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Factor Analysis by Limited Scales: Which 
Factors to Analyze? 

Stan Lipovetsky 
GfK North America 

Minneapolis, MN 

 

 
Factor Analysis (FA) and Principal Component Analysis (PCA) are well-known main 
tools of the multivariate statistics for data analysis, reduction, and visualization. 
Commonly, the analysis and interpretation of their solutions is performed for each of 
several main eigenvectors with variances explaining a big part of the total variability in 

data. The recommendation is to determine if all the main vectors are really needed in the 
analysis, or some of them should be skipped if they correspond to the absence of the 
analyzing features. A simple criterion for identifying redundant vectors of loadings is 
their negative correlation with the vector of mean values of the original variables. 
Limited Likert scales of measurements are considered, and it is shown variables 
correlations and variances are connected to the mean values. FA and PCA structures 
defined by subsets of highly related variables can correspond to the lower levels of Likert 

scales meaning the absence of the measured features, so these loading vectors could be 
senseless for interpretation. Numerical examples are discussed on marketing research 
data. 
 
Keywords: FA, PCA, loadings, eigenvectors, interpretation 

 

Introduction 

Factor Analysis (FA), Principal Component Analysis (PCA), and also Singular 

Value Decomposition (SVD) are well-known main tools of the multivariate 

statistics for data analysis, reduction, and visualization, widely used already for 

many dozen years (for instance, Lawley & Maxwell, 1971; Timm, 1975; Harman, 

1976; Dillon & Goldstein, 1984) and continuing to be described and developed in 

numerous works (Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004; 

Lipovetsky & Conklin 2005; Elden, 2007; Härdle & Hlávka, 2007; Motoda & Liu, 

2008; Izenman, 2008; Härdle & Simar, 2012; Lipovetsky, 2009, 2012, 2015). The 

analysis and interpretation of their solutions is usually performed for several first 

https://doi.org/10.22237/jmasm/1493597520
mailto:stan.lipovetsky@gfk.com


WHICH FACTORS TO ANALYZE? 

234 

retained eigenvectors with bigger variances explaining a main part of the total 

variability in data. 

Variables defined in Likert scales often applied in marketing research and 

other social measurements are considered. It is a limited scale of, for instance, 

four, five, seven, or ten levels for measuring characteristics of interest. The paper 

shows that the variables’ mean values can influence their variances, correlations, 

and the loadings of FA or PCA. In some cases the FA and PCA loading structures 

defined by subsets of highly related variables can correspond to the levels of 

Likert scales which actually indicate the absence of the measured features, so 

such loading vectors could be redundant for analysis and interpretation. The paper 

suggests checking correlations of the main eigenvectors with the vector of means, 

and when some of these correlations are negative the related factors may be 

skipped from consideration if they correspond not to presence but to absence of 

the analyzing features. 

Relation of Means, Standard Deviations, and Correlations 
for Limited Scales 

Consider data from a real marketing research project on features and qualities of 

protein snacks and shakes, where 1034 respondents evaluated thirty-five attributes 

by four-point Likert scales with levels 

 

 

4 - definitely applies to me

3 - applies to me somewhat

2 - does not really apply to me

1 - does not apply to me at all








  (1) 

 

Table 1 presents descriptive statistics on these attributes: means and standard 

deviations (std). 

The graph of std versus mean values is presented in Figure 1 and shows that 

standard deviations are smaller if mean values are closer to the margins 1 and 4 of 

this Likert scale. Note that there are less observations on the lower levels of the 

scale because respondents in marketing research mostly answer at the “better” 

side of scales. It is intuitively clear that it should be so, because there is simply no 

space for volatility when most of observations gravitate to one or another margin 

of a limited scale. Quadratic regression of standard deviation by mean values 

yields the model: 
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2std 0.52 1.40mean 0.30mean      (2) 

 

where the coefficient of multiple determination R2 =0.88 and the F-statistic of 

4264 are big, so the model is of a very high quality. 

Finding Pearson’s pair correlations between all the attributes and stacking 

them into one matrix together with the corresponding mean values we can 

consider how correlations depend on mean values. To make such a consideration 

more clear, we can find 5% quantiles of the means and correlations and present 

them on one graph – see Figure 2. It shows that there evidently are two areas of 

higher correlations related to bigger and to smaller mean values. 

