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CHAPTER 1 - INTRODUCTION 

The SUMOylation pathway 

             Small ubiquitin-related modifier proteins (SUMOs) contain approximately 100 amino 

acids and are covalently attached to hundreds of different proteins in eukaryotic cells.  

SUMOylation is an essential posttranslational modification in eukaryotes and regulates a wide 

range of biological processes, including cell cycle progression, DNA repair, gene expression, 

nucleocytoplasmic transport, protein degradation/stability, and stress response (Pichler and 

Melchoir, 2002; Johnson, 2004).  Three different SUMO isoforms, including SUMO-1, SUMO-2 

and SUMO-3, are expressed in mammals, whereas only one SUMO called Smt3 is expressed in 

budding yeast.  The human SUMO-2 and SUMO-3 are about 95% identical to each other and 

therefore referred to as SUMO-2/3, whereas they share only 45% identity to SUMO-1.  The N-

terminal extension of SUMO-2/3 acts as a site for the formation of polymeric SUMO-2/3 chains.   

           The enzymatic cascade of SUMOylation is similar to that of ubiquitination.  In eukaryotic 

cells, SUMO is expressed as a precursor protein whose C-terminal region needs to be processed 

by a family of SUMO-specific isopeptidases to expose its double glycine motif, leading to the 

generation of mature SUMO (Figure 1).  This mature SUMO is then activated by a SUMO-E1 

activating enzyme (SAE1/SAE2, also known as Aos1/Uba2) by forming a thioester bond 

between the catalytic cysteine of Uba2 and the C-terminal glycine of SUMO.  This is followed 

by the transfer of SUMO from the E1 to the sole SUMO-E2 conjugating enzyme (Ubc9), leading 

to the formation of a thioester bond between the catalytic cysteine of Ubc9 and the C-terminal 

glycine of SUMO (Friedlander and Melchoir, 2007).  Subsequently, the charged Ubc9 

recognizes the SUMOylation consensus motif ΨKxD/E (Ψ represents a hydrophobic amino acid 

residue, K is a lysine residue, x can be any amino acid residue, and D/E represents aspartic acid 
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or glutamic acid) which are present in many SUMO targets (Villamor et al., 2002; Tatham et al., 

2003). SUMO is then transferred from the charged Ubc9 to the substrate by forming an 

isopeptide bond between the C-terminal glycine of SUMO and the lysine residue of the target 

protein (Johnson, 2004). Several E3 ligases, including different PIAS family proteins and 

Nup358/RanBP2, facilitate the transfer of SUMO from Ubc9 to the target proteins.  As a 

reversible process of SUMOylation, SUMO is deconjugated from its target by a family of 

SUMO-specific isopeptidases, including SENP1, SENP2, SENP3, SENP5, SENP6, SENP7, 

DeSI-1, DeSI-2, and USPL1 in mammals.  However, only two SUMO-specific isopeptidases 

called Ulp1 and Ulp2 have been identified in budding yeast (Hickey et al., 2012). 

            Interestingly, all the protein components essential for SUMOylation, including SUMO E1 

and E2 (Ubc9) enzymes as well as SUMO-1 and SUMO-2/3, are mainly localized in the nucleus 

in vertebrate cells (Azuma et al., 2001; Saitoh et al., 2001; Lee et al., 1998; Zhang et al., 2002).  

In HeLa cells, SUMO E1 enzyme (Aos1/Uba2) is primarily nuclear (Azuma et al., 2001), 

whereas Ubc9 is predominantly localized in the nucleus as well as at the nuclear pore complex 

(Saitoh et al., 2001; Lee et al., 1998; Zhang et al., 2002) (Figure 2).  In addition, both SUMO-1 

and SUMO-2/3 are majorly concentrated in the nucleus under immunofluorescence microscopy 

using antibodies specific to SUMO-1 and SUMO-2/3 respectively (Zhang et al., 2008) (Figure 

2). These observations are consistent with the observations that most of the SUMOylated 

substrates are nuclear proteins.  It has been hypothesized that SUMO-modification 

predominantly occurs in the nucleus and thus the nuclear localization of SUMO E1 and E2 

enzymes in the nucleus is critical for efficient SUMOylation.  Consistent with this hypothesis, it 

has been shown recently that the inhibition of Ubc9 nuclear localization in cells expressing a 

mutant form of lamin A responsible for the premature aging disease called Hutchinson-Gilford 
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progeria syndrome is correlated with a decrease of SUMO-2/3 modification in the nucleus (Kelly 

et al., 2011).  Furthermore, the artificial fusion of the SUMOylation consensus motif to Pyruvate 

Kinase (PK), a cytoplasmic protein, has been found to be efficient for its SUMOylation in vitro, 

yet its modification in vivo requires the additional presence of a nuclear localization signal (NLS) 

for its nuclear localization, suggesting that most SUMO substrates need to be imported into the 

nucleus for their sufficient sumoylation (Rodriguez et al., 2001).   

 

Figure 1. The SUMO pathway. The SUMO precursor is processed by SUMO isopeptidases 

(SENPs) in vertebrates to expose its C-terminal double-glycine (GG) motif.  The mature SUMO 

is activated by the E1 activating enzyme to form a thioester bond between the C-terminal glycine 

of SUMO and the catalytic cysteine (C) of the E1.  SUMO is then transferred to the catalytic 

cysteine (C) of the E2 conjugating enzyme Ubc9.  Finally, SUMO is transferred from Ubc9 to a 

substrate by forming an isopeptide bond between SUMO and a lysine (K) of the substrate.  The 

last step is often facilitated by an E3 ligase. SUMO is deconjugated by SENP isopeptidases. This 

figure is adapted from Wan et al., 2012. 
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Figure 2. The essential components of SUMOylation machinery are concentrated in the 

nucleus. (A) The only SUMO E1 enzyme (Aos1/ Uba2) is primarily localized in the nucleus in 

HeLa cells (Azuma et al., 2001). (B) The sole SUMO E2 enzyme (Ubc9) is predominantly 

accumulated in the nucleus (Saitoh et al., 2001). (C) Both SUMO-1 and SUMO-2/3 are majorly 

concentrated in the nucleus (Zhang et al., 2008). 

