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Chapter 1: INTRODUCTION 

“Earth provides enough to satisfy every man's needs, but not every man's 

greed.” ― Mahatma Gandhi 
The level of impact of human activity on the environment has led to the idea of labeling 

the current epoch as “Anthropocene” (Zalasiewicz et al., 2010; Dirzo et al., 2014; Lewis et al., 

2015; Corlett, 2015).  Anthropogenic climate change and the dramatic decline in biodiversity are 

two of the leading reasons for considering the naming of an epoch according to the impact of a 

single species (Zalasiewicz et al., 2010; Dirzo et al., 2014; Lewis et al., 2015; Corlett, 2015). 

Intimately related to this impact of human activity on climate and the diversity of life is the 

alteration of the chemical composition of the biosphere that includes contamination beyond the 

greenhouse gases.  The level of chemical contamination of the environment found now varies 

greatly from terrestrial superfund sites to the micro-contamination of aquatic ecosystems 

(Daughton and Ternes, 1999; Kolpin et al., 2002; Ela et al., 2011, Hutchinson et al., 2013).  

The chemical contaminants found in the environment are not homogeneously distributed, 

and their dispersion is affected by their physical and chemical properties. These chemical 

contaminants can be found in air, soil (including sediment) and water.  They may be dissolved in 

water or chemically or physically attached to soil particles or sediment. They can be found in 

small spaces between the soil particles, ground water, and aquifers.  

Although there is significant chemical contamination affecting environmental health, the 

recognition of the magnitude of the problem is lagging well behind efforts to directly improve 

human health through biomedical research. We depend on the environment to provide us with 

fresh water, food, shelter and clothing, and chemical contamination can disrupt vital ecological 

services (Lake et al., 2012; Noyes et al., 2009). Sustaining human health requires a healthy 

environmental too.  
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There is an urgent need to understand the impact of environment contamination so that 

appropriate measures can be taken to preserve environmental health and human health.  

Population growth, industrialization and urbanization have depleted natural resources and lead to 

extensive air, soil and water contamination. Environmental health is intimately associated with 

human health and the impact of anthropogenic contamination on both environmental health and 

human health is poorly understood. The range of visible human impact on the natural 

environment is quite extensive, and the terrestrial impact from fossil fuel use, deforestation, 

mining, the spread of invasive species, and extensive loss of wildlife habitat can be readily 

observed. What is often less easily observed is the impact of anthropogenic contamination of the 

aquatic environment  

Some of the main sources of chemical and microbial contaminates in aquatic systems 

include runoff from urban, industrial, and agricultural areas, mining operations, and raw 

untreated sewage and effluent from wastewater treatment plants (Kolpin et al., 2002; Fong et al., 

2007; Kummerer, 2009; Mkandawire, 2013, Yager et al., 2014) . The use of pesticides, such as 

insecticides and herbicides, and antibiotics in the industrialized agricultural system and in the 

urban areas of the United States is extensive, and a large percentage of these chemicals end up in 

aquatic systems where they can affect non-target species. Additionally, many of these 

compounds or may pass through water treatment processes as parent compounds or 

transformation products (e.g. Ternes et al., 2004)  and can threaten the health of humans as well 

as natural systems. 

The diversity of chemicals now contaminating surface and ground water is vast and is 

rapidly increasing (Kolpin et al., 2002; Lapworth et al., 2012). Chemicals of concern include 

pharmaceuticals, hormones, pesticides, detergents, polycyclic aromatic hydrocarbons (PAH), 
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plasticizers, fire retardants, and many others (Kolpin et al.,2002).  The original parent 

compounds that are released into the environment or into wastewater infrastructure can be 

further transformed through anthropogenic or natural processes into known or unknown 

transformation products (Kummerer, 2009; Sirtori et al., 2012; Kock-Schulmeyer et al., 2013). 

Even though we are still in the process of determining the extent to which known compounds 

have entered the environment as contaminants, there is much less known about the nature of 

transformation products, their impact and fate.  

An understanding of the extent of chemical contamination of the environment has been 

greatly enhanced in recent years by the development of technology with the sensitivity to detect 

chemicals at concentrations much lower than previously possible. As advanced analytical 

methods, such as liquid chromatography-mass spectroscopy (LC-MS), made it possible for 

scientists and engineers to measure chemicals in the environment at very low concentrations, the 

extensive micro-contamination of air, soil and water by the chemicals we use has become more 

apparent.  Chemical contaminants found in surface- and ground-water have been termed 

contaminants of emerging concern or CEC’s. The U.S. Geological Survey Toxic Substances 

Hydrology Program defines CECs as follows: 

“Contaminants of Emerging Concern" can be broadly defined as any synthetic or 

naturally occurring chemical or any microorganism that is not commonly monitored in the 

environment but has the potential to enter the environment and cause known or suspected 

adverse ecological and(or) human health effects. In some cases, release of emerging chemical or 

microbial contaminants to the environment has likely occurred for a long time, but may not 

have been recognized until new detection methods were developed. In other cases, synthesis of 
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new chemicals or changes in use and disposal of existing chemicals can create new sources of 

emerging contaminants”. (http://toxics.usgs.gov/regional/emc/).  

The USGS carried out a seminal study using five newly developed analytical methods to 

measure the concentrations of 95 organic wastewater contaminants (OWCs) in water samples 

from 139 streams across 30 states in United States during 1999 and 2000, and the OCWs were 

found in approximately 80% of the sampled streams. 82 of 95 compounds were detected and 

they were associated with residential, agricultural and industrial settings (Kolpin et al., 2002). 

CEC’s have been found in the environment worldwide and are generally found in the range of µg 

L-1 or ng L-1 (Kolpin et al., 2002; Kummerer, 2009; Hogenboom et al., 2009), but the amount of 

CEC’s detected varies because of many factors such as geographical area (e.g., urban versus 

rural) population density, and regulatory policies. 

There are a number of ways that the CEC’s are released into the environment. These 

chemical contaminants are always subjected to dynamic changes in the environment which are 

associated with the principles of source, loading and fate. The main sources are industrial, 

agricultural and residential. Due to ubiquitous distribution in surface water and ground water, 

hydrologists use some of these chemicals as tracers for the impact of anthropogenic activity on 

water systems (e.g., caffeine, sweeteners). Although  CEC’s are often found in the ground and 

surface water in very low concentrations, they are being continuously loaded and can be found in 

a biologically active or inactive form.  The chemicals may undergo many changes before, during 

or after entering the environment that result in changes in the solubility, polarity, toxicity and 

other properties of compound. These transformation products can be created by biotic processes 

in the environment, e.g., by bacteria or fungi, or by abiotic processes, such as hydrolysis or 

photo-oxidation (Kummerer 2009). 
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Even though these chemicals are present in low concentrations in the environment they 

can have adverse effects on organisms in the ecosystem. They have been shown to affect the 

normal development, life cycle, and behavior of a number of non-target aquatic organisms. There 

is evidence of endocrine disruption due to contaminant exposure in the environment. Natural and 

synthetic estrogen hormones in surface water have been associated with morphological changes 

in fish characterized as gonadal intersex, and the changed morphology is also associated with 

increased expression of vitellogenin (Debrow et al., 1998; Routledge et al., 1998). High 

concentrations of vitellogenin was found in the plasma of male white perched in the Lower Great 

Lakes region that were observed to be gonadal intersex, suggesting significant exposure to 

endocrine disruptors (Kavanagh et al., 2004). Pharmaceuticals in surface waters are also 

suspected of being capable of endocrine disruption. Antidepressants such as fluoxetine (Prozac), 

which can bioaccumulate, appear to be potential endocrine disruptors in fish (Mennigen et al. 

2011).  Fluoxetine has also been shown to stimulate reproduction in invertebrates (Flaherty and 

Dodson, 2005). Clofibric acid, a cholesterol lowering pharmaceutical, increases the proportion of 

male off spring in Daphnia magna (Flaherty and Dodson, 2005). Demasculinization and 

complete feminization has been observed in male African clawed frogs exposed to a very potent 

and commonly used herbicide, atrazine (Hayes et al., 2010), and this feminizing effect has been 

consistently found among other vertebrate classes (Hayes et al., 2011).  Prenatal exposure to 

atrazine, an endocrine disruptor, has caused malformations of the male genitals such as 

hypospadias, cryptorchidism and small penis size in humans. (Agopian et al., 2012).  

Although the evidence of endocrine disruption occurring within the environment due to 

anthropogenic contamination is on the rise, evidence of probable behavioral effects due to 

contaminant exposure is also now being reported.  Oxazepam has been shown to alter the 
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behavior of fish at environmentally relevant concentrations (Brodin et al., 2013).  Of particular 

relevance to humans, the prenatal exposure to chlorpyrifos, an organophosphate insecticide and 

emerging contaminant, has been associated with changes in brain morphology and neurological 

deficits (Rauh et al. 2012). 

Since there is significant evidence of contaminants of emerging concerns having an 

impact on environmental as well as human health, improved methods for detecting biological 

effects are greatly needed. The waterflea, Daphnia, is an organism that has been commonly used 

for water quality testing and is considered a model organism for biomedical research 

(http://www.nih.gov/science/models/daphnia).. Most often the biological endpoint measured is 

immobility, an indirect measure of concentration-dependent lethality expressed as an EC50 value. 

