attribute name, etc.) of

the shared words between bug reports and patched classes?

In order to address this question, we obtained annotated vocabularies for patched

classes and compute the size of each location we considered (Table 3-2). For example, the

size of the location method name in the source class vocabulary given in Table 3-8 is two.

For the same vocabulary, the size of the class location is one. We extracted the set of

shared words between each source class location and the bug report location, and the

40

frequency of the words in the location. We analyzed these vocabularies to answer RQ2.

This analysis and the results obtained are discussed on Section 4.2.2.

Table 3-8: Shared words (with locations) between source class (left) and bug report (right)
given in Code Segment 3-3

Planning RQ3:

Question: Is the number of shared words between bug reports and classes an adequate

measure to support bug localization?

To address RQ3, we consider the size of the common vocabulary between the bug

report and the source class that belong to each system. Also we compare the similarities

between the source classes and the bug reports of the same system (these similarities are

listed at the end of this section) with two text retrieval approaches, namely the Latent

Semantic Indexing (LSI) and the Lucene implementation of the Vector Space Model. Both

these approaches are widely used for bug localization. Since the bug reports are considered

as queries, we retrieve the source classes, seeking for an existence of the relevancy

Word Location Frequency Word Location Frequency
fail Literal 1 error Description 1
get Method Name 1 exce Description 1
grade Method Name 1 grade Title 1
pass Literal 1 indicate Description 1
score Parameter 2 invalid Title 1
string Class 1 messag Description 1

 pass Description 1
 score Title 1
 Description 2
 valid Description 1

41

between the source code and the bug report. To apply these approaches, first, we created

document-term matrices for both source classes and bug reports.

For each query, i.e., the bug title and the description together, we rank the classes of

each system based on three measures listed as follows.

(1) The number of shared terms between the class and the bug report, i.e., size of the

common vocabulary between the source class and the bug reports

(2) The cosine similarity between the class and the query using LSI

(3) The cosine similarity between the class and the query using Lucene

The documents (source classes) are ranked according to the similarity measures from the

highest to lowest that received using both LSI and Lucene implementation of VSM. Higher

similarity measure of the document indicates that it is more relevant to the query. We

compare the effectiveness of each technique, i.e., the rank of the first patched class in the

list. Next chapter explains the results and findings we obtained by following the procedure

mentioned above, the analysis and the results of RQ3 are presented in Section 4.2.3..

42

CHAPTER 4 ANALYSIS OF THE RESULTS AND

DISCUSSION

In this chapter, we analyze the results that we obtained by following the approaches

mentioned in Chapter 3 and discuss about the observations that we can made.

4.1. Observations about the Document Size

4.1.1. Bug Reports

According to the analysis of bug reports’ size, most of the reports, in terms of

percentage, 75% of them had 64 terms or less (Figure E.1, Table E.1 in Appendix).

Compared to the other systems, Eclipse 3.5 had the largest bug report in the corpus which

contained 250 terms (Figure E.2, Table E.1 in Appendix). The shortest report consisted of 8

terms, which belonged to ADempiere 3.1.0 (Figure E.2, Table E.1 in Appendix). The

average size of a bug report was 56 terms (Table E.1 in Appendix). Approximately, in

average, two third of the terms (65.86%) in each bug report was unique (Table E.2 in

Appendix). The largest bug report that belonged to Eclipse 3.5, also contained the largest

set of unique terms, consisting of 114 terms ((Figure E.2, Table E.2 in Appendix). The bug

report with the smallest set of unique terms belonged to aTunes 1.10, which contains of 5

terms ((Figure E.2, Table E.2 in Appendix).

To verify the correlation between the size of the bug report and the size of its

vocabulary, we calculated the Spearman coefficient between those two variables. The

output showed a strong monotonic relationship between the bug document size and its

vocabulary size (r = 0.96 and p-value < 0.01), which indicate that the number of unique

terms increases with the bug report size. In other words, the larger the bug report, the more

unique terms it contains.

43

4.1.2. Source Classes

 Compared to the bug reports, the code vocabularies contained a larger number of

terms such that 75% of the classes had more than 82 terms. Average size of a class was

464 terms which is approximately 85% more terms than the largest bug report in the corpus.

Similar to the result obtained for the bug reports, the largest class in the collection belonged

to Eclipse 3.5 system. There were more than one shortest class documents in the collection

such that each consisted of one term. These documents belonged to Art of Illusion 2.4.1,

Eclipse 2.0, and Eclipse 3.5. Furthermore, in average, less than 27.1% of the terms in

classes were unique. Similar to the bug reports, we found the correlation between the

number of unique terms and the document size of the source classes by calculating the

Spearman correlation. The result showed a very strong correlation between these two

variables (r = 0.95, p-value < 0.01) which indicate that larger the class, more unique terms it

contains.

4.2. Addressing Research Questions

4.2.1. Research Question 1

We computed the set of common vocabularies between source classes and bug

reports for 1,077,074 pairs, considering every possible combination of these documents per

each software system. We obtained the common vocabularies for all the pairs of documents

and queries of each system, regardless of their relevance to each other. In other words, this

set of common vocabularies contains both relevant and non relevant pairs. The result

obtained by analyzing these vocabularies, indicated that 75% of the pairs (i.e., 808,928)

shared between 1 and 13 terms. Yet 21.68% of the pairs did not have any shared terms

while 3.22% (i.e., 34,646) pairs contained more than 10 shared terms (Table 4-1). This

44

result directs to the conclusion that bug reports share terms with a large number of classes

belong to a software system which is almost 80% in our study.

Table 4-1: Categorization of the percentage of pairs (common vocabularies) by the number of
shared terms

System
Shared Pairs of <Bug Report, Source Class>

No Terms 1 <= Number of Terms <= 13 Number of Terms > 13

ADempiere 3.1.0 17.82% 81.89% 0.29%
Art of Illusion 2.4.1 19.39% 78.91% 1.7%
aTunes 1.10 31.5% 67.94% 0.56%
Eclipse 2.0 18.83% 79.09% 2.09%
Eclipse 3.5 22.03% 74.47% 3.5%
JEdit 4.2 22.92% 75.76% 1.32%
Total 21.68% 75.10% 3.22%

The above analysis was performed to determine the relevancy of a source class to a

bug report without considering whether they are related to each other or not. We followed

the same procedure to check whether the same result could be obtained by analyzing the

bug reports and their corresponding source classes (patched classes). Therefore, we

analyzed all the pairs of bug reports and their patched classes which was a subset of the

previous collection of pairs. This subset is referred as the patched subset while its

complement is called as the non patched subset. The patched subset consisted of 166

related elements. This analysis indicates that the 99.6% pairs, in other words, 165 out of

166 total pairs, shared some common terms in the patched subset. Similarly, 78.32% of

pairs belong to non-patched subset, shared a non-empty set of terms. The only pair of

documents in the patched subset that didn’t share any term belonged to aTunes 1.10

system and its patched class contained 54 unique terms while the bug report consisted of

only 5 unique terms. Figure 4-1 illustrates the number of unique shared terms (common

45

vocabulary size) between bug reports and source classes (patched and non patched

classes) belong to each system by omitting the outliers.