           The sole SUMO-E1 activating enzyme consists of two subunits, Aos1 and Uba2, and is 

known to be imported from the cytoplasm to the nucleus by Importin α/β.  Importin α can bind to 

each of the E1 subunits either individually or to the Uba2 subunit in the cytoplasm and actively 

transports them to the nucleus (Moutty et al., 2011). However, the mechanism underlying the 

nuclear localization of Ubc9 is still unclear. In vitro study has shown that Importin 13 (Imp13), 

one of the members of the karyopherin β family, translocates Ubc9 from the cytoplasm to the 

nucleus (Mingot et al., 2001). In this study, in vitro nuclear import assays were performed using 

fluorescently labeled recombinant Ubc9.  Different importin receptors, including Impα/β, Imp5, 
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Imp7, Imp13 and transportin, were respectively added to the permeabilized cells in the presence 

of Ran and ATP as the energy source.  The nuclear import of Ubc9 was stimulated only by 

Imp13, and this Imp13-Ubc9 interaction was disrupted in the presence of RanGTP in vitro, 

indicating that Ubc9 is released from the import complex by the high concentration of RanGTP 

in the nucleus (Mingot et al., 2001).  

            As the only SUMO-E2 enzyme, Ubc9 plays an essential role in SUMOylation and thus 

regulates many critical cellular processes.  In yeast, Ubc9 is required for cell cycle progression 

through mitosis as its deletion causes the cells to arrest at G2/M phase (Seufert et al., 1995). 

Ubc9 has been implicated in tumorigenesis since Ubc9 is upregulated in various types of human 

cancer, including ovarian and lung cancers, as compared to the corresponding normal control 

samples (Mo et al., 2005; Li et al., 2013).  Upregulation of Ubc9 expression has been found to 

promote the migration, invasion and metastasis of lung cancer cells (Li et al., 2013).  Ubc9 forms 

a complex at the nuclear pore complex with proteins including SUMO-1 modified RanGAP1 and 

Nup358/RanBP2 (Zhang et al., 2002). One of the interesting feature of Ubc9 is that it can also be 

SUMOylated, leading to the formation of SUMO-modified Ubc9 (Ubc9*SUMO). The SUMO 

modification site of Ubc9 in mammals and budding yeast is Lys14 and Lys153 respectively. The 

SUMOylated form of Ubc9 governs several functions. In mammalian cell, SUMOylation of 

Ubc9 can alter its target specificity by repressing RanGAP1 modification but activating 

SUMOylation of a transcriptional regulator called Sp100 (Knipscheer et al., 2008).  In budding 

yeast, a SUMOylation-deficient mutant of Ubc9 exhibits a defect in synaptonemal complex 

formation during meiosis (Klug et al., 2013).  
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Figure 3. Non-covalent interactions between Ubc9 and SUMO. Picture shows amino acid 

residues of Ubc9 that are involved in Ubc9 interaction with SUMO. R13, R17 and H20 are 

critical sites on Ubc9 which are crucial for Ubc9-SUMO complex formation (Knipscheer et al., 

2007). 

During the process of SUMO-conjugation, Ubc9 is known to interact with the E1 

enzyme, SUMO, a SUMO-E3 ligase, and a protein substrate.  Structural studies in combination 

with mutational and biochemical analyses have demonstrated that Ubc9 directly interacts with 

the SUMOylation consensus motif (ΨKxD/E) on SUMO substrates.  Ubc9 can also form a 

complex with a Nup358/RanBP2, a SUMO E3 enzyme, and also the SUMO-1-modified 

RanGAP1 at the nuclear pore complex (NPC) (Reverter and Lima, 2005; Matunis et al., 1996).  

The residues that are crucial for Ubc9 binding to the substrate and also required for SUMO-

modification have been identified previously (Bernier-Villamor et al., 2002).  As shown in 



7 
 

 
 

Figure 3, multiple amino acid residues of Ubc9 are critical for its interaction with SUMO.  

Several Ubc9 mutants such as R17E, R13A and H20D are deficient in forming a complex with 

SUMO.  Biochemical analyses revealed that the Ubc9-R17E and Ubc9-R13A mutants with a 

defect in SUMO-binding also have defects in the formation of Ubc9~SUMO thioester bond as 

well as the assembly of free poly-SUMO chain in vitro.  On the other hand, the Ubc9-H20D 

mutant with a defect in SUMO-binding doesn’t show a deficiency in the formation of thioester 

bond between Ubc9 and SUMO (Ubc9~SUMO) (Tatham et al., 2003; Capili and Lima, 2007; 

Knipscheer et al., 2007).  These studies suggest that the non-covalent interaction of Ubc9 with 

SUMO and/or the SUMO-consensus motifs of nuclear proteins might be crucial for Ubc9 

nuclear localization.  

Nucleocytoplasmic transport 

             NPCs are the gates at nuclear envelope for transport of macromolecules between the 

cytoplasm and the nucleus. Passive diffusion through NPCs is a common mode of transport for 

molecules with sizes up to ~20-40 kDa, while other larger molecules require active transport to 

pass through the NPCs (Gorlich and Kutay, 1999; Mohr et al., 2009). This active transport of 

cargoes is mainly facilitated by a family of nuclear transport receptors called karyopherin-β 

which are broadly classified into two categories including importins and exportins.  Importin 

binds the nuclear localization signal (NLS) of an import cargo in the cytoplasm and then 

translocates it into the nucleus, where the cargo is released from the importin-cargo complex 

upon RanGTP binding (Rexach and Blobel, 1995; Pemberton and Paschal, 2005).  On the other 

hand, exportin forms the exportin-RanGTP-cargo complex in the nucleus, translocates through 

the NPC, and releases its cargo in the cytoplasm when RanGTP is hydrolyzed to RanGDP (Cook 

and Conti, 2010).  Both nuclear import and export cycles are illustrated in Figure 4. 
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Figure 4. A diagram for nuclear import and export. In nuclear import, cargo binds to the 

import receptor in the cytoplasm and translocates to the nucleus where upon RanGTP binding, 

cargo is released from the import receptor. In the export pathway, cargo, RanGTP and export 

receptor forms a ternary complex in the nucleus. RanGTP hydrolysis in the cytoplasm, leads to 

the release of cargo from the export receptor (Adapted from Molecular Biology of the Cell, Fifth 

Edition, Alberts). 

A few karyopherins such as Imp13, Msn5 and Exportin 4 have been identified as a 

bidirectional transport receptors that can both import and export cargoes in and out of the 

nucleus, respectively (Mingot et al., 2001; Yoshida and Blobel, 2001; Gontan et al., 2009).  One 

of the directions that my study has focused on is Imp13-mediated nuclear import of Ubc9. 

