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CHAPTER 1 

1. Introduction 

Industrialization has led to major improvements in food quality and safety, yet food borne 

infections remain an important public health concern [1]. It was estimated in 2011 that 9.4 

million people suffered from food borne illnesses in the United States [2]. Hence, developing 

new methods for eliminating food borne pathogens and improving existing techniques is 

essential. This is furthermore stressed by the shift in consumer trends towards organic, non-

processed foods. These changes have occurred due to growing concerns over the use of a variety 

of synthetic additives to food products such as sorbate, benzoate, etc., which are not considered 

‘natural’ [3].  Adding complexity to the problem is the emergence of antibiotic-resistant bacteria 

species in the food system [4]. These evolved bacteria demonstrate the necessity of improvement 

in food control techniques. Utilizing naturally occurring substances to control food borne 

bacteria is a logical approach that may provide consumers with many benefits. One such option 

is the use of essential oils as antibacterial additives in food. 

In addition to enhancing flavor, herbs and spices have long been known for their 

antimicrobial use [5]. It is believed that the Romans used mustard to prevent the spoilage of fruit 

juice by fermenting bacteria [6]. Furthermore, reviews from the past  demonstrate oil extracts 

from plant materials (flowers, herbs, spices, bark, seed, leaves, roots and fruit) known as 

‘Essential Oils” (EOs),  volatile or ethereal oils to have antimicrobial properties [6, 7]. The term 

“essential oil” is believed to have been derived from Quinta essential, which was defined as the 

effective component of a drug by Paracelsus von Hohenheim in the 16th century [7].    They may 

be obtained via fermentation, enfleurage, or extraction, but the most common commercial 
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method employed is steam distillation [8, 9]. EOs and their constituents have been known to 

have other activities besides antibacterial properties, such as antimitotic[10], antiparasitic [11, 

12] , insecticidal [13-15], and antiviral [16, 17] properties.   

2. Historical and current use of essential oils 

Herbs and spices have been known to have been used for their preservative, perfume and 

flavor properties since ancient times [5]. However, it was the Greek and Roman historians who 

first documented the use of EOs for medical treatment and aromatherapy [18]. By the 13th 

century, pharmacological effects of EOs were described in many pharmacopeias of the time, yet 

their use was not wide spread until the 16th century [5]. It is believed 1881 De La Croix was the 

first person to carry out antimicrobial analysis of EO vapors [19].  

The most common use of EOs today is as flavoring agents in food, essences in perfumes 

and in pharmaceutical products for their functional properties [5, 20]. A variety of commercially 

available products exploit the antibacterial properties of EOs, like antiseptics and animal feed 

supplements [21, 22]. However, the potential of EOs in food safety has yet to be elucidated.  

3. Composition of essential oils 

Plants produce a variety of antimicrobial compounds, most of which  are always present 

in the system while others are produced in response to injury or invasion [23].  However, the 

composition of the EOs produced differ depending on the season of harvest and geographical 

origin [24-26]. In addition, the composition of EOs extracted from different parts of the same 

plant may vary [27]. The most controllable factor by which EOs vary is the method of extraction. 

A difference in organoleptic profile indicates a difference in composition of oils due to solvent 

extraction as opposed to distillation of oils. It has been found that to maintain higher organoleptic 
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properties of EOs, extraction under low pressure with  liquid carbon dioxide as a solvent is 

effective [28]. Herb EOs extracted using hexane have shown greater antimicrobial activity than 

similar steam distilled EOs [29].  However, this method is very expensive, so steam distillation is 

the most commonly used method for producing EOs on a commercial scale [18].  

EOs can be made up of more than sixty individual components with the  major 

components consisting up to  about 85 % of the EOs total while minor components are present in 

trace amounts [30]. These molecules are low molecular weight organic compounds with diverse 

antimicrobial activities [31]. The active components can be classified according to their chemical 

structures: terpenes, phenylpropenes, terpenoids and “others” [31]. The major components of 

common EOs are presented in Table 1 and the structural formula of some of the components are 

presented in Figure 1. 

The organic chemistry of each EO compound has a profound effect on its character. The 

structure of these individual components, such as different chemical groups, side chains and ring 

structures, affect their antimicrobial activity. EOs that have a higher composition of phenolic 

compounds such as carvacrol, thymol and euganol tend to show higher antimicrobial activity 

[32, 33]. It can be reasoned that their mechanism of antimicrobial action is similar to other 

phenolic compounds that contain a hydroxyl group.[34].In the case of non-phenolic compounds, 

the type of alkyl group present influences antimicrobial activity [35], though the position of the 

group does not seem to affect the level of antimicrobial activity [36]. 

3.1 Terpenes 

Terpenes are hydrocarbons produced by a combination of several isoprene units and are 

synthesized in the cytoplasm of plant cells. Synthesis starts with an acetyl–CoA and proceeds 
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through the mevalonic acid pathway [31]. These compounds can be arranged into cyclic 

structures via the action of cyclases.. Monoterpenes (chemical formula: C10H16) and 

sesquiterpene (chemical formula: C15H24) are the main terpenes, but diterpenes and triterpenes 

also exist. Limonene, p- cymene, pinene and terpinene are some examples of common terpenes.  

