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CHAPTER 1 INTRODUCTION 

1.1 Background 

Operating rooms are biggest source of the revenue as well as the largest cost 

center in every hospital, so naturally the surgical case scheduling process is the key 

concept in the functioning of the Operating Rooms (Denton, Viapiano, & Vogl, 2007). In 

most hospitals with standard OR scheduling process, total allocated capacity of the ORs 

are distributed into the set of fixed blocks. Every block is a time interval in single or multiple 

OR that is assigned to a specific surgeon (surgeon block), group of surgeons (group 

blocks) or surgical service area (service blocks) under the master schedule, typically on a 

weekly basis. Unlike to open booking system, it is more efficient, but its effectiveness is 

dependent upon whether the scheduled block accurately reflects the actual patterns of 

usage and whether mechanisms are in place to release unreserved blocks in a timely 

manner (Milewski). So from the system level perspective, case scheduling process is very 

critical issue in hospitals. In large medical centers with greater number of the operating 

room and surgical demands, the scheduling process becomes more complicated and 

difficult to manage. Employing block scheduling approach can results in the significant 

improvement in scheduling process that ultimately lead to patient, surgeon and staff 

satisfaction and cost reduction. 

1.2 Research Motivations 

Surgical case demand fluctuate widely day by day due to the many involved 

factors. The scheduling of the surgeries becomes a very challenging and critical issue in 

the hospitals, since overestimating lead to wasting resources and on the other hand 

underestimation causes the overtime staffing and maybe surgery cancellations (Denton, 
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Viapiano, & Vogl, 2007). As a result, to solve this problem we need to estimate the case 

load of the surgeries in future in an accurate way. Unfortunately, unlike the many other 

industries like manufacturing, transportation and …, which by using different data analysis 

and decision support systems try to improve their industry and outpace their competition, 

most of the medical centers have not equipped with the technologies to reduce the 

uncertainty in surgery demands. Instead, the scheduling system of the ORs has not been 

changed over the past 30 years and typically it’s performed by the human intervention, 

intuition and experience rather than the systematic framework and decision support 

system. Large uncertainty and Wide fluctuation in daily surgical demand limits 

opportunities for dynamic resource allocation and adaptive staff planning, preventing 

optimal resource utilization and obstructing desired financial results. Over-allocation and 

under-allocation of the block times lead to the significant amounts of unused OR time or 

overtime staff scheduling. In both situations there are too much loss of the resource. 

OR scheduling also faces some challenges which you cannot poses in other 

scheduling problems. In addition to restrictions related to block time allocation, each case 

must be scheduled in a way that all required resources are available during the duration 

of the case. At minimum, these resources include the surgeon, anesthesia team, nursing 

staff, equipment and physical room, and the case will be canceled or delayed if one or 

more of these resources are unavailable. Also the perioperative environment differs from 

manufacturing that companies can store the unsold product in inventory and sell them 

later but in hospitals unused OR time cannot be recovered. 

Moreover US health care system will serve estimated thirty-two million Americans 

in addition, since they will be covered by insurance by 2019. US medical system must 

serve at least 15 percent higher demand of the patients. Research has demonstrated that 
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because of high cost of medical system extensions, most efficient way to overcome this 

issue, can be investing in streamlining patient flow and developing more efficient 

scheduling framework instead of adding resources, staffs and beds (Litvak & Bisognano, 

2011). The ability to forecast the future demand provides numerous benefits to all 

stakeholder groups as shown in below. 

 

 

 

Also, the automatic forecasting of univariate time series are often needed in business. In 

implementing the forecasting models, there may be nobody suitably trained in using and 

implementing time series models to produce the forecasted values. In these 

circumstances, an automatic forecasting algorithm is an essential tool. 

Surgeon/office Staff

•More predictable schedules due to early wait list case confirmation

•Ability to get cases on the schedule during non-block days and times

•Improved patient satisfaction and personal satisfaction due to smoother communication 
between office and patient

Patient
•Ability to plan logistics of surgery (rides and travel plans, child care, time off work) with 
more confidence in advance

•Reduced stress due to recieving a confirmed surgery date rather than being placed on a 
wait list

Hospital Administration, Anesthesia, Nursing Staff

•More effiient use of OR resources

•Higher staff morale due to more predictable schedules

•Less variation in day-to-day elective surgical case load

•Ability to plan proactively for daily resource needs instesd of reacting on the day of 
surgery

•Ability for managers to bring on additional staff on high demand days and/or confrm time 
off on low demand days further in advance in a systematic manner, resulting in reduced 
overtime and idle time costs

Figure 1: Benefits of efficient scheduling 
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1.3 Thesis Overview 

The primary goal of this thesis is increasing the accuracy of the forecasted block 

time, which will be allocated to surgeon, group of surgeon or surgical service area, and 

perform the forecasting process without the human intervention. In designing the 

forecasting framework, it’s important that any such system is smart enough to keep 

efficiency regardless of the current demand state. The proposed framework in this thesis 

uses the historical data of the surgical demands, then captures the pattern and propose 

the best estimate of the block time that minimize the underutilization and overutilization of 

the resource and staffs and system shocks, which resulted in significant cost saving. This 

framework employs the machine learning and traditional statistical models e.g. ARMA, 

exponential smoothing, neural network and hybrid methodology. The proposed 

forecasting framework in this thesis incorporate the forecasting algorithms in order to 

determine an appropriate structure for time series model, estimate the parameters and 

compute the forecasts values. They must be robust to unusual time series patterns, and 

applicable to large numbers of series without any user intervention (Hyndman & 

Khandakar, 2008). And finally by applying the multi-criteria decision modeling tools, best 

forecasting method will be selected. 

The results from this forecasting framework, gives the schedulers very good heads 

up to schedule the block time for future that minimize the uncertainty effects of the future 

demands and help them to have more confidence on their decisions for the future 

schedules. This adaptive decisions help medical centers to recognize the best utilization 

of the OR resources and also reduction in cost associated with idle ORs and staff overtime. 
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CHAPTER 2   PREPROCESSING 

2.1 Time Series 

Time series is a random variable which is the chronology of observations, 

Therefore, it is a stochastic process. Examples include the monthly demand for a product, 

weekly surgical demands and so on. Forecasting the future value of the time series data 

is pretty helpful in the field of operations research since these forecasts often provide the 

required information for developing decision making models. Time series analysis consists 

of approaches and methods which analyze the time series data in order to extract behavior 

and statistical characteristics of the data. These models then can be applied to forecast 

the future values of variable of interest. 

2.2 Stationarity 

A very important type of time series is a stationary time series. A time series is said to 

be strictly stationary if its properties are not affected by a change in the time origin. That 

is, if the joint probability distribution of the observations �� , ����, … , ���� is exactly the same 

as the joint probability distribution of the observations  ���� , ������, … , ������, then the 

time series is strictly stationary. The Stationarity property of a time series is related to its 

statistical properties in time. In other hand, a stationary time series exhibits similar 

"statistical behavior" in time and this is often characterized as a constant probability 

distribution in time. We can define stationarity (or weak stationarity) as follows: 

• The expected value of the time series does not depend on time 

• The autocovariance function defined as 	
���� , ���� for any lag � is only a 

function of � and not time: that is ���� = 	
���� , ���� 
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In a crude way, the Stationarity of a time series can be determined by taking arbitrary 

"snapshots" of the process at different points in time and observing the general behavior 

of the time series. If it exhibits "similar" behavior, one can then proceed with the modeling 

efforts under the assumption of stationarity. The stationarity or non-stationarity of a time 

series can significantly influence its behavior and properties. We can recognize the 

stationarity of the time series by observing the behavior of the autocorrelation function. 

Better and more methodological tests of stationarity also exist to test the stationarity of the 

time series. Mostly the time series with Stationary property have the constant mean and 

variance. We can use sample mean and sample variance to estimate these parameters. 

