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CHAPTER 1 - INTRODUCTION 

1.1 Motivation: 

Blast induced neurotrauma (BINT) is a signature wound of veterans returning from 

various military operations. The increasing use of explosive devices as a tool of terrorism 

is not only a threat to the military personnel, but also risks the lives of the civilians 

considering the indiscriminate nature of these devices. With the help of improvised body 

armor and advanced medical care, the survival rates of the veterans exposed to blast 

explosion have increased. However, these returning veterans suffer from many 

unexplained symptoms such as fatigue, headaches, indigestion, insomnia, dizziness, 

respiratory disorder and memory problems. One of the most common challenge faced by 

these veterans is the new or ongoing pain following their military service. Pain was 

reported as the most common symptom in the Persian Gulf War, Operations Enduring 

Freedom (OEF), Operation Iraqi Freedom (OIF) and Operation New Dawn (OND) 

veterans (Cifu et al., 2013; Gironda et al., 2006; Kroenke et al., 1998). 

In a study, Lew. et. al. identified 81.5% out of the 340 OEF/OIF veterans matched 

the criteria for chronic pain as shown in figure 1. The high prevailing pain locations 

identified in these returning OIF and OEF veterans were the head (58%) and back (55%) 

(Lew et al., 2009). Ruff et. al reported that the OEF/OIF veterans experienced severe 

headaches, severe pain and impaired sleep from blast exposure (Ruff et al., 2008). In fact, 

pain management was considered as a national priority by the Veterans Affairs (VA) pain 

management strategy (Kerns et al., 2011). Pain can significantly affect the quality of life 

and thereby decreases the person’s life satisfaction (Wollaars et al., 2007). Unfortunately, 

to date, the mechanism of the pain and the cellular changes caused due to the blast 

exposure in these veterans continues to remain an enigma, giving rise to a new field of 



 

2 

 

research. However, even before we understand the pain mechanisms after blast, we need 

to understand the underlying cellular changes especially in the spinal cord that may 

contribute to the sensory changes.   

 

1.2 Blast Injury 

A blast or explosion releases a high pressure wave which initiates from the center of the 

blast. Blast wave is a type of propagating disturbance that causes a discontinuous 

increase in pressure, density, temperature and velocity. It is an instantaneous increase in 

pressure giving rise to a typical shock wave, also termed as Friedlander wave. A 

Friedlander wave is a variation of pressure over time as shown below in the Figure 2  

Figure 1: The ‘polytrauma clinical triad’ in OEF/OIF veterans: incidence of post-traumatic 
stress disorder (PTSD), persistent post-concussive systems (PPCS), and chronic pain in 340 

veterans of Operation Enduring Freedom and Operation Iraqi Freedom 
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Figure 2: Friedlander wave showing peak pulse pressure, positive phase and negative phase.  

 

The Friedlander wave is characterized by a peak pulse pressure followed by the 

overpressure (positive phase) and ending with an underpressure which returns to the 

ambient pressure (negative phase). The figure shows the instantaneous rise in pressure 

on the arrival of the blast wave denoted by Ps and it gradually decreases back to ambient 

pressure Pa. Blast overpressure is the increase in pressure above the atmospheric 

pressure. The strength of the blast is characterized by the ratio of overpressure to ambient 

pressure. The positive phase duration of the blast wave is followed by the negative phase 

where the pressure goes below the ambient pressure and returns back to the ambient 

pressure. This sudden increase in ambient pressure induces tissue injury as the 

overpressure travels through the body without causing any external trauma. (Pode et al., 

1989).  
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To characterize the shock waves by positive peak overpressure, positive and negative 

phase duration, the Friedlander equation was developed during the Second World War as 

shown below: 

P(t) = Ps (1-t/td)exp(-bt/td)  

Where  P(t) is the pressure at any time t 

Ps is the peak overpressure (static pressure) 

td is the duration of the positive phase of the wave 

b is a decay constant describing the decay rate 

This high energy wave moves spherically affecting the tissues, and causes blast injuries. 

The severity and type of blast injuries depends upon on several factors such as the 

material of the explosive, method of delivery, distance between the victim and the site of 

blast, and the surrounding environment (Prevention., 2006). Blast injuries are classified 

into four categories; primary, secondary, tertiary and quaternary (Cheng et al., 1984; 

Mellor, 1988) as described below: 

Primary blast injury: This injury is caused due to the direct effect of the transmitted 

wave. This injury is mostly related with air filled organs such as the lungs, ear and 

gastrointestinal tract.  

Secondary blast injury: This injury is caused by the flying fragments of debris that 

get thrown by the explosion. 

Tertiary blast injury: This injury is caused due to part or the whole body of the victim 

is blown away by the blast wind which is followed by the pressure wave.  

Quaternary: This injury is a result of the chemical or heat burns due to the 

explosion.  
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The injuries caused by projectiles, shrapnel and chemicals are classified under secondary 

and tertiary blast injury. Secondary, tertiary and quaternary blast injuries together are 

known as indirect effects of blast. The field of research to mitigate these indirect effects 

has been the major focus of most of the researchers. However, it is recently that this 

seemingly simple blast wave that causes primary blast neurotrauma has gained 

recognition (Cernak et al., 1999; Ling et al., 2009; Martin et al., 2008; Warden and French, 

2005; Warden et al., 2009). It was suggested that 47% of the injuries suffered by the 

surviving veterans were primary blast injuries (Mayorga, 1997). 

1.3 Literature Review of Traumatic Brain Injury and Spinal Cord Injury. 

TRAUMATIC BRAIN INJURY (TBI) 

The Defense and Veterans Brain Injury Center (DVBIC) estimates that 313,816 

service personnel were diagnosed with traumatic brain injury (TBI) between 2000 and 

2014 (as of December 1, 2014), with only 1.5% suffered from penetrating injuries as shown 

in figure 3 (DVBIC, 2015). 

The high prevalence of mild traumatic brain injury (mTBI) (82.5%) among the 

veterans is a shocking finding which influenced many researchers to understand the 

Figure 3: Department of Defense (DoD) numbers for Traumatic Brain 
Injury (DVBIC, 2015) 
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mechanism(s). In fact, approximately 60% mTBI injuries were primary blast injuries which 

is also known as blast induced traumatic brain injury (bTBI) (Warden and French, 2005). 

With the increasing exposure of blast conditions, it was suggested that bTBI is the 

signature brain injury faced by the current military personnel (Bhattacharjee, 2008). 

Early in the years, studies were conducted to understand transmission of wave through 

the body. An interesting experiment performed on dogs showed that a simple impact on 

the head without any movement created concussion in the brain. The dog’s head was held 

by the hand and stuck with a hammer, which resulted brain injury in the form of 

concussion. They proposed that the resultant brain injury was induced due to the 

transmission of pressure wave through the skull (Gurdjian et al., 1964). In another study, 

rabbits were exposed to blast overpressure with chest protection. Two pressure sensors 

were placed; one on the lumbar region in the spinal cord or above the spinal cord and 

other in the abdomen cavity. An increase in the spinal cord sensor (where was thus sensor 

placed: on the surface of the spinal cord, inserted directly into the spinal cord etc) was 

observed, while no pressure change was detected in the other sensor. The authors 

suggested the possible increase  at the spinal cord sensor may be a result of the blast 

wave travelling down the brainstem to the spinal cord (Clemedson, 1956). However, due 

to technological limitations of the time, there was no histological assessment to 

understand the underlying cellular changes if any. 

With the advancement of research and technology, various studies have shown 

the blast induced underlying cellular changes occur in the brain without any penetrating 

wounds in the head (Bauman et al., 2009; Cernak and Noble-Haeusslein, 2010; de 

Lanerolle et al., 2011; Warden et al., 2009). Different locations of the brain have indicated 

proliferation of astrocytes and microglia with significant phenotypical changes following 
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blast overpressure using various animal models (Cho et al., 2013; de Lanerolle et al., 

2011; Goldstein et al., 2012; Kaur et al., 1995; Lu et al., 2012; Readnower et al., 2010). 

Another significant component of traumatic brain injury is diffuse traumatic axonal injury 

(DAI), random occurrence of disrupted axons. Therefore, brain was identified as a 

susceptible target for blast overpressure (Hicks et al., 2010). We will now review some of 

the studies demonstrating the cellular changes in the brain following blast overpressure.  

Cernak and her team have shown evidence that exposure to blast overpressure causes 

ultrastructural and biochemical effects in the region of hippocampus of the rat brain which 

is related to the cognitive defects (Cernak et al., 2001). They also showed the presence 

of axonal injury in the form of swollen axons and myelin debris in a rat model following 

blast overpressure (Cernak et al., 2001). Saljo et al., demonstrated that activation of glial 

cells led to neuronal degeneration and axonal injury in the rat brain after exposure to 34psi 

of air overpressure. Moreover, they have also shown that the glial cells continued to 

remain elevated 21 days post the exposure to the blast (Saljo et al., 2001). Similar results 

were reported by Bauman and his team using a swine model. They studied the 

propagation of blast wave through the skull by implanting sensors on the forebrain, 

thalamus and hind brain following blast overpressure. Their pressure data showed 

transmission of waves elevated intracranial pressure (ICP), which resulted in blast induced 

traumatic injury (Bauman et al., 2009). Also, significant proliferation of astrocytes was 

reported in the hippocampus of the brain after a single exposure to blast overpressure. 

Kaur and co-workers exposed rats to blast overpressure, and found increased expression 

of microglia in the different areas of the brain at 14 days post exposure (Kaur et al., 1995). 

In another study on rat brain ischaemia model, Moriaka and co-workers observed that 

microglia migrated to the site of injury following activation (Morioka et al., 1991). With 
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respect to axonal injury, Garmen and co-workers exposed rats to 35 psi of blast 

overpressure (BOP) using a shock tube. They identified axonal injury as the most striking 

event at 24 hours post exposure in the deep cerebellar white matter of the rat brain 

(Garman et al., 2011).  

Taken together, activation of glial cells and axonal injury were the two most 

significant phenomenon witnessed in the brain following blast overpressure. Wiesler-

Frank et. al. postulated that glial activation could be the cause for continuous pain followed 

by the healing of the original injury (Wieseler-Frank et al., 2005).Therefore it can be 

proposed that the underlying cellular changes in the brain in the form of glial activation 

and axonal injury may induce pain in the body.  

SPINAL CORD INJURY (SCI) 

As described earlier, the changes in the brain following blast overpressure (BOP) 

are well documented. However, the injury to spinal cord as a consequence of BOP has 

never been investigated. It is well known that much of spinal cord injury in humans is a 

result of blunt trauma to the spinal cord. Spinal cord injury is a catastrophic event which 

results in inability to walk, dysfunction in bladder or bowel control and chronic pain (Persu 

et al., 2009; van Hedel and Dietz, 2010; Yezierski, 2000).  

In a survey conducted on 348 participants, 76% suffered from chronic pain following spinal 

cord injury .The participants were patients who received treatment from the Veterans 

Spinal Cord Injury Centre with chronic pain due to spinal cord injury. The various reasons 

that resulted this injury were fall, motor vehicle crash, violence, sports, falling or flying 

objects and others being diseases, explosions, aircraft accidents and surgery(Rintala et 

al., 2005). These results suggest that pain is a common occurrence for the patients 

suffering from spinal cord injury.  
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To mimic the spinal cord injury, various animal models were designed to 

understand the cellular changes that resulted in the pain in the body. The different models 

used were contusion, ischeamia/perfusion, hemi section and photochemical models 

(Hooshmand et al., 2014; Lee et al., 2000; McIntosh et al., 1987; Noble and Wrathall, 

1989; Watson et al., 1986). One of the most commonly used is the contusion model, which 

is known to be suitable to create inflammation in the spinal cord (David and Kroner, 2011). 