3.2 Terpinoids 

Terpenes can undergo enzymatic biochemical modifications that add oxygen molecules 

and move or remove methyl groups, thereby forming terpenoids [37]. They can be divided into 

aldehydes, ketones, alcohols, phenols, epoides and esters. Common terpenoids are carvacrol, 

linalool, menthol, and thymol.    

3.3 Phenylpropenes 

Phenylpropenes are a subfamily of compounds under phenylpropanoinds that are 

synthesized in plants using phenylalanine. Few phenylpropenes have been studied in detail, but 

euganol, isoeuganol, cinnamaldehyde are some of EO phenylpropenes that have been elucidated 

[31].  
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Table 1.  Composition of common essential oils 

Common name of 
EO 

Latin name of plant it is 
derived from. 

Major Costituents of 
EO 

Approximate 
% 

Reference 

 

Bay 

 

Bergamot 

 

Cinnamon 

 

Clove 

Lemongrass 

 

Nutmeg 

Oregano 

 

Rosemary 

 

Sage 

 

Thyme 

 

Laurus nobilis 

 

Citrus bergamia 

 

Cinnamomum zeylanicum 

 

Syzygium aromaticum 

Cymbopogon flexuosus 

 

Myristica fragrans 

Origanum vulgare 

 

Rosmarinus officinalis 

 

Salvia officinalis 

 

Thymus vulgaris 

 

 
 
1,8-cineole 
α-terpinene 
Sarbinene 
 
Limonene 
Linalool 
Linalyl acetate 
Trans – 
Cinnamaldehyde 
Euganol 
Linalool 
 
Euganol 
Eugenyl acetate 
Geranial 
Myrcene 
6-methylhept-5-en-
2-one 
Sabinene 
Euganol 
Carvacrol 
α–pinene 
p–cymene 
Myrcene 
α–pinene 
Camphor 
1,8-cineole 
Bornyl acetate 
α–pinene 
β–pinene 
α–tujone 
1,8-cineole 
Thymol 
Carvacrol 
p-cymene 
γ-terpinene 
 
 

 
 
60% 
13% 
13% 
 
59 % 
9.5% 
17% 
 
65% 
3% 
4% 
 
75 – 85% 
8 – 15 % 
46% 
4% 
3% 
 
50% 
2% 
Trace – 80% 
3% 
16% 
2% 
2 – 25% 
2 – 14% 
3 – 89% 
0 – 17% 
4 – 5% 
2 – 10% 
20 – 42% 
6 – 14% 
10 – 64% 
2 – 11 % 
10 – 56% 
2 – 31% 
 

 

[38]  

 

 

[39] 

 

 

 

 

 

 

 

[40] 
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Figure 1.  Chemical structures of selected essential oil components 
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4. Antimicrobial activity and mode of action 

Although the  food industry primarily uses EOs as flavorings, they also function as an 

interesting source of natural antimicrobials [31]. Utilization of these properties requires an 

understanding of their antimicrobial mode of action. The antimicrobial activity of EOs cannot be 

attributed to a single mechanism; it is likely that several sites in a cell act as  targets [41]. It is 

difficult to predict the susceptibility of an organism to a certain EO, as it varies from strain to 

strain. However it is known that Gram-negative bacteria are generally less susceptible in 

comparison to Gram-positive species [42]. This occurs due to the presence of 

lipopolysaccharides (LPS) in the outer membrane of Gram-negative bacteria, which acts as a 

barrier towards macromolecules and hydrophobic compounds.  This provides Gram-negative 

bacteria with a higher tolerance towards the mostly hydrophobic antimicrobial components of 

EOs [43]. In Gram-positive bacteria, and to some extent in Gram-negative bacteria,  this 

hydrophobic nature helps EOs to disturb the lipids of the bacterial cell membranes, thereby 

making them permeable [34, 44], and allowing the leakage of cellular material and ions [45, 46]. 

This does not necessarily mean cell death as some leakage from the cell is tolerated, but 

extensive loss or loss of essential components can lead to death [47].  

4.1 Terpenes  

Terpenes do not possess high antimicrobial activity, as evidenced by large scale 

experimentation with limonene, α-pinene, β-pinene and α-terpinene that show low or absent 

antimicrobial activity [35]. p-cymene, one of the major constituents of thyme, shows no 

antimicrobial activity at high concentrations [48] , but has the potential to promote the activity of 

compounds like carvacrol [36]. p-cymene has a high affinity for membranes and causes 

membrane expansion, but does not influence membrane permeability. It does cause a decrease in 
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the melting point and enthalpy of the membranes [49]. It has an insignificant effect on protein 

synthesis of the cell but its effect on membrane potential can affect cell motility in E.coli [50].  