If the observations in time series are ��, ��, … , �� then for sample mean we have 

�� = �̂� = 1� � ��
�

���  

And for sample variance we can use 

�� = ���� = 1� ���� − ����
���  

 

2.3 Autocovariance and Autocorrelation Functions 

If a time series is stationary this means that the joint probability distribution of any 

two observations, say, ��, and ����, is the same for any two time periods � and � + � that 

are separated by the same interval �. Useful information about this joint distribution and 

hence about the nature of the time series, can be obtained by plotting a scatter diagram 

of all of the data pairs ��, ���� that are separated by the same interval �. The interval � is 
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called the lag. The covariance between �� and its value at another time period, say, ���� 

is called the autocovariance at lag �, defined by 

�� = 	
���� , ���� = !"��� − ������ − �# 
The collection of the values of �� , � = 0,1,2, … is called the autocovariance function. Note 

that the autocovariance at lag , � = 0 is just the variance of the time series. That is; �� =
���. 

The autocorrelation coefficient at the lag � is 

&� = !"��� − ������ − �#'!"��� − ��#!"����� − ��# = 	
���� , ����()*��� = ���+ 

The collection of the values of &�, , � = 0,1,2, … is called the autocorrelation function (ACF). 

Note that by definition &+ = 1. Also, the ACF doesn’t have a scale of measurement for 

time series data, so it is a quantity without dimension. Furthermore &� = &,�; that is, the 

autocorrelation function is symmetric around zero, so it is only necessary to compute the 

positive (or negative) half. 

It is necessary to estimate the autocovariance and autocorrelation functions from 

a time series of finite length, say, ��, ��, … , ��. The usual estimate of the autocovariance 

function is 

-� = ��� = 1� ���� − ������� − ���,�
��� , � = 0,1,2, … , . 

And the autocorrelation function is estimated by the sample autocorrelation function. 

*� = &�� = -�-+ , � = 0,1,2, … , . 
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The individual sample autocorrelations should be calculated up to lag �. where � is about 

� 4⁄ . 

2.3.1 Autocorrelation function and stationarity 

The sample ACF of stationary time series are cutting off or tailing off near zero 

after a few lags, But for non-stationary time series this sample ACF is very persistent; that 

is, it decays gradually and the value of the sample autocorrelations even at the long lags 

are large. In other hand a strong and slowly dying ACF will suggest deviations from 

stationarity. 

2.4 Automated Stationarity Test 

Since using the autocorrelation function for stationarity test need visual inspection, 

it cannot be useful for automated forecasting framework. In order to eliminate the visual 

inspection, the proposed solution is KPSS test. 

2.4.1 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

In KPSS test the null hypothesis assumes that process is stationary and alternative 

hypothesis assumes that series is non-stationary due to presence of the unit root. In KPSS 

test series of observations is presented as a combinations of the three components: 

deterministic trend, random walk and error term: 

�� = 1� + *� + 2� 
And for random walk we have 

*� = *�,� + 3� 
Which we have 3�~556�0, �7� 
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The initial value *+ is a fixed value and considered as an intercept. The stationarity 

hypothesis is �7� = 0, in this situation time series are stationary around the trend. There is 

another condition that we have 1 = 0 which under null hypothesis, time series is level 

stationary. Test statistics is the LM test for hypothesis that random walk component has 

zero variance. Statistics we will use is one sided LM statistics, for the  �7� = 0, as a null 

hypothesis. There are also some stronger assumption that the 3� is normal and the 2� is 

556 9�0, �:�. The reason we are interested in one sided LM test not the two sided, is 

because parameter value determined in null hypothesis is in the boundary of the 

parameter space  

;+: �7� = 0 

;�: �7� ≠ 0 

Let >� , � = 1, … , � be the residuals from the regression of � on an intercept and time trend. 

Let ��:� be the estimate of the error variance from this regression. We have partial sum of 

the residuals as: 

�� = � >?
�

��� , @
* � = 1, … , � 

For LM statistic we have 

� ��� �:�⁄�
���  

In addition if we want to test the null hypothesis of the level stationarity instead of the trend 

stationarity, we need just to change the >� to the residuals from the regression of � on an 
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intercept only, (>� = �� − ��) and rest of the process in unchanged (Mahadeva & Robinson, 

2004) (Kwiatkowski, Phillips, Schmidt, & Shin, 1992). 

We can decide about the stationarity of the time series with referring to the tables 1 and 

2. For each critical level there is corresponding critical value. If the value of the statistics 

surpass the critical value of the corresponding level then null hypothesis is rejected and 

time series data are non-stationary. 

Table 1: Level Stationarity 

Critical level 0.10 0.05 0.025 0.01 

Critical value 0.347 0.463 0.574 0.739 

 

Table 2: Trend Stationarity 

Critical level 0.10 0.05 0.025 0.01 

Critical value 0.119 0.146 0.176 0.216 

 

2.5 Differencing 

One of the most applicable approaches to make the non-stationarity data, 

stationary, is differencing. With applying the difference operator to the original time series 

we can obtain a new time series. We will have 

A� = �� − ��,� = ∇�� 

Where ∇ is the (backward) difference operator. Another way to write the differencing 

operation is in terms of a backshift operator C, defined as C�� = ��,�, so 

A� = �1 − C�� = ∇�� = �� − ��,� 
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With ∇= �1 − C. Differencing can be performed successively if necessary, until the data 

becomes stationary. In general, powers of the backshift operator and the backward 

difference operator are defined as 

CD�� = ��,D 

∇D= �1 − CD 

Another way to eliminate the trend is to fit a regression model describing the trend 

component to the data and then subtracting it out of the original observations, leaving a 

set of residuals that are free of trend. But differencing has two advantages relative to fitting 

a trend model to the data. First, it does not require estimation of any parameters, so it is 

a more parsimonious approach; and second, model fitting assumes that the trend is fixed 

throughout the time series history and will remain so in the (at least immediate) future. In 

other words, the trend component, once estimated, is assumed to be deterministic but 

differencing can allow the trend component to change through time. The first difference 

accounts for a trend that impacts the change in the mean of the time series. The second 

difference accounts for changes in the slope of the time series, and so forth. Usually, one 

or two differences are all that is required in practice to remove an underlying trend in the 

data. 

2.5.1 Convert differenced forecast  

When the original data represent the non-stationary behavior, we perform the 

differencing until we reach stationary time series data. Then we uses the difference data 

to forecast the future values. Since the forecasted values are based on differenced data 

we need to convert them to the original scale. The usual approach for conversion is to 

cumulatively add the differenced forecasts to the last observation. We can do this for also 
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more than one step ahead forecast values. If E are the differenced data and � are the 

original, then we will have. 

����� =  �� +  Ê���, 

����� =  ����� +  Ê���



13 
 

 

CHAPTER 3  EXPONENTIAL SMOOTHING 

3.1 Intro 

We can often think of a data set as consisting of two distinct components: signal 

and noise. Signal represents any pattern caused by the intrinsic dynamics of the process 

from which the data is collected. These patterns can take various forms from a simple 

constant process to a more complicated structure that cannot be extracted visually or with 

any basic statistical tools. The constant process is represented as �� = � + 2� where � 

represent the underlying constant level of system response and 2� is the noise at time t. 

the 2� are often assumed to be uncorrelated with mean 0 and constant variance �:�. 

Exponential smoothing can be used to separate the signal and the noise of the time series, 

so the smoother is considered as a filter to estimate the signal. The smoothers achieve 

this by relating the current observation to the previous ones. The concept of the 

exponential smoothing is that earlier data carry less information about the change in the 

process, so we can discount the older data, Instead of giving all the observations equal 

weights, since they don’t have the same amount of influence on process. Thus if the 

weights of each observation are changed so that earlier observations are weighted less, 

more precise underlying pattern of the data can be obtained. To do this one way is to give 

geometrically decreasing weights to the previous observations. Hence an exponentially 

weighted smoother is obtained by introducing a discount factor F as  

� F���,� = �� + F��,� + F���,� + ⋯ + F�,���
�,�
��+ �4.3 
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And if the previous observations are to be discounted in a geometrically decreasing 

manner, then we should have |F| < 1. 