In this model, computer controlled devices were used to drop weight directly on the 

exposed spinal cord. Many studies conducted on rat spinal cord injury have shown that 

glial cells get activated following blunt impact to the spinal cord (Fitch et al., 1999; 

Kyrkanides et al., 1999; Tikka et al., 2001).  

Using contusion model, Lee. et. al. showed elevated expression of astrocytes and 

microglia with axonal injury in rats(Lee et al., 2000). They suggested that these alterations 

in the glial reactivity resulted in the release cytokines which are known to cause pain like 

conditions in the body. Li and co-workers showed proliferation of astrocytes and microglia 

around the lesion area in rat model following spinal cord injury (Li et al., 1995). Based on 

these studies, it can be inferred that glial cells proliferate and release substances in 

response to spinal cord injury. Another mechanism witnessed in spinal cord injury is 

presence of axonal injury. In a study was conducted on 18 human spinal cords with acute 

cord compression with paralysis to assess the extent of axonal injury. With the help of 

beta amyloid precursor protein as marker, the researchers detected axonal disruptions not 

only the area around the lesion site, but also far from the lesion site. They concluded that 

the acute cord compression demonstrated extensive occurrence of axonal injury in 

location of the injury as well as in the other regions of the spinal cord (Cornish et al., 2000). 

Similar results were shown by Sjovold et. al in the rat spinal cord model, where white 
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matter damage was detected in the form of accumulated APP in the rostal end of the 

spinal cord (Sjovold et al., 2013). Taken together, these studies show evidence of glial 

activation and axonal injury in the spinal cord following an insult.  Whether such changes 

also occur following exposure to blast over pressure which may suggest the injurious 

nature of the blast exposure has never been investigated.   

1.3 Rationale for the Proposed Study 

Based on the literature review, it was found that activation of glial cells and axonal 

injury were the common events following TBI and SCI. In the context to blast induced 

spinal cord injury (BISCI), the question that needs to be addressed is whether blast 

overpressure induces any similar injury changes in the spinal cord. Since the spinal cord 

is the extending part of the brain, it will be interesting to study if there are similar changes 

in the spinal cord also. The spinal cord is the pathway between the peripheral nervous 

system and the brain, and therefore it is essential to investigate the cascade of events that 

occur in the spinal cord following blast overpressure. Thus, our study will be the first step 

to address the underlying cellular changes in the spinal cord.  
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RAT SPINAL CORD MODEL 

We will now review the various animals used to detect in the injury in traumatic 

brain injury and spinal cord injury. The summary of the animal models used for TBI and 

SCI with different methods of injury induction are shown below: 

 

Table 2: Table showing the various animals used for spinal cord injury (SCI). 

 

 

 

 

 

References for Traumatic Brain Injury: 1. (Hayes et al., 1987)2. (Hartl et al., 1997) 3. 

(Hooshmand et al., 2014; McIntosh et al., 1987; McIntosh et al., 1989)4.(Carbonell et al., 

1998)5.& 6. (Pfenninger et al., 1989) 7. (Armstead, 2001) 8. (Feeney et al., 1981; Marmarou 

et al., 1994; Shohami et al., 1988) 9. (Albert-Weissenberger et al., 2012; Chen et al., 

1996)10. (Cernak et al., 2001; Koliatsos et al., 2011)11. (Goldstein et al., 2012)12. (Bauman 

et al., 2009; de Lanerolle et al., 2011) 

References for Spinal Cord Injury: 1.(Noble and Wrathall, 1989) (Hooshmand et al., 2014)2. 

(Gerber et al., 1980)3. (Watson et al., 2014)4.(Lee et al., 2013)5.(Luo et al., 2002)6.(Celic et 

al., 2014)7.(Hashizume et al., 2005) 8. (Stone et al., 2009)9. (Simon et al., 2011)10. (Watson 

et al., 1986) 

Table 1: Table showing the various animal models for traumatic brain injury (TBI). 
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From these tables, it can be inferred that rat is the most commonly used animal 

model for both traumatic brain injury and spinal cord injury. The rodent models are 

considered ideal to mimic the injury seen in humans. (Xiong et al., 2013). We cannot study 

the effects of blast overpressure directly on a human spinal cord. Due to the anatomical 

similarities between rat and human spinal cord, it is logical to study the rat model. The 

brain and spinal cord are a part of the central nervous system (CNS), and any trauma to 

the CNS, i.e. blast induced traumatic brain injury (TBI) or spinal cord injury (SCI) could 

result in striking neuropathology and delayed recovery. (Donnelly and Popovich, 2008). 

Based on the structural analogies of the brain and spinal cord, rat model was selected to 

study the BISCI. 

1.4 HYPOTHESIS AND SPECIFIC AIMS: 

HYPOTHESIS 

Studies have shown that the shock wave passes through the skull and retains its 

typical Friedlander waveform without any decrease in the strength of the overpressure 

using human, pig, rabbit and rat model (Bauman et al., 2009; Chavko et al., 2007; 

Clemedson, 1956; Saljo et al., 2001). We hypothesize that this shock wave moves down 

the brainstem and passes through the spinal cord inducing cellular changes in the spinal 

cord also. As a first step, we attempted to identify and describe the effects of blast 

exposure on the spinal cord by the studying the alterations in the glial cells and axons. 

This study may provide an insight about the effects of blast overpressure on the spinal 

cord.  
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SPECIFIC AIMS: 

Based on our hypothesis, we proposed the following specific aims to study the 

effects of blast overpressure on the spinal cord as shown in the figure 4 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specific Aim 1: 

To assess the temporal and spatial alterations in the expression of 

astrocytes in different levels of the rat spinal cord following blast 

overpressure. 

Specific Aim 2: 

Figure 4: The diagrammatic representation of the hypothesis and specific aims of the study. 



 

14 

 

To assess the temporal and spatial alterations in the expression of microglia 

in the different levels of the rat spinal cord following blast overpressure. 

Specific Aim 3: 

To investigate the presence axonal injury in the cervical spinal cord following 

blast overpressure.  

1.5 Introduction of upcoming chapters 

Chapter 2 discusses the anatomy of the central nervous system. The objective of 

chapter 2 is to understand the structural overview and components of the central nervous 

system. Chapter 3 briefly describes the materials and methods used in this study. Chapter 

4 and 5 summarizes the overall results and discussions. Finally, the last chapter 6 

presents the conclusions and recommendations for future work. 

CHAPTER 2 - NERVOUS SYSTEM 

The nervous system is a highly organized system responsible for the coordination 

of all the voluntary and involuntary actions of the body and transmission of signals 

between parts of the body. The nervous system is divided into two parts namely central 

nervous system (CNS) and peripheral nervous system (PNS). The central nervous system 

acts as the receiving center of the all information from where and sends out the appropriate 

information to the peripheral nervous system.  

2.1 Structural Overview of Central Nervous System 

The two main organs of CNS are the brain and the spinal cord. The peripheral 

nervous system is made up of nerves that forms the connection between the CNS and the 

muscles and other sensory organs. The brain is enclosed in the thick bones of skull, and 
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spinal cord is contained within the vertebral column. Both the brain and spinal cord are 

enveloped in three layers of meninges namely, the Dura mater, arachnoid mater and pia 

mater. There is a space in between the pia and arachnoid mater known as the 

subarachnoid space. Another important component of the CNS, cerebrospinal fluid (CSF) 

is found in the subarachnoid space. It is clear, colorless liquid produced in the choroid 

plexus in the brain and flows around the brain and spinal cord as shown in figure 5.  

 

Figure 5: Pathway of cerebrospinal fluid (CSF) flow. 
 

The main function is to provide protective layer to the brain and spinal cord while 

other functions include circulation of nutrients and chemicals from the blood and the 

removal of waste products from the CNS.  

BRAIN: 

The brain is the most sophisticated and complex organ of the human body. An 

average human brain weighs 3.3 pounds and makes up only 2% weight of the body. It is 
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responsible for the control of all the other organs, the secretions of glands and 

maintenance of homeostasis. 

Anatomically, the brain is divided into three main sections i.e. forebrain, midbrain 

and hindbrain interconnected with fluid filled ventricles as shown in figure 6. The forebrain 

(pros encephalon) forms the upper part of the brain comprising the cerebrum, thalamus, 

hypothalamus and the pineal gland. The midbrain (mesencephalon) located in the center 

of the brain is composed of a portion of the brainstem, while the remaining brainstem, 

cerebellum and pons together form the hindbrain (rhombcenphalon).

 

Figure 6: The three regions of the brain with the fluid filled ventricles. 
Modified from http://www.aghazenau.com/brain.html 
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SPINAL CORD: 

The spinal cord is the connecting pathway between the brain and the peripheral 

nervous system. It is about 40-50 cm in length and 1-1.5 cm in diameter.  The functions 

of the spinal cord include the transmission of sensory and motor signals between the brain 

and other parts of the body, and also acts as a minor reflex center. 

The spinal cord is surrounded and protected by the vertebral column. It is 

continuous with the medulla oblongata of the brainstem, to the first or second lumbar 

vertebra as shown fig 7. (Larry R. Squire, 2008). 
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 Figure 7: Spinal cord contained in the vertebral column 
(Modified from http://pixshark.com/spinal-nerves.htm) 

The vertebral column made up of total 33 vertebrae is arranged in five different 

regions: 7 cervical, 12 thoracic, 5 lumbar, 5 sacral and 4 coccygeal. The 5 sacral and 4 

coccygeal vertebrae are fused in adults, which form the sacrum and coccyx respectively. 
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Also, the spinal cord itself is divided into 31 different segmental levels each consisting 31 

pair of spinal roots coming out between of the corresponding vertebral segments(Eric P. 

Widmaier, 2006). Like the vertebral column, the spinal cord also has 8 cervical, 12 

thoracic, 5 lumbar, 5 sacral and 1 coccygeal segments. However, these spinal segments 

are not situated in the same vertebral segments. The first two spinal cord segments of the 

cervical and thoracic match the corresponding first vertebral segments, but the remaining 

segments not match. The C3-C8 segments are situated between C3 and C7 vertebral 

levels, T3-T12 cord segments between T3 and T8 and the L1-L5 cord segments between 

T9-L1 as shown in figure 6 (Drake et al., 2015) . 

2.2 Composition of Nervous System: 

The CNS is composed of grey matter and white matter. The grey matter has 

a pinkish-grey color and contains the cell bodies, dendrites, unmyelinated axons 

and axon terminals of neurons. The white matter is composed of myelinated axons 

connecting different parts of grey matter to each other. It is the myelinated axons 

which give the white color to the white matter.  

The composition of the brain and spinal cord is reversed as shown in the 

figure 8. The outer part of the brain is made up of grey matter, and the remaining 

part of the brain is made up of white matter. In the case of spinal cord, the grey 

matter of the spinal cord is a butterfly or H-shaped surrounded by the outer white 

matter. There is a hole in the center of the spinal cord known as the central canal 

which allows passage of the cerebrospinal fluid (CSF).  
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Figure 8: Reversed anatomy of the brain and spinal cord 
Based on the cellular structure, the CNS is composed of two types of cells; 

neurons and glial cells as shown in figure 9.  