While this approach has great utility, it likely underestimates the potential impacts of 

contaminants because sub-lethal effects are not evaluated. Recently Zein et al. (2014, 2015) have 

developed an optical tracking technique to evaluate sub-lethal effects of individual contaminants, 

contaminant combinations, or complex mixtures on Daphnid behavior. 

Daphnia pulex is a freshwater zooplankton that is a very important in freshwater 

ecosystems. These animals are found in freshwater ecosystems throughout the world including 

the Great Lakes watershed in the USA (Carpenter 1987). Daphnia are considered to be a 

keystone species. If a keystone species is lost, the whole aquatic ecosystem is altered. (Flathery 

and Dodson 2005).    

Daphnia feed on phytoplankton such as algae and also bacteria and protozoans. They are 

in turn a source of food for larger invertebrates and vertebrates in the food web such as hydra, 

salamanders, fish etc. (Tessier et al., 2000). Therefore, changes in life history of Daphnia can 

bring about an imbalance in the aquatic ecosystem and hence eventually affect freshwater 
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ecosystems upon which the human population depends, and this is one of the reasons why the 

EPA has developed standardized bioassays to assess the effects of water contaminants on 

Daphnia. In fact, a recent study has reported such changes in North American aquatic 

ecosystems due to the loss of Daphnia (Jeziorski et al., 2015). 

Daphnia are very sensitive to changes in the environment such as availability of food, 

predation, water chemistry, oxygen level, temperature changes, etc. Daphnia also have 

developed specialized mechanisms to adapt to changes in the environment.. They undergo 

morphological changes and form helmet and teeth-like structures in the presence of kairomones, 

chemical hormones released by predators. In addition, Daphnia are capable of changing their 

physiology in response to stress. For example, low oxygen triggers production of Hb and gives a 

reddish color to the haemolymph and an up-regulation of anaerobic metabolism. Daphnia also 

respond to environment stressors by switching from asexual to sexual reproduction. (e.g., see 

Altshuler et al., 2011; Colbourne et al.,2011for review).  These adaptations to environmental 

change are made possible through epigenetic regulatory mechanisms (Coors et al., 2004). 

Therefore, Daphnia are ideal for evaluating water quality and the toxicity of contaminants of 

emerging concern, since they are very sensitive to environmental stressors. 

The standardized bioassays developed by the EPA take advantage of Daphnid sensitivity 

to environmental changes to evaluate water quality. They are designed to carry out traditional 

LC50 tests, where the focus is on estimating the lethal concentration that kills 50% or more 

animals. However, significant effects such as altered motor function, developmental changes, 

changes in life processes such as reproduction and growth can be observed at levels below the 

LC50 concentrations. (Zein et al., 2014; Dodson and Hanazato 1995).  
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Regulatory risk assessment generally focuses on single chemicals in a controlled 

environment whereas organisms are often exposed to complex mixtures (Pavlaki et al., 2011).   

Since chemical contaminants can interact and have additive, synergistic, or antagonistic effects 

(Altshuler et al., 2011; Zein et al., 2015) on biological systems there is a need for new 

assessment methods that can evaluate sub-lethal effects at low concentrations. Since aquatic 

organisms can be continually exposed to a number of water contaminants simultaneously, assay 

systems that can evaluate the large number of contaminants as single chemicals, combinations of 

specific chemicals, or poorly characterized complex mixtures are needed to assess the risk.  

This study focuses on utilizing novel Daphnid optical bioassays to examine the toxicity 

of selected contaminants of emerging concern. The chemicals selected for this study are found in 

surface water. Chemicals that are known neuroactive agents were selected. The insecticide, 

diazinon, and the antidepressant, fluoxetine are known to have effects on specific 

neurotransmitter systems. Since Daphnia are known to have the target neurotransmitter systems 

for diazinon (cholinergic system) and fluoxetine (serotonergic system), but would be considered 

to be “non-target” organisms, it was of interest to characterize the behavioral effects in Daphnia 

resulting from exposure. Triclosan and triclocarban are antibiotics that are used in antibacterial 

soaps and a number of other products, and these chemicals and their transformation products 

resulting form photodegredation are commonly found in surface water. Therefore, it was of 

interest to evaluate the behavioral effects of chemicals that do not have any known biological 

targets within Daphnia.   

Two different optical tracking assays were used to evaluate changes in Daphnid 

swimming behavior and Daphnid cardio-respiratory function as a result of exposure to diazinon, 

fluoxetine, triclosan, triclocarban and photodegredates of the two antibiotics.  
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Diazinon 

 Diazinon is an organophosphate insecticide. It is an acetylcholinesterase (AChE) 

inhibitor. AChE breaks down the acetylcholine (ACh) into choline and acetate. Inhibition of 

AChE results in excessive accumulation of ACh in the synapse and results in toxicity. Diazinon 

has been used in the United States since 1956. It was used for agricultural as well as household 

purposes. In 2002, it was outlawed for indoor uses and in 2004 for outdoor uses, such as 

gardening.  It has since been used for agricultural purposes only. Diazinon products are available 

as dust, granules, liquid concentrate, seed dressings and cattle ear tags (EPA 2012). It can be 

found in the environment as a result of run-off from farming areas at concentrations of 

approximately 0.35ug/L (Koplin et al., 2002). It has been shown that there is a significant 

reduction in reproduction, survival rate, intrinsic rate of natural increase, mean carapace length 

observed in Daphnia magna exposed to diazinon (Sanchez et al., 2000) 

Physostigmine 

Physostigmine is a reversible acetylcholinesterase inhibitor. It has the same mode of 

action as the organophosphate insecticides, but does not covalently bind to AChE. It is used to 

treat glaucoma, Alzheimer’s disease and has recently been used for treatment of orthostatic 

hypotension. To the best of our knowledge, physostigmine has not been identified as a 

contaminant of emerging concern. However, physostimine has been used extensively in 

pharmacological studies and serves as a good reference compound that shares the mode of action 

of many acetylcholinesterase insecticides (Zein et al., 2014).   

Fluoxetine 

         Fluoxetine is an antidepressant frequently observed in surface waters downstream 

municipal wastewater treatment plant discharges. Fluoxetine is a serotonin reuptake inhibitor 
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and is classified as a selective serotonin reuptake inhibitor (SSRI). It is an anti-depressant that is 

highly prescribed under the brand name ‘Prozac’ (NDC Health, 1999). Fluoxetine is also 

prescribed to treat compulsive behavior as well as eating and personality disorders (Brooks et 

al., 2003, Kolpin et al., 2002). It is found in the concentration of approximately 0.012 – 1.4 

µg/L in the surface water. Chronic exposure to fluoxetine has shown to significantly increase 

the number of offspring produced by an individual Daphnid mother in her lifetime (Flaherty 

2005). 

Triclosan and Triclocarban 

These two antibiotics are biologically active compounds and are very soluble in water 

with low biodegradability, hence there is a risk of bioaccumulation in aquatic organisms 

(Wollenberger et al., 2000). Triclosan (TCS) and Triclocarban (TCC) are polychlorinated 

aromatic compounds which kill micro-organisms rapidly via a non-specific action (Halden 2014) 

Although there is literature on TCS and TCC, little is known about or their fate in the 

environment (Halden and Paull 2005)  . 

TCS is used as an antiseptic agent in many medical products, shampoos, deodorants, 

medicinal skin creams, dental products such as mouthwash and toothpaste and is most prevalent 

in soaps (0.10 – 1.00%) (Singer et al., 2002).   The incorporation of TCS into a variety of 

products has resulted in widespread discharge into the environment from in wastewater treatment 

plants and into surface waters (Singer et al., 2002). According to the USGS survey carried out in 

2002, triclosan has been found in the concentration of approximately 2.3 µg/L (Kolpin et al., 

2002). At a relatively low exposure concentration (1 - 16µg/L) Daphnia magna are found to 

increase their rate of reproduction and in size (i.e. body length), whereas the opposite occurs 

when exposed to higher concentrations (64-128µg/L).  In addition, the total number of times 
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molting occurred per animal was found to decrease when exposed to TCS (Peng et al., 2013). 

Like TCS, TCC is an antimicrobial agent that is also found in personal care and medical 

products. About 75% of liquid soaps and 29% of bar soaps manufactured in the United States 

contain TCC (Perencevich et al., 2001).        

This thesis addresses two hypotheses: 

(1) The anticholinesterase inhibitor and insecticide, diazinon, has significant effects on 

swimming behavior and cardiorespiratory function at environmentally relevant concentrations. A 

corollary to this hypothesis is that other anticholinesterase inhibitors have similar behavioral and 

cardiorespiratory effects. Physostigmine, which is an anticholinesterase that is well characterized 

in the literature will serve as a prototypical compound to compare to diazinon. 

(2) The broad spectrum antibiotics, triclosan and triclocarban and their photo-degradative 

products have significant effects on swimming behavior and survival at environmentally relevant 

concentrations.    
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Chapter 2: MATERIALS AND METHODS 

BEHAVIORAL ASSAY 

 To evaluate the sub-lethal effects of select emerging contaminants, optical tracking of 

Daphnia pulex was performed according to the method described by Zein et al. (2014). 