Figure 4-1: Common vocabulary size of bug reports and source classes in each system
without outliers (Appendix A)

The results we obtained from Mann-Whitney test [25] showed the difference of

shared terms in these patched and non patched subsets is statistically significant for all the

software systems (p-value < 0.05). According to the results, the patched classes had 11.7

average shared terms with their relevant bug reports. Meanwhile the other classes (non

patched) shared 3.39 terms in average with the bug reports. Due to these observations, we

conclude that bug reports share more terms with the patched classes than the non patched

classes, in average.

46

To find out any difference in the size between the patched and non patched classes,

the Spearman correlation similarity index was computed. The Simpson similarity index is

suitable for the situations where there exits any size difference between two documents as it

recognizes the overlap with respect to the smaller document in size. According to Figure 4-2

(outliers have been ignored in the boxplots), for each system, the similarity between bug

reports and patched classes had a higher significant level (p-value < 0.05) than the

similarities computed between bug reports and non patched classes. We observed that in

average, similarity value of non patched subset is 0.11 and for patched subset, it is 0.37.

Figure 4-2: Simpson similarity index between bug reports and source classes of each software
system

Furthermore, we found that 75% of the pairs belong to the patches subset resided

above the Simpson similarity of 0.24 while 88.59% of the pairs in the non patched set lied

below the same similarity value. This observation confirmed the previous results we

47

obtained. Hence, we conclude that in average, bug reports have higher textual similarity with

the patched classes than the non patched classes.

RQ1 Answer:

We conclude that the bug reports share terms with a large number of source classes

(almost 80%) and the most of these terms are shared with the patched classes than the non

patched classes. We also found that the bug reports have higher textual similarity with the

patched classes than the non patched classes.

4.2.2. Research Question 2

Recent research studies argue that the use of code location information for source

code retrieval process, improves the bug localization [10]. Therefore, we analyzed the code

locations of the terms shared between patched classes and relevant bug reports. Table 4-2

indicates the results we obtained by this inspection.

According to the results, it is apparent that the terms in the class vocabularies were

not evenly distributed over the code locations, as the measurements of terms for different

code locations disseminate with different values. Compared to the other code locations, the

comments contributed the highest percentage of the terms for the patched class, which was

26.98% of the vocabulary size (Table 4-2). Terms found in method calls and types also

carried the next highest values which are 20.28% and 12.69% respectively (Table 4-2). This

observation was somewhat we expected, as comments, method calls and types were more

verbose when describing the defects in a bug report. Furthermore, we studied the

contribution of each code location to the total shared terms of the class and we discovered

that the majority of shared terms appeared in comments (27.33%, in average), method calls

(16.99%, in average), and types (15.16%, in average) of the patched classes. The

Spearman correlation showed a strong relationship between the number of terms and the

48

number of shared terms in all the code locations (r > 0.6, p-value < 0.01) except for the

class names. Due to this outcome, we state that the code locations which are more verbose

tend to contribute more to the common vocabulary between the patched class and its

relevant bug report.

Table 4-2: Shared terms statistics in code locations in the patched classes

Code Location
Average

Percentage of
Terms

Average
Percentage of
Shared Terms

Average Contribution to the
Total Shared Terms

Argument 11.71% 19.06% 11.34%
Attribute 8.40% 20.10% 8.45%
Comment 26.98% 19.86% 27.33%
Literal 2.99% 21.40% 4.64%
Method call 20.28% 15.78% 16.99%
Method name 4.40% 21.52% 4.58%
Parameter 4.25% 19.97% 3.81%
Type 12.69% 20.69% 12.97%
Class Name 0.55% 53.57% 1.70%
Variable 7.86% 15.68% 7.11%

A short location size does not mean it is contribution to the common vocabulary, is

also small. For instance, a set of shared terms belong to a certain location may be smaller in

the size, compared to the number of shared terms of the other locations. But in reality, the

contribution of that smaller set of words to the shared vocabulary can be larger compared to

its size as the majority of the words belong to that code location is a part of the common

vocabulary. Because of that, we computed the number of common terms in each code

location with respect to its size (i.e., the percentage of shared terms for each location) as

listed in Table 4-2. According to the results we obtained, class names shared quite the

highest percentage of the terms which is 53.57%. The other code locations contributed the

percentage of the shared terms between 15% and 21% with their bug reports. We conclude

49

that the names of the patched classes are more likely to have shared terms with relevant

bug reports than the terms belong to the other code locations.

RQ2 Answer:

We conclude that the verbose code locations tend to share more words between a

patched class and a corresponding bug report. We also state that the class names are more

likely to have shared terms with the relevant bug reports than the other code locations.

4.2.3. Research Question 3

To find out whether the number of shared terms between bug reports and classes

provide an adequate measure to support the bug localization process, we developed a

simple technique. In this technique, the number of shared terms (ST) was used as a

measure for locating the source classes relevant to the bug reports. A corpus for each

system was built as described in section 3.4. Then we indexed each corpus with Lucene

and Latent Semantic Indexing (LSI) (d = 100 for LSI). For each query (bug report) of each

system, the documents (source classes) were ranked using ST, LSI and Lucene

respectively. Then the top ranked documents were compared for effectiveness. Table 4-3

reports the number of cases that the shared terms perform better, equal or worse than

Lucene and LSI. The average and median effectiveness for the above ST, LSI and Lucene

approaches are listed in Table 4-4. In this technique, a lower effective measure indicated

better results.