4.2 Terpenoids 

The antimicrobial properties of terpenoinds are linked to the functional groups present. In 

phenolic terpenoids, it has been found that the presence of delocalized electrons and a hydroxyl 

group are essential for antimicrobial affect [31]. Carvacrol and thymol are able to disintegrate the 

outer membrane of Gram-negative cells, releasing lipopolysaccharides and increasing the 

permeability of the cytoplasmic membrane to ATP. It is believed that carvacrol forms channels 

through the membrane by pushing apart the fatty acid chains in the phospholipids increasing 

membrane permeability [51].  

4.3 Phenylpropenes 

The antimicrobial activity of phenylpropenes depends on the number and type of 

substituents present on the aromatic ring [52]. The antimicrobial activity of phenylpropenes such 

as euganol occurs via non-specific membrane permeabilization. It has been demonstrated in 

various studies via the increased transport of ATP and potassium out of the cell [53, 54]. Euganol 

has also been shown to inhibit ATPase, histidine decarboxylase, protease and amylase activity 

[53, 55]. By inhibiting ATPase activity euganol essentially restricts energy production required 

for cellular repair. The hydroxyl group present in euganol is believed to affect the properties of 

proteins by binding to them. This supports euganols activity at sub lethal concentrations.  

On the other hand the antimicrobial mode of action of cinnamaldehyde, a phenylpropene 

aldehyde, is not clear. There are three things that are believed to occur: at low concentrations it 

inhibits enzymes involved in cytokinesis; at sub lethal concentrations it acts as an ATPase 



9 

 

inhibitor; at lethal concentrations it agitates the cell membrane [56]. In another study,  it was 

shown that cinnamaldehyde inhibits GTP dependent polymerization by binding to a protein 

required for cell division, FtsZ [57]. 

   

Figure 2. Possible mechanisms and sites of action for EO components in bacterial cell wall. 
Adapted from Burt et al [18]. 
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Table 2. Overview of EOs and their mechanisms of action  
 

Common name of EO Model organism Mechanism of action Reference 

Cinnamon E.coli 
L.monocytogens 
S.aureus 
S.enteritidis 
C.jejuni 
 
 

Inhibition of histidine 
decarboxylase; leakage and 
coagulation of cytoplasmic 
content; depolarization and 
membrane permeabilization 

 
 
[49] 

Clove C.jejuni 
E.coli 
L.monocytogens 
S.aureus 
S.enteritidis 
 

Inhibition of histidine 
decarboxylase 

[31] 

Lemon grass L. innocua 
L. monocytogens 
S. aureus 

Permeabilization of membrane [44] 

    
Oregano P. aeruginosa 

S. aureus 
Disspation of potassium gradient, 
depolarization of membrane, 
coagulation of cytoplasmic 
content. 
 

[57, 58] 

Rosemary E.coli 
B. subtilis 
S. aureus 

Increase in membrane rigidity, 
affect on lipid polymorphism  
 
 

 

Thyme E. coli 
L. innocua 
L. monocytogens 
S. aureus 
S. enteritidis 

Permeabilization of membrane, 
damage to cell envelope. 
 
 
 
 

[59] 
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5. Application to food products 

Essential oils and the compounds that make them are generally recognized as safe 

(GRAS) for human consumption, however there are many challenges involved in using them in 

the food industry. Most difficulties arise due to factors such as composition of the food product, 

interaction of the EO with the food or other extrinsic factors such as pH, packaging environment 

etc. [58]. A lower pH tends to show higher inhibitory effects on bacteria as it increases 

hydrophobicity, which enables it to easily dissolve in the lipids present in the cell membrane of 

the target bacteria [59]. In addition to pH, it is believed that low oxygen concentrations cause 

fewer oxidative changes to the EOs [18, 60]. The hydrophobic nature of EOs is a limiting factor 

in terms of application, but can be overcome by the use of stabilizing agents such as Tween-80, 

Tween-20 and lecithin.    

The inherent antimicrobial ability of an oil can be related to the chemical configuration of 

the components, the concentrations in which they are present, and also the interactions between 

them [27, 35]. An antagonistic effect is observed when compounds are applied together. The 

effect of one or both compounds is reduced when applied together in comparison to when they 

are used alone. Additive properties are expressed when the combined effect is equal to the 

individual effect, while synergism is expressed when the sum of the combined effect is greater 

than the individual effect [61]. Hence by trying to develop suitable synergistic combinations of 

EOs, we can effectively apply them to food in lower concentrations than required individually, 

along with the use of a suitable stabilizing agent.           
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CHAPTER 2: MATERIALS AND METHODS 

1. Essential oils 

 The essential oils used in this study were all culinary grade. Bay (Laurus nobilis), 

bergamot (Citrus bergamia), cinnamon (Cinnamomum verum), oregano (Origanum vulgare), 

clove (Syzygium aromaticum), lemongrass (Cymbopogon flexuosus), nutmeg (Myristica 

fragrans), thyme (Thymus vulgaris), rosemary (Rosmarinus officinalis) and sage (Salvia 

officinalis) were analyzed. These essential oils were selected based on their reported 

antimicrobial activity, sensory properties and the presence of different components in the EOs. 