Imp13: Bi-directional transport receptor 

           Several studies have shown that Imp13 mediates both nuclear import and export of 

multiple cargoes.  In addition to Ubc9 as the first identified import cargo of Imp13 (Mingot et 

al., 2001), the other Imp13 import cargoes include the paired-type homeodomain transcription 
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factors (Pax6, Pax3 and Crx) (Ploski et al., 2004), glucocorticoid receptor (Tao et al., 2006), the 

actin bundling protein called myopodin (Liang et al., 2008),  two histone fold heterodimeric 

proteins (CHRAC-15/CHRAC-17 and p12/CHRAC-17) (Walker et al., 2009), and the core 

components of exon junction complex (EJC) including Mago and Y14 (Bono et al., 2010) in 

mammalian cells.  So far, the eukaryotic translation initiation factor called eIF1A is the only 

known export cargo of Imp13 (Mingot et al., 2001). 

           Apart from being a bi-directional transport receptor, Imp13 has been identified as a 

potential marker for corneal epithelial progenitor cells (Wang et al., 2009). Furthermore, recent 

studies have shown that Imp13 is significantly upregulated in endometriosis and endometrial 

carcinoma when compared to secretory phase endometrium and can be used as an endometrial 

progenitor/stem cell marker (Zeng et al, 2012). Moreover, Imp13 is highly expressed in the 

epithelial cells of pterygium and plays a critical role in enhancing cell proliferation (Xu et al., 

2013).  By analyzing the expression of Imp13 among different stages of embryonic and adult 

brain tissues, levels of Imp13 mRNAs and proteins were consistently decreased during mouse 

brain development (You et al., 2013).  Intriguingly, Imp13 localized in the cytoplasm at the early 

stages and then accumulated in the nucleus at the late stages of brain development (You et al., 

2013). 
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Figure 5. Imp13 mediated nuclear import of Ubc9 in vitro. Fluorescently labeled recombinant 

GST-Ubc9 with different nuclear transport receptors in the presence of Ran and energy were 

imported to HeLa cells permeabilized with digitonin. Only Imp13 could mediate nuclear 

accumulation of Ubc9. This nuclear import was dependent on Ran and ATP (Mingot et al., 

2001). 

            As previously mentioned, Ubc9 nuclear import is mediated by Imp13 in vitro (Mingot et 

al., 2001). In this study, a nuclear import assay was performed where fluorescently labeled GST 

tagged Ubc9 was used. Cells were permeabilized with digitonin and then incubated with 

different importins including Impα/β, Imp5, Imp7, Imp13 and transportin respectively in the 

presence of Ran GTPase and ATP. As shown in Figure 5, only Imp13 facilitated the transport of 
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Ubc9 to the nucleus.  Structural study of the Imp13-Ubc9 complex has revealed that Ubc9 binds 

to the N-terminus of Imp13 (Grünwald and Bono, 2011). In vitro binding assay indicated that the 

interaction between Ubc9 and Imp13 was disrupted when the R17 residue on Ubc9 was mutated 

to E or when the D426 residue on Imp13 was mutated to R. This study revealed the residues on 

both Imp13 and Ubc9 that are critical for their interaction (Grünwald and Bono, 2011).      

          Although in vitro nuclear import assays have revealed that Imp13 can mediate nuclear 

import of Ubc9, little is known about whether Imp13 is the major nuclear import receptor for 

Ubc9 and whether Imp13-mediated nuclear import of Ubc9 is important for efficient 

SUMOylation in vivo.  In this study, we investigated how the nuclear localization of Ubc9 is 

regulated in mammalian cells and also addressed the functional significance of Ubc9 nuclear 

localization in control of efficient SUMOylation in vivo.  We first focused on Imp13-mediated 

nuclear import of Ubc9 in regulation of Ubc9 nuclear localization and also the efficient 

SUMOylation in vivo. We then tested whether the non-covalent interaction between Ubc9 and 

SUMO also plays a role in control of Ubc9 nuclear distribution. 
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CHAPTER 2 - METHODS 

Cell culture and transfection 

            HeLa cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM; HyClone) 

supplemented with 10% Fetal Bovine Serum (FBS) and 1% Pencillin-Streptomycin (Invitrogen) 

and cultured at 37
o
C with 5% CO2.  Cells were transfected with the indicated plasmids using 

Lipofectamine and Plus reagents (Invitrogen) following the manufacturer’s protocols.  The 

transfected cells were analyzed by Western blot and/or immunofluorescence microscopy. 

Immunofluorescence microscopy 

           HeLa cells were grown on coverslips in 6-well plates. After 24-48 h of transfection, cells 

were washed twice with 1xPBS (137 mM NaCl, 2.7 mM KCl, 1.5mM KH2PO4, 8.1 mM 

Na2HPO4, pH 7.36) fixed with 3.5% paraformaldehyde in 1xPBS for 30 min. Cells were then 

permeabilized with ice-cold acetone for 5 min, incubated with rabbit anti-HA primary antibody 

(Santa Cruz) (1:50 dilution in 1xPBS containing 2%BSA and 0.02% sodium azide) for 1 h 

followed by washing with 1xPBS for three times. Cells were further incubated with Alexa Fluor 

594-conjugated goat anti-rabbit IgG secondary antibody (Invitrogen) (1:200 dilution) for 30 min 

at room temperature (RT) and then washed three times with 1xPBS.  The coverslips with cell 

side down were slowly placed onto the mounting solution (100 mM Tris pH8.8, 50% Glycerol, 

2.5% DABCO and 0.2 μg/ml DAPI for DNA staining) on the microscope glass slide, incubated 

for 3-5 min, and then sealed with colorless nail polisher.  Images were collected using Olympus 

inverted IX81 fluorescence microscope. 

Plasmid constructs 

           Mammalian Imp13 vector (pCMV-SPORT6) was purchased from Invitrogen. Complete 

ORF was subcloned into pEGFP-C1 vector between Xho I and BamH I sites. The Imp13 
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fragment (1-488 amino acids) was subcloned between BamH I and Xho I sites in pGEX-4T-1 

vector.  The mouse C-terminal HA-tagged Imp13 was obtained from Dr. Tao Tao (Tao et al., 

2006).  The Ubc9-WT (wild type) and Ubc9-R17E mutant were subcloned into pEGFP-C1 

vector between EcoR I and BamH I sites.  For protein expression and purification, Ubc9-WT or 

Ubc9-R17E was subcloned into pGEX-6P-1 vector between BamH I and Xho I restriction sites.  