Animals 

 D. pulex utilized in the bioassay were collected from a pond at the Michigan State 

University Kellogg Biological Station in 2008. Daphnia pulex were cultured and maintained in 

4L glass jars in an incubator at 21±0.5ºC. The incubator was illuminated to create a 16/8 hour 

light/dark cycles. The animals were fed 3 times a week with a 50/50 algae mixture of 

Ankistrodesmus falcatus and Chlamydomonas reinhardii. The animals were maintained in 

COMBO culture medium, which can support the growth of zooplankton (Kilham et al., 1998). 

The composition of COMBO is described below under Drugs, Chemicals and Solutions 

24-Well Plate Setup 

 Daphnia were removed from the culture and passed through a mesh screen to select 

daphnia of uniform size (>1.4 mm) for the experiments. The selected daphnia were placed 

randomly in the 24-well plate (Corning Costar, Sigma-Aldrich). A single daphnia was placed 

into each well using an eyedropper. Each well held 3.5 ml of solution when full. Once the 

daphnia was placed in the well, the excess COMBO present in the wells was removed and 

discarded with the help of a narrow tip pipette, so as to prevent the dilution of added chemicals 

solutions. Solutions of different concentrations of the chemicals to be studied were placed 

randomly in the 24-well plate. The entire plate setup procedure required approximately 15 

minutes. 
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Optical Tracking  

 Once the 24-well plate was prepared with the solutions and Daphnia, it was placed on a 

clear Plexiglas table with an LED light plate source underneath (Art Light).  An Infinity 2-1M 

digital monochrome camera (Lumenera Corporation, Ottawa, Ontario) was used with a 

telecentric lens (Opto Engineering, Houston, TX). The setup used to record the swimming 

behavior of Daphnia is shown in Figure1A and 1B.  

  

 

 

1A 1B 

Figure1A: Camera, lens and 24 well plate setup for swimming behavior assay. 1B: 24 well 

plate with solutions and freely swimming Daphnia 
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A camera resolution of 1280 by1024 was used to capture the videos in an AVI format. 

Video files were analyzed using the 2D tracking module in Image Pro Premier 9 software (Media 

Cybernetics, Rockville, MD).  

 

Figure 2 

Figure 2: A video file that has been tracked for Daphnid movement. Each well contains one 

daphnia 

 
Experimental Design 

 In a typical experiment, 5 second videos were recorded every 10 minutes for 180 

minutes, then every hour for the next three hours and at the 24th hour. Therefore at the end of 

each experiment Daphnia were exposed to each chemical for 24 hours. Every 5 second 
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recording consisted of a total of 145 frames that were used to track and quantify Daphnia 

movement.  

      The two parameters used to quantify Daphnia swimming movements were maximum 

accumulated distance and mean angular change. Accumulated distance was measured by the 

summing the distance covered between two frames over the course of the 5 sec video (145 

frames). The angular change was measured by comparing the change in direction of movement 

over the course of 145 frames. Rigorously, angular change is based on the change in the vector 

(the direction of movement that occurs between frames) across three frames (see Zein et al., 

2014 for more details). The change in angle is reported as the mean angle for the 5 sec video. 

Fig3A and Fig3B illustrates the timeline used for the experiments 

A) known biological targets 

B) unknown biological targets  

Figure 3A: Timeline for experiments for Contaminants of emerging concern with known 

biological target. 3B: Timeline for experiments for Contaminants of emerging concernwith 

unknown biological targets 
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Statistical Analysis 

 Statistica (Version10, Tulsa, OK, USA) was used for statistical analysis. A repeated 

measures of analysis of variance (ANOVA) with time as the repeated measure was used to 

evaluate swimming behavior. The dependent variables were Accumulated Distance (mm) and 

Mean Angle (degrees). The independent variables were parameters (Maximum Accumulated 

Distance and Mean Angle), chemical, and concentration. A three-way ANOVA was used to 

evaluate the behavioral results from exposure to TCS and TCC. The dependent variables were 

accumulated distance and mean angle. The independent variables were chemical 

(COMBO/TCS/TCC), concentration (low, high) and time (0 to 90 minutes).   The least 

significant difference (LSD) post-hoc test was used for multiple comparisons following 

ANOVA. In selected cases contrast analysis was also used to compare a series means across 

groups following ANOVA. 

PHYSIOLOGICAL ASSAY 

Aquatic Chamber: 

 A rectangular 8.0cm x 3.2cm x 1.5cm (LWH) aquatic chamber was custom built from a 

1.5cm thick Plexiglas by the College of Engineering machine shop, Wayne State University. A 

2cm hole drilled in the middle of the rectangular Plexiglass base and the bottom was sealed with 

a regular rectangular borosilicate microscope glass slide. Two 23-gauge stainless steel 

hypodermic tubes were used as an inlet and outlet to the cylindrical chamber for the perfusion 

of solutions. A small collection well near the outlet was used to collect the solutions exiting the 

chamber and measure water temperature using a temperature probe (Physitemp Instruments 

Inc., Clifton, NJ). A Plexiglass top with a threaded cylindrical plunger was used to seal the 

perfusion chamber. The cylindrical plunger used a round rubber gasket and circular cover glass 
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to complete the seal. The chamber was placed on the microscope stage on top of a TS-4SPD 

heating and cooling stage (Physitemp Instruments, Inc.).  

4A 4B 

4C 4D 

Figure 4A: Side view of the aquatic chamber. 4B: Top view of the aquatic chamber. 4C: 

Aquatic chamber with setup, microscope, temperature probe, inlet and outlet tubes. 4D: 

Daphnia on a pin 

 

 

   

 

                 



18 

 

 

 

Animal Preparation: 

An adult Daphnia was isolated and glued on the tip of 33 gauge stainless steel tubing 

which was 10 mm in length using <1nL of cyanoacrylate glue. The stainless steel tubing was 

glued to the dorsal side of the head between anterior of the heart and the posterior to the eye in 

parallel to the anterior-posterior body axis. The 33 gauge tubing holding the animal was placed 

into a 26 gauge tube fixed inside the aquatic chamber to place the animal in a consistent 

viewing position. The chamber was filled with COMBO and then was closed with a top 

chamber-viewing insert. The animals were able to freely move their swimming antennae and 

appendages once inside the chamber. Each animal was observed under a 4x Nikon microscope 

objective. The animal’s heart, appendages, swimming antennae, eye movement and gut were 

clearly visible through the translucent exoskeleton.  

Experimental Design: 

10 sec video recordings were recorded every 10 minutes using an Infinity 2M-1 

monochrome camera (Lumenera Corporation, Ottawa, Ontario). The video file was analyzed for 

motor activity using the 2D tracking module from Image Pro Premier 9 software (Media 

Cybernetics, Rockville, MD). Animal movement was analyzed by measuring density-intensity 

changes within an area of interest (AOI). The oscillating movement of the heart wall or 

appendages through this defined AOI was used to calculate beat rate per minute.   

Optical Tracking 

At the beginning of the experiment COMBO was perfused through the chamber for 30 

minutes at a rate of 10µL/min at 20ºC. This temperature was close to that of the culture in the 

incubator. Temperature was then reduced to 15ºC after 30 minutes and perfused with COMBO 

continued for one hour at the rate of 10µL/min. When drugs or chemicals were delivered to the 

chamber the pump rate was increased to 250µL/min for approximately 2.5 minutes and then 
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returned back to 10µL/min.  The duration of drug or chemical application depended on the 

timing of the responses observed and occurred over a period of 1- to 4-hours.  

Statistical Analysis  

 The statistical analysis was carried out using Statistica software (Version10, Tulsa, OK, 

USA). A repeated measures ANOVA with time as the repeated measure was used to analyze 

motor activity. The dependent variables were HR and ABR. The independent variables were 

parameter (HR/ABR) and concentration. In selected cases contrast analysis was used to compare 

a series of means across groups after ANOVA. 

SURVIVAL ASSAY 

 The survival assay was carried out for a period of 5 days. The Daphnia were selected for 

these experiments using a screen to filter by size and were approximately 1-day old. On exposure 

Day-0, different concentrations of the solution to be tested were prepared in EPA water 

(http://water.epa.gov/scitech/methods/cwa/wet/upload/2007_07_10_methods_wet_disk2_atx7-

10.pdf). . Daphnia were temporally collected in a watch glass until a total of five were obtained 

which were then transferred as a group into a 150 ml beaker containing a test solution. There 

were 4 replicates of each test solution, and therefore a total of 20 animals were used for each test 

solution. To minimize light exposure, the beakers were placed into an open lab drawer and 

covered with foil (shiny side out) to ensure darkness because the compounds are photo-sensitive 

but to also sufficient air-flow.  Temperature was monitored by a thermometer kept in the lab 

drawer.  On Day-1, each beaker was checked for number of surviving Daphnia and the survival 

number was noted as well as the room temperature. On day-2 the solutions were changed. Two 

hours prior to changing the solutions, the Daphnia were fed with reconstituted YTC mix 

(Carolina biological, Burlington, NC,). A few drops of the mix was gently pipetted into each 
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beaker. Once the Daphnia were allowed to feed for 2 hours, they removed from the beaker and 

placed on a watch glass and the number of surviving Daphnia was noted. The beakers were 

cleaned with a few drops of EPA water to remove any food residue at the bottom of the beaker 

and refilled with fresh EPA water. Once the Daphnia are placed back into the beaker the watch 

glass was rinsed with methanol followed by EPA water and then wiped down to avoid any cross-

contamination.  On Day-3 and Day-4, the number of surviving daphnia in each beaker and room 

temperature was recorded.  