The oils were obtained from Lorann oils and flavors (Lansing, Michigan).  

2. Test strains and cultures 

 The cultures used in this study were Escherichia coli (ATCC 25922), Escherichia coli 

(ATCC 700927), Salmonella Typhimurium (ATCC 19585), Listeria innocua (ATCC 33090) and 

Listeria monocytogens (ATCC 19115). Working cultures were prepared by sub-culturing and 

maintaining on tryptic soy agar (TSA, BD Difco, Detroit, Michigan). Test inoculums were 

prepared by transferring 24-hour old cultures via a cotton swab to 5 ml of 0.85% saline. The 

saline suspension was adjusted to an optical density of 0.1 for each bacteria, which corresponds 

to 0.5 McFarland standard (1x 108 cfu/ml). Once standardized, 50µl of the saline suspension was 

transferred to 10 ml of cation-adjusted Mueller-Hinton II broth (CAMHB, BD Difco, Detroit, 

Michigan). 
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3. Essential oil emulsions 

Due to the insolubility of EOs in water, oil-in-water emulsions were prepared using 

Tween-80 as the emulsifying agent. Oil and Tween-80 were mixed at a ratio of 1:0.5 in an 

aqueous phase, to give a final oil concentration of 20µl/ml. The mixture was then subjected to 

sonication for 5 minutes using an ultrasonicator (Fisher Scientific Sonic Dismembrator Model 

300) to achieve potential nano particulate dispersion of the EOs.  

4. Determination of minimum inhibitory concentration (MIC) 

The MIC for the oil emulsions was determined by broth micro dilution method according 

to the National Committee of Clinical Laboratories Standards (NCCLS) guidelines [62]. The 

prepared oil emulsions were diluted two-fold in CAMHB to a concentration of 10,000 ppm. 100 

µl of each emulsion was loaded into the first row of a 96-well plate and 50 µl of CAMHB was 

added to each subsequent row. The emulsions were serially diluted to obtain final concentrations 

of 5000, 2500, 1250, 625, 312, 156, 78 and 39 parts per million (ppm). To each well 50 µl of 

standardized inoculum was added, giving a bacterial concentration of 5 x 105 CFU/ml. 

A positive control (containing inoculum but no essential oil) and negative control 

(containing essential oil but no inoculum) were included in each 96-well plate. Effect of Tween-

80 alone on bacterial growth was examined and no effects were seen. Plates were incubated for 

24 hours at 37ºC and observed after 24 hours. MIC was determined as the lowest concentration 

showing no visible signs of growth.  
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5. Determination of synergy between essential oil emulsions using checkerboard method 

Synergy between oil emulsions was determined using the checkerboard method [63, 64]. 

Oil emulsion (A) was diluted along the x-axis, while oil emulsion (B) was diluted along the y-

axis. The final volume in each well was 100 µl, comprised of 50 µl of emulsion dilution and 50 

µl of bacteria standardized in CAMHB. Plates were incubated at 37ºC for 24 hours. The 

fractional inhibitory concentration (FIC) indices were calculated as FICA + FICB, where FICA and 

FICB are the respective MIC of oil emulsion A and B. Therefore FICs were calculated as: 

 

The combination was considered synergistic if the sum of the FICs was equal to or less than 0.5. 

If the values were between 0.5–1.0, 1.0–4.0 or higher than 4.0, they were considered to be 

additive, indifferent or antagonistic respectively.  

6. Preparation and treatment of chicken sample 

Chicken was obtained from Blimpie’s Sandwich Shop (Detroit, MI) and transported on 

ice to be used for experimental purposes and processed as described by Kim et al [65]. The 

pieces were uniformly cut and weighed into 5 gram amounts. Each piece was sterilized in a 100 

ppm sodium hypochlorite solution for 30 minutes and rinsed with deionized water. The samples 

were then inoculated with the bacteria standardized in CAMHB, and consequently treated with a 

twofold concentration of the individual in vitro MIC of the EOs that expressed synergism. The 

pieces were placed in 60 mm dishes and stored under refrigeration at 4ºC. Samples were 

prepared for day 0, day 1, day 3 and day 6 for each bacterial treatment. 
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5 ml of 0.1% peptone water was added to each sample and transferred to a stomacher 

bag. It was then mixed vigorously for 60 seconds at 230 rpm in a stomacher. 0.1 ml of the 

solution was taken and serially diluted from 10-1 to 10-5. Each dilution was inoculated to TSA 

and incubated for 24 hours at 37ºC. The colonies formed were counted using a colony counter. 

The bacterial count was multiplied by the dilution factor and converted to Log CFU/gm. 

7. Statistical analysis 

Statistical analysis of the data was performed using SPSS 22.0 (IBM corp, Chicago, IL). 