All clones were verified by restriction digestions and DNA sequencing. Primers for PCR 

amplifications and subclonings are listed in Appendix A. 

Site-directed mutagenesis 

           Ubc9 and Imp13 mutants were generated using site-directed mutagenesis. To generate the 

Ubc9-R17E mutant, the arginine (R) 17 residue of human Ubc9 was mutated to glutamic acid 

(E).  To study the non-covalent interaction between Ubc9 and SUMO, the arginine 13 of Ubc9 

was mutated to alanine for the generation of the Ubc9-R13A mutant, whereas the histidine 20 

was mutated to aspartic acid for generating the Ubc9-H20D mutant.  To generate the mouse 

Imp13-D426R mutant with a defect in Ubc9 interaction, the aspartic acid (D) 426 of Imp13 was 

mutated to R. The PCR amplifications were performed using Pfu Turbo DNA polymerase 

(Agilent) and the corresponding mutagenesis primers listed in Appendix B.  The PCR products 

were treated with 1 μl of Dpn I restriction enzyme (NEB) for 1 h at 37
o 

C and transformed to 

XL1-Blue electro-competent cells (lab made).  The transformed cells were plated on Luria 

Bertani (LB) plates containing the respective antibiotics.  

Protein expression and purification 

          The GST-tagged human Imp13 and Ubc9 were expressed in E.coli strain BL21.  The 

expression of GST-Imp13 was induced with 0.5 mM IPTG at 18
o
C overnight.  Induction of 

GST-Ubc9-WT, GST-Ubc9-R17E and GST were carried out for 4 h at 37
o
C with 1 mM IPTG. 
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After induction, cells were lysed in 1x Lysis buffer comprising of 25 units/ μl Benzonase, 0.2% 

TritonX-100, 1 mg/ml Lysozyme, and protease inhibitors (including 5 μg/ml LAP (Leupeptin, 

Antipain and Pepstatin), 1 mM PMSF and 20 μg/ml Aprotonin) in1x PBS.  The GST or GST-

tagged proteins were then bound to the Glutathione Sepharose beads (GE Healthcare). 

The GST tag of GST-Ubc9 was cleaved using GST-tagged PreScission Protease. The 

GST-tagged Ubc9 fusion proteins were first bound to the glutathione sepharose beads and then 

incubated with the PreScission Protease at 4
o
C overnight.  The supernatant containing the 

untagged Ubc9 was collected and then used for in vitro Imp13-Ubc9 binding assays.  All the 

protein concentrations were measured using Bradford protein assays (Bio-Rad). The purified 

proteins were also analyzed using Commassie Blue staining and immunoblot analyses.   

In vitro binding assays 

            To characterize the interaction between Imp13 and Ubc9, 24 μg of GST-Imp13 and 10 μg 

of GST alone were immobilized to the glutathione sepharose beads (GE Healthcare), 

respectively, and then blocked with 200 μl of Binding buffer (20mM HEPES pH 7.5, 50 mM 

NaCl, 1 mM DTT, 10% glycerol, and 0.01% NP-40) containing 2% BSA and 0.02% Sodium 

Azide for 30 min at 4
o
C.  After blocking, the beads were washed twice with Binding Buffer. 5 μg 

of Ubc9-WT or Ubc9-R17E were incubated with the beads immobilized with either GST-Imp13 

or GST for 2 h at 4
o
C.  The beads were washed three times with Washing Buffer (20 mM 

HEPES pH 7.5, 50 mM NaCl, 1 mM DTT, 10% glycerol and 0.1% NP-40) at 4
o
C. Samples were 

eluted in 15 μl of 2x SDS sample buffer by incubation at 95
o
C for 5-10 min. One-third of the 

sample was loaded on a 15% SDS-PAGE gel for Western Blot analysis using anti-Ubc9 

antibodies.  Inputs were analyzed by Coomassie Blue staining.  
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RNA interference 

            HeLa cells were grown in a 6-well plate to 30-50% confluency and then transfected with 

Imp13 siRNA oligonucleotides using Oligofectamine (Invitrogen) according to the 

manufacturer’s instructions.  Control and Imp13 specific siRNA double stranded 

oligonucleotides were purchased from Dharmacon.  The sequences of siRNA oligos are listed in 

Appendix C.  72 h post-transfection, cells were lysed in 2x SDS sample buffer and analyzed by 

Western Blot using antibodies specific to Imp13, SUMO-1, SUMO-2/3, Tubulin, Ubc9 and 

Actin. 

To investigate the effect of Imp13 RNAi on Ubc9 nuclear localization, HeLa cells were 

transfected with GFP-Ubc9-WT using Lipofectamine-Plus reagents (Invitrogen) after 48 h of 

Imp13 RNAi and grown for additional 24 h.  The transfected cells were fixed with 3.5% 

paraformaldehyde for 30 min and directly analyzed by fluorescence microscopy. 

Western blot analysis 

            Proteins were first separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

and then transferred to PVDF membrane for 2 h. After transfer, the membrane was blocked with 

5% milk in 1x TS buffer (50 mM Tris and 135mM NaCl) for 30 min at RT.  Membrane was 

incubated with the antibodies listed in Appendix D.  All primary antibodies were diluted in 1x 

PBS containing 2% BSA and 0.02% sodium azide. After incubation for 1 h at RT, the membrane 

was washed several times with 1x TS buffer containing 0.02% Tween-20 and then blotted with 

HRP-conjugated secondary antibody (GE Healthcare) (1:5000 dilution in 1xTS buffer with 5% 

milk) for 30 min at RT. After several washes, proteins were detected using ECL Prime (Western 

blotting detection reagent kit) (GE Healthcare). 
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Data quantification 

           For statistical analysis, fluorescent images were taken at 60x magnification.  The 

fluorescence intensities of Ubc9 in the nucleus and the cytoplasm were measured using Image J 

software (http://rsbweb.nih.gov/ij/). About 60 cells for each treatment were analyzed to calculate 

the nuclear/cytoplasmic ratio of Ubc9. 
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CHAPTER 3 - RESULTS 