 
Figure 9: Neuron & Glial Cells (Eric P. Widmaier, 2006) 

Modified from the types of glial cells. 

Microglia 

Neuron 

Astrocytes 

Oligodendrocytes 
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NEURON: 

The fundamental cellular unit of the nervous system is the nerve cell, or 

neuron. They use chemical synapses that can evoke electrical signals, called 

action potentials, to relay signals throughout the body. There are roughly 100 

billion neurons with different shapes and sizes present in the central nervous 

system.  

 

Figure 10: Diagrammatic representation of a neuron. (b) A neuron as observed through a 
microscope.  

A typical neuron is made up of three parts, the Soma or cell body, dendrites 

and axon as shown in figure 10. Dendrites are numerous thin extensions with 

branches, where they receive signals from other neurons in the form of nerve 

impulses. These signals are transferred to the soma or cell body. The soma 

consists of a nucleus and DNA material, and it is responsible of processing the 

information sent by the dendrites.  
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Neurons are categorized in three types; afferent, efferent and interneurons 

as shown in figure 11. Afferent neurons, also known as sensory neurons, transfer 

the information from the sensory organs of body to the CNS. These neurons 

respond to touch, light and sound and send signals to the brain and spinal cord. 

Efferent neurons or motor neurons that react to the signals from the CNS and 

trigger muscle movements in the body. Interneurons are found in the same region, 

where they are interconnected with neurons.  

 

Figure 11: Types of neurons and their locations. 
 

AXON: 

Every neuron consists of a single axon which is responsible for the 

propagation of signals to other neurons. An axon is a long, slender projection of a 

nerve cell, or neuron that conducts electrical impulses away from the neuron's cell 
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body or soma.  The average diameter of the axons in the CNS ranges from 0.2 to 

17µm, while the average in spinal cord is 1 to 1.5µm.  

 

Figure 12: Different parts of the axon 
 

The different parts of the axon is shown in the figure 12. Axon hillock, also 

known as initial segment, is the part connecting the axon to the cell body. It is in 

this location where the action potential initiates. The axon is wrapped by a protein 

rich bilayer of insulating material known as myelin sheath. The myelin sheath acts 

like an insulation allowing the effective transport of impulses. Another part of the 

axon known nodes of Ranvier are the spaces found between the myelin sheath, 

These nodes are responsible for the saltatory conduction, which is the 

transmission of action potential from node to node across the axon.  

GLIAL CELLS: 

In 1856, the famous German neuropathologist Rudolf Virchow first 

discovered neuroglia, and named them “nervenkitt” as shown in figure 13. He 

suggested that they were round shaped connective tissue and the purpose was to 
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fill up the extracellular space to provide structural support. (Somjen, 1988). It was 

believed that these cells did not play role in neurotransmission.  

 

Figure 13: Sketch made by Rudolf Virchow showing neuroglia as a connective tissue of the 
nervous system. (Somjen, 1988)  

 

However, post a century from the discovery of glial cells, our understanding 

about the diversity and functions of these cells has grown significantly enhanced. 

The main function of glial cells is to maintain homeostasis. The other functions are 

to provide support and nutrition, form myelin, and participate in signal transmission 

in the nervous system and to destroy and remove the carcasses of dead neurons 

(Somjen, 1988).   
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Glial cells are found in both the central nervous system as well as the 

peripheral nervous system. The different types of glial cells based on their location 

is shown in the figure 14.  

 

Figure 14: Figure showing the different types of neuroglia of the central and peripheral nervous 
system. 

 

The PNS glial cells include the satellite cells and Schwann cells. The 

satellite cells are small cells and surround the neurons in the peripheral ganglia 

(Hanani, 2005). Schwann cells are responsible for the myelination of the axons in 

the PNS. They show phagocytic property and help in regrowth of PNS neurons by 

the clearance of debris.  

The three types of CNS supporting cells are Astrocytes, Microglia and 

Oligodendrocytes.  These cells constitute half of the total volume of the brain and 
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spinal cord. The next section will discuss the phenotype, function and the role of 

glial cells in case of injury or disease condition, 

2.3 Types of Glial cells 

ASTROCYTES: 

Astrocytes are a type of star shaped process bearing glial cells which 

combine to form 30-65% of the total cells in the CNS. These cells are found close 

to the blood brain barrier, and prevents the entry of materials from the blood into 

the brain.  

The two main forms are the fibrous astrocytes and protoplasmic astrocytes. 

Another form is the radial glial cells which give rise to the astrocytes embryonically. 

Fibrous astrocytes are found in the white matter in the brain and spinal cord, while 

the protoplasmic astrocytes are found in the grey matter. Fibrous astrocytes exhibit 

vascular feet which connects the cell to the outside of the capillary wall. They have 

few organelles and show long unbranched cellular processes. Protoplasmic 

astrocytes possess a larger quantity of organelles, and exhibit short and highly 

branched processes. (Ren, 2010) 

The function of astrocytes range from response to central nervous system, 

information processing, and mechanical support to neurons as shown in figure 15. 

(Buffo et al., 2010). Astrocytes play a vital role in maintaining homeostasis of the 

CNS.  
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Figure 15: Functions of astrocytes. Upon CNS injury, activated astrocytes increase their 
homeostatic functions (a), the production of growth factors and cytokines, as well as the release 
of nucleotides and toxic compounds (b). Their secretion is regulated via complex autocrine and 

paracrine loops (b). Astrogliosis includes cell proliferation (c) and migration towards the lesion site 
(d). Reactive astrocytes participate in glial scar formation, and contribute to the resealing of the 
damaged blood–brain barrier, thus excluding infiltrating leukocytes and meningeal fibroblasts 

from the injured tissue (e) BBB, blood–brain barrier (Buffo et al., 2010). 

 

In response to CNS trauma or injury, the astrocytes get activated and 

undergo morphological changes. Reactive astrocytes migrate to the site of injury 

and undergo proliferation.  Also, there is increased production of intermediate 

filaments such Glial fibrillary acidic protein (GFAP) and vimentin and release of 

inflammatory mediators such as Interleukin -1 (IL-1), Tumor Necrosis Factor (TNF) 

and Substance P (SP).(Buffo et al., 2010). It is believed that these cytokines 

promote neurotoxicity (Liberto et al., 2004; Rao et al., 2012). It is suspected that 

astrocytes contribute to the sealing of the blood brain barrier in brain injury. (Bush 
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et al., 1999). Astrocytes are also a major component of the glial scar. The critical 

function of the glial scar is to restore the structural and chemical integrity of the 

CNS. The extended filaments get thicker and surround the injured area that seals 

the nervous/non-nervous tissue boundary. This helps in the prevention of any 

foreign body or infection to cause further damage to the CNS. However, the glial 

scar restricts the neuronal regrowth as the growth inhibitory molecules released by 

astrocytes abstains axonal extensions (Liuzzi and Lasek, 1987).  

MICROGLIA: 

First reported by Marinesco in 1986 as glial cells that get rid of dying 

neurons by phagocytosis.(Somjen, 1988) as shown in figure 16. 

 

Figure 16: Image of Marinesco who first suggested phagocytosis as a function of 
microglia (A) and a sketch drawn by him to show the structure of microglia (B).  (Somjen, 1988)  
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Over the years, researchers have discovered the different phenotypes and 

functions of the microglia. Microglia are the resident macrophages of the CNS and 

are known to be the scavenging cells within the parenchyma.(Aguzzi et al., 2013; 

Goldmann and Prinz, 2013; Ransohoff and Perry, 2009; Saijo and Glass, 2011). 

They compose approximately 10% of total glial cells, with a small somata and 

multiple processes (Nimmerjahn et al., 2005).  

Microglia are classified based on their morphology and functions. There are 

two morphologies demonstrated by microglia, i.e. ramified and amoeboid. In 

normal conditions, microglia are said to be in the ‘resting’ state and they exhibit 

ramified morphology. (Wieseler-Frank et al., 2005). The microglia consist of small 

soma with shorter processes compared to astrocytes. The term ‘resting state’ is a 

little misleading, since microglia is continuously scavenging the environment for 

any type of inflammation caused to injury to the CNS or entry of a foreign body like 

bacteria. They also contribute to the removal and clearance of toxic substances 

released by damaged neurons.  

Microglia are also known to remain activated due to injury to the axons 

(Smith, 2013). They are the first cells that arrive at the site of injury to induce the 

cascade of inflammatory mediators. (Parekkadan et al., 2008).  

 Once activated, they undergo morphological changes and retract their 

processes inwards demonstrating an amoeboid appearance. (Kreutzberg, 1996). 

The first stage of activation of microglia is the release of cytotoxic substances such 

as glutamate, reactive oxygen intermediates, such as hydrogen peroxide, and 
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reactive nitrogen intermediates, such as nitric oxide. These substances breakdown 

the foreign bodies into debris.  

The activated microglia are characterized as classical pro-inflammatory 

state (M1 Microglia) and alternatively activated state (M2 microglia). (Colton, 2009; 

David and Kroner, 2011). M1 microglia are responsible for antigen presentation. 

Once the debris are surrounded by the microglia, the M1 microglia start signaling 

of the T-cells which in turn increases inflammation. Therefore, it can be said that 

microglia are activated by inflammation and also, contributes in the increased 

inflammation by release of inflammatory mediators. The M2 microglia perform 

phagocytosis of dying cells, myelin and axonal debris.(Ghasemlou et al., 2010; 

Tanaka et al., 2009). These types of microglia are associated with repair, healing 

and remodeling of the injury neurons. In a review, Cherry et. al. studied the types 

of microglia and suggested that increased level of M2 microglia can be helpful for 

therapeutic treatments as shown in figure 17. 

 

Figure 17: Types of Microglia responses.  A) Microglia response to injury B) Microglia response to 
inflammation and C) Microglia response to therapy. (Cherry et al., 2014) 



 

31 

 

OLIGODENDROCYTES: 

 

Figure 18: Figure showing the myelinated axons connected to oligodendrocytes 
(Eric P. Widmaier, 2006) 

 

The glial cells also include oligodendrocytes, which are known as the myelin 

providing cells. As the name implies, they are small cells with shorter processes that get 

embedded in the myelin sheath wrapped around the axon as shown in figure 18. A single 

oligodendrocyte can provide up to 40 axons. The myelin sheath enables the faster 

transport and maintains the integrity of the axons. Since these cells are in direct contact 

with the axons, they contribute to the various neurodegenerative diseases associated with 

axonal injury such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and 

multiple sclerosis (MSA) (Liu and Zhou, 2013).  

Oligodendrocyte 

Myelinated 

Axon 
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CHAPTER 3 - MATERIALS & METHODS 

 
3.1 Animal Handling 

All animal handling procedures were approved by the Institutional Animal Care and 

Use Committee (IACUC), Wayne State University, Detroit. A total of 40 adult male 

Sprague Daley rats (Harlan, Indianapolis, IN) weighing 300 ± 29.93 grams were utilized 

for this study. The weights of the animals is provided in Appendix C. The rats were 

randomly divided into the two main groups namely Sham (n=16) and Blast (n=24) with 

acute (6 hours and 24 hours) and sub-acute (3 days and 7 days) survival periods as shown 

in the table 3 below. All rats had free access to food and water. 

 

Table 3: Survival Period groups: Rats classified into two groups with acute and sub-acute 

survival periods. 