Drugs, Chemicals, and Solutions  

Stock solutions of each chemical as well as the dilutions were made on the same day as 

the experiments performed. All the chemicals were purchased from Sigma-Aldrich (St. Louis, 

MO). The drugs, physostigmine (10mM stock solution) and fluoxetine(10mM stock solution), 

used in this study were directly dissolved in COMBO except for diazinon. A 10 mM diazinon 

stock solution was made in acetone and then test solutions were made in COMBO using a serial 

dilution technique. The highest concentration of diazinon used contained 0.002% acetone. All of 

the control solutions in diazinon experiments also contained 0.002% acetone to nullify if there is 

any effect of acetone . Physostigmine and fluoxetine were stored at room temperature. Diazinon 

was stored in a cool and dark place. The stock solution for parent compounds and photolyzed 

triclosan and triclocarban (10mM) were made in methanol and the dilutions were prepared in 

EPA moderately hard water. Parent triclosan and triclocarban were placed in a foil packet in 

amber colored bottles at room temperature, whereas the photolyzed compounds were covered 

with foil and kept in a cool and dark place.  
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Chapter 3: Contaminants with known targets 

RESULTS 

Physostigmine 

Behavioral analysis 

Figure 5A illustrates the effects of physostigmine on accumulated distance. A significant 

stimulatory effect of physostigmine on swimming behavior was observed as a concentration-

dependent increase in accumulated distance (F5,108 = 6.96, P<0.001), with the accumulated 

distance for the 0.125, 0.25 and 0.5µM concentrations significantly greater than the 0µM control 

(LSD test, P<0.05 for all cases). The effect of physostigmine on mean angle is illustrated in 

Figure 5B. A non-significant decrease in mean angle was also elicited by physostigmine, with 

the lowest mean value observed at a concentration of 0.25µM.  

The time-course for the effects of physostigmine on accumulated distance is illustrated in 

Figure 6A. Physostigmine elicited a significant concentration-dependent effect over the time-

course on accumulated distance (concentration x time interaction, F115, 2484 = 1.99, P<0.001). 

Contrast analysis for the 60 to 240 minute time interval indicated that the accumulated distance 

for the 0.125, 0.25 and 0.5µM concentrations were significantly greater than the 0µM control 

(P<0.05 in all cases). The highest concentration, 0.5µM, eventually caused a significant 

depression in accumulated distance relative to control at the 6- and 24-hour time-points (LSD 

test, P<0.05 in both cases). Visual observations of the video recordings at 6-and 24-hours 

indicated that 14 out of 19 and 16 out of 19 of the animals were immobilized by the 0.5µM 

concentration respectively. Figure 6B, C, and D separately illustrate the effects of each of the 

concentrations on accumulated distance relative to control                                           
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The time-course for the effects of physostigmine on mean angle is illustrated in Figure 

7A. Physostigmine elicited a significant concentration-dependent decrease in mean angle over 

time (concentration x time interaction, F 115, 2482 = 1.43, P<0.005). The 0.125, 0.25 and 0.5µM 

concentrations were significantly lower than the 0µM control for the 60 to 240 minute time 

interval (contrast analysis, P<0.05 in all cases). The highest concentration, 0.5µM elicited a 

significant increase in mean angle at the 6- and 24-hour time-points (LSD test, P<0.05 in both 

cases) Figure 7B, C, and D separately illustrate the effects of each of the concentrations on mean 

angle relative to control       

5A 5B 

Figure 5: Behavioral response of Daphnia pulex to physostigmine. Error bars are the standard 

error. 5A: Effects of physostigmine on accumulated distance. 5B: Effects of physostigmine on 

mean angle. 
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6A 

6B 

6C 6D 

 

Figure 6A: Time-dependent effects of physostigmine on accumulated distance. Error bars are the 

standard error. 6B: Effect of 0.125 µM on accumulated distance with respect to control. 6C: Effect of 

0.25µM on accumulated distance with respect to control. 6D: Effect of 0.5µM on accumulated distance 

with respect to control 
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7A 7B 

7C 7D 

 

Figure 7A: Time-dependent effects of physostigmine on mean angle. Error bars are the standard 

error. 7B: Effect of 0.125 µM on mean angle with respect to control. 7C: Effect of 0.25µM on mean angle 

with respect to control. 7D: Effect of 0.5µM on mean angle with respect to control 
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Physiological Analysis 

Physostigmine elicited  a significant concentration- and time-dependent effect on HR and ABR, 

which is depicted in Figure 8 (Concentration x Time x Parameter effect, P<0.001). The 0.5 µM 

concentration did not elicit any significant effects (contrast analysis, P>0.40 for both 

parameters), but the 1 µM and 2 µM concentrations completely suppressed ABR after 60 min of 

exposure (contrast analysis, p<0.001 in both cases).  There were small, but non-significant 

decreases in HR for the 1 µM and 2 µM concentrations (contrast analysis, P>0.10 in both cases). 

It should be noted that the reduction in ABR observed most often exhibited an irregular pattern, 

with intermittent pauses in the movement of the appendages followed by resumption of activity 

at a lower level until activity ceased. A partial recovery from the effects of exposure to high 

concentrations of physostigmine was observed following perfusion with drug-free COMBO 

solution. Recovery was monitored for D. pulex and on average it took approximately 60 min for 

ABR to reach 50% of its ABR reading prior to drug application (n=10).  

 

 

 

 

 

 

Figure 8: 

Effects of 

physostigmine 

on HR and 

ABR of Daphnia pulex: Concentrations: 0.5, 1 and 2µM. time points -30 to 0 show animals in 

COMBO. Time points 0 to 60 show the period the animal was in contact with the drug, 

physostigmine. 
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Diazinon 

Behavioral analysis 

Figure 9A illustrates the effects of diazinon on accumulated distance. A significant effect of 

diazinon on swimming behavior was observed as concentration-dependent changes in 

accumulated distance (F7, 64= 2.93, P<0.01).  The accumulated distance for the 500 and 125 nM 

concentrations were significantly lower than the 0nM control (LSD test, P<0.05 in both cases). 

The 0.125nM concentration stimulated swimming behavior and the accumulated distance was 

significantly higher than the 0nM control (LSD test, P< 0.05).  The time-course for the effects of 

diazinon on accumulated distance is shown in Figure 9B. There was a significant time x 

concentration effect (F161,1472 = 1.78, P<0.001) and the effects of diazinon on accumulated 

distance increased progressively over time, with the effects from the lower concentrations taking 

a little longer to develop than the higher concentrations. An analysis of the concentration-

dependent effects of diazinon which focused on the time points after 120 minutes is shown in 

Figure 9C.  When this later period in the time-course, was examined (after 120 minutes) 

significant effects of diazinon on accumulated distance was found (F7, 64 = 2.93, P < 0.001), and 

there was a decrease in the size of the standard errors associated with the mean values. This 

reduction in standard error reflected the more pronounced effects of diazinon in the later part of 

the time-course. Contrast analysis, examining the period from 120 minutes to 24-hours indicated 

that the 0.125 nM concentration significantly elevated the accumulated distance relative to 

control (P<0.05), while the 500 and 125 nM concentrations significantly decreased accumulated 

distance (P<0.05). Figure 10D, E and F separately illustrate the effects of each of the 0.125nM, 

125nM, and 500nM concentrations on accumulated distance relative to control                                           
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The effect of diazinon on mean angle is illustrated in Figure 11A. A significant 

concentration-dependent increase in mean angle was elicited by diazinon (F7, 64 = 4.90, P<0.001) 

with the lowest mean value observed at a concentration of 0.125nM and the highest mean value 

observed at a concentration of 500nM. Figure 11B shows the significant time- and concentration-

dependent effects of diazinon on mean angle (F161, 1472 = 2.48, P<0.001).  When the later time-

course after 120 minutes was examined a significant time- and concentration-dependent effect 

was observed with a corresponding decrease in the magnitude of the standard errors associated 

with the mean values  (Figure 11C, F7, 64  = 10.84, P< 0.001) When individual animal recordings 

were evaluated at the 24hr time point, immobilization was observed in the following proportions 

for the various concentrations (immobilized/total): 0(0/9), 0.125 (0/9), 0.5 (4/9), 2 (3/9), 8 (1/9), 

32 (9/9), 125 (9/9), and 500 nM (9/9). Figure 12D, E and F separately illustrate the effects of 

each of the concentrations on accumulated distance relative to control        
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9A 

 

 

 

 

 

 

 

9B 
 

 

 

 

 

 

 

9C 

Figure9: Behavioral response of Daphnia pulex to diazinon. Error bars are the standard error. 