Imp13 is required for efficient global SUMOylation 

           Although previous studies have shown that Imp13 can mediate the nuclear import of Ubc9 

using an in vitro nuclear import assays, little is known about the functional significance of Imp13 

in regulating Ubc9 nuclear localization in vivo.  Here we hypothesized that Imp13 is required for 

both Ubc9 nuclear localization and efficient SUMOylation in vivo.  To this hypothesis, Imp13 

was depleted in HeLa cells by RNA interference (RNAi).  Cells were transfected with either one 

of the three different siRNAs specific to Imp13 or control siRNAs.  After 72 h of transfection, 

cells were analyzed by immunoblotting using rabbit antibodies specific to Imp13.  As shown in 

Figure 6, Imp13 expression was efficiently inhibited in cells transfected with one of the three 

different Imp13-specific siRNAs when compared to cells transfected with control siRNAs. Next, 

we investigated if knockdown of Imp13 affects global SUMOylation.  Interestingly, we found a 

significant decrease of high molecular-weight SUMO-1 and SUMO-2/3 conjugates upon RNAi-

depletion of Imp13 as compared to control RNAi (Figure 6).  Furthermore, levels of Ubc9 

expression remained the same upon RNAi-depletion of Imp13 (Figure 6), indicating that the 

decrease of global SUMOylation upon Imp13 RNAi is not caused by reduced levels of Ubc9 

expression.  Immunoblotting analyses of whole cell lysates using anti-Tubulin and anti-Actin 

antibodies indicated that equal amounts of total proteins were present among different samples 

(Figure 6). 
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Figure 6. RNAi-mediated depletion of Imp13 leads to a decrease of global SUMOylation. 

HeLa cells were transfected with three different siRNAs specific to Imp13 and control siRNAs, 

respectively. After 72 h of transfection, cells were lysed and subjected to Western blot analysis 

with α-Imp13, α-SUMO-1, α-SUMO-2/3, α-Ubc9, α-Actin and α-Tubulin antibodies. 
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Imp13 is crucial for Ubc9 nuclear import in vivo 

The decrease of SUMOylation in cells with RNAi-depletion of Imp13 might be caused 

by a defect in Ubc9 nuclear localization.  Because Imp13 is a known nuclear import receptor for 

Ubc9 using in vitro nuclear import assays (Mingot et al., 2001), we hypothesized that Imp13 is 

required for the efficient nuclear import of Ubc9 in vivo.  To test this hypothesis, we depleted 

endogenous Imp13 in HeLa cells using siRNAs specific for Imp13. 48 h after RNAi-depletion of 

Imp13, cells were transfected with plasmids encoding GFP-Ubc9 for 24 h. Fluorescence 

microscopy showed that Ubc9 was predominantly concentrated in the nucleus with a very low 

level of cytoplasmic distribution in cells transfected with control siRNAs, whereas Imp13 

depletion caused a dramatic increase of the cytoplasmic distribution of Ubc9 (Figure 7A).  To 

accurately measure the effect of Imp13-depletion on Ubc9 distribution between the nucleus and 

the cytoplasm, we used Image J software to calculate the nuclear to cytoplasmic signal ratio 

(N/C) of GFP-tagged Ubc9 in cells transfected with Imp13-specific siRNAs and then compared 

to cells transfected with control siRNAs.  We found that around 82% of control-RNAi cells had 

an N/C ratio of larger than 4 (>4), whereas only 25% of Imp13-RNAi cells had the N/C ratio of 

>4 (Figure 7B).  This result clearly indicated that Imp13 depletion causes a great increase of 

cytoplasmic distribution of Ubc9 and that Imp13 is critical for Ubc9 nuclear localization in vivo.   

Interaction between Imp13 and Ubc9 is important for the nuclear localization of Ubc9  

To test if the interaction between Imp13 and Ubc9 is important for Ubc9 nuclear localization, the 

Ubc9-R17E mutant was generated with a defect in Imp13 binding (Grünwald and Bono, 2011).   
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Figure 7. Imp13 depletion causes an increase in the cytoplasmic distribution of Ubc9.  (A) 

HeLa cells were transfected with Imp13 siRNAs. After 48 h, cells were further transfected with 

plasmids encoding GFP-Ubc9-WT (wild-type). Fluorescence microscopy was used to analyze 

the result. White bars, 10 μm. (B) A histogram depicts the nuclear to cytoplasmic ratio of GFP-

Ubc9 signals in cells either transfected with the control or Imp13 siRNAs. The GFP-Ubc9 

signals were quantified using Image J software. The percentage of cells with relatively low 

nuclear to cytoplasmic ratios of GFP-Ubc9 signals was significantly increased in the Imp13-

RNAi cells when compared to the control-RNAi cells, indicating that Imp13 is crucial for the 

nuclear import of Ubc9 in vivo. 60 cells were analyzed for each sample. 

This R17E mutation on Ubc9 is known to disrupt its interaction with Imp13 using in vitro 

binding assays (Grünwald and Bono, 2011).  We performed a similar in vitro binding assay using 
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recombinant proteins.  The purified Ubc9-WT and Ubc9-R17E proteins were incubated with the 

glutathione beads containing immobilized GST-Imp13 and GST proteins, respectively.  Equal 

amounts of recombinant proteins were used for the in vitro binding assays as indicated by 

Commassie blue staining, whereas the GST proteins were used as a negative control (Figure 8A).  

The Ubc9-WT and Ubc9-R17E proteins bound to the glutathione beads were subjected to 

Western blot analysis using anti-Ubc9 antibodies (Figure 8B). The GST-Imp13 proteins 

efficiently pulled down Ubc9-WT, but not Ubc9-R17E (Figure 8B).  These results thereby 

confirm that the R17 residue on Ubc9 is crucial for its interaction with Imp13.  