Sum of the weights (F) is 

� F� = 1 − F�1 − F
�,�
��+  

We can adjust the smoother by multiplying it by �1 − F �1 − F�⁄ . However, for large T 

values, F� goes to zero and so the exponentially weighted average will have the following 

form 

�L� = �1 − F��� + F��,� + F���,� + ⋯ + F�,��� 

This is called a simple or first-order exponential smoother. An alternate expression in a 

recursive form for simple exponential smoothing is given by 

�L� = �1 − F�� + F�L�,� 

The recursive form shows that first-order exponential smoothing can also be seen as the 

linear combination of the current observation and the smoothed observation at the 

previous time unit. The simple exponential smoother is often represented in a different 

form by setting M = 1 − F. 

�L� = M�� + �1 − M�L�,� 

In this representation the discount factor, M, represents the weight put on the last 

observation and �1 − M represents the weight put on the smoothed value of the previous 

observations. 
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3.2 The initial value 

Since �L+ is needed in the recursive calculations that start with �L� = M�� +
�1 − M�L+, its value needs to be estimated. But we have 

�L� = M��� + �1 − M��,� + ⋯ + �1 − M�,��� + �1 − M��L+ 

Which means that as � gets large and hence �1 − M� gets small, the contribution of �L+ to 

�L� becomes negligible. Thus for large data sets, the estimation of �L+ has little relevance. 

Nevertheless, two commonly used estimates for �L+ are the following. 

1. Set �L+ = ��  If the changes in the process are expected to occur early and fast. 

This choice for the starting value for �L� is reasonable. 

2. Take the average of the available data or a subset of the available data, ��, and set 

�L+ = ��. If the process is at least at the beginning locally constant, this starting value 

may be preferred. 

3.3 Choice of Discount Factor 

In general, as M gets closer to 1, more emphasis is put on the last observation, the 

smoothed values will approach the original observations. Two extreme cases will be when 

M = 0 and M = 1. In the former, the smoothed values will all be equal to a constant, namely 

�L+. We can think of the constant line as the "smoothest" version of whatever pattern the 

actual time series follows. For M = 1, we have �L� = �� and this will represent the "least" 

smoothed (or unsmoothed) version of the original time series. We can accordingly expect 

the variance of the simple exponential smoother to vary between 0 and the variance of 

the original time series based on the choice of M. Mostly, values between 0.1 and 0.4 are 
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often recommended and do indeed perform well in practice. To achieve more accurate 

value, We can define the sum of the squared errors as 

��N�M = � >�,�� �1�
���  

For a given historic data, we can in general calculate ��N values for various values of M 

and pick the value of M that gives the smallest sum of the squared forecast errors. 

3.4 Modeling Time Series Data 

The constant process can be represented as 

�� = O+ + 2� 
The smoothing techniques are effective in illustrating the underlying pattern in the time 

series data. We can find another use for the exponential smoothers: model estimation. 

Indeed for the constant process, we can see the simple exponential smoother as the 

estimate of the process level, or in an estimate of O+. To show this in greater detail we 

need to introduce the sum of weighted squared errors for the constant process. The sum 

of squared errors for the constant process is given by 

��N = ���� − ���
���  

If we argue that not all observations should have equal influence on the sum and decide 

to introduce a string of weights that are geometrically decreasing in time, the sum of 

squared errors becomes 

��N∗ = � F����,� − O+��,�
��+  
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Where |F| < 1. To find the least squares estimate for O+ we take the derivative of equation 

above with respect to O+ and set it to zero: 

6��N∗6O+ = −2 � F�Q��,� − OR+S = 0�,�
��+  

Then we then have 

OR+ = �1 − F � F���,�
�,�
��+  

We can see that OR+ = �L� . Thus the simple exponential smoothing procedure does in fact 

provide a weighted least squares estimate of OR+ in the constant process with weights that 

are exponentially decreasing in time. 

3.5 Forecasting 

We have so far considered exponential smoothing techniques as either visual aids 

to point out the underlying patterns in the time series data or to estimate the model 

parameters. The latter brings up yet another use of exponential smoothing-forecasting 

future observations. At time �, we may wish to forecast the observation in the next time 

unit, � + 1, or further into the future. For that, we will denote the T − U�>V − )ℎ>)6 forecast 

made at time � as ����X��. Since the constant model consists of two parts (O+ that can be 

estimated by the first-order exponential smoother and the random error that cannot be 

predicted) our forecast for the future observation is simply equal to the current value of the 

exponential smoother. 

����X�� = �L� 
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We should consider that, for the constant process, the forecast is the same for all future 

values. Since there may be changes in the level of the constant process, forecasting all 

future observations with the same value will most likely be misleading. However, as we 

start accumulating more observations, we can update our forecast. 

Also we can have 

����X = ��� + M>� 

Where >� = �� − ��� is called the one-step-ahead forecast or prediction error. The 

interpretation of the forecasting formula, makes it easier to understand the forecasting 

process using exponential smoothing: our forecast for the next observation is simply our 

previous forecast for the current observation plus a fraction of the forecast error we made 

in forecasting the current observation. The fraction in this summation is determined by M. 

Hence how fast our forecast will react to the forecast error depends on the discount factor. 

A large discount factor will lead to fast reaction to the forecast error but it may also make 

our forecast react fast to random fluctuations. 

 

 

 

 

 

 

 



19 
 

 

Figure 2: Exponential Smoothing Forecasting Algorithm 
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CHAPTER 4 THE ARMA MODEL 

4.1 Intro 

In exponential smoothing method, the time series can be represented as a 

combination of two component: deterministic and stochastic. The deterministic part is a 

function of time whereas in stochastic component we assumed that some random noise 

is added to the deterministic signal that totally represent the stochastic behavior of the 

time series. In practice, the random noise assumption is often violated and usually 

successive observations show serial dependence. Under these circumstances, 

forecasting methods based on exponential smoothing may be inefficient and sometimes 

inappropriate because they do not take advantage of the serial dependence in the 

observations in the most effective way. To formally incorporate this dependent structure, 

we will explore a general class of models called autoregressive moving average or ARMA 

models. 

4.2 ARMA Process 

In an autoregressive moving average model, the future value of a variable is a 

linear function of some past observations plus the random errors. The process has the 

following form 

�� = Z + [���,� + [���,� + ⋯ + [\��,\ + 2� − F�2�,� − F�2�,� − ⋯ − F]2�,] 

Where �� denotes the actual value and 2� denotes the random error at time �. ; 

[?  �5 = 1,2, . . , V and F̂  �_ = 1,2, . . , ` are parameters of the model. V and ` referred to 

orders of the model and are integers. Random errors, 2�, are assumed to be independently 

and identically distributed with a mean of zero and a constant variance of ��. 
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There are several special cases of the ARMA models. If ` = 0, then it becomes an AR 

model of order V. When V = 0, the model reduces to an MA model of order `. Using back 

shift operators we can have 

Φ�C�� = Z + Θ�C2� 
Where, we have 2� as a white noise process. The important issue in constructing the 

ARMA model is to recognize the appropriate order of the model �V, `. 

4.2.1 Modified Box-Jenkins Methodology 

The Box–Jenkins methodology, which proposed by George Box and Gwilym 

Jenkins, is the set of steps for time series analysis and forecasting which applies the 

autoregressive moving average (ARMA) to find the best model of a time series. 

A three-step iterative procedure is used to build an ARIMA model. First, a tentative model 

of the ARIMA class is identified through analysis of historical data. Second, the unknown 

parameters of the model are estimated. Third, through residual analysis, diagnostic 

checks are performed to determine the adequacy of the model, or to indicate potential 

improvements. Based on goal of this thesis, the modified Box-Jenkins methodology has 

been proposed to fulfill the automated framework requirements. We will discuss them in 

more detail. 