9A: Effects of diazinon on    Accumulated distance. 9B: Time-dependent effects of diazinon on 

accumulated distance 9C: Time-dependent effects of diazinon on accumulated distance from 

from 120 to 1440    minutes 
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10A 

 

 

 

 

 

 

10B 

 

 

 

 

 

 

10C 

Figure 10: Effect of different concentrations of Diazinon on accumulated distance with respect 

to control. 10A: Effect of 0.125nM on accumulated distance with respect to control. 10B: Effect 

of 125 nM on accumulated distance with respect to control. 10C: Effect of 500nM on 

accumulated distance with respect to control 
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11A 

 

 

 

 

 

 

11B 

 

 

 

 

 

 

11C 

Figure11: Behavioral response of Daphnia pulex to diazinon. Error bars are the standard 

error. 11A: Effects of diazinon on mean angle. 11B: Time-dependent effects of diazinon on 

Mean angle 11C: Time-dependent effects of diazinon on Mean angle from 120 to 1440 minutes 
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12A 

 

 

 

 

 

12B 

 

 

 

 

 

 

12C 

Figure 12: Effect of different concentrations of diazinon on mean angle with respect to control. 

12A: Effect of 0.125nM on mean angle with respect to control. 12B: Effect of 125nM on mean 

angle with respect to control. 12C: Effect of 500nM on mean angle with respect to control 
 

                  

 

 

  



32 

 

 

 

Physiological Analysis 

 The physiological effects of diazinon (0.5 – 4.0µM) on heart rate (HR) and appendage 

beat rate (ABR) are depicted in Figure 13. For all of the diazinon responses analyzed, a 

minimum of 3 hours of responses were recorded. In selected cases a longer time-course was 

recorded. Diazinon elicited a significant concentration- and time-dependent effect on HR and 

ABR (Concentration x Time Interaction, F42,126 =2.65, P<0.001) over the 3 hour period of 

exposure. The physiological effect of diazinon also differed significantly between the HR and 

ABR parameters (Concentration x Time x Parameter Interaction, F42,126 =3.62, P<0.001).  An 

LSD test indicated that HR was not significantly affected by diazinon within the 3 hour exposure 

period. Diazinon elicited a time- and concentration-dependent inhibition of ABR. Within the 3-

hour exposure period ABR was significantly inhibited during only one time period, 140 minutes, 

following 0.5µM diazinon exposure (P<0.05). However, the ABR was completely inhibited after 

3 hours in 2 out of 3 cases.  1 µM diazinon significantly inhibited ABR at time periods greater 

than 140 minutes (P<0.05 in all cases). 2µM diazinon significantly inhibited all time periods 

greater than 90 minutes (P<0.05 in all cases). 

Figure 13: Effects of 

diazinon on HR and 

ABR of Daphnia 

pulex: 

Concentrations: 0.5, 

1 and 4µM 

 

 

 

 

Fluoxetine 

 Figure 14A 

illustrates the effects 
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of fluoxetine on accumulated distance. The concentration-effect of fluoxetine on accumulated 

distance was not significant (F7, 64= 0.66, P>0.50). The time-course for the effects of fluoxetine 

on accumulated distance is shown in Figure 14B. There was a significant time x concentration 

effect (F161, 1472 = 1.42, P<0.001) on accumulated distance. An analysis of the concentration-

dependent effects of fluoxetine which focused on the time points after 120 minutes is shown in 

Figure 14C. A significant effect of fluoxetine on accumulated distance was also found for this 

later period in the time-course (F77, 704 = 1.33, P < 0.01).  Contrast analysis, examining the period 

from 120 minutes to 24-hours indicated that the 51µM concentration significantly elevated the 

accumulated distance relative to control (P<0.05), while the 205µM concentration significantly 

decreased accumulated distance (P<0.05).  Figure 15A and B separately illustrate the effects of 

each of the concentrations on accumulated distance relative to control. 

The effect of fluoxetine on mean angle is illustrated in Figure 16A. The concentration 

effect of fluoxetine on mean angle was not significant (F7, 64 = 1.80, P>0.50). Figure 16B shows 

the significant time- and concentration-dependent effects of fluoxetine on mean angle (F= 1.85, 

P<0.001).  An analysis of the concentration-dependent effects of fluoxetine which focused on the 

time points after 120 minutes is shown in Figure 16C. When the later time-course after 120 

minutes was examined a significant time- and concentration-dependent effect was also observed 

(F77, 704  = 1.57, P< 0.05). When individual animal recordings were evaluated at the 24hr time 

point, immobilization was observed in the following proportions for the various concentrations 

(immobilized/total): 0 (1/9), 0.05 (1/9), 0.2 (1/9), 0.8 (1/9), 3.2 (2/9), 12.8 (2/9), 51(9/9) and 

205(9/9). Figure 17A and B illustrate the effects of each of the concentrations on mean angle 

relative to control separately. 
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14A 

 

 

 

14B 

 

 

 

14C 

Figure14: Behavioral response of Daphnia pulex to fluoxetine. Error bars are the standard error. 

14A: Effects of fluoxetine on Accumulated distance. 14B: Time-dependent effects of fluoxetine 

on accumulated distance 14C: Time-dependent effects of fluoxetine on accumulated distance 

from 120 to 1440 minutes 
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15A 

 

 

15B 

 

 

 

15C 

Figure15: Behavioral response of Daphnia pulex to fluoxetine. Error bars are the standard error. 

15A: Effects of fluoxetine on mean angle. 15B: Time-dependent effects of fluoxetine on Mean 

angle 15C: Time-dependent effects of fluoxetine on Mean angle from 120 to 1440 minutes 
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16A 16B 

Figure 16: Effect of different concentrations of fluoxetine on accumulated distance with respect 

to control. 16A: Effect of 205µM on accumulated distance with respect to control. 16B: Effect of 

51µM on accumulated distance with respect to control 

                                                                                                                       

17A 17B 

Figure 17: Effect of different concentrations of fluoxetine on mean angle with respect to control. 

17A: Effect of 205µM on mean angle with respect to control. 17B: Effect of 51µM on mean 

angle with respect to control 
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DISCUSSION 

Physostigmine  

Daphnia pulex are known to have a cholinergic neurotransmitter system, including homologs for 

the synthetic enzyme, choline acetyltransferase, the vesicular ACh transporter, the degradative enzyme 

acetylcholinesterase, and nicotinic and muscarinic receptors (McCoole et al., 2012a). In the present study 

the acetylcholinesterase (AChE) inhibitor, physostigmine, elicited a significant and relatively rapid 

concentration-dependent increase in maximum accumulated swimming distance over the 24 hour time-

course. The onset time for the increase in distance was also concentration-dependent, with higher 

concentrations, 0.25 – 0.5 µM, producing significant stimulation of swimming earlier in the time-course 

(less than one hour) than the lower 0.125 µM concentration (greater than one hour). As has been shown in 

a previous study by Zein et al. (2014) examining a shorter 90 minute time-course, the increase in 

swimming distance was associated with a significant decrease in mean angle over the first three to four 

hours for these same concentrations (0.125 – 0.5 µM), which is indicative of a decrease in turning 

behavior. However, by the sixth hour of the time-course the higher, 0.5µM physostigmine 

concentration, elicited a significant increase in mean angle that was associated with animals becoming 

immobilized due to exposure. To the best of our knowledge, this study and the previous paper by our lab, 

Zein et al. (2014), represent the only behavioral studies examining the effects of physostimine on 

Daphnia pulex. 

Physostigmine (0.5 to 2 µM) also elicited a significant concentration-dependent inhibition of 

appendage beat rate (ABR), but not heart rate (HR). The onset for ABR inhibition was approximately 30 

to 40 minutes at the 1 and 2 µM concentration (Hannan et al., in preparation). The lack of effects of 

physostigmine on heart rate differs from the inhibitory effect on Daphnia magna heart rate described by 

Baylor (1942). However, the experimental setup used by Baylor differs significantly, and Baylor does not 

show these physostigmine results, concluding that these were “toxic” effects. To the best of our 

knowledge this is the first report of the inhibitory effects of physostigmine on ABR. Inhibition of ABR 

would be expected to affect both feeding and respiratory function. 
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Diazinon 

The AChE inhibitor and emerging contaminant, diazinon, elicited concentration-dependent 

behavioral effects on maximum accumulated distance and mean angle qualitatively similar to 

physostigmine. Diazinon appeared to be more potent than physostigmine since stimulation of swimming 

behavior, seen as an increase in maximum accumulated distance, was detected at the lowest concentration 

of 0.125 nM. The stimulatory effects of diazinon were observed with a much more rapid onset relative to 

physostigmine at the 125 nM concentration (i.e., the first, time-0, reading for diazinon versus greater than 

one hour for physostigmine). A corresponding decrease in mean angle was also seen for 125 nM diazinon. 

It should be noted that the stimulatory response to the lowest 0.125 nM concentration of diazinon 

occurred particularly late in the time-course, after approximately four hours of exposure. However, the 

increase in mean angle over the diazinon concentration range studied tended to predominate for most of 

the higher diazinon concentrations, indicating an increase in turning behavior eventually that eventually 

resulted in 100% immobility at 24 hours for the highest concentrations (32-500 nM). The increase in 

mean angle and increase in immobilized animals over this extended concentration range and longer 24-

hour time course is consistent with our previous reports examining responses to higher concentrations of 

diazinon (e.g., 1 and 2 µM) over a shorter 90-minute period (Zein et al., 2015). 

To the best of our knowledge this study and the previous paper by Zein et al. (2015) represent the 

only behavioral studies examining the effects of diazinon on Daphnia pulex. The 0.125 nM diazinon 

concentration is lower than the LC50 value of 0.9µg/L (2.9 nM) reported by Fernandez et al. (1994) for 

Daphnia magna. For Daphnia LC50 assays immobility rather than death is typically used as the end point, 

and it is assumed that immobility was the end point used by Fernandez et al. (1994) in their 24-hour study 

even though their methods describe the end point as mortality. In the present study, immobilization was 

not observed after 24 hours of exposure at 0.125 nM.  