           To further test whether Imp13 is important for Ubc9 nuclear localization, we compare the 

nuclear localization between GFP-Ubc9-WT and GFP-Ubc9-R17E. Plasmids encoding GFP-

Ubc9-WT or GFP-Ubc9-R17E were transiently transfected into HeLa cells for 24 h and the 

localization of GFP-Ubc9 was determined by fluorescence microscopy. We found that GFP-

Ubc9-WT was primarily localized to the nucleus, whereas GFP-Ubc9-R17E showed an increased 

cytoplasmic staining, indicating that Imp13 is an important import receptor for the nuclear 

accumulation of Ubc9 in mammalian cells (Figure 8C). By measuring the nuclear/cytoplasmic 

signal ratio of GFP-Ubc9-WT or GFP-Ubc9-R17E fusion proteins, we found that nearly all the 

cells expressing GFP-Ubc9-R17E have a low N/C ratio (1-2 or 2-3) of GFP signals compared to 

none of the cells of GFP-Ubc9-WT in this ratio (Figure 8D).  Hence, a defect in Ubc9 interaction 

with Imp13 resulted in a dramatic increase of cytoplasmic distribution of Ubc9. 
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Figure 8. The interaction between Imp13 and Ubc9 is crucial for Ubc9 nuclear 

accumulation. (A & B) In vitro binding assay.  (A) Equal amount of recombinant proteins as 

inputs were analyzed by Coomassie blue staining.  GST-Imp13 was incubated with Ubc9-WT or 

Ubc9-R17E. GST was used as a negative control.  (B) The pulled-down proteins were subjected 

to Western blot analysis using anti-Ubc9 antibody. (C) HeLa cells were transfected with 

plasmids encoding either GFP-Ubc9-WT or GFP-Ubc9-R17E with a defect in Imp13 binding. 

After 24 h of transfection, cells were analyzed using fluorescence microscopy. White bars, 10 

μm. (D) Histogram depicts the nuclear to cytoplasmic ratio of GFP-Ubc9 signals in 60 cells 

either transfected with Ubc9-WT or Ubc9-R17E. Cells were analyzed by Image J software.  All 

the cells expressing GFP-Ubc9-R17E have a low N/C ratio (1-2 or 2-3) of GFP signals, whereas 

no cells expressing GFP-Ubc9-WT have this low N/C ratio (1-2 or 2-3) of GFP signals  
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Overexpression of Imp13 enhances the nuclear accumulation of Ubc9 

            To further test the hypothesis that Imp13 is critical for the nuclear localization of Ubc9, 

HeLa cells were co-transfected with GFP-Ubc9-WT and HA-Imp13-WT, HA-Imp13-D426R or 

HA empty vector plasmids.  Cells transfected with GFP-Ubc9-WT plasmids and the 

corresponding empty vector were used as a negative control.  48 h post-transfection, 

immunofluorescence microscopy was performed using anti-HA antibodies. The Ubc9 nuclear 

distribution was enhanced in cells co-transfected with GFP-Ubc9-WT and HA-Imp13 when 

compared to cells co-transfected with GFP-Ubc9-WT and empty control vector (Figure 9A, 

Panel 1 and 2).  Furthermore, we co-transfected cells with plasmids encoding GFP-Ubc9-WT 

and HA-Imp13-D426R, the known Ubc9-interacting deficient mutant.  Interestingly, we 

observed that the cells co-expressing HA-Imp13-D426R and GFP-Ubc9-WT did not show an 

increase in Ubc9 nuclear distribution as compared to cells co-transfected with GFP-Ubc9-WT 

and HA-Imp13-WT or empty control constructs (Figure 9A).  Quantitative analysis was 

performed by calculating the percentage of cells with an indicated N/C ratio.  Overexpression of 

HA-Imp13-WT greatly increased the percentage of cells (92%) with the N/C ratio of >4 for 

GFP-Ubc9-WT signals, whereas only 38% of cells co-expressing HA-Imp13-D426R and GFP-

Ubc9 were found with this high N/C ratio (>4) for GFP-Ubc9-WT signals (Figure 9B).    

           We also performed a similar experiment by co-transfecting HeLa cells with GFP-Ubc9-

R17E and HA-Imp13 or empty vector plasmids. Cells that co-expressed HA-Imp13 and GFP-

Ubc9-R17E only slightly increased the nuclear accumulation of Ubc9 as compared to cells co-

transfected with GFP-Ubc9-R17E and control plasmids (Figure 10A). However, this increase of 

Ubc9 nuclear distribution in these cells was much lower than that in cells co-transfected with  
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Figure 9. Overexpression of Imp13 greatly increases the nuclear accumulation of Ubc9. 

(A) HeLa cells were co-transfected with GFP-Ubc9-WT and empty control vector, HA-Imp13-

WT or HA-Imp13-D426R plasmids with a defect in Ubc9 binding. 48 h post-transfection, cells 

were subjected to immunofluorescence microscopy using anti-HA antibodies. White bars, 10 

μm. (B) Histogram depicts the nuclear to cytoplasmic ratio of GFP-Ubc9 signals in transfected 

cells. 60 cells were analyzed for each sample. 

 

HA-Imp13 and GFP-Ubc9-WT constructs (Figures 9A and 10A). Quantitative analysis indicated 

that cells co-transfected with HA-Imp13 and GFP-Ubc9-R17E only modestly increased the 

percentage of cells with a high N/C ratio of GFP-UBC9-R17E when compared to cells co-
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transfected with GFP-Ubc9-R17E and empty vector plasmids.  These results further 

demonstrated that Imp13 can efficiently transport Ubc9 from the cytoplasm to the nucleus and 

that the Imp13-Ubc9 interaction is critical for the nuclear accumulation of Ubc9 in vivo.          

 

               
 

Figure 10. Overexpression of Imp13 only modestly increases the nuclear accumulation of 

Ubc9-R17E mutant.  (A) HeLa cells were co-transfected with GFP-Ubc9-R17E and empty 

control vector or HA-Imp13-WT plasmids. 48 h post-transfection, cells were analyzed by 

immunofluorescence microscopy. White bars, 5μm. (B) Histogram shows the nuclear to 

cytoplasmic ratio of GFP-Ubc9-R17E signals in transfected cells. 60 cells were analyzed for 

each sample.  
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Non-covalent interaction of Ubc9 and SUMO is necessary for nuclear localization of Ubc9 

 
 

Figure 11. The SUMO-binding activity of Ubc9 is critical for its accumulation in the 

nucleus.  HeLa cells were transfected with plasmids encoding either GFP-Ubc9-WT or one of 

the SUMO-binding deficient mutants of Ubc9, including GFP-Ubc9-R17E, GFP-Ubc9-R13A 

and GFP-Ubc9-H20D. After 24h, cells were fixed with 3.5% paraformaldehyde and then 

analyzed by fluorescence microscopy. White bars, 10 μm. 
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           The predominant nuclear distribution of both SUMO-1 and SUMO-2/3 leads us to explore 

whether the interaction between Ubc9 and SUMOs also contributes to the nuclear localization of 

Ubc9.  It has been shown previously that several amino acid residues on Ubc9 are essential for 

its interaction with SUMOs.  These known Ubc9 mutants, including R13A, R17E and H20D, 

have a defect in forming the Ubc9-SUMO complex (Capili and Lima, 2007; Knipscheer et al., 

2007).   Based on these findings, we tested whether these Ubc9 mutants with a defect in their 

interaction with SUMO exhibit a decreased nuclear distribution along with an increase in their 

cytoplasmic localization. 