Data represents the means of experiments performed in triplicate. The means were compared 

using ANOVA (Analysis of Variance). Furthermore, Tukey’s test was applied with a 

significance level p<0.05. 
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CHAPTER 3: RESULTS 

1. Determination of minimum inhibitory concentration 

All EO emulsions were evaluated for their potential antimicrobial activity against E. coli 

(ATCC 25922), E. coli (ATCC 700927), S. Typhimurium (ATCC 19585), L. innocua (ATCC 

33090) and L. monocytogens (ATCC 19115). Bergamot and nutmeg did not exhibit any 

antimicrobial activity against any of the test organisms within the selected test parameters and 

were therefore excluded from further analysis. Sage also showed no activity towards S. 

Typhimurium and was excluded. The MIC of the remaining EO emulsions against E. coli 

(ATCC 25922) and E. coli (ATCC 700927) can be seen in Figure 3. Cinnamon expressed the 

lowest MIC at 312.5 ppm for both organisms, followed by oregano at 625 ppm. Sage showed the 

highest MIC for both organisms at 5000 ppm while rosemary only expressed 5000 ppm for E. 

coli ATCC 700927.  

 Figure 4 shows the MIC for the EOs against L. innocua and L. monocyatogens. 

Cinnamon showed the lowest MIC for both organisms at 625 ppm, followed by lemongrass and 

sage at 1250 ppm for L. monocytogens and thyme at 1250 ppm for L. innocua. The highest MIC 

of 5000 ppm was seen in case of rosemary and clove for L. innocua. All remaining MICs were at 

2500 ppm. 

 Figure 5 represents the MIC for all EOs excluding bergamot, nutmeg and sage against 

S.typhimurium. The lowest MIC was expressed by cinnamon at concentration of 625ppm, 

followed by thyme at 1250 ppm. Bay, oregano and lemongrass all exhibited a MIC of 2500 ppm. 

The highest MIC was seen in case of rosemary and clove at 5000 ppm.     
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Figure 3. MIC of selected EOs against E. coli ATCC 25922 and E. coli ATCC 700927 
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Figure 4. MIC of selected EOs against L. innocua ATCC 33090 and L. monocytogens ATCC 
19115 
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Figure 5. MIC of selected EOs against S. Typhimurium ATCC 19585 
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2. Determination of synergy between cinnamon and selected EOs 

 The quantitative effect of cinnamon in combination with other EO emulsions is expressed 

in terms of FIC indices. The FICs of the combinations are shown in Table 3. Synergy was 

observed only in case of cinnamon and oregano against E. coli ATCC 700927 and L. innocua, 

while cinnamon and clove showed synergism towards L. innocua. Cinnamon and oregano 

showed an additive affect towards E. coli ATCC 25922 and L. monocytogens. Another additive 

effect was seen in case of cinnamon and thyme towards E. coli ATCC 25922 and S. 

typhimurium. All other combinations of selected EOs with cinnamon were antagonistic towards 

all test organisms.      
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       Table 3. FIC indices of cinnamon and selected EOs against test organisms  

Foodborne 
Pathogen 

Cinnamon & 
Oregano 

Cinnamon & 
Thyme 

Cinnamon & 
Clove 

Cinnamon & 
Bay 

Cinnamon & 
Lemon grass 

E.coli ATCC 
700927 

0.46±0.3   
(S) 

1.05±0.07  
(I) 

1.2±0.17    
(I) 

1.27±0.02   (I) 1.58±0.04 
(I) 

E.coli ATCC 
25922 

0.8±0.005 
(A) 

0.57±0.03 
(A) 

1.3±0.005  
(I) 

1.06±0.11   (I) 1.24±0.12 
(I) 

S.typhimurium 1.03±0.05  
(I) 

0.91±0.015 
(A) 

1.06±0.11  
(I) 

1.24±0.07   (I) 1.03±0.05 
(I) 

L.innocua 0.44±0.02 
(S) 

1.06±0.11   
(I) 

0.5±0.01   
(S) 

1.10±0.18   (I) 1.14±0.12 
(I) 

L.monocytogens 0.65±0.005 
(A) 

1.06±0.11  
(I) 

1.14±0.15  
(I) 

1.20±0.10   (I) 1.10±0.17 
(I) 

Results are interpreted as synergy (S, FIC < 0.5), addition (A, 0.5 ≤ FIC ≤1), indifference (I, 1< 
FIC≤ 4) or antagonism (AN, FIC > 4).              
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3. Antimicrobial action of selected EOs and EO combinations to chicken 

 To determine the antimicrobial efficacy of the selected EOs and their combinations in a 

food model, chicken samples were treated and inoculated. During storage at 4 ºC all selected 

combinations and samples showed a significant (p < 0.01) reduction in bacterial load in 

comparison to control samples.    

Figure 6 – figure 10 show the action of cinnamon alone on E. coli (ATCC 25922), E. coli 

(ATCC 700927), L. monocytogens (ATCC 19115), L. innocua (ATCC 33090) and S. 

Typhimurium (ATCC 19585). It reduced growth in comparison to control samples by 2.885, 

3.39, 3.275, 4.29 and 3.06 Log respectively.  It can be seen that it reduced cell load between day 

1 and day 6 in case of L. innocua. Though all other samples on their own showed slight growth. 