This diazinon concentration is environmentally relevant since similar concentrations have been 

detected in surface waters (e.g., see Kolpin et al., 2002), and the behavioral stimulation observed in the 
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present study suggests that diazinon might affect behavior in the real world habitat. For example, 

alterations in behavior may affect survival by making daphnia more prone to predation. Higher 

concentrations of diazinon have been found to increase the rate of predation of Daphnia pulex by Hydra 

littoralis under controlled experimental conditions (Zein et al., in preparation). Since contaminants of 

emerging concern are generally found as complex mixtures, the presence of bioactive concentrations of 

diazinon in the aquatic environment may exhibit increased toxicity due to additive or synergistic 

interactions with other contaminants. For example, Zein et al. (2015) reported a potential synergistic 

interaction between diazinon and the detergent metabolite, 4-nonylphenol, which is also commonly found 

in surface waters. 

Diazinon elicited physiological responses qualitatively similar to physostigmine, eliciting an 

inhibition of ABR at the two higher concentrations studied, 1 and 4 M, without affecting HR. However, 

the onset of the response was much later in the time-course for the effect on ABR. The onset of the ABR 

response for diazinon was more than two hours after the initiation of exposure compared to 30 to 40 

minutes for similar physostigmine concentrations.  

Comparison of physostigmine and diazinon 

 While the qualitative effects of the two AChE inhibitors, physostigmine and diazinon, were very 

similar, the quantitative aspects in terms of concentrations eliciting a certain level of response and onset 

times in particular were quite different. Although the mode of action is very similar for these two agents, 

the mechanism of acetylcholinesterase inhibition is different. Physostigmine is a carbamate inhibitor, 

which elicits a reversible inhibition of enzyme activity. The inhibitory effect is reversed by hydrolysis of 

the carbamate group from AChE (Taylor, 2011). Diazinon is an organophosphate inhibitor which is 

converted to an active metabolite, diazoxon, that creates a long-lasting covalent bond to AChE 

(Kretschmann  et al., 2011). Although, these differences in action may contribute to the differing response 

profiles between these two agents, the difference in octanol/water coefficients may play a larger role. 

Diazinon was shown to be capable of eliciting a stimulation of swimming behavior that was recorded at 

the “0” time-point, which suggests that diazonon is rapidly generated. However, the time to onset of 
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response varied widely among the various responses measured, with a particularly long onset for 

inhibition of ABR even though the diazinon concentrations required to elicit these responses were much 

higher. The octanol-water partition coefficient for physostigmine is only 1.17 (Greig et al., 2000), where 

as that for diazinon is 3.81 (Nemeth-Konda et al., 2002). The difference in octanol-water partition 

coefficients suggests that differences in partitioning of these two agents between lipid and water phases 

may influence the rate of onset of the responses. This result in turn suggests that at least some portion the 

AChE pool associated with the behavioral response (e.g., increase in maximum accumulated swimming 

distance) and physiological response (ABR) may differ in anatomical location or have different enzyme 

inhibition thresholds.  

 An additional potential factor is the selectivity of physostigmine and diazinon as enzyme 

inhibitors. AChE inhibitors are often capable of inhibiting multiple esterases. For example, diazinon and 

physostigmine can inhibit both acetylcholinesterase and butyrylcholinesterase (Musilek et al., 2011; 

Taylor, 2011), and organophosphates are known to also affect neuropathy target esterase (NTE, 

Richardson et al., 2013). Although the genome of Daphnia pulex has been sequenced (e.g., see 

Coulbourne et al., 2011), and various esterases have been identified (McCoole, 2012a), the biological 

impact of inhibiting different esterases, particularly acetylcholinesterase, is still an ongoing field of 

inquiry in Daphnia.    

 Since animals like Daphnia live in the aquatic environment for their entire life cycle, exposure to 

chemical contaminants can occur over an entire life span. Contaminants like diazinon are also known to 

bioaccumulate in Daphnia, and this can lead to greater toxicity (Kretschmann et al. 2011; Nyman et al., 

2014). Fernandez  et al. (1994) found that exposure of Daphnia magna to lower concentrations of 

diazinon for 5 hours significantly inhibited filtration (µl/animal/hour) and ingestion (cells/animal/hour) at 

concentrations of 0.47 µg/l (~ 1.5 nM) and 0.60 µg/l (~ 2nM), respectively. These findings taken together 

suggest that exposure to very low concentrations of diazinon for a sufficiently long enough time period 

can impair feeding in Daphnia, and therefore may impact the survival and fitness of this keystone species.  

Fluoxetine 
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  Daphnia are known to have a serotonergic neurotransmitter system. Homologs of the 

synthetic enzyme, tryptophan hydroxylase, serotonin transporters, and serotonin receptors have been 

identified in Daphnia pulex (McCoole et al., 2012b). Fluoxetine is a selective serotonin reuptake inhibitor 

and emerging contaminant. Fluoxetine was not found to have significant behavioral effects in this study 

except at relatively high concentrations. The 51µM concentration elicited a transitory stimulatory effect 

on swimming behavior expressed as an increase in maximum accumulated distance after two hours of 

exposure and this lasted for approximately four hours when maximum accumulated distance began to 

decline. The mean angle was elevated at the 24-hour time point. The 205µM concentration decreased 

maximum accumulated distance after two hours exposure and this was associated with an increase in 

mean angle. Both of these fluoxetine concentrations, 51 and 205µM resulted in 100% immobilization of 

the animals by the 24-hour time point. Given the relatively high concentrations of fluoxetine needed to 

elicit these behavioral effects, and without experiments conducted in the presence of a serotonin 

antagonist, it remains possible that the responses may be non-specific and not related to effects on the 

serotonergic system. 

 Although the observation of effects of swimming behavior resulting from fluoxetine exposure 

required high concentrations in the present study, there are a number of studies that have reported effects 

on Daphnid reproduction and life cycle. Compos et al. (2012) reported that exposure to the selective 

serotonin (5HT) reuptake inhibitors, fluoxetine (~30 nM–230 nM) and fluvoxamine (~7 nM-70 nM), 

increased Daphnia magna juvenile development rate, and increased clutch size and decreased the size of 

offspring. These effects could be reversed by a 5HT antagonist, indicating that they were likely produced 

by 5HT receptor stimulation resulting from transporter inhbition. These drugs also elicited changes in 

oxygen consumption (increased) and carbohydrate levels (decreased). Perry et al. (2008) found that 

exposure to 9 to 90 nM fluoxetine affected the length of newborn. Daphnia magna, with a larger effect on 

second generation animals relative to first generation. Since the behvioral results observed in the present 

study occurred at exposure levels that were aproximately an order of magnitude higher than the fluoxetine 

concentrations used by Compos (2012) and Perry (2008), it is possible that the more biologically 
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important role of 5HT in Daphnia is related to reproduction and regulation of life cycle rather than 

modulation of motor activity.  
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Chapter 4: Emerging Contaminants with unknown targets 

RESULTS 

Triclocarban and Triclosan in COMBO 

The effects of TCS and TCC exposure on distance are shown in Figure 18A and 18B. Since the 

concentration effect (F1,18=5.09, P>0.50), the concentration x time interaction (F9,162=43.01, 

P>0.50), and the concentration x chemical x time interaction (F18, 162=32.93, P>0.50) for 

accumulated distance were not significant, there was no significant difference found between the 

low and high concentrations (see Figure 18A). However, there was a significant time effect (F9, 

162= 153.43, P< 0.005) and a significant time x chemical interaction (F18, 162=128.06, P<0.005) 

indicating that there was a significant chemical effect on accumulated distance that was 

dependent on time (see Figure 18B). Contrast analysis comparing means at 70 to 90 minutes 

indicated that the accumulated distance for TCC and TCS were significantly lower than that of 

controls (P<0.05 in all cases).As shown in Figure 19A and 19B, a similar result was found for 

mean angle. The concentration effect (F1, 18 = 0.0, P>0.5), concentration x time interaction (F9, 162 

= 1.60, P>0.1), and concentration x chemical x time interaction (F18, 162 = 1.10, P>0.2) were not 

significant. There was a significant time effect (F9,162 = 7.39,P<0.001) and time x chemical 

interaction (F18,192 = 3.09,P<0.001), again indicating a significant chemical effect on mean angle 

(see Figure 19B). Contrast analysis comparing means at 70 to 90 minutes indicated that the mean 

angle for TCC and TCS were significantly higher than that of controls (P<0.05 in all cases). 
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Figure18A: Effect of different concentrations of TCC and TCS over time on accumulated 

distance. 18B: Time course for the effects of TCC and TCS on Accumulated distance. 
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Figure19A: Effect of different concentrations of TCC and TCS over time on mean angle. 19B: 

Time course for the effects of TCC and TCS on mean angle. 
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Triclocarban and Triclosan in EPA 

Survival Analysis 

 The effects of TCC and TCS and their photo-degradative products(P.TCC and P.TCS) on 