50

Table 4-3: Number of cases that the shared terms approach is better, equal or worse than LSI
and Lucene

System
LSI Lucene

Better Equal Worse Better Equal Worse
ADempiere 3.1.0 9 (56%) 0 (0%) 7 (44%) 1 (6%) 1 (6%) 14 (88%)
Art of Illusion 2.4.1 4 (40%) 0 (0%) 6 (60%) 0 (0%) 0 (0%) 10 (100%)
aTunes 1.10 9 (53%) 0 (0%) 8 (47%) 1 (6%) 1 (6%) 15 (88%)
Eclipse 2.0 11 (85%) 0 (0%) 2 (15%) 2 (15%) 1 (8%) 10 (77%)
Eclipse 3.5 24 (60%) 0 (0%) 16 (40%) 9 (22%) 3 (8%) 28 (70%)
JEdit 4.2 15 (83%) 0 (0%) 3 (17%) 5 (28%) 1 (6%) 12 (66%)
Total 72 (63%) 0 (0%) 42 (37%) 18 (16%) 7 (6%) 89 (78%)

Table 4-4: Average and median effectiveness of the shared terms (ST), LSI and Lucene
approaches

System
ST LSI Lucene

Average Median Average Median Average Median
ADempiere 3.1.0 41 19 124 23 11 4
Art of Illusion 2.4.1 87 35 84 30 52 10
aTunes 1.10 26 10 31 18 9 3
Eclipse 2.0 180 80 1152 681 49 3
Eclipse 3.5 430 66 915 120 594 5
JEdit 4.2 22 7 64 57 11 3
Total 192 25 492 57 223 4

The performance of ST were unanticipated as it worked much better than LSI in 63%

of the cases with a better median and average effectiveness considering the data collected

from all the software systems. Art of Illusion 2.4.1 was the only system where LSI showed a

slightly better performance. But still the difference in median effectiveness (5 positions) is

small compared to the improvements ST brings in the case of the other systems, e.g.

Eclipse 3.5 indicates a difference of 601 positions. By conducting the Wilcoxon test, we

observed a significant performance of ST compared to LSI (p-value < 0.05). Meanwhile

Lucene performed better than both ST and LSI. The Wilcoxon test on the effectiveness

51

values indicated again that the difference in performance of the three approaches (i.e ST,

LSI and Lucene) was statistically significant (p-value <0.05). After all, there were situations

that ST gave better results than Lucene. JEdit 4.2 (28% of the cases), Eclipse 3.5 (22% of

the cases), and Eclipse 2.0, (22% of the cases) were few of the examples that shows better

performances of ST than Lucene. For some of the bugs, the difference in effectiveness was

striking. For instance, the case of bugs 304784 and 29950 in Eclipse 3.5, the improvement

over Lucene was of 7549 and 4960 positions, respectively. These outliers in Eclipse 3.5

described the better average effectiveness obtained by ST for this system, compared to

Lucene. To explain these results, we need to conduct further studies. Based on the above

results, we conclude that the bug localization is supported by the number of shared terms

between bug reports and source classes better than LSI does, still it does not perform as

well as Lucene.

RQ3 Answer:

We conclude that the number of shared words between the bug reports and the

source classes supports the bug localization better than some other measures such as LSI,

but still does not perform as well as Lucene.

4.2.4. Threats to Validity

 This section discusses the threats to the validity of our study , organized by the

threats category [17, 26].

 Construct validity focuses on the relation between experiment and observation. The

selection of appropriate measures and algorithms influences the accuracy of the whole

study and the conclusions. In our case, we adapted effectiveness measure and statistical

tests, such as, Mann-Whitney test, to evaluate results obtained regarding the bug

52

localization. Due to the good estimation provided by these measure and tests, they are

widely used in the concept location tasks.

 Internal validity considers the variables that can influence the outcome and whether

there are sufficient evidences to support the conclusions. In this study, we concerned about

the reliability of the documents and queries we used, to mitigate the threats that can affect to

our results. We extracted the queries (bug titles and descriptions) from publicly available

bug tracking systems. We followed a well-defined procedure to extract vocabularies from the

source files and the bug reports.

External validity concerns the generalization of the results we obtained. We

conducted our study on a collection of documents belong to six software systems which

contained 166 patched classes along with 114 bug reports. As these inputs are relatively

small, it is important to validate our work to identify the threats that can affect our

conclusions. Therefore, this study needs to be replicated on comparatively larger data sets

to see whether the same conclusions can be drawn. In other words, we need to expand this

study for a larger number of bug reports and patched classes to see whether the same

results can be obtained for the new input.

 Conclusion validity concerns how accurate our approach with actual results we

obtained. We drew our conclusions referring to the intersection between the bug

vocabularies and the source vocabularies. Our conclusions provided the evidence to

support the assumption that the bug reports and the relevant source classes share a

common vocabulary. We followed Mann-Whitney and Wilcoxon statistical tests to show the

significance of the results we obtained.

53

CHAPTER 5 RELATED WORK

It is importance to understand how the problems related to defect source code are

described in bug reports, to improve the bug localization. Due to this importance, several

studies related to the linguistic and statistical analysis, have been conducted to describe the

text content found in bug reports.

Title of a bug report is one of the important elements that used to describe a bug.

Several interesting trends about the bug title, have been discovered by Ko et al. [27] after

analyzing the bug title’s parts of speech of the words. The results of this study indicated

which parts of the speech of the words are supportive when describing the bug reports.

Another similar linguistic analysis of bug titles is carried out by Sureka and Indukuri et al.

[28] to examine how people describe software bugs. This study aimed to identify the

feasibility of building a predictive model to categorize the bug reports, based on the part of

the speech, word frequency and the distribution across different severity levels, such as,

bug importance (major, minor, enhancement, critical). This study revealed that bug titles, in

general, do not carry enough information to build a highly accurate classifier which supports

categorization of bug titles into different predefined severity levels. But it showed that some

certain categories, such as, enhancement and critical determine the words which can be

used to build a model with a reasonable accuracy. Han et al. [29] performed a qualitative

and quantitative topic analysis on bug reports of Android systems to obtain evidence of

Android fragmentation (hardware and software) within these bug reports. The study applied

Latent Dirichlet Allocation (LDA) on original bug reports and Labeled LDA on manually

labeled bug reports using feature oriented terms. Then it computed the average relevance

between each individual bug report to each topic and analyzed the performance of two types

of topics sets. According to the results, the study concluded that bug reports carry important

54

evidence regarding certain type of fragmentations. In addition to the above studies, some

research workers paid attention on the development of automated methods to measurie the

quality of bug reports. The research study followed by Linstead et al. [30] focused on

coherence which is a quality metric that measures the report quality by capturing the clarity

of the reports through the analysis of text found in them. This study also adapted LDA for

mining the text content of bug reports.