Figure 11 – figure 13 represent the action of thyme alone on E.coli ATCC 700927, S. 

Typhimurium and L. innocua. All samples were significantly lower in bacterial load in 

comparison to control samples, but showed slight growth between day 1 and day 6. It showed a 

reduction of E. coli (ATCC 700927), L. innocua (ATCC 33090) and S. Typhimurium (ATCC 

19585) in comparison to control by 1.23, 1.065 and 1.38 respectively.   

Figure 14 and 15 show the action of oregano individually on E. coli ATCC 700927 and 

E. coli ATCC 25922. Both samples showed similar activity as reported for thyme and showed a 

reduction of 3.21 for E. coli (ATCC 25922) and 3.535 for E. coli (ATCC 700927) between 

control and test samples. 

All combinations of cinnamon and selected EOs exhibited similar trends of significant 

reduction in comparison to control, while showing mild growth between day 1 and day 6. 

Cinnamon and oregano in combination reduced E. coli (ATCC 25922), E. coli (ATCC 700927), 
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L. monocytogens (ATCC 19115) and L. innocua (ATCC 33090) by 2.215, 3.175, 2.2 and 2.085 

Log. While cinnamon in combination with thyme showed a reduction of 1.76 Log for E. coli 

(ATCC 25922) and 2.71 Log for S. Thyphimurium in comparison to the control samples. 

Cinnamon and clove was only tested against L. innocua and reduced the bacterial load by 2.215 

Log when compared to the control.   
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Figure 6. Antimicrobial activity of cinnamon at 625 ppm on E. coli ATCC 25922 growth on 
chicken in comparison to control at 4 ºC.  
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Figure 7. Antimicrobial activity of cinnamon at 625 ppm on E. coli ATCC 700927 growth on 
chicken in comparison to control at 4 ºC. 
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Figure 8. Antimicrobial activity of cinnamon at 1250 ppm on S. Typhimurium growth on 
chicken in comparison to control at 4 ºC.  
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Figure 9. Antimicrobial activity of cinnamon at 1250 ppm on L. monocytogens growth on 
chicken in comparison to control at 4 ºC.  
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Figure 10. Antimicrobial activity of cinnamon at 1250 ppm on L. innocua growth on chicken in 
comparison to control at 4 ºC.  
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Figure 11. Antimicrobial activity of thyme at 2500 ppm on E. coli ATCC 700927 growth on 
chicken in comparison to control at 4 ºC. 
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Figure 12. Antimicrobial activity of thyme at 2500 ppm on S.typhimurium growth on chicken in 
comparison to control during 4 ºC. 
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Figure 13. Antimicrobial activity of thyme at 2500 ppm on L. innocua growth on chicken in 
comparison to control during 4 ºC.  
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Figure 14.  Antimicrobial activity of oregano at 1250 ppm on E.coli ATCC 700927 growth on 
chicken in comparison to control during 4 ºC. 
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Figure 15. Antimicrobial activity of oregano at 1250 ppm on E.coli ATCC 25922 growth on 
chicken in comparison to control during 4 ºC. 
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Figure 16.  Antimicrobial activity of cinnamon at 625 ppm and oregano at 1250 ppm on E.coli 
ATCC 700927 growth on chicken in comparison to control during 4 ºC.  
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Figure 17. Antimicrobial activity of cinnamon at 625 ppm and oregano at 1250 ppm on E.coli 
ATCC 25922 growth on chicken in comparison to control during 4 ºC. 
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Figure 18. Antimicrobial activity of cinnamon at 1250 ppm and oregano at 2500 ppm on L. 
monocytogens growth on chicken in comparison to control during 4 ºC. 
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Figure 19. Antimicrobial activity of cinnamon at 1250 ppm and oregano at 1250 ppm on L. 
innocua growth on chicken in comparison to control during 4 ºC. 
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Figure 20. Antimicrobial activity of cinnamon at 1250 ppm and thyme at 1250 ppm on E.coli 
ATCC 25922 growth on chicken in comparison to control during 4 ºC. 
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Figure 21. Antimicrobial activity of cinnamon at 1250 ppm and thyme at 2500 ppm on S. 
typhimurium growth on chicken in comparison to control during 4 ºC. 
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Figure 22. Antimicrobial activity of cinnamon at 1250 ppm and clove at 2500 ppm on L. 
innocua growth on chicken in comparison to control during 4 ºC. 
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CHAPTER 4: DISCUSSION 

 EOs have shown to be effective against a variety of foodborne microorganisms under in 

vitro conditions but have presented with application and concentration issues when used in actual 

food products. Since higher concentrations of EOs are required when used as additives to food, it 

is a challenge to develop optimized low concentrations to be used for product safety.  The use of 

a surfactant like Tween-80 aids in the stabilization of the oil-in-water emulsion, thereby 

overcoming the inherent hydrophobic nature of the essential oils and extending its range of 

product application. Attempting to find synergistic combinations allows us to achieve the 

required low optimal concentration that minimizes the effect on the organoleptic properties and 

interactions with other food components. 