3.2 Wayne State Shock Tube: 

There are various techniques available to create a blast wave using a shock tube 

such as detonation of charges, ignition of fuel/air mixtures, or by rupture of a membrane 

in a compressed gas driver (Bolander, 2012). A single-driver shock tube system activated 

by compressed gas is considered as an ideal apparatus for the generation of blast wave 

in an experimental setup for blast induced neurotrauma (BINT) (Sundaramurthy and 

Chandra, 2014). In fact, previous studies associated with BINT have used compressed 

gas-driven shock tubes to produce the primary blast injuries (Bolander et al., 2011; Cernak 
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et al., 2011; Rafaels et al., 2012; Svetlov et al., 2010). We will now discuss the 

methodology of creation of shock wave using a shock tube. 

The shock tube is made up of a driver chamber (pressurized) and a driven chamber 

(ambient). The driver chamber is the high pressure region and the driven chamber is the 

low pressure region shown in the figure 19. The driven chamber opens at one at one end, 

which is important in preventing excessive under pressure (Leonardi et al., 2011). The 

driver chamber and driven chamber are divided by the Mylar membrane. Usually, the 

length of the driven chamber is greater than the length of the driver chamber. 

 

 

The driver chamber is pressurized by compressed gas, until the Mylar membrane 

ruptures to release the gas into the driven chamber. The peak blast pressure is dependent 

on the thickness of the Mylar membrane (Sundaramurthy and Chandra, 2014). Since 

compressed gas was used to produce the blast wave in place of explosive, the wave is 

termed as shock wave.  

For this study, the custom-built shock tube (ORA Inc. Fredericksburg, VA) located 

at Wayne State University Bioengineering Department was used. This shock tube is 

capable of producing complex shock waves of different peak static overpressures up to 

150 psi. The shock tube consists of a metal section and transparent Lexan section. The 

first 30 inches of the metal section is the driver chamber, while the remaining 192 inches 

Figure 19: Figure showing the driver chamber and the driven chamber separated by 
the Mylar membrane 
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of the metal section and the 40 inches of Lexan section together form the driven chamber 

as shown in figure 20. The transparent Lexan section is used to view the location of the 

rat specimen in the shock tube.  

 

Figure 20: Wayne State Shock Tube showing the driver chamber and driven chamber with DASH 
system. 

 

For the placement of the rats, a metal stand was anchored to the ground and a 

pole was attached to a trolley system mounted on it as shown in figure 21. This pole was 
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used to place the rat specimen and sensor.  The rat specimen was placed 48 inches from 

the open end of tube. 

Figure 21: Wayne State Shock Tube showing the Lexan section and metal stand where 
the trolley system mounted to hold the rat and magnified view of the location of the rat. 

 
Prior to the induction of blast, calibrated Mylar sheets (GE Richards Graphics 

Supplies Inc., Landsville, PA) were inserted between the two chambers to allow the 

pressurization of driver chamber with helium gas. With the help of Mylar sheets of different 

thickness; 10 mil and 3mil, we were able to create the required driver pressure of 22 psi. 

Helium gas has the capability to replicate the short time course of the initial positive 

pressure pulse similar to the high explosive detonations in the open field. (Huber et al., 

2013). Therefore, helium is considered as an ideal gas to produce the shock wave. Upon 

the rupture of the Mylar sheets, a blast wave was generated which propagated through 

the driver chamber and developed into a Friedlander wave similar to a free-field blast 

wave.  
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The first sensor is placed in the driver section, and measures the pressure just 

before the rupture of the membrane. The second and third sensors are placed 2.4 meters 

apart in the driven chamber, and measures the static and dynamic pressure respectively. 

The last sensor is housed inside the pole below the animal mounted on the trolley system. 

This sensor is used to measure the total pressure. All the pressure measurements were 

collected at 250 kHz using a DASH 8HF data acquisition system (Astro-Med, Inc., West 

Warwick, RI) as shown in figure 22. This ensued consistent exposure pressures were 

maintained between the subjects.  

 

Figure 22: Image showing the driver pressure of 22psi on the DASH system. 

3.3 Preparation for Blast Induction 

Initially, the rats were anesthetized by a mixture of 3% isoflurane and 0.6L/min 

oxygen in an anesthesia chamber for 4 minutes. At the end of 4 minutes, the rats without 

any chest protection were harnessed on the pole mounted on the trolley system with a 

rostral cephalic orientation faced towards the shock wave while still maintaining 

anesthesia via a nose cone for an additional 2 min resulting in a total anesthesia duration 

of 6 min. The moving sled consists of a metal rod that houses the pencil below the rat as 
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shown in the figure 23 (Model: 137A22, PCB Piezotronics Inc.). A metal based harness was 

designed to hold the rat in rostocephalic position which helped to prevent the movement 

of the entire body. The harness was fixed to the blast end of the moving sled and was 

wrapped over the rats exposing only the head towards the blast.  After 6 min of anesthesia 

induction, the animals were positioned 49 inches from the open end of the shock tube for 

the induction of blast as explained in the earlier section. The Sham group animals were 

subjected to identical experimental procedures but not subjected to the blast overpressure 

(22psi).  

3.4 Surface Righting Time 

After the induction of blast, the rats were also monitored for duration to surface 

right (SR), which is considered as an indirect indicator of loss of consciousness (LOC) 

(Adams, 1986). A mesencephalic reflex that returns during recovery from 

unconsciousness resulting from anesthesia or brain injury prior to thalamocortical function 

is known as righting reflex (Alkire et al., 2007; Bignall, 1974). The duration of the righting 

reflex varies with the type of anesthesia and injury. For this study, the time taken for an 

animal to correct from a supine position to prone position as shown in the figure 23 

following blast overpressure was measured.  
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Figure 23: Diagram of a rat in supine position turning over to prone position, displaying 
the surface righting reflex following blast overpressure. 

Modified from (Yang et al., 2002) 
 

3.5 Termination & Perfusion 

Prior to the terminal perfusion, cerebrospinal fluid (CSF) and serum samples were 

collected from all animals for future biomarker studies. At end of their respective survival 

periods, the animals were anaesthetized by 50mg/kg of sodium pentobarbital. The depth 

of anesthesia was assessed by response to aversive pinching of the paws.  The rats were 

then placed in the sternal recumbency with the chest and front legs placed flat on the 

surgical bed. An incision was made at the atlanto-occipital region to reach the cisterna 

magna of the brain to collect the CSF. In a study conducted at Illinois State University, 

Pegg found that collection of cerebrospinal fluid (CSF) from the cisterna magna resulted 

in quick and reliable yields of large quantities (50–150 μl) in rats.(Pegg et al., 2010) For 

this study, a TB syringe with 26 x ½” gauge needle was inserted in the atlanto-occipital 

membrane followed by the underlying dura to collect 50-100 μl of CSF in 500μl centrifuge 

tube from each rat.  
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Following the extraction of the CSF, the rats were placed in the supine position to 

cut open the lateral chest wall and the overlying skin with a pair of blunt scissors on both 

sides of the sternum exposing the heart. Additionally, blood (1.5mL) was also collected 

directly in 2ml centrifuge tubes from the heart with the help of 26 x ½ “gauge needle. CSF 

and blood were centrifuged at 10,000 relative centrifugal force (rcf) for 5 minutes at and 

10 minutes respectively. Serum was separated from the blood and both CSF and serum 

samples were stored in -20 degree Celsius.  

22” gauge needle was introduced 

in the aorta via the apex of left ventricle 

and then 100 ml of saline was pumped 

into the aorta to flush out the blood. A cut 

was made in the right atrium to drain out 

the blood from the venous return as 

shown in figure 24. Then 400 ml of 4% 

cold paraformaldehyde was perfused in 

order to fix the animal. At the end of 

perfusion, the brain and spine were 

harvested and post fixed in 30% sucrose 

prepared in 4% paraformaldehyde (pH 

7.4) for future histological procedures. 

 

Figure 24: Transcardial perfusion of 4% 
paraformaldehyde 
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3.6 Tissue Collection and Processing 

Post fixation of the spine, laminectomy was performed and the spinal cord was 

exposed. Once the required spinal cord level was exposed, a pair of dorsal root ganglia 

(DRG) from each level of spinal cord were harvested and stored for future studies. The 

C2-C7 spinal cord was collected below the C1-C7 vertebrae and the T1-T8 spinal cord 

was collected from the T1-T8 vertebrae. As mentioned in the anatomy of the spinal cord, 

the lumbar spinal vertebrae and lumbar spinal cord are not in the same alignment. The 

lumbar spinal cord L1-L5 was harvested from the T11-L4 vertebrae. The approximate 

length of the cervical, thoracic and lumbar spinal cord segments were 1.5cm, 3 cm and 2 

cm respectively as shown in the figure 25 below: 

Figure 25: Spinal cord segments of a) cervical, b) thoracic and c) lumbar region harvested from 
the post fixed spine of rat 

To prepare the horizontal sections, respective spinal cord segments were placed 

in an acrylic brain matrix and a 1 cm long segment was cut. This 1cm long segment was 

placed in a plastic cup with optimum cutting compound (OCT), and allowed to freeze (-20 

degrees Celsius) to prepare a frozen block. This OCT embedded block was then affixed 

on to a chuck. Then 40µm thick horizontal frozen sections were cut using a cryostat (Leica 

CM 3020) and collected in 96 well plates filled with 0.1 M Phosphate-buffered saline 

(PBS). To avoid the degradation of the tissue, 3 drops of 4% paraformaldehyde were 

added to each well.  
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3.7 Immunohistochemistry 

To study the expression of astrocytes and microglia, sections from all three levels 

of the spinal cord were stained with anti-glial fibrillary acidic protein (GFAP) and anti-

ionized calcium binding adaptor molecule-1 antibodies respectively. For assessing axonal 

injury in cervical spinal cord, anti-beta-amyloid precursor protein also was used. Horizontal 

sections of the respective spinal cord from each animal were washed in 0.1 M PBS (3x2 

min) and incubated in citrate buffer (pH 6.0) at 90° C for 1 hour for antigen retrieval. The 

sections then were immersed in 0.6% of hydrogen peroxide for one hour at room 

temperature to quench endogenous peroxidase activity. Next, the sections were incubated 

overnight at 4°Cwith the following primary antibodies: anti-Glial Fibrillary Acidic Protein 

(GFAP; mouse polyclonal;1:5000; Cat# NE1015, Calbiochem, San Diego, CA, USA); anti-

Ionized calcium-Binding Adaptor molecule-1(IBA-1;rabbit polyclonal; 1:2000; Wako; 

Osaka, Japan) and anti- β-Amyloid Precursor Protein (β–APP; rabbit polyclonal; 1:250;Cat 

# 51-2700, Invitrogen, Camarillo, CA, USA) diluted in 1% bovine serum albumin (BSA, 

Sigma Aldrich, St Loius, MO, USA)with 2% normal goat serum (NGS, Vector Laboratories, 

Burlingame, CA, USA). The primary antibodies were omitted in the control sections. Next 

day, the sections were washed in 0.1 M PBS (3x2 min) and incubated in biotinylated 

secondary antibodies (Anti-Mouse; 1:1000; Vector; Burlingame, CA, USA or Anti-rabbit; 

1:1000; Vector; Burlingame, CA, USA) on a rotating platform for 1.5 hours at room 

temperature. The sections were then immersed in avidin-biotin complex (Vectastain ABC-

elite®, Vector). The peroxidase activity was then developed by brief incubation in 3, 3’-

diaminobenzidine (DAB) diluted in distilled water for 5-10 minutes. The stained sections 

were washed in 0.1M PBS (3×5 minutes), mounted on glass slides and allowed to dry 
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overnight. The slides were then dipped in containers filled with xylene (3x2mins) and cover 

slipped with DPX mountant (VWR; EC) which preserves the stain and dries quickly.  