Even though our study also focused on text analysis, it adapted bug reports for

analysis process along with source code. Our objective was to determine any relationship

exists between vocabularies of bug reports and source classes. Recent work [10] conducted

regarding bug localization, proposed a novel approach for term weighting on information

collected from structural text (source code). This study proposed boosting the query terms

that occur in certain locations within the source code methods. Using this work as the base

for our study, we extended the analysis process from method to source classes.

Furthermore, we took an extensive list of code locations that comprised of class names,

method names and comments.

55

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

 We conducted our study to find whether the bug reports and related defect source

code share important terms. To accomplish our purpose, we analyzed the vocabularies

shared between source classes (documents) and bug reports (queries). This chapter

summarizes the conclusions we draw and discusses what extension can be made to this

study to verify these conclusions and which kind of enhancements will be made in future.

6.1. Conclusions

 According to the analysis of common vocabularies between bug reports and source

classes, we observed that the bug reports shared terms with a large number of classes and

more terms are shared between the bug reports and the patched classes than non patched

classes. Hence, these evidences establish the implicit assumption that the source code

shares many terms with bug reports. Furthermore, we can state that the patched classes

carry a higher number of shared terms than the rest of the classes in a software system.

Moreover, due to the results captured by studying code locations of the common

vocabularies, we draw the conclusion that class names are more likely to appear in common

vocabularies with bug reports than the other code locations. Nevertheless, more frequent

code locations have more terms in common with the bug report. By means of the above

conclusions, we believe that TR based concept location techniques can be improved by

using this information. We obtained results that support the idea of using shared terms to

determine the relevant classes for a selected bug report. Not only that, but also we saw

some TR techniques (Lucene in our study) works better than others while some techniques,

(LSI in our case) may perform worse.

56

6.2. Future Work

 We conducted our study on a relatively small collection of patched classes and bug

reports. as we discussed in Section 4.2.4, it is important to validate our work to identify the

threats that influence our conclusions. Therefore, in future, we replicate this study on

comparatively larger data sets with considerations of additional text retrieval techniques

under various configurations.

 On the other hand, all the software systems we employed were implemented using

Java based technologies. In other words, they were written in Java language. But it is

important to extend this work on software systems which are written in other programming

languages, such as, C++, as different languages carry different syntax. In future, we will

extend our study on software systems written in different programming languages, with the

enhancements mentioned before.

57

APPENDIX A : Summary of the Data Set

Table A.1: The total number of unique terms in the source classes (class vocabulary size)

System n min q1 mean median q3 max sd

Adempiere 3.1.0 2,735 74 106.5 170.94 132 246.25 345 92.93
Art of Illusion 2.4.1 1,837 60 129 141.31 129 158 211 46.72
ATunes 1.10 2,439 14 77.25 110.86 105.5 136.5 218 54.95
Eclipse Platform 2.0 2,026 83 110 144.71 126 159.75 375 72.66
Eclipse Platform 3.5 13,180 20 108 178.11 146 214 538 113.63
JEdit 4.2 5,764 26 113 213.48 175 355 531 141.59
General 27,981 14 103 168.56 140.5 199 538 107.41

Table A.2: The total number of terms in the source classes (class document Size)

System n min q1 mean median q3 max sd

Adempiere 3.1.0 34,032 390 631.75 2127 1022 2751.75 6411 2207.85
Art of Illusion 2.4.1 13,902 268 894 1,069.38 945 1,325 1,887 511.05
ATunes 1.10 19,997 50 353.75 908.95 811 1,259.5 2,405 654.73
Eclipse Platform 2.0 16,229 285 842.75 1,159.21 1,029 1,616.75 2,667 630.85
Eclipse Platform 3.5 135,551 31 558.75 1,831.77 1,056 2,216 8,943 2,010.48
JEdit 4.2 62,382 54 632.5 2,310.44 1,109 3,923 15,098 3,039.36
General 282,093 31 558 1,699.36 1,012 1,975.75 15,098 2,004.49

Table A.3: The total number of unique terms in the bug reports (bug vocabulary size)

System n min q1 mean median q3 max sd

Adempiere 3.1.0 404 6 18.25 25.25 24 35 50 11.78
Art of Illusion 2.4.1 485 17 26 37.31 36 43 66 16.48
ATunes 1.10 543 5 13 24.68 18 29 58 16.79
Eclipse Platform 2.0 546 16 25 39 35 46.25 106 22.37
Eclipse Platform 3.5 2,742 8 17 37.05 32 49 114 23.94
JEdit 4.2 1,019 11 28.5 37.74 33 41 67 16.04
General 5,739 5 18 34.57 32 43 114 20.73

58

Table A.4: The total number of terms in the bug reports (bug document Size)

System n min q1 mean median q3 max sd

Adempiere 3.1.0 650 8 27 41 39 47 105 23
Art of Illusion 2.4.1 719 23 36 55 44 69 108 28
ATunes 1.10 798 9 17 36 24 41 101 28
Eclipse Platform 2.0 843 22 38 60 55 64 171 37
Eclipse Platform 3.5 5,282 10 25 71 51 111 250 56
JEdit 4.2 1,798 11 40 67 46 61 156 46
General 10,090 8 28 61 45 69 250 47

Table A.5: The total number of unique terms shared between the bug reports and the patched

classes (common vocabulary size)

System n min q1 mean median q3 max sd

Adempiere 3.1.0 150 2 6 9 10 12 18 5
Art of Illusion 2.4.1 101 1 4 8 7 11 16 4
ATunes 1.10 133 0 4 6 6 9 17 4
Eclipse Platform 2.0 182 6 8 13 11 17 28 6
Eclipse Platform 3.5 1,029 1 7 14 13 18 53 10
JEdit 4.2 348 5 8 13 11 16 38 8
General 1,943 0 6 12 10 15 53 8

Table A.6: The total number of terms shared between the bug reports and the patched classes

System n min q1 mean median q3 max sd

Adempiere 3.1.0 313 3 12 20 15 27 46 12
Art of Illusion 2.4.1 193 1 9 15 12 24 30 9
ATunes 1.10 254 0 6 12 10 14 49 10
Eclipse Platform 2.0 349 8 17 25 22 28 59 13
Eclipse Platform 3.5 2,512 1 12 34 29 38 126 29
JEdit 4.2 739 6 16 27 20 26 104 23
General 4,360 0 10 26 21 31 126 24