 In the initial study the selected EOs were screened for their potential antimicrobial 

activity against the selected foodborne bacteria. Preliminary findings showed that bergamot and 

nutmeg expressed no antimicrobial activity relative to the other oils towards any of the test 

organisms since possible inhibitory concentrations exceeded the selected parameter of 5000 ppm 

as the highest MIC. This can be attributed to the high composition of limonene and sabinene 

respectively for bergamot and nutmeg. Both limonene and sabinene are major constituents in the 

terpenes family, a group that lacks high inherent antimicrobial activity [48]. Even though nutmeg 

has phenylpropenes like euganol present, the amounts are insufficient to express antimicrobial 

activity at the concentrations of EO used in the study. The same can be seen in case of bergamot, 

where the presence of linalool and linalyl acetate, two terpenoids, is not sufficient to show 

antimicrobial activity. Other studies suggest they are required in concentrations ranging from 

2000 µg–5000 µg to show effect [41, 48]. Bay expressed a consistent inhibitory effect on all test 

organisms, which is in agreement with findings from other studies [38]. This can be reasoned by  
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the presence of 1,8-cineole, a terpenoid [31]. The difference in activity between E.coli ATCC 

700927 and E.coli ATCC 25922 may be attributed to differences in biological properties of the 

two organisms. The most effective inhibitor of all test organisms was cinnamon. It had the 

lowest MIC amongst all the oils with 312 ppm for both E.coli strains while 625 ppm for 

S.typhimurium and both species of Listeria. This activity can be explained by the high 

concentration of trans-cinnamaldehyde present in it [31], which results in loss of membrane 

integrity and decrease ATPase activity due to depolarization of the cell [53, 66]. The 

antimicrobial efficacy of cinnamon can also be attributed to euganol. Although euganol is not 

present in very high concentrations in cinnamon, it binds and affects the properties of proteins at 

sub lethal concentrations [55]. Rosemary predominantly expressed a high MIC of 5000 ppm 

towards S.typhimurium, L.innocua and E.coli ATCC 700927. This can be due to the presence of 

α–pinene and bronyl acetate in varying concentrations, as both terpenes have very low 

antimicrobial activity [35]. Rosemary’s MIC was on the lower end of the spectrum at a 

concentration of 2500 ppm for L.monocytogens and E.coli ATCC 25922. This may be due to 

differences in structural and physiological properties [67]. Sage showed similar results, with 

MICs at 5000 ppm. The major components of sage are terpenes, which supports the low 

antimicrobial activity seen. The antimicrobial activity of clove and lemongrass was similar in a 

few cases: S.typhimurium, E.coli ATCC 700927, and E.coli ATCC 25922. While the primary 

constituent of clove is euganol and the primary constituent of lemongrass is gerinal, they both are 

effective in expressing antimicrobial effect on the cell [31]. The variation seen in case of the two 

Listeria species could be due to the presence of teichoic acid in the cell wall of L. innocua, which 

makes it less susceptible to hydrophobic compounds such as EOs [67]. Oregano was most 

effective on both E.coli species, and this activity can be explained by the presence of high 
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amounts of carvacrol as well as the presence of p–cymene has been reported to promote 

carvacrol activity [51]. Oregano had a slightly lower antimicrobial effect on the other test 

organisms. Thyme also showed a varying range of antimicrobial activity on the test organisms. 

Most of the oils did not follow the reported trend of increased activity towards Gram-positive 

species [6, 27, 33]. It is believed that individual components of EOs express different degrees of 

activity against Gram-positive and Gram-negative organisms and as it is known that the 

composition of EOs can vary by time and place of harvest or methods of extraction [18]. It is 

therefore possible that variation between batches is sufficient to present a range in variability of 

antimicrobial action on Gram-negative and Gram-positive bacteria. A direct comparison of these 

essential oil emulsions with previous reported activity against the selected organisms is difficult, 

due to the use of different solvents as ethanol and dimethyl sulfoxide (DMSO) [68, 69]. 

Combinations of cinnamon with other EOs were screened to determine if they were 

synergistic with each other. Cinnamon was selected as the primary EO as it exhibited the highest 

and most consistent antimicrobial activity. Only two combinations showed synergistic activity: 

cinnamon and oregano against E.coli ATCC 700927 and L.innocua, and cinnamon and clove 

against L.innocua. Additive effects were seen for combinations of cinnamon with oregano and 

thyme. It is believed that minor components present in the EOs are important to the activity of 

the EOs main components, and may even have a synergistic or potentiating impact [18, 68]. As 

most plant essential oils possess a similar make up of chemical constituents, their combinations 

are more likely to exhibit addition or indifference rather than synergism. Combinations with 

compounds containing different chemical structures might show better antimicrobial activity 

[68]. Since antimicrobial activity is not only influenced by chemical composition but also by 
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lipophilic properties, the potency of functional groups or aqueous solubility using a mixture of 

compounds can increase antimicrobial activity [35]. 