3.8 Imaging and Quantification 

All stained sections were observed under a light microscope (Leica DMLB, Leica 

Microsystems Ltd, Heerburg, Switzerland) to visualize the expression of astrocytes, 

microglia and beta amyloid precursor protein (βAPP)  accumulation. Digital images were 

obtained using a digital camera system (ProgRes C7, JENOPTIK Laser Optik Systeme, 

GmbH) and taken at a single focal plane. 

For the quantification of astrocytes and microglia, first the entire slide was scanned 

at 5x magnification and then 5 specific locations were selected in the grey and white matter 

of the spinal cord. Then individual 10x images were taken of the selected location as 

shown in the figure 26.  

 

 

 

 

 

 

 

 

 

 Figure 26: The 5x scanned image of the entire section with the representative locations for the 5 

specific locations. (A) showing the grey matter quantification and (B) showing the white matter. 

A B 
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The accumulation of beta-amyloid precursor protein was measured by quantifying 

the number of the immunoreactive (IR) zones. The entire section was scanned and the 

images of the IR zones were taken. The presence of swollen axons, retraction bulbs and 

disruptive axons was used as the criteria to define the IR zones. The accumulation of beta-

amyloid precursor protein (βAPP) is an indicator of impaired axoplasmic transport, a 

component of traumatic axonal injury.  

To assess the proliferation of glial cells, quantitative analysis was done on the 10x 

digital images of the grey matter and white matter of the respective regions of the spinal 

cord .Each 10x digital images was opened in ImageJ, and a manual quantification was 

carried out. Using the cell counter tool, all the astrocytes and microglia present in a given 

image were manually counted and stored in an excel sheet for further statistical analysis 

as shown in the figure 27.  

 

 

Figure 27: The 5x scanned image of the entire section with the representative 
locations for the 5 specific locations 
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3.9 Statistical Analysis 

The statistical significance of all data were analyzed using SPSS (Version 22, 

SPSS Inc., Chicago, IL).  The sham group and blast group were compared using the 

Mann-Whitney Wilcoxon Test. To study the temporal alterations between the acute and 

sub-acute survival periods (6 hours, 24 hours, 3 days and 7days) of the sham and blast 

group, One way Analysis of Variance (ANOVA) was performed. Post-Hoc test was done 

to analyze the difference within the groups using the Tukey test. Also, the presence of 

beta-amyloid precursor protein was analyzed using One-way Analysis of Variance 

(ANOVA). A p value of less than 0.05 was deemed significant.  
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CHAPTER 4 - RESULTS 

4.1 Surface right time  

It was observed that the rats in blast group (n=24) showed significantly prolonged 

SR duration time compared to sham group rats (n=16). Compared to the SR duration of 

124.875±71.39 seconds in sham rats, the average SR duration in blast rats was a 

significant 187.80± 76.84 seconds (p<0.05) as shown in figure 28. 

 

Figure 28: Plot showing mean SR duration of sham and blast group rats. * indicates significant 
difference (p<0.05) in SR duration of blast group rats compared to sham rats.  

 

4.2 Alterations in the expression of astrocytes 

The spinal cord sections were immunostained using antibodies against Glial 

Fibrillary Acidic Protein (GFAP), an intermediate filament protein expressed by astrocytes, 

to study the alterations in the expression of astrocytes. GFAP is considered an ideal 

marker to assess changes in the expression of astrocytes upon injury (Ransom, 1991).  
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We assessed blast induced alterations in the expression of astrocytes at different 

levels of the spinal cord.  The blast group spinal cord showed significant proliferation of 

astrocytes compared to sham group (p<0.05) as shown in figure 29. 

 

Figure 29: Histogram showing alterations in the expression of astrocytes in the sham and blast 
group spinal cord. * indicates significant difference (p<0.05) in the expression of astrocyte in the 

blast group compared to the sham group. 

 

CERVICAL SPINAL CORD- ASTROCYTE CHANGES 

To study the proliferation changes in the expression of astrocytes, respective 

digital images were taken from the sham and blast group as shown in figure 30. Increased 

GFAP reactive astrocytes were observed in the blast group compared to the sham group.   
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Figure 30: Images showing representative GFAP expressing astrocytes in the cervical spinal 

cord. A: Sham group B. Blast group. Scale Bar: 100 um= 10x magnification. 
 

Additionally, the number of astrocytes in the grey matter and white matter regions 

were quantified seperately to better understand the expression of astrocytes in the cervical 

spinal cord. In both the regions, there was significant increase observed in the blast group 

in comparison to the sham group as shown in figure 31. The expression of astrocytes was 

higher in the grey matter compared to the white matter. All the alterations observed in the 

grey matter and white matter regions in the blast group were statiscally significant (p 

<0.05) for the respective regions of the blast group. 
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Figure 31: Histogram showing alterations in the expression of astrocytes in the grey matter and 
white matter of cervical spinal cord. * indicates significant difference (p<0.05) in the expression of 

astrocyte in the blast group compared to the sham group. 

 

Astrocyte proliferation in cervical spinal cord Grey Matter at various post 

blast time points 

In the grey matter of the cervical spinal cord, the expression of astrocytes showed 

significant elevation in the blast group at all survival periods compared to corresponding 

sham group as shown in figure 32. Also, there was no significant difference observed in 

the expression of astrocytes at various survival periods of the sham group. In the blast 

group, although the proliferation of astrocytes was reduced at 24 hours post exposure it 

was still significant compared to the corresponding sham counts.  The astrocyte counts 

increased again at 3 days survival period with their expression being reduced at 7days 
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that remained higher than the sham group. All the alterations in the blast group were 

statistically significant for all survival periods compared to their corresponding sham 

counterparts (p<0.05). 

 

Figure 32: Histogram showing alterations in expression of astrocytes in the grey matter of the 
cervical spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 days) 
following blast overpressure. * indicates significant difference (p<0.05) in expression of astrocytes 

in blast group compared to sham group. 

 

Astrocyte proliferation in cervical spinal cord White Matter at various post 

blast time points: 

In the white matter of the cervical spinal cord, the expression of astrocytes was 

significantly elevated at 6 hours and 24hours survival period in the blast group compared 

to the corresponding sham group (p<0.05) as shown in figure 33. There was peak 

elevation observed at 6 hour survival period, which reduced at the other survival periods. 
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Although, high white matter astrocytes counts were observed at 3 days and 7 days post 

blast there was no significant difference compared to those in sham. 

 

Figure 33: Histogram showing alterations in expression of astrocytes in the white matter of the 
cervical spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 days) 

following blast overpressure. . * indicates significant difference (p<0.05) in the expression of 
astrocytes in blast group compared to sham group. 

 

THORACIC SPINAL CORD ASTROCYTE CHANGES 

Similar to the cervical region as mentioned earlier, respective images of the sham 

group and blast group from the thoracic spinal cord are shown in figure 34.  
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The grey matter and white matter regions were assessed to study the expression 

of astrocytes in the thoracic spinal cord. In both regions, there was significant increase 

observed in the blast group in comparison to the sham group as shown in figure 35. 

 

  

Figure 34: Image showing the expression of astrocytes in the thoracic spinal 
cord. A: Sham group B. Blast group. Scale Bar: 100 um= 10x magnification. 
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Figure 35: Histogram showing alterations in the expression of astrocytes in the grey matter and 
white matter of thoracic spinal cord.* indicates significant difference (p<0.05) in expression of 

astrocyte in blast group compared to sham. 
 

The alterations in the expression of astrocytes was quantified for grey and white 

matter regions of the thoracic spinal cord separately to better understand their temporal 

distribution. 

Astrocyte proliferation in thoracic spinal cord Grey Matter at various post 

blast time points 

The expression of astrocytes in the grey matter of the thoracic spinal cord, showed 

significant elevation in the blast group at all survival periods compared to Sham group as 

shown in figure 34. There was an increased expression of astrocytes at 6hours, which 

reduced at 24hours post exposure. In the 3 days following exposure, the expression 

increased. The expression of astrocytes reduced at 7days, however it remained higher 
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than the Sham group. The peak elevation in the expression of astrocytes was observed 

at 3 days following blast exposure. All the alterations in the blast group were statistically 

significant for all survival periods compared to the corresponding sham counts. (p<0.05). 

 

Figure 36: Histogram showing alterations in expression of astrocytes in the grey matter of the 
thoracic spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 
days) following blast overpressure.* indicates significant difference (p<0.0)) in expression of 

astrocyte in blast group compared to sham. 
 

Astrocyte proliferation in cervical spinal cord White Matter at various post 

blast time points 

In the white matter of the thoracic spinal cord, the expression of astrocytes showed 

significant elevation at 24 hours and 3days of the Blast group compared to Sham group 

as shown in figure 37 (p<0.05). A slight drop was observed at 24hours post exposure 

compared to 6hours following blast overpressure, and there was an increase again at 3 
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days survival period compared to the sham group. The expression of astrocytes reduced 

at 7days and similar to the Sham group.  

 

Figure 37: Histogram showing alterations in expression of astrocytes in the white matter of the 
thoracic spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 
days) following blast overpressure. * indicates significant difference (p<0) in expression of 

astrocytes in blast group compared to sham. 
 

 
LUMBAR SPINAL CORD ASTROCYTE CHANGES 

Similar to the qualitative and quantitative analysis for the cervical and thoracic 

regions, the lumbar region was studied for the expression of at various survival periods. 

The images astrocytes from the sham group and the blast group are shown in figure 38.  
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Figure 38: Image showing the expression of astrocytes in the lumbar spinal cord. A: Sham 

group B. Blast group. Scale Bar: 100 um= 10x magnification. 

 

The grey matter and white matter regions were measured for the expression of 

astrocytes in the lumbar spinal cord. In both regions, there was significant increase 

observed in the blast group in comparison to the sham group as shown in figure 39. The 

gray matter showed higher number of astrocytes compared to the white matter in the 

lumbar spinal cord. 
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Figure 39: Plot showing alterations in the expression of astrocytes in the grey matter and white 

matter of lumbar spinal cord.* indicates significant difference (p<0.05) in expression of astrocyte 
in blast group compared to sham. 

 

The extent of astrocyte expression was quantified for grey and white matter 

regions of the lumbar spinal cord separately to better understand the temporal alterations 

witnessed at the various survival periods. 

Astrocyte proliferation in lumbar spinal cord Grey Matter at various post 

blast time points 

The expression of astrocytes in the grey matter showed significant elevation in the 

blast group at all survival periods compared to Sham group as shown in figure 40. There 

was increased expression of astrocytes at 6hours, which reduced at 24hours post 

exposure. In the 3 days following exposure, the expression increased. The expression of 

astrocytes reduced at 7days, however it remained higher than the Sham group. The peak 
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elevation in the expression of astrocytes was observed at 6 hours following blast 

exposure. The expression of astrocytes was higher in the lumbar spinal cord compared to 

the other levels of the spinal cord. All the alterations in the blast group were statistically 

significant for all survival periods. (p<0.05). 

 

Figure 40: Histogram showing alterations in expression of astrocytes in the grey matter of the 
lumbar spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 days) 
following blast overpressure.* indicates significant difference (p<0.05) in expression of astrocyte 

in blast group compared to sham. 
 