             HeLa cells were transfected with GFP-Ubc9-WT or one of the SUMO-binding mutants 

of Ubc9, including GFP-Ubc9-R17E, GFP-Ubc9-R13A and GFP-Ubc9-H20D. 24 h post-

transfection, cells were fixed with 3.5% para-formaldehyde and analyzed by fluorescence 

microscopy. GFP-Ubc9-R17E, GFP-Ubc9-R13A and GFP-Ubc9-H20D mutants exhibited a 

decreased nuclear accumulation and also an increased cytoplasmic distribution when compared 

to GFP-Ubc9-WT. This result indicated that the Ubc9-SUMO interaction is also important for 

Ubc9 nuclear localization. 
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CHAPTER 4 - DISCUSSION 

            SUMOylation is catalyzed by a cascade of enzymes including a SUMO-E1 activating 

enzyme (SAE1/SAE2), a SUMO-E2 conjugating enzyme (Ubc9) and several E3 ligases. SUMO-

E1, SUMO-E2 and SUMOs are known to be majorly localized in the nucleus (Azuma et al., 

2001; Saitoh et al., 2001; Zhang et al., 2008). It has been hypothesized that SUMOylation occur 

majorly in the nucleus since most of the SUMOylated proteins along with the SUMOylation 

machinery are nuclear (Rodriguez et al., 2001). Therefore, it is important to understand the 

mechanisms regulating the nuclear localization of these enzymes. Studies have shown that 

SUMO-E1 enzyme is imported to the nucleus by Importinα/β (Moutty et al., 2011). In our study, 

we elucidated the mechanisms responsible for the nuclear localization of Ubc9 and found that 

nuclear localization of Ubc9 is important for efficient SUMOylation.  A study by Mingot et al., 

(2001) has shown that Imp13 can mediate the nuclear import of Ubc9 in vitro.  Based on this 

study, we explored whether Imp13 is critical for Ubc9 nuclear localization in mammalian cells. 

Consistent with our hypothesis, we demonstrated that inhibition of Imp13 causes a significant 

reduction of Ubc9 nuclear accumulation and also a dramatic decrease of SUMO-1 and SUMO-

2/3 modification in vivo (Figure 6 and 7).  

         Structural studies have shown the R17 residue of Ubc9 is critical for its interaction with 

Imp13 in vitro (Grunwald and Bono, 2011).  Our immunofluorescence microscopy revealed an 

increase of the cytoplasmic distribution of GFP-Ubc9-R17E as compared to GFP-Ubc9-WT.  A 

recent study has also shown that GFP-Ubc9-R17E has an increased cytoplasmic distribution as 

compared to GFP-Ubc9-WT with a predominant nuclear localization (Grunwald et al., 2013).  

To further test the function significance of the Imp13-Ubc9 interaction in control of Ubc9 

nuclear localization, we compared the capacities of Imp13-WT and Imp13-D426R mutant with a 
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defect in Ubc9 interaction on enhancing the nuclear accumulation of GFP-Ubc9-WT.  We found 

that overexpression of HA-Imp13-WT greatly increased the nuclear accumulation of GFP-Ubc9-

WT with 92% of the cells with a high N/C ratio of >4 but only modestly elevated the nuclear 

distribution of GFP-Ubc9-R17E with 25% of the cells having a N/C ratio of >4.  Consistent with 

the above result, overexpression of Imp13-D426R mutant had very little effect on the nuclear 

accumulation of GFP-Ubc9-WT (Figure 9B). These results clearly indicate that interaction 

between Imp13 and Ubc9 is important for nuclear accumulation of Ubc9. 

We also test if the SUMO-binding activity of Ubc9 plays a role in Ubc9 nuclear 

accumulation. This idea was supported by the findings that SUMO and Ubc9 can form a 

complex in vitro and that this complex formation is destabilized using Ubc9 mutants (Ubc9-

R17E, Ubc9-R13A and Ubc9-H20D) with a defect in their SUMO binding (Capili and Lima, 

2007; Knipscheer et al., 2007). Consistent with our hypothesis, we found that these Ubc9 

mutants displayed an increased cytoplasmic distribution when compared to Ubc9-WT. 

Interestingly, Ubc9-R17E showed a higher cytoplasmic distribution than Ubc9-R13A and Ubc9-

H20D. Previous studies have shown that the R17 residue of Ubc9 is known to be important for 

its binding to both Imp13 and SUMO (Grunwald and Bono, 2010; Capili and Lima, 2007). 

Clearly, these results have demonstrated that both Imp13-mediate nuclear import of Ubc9 and 

the SUMO-binding activity of Ubc9 are important for Ubc9 nuclear localization. The Ubc9-

SUMO interaction may function as an anchorage to retain Ubc9 at the nucleus. 

Based on our findings, we propose a model in which two mechanisms are responsible for 

the nuclear localization of Ubc9 and efficient SUMOylation (Figure 12).  Imp13 binds to the 

Ubc9 in the cytoplasm and translocates it to the nucleus where Ubc9 is then released from the 

Imp13-Ubc9 complex upon RanGTP binding. Ubc9 is the sole SUMO-E2 conjugating enzyme 
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participating in the SUMO-conjugation process. Upon depletion of Imp13 in the cells, Ubc9 

nuclear import is blocked, leading to a decrease of the global SUMOylation.  Notably, the Ubc9-

SUMO interaction can occur between Ubc9 and free-SUMOs or SUMO-conjugates. In our 

study, we described three critical residues of Ubc9 (R17, R13 and H20) that are important for its 

SUMO-binding as well as its nuclear localization.  