A crucial aspect of optimizing the application of EOs to food products is determining 

their antimicrobial efficacy with a food model.  The findings of the food model study were 

promising. Three of the synergistic and four of the additive combinations were used to treat the 

chicken along with samples treated with their individual EOs. Clove was excluded from the 

study as it had an individual MIC above 2500 ppm. At first glance one can clearly see a 

difference in growth between the test samples and the control samples, even though all except 

one showed minimal growth in the presence of the EOs. Cinnamon was effective in reducing 

L.innocua by 0.205 Log CFU/gm between day 0 and day 6, which is very minute but taking into 

consideration the low concentration of cinnamon used is of note. All the EO treated samples 

showed a significant (p<0.01) lowering of bacterial count in comparison with control. When 

examined independently, they showed minor increase in growth. Even though there was minor 

growth, the EO had an effect as they were able to restrict it to a certain level. The variation 

between the in vitro activities of the oils seen in the food model study could be due to interaction 

of the EOs with components of the food such as fats and proteins. A high concentration of fats 

has been reported to have a negative influence on the activity of cinnamon and clove EOs [70], 

while high concentrations of proteins promote the antimicrobial activity of EOs when applied to 

food [71]. Therefore, the composition of the food product is also an influencing factor to the 

efficacy of EOs as antimicrobial agents in food.  
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CHAPTER 5: CONCLUSION 

 The control of foodborne pathogens is a major challenge confronting the food industry 

[72, 73]. Hot water treatments, steam and organic acids are commonly used in the 

decontamination process, but are not 100% effective since many pathogenic bacteria can survive 

and thrive. It has been suggested that the use of EOs in combination with other conventional 

treatments like preservatives or low temperature can be used as a synergistic alternative to 

existing methods [72]. This study focuses on the potential of using EOs in food products as a 

means to prevent further infections. Tween–80 is a crucial element to the EO composition, as it 

allows for the application of the EOs to products without their inherent hydrophobic nature 

affecting their potential activity.  

 The EO combinations revealed possible combinations that may be used. Cinnamon and 

oregano showed an additive effect against E.coli ATCC 700927, E.coli ATCC 25922, L.innocua 

and L.monocytogens. In addition, cinnamon with thyme and clove were selectively effective. The 

results of this study suggest that these combinations should be considered as potential 

alternatives for control of pathogens and to reduce microbial spoilage. A difference in activity 

between in vitro and actual food application was seen in the study, which is consistent with 

findings from previous studies [3, 6]. At twofold the concentration used in the in vitro study, the 

EOs were only able to reduce growth rate rather than completely inhibit growth over a 6-day 

period. However, there was significant reduction in the growth rate when compared to the 

control group. The results of this study support the argument that EOs have the potential to be 

used as antimicrobial control agents, and future studies should elucidate the potential of these 

synergistic EO combinations in various food models as an alternative to synthetic preservatives.  
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The objective of this study was to evaluate the antimicrobial activity of essential oil 

emulsions against food borne pathogenic bacteria and determine potential applications. The oils 

used for this study were cinnamon, oregano, clove, thyme, rosemary, sage, bergamot, nutmeg, 

lemon grass and bay. Oil in water emulsions were prepared using Tween 80 as an emulsifying 

agent, with a stock oil concentration in the emulsions of 20,000 ppm.  Essential oil emulsions 

were individually screened against E. coli (ATCC 25922), E. coli (ATCC 700927), L. 

monocytogens (ATCC 19115), L. innocua (ATCC 33090) and S. Typhimurium (ATCC 19585) 

using the broth micro dilution method. Cinnamon showed the highest antimicrobial efficacy 

against all test organisms, as determined by the minimum inhibitory concentration (MIC).  

Oregano had the second highest efficacy, while the other oils did not exhibit high antimicrobial 

activities. To determine synergistic effect of the emulsions, combinations were tested using 

checkerboard method. The only synergism observed was between cinnamon and oregano against 

E. coli (ATCC 700927) and L. innocua (ATCC 33090) and also between cinnamon and clove 
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towards L. innocua (ATCC 33090). All other combinations were additive or indifferent in nature 

to the test organisms. To determine antimicrobial activity of the essential oils on food, chicken 

pieces were inoculated with the bacteria standardized in CAMHB, and consequently treated with 

a twofold concentration of the individual in vitro MIC of the EOs that expressed synergism. The 

pieces were placed in 60 mm dishes and stored under refrigeration at 4ºC. Samples were 

prepared for day 0, day 1, day 3 and day 6 for each bacterial treatment.Cinnamon in comparison 

to control showed Log reduction of E. coli (ATCC 25922), E. coli (ATCC 700927), L. 

monocytogens (ATCC 19115), L. innocua (ATCC 33090) and S. Typhimurium (ATCC 19585) 

by 2.885, 3.39, 3.275, 4.29 and 3.06. While oregano reduced E. coli (ATCC 25922) and E. coli 

(ATCC 700927) by 3.21 and 3.53 Log. All bacterial species showed significant reduction (p < 

0.05) in comparison to control samples. These results suggest that essential oil emulsions have 

the potential to be used as antimicrobial agents for enhancing food safety.    
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