59

APPENDIX B : Stop Words

a cry in other sure whatever
about default inasmuch others take when
above definitely inc otherwise taken whence
according despite indeed ought tell whenever
accordingly did indicate our template where
across do indicated ours tends whereafter
actually does indicates ourselves than whereas
afterwards doing inline out thank whereby
again double instanceof outside thanks wherein
against downwards insofar over thanx whereupon
all due instead overall that wherever
almost during int own thats whether
alone dynamic_cast interface package the which
along each into particular their while
already eg inward particularly theirs whither
also either is per them who
although else it perhaps themselves whoever
always elsewhere its please then whole
am enough itself possible thence whom
among enum just presumably there whose
amongst entirely know probably thereafter why
an especially knows provides thereby will
and et lately private therefore willing
another etc later protected therein with
any ever latter public theres within
anybody every latterly quite thereupon without
anyhow everybody less rather these would
anyone everyone long re they yet
anything everything lest return thin you
anyway everywhere like really think your
anyways except liked reasonably this yours
anywhere explicit likely regarding thorough yourself
apart export look regardless thoroughly yourselves
are extern looking regards those

 around extends looks register though
 as false ltd reinterpret_cast through
 asm far mainly relatively throughout
 assert few many respectively throw
 at final may return throws

60

auto finally maybe said thru
 be float me same thus
 became for meanwhile saw to
 because former merely say together
 become formerly might saying too
 becomes friend mine says took
 becoming furthermore moreover secondly top
 been further mostly see toward
 beforehand give much seeing towards
 behind given must seem transient
 being gives mutable seemed tried
 believe go my seeming tries
 below goes myself seems true
 beside going namely seen truly
 besides gone namespace selves try
 between goto native sensible trying
 beyond got nearly serious typedef
 bool gotten need seriously typeid
 boolean had needs several typename
 both happens neither shall un
 break hardly never she under
 but hasnt nevertheless short unfortunately
 by have new should union
 byte having no signed unless
 came he nobody since unlikely
 can hence none sincere unsigned
 cannot her noone sizeof until
 cant hereafter nor so unto
 case hereby not some upon
 catch herein nothing somebody us
 certain hereupon normally somehow useful
 certainly hers now someone using
 char herself nowhere something usually
 class hi normally sometime various
 clearly him null sometimes very
 co himself obviously somewhat via
 come his of somewhere virtual
 comes hither off static void
 con hopefully often soon volatile
 concerning how oh sorry want
 consequently howbeit ok static_cast wants
 consider however okay still was

61

considering hundred on strictfp way
 const i once struct wchar_t
 const_cast ie ones such we
 continue if only super well
 corresponding implements onto switch went
 could immediate operator synchronized were
 couldnt import or system what

62

APPENDIX C : Summary of the Terms in Code Locations

Table C-1: Shared terms in arguments

System n min q1 mean median q3 max sd

Adempiere 3.1.0 428 0 10 27 17 50 66 23
Art of Illusion 2.4.1 221 0 3 17 7 14 109 29
ATunes 1.10 284 0 2 13 6 17 57 16
Eclipse Platform 2.0 405 1 11 29 27 31 82 25
Eclipse Platform 3.5 4,700 0 2 64 27 105 377 82
JEdit 4.2 1,168 0 3 43 14 22 718 136
General 7,206 0 3 43 16 46 718 81

Table C-2: Shared terms in attributes

System n min q1 mean median q3 max sd

Adempiere 3.1.0 423 0 0 26 14 56 81 30
Art of Illusion 2.4.1 180 0 0 14 0 13 75 23
ATunes 1.10 206 0 0 9 1 8 81 19
Eclipse Platform 2.0 521 0 13 37 24 45 129 39
Eclipse Platform 3.5 1,873 0 0 25 7 37 227 43
JEdit 4.2 518 0 0 19 1 15 263 51
General 3,721 0 0 22 6 30 263 39

Table C-3: Shared terms in comments

System n min q1 mean median q3 max sd

Adempiere 3.1.0 1,084 9 28 68 34 72 244 73
Art of Illusion 2.4.1 263 0 11 20 15 18 62 19
ATunes 1.10 525 0 3 24 12 27 97 30
Eclipse Platform 2.0 685 7 16 49 27 44 201 55
Eclipse Platform 3.5 9,730 0 31 131 75 137 1,157 192
JEdit 4.2 2,795 1 8 104 33 149 786 162
General 15,082 0 12 91 39 108 1,157 153

63

Table C-4: Shared terms in literals

System n min q1 mean median q3 max sd
Adempiere 3.1.0 819 0 9 51 31 81 193 57
Art of Illusion 2.4.1 49 0 1 4 5 5 10 3
ATunes 1.10 139 0 0 6 2 6 49 12
Eclipse Platform 2.0 278 0 5 20 16 30 67 20
Eclipse Platform 3.5 536 0 0 7 0 6 111 17
JEdit 4.2 253 0 1 9 4 10 61 14
General 2,074 0 0 12 3 12 193 26

Table C-5: Shared terms in method calls

System n min q1 mean median q3 max sd
Adempiere 3.1.0 1,316 0 8 82 36 64 657 162
Art of Illusion 2.4.1 256 0 5 20 8 22 113 30
ATunes 1.10 619 0 4 28 16 34 193 42
Eclipse Platform 2.0 629 10 16 45 41 53 119 34
Eclipse Platform 3.5 4,283 0 4 58 25 68 653 94
JEdit 4.2 2,466 3 17 91 37 55 1,378 260
General 9,569 0 6 58 24 56 1,378 133

Table C-6: Shared terms in method name

System n min q1 mean median q3 max sd

Adempiere 3.1.0 183 0 2 11 5 16 54 15
Art of Illusion 2.4.1 113 0 5 9 8 13 25 7
ATunes 1.10 140 0 1 6 4 9 29 8
Eclipse Platform 2.0 188 0 4 13 11 22 38 11
Eclipse Platform 3.5 1,152 0 2 16 9 17 124 21
JEdit 4.2 442 0 2 16 3 16 166 33
General 2,218 0 2 13 7 14 166 20

64

Table C-7: Shared terms in parameter

System n min q1 mean median q3 max sd

Adempiere 3.1.0 122 0 0 8 2 14 29 11
Art of Illusion 2.4.1 31 0 0 2 2 2 12 3
ATunes 1.10 148 0 0 7 0 4 59 15
Eclipse Platform 2.0 131 0 2 9 7 10 34 11
Eclipse Platform 3.5 1,814 0 0 25 8 27 169 39
JEdit 4.2 283 0 1 10 4 9 95 21
General 2,529 0 0 15 4 14 169 29