Fourth-degree polynomial regression corresponding to the plot in Figure 2 

yields the model: 

 

 
2 3 4cor 73.30 114.60mean 66.35mean 16.97mean 1.625mean        (3) 

 

with coefficient of multiple determination R2 = 0.58 and F-statistic 5.1, so the 

model is of a good quality as well. The smaller std at the margins of the limited 

scale presented in Figure 1 are translated onto the bigger correlation (as 

covariance divided by standard deviations of the correlated variables) in Figure 2. 
 
 
Table 1. Means and std for 35 attributes measure by 4-point Likert scale 

 

attribute mean std 
 

attribute mean std 

1 2.77 1.06 
 

19 2.94 1.03 

2 2.86 1.06 
 

20 2.94 1.00 

3 2.54 1.08 
 

21 2.06 1.06 

4 2.85 1.03 
 

22 2.84 1.03 

5 2.81 1.05 
 

23 2.47 1.12 

6 2.92 0.99 
 

24 3.08 0.91 

7 2.81 1.04 
 

25 2.99 0.98 

8 2.91 1.04 
 

26 2.77 1.03 

9 2.39 1.08 
 

27 2.27 1.11 

10 2.34 1.07 
 

28 3.19 0.90 

11 3.07 0.90 
 

29 2.96 0.98 

12 3.00 0.98 
 

30 2.99 0.94 

13 3.07 0.92 
 

31 2.84 0.97 

14 2.97 0.98 
 

32 3.14 0.91 

15 2.60 1.08 
 

33 3.03 0.91 

16 2.68 1.09 
 

34 2.45 1.11 

17 2.78 1.03 
 

35 2.46 1.11 

18 1.91 1.08 
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Figure 1. Standard deviation versus mean for attributes measured by Likert 4-point scale 

 

 
 

 
 
Figure 2. Correlations vs. means for attributes by Likert 4-point scale 
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Factor Loadings and Their Correlations with Mean Values 

Big and approximately equal correlations correspond to the block-diagonal 

structure of the entire correlation matrix of all variables, where the inter-block 

correlations are bigger than the outer-block correlations (by absolute value). All 

pair correlations of the items in this example are positive and varying in the range 

from 0.35 to 0.55. If some big correlations would be negative, it is always 

possible to change the variables to the opposite direction by flipping the scale, so 

all correlations become positive. Let us first briefly describe some results from 

positive matrix theory. 

Due to the Perron-Frobenius theory for a positive matrix’s eigenvectors 

(Salton, 1988; Lipovetsky, 2009; Horn & Johnson, 2013), the first eigenvector of 

a positive correlation matrix has positive elements and the larger ones identify the 

variables more related among themselves than with others identified by smaller 

loadings. Absence of zero elements shows that the matrix is irreducible, or by 

permutation of variables the matrix cannot be presented in a block-diagonal form 

when each diagonal block consists of highly correlated subsets of the variables, 

and the non-diagonal blocks contain zeros. However, higher loadings define a 

subset of closely-related variables, and the rest of variables with lower loadings 

could belong to another subset of closely-related variables. In practice, a matrix of 

correlation can only be approximately presented in a block-diagonal form with 

higher correlations within the diagonal blocks and with lower correlations in the 

non-diagonal blocks. If the first eigenvector identifies by the highest elements one 

of the diagonal blocks, the second eigenvector should correspond to another 

diagonal block and, due to the Perron-Frobenius theory, it can have positive 

elements of the variables belonging to this block. The next main eigenvectors can 

relate to other diagonal blocks and, again, each of them can be flipped by sign. 

Let us consider how the results of factor analysis can correspond to different 

ranges of the mean values shown in Figure 2. FA loadings for 3, 4, and 5-factor 

solutions obtained in a maximum likelihood approach with additional varimax 

rotation are presented in Table 2. 