4.2.2 Model Identification 

Model identification efforts should start with preliminary efforts in understanding 

the type of process from which the data is coming and how it is collected. The process's 

perceived characteristics and sampling frequency often provide valuable information in 

this preliminary stage of model identification. In today's data rich environments, it is often 

expected that the practitioners would be presented with "enough" data to be able to 
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generate reliable models. Simple time series plots should be used as the preliminary 

assessment tool for stationarity. The sample ACF and PACF of the time series of the 

original time series should be obtained. Depending on the nature of the autocorrelation, 

the first 20-25 sample autocorrelations and partial autocorrelations should be sufficient 

with the ±2 √9⁄  limits can be used as a guide for identifying AR or MA models. 

 

Table 3: Model Identification Based on ACF and PACF 

Model ACF PACF 

AR(P) Dies down (decays) Cuts off (zero for h > p) 

MA(q) Cuts off (zero for h > q) Dies down (decays) 

ARMA(p, q) Dies down (decays) Dies down (decays) 

 

4.2.2.1 Step-wise algorithm for model selection 

Using autocorrelation function and partial autocorrelation function is a good 

approach for determining the order of the model, but it needs visual inspection by the 

human. That’s why it cannot be used in automated forecasting framework. The best 

solution for determining the order of the model is based on the step-wise search algorithm. 

Based on this algorithm we start with some initial value for model parameters then 

compare their adequacy and select the best model. In the next step by changing the 

parameters, we create new set of the models include the best model from last set and 

new set models and again compare their adequacy and select the best model among the 

current set of models. We continue this approach until reach the best model which with 

changing the parameters no better model can obtained. 
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4.2.2.2 Model selection Criteria 

In order to compare the models in step-wise search algorithm we need a criteria. 

The Akaike information criterion is one of the most strong and popular method for 

comparing the adequacy of multiple, possibly models. The value of the AIC by itself, 

doesn’t represent any meaning. It can be useful when it is compared to the AIC of a series 

of models, then the model with the lowest AIC could be considered as the best model 

among all models specified for the data. If we consider poor models, the AIC will select 

the best of the poor models. So it’s so important to dedicate time to recognize as much as 

possible bigger set of candidate models based on previous investigations, as well as 

judgement and a knowledge of the system under study. After having specified the set of 

potential models based on the AIC we can choose the best model for forecasting. 

ef	 = 2� + g ln�j�� g⁄  

j��: Residual sum of squares 

�: Number of the parameters in model 

g: Number of observations 

4.2.3 Parameter Estimation 

When the appropriate ARMA model determined, next step is to estimate the [, F 

and Z. There are several methods such as methods of moments, maximum likelihood, and 

least squares that can be employed to estimate the parameters in the tentatively identified 

model. In this thesis the least squared method has been applied to estimate the model 

parameters. 
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4.2.4 Diagnostic Checking 

After a tentative model has been fit to the data, we must examine its adequacy 

and, if necessary, suggest potential improvements. This is done through residual analysis. 

The residuals for an ARMA(p, q) process can be obtained from 

2�̂ = �� − kZR + � [�?��,?
\

?�� − � Fl?2�,?
]

?�� m 

If the specified model is adequate and hence the appropriate orders p and q are identified, 

it should transform the observations to a white noise process. Thus the residuals should 

behave like white noise. Let the sample autocorrelation function of the residuals be 

denoted by n*o��p. If the model is appropriate, then the residual sample autocorrelation 

function should have no structure to identify. That is, the autocorrelation should not differ 

significantly from zero for all lags greater than one. But again like model identification this 

approach which is proposed by Box-Jenkins methodology needs visual inspection. So we 

need an alternative that can be used in automated forecasting framework. 

4.2.4.1 Ljung-Box Test 

The Ljung-Box test is applied to the residuals of a time series after fitting an 

ARMA(p,q) model to the time series data. The test examines autocorrelations of the 

residuals. If the autocorrelations are very small, we conclude that the model does not 

exhibit significant lack of fit. The Ljung–Box test statistic can be defined as follows 

q = g�g + 2 ��g − �*o���r
���  
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Where g is the length of the time series, *o�� is the �th autocorrelation coefficient of the 

residuals, and ℎ is the number of lags to test. Large values of q indicate that there are 

significant autocorrelations in the residual series. We should reject the hypothesis of 

model adequacy if Q exceeds an approximate small upper tail point of the chi-square 

distribution with s degrees of freedom and significant level of t, where s = ℎ − V − `. 

q > Y�,v,w�  

Null hypothesis ;+ : adequate fitted model 

Alternative Hypothesis: ;�: not adequate fitted model 

4.3 ARMA Process Forecasting 

The main purpose of modeling a time series is to make forecasts which are then 

are used directly for making decisions. Once an appropriate time series model has been 

fit, it may be used to generate forecasts of future observations. If we denote the current 

time by �, the forecast for ���X is called the T period-ahead forecast and denoted by 

����X��. For prediction of the future values we can use conditional expectation of ���X 

given current and previous observations, that is, �� , ��,�, …. 

����X�� = !"���X|�� , ��,�, … # 
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Figure 3: ARMA Forecasting Algorithm
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CHAPTER 5 ARTIFICIAL NEURAL NETWORK 

5.1 What is the neural network? 

Working on artificial neural networks, which commonly referred to as neural 

networks, has been motivated right from its inception by the recognition that the brain 

computes in an entirely different way from the conventional digital computer. Typically, 

brain neurons are slower than silicon logic gates. Process speed in a silicon chip is in 

nanosecond range, whereas neural process speed is in the millisecond range. Brain 

compensate the process slowness by constructing interconnections between neurons and 

consequently making the networks of the neurons. It is estimated that human cortex 

includes order of 10 billion neurons, and 60 trillion synapses or connections. These 

network of the neurons and interconnection between them significantly improve the 

efficiency of the brain structure. Also, the brain is very efficient in energy consumption in 

comparison to the best computers (Hajek, 2005). The brain working procedure is 

nonlinear, parallel and highly complex. It has the capability of performing certain 

computations many times faster than the fastest digital computer. Consider, for example, 

human vision system. It gets data from environment, then processes the data, and finally 

supply the information we need for interaction with the environment. To be specific, the 

brain continuously perform the recognition tasks (e.g. recognizing a familiar face 

embedded in an unfamiliar scene) in of the order of 100-200 ms (Hajek, 2005). 

5.2 How neural network helps us? 

Neural networks use the massive parallel distributed structure and have the 

capability of learning and Generalization. These capabilities make it possible for neural 

networks to solve complex problems that are difficult to solve by traditional tools. It is 
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important to know, however, we are far away from building a computer architecture that 

exactly mimics a human brain but neural networks offer the variety of tools to solve many 

intractable problems (Hajek, 2005). The neural networks have the following useful 

properties 

5.2.1 Nonlinearity 

A neuron is actually considered as a nonlinear tool. As a result, a neural network 

that is set of neurons and interconnection between them, is itself nonlinear. This property 

helps to capture the nonlinear patterns of the time series data, where many statistical tools 

are unable to do that. 

5.2.2 Input-output mapping 

In supervised learning, training algorithm is based on modifying synaptic weights 

of a neural network by using set of training sample data. Each sample include an input 

signal and the corresponding output signal. In each iteration, training algorithm modifies 

the weights in a way that minimize the difference between the desired output and the 

actual output of the neural network. The training algorithm iterates until the network 

reaches a stable state, where the synaptic weights changes is not significant. 

5.2.3 Adaptivity 

Neural networks have an inherent capability to adjust their synaptic weights 

regarding the changes happen in their environment. Moreover, when data are 

nonstationary a neural network can modify synaptic weights in real time to compensate 

the non-stationarity issue. 
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5.2.4 Contextual information 

Every neuron in the network potentially affected by the global activity of all other 

neurons in the network. Consequently, contextual information approach is an inherent 

property of the neural network. 