Table C-8: Shared terms in types

System n min q1 mean median q3 max sd
Adempiere 3.1.0 388 0 6 24 10 19 101 33
Art of Illusion 2.4.1 290 0 16 22 19 25 80 19
ATunes 1.10 233 0 1 11 4 10 65 16
Eclipse Platform 2.0 444 2 13 32 20 37 89 29
Eclipse Platform 3.5 5,404 0 11 73 37 109 321 82
JEdit 4.2 888 0 11 33 28 47 150 31
General 7,647 0 7 46 19 61 321 63

Table C-9: Shared terms in variables

System n min q1 mean median q3 max sd
Adempiere 3.1.0 505 0 4 32 15 26 157 49
Art of Illusion 2.4.1 82 0 0 6 6 11 15 5
ATunes 1.10 151 0 1 7 3 10 43 10
Eclipse Platform 2.0 200 0 5 14 14 22 33 12
Eclipse Platform 3.5 2,175 0 0 29 7 30 279 51
JEdit 4.2 876 1 4 32 15 27 403 76
General 3,989 0 1 24 8 23 403 49

65

Table C-10: Total terms in arguments

System n min q1 mean median q3 max sd

Adempiere 3.1.0 3,595 9 54 225 90 476 734 252
Art of Illusion 2.4.1 1,997 27 102 154 105 239 355 97
ATunes 1.10 2,307 2 33 105 66 173 434 103
Eclipse Platform 2.0 2,287 18 78 163 148 211 379 111
Eclipse Platform 3.5 17,207 0 34 233 88 367 974 271
JEdit 4.2 6,649 0 43 246 139 363 1,836 357
General 34,042 0 43 205 105 300 1,836 252

Table C-11: Total terms in attributes

System n min q1 mean median q3 max sd
Adempiere 3.1.0 1,919 0 20 120 65 187 374 130
Art of Illusion 2.4.1 1,243 31 44 96 61 96 291 76
ATunes 1.10 1,954 0 14 89 52 139 448 104
Eclipse Platform 2.0 1,987 26 62 142 113 197 301 99
Eclipse Platform 3.5 6,886 0 26 93 50 108 770 119
JEdit 4.2 3,438 0 13 127 62 87 1,588 308
General 17,427 0 26 105 61 128 1,588 160

Table C-12: Total terms in comments

System n min q1 mean median q3 max sd

Adempiere 3.1.0 6,024 57 105 377 224 389 1,276 392
Art of Illusion 2.4.1 1,553 36 78 119 78 158 270 80
ATunes 1.10 4,331 6 96 197 147 211 727 178
Eclipse Platform 2.0 3,316 42 108 237 139 175 1,209 296
Eclipse Platform 3.5 50,533 8 157 683 316 543 8,527 1,400
JEdit 4.2 19,415 9 94 719 300 1,407 3,931 923
General 85,172 6 100 513 209 437 8,527 1,039

66

Table C-13: Total terms in literals

System n min q1 mean media
n

q3 max sd

Adempiere 3.1.0 3,747 0 30 234 118 514 650 245
Art of Illusion 2.4.1 245 0 2 19 24 27 37 13
ATunes 1.10 475 0 6 22 14 26 111 26
Eclipse Platform 2.0 608 0 15 43 45 55 104 34
Eclipse Platform 3.5 1,614 0 0 22 2 15 421 56
JEdit 4.2 1,756 0 8 65 35 128 231 64
General 8,445 0 1 51 15 45 650 107

Table C-14: Total terms in method calls

System n min q1 mean median q3 max sd

Adempiere 3.1.0 10,521 54 178 658 299 758 2,477 800
Art of Illusion 2.4.1 3,002 37 225 231 251 266 478 116
ATunes 1.10 5,875 6 93 267 232 284 1,167 263
Eclipse Platform 2.0 3,418 46 220 244 252 262 415 101
Eclipse Platform 3.5 22,270 0 36 301 142 347 1,729 385
JEdit 4.2 13,050 15 122 483 344 615 3,760 717
General 58,136 0 74 350 231 390 3,760 481

Table C-15: Total terms in method names

System n min q1 mean median q3 max sd

Adempiere 3.1.0 862 3 13 54 29 48 212 64
Art of Illusion 2.4.1 1,351 8 38 104 90 90 310 100
ATunes 1.10 1,070 4 12 49 31 73 142 43
Eclipse Platform 2.0 724 12 36 52 40 77 98 28
Eclipse Platform 3.5 4,317 0 18 58 39 96 303 59
JEdit 4.2 2,540 2 14 94 41 146 754 149
General 10,864 0 17 65 40 90 754 82

67

Table C-16: Total terms in parameter

System n min q1 mean median q3 max sd

Adempiere 3.1.0 1,006 0 12 63 28 74 329 88
Art of Illusion 2.4.1 642 9 20 49 49 77 83 28
ATunes 1.10 607 0 6 28 20 46 74 24
Eclipse Platform 2.0 603 3 16 43 26 77 122 40
Eclipse Platform 3.5 5,964 0 19 81 44 102 375 90
JEdit 4.2 2,956 1 16 109 53 195 531 121
General 11,778 0 15 71 38 87 531 87

Table C-17: Total terms in types

System n min q1 mean median q3 max sd
Adempiere 3.1.0 2,943 23 59 184 72 340 524 189
Art of Illusion 2.4.1 2,253 64 121 173 172 175 333 82
ATunes 1.10 2,517 9 51 114 107 167 268 78
Eclipse Platform 2.0 2,005 44 120 143 145 163 232 48
Eclipse Platform 3.5 17,665 4 41 239 123 449 1,004 242
JEdit 4.2 6,517 8 58 241 209 444 1,064 237
General 33,900 4 60 204 133 268 1,064 204

Table C-18 Total terms in variables

System n min q1 mean median q3 max sd

Adempiere 3.1.0 3,099 2 46 194 77 282 675 230
Art of Illusion 2.4.1 1,701 17 91 131 108 160 334 86
ATunes 1.10 1,149 2 19 52 38 76 170 46
Eclipse Platform 2.0 1,413 17 48 101 76 151 235 73
Eclipse Platform 3.5 10,483 0 14 142 72 252 879 184
JEdit 4.2 5,798 3 55 215 94 285 1,704 332
General 23,643 0 20 142 73 187 1,704 202

68

APPENDIX D : SrcML Document

D.1 Sample Source File

package log;

import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.OutputStream;

public class LogFile {

 private static String dirName;

 public LogFile() {
 dirName = "NotificationLog";
 }

 /* Copy log file
 */
 public static void CopyLogFile(File logFile) throws IOException {

 if (logFile != null) {
 File logCopy = new File("notification_log_copy.txt");
 InputStream file = new FileInputStream(logFile);

 file.close();
 System.out.println("File copied.");
 }
 }
}

69

D.2 SrcML Document created from the source file in A.1
 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<unit xmlns="http://www.sdml.info/srcML/src" language="Java" filename="E:\
\Resources\TestMethods.java"><package>package <name>log</name>;</package>