Daphnid survival in EPA water over a 5-day period are shown in Figure 20A. A significant 

concentration x chemical interaction (F18, 84 = 3.87, P<0.001) indicated that the toxic effects on 

survival were dependent on both the type of chemical exposure and the concentration.  LSD tests 

indicated that the survival due to TCC exposure was significantly lower than the other three 

chemicals at the highest concentration, 1µM (P<0.05 in all cases). At the second highest 

concentration, 0.1µM, survival due to TCC exposure was significantly lower than TCS and 

P.TCC (P<0.05 in both cases), but not significantly different from P.TCS.  The effects of 

chemical exposure were also dependent on duration of exposure and concentration 

(concentration x time interaction, F18, 252=3.17, P<0.001). The time- and concentration-dependent 

effects can be seen in Figure 20B. There was a progressive time-dependent decrease in survival 

over the duration of exposure (time effect, F3, 252=141.43, P<0.001) with significant differences 

among all 4 days (LSD test, P<0.05 in all cases). The overall effect of chemical exposure as seen 

in Figure 20C, was dependent on the type of chemical exposure, duration of exposure, and 

concentration (chemical x time x concentration interaction, F54, 252=2.11, P<0.001).  TCC caused 

the greatest reduction in survival among the four chemical exposures since the chemical x time x 

concentration effect after eliminating TCC from the analysis was no longer significant 

(F36,189=0.78, P>0.50). 
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20C 

Figure 20A: The concentration-dependent effects of four different chemical exposures on 

Daphnia pulex over a 5-day period 20B: The time- and concentration-dependent effects of four 

different chemical exposures on Daphnia pulex over a 5-day period. 20C: The overall effect  of 

four different chemical exposures on Daphnia pulex over a 5-day period 
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Behavioral Analysis of TCC and TCS – both parent and photolyzed 

 The effects of TCC, TCS, P.TCC and P.TCS ( on swimming behavior were examined 

over a 24-hour period using the optical tracking method. Figure 21 through 26 illustrate the 

results from these experiments. 

The concentration-dependent effects of TCC and TCS are shown in Figure 21. There was 

not a significant overall concentration effect of the parent compounds on accumulated distance 

(21A: F7,80=0.40, P>0.50) or on mean angle (21B: F7,80=0.54, P>0.50). Similarly, when 

comparing the chemicals, TCC and TCS, the concentration x chemical effect was not found to be 

significant for accumulated distance (21C: F7,80=1.05, P>0.20) or for mean angle (21D: 

F7,80=1.68, P>0.10). The results for the concentration-dependent effects of the photodegradates 

are shown in Figure 22, and the outcome was similar to that obtained for the parent compounds. 

Neither the concentration-effect of the photodegradates (accumulated distance-22A: F7,79=0.30, 

P>0.50; mean angle-22B: F7,79 =1.10, P>0.20) nor the concentration x chemical effect of the 

photodegredates (accumulated distance-22C: F7,79=0.69, P>0.50; mean angle - 22D: F7,79 =1.06, 

P>0.20) were found to be significant for either dependent variable, accumulated distance or 

mean angle.  
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21A 21B 

 

21C 

 

21D 

Figure 21: Concentration dependent effects of TCC and TCS. 21A: Effects of TCC and TCS on 

accumulated distance. 21B: Effects of TCC and TCS on mean angle. 21C: Concentration x 

chemical effects on accumulated distance. 21D: Concentration x chemical effect on mean angle. 
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22A 22B 

22C 22D 

Figure 22: Concentration dependent effects of photolyzed TCC and photolyzed TCS. 22A: 

Effects of photolyzedTCC and photolyzed TCS on accumulated distance. 22B: Effects of P.TCC 

and P.TCS on mean angle. 22C: Concentration x chemical effects on accumulated distance. 22D: 

Concentration x chemical effect on mean angle 
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Figure 23 illustrates the time-course for the effects of the various chemical treatments on 

accumulated distance and mean angle when ignoring concentration. There were no significant 

differences between any chemical treatments at time 0 (LSD test, P>0.50 in all cases). A 

significant chemical-effect on both accumulated distance (F1,80=14.47, P<0.001) and mean angle 

(F1,80=12.16, P<0.001) was found when comparing TCC and TCS (see Figure 23A and 23B).  A 

significant chemical-effect on both accumulated distance (F1,79=6.42, P<0.05) and mean angle 

(F1,79=11.57, P<0.005) was also found when comparing the photodegradates (see Figure 23C and 

23D). As described above, the concentration x chemical effect was not significant for any of the 

chemicals. The interaction between chemical and time was significant for mean angle for the 

photodegradates (F28, 2212=4.14, P<0.001, see Figure 23D), but was not significant for any of the 

other chemical x time interactions (P>0.10 in all cases).  The interaction between chemical, 

concentration, and time was significant for mean angle in the parent compounds (F196,2240 =1.19, 

P<0.05), but was not significant for any of the other three-way interactions (P>0.05 in all other 

cases).  Contrast analysis was used to examine the difference between the first four means and 

the difference between the last four means in each of the four plots (A-D) in Figure 23. Contrast 

analysis indicated significant differences (P<0.001) between parent compounds (A, B) and the 

photodegradates (C, D) in all cases except for the first four means of plots C and D (P>0.05 in 

both cases). Therefore, the chemical effect was the major significant effect observed, with more 

minor time- and concentration-dependent effects. As can be seen in time-course for the effects of 

parent compounds in 23A and 23B the mean values and standard errors for accumulated distance 

and angle over time are mostly separated. The major separation between the means and standard 

errors of the photodegradates occurs mostly after 300 minutes. 
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23A 23B 

23C 23D 

Figure 23: time-course for the effects of the various chemical treatments on accumulated 

distance and mean angle when ignoring concentration. 23A: time dependent effects of TCC and 

TCS on accumulated distance. 23B: time dependent effects of TCC and TCS on mean angle. 

23C: time dependent effects of P.TCC and P.TCS on accumulated distance. 23D: time dependent 

effects of P.TCC and P.TCS on mean angle 
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Since there were no significant concentration main-effects observed, and one of the 

concentrations was zero (controls with no chemical treatment), the no-treatment controls were 

pooled from the two experiments (parent and photodegredates) to create a separate pooled 

control group. This control data was incorporated into a new analysis to compare parent 

compounds and photodegradates.  Figure 24 illustrates the chemical effects over time with the 

controls as a separate line. As can be seen in Figure 24A and 24B, the no-treatment controls 

closely follow the TCS parent compound, and the time course for these two groups is mostly 

separated from the TCC parent compound group. For the photodegradates in Figure 24C and 

25D, the no-treatment group follows a more intermediate position between the TCC 

photodegredates and the TCS photodegredates over time. Figure 25A and 25B illustrates the 

effects of the highest concentration of TCC on accumulated distance and on mean angle 

respectively and the highest concentration of TCS on accumulated distance (25C) and mean 

angle (25D) relative to the pooled controls. 
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24A 24B 

24C 24D 

Figure 24: the chemical effects over time with the controls as a separate line. 24A: effects of 

TCC and TCS on accumulated distance. 23B: effects of TCC and TCS on mean angle. 24C: 

effects of P.TCC and P.TCS on accumulated distance. 24D: effects of P.TCC and P.TCS on 

mean angle 
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25A 25B 

25C 25D 

Figure25A: effects of the 1µM TCC on accumulated distance. 25B: effects of the 1µM TCC on 

mean angle. 25C: effects of the 1µM TCS on accumulated distance. 25D: effects of the 1µM 

TCS on mean angle 
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Figure 26 summarizes the effects of the various chemical treatments and the no-treatment 

control ignoring the concentration factor. There was a significant chemical effect for all chemical 

treatments (26A-D: P<0.05 in all cases). A post-hoc LSD test indicated that TCC was 

significantly different from control for both accumulated distance and mean angle (P<0.05 in 

both cases). This indicates that TCC significantly decreased accumulated distance and increased 

mean angle relative to control, inhibiting forward swimming behavior and increasing turning 

behavior (Figure 26A and 26B). TCS was not significantly different from control for either 

accumulated distance or mean angle (Figure 26C and 26D). For both accumulated distance and 

angle, the photodegradates were not significantly different from control (LSD, P>0.05). There 

was a non-significant trend towards an increase in mean angle of P.TCC relative to control (P~ 

0.073). The two photodegradates were significantly different from each other (LSD, P<0.05 in 

both cases). 
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26A 
26B 

26C 26D 

Figure26: the effects of the various chemical treatments and the no-treatment control ignoring 

the concentration factor. 26A: effects of TCC and TCS on accumulated distance. 26B: effects of 

TCC and TCS on mean angle. 26C: effects of P-TCC and P-TCS on accumulated distance. 26D: 

effects of P-TCC and P-TCS on mean angle 
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DISCUSSION 

Triclocarban, Tricloan and photodegredates 

 Triclosan (TCS) and triclocarban (TCC) are halogenated aromatic hydrocarbons used in 

many antimicrobial products (e.g., soaps, detergents, toothpaste, plastics, etc.; Halden, 2014). 