5.2.5 Fault tolerance 

A neural network structure design has an inherent ability to be fault tolerant in the 

sense that its performance is degraded gracefully, rather than experiencing catastrophic 

failure. 

5.2.6 Uniformity of analysis and design 

Neural networks have a great universality capability as information processors. It 

can be applied to the great variety of the field without any prior assumptions. 

5.3 Artificial Neuron 

 

Figure 4: Artificial Neuron 
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A neuron is a fundamental unit for operation of the neural network. It includes the four 

basic elements: 

1. Synapses: each synapse is identified by a weight. Input A? connected to neuron _ 
is multiplied by the corresponding synaptic weight x̂ ?. It is important to care the 

order of the subscripts of the synaptic weight x̂ ?. The first subscript refers to the 

neuron and the second subscript refers to the input node. 

2. Adder: make summation of input signals, which are multiplied by the 

corresponding weights. 

3. Activation function: limits the permissible amplitude of the output of a neuron to 

the finite value. 

4. Bias (threshold): known as x�+ has the effect on the net input of the activation 

function. It causes decreasing or increasing of the net input. 

 

5.4 The ANN approach in time series modeling 

Transferring from linear forecasting methods to nonlinear methods, gives us plenty 

of forecasting models that can be used for time series analysis and forecasting. But one 

of the most applied models is artificial neural networks. ANN is a flexible computational 

framework for modeling a large range of nonlinear problems. The important advantage of 

the Artificial Neural Networks models in comparison to other classes of nonlinear model 

is that Artificial Neural Networks are universal model that can be applied to broad range 

of data types in term of forecasting with a high level of accuracy. The strength of the 

artificial neural network is under the parallel distributed information processing capability. 



31 
 

 

Basically the main characteristics of the ANN model is determined by the characteristics 

of the data (Zhang G. P., 2003). 

5.5 Topology of the Artificial Neural Network 

 

Figure 5: Single Hidden Layer Architecture 

 

Input layer of every artificial neural network consists of source nodes (input vector) which 

supply the next layer (computation nodes). The output signals of the second layer are 

used as inputs to the third layer, and so on for the rest of the network. Typically, all the 

neurons in neural network architecture have their own inputs and output signals. The set 

of output signals of the output layer in artificial neural networks constitutes the overall 

response of the network from activation function supplied by the source nodes in the input 

layer. The network shown in figure 5 is referred to as a 3-3-2 network, it means this 

network has 3 source nodes, 3 neurons in hidden layer, and 2 output neurons. Generally, 

a feedforward network with V source nodes, ℎ neurons in hidden layer, and ` neurons in 

the output layer is referred to as V − ℎ − ` network. If every node in each layer of the 
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artificial neural network is connected to every node in adjacent forward layer, it is called 

fully connected, otherwise it’s called partially connected. 

For time series modeling and forecasting, the mostly used model is Single hidden layer 

feedforward network (Zhang, Patuwo, & Hu, 1998). This model consists of the three layers 

which are connected by acyclic links. We can represent the relationship between the 

output ��� and the inputs Q��,�, ��,�, … , ��,\S by the following mathematical equation: 

�� = t+ + ∑ t^zQO+^ + ∑ O?^��,?\?�� S]̂�� + 2�, 
Where t^  �_ = 0,1,2, … , ` and O?^  �5 = 0,1,2, … , V; _ = 1,2, … , ` are the connection weights 

of the model (parameters); V is the number of input nodes and ` is the number of hidden 

nodes. 

5.5.1 Network Parameters Selection 

The single hidden layer network is powerful model which can perform accurately if 

the number of the neurons (`) in hidden layer has been selected properly (Hornik, 1989). 

In implementing artificial neural network even with the small number of hidden neuron, 

mostly the results for out of sample forecasting is good. This result can be due to the 

overfitting effect typically found in artificial neural network modeling. An overfitted model 

gives accurate results over the sample used for training but its performance for out of 

sample data is poor. For choosing  ` there is no any systematic rule and since its data 

dependent. In designing the artificial neural network for time series forecasting, In addition 

to selecting an appropriate number of hidden neurons, another important issue is the 

choosing the appropriate number of lagged observations, V (dimension of the input 

vector). V is the most important parameter in constructing an Artificial neural network since 
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it plays a prominent role in determining the (nonlinear) autocorrelation structure of the time 

series. Like number of the hidden neurons, there is no any systematic rule that can be 

used for choosing of V. It’s also data dependent and mostly experiments are the only way 

to find the appropriate value of the V. Choosing the number of the nodes in output layer 

unlike to V and ` is pretty straight forward, just based on the number of the output of the 

interest, we can determine the total number of the neurons in output layer. We will need 

just one output for our dataset, so naturally in network design there will be one neuron in 

output layer. 

In this thesis stepwise search algorithm is proposed to select the number of lagged 

observations and hidden neurons. We start with some initial value for V and ` to make a 

set of potential models, then evaluate them and select the best model. In next step we 

change the parameters and make the new models set plus the best model from last set 

and again compare them to choose the best one. We will continue this steps until we 

cannot select the better model. The criteria for model evaluation we can use the AIC, 

therefore the models with smallest value of the AIC, will be considered as the best model 

among the other models of the evaluation set. 

5.6 Activation function 

The sigmoid function is the most widely used function in time series modeling and 

forecasting in artificial neural networks (hidden layer transfer function), that is 

@�A = 11 + >,| 

Hence, the Artificial neural network in model, in fact performs a nonlinear functional 

mapping from the past observations Q��,�, ��,�, … , ��,\S to the future value ��, i.e., 
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�� = @Q��,�, ��,�, … , ��,\, xS + 2�, 
Where x is a vector of synaptic weights (parameters) and @ is a nonlinear function, which 

map the input data to output data. 

 

Figure 6: Sigmoid Function Curve 

This big interest in using sigmoid function is its nonlinearity characteristics and the 

computational simplicity of its derivative, which is an important feature in construction of 

the artificial neural network. The derivative of the sigmoid function is as below. 

@�A = 11 + >,| 

}�}A = @�AQ1 − @�AS 



35 
 

 

 

5.7 Network Learning 

5.7.1 Supervised Learning 

In supervised learning, the artificial neural network take advantage of existing 

external teacher, which is able to supply the artificial neural network with a desired 

response. The synaptic weight of the network are adjusted under the influence of the error 

signal. This adjustment is performed iteratively in a step-by-step fashion until getting to 

the desired results. Neural network has the capability to learn from the environment and 

continuously improve the performance. Neural network do this task by adjusting the 

synaptic weights based on the errors through the iterative process. 

5.7.2 Error Correction Learning Rule 

When network architecture �V, ` is determined, we can start the network training. 

In error correction learning rule, the parameters are estimated such that an overall 

accuracy criterion such as the mean squared error is minimized. 

 

Figure 7: Error Correction Learning Rule 
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5.7.3 Backpropagation Algorithm with Gradient Descent method   

Set of steps to adjust the synaptic weights of artificial neural network is called a 

learning algorithm. Basically there is no unique learning algorithm for designing of neural 

networks. There are plenty of algorithms, each one offers advantages of its own. Their 

difference lays in the way they adjust the synaptic weight. One of the most applied and 

effective algorithms is Backpropagation algorithm. Let 6��g represent the desired 

response for neuron � at time g. The corresponding value of the response (output) of this 

neuron at time g be denoted by ���g. The output ���g is the value, calculated by the 

activation function included in neuron �. Typically, ���g, as a output of the neuron � is 

different from the desired response 6��g. So we can define the error signal as follows 

>��g = ���g − 6��g 

The goal of the error-correction learning algorithm is to minimize the error signal >��g. A 

common criteria function that is usually used for this purpose is 

!̂ QA̅,  x�,  6S = 12 Q�̂ QA̅,  x�S − 6̂ S�
 

We can call it error function, Where, A̅ is the input vector, x�  is vector of the weights and 6 

is the desired value. The network will be continuously optimized by minimizing !̂  with 

respect to the synaptic weights of the network. 