<import>import <name>java</name>.<name>io</name>.<name>File</name>;</import>
<import>import <name>java</name>.<name>io</name>.<name>FileInputStream</name>;</import>
<import>import <name>java</name>.<name>io</name>.<name>InputStream</name>;</import>
<import>import <name>java</name>.<name>io</name>.<name>OutputStream</name>;</import>
<class><specifier>public</specifier> class <name>LogFile</name> <block>{

 <decl_stmt><decl><type><specifier>private</specifier> <specifier>static</specifier>
<name>String</name></type> <name>dirName</name></decl>;</decl_stmt>

 <constructor><specifier>public</specifier>
<name>LogFile</name><parameter_list>()</parameter_list> <block>{
 <expr_stmt><expr><name>dirName</name> = "NotificationLog"</expr>;</expr_stmt>
 }</block></constructor>
 <comment type="block">/* Copy log file
 */</comment>

 <function><type><specifier>public</specifier> <specifier>static</specifier>
<name>void</name></type>
<name>CopyLogFile</name><parameter_list>(<param><decl><type><name>File</name></type>
<name>logFile</name></decl></param>)</parameter_list> <throws>throws
<argument><expr><name>IOException</name></expr></argument></throws> <block>{

<if>if <condition>(<expr><name>logFile</name> !=
<name>null</name></expr>)</condition><then> <block>{

 <decl_stmt><decl><type><name>File</name></type> <name>logCopy</name> =<init>
<expr>new
<call><name>File</name><argument_list>(<argument><expr>"notification_log_copy.txt"</expr></argumen
t>)</argument_list></call></expr></init></decl>;</decl_stmt>

 <decl_stmt><decl><type><name>InputStream</name></type> <name>file</name> =<init>
<expr>new
<call><name>FileInputStream</name><argument_list>(<argument><expr><name>logFile</name></expr>
</argument>)</argument_list></call></expr></init></decl>;</decl_stmt>

 <expr_stmt><expr><call><name><name>file</name>.<name>close</name></name><argument_
list>()</argument_list></call></expr>;</expr_stmt>

 <expr_stmt><expr><call><name><name>System</name>.<name>out</name>.<name>println</n
ame></name><argument_list>(<argument><expr>"File
copied."</expr></argument>)</argument_list></call></expr>;</expr_stmt>

 }</block></then></if>

 }</block></function>

}</block></class></unit>

70

APPENDIX E : Summary of the Terms in Bug Reports

Figure E.1: The summary of the bug reports in all the software systems

71

Figure E.2: The total number of terms of the bug report in each system

Table E.1: The total number of terms of the bug report in each system

System n min q1 mean median q3 max sd

Adempiere 3.1.0 650 8 27 40.62 39 47 105 23.24
Art of Illusion 2.4.1 557 23 36 55.7 42 80 108 29.66
ATunes 1.10 607 9 17 35.71 25 41 101 27.7
Eclipse Platform 2.0 779 22 37 59.92 50 64 171 38.95
Eclipse Platform 3.5 2,900 10 27 72.5 47 99 250 61.36
JEdit 4.2 934 11 38 51.89 41 50 156 32.71
General 6,427 8 28 56.38 41 64 250 45.48

72

Figure E.3: The unique terms (%) of the bug reports in each software system

Table E.2: The unique terms (%) of the bug reports in each software system

System n min q1 mean median q3 max sd
Adempiere 3.1.0 1,041.754 47.61905 55.51 65.11 59.64 75 87.5 13.29
Art of Illusion 2.4.1 708.369 61.11111 63.41 70.84 72.54 74.73 81.81818 7.55
ATunes 1.10 1,218.176 50 65 71.66 72.5 77.78 94.11765 10.84
Eclipse Platform 2.0 856.9377 51.64835 59.32 65.92 65.71 70.21 77.5 8.4
Eclipse Platform 3.5 2,453.035 28.92562 54.24 61.33 60.19 70.89 92.85714 14.92
JEdit 4.2 1,229.853 41.44144 62.59 68.33 70.82 74.38 100 13.53
General 7,508.124 28.92562 56.78 65.86 66.4 74.8 100 13.12

73

References

[1] Rajlich, V., Software Engineering: The Current Practices. 2011: CRC Press.

[2] Jones, C., The Economics of Software Maintenance in the Twenty First Century (2006). Ryan

North and James Choi: Leveraging Software Performance Engineering to Enhance the

Maintenance Process, 2006. 68.

[3] Rajlich, V.T. and K.H. Bennett, A staged model for the software life cycle. Computer, 2000. 33(7).

[4] Takang, A.A. and P.A. Grubb, Software maintenance: concepts and practice. 1996.

[5] Singer, J. and T. Lethbridge, What’s so great about ‘grep’? implications for program

comprehension tools. WWW: http://wwwsel. iit. nrc. ca/∼ singer/grep/greptxt. html, 1997.

[6] Wu, S. and U. Manber, ‘Agrep—A Fast Approximate Pattern-Matching Tool. Usenix Winter 1992,

1992: p. 153-162.

[7] Abou-Assaleh, T. and W. Ai, Survey of global regular expression print (grep) tools. 2004, Citeseer.

[8] Marcus, A., et al. An information retrieval approach to concept location in source code. in

Reverse Engineering, 2004. Proceedings. 11th Working Conference on. 2004. IEEE.

[9] Blair, D.C. and M. Maron, Full-text information retrieval: further analysis and clarification.

Information Processing & Management, 1990. 26(3): p. 437-447.

[10] Bassett, B. and N.A. Kraft, Structural Information Based Term Weighting in Text Retrieval for

Feature Location.

http://wwwsel/

74

[11] Manning, C.D., P. Raghavan, and H. Schütze, Introduction to information retrieval. Vol. 1. 2008:

Cambridge University Press Cambridge.

[12] Sanderson, M. and W.B. Croft, The history of information retrieval research. Proceedings of the

IEEE, 2012. 100(13): p. 1444-1451.

[13] Mizzaro, S., Relevance: The whole history. Journal of the American society for information

science, 1997. 48(9): p. 810-832.

[14] Djoerd Hiemstra, R.B.-Y., STRUCTURED TEXT RETRIEVAL MODELS. 2009.