Astrocyte proliferation in lumbar spinal cord White Matter at various post 

blast time points 

In the white matter of lumbar spinal cord, the expression of astrocytes showed 

significant elevation at 6 hours, 3 days and 7 days of the Blast group compared to Sham 

group as shown in figure 41. Although, the proliferation of astrocytes decreased further at 

7days, it stayed significantly elevated compared to sham group.  
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Figure 41: Histogram showing alterations in expression of astrocytes in the white matter of the 
lumbar spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 days) 
following blast overpressure.* indicates significant difference (p<0.05) in expression of astrocyte 

in blast group compared to sham. 

 

SPATIAL ALTERATIONS IN THE EXPRESSION OF ASTROCYTES: 

Further, we studied the spatial alterations in the expression of astrocytes in the 

grey matter and white matter at the different levels in the spinal cord The spatial alterations 

in the grey matter were studied at the cervical, thoracic and lumbar spinal cord as shown 

in the figure 42. Where as the spatial alterations in the white matter were studied at the 

cervical, thoracic and lumbar spinal cord as shown in the figure 43.  In the grey matter, 

the lumbar region showed a high number of astrocytes compared to those at thoracic and 

cervical regions.  In the white matter, the number of astrocytes showed no specific pattern 

with the respect to various regions.  Describe what you see in the chart: high lumbar 
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number at 6 hours with cervical region showing second highets at 6 hours post blast.  The 

counts in thoraci showd a gradual increasing trend with a peak by 3 days compared to the 

lumabr and cervical counts.   

 

Figure 42: Plot showing the spatial alterations in the expression of astrocytes in the grey matter of 

cervical, thoracic and lumbar spinal cord in the sham and blast group (6hrs, 24hrs, 3days and 

7days). * indicates significant difference (p<0.05) in expression of astrocytes in blast group 

compared to sham. 
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Figure 43: Plot showing the spatial alterations in the expression of astrocytes in the white matter 
of cervical, thoracic and lumbar spinal cord in the sham and blast group (6hrs, 24hrs, 3days and 

7days). * indicates significant difference (p<0.05) in expression of astrocytes in blast group 
compared to sham. 

 

All the regions of the spinal cord showed siginificant proliferation in the expression 

of astrocytes in the blast group compared to the sham group. Although the expression of 

astrocytes in the cervical spinal cord showed significant difference at the 6 hours and 24 

hours, while the levels decreased at the other survival periods, and closer to the sham 

group counts. The level of proliferation was highest at the lumbar region at all survival 

periods (not true at 24 hrs, not true when compared to thoracic at 3 days) 
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4.3 Alterations in the expression of microglia 

The spinal cord sections were stained using Ionized calcium Binding Adaptor 

molecule-1 (IBA-1) antibody to assess the expression of microglia in blast and sham 

animals. IBA-1 is considered as an ideal marker for both resting and activated microglia 

(Ahmed et al., 2007). We were able find morphological differences in the expression of 

the microglia in the blast group compared to the sham group as shown in figure 44. The 

microglia in the sham group demonstrated a ramified morphology, while the blast group 

microglia was amoeboid shape with retracted processes.   
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Figure 44: Morphological changes in the expression of microglia in the sham group (A) and blast 
group (B) at 40x magnification. 

 

We quantified microglia in the different levels of the spinal cord to observe the 

effects of blast overpressure on their proliferation. The Blast group showed significant 

proliferation of microglia compared to Sham group. (p<0.05) as shown in figure 45. 
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Figure 45: Plot showing alterations in the expression of microglia in the sham and blast group. * 
indicates significant difference (p<0.05) in expression of microglia in blast group compared to 

sham. 
 

CERVICAL SPINAL CORD- MICROGLIA CHANGES 

To study the proliferation changes in the expression of microglia, respective digital 

images were taken from the sham and blast group as shown in figure 44. Increased 

number of microglia were observed in the blast group compared to the sham group. 

 

 
 

 

Figure 46: Image showing the expression of microglia in the cervical spinal cord. A: Sham 
group B. Blast group. Scale Bar: 100 um= 10x magnification. 
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Futher, we studied the expression of microglia in the grey matter and white matter 

of the respective cervical, thoracic and lumbar spinal cord. In both the regions, there was 

significant difference between the blast group and to the sham group as shown in figure 

47. However, the microglia in the blast group continued to show a amoeboid appearance 

compared to the ramified appearance of sham group with their numerous processes.  

 

Figure 47: Histogram showing alterations in the expression of microglia in the grey matter and 
white matter of cervical spinal cord. * indicates significant difference (p<0.05) in the expression of 

microglia in the blast group compared to the sham group. 

 

The expression of microglia were quantified for grey and white matter regions of 

the cervical spinal cord separately to better understand the temporal alterations witnessed 

at the various survival periods. 
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Microglia proliferation in cervical spinal cord Grey Matter at various post 

blast time points: 

In the cervical spinal cord, the expression of microglia showed significant 

difference at all survival periods of the blast group compared to the corresponding sham 

group. (p<0.05). There was a peak elevation in the number of microglia observed at 6 hour 

survival period, which reduced at 24 hours and 3 days following blast exposure albeit at 

significant levels compared to the corresponding sham groups. However, the number of 

microglia increased by the 7 days survival period, which was closer to the 6 hour survival 

period.  

 

Figure 48: Histogram showing alterations in expression of microglia in the grey matter of the 
cervical spinal cord in the sham and blast group at various acute and sub-acute periods (6hours, 

24 hours, 3 days and 7 days) following blast overpressure.* indicates significant difference 
(p<0.05) in expression of microglia in blast group compared to sham. 

 



 

66 

 

Microglia proliferation in cervical spinal cord White Matter at various post 

blast time points: 

The expression of microglia showed significant difference in all survival periods of 

the Blast group compared to the Sham group. (p<0.05). There was a peak expression 

observed at 6hour survival period, which reduced at 24 hours following blast exposure. A 

drop was demonstrated in the expression of microglia at the 3 days following blast 

overpressure which was significantly less compared to the sham group.  However, by 7 

days post blast, the number of microglia was elevated reaching levels higher than those 

at 24 hours post blast.  

 

 

Figure 49: Histogram showing alterations in expression of microglia in the white matter of the 
cervical spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 days) 
following blast overpressure.* indicates significant difference (p<0.05) in expression of microglia 

in blast group compared to sham. 
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THORACIC SPINAL CORD MICROGLIA CHANGES 

The images of the sham group and blast group are shown in figure 48. It was 

observed that the microglia in the sham group demonstrated the ramified morphology, 

while the blast group demonstrated amoeboid shrunken phenotype with shorter processes 

similar to those seen in the cervical spinal cord. 

  

Figure 50: Image showing the expression of microglia in the thoracic spinal cord. A: 
Sham group B. Blast group. Scale Bar: 100 um= 10x magnification. 

 

The grey matter and white matter regions were measured for the expression of 

microglia in the lumbar spinal cord. In both regions, there was no significant increase in  

the blast group in comparison to the sham group as shown in figure 51. 
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Figure 51: Histogram showing alterations in the expression of microglia in the grey matter and 
white matter of thoracic spinal cord 

 

The expression of astrocytes were quantified for grey and white matter regions of 

the thoracic spinal cord separately to better understand study the temporal alterations 

witnessed at the various survival periods. 

Microglia proliferation in thoracic spinal cord Grey Matter at various post 

blast time points 

The expression of microglia in the grey matter of the thoracic spinal cord showed 

significant elevation only at 6 hours in the Blast group compared to Sham group as shown 

in figure 52.No significant difference was observed between the sham and blast group at 

other time periods. Grey matter and white matter microglia counts were not different 
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between blast and sham group, albeit slightly higher number were observed at 3 and 7 

days in the blast group.  

 

Figure 52: Histogram showing alterations in the expression of microglia in the grey matter of the 
thoracic spinal cord in the sham and blast group at various acute and sub-acute periods (6hours, 

24 hours, 3 days and 7 days) following blast overpressure.* indicates significant difference 
(p<0.05) in expression of microglia in blast group compared to sham. 

 

 

Microglia proliferation in cervical spinal cord White Matter at various post 

blast time points 

The expression of microglia in the white matter of the thoracic spinal cord showed 

significant elevated number only at 6 hours in the blast group compared to Sham group 

as shown in figure 42. However, there were no significant differences observed between 

the sham and blast group at other time periods. 
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Figure 53: Histogram showing alterations in expression of microglia in the white matter of the 
thoracic spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 
days) following blast overpressure.* indicates significant difference (p<0.05) in expression of 

microglia in blast group compared to sham. 
 

LUMBAR SPINAL CORD MICROGLIA CHANGES 

The images of the sham group and blast group are shown in figure 51. It was 

observed that the microglia in the sham group demonstrated the ramified morphology, 

while the blast group demonstrated amoeboid shrunken phenotype with shorter processes 

similar to those seen in cervical and thoracic region.  
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Figure 54: Image showing the expression of microglia in the lumbar spinal cord. A: Sham group 

B. Blast group. Scale Bar: 100 um= 10x magnification. 

 

There was no siginificant difference observed inthe microglial counts in  the grey 

matter and white matter regions in the blast group compared to the sham group as shown 

in figure 44. 

 

Figure 55: Histogram showing alterations in the expression of microglia in the grey matter and 
white matter of lumbar spinal cord. 
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The number of microglia were quantified for grey and white matter regions of the 

lumbar spinal cord separately to study their temporal alterations  

Microglia proliferation in cervical spinal cord Grey Matter at various post 

blast time points 

The expression of microglia in the grey matter of the lumbar spinal cord showed 

no significant elevated profiles in all survival periods of the blast group compared to sham 

group as shown in figure 56.  

 

Figure 56: Histogram showing alterations in the expression of microglia in the grey matter of the 
lumbar spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 days) 
following blast overpressure.* indicates significant difference (p<0.05) in expression of microglia 

in blast group compared to sham. 
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Microglia proliferation in cervical spinal cord White Matter at various post 

blast time points 

In the white matter of lumbar spinal cord, the expression of microglia showed no 

significant elevation at any of the survival period of the blast group compared to Sham 

group as shown in figure 57.  

 

 

Figure 57: Histogram showing alterations in the expression of microglia in the white matter of the 
lumbar spinal cord at various acute and sub-acute periods (6hours, 24 hours, 3 days and 7 days) 
following blast overpressure.* indicates significant difference (p<0.05) in expression of microglia 

in blast group compared to sham. 
 

 

4.5 SPATIAL ALTERATIONS IN THE EXPRESSION OF MICROGLIA: 
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Similar to the astrocytes, we also studied the spatial alterations in the expression 

of microglia in the grey matter and white of the spinal cord. The expression of microglia in 

the grey matter for the different regions of the spinal cord was studied as shown in figure 

58.  

 

 

 

From this plot, it was observed that the cervical region had significant elevations 

in the expression of micrglia at all survival periods,  and the thoracic region at 6 hours 

Figure 58: Plot showing the spatial alterations in the expression of microglia in grey matter of 
cervical, thoracic and lumbar spinal cord in the sham and blast group (6hrs, 24hrs, 3days and 

7days). * indicates significant difference (p<0.05) in expression of microglia in blast group 
compared to sham. 
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following blast overpressure. However, the lumbar region did not show any significant 

difference to the corresponding sham group.  

We also studied the spatial alterations in the expression of microglia in the white 

matter of the spinal cord was studied as shown in figure 59.  