We have 
�̂ QA̅,  x�S = 11 + >��Q|̅, �� S 

As the output of the node _ and 
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e^QA̅,  x�S = � A?x̂ ?
�

?�+  

As the input signal to the activation function which Is the summation of the all input signals 

after multiplying in their corresponding weights. Let x̂ ?�g denote the value of the synaptic 

weight x̂ ? at time g and A? denotes the 5th input signal. The threshold input and its 

corresponding weights are also included in this formula as A+ and x+. In matrix form we 

have 

e^ = �x̂ + x̂ � … x̂ \� �A+A�⋮A\
� = x̂�A 

Based on backpropagation algorithm, we can adjust the synaptic weight by 

�x̂ ? = −2�Q�̂ − 6̂ S�̂ Q1 − �̂ SA? 
And the value of the synaptic weights at time g + 1 is calculated as following. 

x̂ ?�g + 1 = x̂ ?�g + �x̂ ?�g 

We continue to calculate the new weights until we obtain the desired output of the network. 
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CHAPTER 6 THE HYBRID METHODOLOGY 

6.1 Intro 

The ARIMA and Artificial neural networks models performs pretty well in their own 

linear and nonlinear domain in time series forecasting. But, both of them are not that much 

universal that can be used for all types of the data. The ARMA model faces problems in 

forecasting nonlinear problems. Also the artificial neural networks performance in dealing 

with linear problems lead to the mixed results and its performance fluctuate in comparison 

to the regular statistical models since it depends on the criteria like sample size and noise 

level (Markham & Rakes , 1998). So it’s not recommended to use the artificial neural 

networks blindly to any type of data and in other hand it’s not easy to completely recognize 

the characteristics of the data. The solution can be the hybrid methodology that uses the 

unique features of the each model, in other words, hybrid method advantages from the 

strength aspect of the each model. So the mixture of the linear modeling of the ARMA 

method and nonlinear modeling of the artificial neural network can be a great strategy for 

practical modeling of the time series. By combining ARMA and ANN, different aspects of 

the underlying patterns may be captured (Zhang G. P., 2003). We can split the time series 

to the linear autocorrelation structure and a nonlinear component. 

�� = �� + 9�, 
Where �� denotes the linear component and 9� denotes the nonlinear component. These 

two components can be estimated from the original time series data. First, by using the 

ARMA method, we can model the linear component (��), After constructing the ARMA 

model, in diagnosis section, model adequacy is evaluated based on the residuals. 

Basically in appropriate ARMA model, Residuals doesn’t show any linear correlation 
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structures, but, residual analysis is not able to detect any nonlinear patterns in the data. 

Generally there is no any statistical test to capture the nonlinearity of the data. So, even if 

the constructed model passed diagnosis test, it may still not be appropriate since the 

nonlinear relationships may not be modeled appropriately. Existing of the any nonlinear 

pattern in the residuals will not be considered by the ARMA model and it’s one of the 

ARMA model limitations. Then we can calculate the residuals of the ARMA model. As we 

said above, If appropriate model was applied, then, the residuals from the ARMA model 

will contain only the nonlinear relationship. We can Let >� denote the residual of the ARMA 

model at time �, that is 

>� = �� − �l�, 
Where �� is the actual value and �l� is the fitted value of ARMA model, at time �. In this 

case, modeling the residuals of the ARMA model, using artificial neural network, will help 

the modeler to capture the nonlinear pattern of the time series data. With g input nodes, 

the ANN model for the residuals will be 

>� = @�>�,�, >�,�, … , >�,� + 2�, 
Where @ is the function determined by the artificial neural network and 2� is the white 

noise. If we denote the forecast by the artificial neural network as 9��, the final forecast will 

be combination of the ARMA and ANN forecast and we will have 

��� = �l� + 9��, 
Implementation of the Hybrid methodology consists of two steps. First, an ARMA model 

is used to capture the linear part of the problem. Next, by implementing the artificial neural 

network we can model the residuals from the ARIMA model. Because of the inherent 
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characteristics of the ARIMA model, it cannot capture the nonlinear structure of the data, 

as a result, the residuals from linear model fitted by ARMA model will have information 

about the nonlinearity. The results from implementing the artificial neural network are used 

as the predictions of the error terms in ARMA model. The hybrid methodology employs 

strength of ARMA model as well as Artificial Neural Network in capturing underlying 

patterns of the data. It is a good approach to capture the linear and nonlinear patterns of 

the data separately, using different methods and then sum up the forecasted values from 

two different model in order to improve the overall performance of the time series 

forecasting. 
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CHAPTER 7 Method Selection 

7.1 Intro 

After implementing the different forecasting methods, the next important issue is 

selecting the method which satisfies the schedulers more than others. In choosing the 

best forecasting method, there are some criteria, which schedulers are interested in them, 

and according to them, best forecasting method must be selected. In this thesis, these 

measures are categorized into MSE, Error Variance, Over-utilized time and Under-utilized 

time. 

Mean squared error (MSE) 

MSE is one of the most common measures to evaluate the performance of the 

forecasting models. It is very important to decrease the total deviation from allocated block 

time in order to minimize the total idle time and over time in scheduling process. We can 

define the MSE by the average squared difference between the forecasted and the actual 

values. 

Error Variance 

In OR scheduling, only minimizing the total deviation from allocated block time is 

not enough. Having more constant deviation also is very important. The forecasting model, 

which absorbs the system shocks and decrease the unusual deviations from scheduled 

times is more desirable for OR schedulers. 
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Over-utilized Time 

Another important measure is over-utilized time. Sometimes the schedulers are 

more interested in less over-utilized time rather than under-utilized time, based on higher 

cost of it. 

Under-utilized Time 

In contrast it’s possible in some hospitals that minimizing the under-utilized time is 

more important than the minimizing over-utilized time, since they can decrease the wasted 

resources. In these cases, schedulers prefer the forecasting models with least under-

utilized time. 

7.2 Multi-Criteria Decision Modeling 

The MCDM is a tool which help decision makers to make best decision with 

considering and evaluating multiple criteria in decision-making environments. MCDM is 

concerned with constructing and making decision over the problems involving multiple 

criteria. Steps of implementing MCDM is as follows. 

7.2.1 Rescale the Scores 

Since different measures are in different scale, first we need to rescale data to 

common unit, so all the measure can be comparable. We can do it by following formula. 

�-)�>6 �-
*> = ��-
*> − �>)U� V*>@>**>6 U-
*>��s
U� V*>@>**>6 U-
*> − �>)U� V*>@>**>6 U-
*>� 
Where the score is the value of interest, and least preferred score and most preferred 

score are worst and best value among all existing scores respectively. 
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7.2.2 Defining the Weights 

In determining the best forecasting method, we should consider that measures are 

not equally important and some of them are more important than the others. For involving 

these issue in decision making process, weights should be assigned to the measures 

based on the preference. These weights reflect the relative importance of the measures. 

Choosing appropriate weights in this thesis for each criteria is based on the policy and 

characteristics of the health center. For calculating the weights first we rank the measures 

based on their importance, then assign the point to each measure in 0 to 100 scale. The 

most important measure will be assigned 100 points and others will be assigned less than 

100 according to their priority. After all, each point should be divided by total summation 

of all points. The results will be the weights of each measure. 