[15] Haiduc, S., et al. Evaluating the specificity of text retrieval queries to support software

engineering tasks. in Software Engineering (ICSE), 2012 34th International Conference on.

2012. IEEE.

[16] Yan, H., W. Adviser-Grosky, and F. Adviser-Fotouhi, Techniques for improved lsi text retrieval, in

Computer Science. 2006, Wayne State University.

[17] Haiduc, S., Supporting Text Retrieval Query Formulation in Software Engineering. 2013, Wayne

State University. p. 181.

[18] Hull, D.A., Stemming algorithms: a case study for detailed evaluation. JASIS, 1996. 47(1): p. 70-

84.

[19] Frakes, W.B. and C.J. Fox. Strength and similarity of affix removal stemming algorithms. in ACM

SIGIR Forum. 2003. ACM.

75

[20] Jivani, A.G., A Comparative Study of Stemming Algorithms. Int. J. Comp. Tech. Appl, 2011. 2(6):

p. 1930-1938.

[21] Isbell, C. and P. Viola, Restructuring sparse high dimensional data for effective retrieval. 1998.

[22] Haiduc, S., et al., Automatic query reformulations for text retrieval in software engineering.

Proceedings of the 2013 International Conference on Software Engineering, 2013: p. 842-851.

[23] Scanniello, G. and A. Marcus. Clustering support for static concept location in source code. in

Program Comprehension (ICPC), 2011 IEEE 19th International Conference on. 2011. IEEE.

[24] Collard, M.L., J.I. Maletic, and A. Marcus. Supporting document and data views of source code.

in Proceedings of the 2002 ACM symposium on Document engineering. 2002. ACM.

[25] Fagerland, M.W. and L. Sandvik, The Wilcoxon–Mann–Whitney test under scrutiny. Statistics in

medicine, 2009. 28(10): p. 1487-1497.

[26] Feldt, R. and A. Magazinius. Validity Threats in Empirical Software Engineering Research-An

Initial Survey. in SEKE. 2010.

[27] Ko, A.J., B.A. Myers, and D.H. Chau. A linguistic analysis of how people describe software

problems. in Visual Languages and Human-Centric Computing, 2006. VL/HCC 2006. IEEE

Symposium on. 2006. IEEE.

[28] Sureka, A. and K.V. Indukuri. Linguistic analysis of bug report titles with respect to the

dimension of bug importance. in Proceedings of the Third Annual ACM Bangalore Conference.

2010. ACM.

76

[29] Han, D., et al. Understanding Android Fragmentation with Topic Analysis of Vendor-Specific

Bugs. in Reverse Engineering (WCRE), 2012 19th Working Conference on. 2012. IEEE.

[30] Linstead, E. and P. Baldi. Mining the coherence of GNOME bug reports with statistical topic

models. in Mining Software Repositories, 2009. MSR'09. 6th IEEE International Working

Conference on. 2009. IEEE.

77

ABSTRACT

ON THE RELATIONSHIP BETWEEN THE VOCABULARY OF BUG
REPORTS AND SOURCE CODE

by

AMUNUGAMAGE WATHSALA BANDARA

December 2013

Advisor: Dr. Andrian Marcus

Major: Computer Science

Degree: Master of Science

The use of text retrieval techniques on concept location and bug localization yields

remarkable benefits. The artifacts found in source code and bug reports contain important

information related to the bug localization process. When locating the bugs, it is a

programmer’s task to formulate effective queries such that most of the predicted terms in the

query appear in the relevant defect code, but not in most of the non-relevant source files.

These queries are built based on the textual content found in the bug reports, especially the

bug title and the description. A large body of research uses bug descriptions to evaluate

bug localization techniques using text retrieval. All these studies are conducted under the

implicit assumption that the bug description and the relevant source code files share

important terms. This paper presents an empirical study that explores this conjecture. We

found that bug reports share more terms with the patched classes than with the other

classes in the software system. Moreover, the study revealed that the class names are more

likely to share terms with the bug descriptions than other code locations. We also found that

78

more verbose parts of the source code, such as, comments share more words. Furthermore,

we discovered that the shared terms may be better predictors for bug localization than some

other text retrieval techniques, such as, LSI.

	Wayne State University
	1-1-2013
	On The Relationship Between The Vocabulary Of Bug Reports And Source Code
	Amunugamage Buddhini Wathsala Bandara
	Recommended Citation

	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF CODE SEGMENTS
	CHAPTER 1 INTRODUCTION
	1.1. Motivation
	1.2. Contribution
	1.3. Thesis Statement
	1.4. Thesis Outline

	CHAPTER 2 BACKGROUND ON TEXT RETRIEVAL
	CHAPTER 2
	2.1. Corpus Creation
	2.2. Text Pre-processing

	2.1.
	2.2.1. Tokenization and Compound Terms Splitting
	2.2.2. Stop Word Removal
	2.2.3. Stemming
	2.3. Indexing and Query Formulation
	2.4. Ranking and Investigation of Results

	CHAPTER 3 STUDY OF THE RELATIONSHIP BETWEEN BUG REPORTS AND SOURCE CODE
	CHAPTER 3
	3.1. Research Questions
	3.2. Data Collection
	3.3. Automating Text Retrieval Process
	3.4. Automated Corpus Creation
	3.4.1. Determination of the Granularity
	3.4.2. Noise Reduction
	3.5. Automated Text Pre-processing
	3.5.1. Automated Tokenization and Compound Terms Splitting
	3.5.2. Automated Stop Word Removal
	3.5.3. Automated Stemming
	3.6. Creating Vocabularies
	3.6.1. Annotated Terms Vocabularies
	3.6.2. Not-annotated Vocabularies
	3.7. Planning of Research Questions

	CHAPTER 4 ANALYSIS OF THE RESULTS AND DISCUSSION
	CHAPTER 4
	4.1. Observations about the Document Size
	4.1.1. Bug Reports
	4.1.2. Source Classes
	4.2. Addressing Research Questions
	4.2.1. Research Question 1
	4.2.2. Research Question 2
	4.2.3. Research Question 3
	4.2.4. Threats to Validity

	CHAPTER 5 RELATED WORK
	CHAPTER 6 CONCLUSIONS AND FUTURE WORK
	CHAPTER 5
	CHAPTER 6
	6.1. Conclusions
	6.2. Future Work

	APPENDIX A : Summary of the Data Set
	APPENDIX B : Stop Words
	APPENDIX C : Summary of the Terms in Code Locations
	APPENDIX D : SrcML Document
	APPENDIX E : Summary of the Terms in Bug Reports
	References
	ABSTRACT