 

Figure 59: Plot showing the spatial alterations in the expression of microglia in the white of 

cervical, thoracic and lumbar spinal cord in the sham and blast group (6hrs, 24hrs, 3days and 

7days). * indicates significant difference (p<0.05) in expression of microglia in blast group 

compared to sham. 

From the plot, it was observed that white matter of the cervical region had 

significant elevations in the expression of micrglia at all survival periods except at 3 day 

survvial period. Although the level of expression for thoracic region was significant at the 

6 hours following blast overpressure, the other survival periods showed no such 
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significance. All the survival periods for the cervical spinal cord were statistically significant 

for the blast group compared to blast group (p<0.05). 

4.4 Axonal Injury 

Immunohistochemistry procedures were used to stain beta-amyloid precursor 

protein, which is a marker used to study axonal injury(Gentleman et al., 1993). The 

immune-reactive (IR) zones were counted in the cervical spinal cord from the different 

acute and sub-acute survival periods. The presence of swollen axons, retraction bulbs 

and APP accumulation were considered to define the IR regions.  

In sham group animals, no prominent presence of IR zones were observed in the 

cervical spinal cord in the figure 60 (Figure A and B) 6hours and 7days, while the blast 

group rats demonstrated several immune-reactive zones. Swollen and vacuolated axons 

could be found as early as 6 hours following blast exposure (22psi) (Figure C and D). 

Beta-APP reactive IR zones could be seen in several locations of the grey and white 

matter of the cervical spinal cord of the 24 hours blast group (Figure E and F). At 3 days 

post blast overpressure, intense staining of beta-APP with axons showing beaded 

appearance was found as shown in figure (G and H). Also, there were APP deposits seen 

in the cervical spinal cord at 7 days following blast overpressure as shown in figure (I and 

J). 
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G H 

I J 

Figure 60: Representative images of immune-reactive (IR) zones in the cervical cord from the 
respective sham (A and B), 6 hours (C and D), 24 hours (E and F), 3 days (G and H) and 7 days 

(I and J) groups. 
Furthermore, quantitative analysis was done to study the presence of beta-amyloid 

precursor protein in the cervical spinal cord at the different acute and sub-acute survival 

periods as shown in figure 61. 
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Figure 61: Plot showing the presence of beta-amyloid precursor protein in the sham and blast 
group at various acute and sub-acute survival periods. 

The results indicated greater occurrence of beta-amyloid precursor protein in the 

blast group in comparison to the sham group (p<0.05). Also, there was early presence of 

beta-APP at 6 hours which gradually increased at other periods. The highest occurrence 

was observed at 7 days following blast exposure.  

CHAPTER 5 - DISCUSSION 

Prolonged Surface Rise time 

Many studies report that loss of consciousness (LOC) is an indirect indicator for 

blast injury (Adams, 1986; Li et al., 2011). For that purpose, many researchers monitored 

SR time as an indirect indicator to study LOC in animal experiments of TBI (Cernak et al., 

2011). In this study, it was observed that the blast group animals demonstrated 



 

80 

 

significantly longer SR time in sham animals compared to the sham group. While both 

groups were subjected to identical procedures for the induction of anesthesia, the 

prolonged SR time in blast animals supports their loss of consciousness as a potential 

consequence of blast injury. In fact, loss of consciousness up to 30 minutes in humans is 

considered as a sign of mild traumatic brain injury as per the Defense and Veterans Brain 

Injury Center (DVBIC, 2015). 

 Alterations in expression of astrocytes: 

In the current study, we observed similar morphological changes in the expression 

of astrocytes in all levels of the spinal cord following blast. The astrocytes demonstrated 

broader cell body with thicker extended processes suggesting potential morphological 

changes post blast exposure. Upon injury, the processes get thicker and surround the 

damaged region. However, in our study there was no blunt injury to the spinal cord, but it 

can be inferred that the morphological alteration of astrocytes could be a sign of injury to 

maintain the homeostasis of the nervous system. Previous studies have shown alterations 

in the morphology and expression of astrocytes following blast induced traumatic brain 

injury and spinal cord injury as mentioned in the section 1.3.  

The vital function of astrocytes is to maintain the homeostasis of the CNS, 

therefore it is reasonable to suspect that changes observed in the appearance would be 

response to injury (Ridet et al., 1997; Vernadakis, 1996). Many studies have shown 

increased levels of GFAP, a sign of reactive astrocytes in the brain in response to the blast 

overpressure using different animal models (Bauman et al., 2009; Kamnaksh et al., 2011; 

Miller et al., 2015; Vandevord et al., 2012).  Farooque et. al. showed increased expression 

of reactive astrocytes in the rat spinal cord compression model (Farooque et al., 1995). In 

a study by Kallakuri and colleagues on rats subjected to similar experimental methods, 
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showed increased expression of GFAP in the brain following exposure to 22psi 

overpressure (unpublished data). Our findings from the blast exposed spinal cord supports 

the observed changes are similar to those in blast exposed brain and spinal cord injury 

models.  

Furthermore, we studied astrocytic alterations in the grey matter and white matter 

of the spinal cord at the various survival periods. As explained in section 3.1, the grey 

matter is surrounded by the white matter in the spinal cord unlike the brain. In traumatic 

brain injury models, white matter region is known to be the most damaged site of injury 

(Osier et al., 2015). However, the expression of astrocytes in our study were significantly 

higher in the grey matter of the spinal cord in comparison to the white matter following 

blast overpressure. This phenomenon needs to be further investigated to better 

understand the mechanism of these underlying cellular changes.  

Moreover, our findings show significant temporal proliferation of astrocytes at all 

three levels of the spinal cord. The peak proliferation of astrocytes was observed at 3 days 

following blast overpressure in both grey matter and white matter at all levels. Although, 

the expression of astrocytes dropped at 7days post exposure, it was still significantly 

higher in comparison to the corresponding sham group. These results suggest that the 

astrocytes remained activated in all the three levels of the spinal cord 7 days following 

blast overpressure.  

In a sciatic chronic constriction injury (CCI) study, Garrison et. al. showed the 

increased expression of astrocytes using GFAP staining in the lumbar spinal cord was 

related to pain. They used pharmacological treatment to inhibit exaggerated pain, which 

in turn restrained the activation of astrocytes (Garrison et al., 1991). Various investigators 

have shown that over activation of astrocytes leads to the release of inflammatory 
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mediators such as Interleukin-1 (IL-1), Tumor Necrosis Factor-alpha (TNF-α), Substance 

P (SP), which in turn increase neurotoxicity (Liberto et al., 2004; Rao et al., 2012). These 

pro-inflammatory mediators are responsible to recruit the immune cells to the site of injury 

or infection which in turn may result in increased inflammation and cause exaggerated 

pain in the body.  

Thus, it was found that blast induced spatial and temporal alterations at all the 

levels of the spinal cord. Therefore, it is reasonable to suspect that these alterations may 

be the result of blast overpressure.  

Alterations in expression of microglia: 

We were able to show proliferation of microglia using IBA-1 antibody, which is an 

ideal marker used to stain both resting and activated microglia (Ahmed et al., 2007). 

Differential expression of microglia was witnessed in the sham group and blast group. 

While the sham group demonstrated the typical ramified shape of the microglia which 

indicates that they are in ‘resting state’, the blast group showed an activated phenotype of 

microglia i.e. the amoeboid shape. Ravish et. al. defined the distinct phenotypes and 

activation levels as shown in table 2 below:  

 

Table 4: Different phenotypes and levels of microglia activation 
(Raivich et al., 1999) 
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Further investigation is needed to better understand the morphology and type of 

activated microglia i.e. M1 and M2. As mentioned earlier, M1 microglia is responsible for 

the release inflammatory mediators such as IL-1β, TNFα, which are responsible of fighting 

injury or infection, while M2 microglia play a vital role in repair, healing and remodeling of 

neurons by releasing the pro-inflammatory mediators such as IL-10, transforming growth 

factor beta (TGFβ) (Tanaka et al., 2009). It is difficult to study the phenotypical changes 

in the microglia and the level of inflammation using a single marker, therefore it is 

suggested to perform dual labelling immunohistochemical procedures combining 

cytokines such as IL-1β, TNFα, IL-10 and TGF1β with microglial marker further distinguish 

the type of microglia. The M1 type microglia is a fully activated state where they appear 

amoeboid in shape, while the M2 is partially activated with ramified appearance. The 

presence of M2 microglia is highly recommended since it is beneficial to the repair, 

remodeling and growth. Also, the cytokines released by M2 microglia are known to block 

the further microglial activation and neuronal damage (Sharma et al., 2011; Spittau et al., 

2013).  

The level of expression of microglia demonstrated elevated profiles in the blast 

group compared to sham group of the spinal cord. On further assessment of the 

expression of microglia in the grey matter and white matter in the different levels of spinal 

cord, the proliferation of microglia was only significant in the cervical region. Furthermore, 

the temporal alterations in the expression of spinal cord at all three levels of the spinal 

cord was studied. Unlike astrocytes, it was observed that only the cervical spinal cord 

showed significant temporal alterations in the expression of microglia at all acute and sub-

acute survival periods. Although, there were phenotypical changes observed in all the 

levels of the spinal cord, there was no significant proliferation observed in the thoracic and 
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lumbar spinal cord. We propose that the shorter distance and greater intensity of the blast 

wave at the cervical spinal cord level may contribute to the increased levels of microglia. 

At 6 hours following blast overpressure, although the white and grey matter of the thoracic 

spinal cord showed significant elevated profiles, there was no significant difference 

observed at other time points. Overall, the thoracic spinal cord of the blast group showed 

higher expression of microglia, however no significant difference was detected in both 

grey matter and white matter. Similarly, there was no significant difference observed in 

both regions of the lumbar spinal cord compared to their corresponding to their 

corresponding sham. 

Another notable event observed was at 3 days following blast overpressure, there 

was decreased expression of microglia observed in the white matter of all three levels of 

blast group in comparison to the sham group. It was significantly lower for the cervical 

spinal cord. It would be interesting to further identify the reason for the drop in the 

expression. This expression increased at the 7 days post exposure, and was close to the 

expression in the 6 hour survival period. An interesting event witnessed in the current 

findings is the rise in the expression of microglia at 7 days following blast overpressure at 

the cervical spinal cord. This indicates that microglia continued to remain in activated state 

even after 7 days post blast exposure. Whether this increased proliferation remains 

elevated past 7 days remains to be investigated.  

As mentioned earlier, activated microglia are responsible for the release of pro-

inflammatory and inflammatory mediators. It is apparent that microglia gets activated at a 

slight change in the environment of the CNS, which may be responsible to harmful effects 

on the CNS (Kreutzberg, 1996). Our results show the microglia in the spinal cord get 

activated following blast overpressure, therefore further research is required to better 
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understand the activated form of microglia. This future research will detect if over 

activation of microglia is detrimental to the spinal cord.  

To summarize, blast induced temporal alterations in the expression of microglia 

were observed only in the cervical spinal cord with phenotypical alterations being 

observed at all the levels of the spinal cord. 

Axonal Injury 

Many investigators reported the presence of axonal injury (AI) in bTBI in the form 

of increased expression of APP deposits (De Gasperi et al., 2012; Du et al., 2013; Kuehn 

et al., 2011). All the current research associated with TAI following blast overpressure 

were focused towards brain, while no such injury changes have been studied in the spinal 

cord. TAI is characterized by neurofilament compaction (NFC) and impaired axonal 

transport (IAT). In this study we attempted to assess only IAT in the spinal cord using 

Beta-Amyloid Precursor Protein (β-APP), a marker used to assess the extent of TAI. 