7.2.3 Score calculation 

After rescaling the scores and calculating the corresponding weights, total score 

of the each method can be calculated as summation of the scores multiplied by 

corresponding weights. The earned values can be used to compare the different methods, 

in a way that the method with highest score, is considered as the most desirable method.
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CHAPTER 8 EMPIRICAL RESULTS 

8.1 Dataset 

In John D. Dingell VA medical center which was studied in this Thesis, block times 

schedule change every 3 months. During this 3 months period each specialty has a base 

level of OR availability, which providing flexibility for upcoming surgical demand 

fluctuations. Additional fine-tuning occurs in the weekly block schedule when specialties 

already know ahead the list of surgeries they need to schedule or cancel. From the surgical 

activity routine at Detroit VAMC, we collected the surgery data from October 2009 to July 

2010 for 43 consecutive weeks. The data set provided us with the following information: 

• Specialty 

• Date 

• Regular Usage 

• Over time Usage 

The surgeons in hospital are grouped into 14 different groups (Table 4) based on their 

surgical service area. The total usage time of the OR by each group of specialty in a 

weekly basis, constitute our time series data.  Data are split to two unequal parts. The first 

part which is used for model building includes the 70 percent of the data and the second 

part includes 30 percent which will be used as the test data. Using four different methods 

(exponential smoothing, ARMA, Artificial neural network and hybrid methodology), we 

want to forecast the amount of time that we need to allocate to each specialty each week. 

Based on the John D. Dingell VAMC policy, block time schedules are fixed for 3 months 

period. Since data points are in weekly basis, we will forecast for 12 consecutive weeks 
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and then will take the average of these values as the final amount of the block time during 

the next 3 months. 

 

Table 4: Specialty Groups 

 Specialty 

1 Anesthesiology 

2 Cardiac Surgery 

3 General 

4 Gynecology 

5 Neurosurgery 

6 Ophthalmology 

7 Oral Surgery (Dental) 

8 Orthopedics 

9 Otorhinolaryngology 

10 Peripheral Vascular 

11 Plastic Surgery 

12 Podiatry 

13 Thoracic Surgery 

14 Urology 
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8.2 Results 

After implementing the four different methods for all 14 specialty blocks, the 

forecasting model structures which include discount factor of exponential smoothing 

method, orders of the ARMA model, number of input layer and hidden layer nodes of ANN 

and Hybrid models, presented as below. 

Table 5: Models Structure (Anesthesia) 

 Model Parameters 

Exponential Smoothing Lambda = 0.18 

ARMA 
p (AR) = 1 

q (MA) = 1 

Artificial Neural Network 
No. of input layer nodes = 1 

No. of hidden layer nodes = 2 

Hybrid 

p (AR) = 1 

q (MA) = 1 

No. of input layer nodes = 1 

No. of hidden layer nodes = 3 

 

Table 6: Models Structure (Cardiac Surgery) 

 Model Parameters 

Exponential Smoothing Lambda = 0.36 

ARMA 
p (AR) = 5 

q (MA) = 5 

Artificial Neural Network 
No. of input layer nodes = 1 

No. of hidden layer nodes = 3 

Hybrid 

p (AR) = 5 

q (MA) = 5 

No. of input layer nodes = 2 

No. of hidden layer nodes = 8 
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Table 7: Models Structure (General) 

 Model Parameters 

Exponential Smoothing Lambda = 0.52 

ARMA 
p (AR) = 1 

q (MA) = 1 

Artificial Neural Network 
No. of input layer nodes = 1 

No. of hidden layer nodes = 4 

Hybrid 

p (AR) = 1 

q (MA) = 1 

No. of input layer nodes = 2 

No. of hidden layer nodes = 3 
 

 

Table 8: Models Structure (Gynecology) 

 Model Parameters 

Exponential Smoothing Lambda = 0.41 

ARMA 
p (AR) = 1 

q (MA) = 1 

Artificial Neural Network 
No. of input layer nodes = 7 

No. of hidden layer nodes = 6 

Hybrid 

p (AR) = 1 

q (MA) = 1 

No. of input layer nodes = 6 

No. of hidden layer nodes = 8 

 

 

Table 9: Models Structure (Neurosurgery) 

 Model Parameters 

Exponential Smoothing Lambda = 0.10 

ARMA 
p (AR) = 3 

q (MA) = 2 

Artificial Neural Network 
No. of input layer nodes = 2 

No. of hidden layer nodes = 4 

Hybrid 

p (AR) = 3 

q (MA) = 2 

No. of input layer nodes = 2 

No. of hidden layer nodes = 5 
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Table 10: Models Structure (Ophthalmology) 

 Model Parameters 

Exponential Smoothing Lambda = 0.10 

ARMA 
p (AR) = 0 

q (MA) = 1 

Artificial Neural Network 
No. of input layer nodes = 2 

No. of hidden layer nodes = 5 

Hybrid 

p (AR) = 0 

q (MA) = 1 

No. of input layer nodes = 3 

No. of hidden layer nodes = 7 

 

 

Table 11: Models Structure (Oral Surgery) 

 Model Parameters 

Exponential Smoothing Lambda = 0.12 

ARMA 
p (AR) = 1 

q (MA) = 1 

Artificial Neural Network 
No. of input layer nodes = 6 

No. of hidden layer nodes = 3 

Hybrid 

p (AR) = 1 

q (MA) = 1 

No. of input layer nodes = 6 

No. of hidden layer nodes = 4 

 

 

Table 12: Models Structure (Orthopedics) 

 Model Parameters 

Exponential Smoothing Lambda = 0.40 

ARMA 
p (AR) = 2 

q (MA) = 1 

Artificial Neural Network 
No. of input layer nodes = 10 

No. of hidden layer nodes = 4 

Hybrid 

p (AR) = 2 

q (MA) = 1 

No. of input layer nodes = 9 

No. of hidden layer nodes = 2 
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Table 13: Models Structure (Otorhinolaryngology) 

 Model Parameters 

Exponential Smoothing Lambda = 0.0887 

ARMA 
p (AR) = 1 

q (MA) = 5 

Artificial Neural Network 
No. of input layer nodes = 1 

No. of hidden layer nodes = 4 

Hybrid 

p (AR) = 1 

q (MA) = 5 

No. of input layer nodes = 2 

No. of hidden layer nodes = 2 
 

 

 

Table 14: Models Structure (Peripheral Vascular) 

 Model Parameters 

Exponential Smoothing Lambda = 0.0393 

ARMA 
p (AR) = 2 

q (MA) = 2 

Artificial Neural Network 
No. of input layer nodes = 10 

No. of hidden layer nodes = 9 

Hybrid 

p (AR) = 2 

q (MA) = 2 

No. of input layer nodes = 5 

No. of hidden layer nodes = 7 

 

 

Table 15: Models Structure (Plastic Surgery) 

 Model Parameters 

Exponential Smoothing Lambda = 0.24 

ARMA 
p (AR) = 3 

q (MA) = 2 

Artificial Neural Network 
No. of input layer nodes = 6 

No. of hidden layer nodes = 2 

Hybrid 

p (AR) = 3 

q (MA) = 2 

No. of input layer nodes = 1 

No. of hidden layer nodes = 6 
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Table 15: Models Structure (Podiatry) 

 Model Parameters 

Exponential Smoothing Lambda = 0.16 

ARMA 
p (AR) = 5 

q (MA) = 4 

Artificial Neural Network 
No. of input layer nodes = 5 

No. of hidden layer nodes = 5 

Hybrid 

p (AR) = 5 

q (MA) = 4 

No. of input layer nodes = 3 

No. of hidden layer nodes = 4 

 

 

Table 17: Models Structure (Thoracic Surgery) 

 Model Parameters 

Exponential Smoothing Lambda = 0.24 

ARMA 
p (AR) = 1 

q (MA) = 1 

Artificial Neural Network 
No. of input layer nodes = 3 

No. of hidden layer nodes = 5 

Hybrid 

p (AR) = 1 

q (MA) = 1 

No. of input layer nodes = 1 

No. of hidden layer nodes = 2 

 

 

Table 18: Models Structure (Urology) 

 Model Parameters 

Exponential Smoothing Lambda = 0.10 

ARMA 
p (AR) = 1 

q (MA) = 2 

Artificial Neural Network 
No. of input layer nodes = 2 

No. of hidden layer nodes = 2 

Hybrid 

p (AR) = 1 

q (MA) = 2 

No. of input layer nodes = 2 

No. of hidden layer nodes = 5 
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As we mentioned in chapter 7, four different criteria (MSE, Error Variance, Over-utilized 

time and Under-utilized time) has been defined for making comparison between different 

methods in order to choose the best method, which is most desirable for OR schedulers. 