The main loadings in Table 2 are colored by dark green. Table 2 also shows 

the item means, and correlations between them and FA loadings. We see that in 

each FA solution there is a strong negative correlation of the loadings with mean 

values of attributes. It can be interpreted as follows. 
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Table 2. Attribute means, FA loadings, and correlations 

 

  
FA-3 

 
FA-4 

 
FA-5 

item mean F1 F2 F3   F1 F2 F3 F4   F1 F2 F3 F4 F5 

1 2.77 0.12 0.59 0.38 
 

0.60 0.07 0.33 0.22 
 

0.52 0.09 0.33 0.19 0.51 

2 2.86 0.13 0.56 0.51 
 

0.55 0.12 0.49 0.18 
 

0.46 0.14 0.51 0.14 0.40 

3 2.54 0.20 0.64 0.41 
 

0.64 0.18 0.38 0.19 
 

0.58 0.18 0.43 0.18 0.16 

4 2.85 0.32 0.41 0.62 
 

0.41 0.27 0.56 0.31 
 

0.34 0.28 0.59 0.29 0.16 

5 2.81 0.24 0.50 0.64 
 

0.49 0.22 0.62 0.24 
 

0.44 0.22 0.65 0.24 0.10 

6 2.92 0.73 0.16 0.10 
 

0.14 0.79 0.15 0.04 
 

0.16 0.78 0.15 0.04 -0.03 

7 2.81 0.66 0.20 0.01 
 

0.19 0.64 0.00 0.15 
 

0.20 0.64 0.01 0.13 0.05 

8 2.91 0.24 0.42 0.68 
 

0.40 0.23 0.69 0.20 
 

0.36 0.22 0.71 0.20 0.06 

9 2.39 0.32 0.67 0.34 
 

0.66 0.29 0.32 0.19 
 

0.67 0.26 0.37 0.22 -0.06 

10 2.34 0.30 0.67 0.29 
 

0.67 0.26 0.25 0.22 
 

0.65 0.24 0.30 0.23 0.04 

11 3.07 0.56 0.21 0.42 
 

0.22 0.44 0.28 0.50 
 

0.18 0.46 0.28 0.48 0.15 

12 3.00 0.52 0.27 0.45 
 

0.29 0.35 0.24 0.64 
 

0.27 0.35 0.26 0.64 0.09 

13 3.07 0.70 0.11 0.23 
 

0.10 0.65 0.19 0.27 
 

0.10 0.66 0.19 0.25 0.02 

14 2.97 0.72 0.14 0.16 
 

0.12 0.77 0.20 0.08 
 

0.12 0.77 0.20 0.06 0.02 

15 2.60 0.44 0.52 0.34 
 

0.54 0.34 0.24 0.39 
 

0.53 0.33 0.27 0.40 0.03 

16 2.68 0.57 0.18 0.09 
 

0.18 0.56 0.08 0.16 
 

0.20 0.54 0.09 0.17 -0.08 

17 2.78 0.46 0.34 0.29 
 

0.35 0.39 0.20 0.34 
 

0.33 0.38 0.22 0.33 0.07 

18 1.91 0.09 0.62 0.06 
 

0.63 0.06 0.03 0.10 
 

0.62 0.05 0.07 0.11 0.12 

19 2.94 0.24 0.38 0.69 
 

0.35 0.24 0.72 0.18 
 

0.31 0.23 0.74 0.18 0.05 

20 2.94 0.26 0.40 0.63 
 

0.39 0.24 0.61 0.23 
 

0.31 0.26 0.63 0.21 0.20 

21 2.06 0.35 0.52 0.01 
 

0.52 0.34 0.02 0.06 
 

0.53 0.32 0.06 0.08 -0.02 

22 2.84 0.34 0.45 0.60 
 

0.44 0.29 0.56 0.29 
 

0.41 0.28 0.59 0.30 0.00 

23 2.47 0.06 0.68 0.27 
 

0.69 0.03 0.23 0.15 
 

0.63 0.04 0.24 0.11 0.45 

24 3.08 0.53 0.20 0.48 
 

0.22 0.36 0.28 0.66 
 

0.20 0.36 0.29 0.65 0.06 

25 2.99 0.48 0.28 0.52 
 

0.29 0.37 0.40 0.47 
 

0.27 0.37 0.42 0.47 0.00 

26 2.77 0.46 0.42 0.46 
 

0.43 0.37 0.36 0.41 
 

0.43 0.35 0.40 0.43 -0.07 

27 2.27 0.24 0.69 0.23 
 

0.68 0.25 0.26 0.04 
 

0.69 0.22 0.32 0.06 -0.06 

28 3.19 0.40 0.14 0.63 
 