Cervical spinal cord sections were stained using β-APP antibody to investigate the 

extent of axonal injury. The occurrence of β-APP immune-reactive (IR) zones in the 

cervical spinal cord in the form of swollen axons with beaded appearance were witnessed 

as early as 6 hours following blast overpressure (22psi). On further assessment, the level 

of expression increased at other survival periods with most frequent appearances of 

retraction bulbs and β-APP deposits at 7days post blast exposure. Koliatsos et. al. have 

shown evidence of axonal injury in the form of beta amyloid precursor protein swellings 

and retraction balls in mice corpus callosum at 7 days following blast overpressure 

(Koliatsos et al., 2011). Our findings support and augment this evidence by showing the 

highest presence of swollen axons with retraction balls at the 7 days post exposure, 

suggesting that there was impairment in the axonal transport even in cervical spinal cord 
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axon. In a rodent model, Czeiter et. al. identified traumatic axonal injury invoked by blunt 

traumatic brain injury in the white matter tracts of the cervical spinal cord (Czeiter et al., 

2008). These results support our results from the spinal cord and suggest that blast 

induced axonal injury to the cervical spinal cord.  

Garman et. al. reported axonal injury in the rat brain following blast overpressure, 

and it was visible post 2 weeks of exposure with the help of silver staining (Garman et al., 

2011). Another study using swine model reported axonal injury as a significant injury 

witnessed in the brain 2 weeks following blast overpressure (de Lanerolle et al., 2011). 

These results were shown using immunohistochemistry procedures with β-APP and silver 

staining. Based on their results, we suggest that further investigation is needed to better 

assess the extent of axonal injury using immunohistochemistry techniques like 

neurofilament light and silver staining. 

The role of astrocytes in the maintenance of homeostasis in the nervous system is 

well documented (Buffo et al., 2010). Reactive astrocytes play a vital role in various 

neurodegenerative diseases such as stroke epilepsy, Alzheimer’s disease (AD), Amyloid 

Lateral Sclerosis (ALS) and Multiple sclerosis (MS) (Pekny et al., 2014). It can be inferred 

that the presence of activated astrocytes indicated by the proliferation at all the levels of 

the spinal cord could cause detrimental effects in the spinal cord. We postulate that the 

differential expression of astrocytes compared to microglia may be related to the severity 

of injury in the spinal cord. As the shock wave travels rosto-cephalically through the 

spinal cord, the severe injury may be more pronounced at the cervical spinal cord, 

as indicated by the increased expression of both astrocytes and microglia. These 

increased expression of astrocytes and microglia in the cervical spinal cord may 

also be related to the axonal debris witnessed in the form of βAPP immunoreactive 
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zones. On the other hand, it is logical that the intensity of the blast wave pressure 

reduced as it travels through the thoracic and lumbar spinal cord. Albeit, this 

reduced pressure may be sufficient to trigger a change in local environment of the 

thoracic and lumbar regions resulting in increased astrogliosis but not enough to 

activate the microglia to perform phagocytosis. Whether this decreased microglia 

activation is also supported by decreased βAPP IR in thoracic and lumbar spinal 

cord regions remains to be investigated.  

Many studies have shown strong correlation between the activation of glial cells 

and pain (Ledeboer et al., 2003; Milligan et al., 2003; Raghavendra et al., 2003). However, 

it is not proven that activation of glial cells is sufficient for the development of pain. 

Weissler et. al. suggested that pain is a physiological condition, and is caused due to the 

cascade of events that lead to the activation of glial cells (Wieseler-Frank et al., 2005). 

Many studies have shown that the inhibiting the activation of glial cells may block the 

resulting cascade of events which increase inflammation and cause pain in the body.   

Taken together, our results suggest that activated astrocytes and microglia 

may be responsible for the maintenance of neuropathic pain states. However, this 

mechanism of glial expression needs further validation. In conclusion, the proposed 

mechanism for the observed changes in the spinal cord may be due to the propagation of 

increased inter-cranial pressure (ICP) following blast overpressure. Our study was able to 

show alterations in the glial cells; astrocytes and microglia. Also, we could find axonal 

injury in the form of Beta-Amyloid Precursor Protein (Beta-APP) in the cervical spinal cord.  
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CHAPTER 6: CONCLUSION & FUTURE WORK 

 
The purpose of the current study was to investigate the effects of blast 

overpressure on rat spinal cord. This thesis offers to be the first step to lay the foundation 

of the future research on the blast induced spinal cord injury (BISCI). Several previous 

studies have shown blast overpressure induced changes in the brain.  We hypothesized 

that blast overpressure induces changes not only in the brain but induces changes in the 

spinal cord also as the blast wave propagates from brain to the most caudal regions of the 

central nervous system i.e, the spinal cord.  Based on this hypothesis, we attempted to 

study the underlying cellular changes in the form of alterations in the expression of glial 

cells and axonal injury in the spinal cord following blast overpressure BOP). 

Conclusion: 

1. Blast overpressure induced morphological, spatial and temporal alterations in the 

expression of astrocytes at all the levels of the spinal cord. 

2. Astrocytes in the blast group appeared to be thicker with longer processes 

compared to the sham group.  

3. Blast exposure induced significant elevation in the number of astrocytes at 

cervical, thoracic and lumbar regions compared to corresponding sham spinal 

cord. 

4. That the significant elevation in the expression of astrocytes extends to 7 days 

after blast exposure compared to sham. 

5. Lumbar spinal cord has the highest proliferation of astrocytes compared to other 

spinal cord regions.  
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6. Blast overpressure exposure induced potential phenotypical alterations (more 

amoeboid like) in the microglia in the spinal cord (cervical, thoracic and lumbar) of 

blast group compared to sham group.  .  

7. Blast exposure induced significant elevation in the number of microglia in the 

cervical spinal cord extending to 7 days after blast.   

8. No such changes were observed in the thoracic and lumbar region of the blast 

group compared to sham.  

9. Our results also showed elevated axonal injury in the cervical spinal cord as 

evidenced by a significant number of β-APP.immuno-reactive zones (IR zones) 

comprising APP deposits, swollen axons with retraction balls..  

In conclusion, the results of this study support our proposed hypothesis of blast 

overpressure induced cellular changes in the spinal cord. Furthermore, our findings will 

encourage the development of future studies associated with similar conditions in humans. 

It is reasoned that over-activation of the glial cells may release inflammatory mediators 

such as IL-1, TNF-alpha and SP, that may contribute to altered neuronal function. Lastly, 

we suggest that attempts should be made to reduce the activation of glial cells in the spinal 

cord which may reduce the neurotoxicity and enhance axonal regeneration. 

Future Work 

Our studies have shown evidence of blast overpressure induced spatial and 

temporal alterations in the glial cells of the rat spinal cord. Also, it has confirmed the 

presence of beta-APP deposits in the cervical spinal cord, which suggests that exposure 

to blast results in axonal injury. This research provides the foundation to further investigate 

the mechanism of glial cell reactivity in the spinal cord following blast overpressure. Based 
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on our findings, we suggest the following future work to better understand the effects of 

blast overpressure. 

• To investigate the presence of inflammatory mediators such as IL-1beta, 

TNF-alpha and SP in the spinal cord following blast overpressure. 

• To perform dual labelled immunohistochemical procedures with IBA-1 to 

detect the type of microglia expressed (M1/M2).  

• To study to effects of higher blast overpressure (>22psi) and repetitive blast 

overpressure on rat spinal cord.  

• To detect putative behavioral changes. 

We suggest the future research may provide more knowledge regarding the effects 

of blast induced spinal cord injury.  
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APPENDIX A: Glossary of Acronyms and Abbreviations 

 

ABC – Avidin Biotin Complex 

ANOVA - Analysis of variance 

Beta-APP – Beta-Amyloid Precursor Protein 

BBB - Blood-brain-barrier 

BINT – Blast induced Neurotrauma 

BISCI – Blast induced spinal cord injury 

CNS - Central nervous system 

DAI - Diffuse axonal injury 

DNA – Deoxyribonucleic acid 

GFAP – Glial Fibrillary Acidic Protein 

HRS- Hours 

IBA-1 – Ionized Calcium Binding Adaptor Molecule 1 

IL-1 – Interleukin -1 

LOC - Loss of consciousness 

Mins – Minutes 

NGS – Normal Goat Serum 

Rcf - relative centrifugal force 

SCI- Spinal Cord Injury 

SP – Substance P 

SR - Surface righting 

STDEV - Standard deviation 

TBI – Traumatic Brain Injury 

TNF – Tumor Necrosis Factor 
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APPENDIX B: Surface Rise time for all the animals 
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Blast induced neurotrauma (BINT) is the signature wound of veterans returning 

from various military operations. A substantial percentage of Operations Enduring 

Freedom (OEF) and Iraqi Freedom (OIF) veterans have reported to experience ongoing 

or new pain following their military service. Head (58%) and back (55%) have been the 

high prevailing locations of pain in these returning OIF and OEF veterans and the 

underlying pathomechanism of these conditions is yet to be understood.  In the context of 

blast overpressure induced pathological changes, the fundamental question that still 

needs to be addressed is whether there are any underlying cellular injury changes the 

spinal cord following blast. If proven, it is postulated that cellular injury changes in the form 

of glial activation may contribute to neuronal sensitization and altered sensation through 

the release of various inflammatory mediators. Much of the previous and ongoing research 

studies have been directed at understanding blast induced changes in the brain alone with 

changes in the spinal cord still remaining an enigma. Accordingly, as a first step, we 

attempted to investigate spatial and temporal alterations in glial activation in the spinal 
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cord following blast exposure.  In addition, we also attempted to study the presence of 

axonal injury in the cervical spinal cord following blast overpressure.  

As part of this investigation, anaesthetized male Sprague Dawley rats were 

subjected to a single insult of blast overpressure (22psi)using a helium driven shock tube. 

The rats were divided into two groups; Sham and Blast with acute and sub-acute survival 

periods; 6hrs, 24hrs, 3days and 7days respectively. Glial activation was assessed by 

GFAP (Glial Fibrillary Acidic Protein) and IBA1 (Ionized Calcium Binding Molecule 1) 

immunohistochemistry.  GFAP and Iba1 are routinely used to investigate astrocytic and 

microglial activation in the brain and spinal cord. Axonal injury in the cervical spinal cord 

was assessed by β-APP (Beta Amyloid Precursor Protein) immunohistochemistry. βAPP 

is a commonly used marker to detect the presence of diffuse axonal injury in the brain.   

Behaviorally, blast exposed rats exhibited significantly increased surface righting 

duration compared to sham rats. Our immunohistochemistry results indicate differential 

activation of astrocytes and microglia in various spinal cord regions in blast exposed group 

compared to sham. Rats subjected to blast overpressure showed increased expression of 

astrocytes and microglia at acute and sub-acute periods. Evidence of diffuse axonal injury 

also observed in the cervical spinal cord following the blast overpressure. Taken together, 

our results suggest that blast exposure in a craniocephalic orientation in rats resulted an 

enhanced spinal glial reactivity as well as cervical spinal axonal injury. We postulate that 

injury changes in the form of activation of astrocytes and microglia with diffuse axonal 

injury may contribute to the release of various inflammatory mediators which may in turn 

be related to the ensuing sensory changes. These results lay foundation to further studies 

on blast related injury changes in the spinal cord.
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