These measures are provided for all 14 specialty blocks as below. 

Table 19: Forecasting Performance (Anesthesiology) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

57.32 61.36 27.81 40.28 

ARMA 58.21 58.32 25.26 42.1 

ANN 60.49 61.36 21.14 45.86 

Hybrid 58.40 63.02 24.79 42.43 

 

Table 20: Forecasting Performance (Cardiac Surgery) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

185.43 152.81 27.91 108.72 

ARMA 179.27 140.26 30.28 105.4 

ANN 140.62 150.54 59.05 67.95 

Hybrid 225.82 153.32 131.41 20.29 

 

Table 21: Forecasting Performance (General) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

216.76 239.82 67.39 70.61 

ARMA 217.63 244.15 64.93 79.49 

ANN 216.45 241.81 75.22 68.77 

Hybrid 214.26 235.24 70.08 73.91 
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Table 22: Forecasting Performance (Gynecology) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

1.73 1.88 6.26 5.22 

ARMA 1.72 2.87 5.87 6.38 

ANN 2.29 2.35 8.07 1.20 

Hybrid 1.9 1.2 7.29 2.13 

 

 

Table 23: Forecasting Performance (Neurosurgery [5]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

66.32 51.30 67.12 13.96 

ARMA 63.25 52.93 63.88 15.03 

ANN 54.74 48.50 53.71 19.64 

Hybrid 51.93 50.93 50.23 22.76 

 

 

Table 24: Forecasting Performance (Ophthalmology [6]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

45.57 46.25 24.77 40.23 

ARMA 45.71 47.10 24.43 40.45 

ANN 45.69 45.90 24.49 40.5 

Hybrid 47.13 42.60 21.72 43.27 
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Table 25: Forecasting Performance (Oral Surgery [7]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

5 6.69 9.29 8.13 

ARMA 5 5.45 9.21 8.35 

ANN 10.12 5.30 23.17 4.10 

Hybrid 7.22 6.95 16.13 2.25 

 

 

Table 26: Forecasting Performance (Orthopedics [8]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

235.40 226.30 45.08 101.85 

ARMA 236.90 232.28 44.45 103.09 

ANN 213.47 236.56 71.12 63.01 

Hybrid 215.54 230.20 76.04 56.95 

 

 

Table 27: Forecasting Performance (Otorhinolaryngology [9]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

87.42 82.78 17.89 70.21 

ARMA 83.09 73.45 20 65.98 

ANN 75.32 74.66 26.71 58.28 

Hybrid 73.72 71.63 28.66 56.33 
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Table 28: Forecasting Performance (Peripheral Vascular [10]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

171.11 116.63 13.81 109.96 

ARMA 174.58 94.05 14.38 112.09 

ANN 148.88 105.65 19.31 96.05 

Hybrid 118.60 112.78 29.48 70.51 

 

 

Table 29: Forecasting Performance (Plastic Surgery [11]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

41.12 42.08 14.41 33.56 

ARMA 41.99 41.11 12.65 34.82 

ANN 54.44 42.95 3.30 51.09 

Hybrid 42.1 43.65 12.44 34.96 

 

 

Table 30: Forecasting Performance (Podiatry [12]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

5.04 5.33 9.67 14.45 

ARMA 4.91 5.45 10.92 12.7 

ANN 7.18 4.06 19.24 1.05 

Hybrid 4.88 4.29 11.56 11.81 
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Table 31: Forecasting Performance (Thoracic Surgery [13]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

96.29 104.08 49.47 38.23 

ARMA 95.88 110.45 47.75 39.46 

ANN 95.75 106.09 40.31 47.36 

Hybrid 95.41 107.55 44.07 42.92 

 

 

Table 32: Forecasting Performance (Urology [14]) 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

78.23 85.33 43.6 44.86 

ARMA 80.22 83.45 55 37.99 

ANN 79.32 83.93 37.68 50.31 

Hybrid 76.34 84.65 41.92 46.07 

 

8.3 Example for Peripheral Vascular 

We will use the forecasting results of the peripheral vascular specialty as an 

example for MCDM application. Rescaled scores of the peripheral vascular block is as 

below. 

Table 33: Rescaled Scores of Peripheral Vascular 

 MSE Error Variance Over-utilized Under-utilized 

Exponential 
Smoothing 

0.07 0 1 0.05 

ARMA 0 1 0.93 0 

ANN 0.46 0.48 0.62 0.39 

Hybrid 1 0.17 0 1 
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The points based on the priority has been given as below table 

Table 34: measures weights 

 Rank Order Points (0-100) Weight (points/sum) 

MSE 2 90 0.26 

Error Variance 1 100 0.30 

Over-utilized 3 85 0.25 

Under-utilized 4 65 0.19 

 Sum 340 1 

 

And Total scores, which is summation of the scaled scores multiplied by the corresponding 

weights are as below. 

Table 35: Total Scores for Peripheral Vascular 

Methods Total Score 

Exponential Smoothing 0.28 

ARMA 0.53 

Artificial Neural Network 0.49 

Hybrid 0.50 

 

We can see that based on the weights we gave to the criteria, ARMA model lead to the 

better performance in comparison to other methods.  

8.4 Conclusion 

The MCDM methodology can be performed to choose the best model with desired results 

for every specialty blocks. However, based on some criteria’s, we can conclude which 

method is stronger, but, it’s so important to realize that the time series analysis and 
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forecasting is a very complicated field and just based on some historical data we cannot 

conclude that one specific method is best in all circumstance. Generally the time series 

forecasting is highly data dependent. So it’s important to keep track of the results 

continuously. This thesis has given an overview of applying different forecasting methods 

in order to predict optimized time intervals to be allocated to corresponding surgery blocks, 

and besides, it developed the framework for each of the methods to be performed without 

human intervention. Ultimately, with examples of the real data, we have shown the value 

of using automated forecasting framework, which statistical ideas can be applied to 

healthcare area in order to increasing the efficiency and utilizations. 

7.5 Future Research 

For future research opportunities, I suggest to develop the framework in order to release 

the unused amount of the allocated block time a few days in advance. Whenever a block 

is released, it means, that block is available to other services or surgeons. Most elective 

surgery blocks are released three to five days in advance of the day of surgery. Block time 

releasing can be very useful idea in block time scheduling, since there is huge uncertainty 

in the surgery cases demand.
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ABSTRACT 

DEVELOPING AN AUTIMATED FORECASTING FRAMEWORK FOR PREDICTING 
OPERATION ROOM BLOCK TIMES 

by 

AZAD SADR HAGHIGHI 

May 2015 

Advisor: Dr. Alper Murat 

Major: Industrial Engineering 

Degree: Master of Science 

Operating rooms are the most important part of the hospitals, since they have 

highest influence on financial state of the hospital. Because of high uncertainty in surgery 

cases demands and their durations, the scheduling of the surgeries becomes a very 

challenging and critical issue in hospitals. One of the most common approaches to 

overcome this uncertainty is applying block times which is the time intervals allocated to 

surgery groups in the hospital. Assigning sufficient amount of the time to each block, is 

very important, since overestimating lead to wasting resources and on the other hand 

underestimation causes the overtime staffing and probably surgery cancellation. The 

objective of this study is developing an automatic forecasting framework with applying a 

high performance forecasting methods to predict the future block time intervals for surgical 

groups. The main property of proposed forecasting framework is elimination of the human 

intervention which means the system follows the certain algorithms to perform the 

forecasting. In this framework we have applied four different methods include exponential 
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smoothing, ARMA, artificial neural network and hybrid ANN-ARMA methodology, then by 

applying multi-criteria decision analysis, the most effective method can be selected. The 

accurate forecasting can result in reductions in total waiting time, idle time, and overtime 

costs. We illustrate this with results of a case study which conducted by real world data at 

John D. Dingell Detroit VA Medical Center.
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