0.14 0.33 0.55 0.39 
 

0.11 0.33 0.55 0.39 0.00 

29 2.96 0.67 0.21 0.33 
 

0.20 0.65 0.32 0.23 
 

0.18 0.66 0.32 0.22 0.07 

30 2.99 0.63 0.20 0.40 
 

0.20 0.54 0.32 0.39 
 

0.17 0.56 0.32 0.37 0.12 

31 2.84 0.61 0.25 0.29 
 

0.26 0.55 0.22 0.31 
 

0.23 0.56 0.23 0.29 0.13 

32 3.14 0.59 0.12 0.28 
 

0.12 0.54 0.24 0.27 
 

0.10 0.56 0.23 0.25 0.12 

33 3.03 0.55 0.20 0.46 
 

0.22 0.44 0.33 0.48 
 

0.17 0.46 0.33 0.45 0.19 

34 2.45 0.21 0.65 0.38 
 

0.64 0.22 0.40 0.09 
 

0.61 0.20 0.45 0.10 0.06 

35 2.46 0.25 0.63 0.25 
 

0.63 0.23 0.23 0.17 
 

0.59 0.22 0.27 0.16 0.12 

cor   0.56 -0.79 0.49   -0.79 0.48 0.38 0.56   -0.85 0.52 0.31 0.51 0.05 

 
 

As is well-known, the vectors of loadings in FA, PCA, and SVD, as 

eigenvectors of eigenproblems for covariance, correlation, or non-centered 

second-moment matrices, are defined up to an arbitrary normalizing constant – 

particularly, up to sign change of all their elements that flips the vectors to 
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opposite direction. It is so for maximum likelihood and other methods of 

estimation, with orthogonal, oblique, and rotated solutions as well. Negative 

correlations of some vectors of loading with mean values of attributes can be 

observed practically in any FA or PCA solution, but it does not eliminate such 

factors from analysis and interpretation on the basis of this correlation sign only. 

However, for Likert scales it could indicate that negative correlation of a factor’s 

loadings with the vector of the variables’ means occurs because this factor is 

constituted by the variables with the values mostly on the “lower”, or “non-

relevant” levels. For instance, such a factor can consist of the attributes getting 

mostly the lower 1 and 2 levels in the scale of “does not apply to me” meaning in 

(1). 

To check it, let us reshape Table 2 by sorting FA loadings due to the 

descending order of the items mean values – the results are presented in Table 3. 

Indeed, it is easy to see by Table 3 that in any FA solution the factors negatively 

correlated with mean values have the main loadings on the attributes with 

minimum mean values, in the range below about the mean point 2.5 in the scale 

(1). But those values correspond to meaningless attributes in this study because 

they are related to the “non-applied to respondent” levels. 
 
 

 
 
Figure 3. FA-3 solution for 35 attributes with the second factor loadings vs. means 
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Table 3. Factor loadings sorted by mean values 

 