These compounds have broad antimicrobial activity with multiple antimicrobial targets, and can 

be classified as bacteriostatic or as biocides depending on concentration (Russel, 2004; Escalada 

et al., 2005; Ahn et al., 2008; Dann and Hontela, 2011). As emerging contaminants, which are 

found extensively in surface waters and are known to bioaccumulate, these agents are receiving 

increasing scrutiny for their potential toxicity to wildlife and humans (Ahn et al, 2008; Dan and 

Hontela, 2011; Halden, 2014). Both TCS and TCC are also known to produce stable, but 

incompletely characterized photodegredates in the environment upon exposure to UV light (e.g., 

see Halden, 2014). Although toxicity to some aquatic life has been evaluated, to the best of our 

knowledge there have been no reports on behavioral effects of these agents in Daphnia. 

 Our preliminary behavioral study conducted in COMBO media compared the toxicity of 

TCC and TCS at two concentrations, 0.1µM and 10µM, over a 90-minute period of exposure. 

Evidence of acute toxicity was obtained in the swimming assay, indicating that both compounds 

caused a significant decrease in maximal accumulated distance and a significant increase in 

mean angle. These behavioral effects were not found to be concentration-dependent, suggesting 

that the two concentrations were equally toxic.  

 A more extensive concentration range that included UV-photodegradates of both TCC 

and TCS (provided by the laboratory of Yu-Ping Chin at Ohio State University), from 0.01nM to 

1µM, was examined in the 5-day survival analysis study. This survival analysis used a 

standardized medium formulated by the EPA 

(http://water.epa.gov/scitech/methods/cwa/wet/upload/2007_07_10_methods_wet_disk2_atx7-
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10.pdf). A significant time-and concentration-dependent decrease in survival was found that was 

also dependent on the specific type of chemical exposure. After 24-hours of exposure both TCC 

and P-TCS exhibited significant decreases in survival that progressively decreased over 

subsequent days of exposure. The highest 1µM concentration of TCC killed all animals within 

24-hours of exposure. By the second day of exposure there was a significant decrease in survival 

of animals exposed to 0.1µM TCC. On the second day of exposure there was a significant 

decrease in the survival of animals exposed to TCS at the 10 nM concentration, and on the third 

and fourth day all of the concentrations from 1 nM to 1 µM showed a significant decrease in 

survival. On the second day there was a significant decrease in survival for the P-TCC exposed 

animals at 10 nM. On the first day of exposure there was a significant decrease in survivial for 

the P-TCS group at 0.1 and 1µM. By the fourth day survival was significantly decreased at 0.1 

nM and 10 nM for P-TCS. These results indicate that TCC, TCS, P-TCC, and P-TCS exhibit 

significant toxicity at in the low nanomolar range. 

 Tamura et al., (2013) compared the toxicity of TCC, TCS, and other potential 

contaminants across three different aquatic organisms, green algae (Pseudokirchneriella 

subcapitata), Daphnia magna, and fish (Oryzias latipes). They calculated an EC50 for algae 

growth inhibition (72 hour exposure), an EC50 for Daphnia immobility (48 hour exposure), and 

an LC50 for fish (96 hour exposure). For TCC the rank order calculations for toxicity were: 

Daphnia (30nM) < green algae (90 nM) < fish (270 nM). For TCS the rank order calculations for 

toxicity were: green algae (17 nM) < Daphnia (620 nM) < fish (725 nM). There was a clear 

difference among species in terms of sensitivity to toxic effects and rank order was dependent on 

the type of chemical exposure, with fish generally being the least sensitive. In the first 24 hours 

of exposure for our survival experiment TCC also was more toxic than TCS. However, TCS 
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toxicity increased over time with a maximum effect on survival at 96 hours. In addition, the 

photolyzed TCC and photolyzed TCS exhibited significant toxicity at low nM concentrations. 

 A re-examination of the behavioral toxicity of TCC, TCS, P-TCC, and P-TCC in EPA 

medium covered the same concentration range as utilized in the survival analysis (0.01nM to 

1µM).  When the entire 24-hour time course was evaluated there were no significant 

concentration-dependent effects of any of the types of chemical treatments on swimming 

behavior. However, when the two parent compounds were compared there was a significant 

difference between TCC and TCS on both maximum accumulated distance and mean angle. 

When compared to pooled controls, it became apparent that TCC elicited the major behavioral 

effects relative to TCS, with a decrease in maximum accumulated distance and an increase in 

mean angle. These results would be consistent with that observed after the first day of exposure 

in the survival analysis. The outcome of the experiment comparing P-TCC and P-TCS is less 

clear since both treatments had mean values near the pooled controls for maximum accumulated 

distance, and some divergence from pooled controls at 24-hours with P-TCC higher and P-TCS 

lower than controls for mean angle. With the reduction in mean values for the P-TCS exposed 

animals after 24-hours of exposure in the survival experiment, an increase in mean angle might 

have been expected rather than a decrease in mean angle, but the effect on survival was not large 

at 24-hours and became larger with several more days of exposure. 

 The overall evaluation of TCC, TCS, and photolyzed compounds indicates that these are 

relatively toxic agents, which can affect survival in the nanomolar range. The 24-hour behavioral 

analysis was able to detect the effect of the highest 1 µM concentration of TCC that occurred 

within 24-hours, but the limitation in the evaluation of effects over time (24 hours), meant that 

later developing toxic effects on behavior could not be evaluated. The low concentrations 
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observed indicate that there should be concern about the environmental impact of TCC, TCS, P-

TCC and P-TCS given there ubiquitous presence in water ways near urban areas with significant 

human populations. 

  



62 

 

 

 

CONCLUSION 

 In the study of contaminants with known biological targets, significant differences 

between behavioral and physiological response profiles for two different anticholinesterase 

agents were observed.  One agent, physostigmine, that is rarely used therapeutically as a drug, 

and another agent, diazinon, which is an insecticide with a similar mode of action, exhibited a 

different time-course for their actions. The results with the anticholinesterase agents suggest that 

a more thorough analysis including other inhibitors commonly found as contaminants of 

emerging concern (e.g., chlorpyrifos) might provide new understanding of toxicokinetic factors 

that affect toxicity. A more complete understanding of toxicokinetic factors may enable better 

estimation of environmental risks. In addition the behavioral responses elicited by diazinon 

occurred at relatively low concentrations. In particular, the stimulatory effect of 0.125 nM 

diazinon on Daphnid swimming behavior may impact survival or fitness, and likely occurs at an 

environmentally relevant concentration. 

 The second phase of the study focused on contaminants of emerging concern with 

unknown biological targets. Triclosan and triclocarban are antibiotics commonly found in 

commercially available products, such as soap and toothpaste, and are now found in many 

waterways. These agents are known to be transformed into new and incompletely characterized 

chemicals. Experimental results obtained demonstrated that the parent compounds and the 

photolyzed compounds affected Daphnid survival at low environmentally relevant 

concentrations. The swimming assay was able to detect some early behavioral effects that may 

be useful indicators for the potential of some chemicals to affect fitness or survival. The 

mechanism for these toxic effects on Daphnia remains to be determined. 

 The advancement in technology and new analytical methods has enabled the detection of 

very low concentrations of chemical contaminants in the environment. More traditional toxicity 
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tests, such as LC50 test to estimate lethality have often focused on single contaminants and miss 

sub-lethal effects that may be expressed as changes in behavior. The potential risk from exposure 

to the contaminants of emerging concern must also address the issue of complex mixtures rather 

than being simply focused on single chemical agents. Since exposure may often involve complex 

mixtures rather than single chemical agents a more complete assessment of the impact of 

mixtures will be an ongoing challenge if we are to protect aquatic flora and fauna as well as 

human health.  
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APPENDIX A 
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ABSTRACT 

 

CONTAMINANTS OF EMERGING CONCERN: EFFECTS OF KNOWN 

NEUROACTIVE AGENTS, ANTIBIOTICS, AND CHEMICALLY 

UNCHARACTERIZED PHOTODEGRADATES ON BEHAVIOR AND PHYSIOLOGY 

ON DAPHNIA PULEX 

 

by 

VIBHUTI MATTA 

August 2015 

Advisor: Dr. David Pitts 

Major: Pharmaceutical Sciences 

Degree: Master of Sciences  

 Emerging contaminants such as pharmaceuticals and personal care products (PPCPs), 

herbicides, pesticides, plasticizers, fire retardants, polycyclic aromatic hydrocarbons (PAHs), and 

other organic waste are increasingly being detected in surface water and ground water. These 

contaminants can enter into the environment through wastewater treatment plant effluent and 

agriculture runoff. Many of these emerging contaminants tend to be biologically active at very 

low concentrations, typically occur in water as part of complex mixtures, and may impact biota 

at concentrations not detected using traditional toxicity tests (e.g. LC 50 tests).  

 This study focuses on utilizing novel Daphnid optical bioassays to examine the toxicity 

of selected emerging contaminants. The chemicals selected for this study are found in surface 

water. Chemicals that are known neuroactive agents were selected. Anticholineesterase, 

physostigmine(drug) and  diazinon(insecticides)[cholinergic system], and the antidepressant, 

fluoxetine[serotonergic system]. Triclosan and triclocarban are antibiotics that are used in 

antibacterial soaps and a number of other products, and these chemicals and their transformation 

products resulting form photodegredation. They do not have any known biological targets within 
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Daphni. Two different optical tracking assays were used to evaluate changes in Daphnid 

swimming behavior Daphnid cardio-respiratory function as a result of exposure to 

diazinon,fluoxetine, triclosan, triclocarban and photodegredates of the two antibiotics. 
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