             We are currently testing whether another possible mechanism is important for Ubc9 

nuclear accumulation. As previously discussed, during the SUMO conjugation pathway, Ubc9 

recognizes the SUMOylation consensus site of the target for SUMO-conjugation. Furthermore, 

structural studies have shown residues on Ubc9 which are crucial for its recognition of the 

SUMOylation consensus motif on the target proteins (Reverter and Lima, 2005; Villamor et al., 

2002). SUMO-conjugation assay using Ubc9 mutants with a defect in binding to the SUMO 

consensus motif exhibited reduced SUMO conjugation for the substrates including RanGAP1, 

p53 and IκBα (Villamor et al., 2002). This evidence provides a clue that Ubc9 interaction with 

the SUMO consensus sequence might also regulate the nuclear localization of Ubc9. To address 

this question, we will generate a series of Ubc9 mutants with a defect in interaction with the 

SUMOylation consensus site and investigate whether this interaction is important for Ubc9 

nuclear localization. 
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Figure 12. A model illustrates the mechanisms in regulating Ubc9 nuclear localization. 

Imp13 mediates the nuclear import of Ubc9, which is important for efficient global 

SUMOylation.  As the sole E2 conjugating enzyme, Ubc9 is essential for SUMO conjugation. 

We found that both Imp13-mediated nuclear import of Ubc9 and the SUMO binding activity of 

Ubc9 are essential for Ubc9 accumulation in the nucleus. The red hinge on Ubc9 denotes its 

SUMO binding sites. 

 

 

 

 



32 
 

 
 

Appendix A: Primers used for subclonings 

Primer name Primer 

GFP-Imp13-forward GCCTCGAGCTATGGAGCGGCGG 

GFP-Imp13-reverse CGGGATCCTCAGTAGTCAGCTGTGTAAT 

GST-Imp13-forward GCGGATCCATGGAGCGGCGGG 

GST-Imp13-reverse CGCTCGAGCACCACATCAGAATAG 

GFP-Ubc9-forward GGAATTCTATGTCGGGGATCGC 

GFP-Ubc9-reverse CGGGATCCTTATGAGGGCGC 

GST-Ubc9-forward GCGGATCCATGTCGGGGATC 

GST-Ubc9-reverse CGCTCGAGTTATGAGGGCGC 
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Appendix B: Mutagenesis primers 

Primer name Primer 

Ubc9-R17E-forward CAGGAGAGGAAAGCATGGGAGAAAGACCACCC

ATTT 
Ubc9-R17E-reverse AAATGGGTGGTCTTTCTCCCATGCTTTCCTCTCC

TG 
Ubc9-R13A-forward CTCGCCCAGGAGGCGAAAGCATGGAGG 

Ubc9-R13A-reverse CCTCCATGCTTTCGCCTCCTGGGCGAG 

Ubc9-H20D-forward GCATGGAGGAAAGACGACCCATTTGGTTTC 

Ubc9-H20D-reverse GAAACCAAATGGGTCGTCTTTCCTCCATGC 

Imp13-D426R-forward CGTATCTACAGGGTGCGCATCTCAGACACACTC 

Imp13-D426R-reverse GAGTGTGTCTGAGATGCGCACCCTGTAGATACG 
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Appendix C: siRNA oligos 

siRNA oligo name Primer 

Imp13 1588-forward  UGCCAUCUCACAGCCUGA 

Imp13 1588-reverse AUCAGGCUGUGAGAUGGCA 

Imp13 1014-forward CAUGAUUAUGUUCUGCACA 

Imp13 1014-reverse UGUGCAGAACAUAAUCAUG 

Imp13 114-forward CAUUGAGAAUAAGAACCUG 

Imp13 114-reverse CAGGUUCUUAUUCUCAAUG 

Control-forward UUCUCCGAACGUGUCACGU 

Control-reverse ACGUGACACGUUCGGAGAA 
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Appendix D: Antibodies 

Antibodies Species Sources Dilution 

SUMO-1 (21C7) Mouse Invitrogen 1:1000 

SUMO-2/3 (8A2) Mouse Abcam 1:800 

Tubulin Mouse Sigma 1:5000 

Ubc9 Rabbit Genetex 1:5000 

Actin Mouse Genscript 1:3000 

Importin13 Rabbit Dr.Feige Kaplan 1:500 
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           The covalent and reversible conjugation of small ubiquitin-like modifier (SUMO) proteins 

to hundreds of different cellular proteins is catalyzed by a cascade of enzymes including an E1-

activating enzyme (SAE1/SAE2), an E2-conjugating enzyme (Ubc9) and multiple E3 ligases.  

As the only E2 enzyme for SUMO-conjugation, Ubc9 localizes mainly in the nucleus and plays 

an essential role in regulation of many cellular processes including cell cycle progression 

through mitosis, cell migration, genome stability, stress response, transcription, and nuclear 

transport in eukaryotic cells. It is hypothesized that the nuclear localization of Ubc9 is required 

for efficient sumoylation inside the nucleus because both the sole SUMO E1 enzyme and 

SUMO-conjugates are mainly in the nucleus. However, we still have a poor understanding of 

how Ubc9 is accumulated in the nucleus. Although the nuclear import receptor Importin 13 

(Imp13) can mediate the nuclear import of Ubc9 using in vitro nuclear import assays, little is 

known about how Ubc9 nuclear localization is regulated in vivo. Here, we hypothesize that 

Imp13 is the major nuclear import receptor for Ubc9 and thus required for efficient global 

sumoylation in vivo. Consistent with this hypothesis, we found that knockdown of Imp13 by 
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RNA interference (RNAi) causes a decrease of global sumoylation and also an increased 

cytoplasmic distribution of Ubc9.  Furthermore, the Ubc9 mutant (R17E) with a defect in Imp13-

interaction showed a significant increase of cytoplasmic distribution when compared to Ubc9 

wild-type (WT).  Moreover, overexpression of Imp13 greatly enhanced the nuclear localization 

of Ubc9-WT but not Ubc9-R17E mutant, whereas overexpression of Imp13 mutant (D426R) 

with a defect in Ubc9 binding could not promote the nuclear accumulation of Ubc9-WT.  Lastly, 

we demonstrated that the Ubc9 mutants (R17E, R13A and H20D) with a defect in SUMO-

binding have an elevated cytoplasmic distribution when compared to Ubc9-WT, suggesting that 

the non-covalent interaction between Ubc9 and SUMO is also important for Ubc9 nuclear 

accumulation.  Hence, our results support a model that both Imp13-mediated nuclear import and 

the SUMO-binding activity of Ubc9 are critical for Ubc9 nuclear localization and efficient global 

sumoylation in mammalian cells. 
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