  
FA-3 

 
FA-4 

 
FA-5 

item mean F1 F2 F3   F1 F2 F3 F4   F1 F2 F3 F4 F5 

28 3.19 0.40 0.14 0.63 
 

0.14 0.33 0.55 0.39 
 

0.11 0.33 0.55 0.39 0.00 

32 3.14 0.59 0.12 0.28 
 

0.12 0.54 0.24 0.27 
 

0.10 0.56 0.23 0.25 0.12 

24 3.08 0.53 0.20 0.48 
 

0.22 0.36 0.28 0.66 
 

0.20 0.36 0.29 0.65 0.06 

11 3.07 0.56 0.21 0.42 
 

0.22 0.44 0.28 0.50 
 

0.18 0.46 0.28 0.48 0.15 

13 3.07 0.70 0.11 0.23 
 

0.10 0.65 0.19 0.27 
 

0.10 0.66 0.19 0.25 0.02 

33 3.03 0.55 0.20 0.46 
 

0.22 0.44 0.33 0.48 
 

0.17 0.46 0.33 0.45 0.19 

12 3.00 0.52 0.27 0.45 
 

0.29 0.35 0.24 0.64 
 

0.27 0.35 0.26 0.64 0.09 

25 2.99 0.48 0.28 0.52 
 

0.29 0.37 0.40 0.47 
 

0.27 0.37 0.42 0.47 0.00 

30 2.99 0.63 0.20 0.40 
 

0.20 0.54 0.32 0.39 
 

0.17 0.56 0.32 0.37 0.12 

14 2.97 0.72 0.14 0.16 
 

0.12 0.77 0.20 0.08 
 

0.12 0.77 0.20 0.06 0.02 

29 2.96 0.67 0.21 0.33 
 

0.20 0.65 0.32 0.23 
 

0.18 0.66 0.32 0.22 0.07 

19 2.94 0.24 0.38 0.69 
 

0.35 0.24 0.72 0.18 
 

0.31 0.23 0.74 0.18 0.05 

20 2.94 0.26 0.40 0.63 
 

0.39 0.24 0.61 0.23 
 

0.31 0.26 0.63 0.21 0.20 

6 2.92 0.73 0.16 0.10 
 

0.14 0.79 0.15 0.04 
 

0.16 0.78 0.15 0.04 -0.03 

8 2.91 0.24 0.42 0.68 
 

0.40 0.23 0.69 0.20 
 

0.36 0.22 0.71 0.20 0.06 

2 2.86 0.13 0.56 0.51 
 

0.55 0.12 0.49 0.18 
 

0.46 0.14 0.51 0.14 0.40 

4 2.85 0.32 0.41 0.62 
 

0.41 0.27 0.56 0.31 
 

0.34 0.28 0.59 0.29 0.16 

22 2.84 0.34 0.45 0.60 
 

0.44 0.29 0.56 0.29 
 

0.41 0.28 0.59 0.30 0.00 

31 2.84 0.61 0.25 0.29 
 

0.26 0.55 0.22 0.31 
 

0.23 0.56 0.23 0.29 0.13 

5 2.81 0.24 0.50 0.64 
 

0.49 0.22 0.62 0.24 
 

0.44 0.22 0.65 0.24 0.10 

7 2.81 0.66 0.20 0.01 
 

0.19 0.64 0.00 0.15 
 

0.20 0.64 0.01 0.13 0.05 

17 2.78 0.46 0.34 0.29 
 

0.35 0.39 0.20 0.34 
 

0.33 0.38 0.22 0.33 0.07 

1 2.77 0.12 0.59 0.38 
 

0.60 0.07 0.33 0.22 
 

0.52 0.09 0.33 0.19 0.51 

26 2.77 0.46 0.42 0.46 
 

0.43 0.37 0.36 0.41 
 

0.43 0.35 0.40 0.43 -0.07 

16 2.68 0.57 0.18 0.09 
 

0.18 0.56 0.08 0.16 
 

0.20 0.54 0.09 0.17 -0.08 

15 2.60 0.44 0.52 0.34 
 

0.54 0.34 0.24 0.39 
 

0.53 0.33 0.27 0.40 0.03 

3 2.54 0.20 0.64 0.41 
 

0.64 0.18 0.38 0.19 
 

0.58 0.18 0.43 0.18 0.16 

23 2.47 0.06 0.68 0.27 
 

0.69 0.03 0.23 0.15 
 

0.63 0.04 0.24 0.11 0.45 

35 2.46 0.25 0.63 0.25 
 

0.63 0.23 0.23 0.17 
 

0.59 0.22 0.27 0.16 0.12 

34 2.45 0.21 0.65 0.38 
 

0.64 0.22 0.40 0.09 
 

0.61 0.20 0.45 0.10 0.06 

9 2.39 0.32 0.67 0.34 
 

0.66 0.29 0.32 0.19 
 

0.67 0.26 0.37 0.22 -0.06 

10 2.34 0.30 0.67 0.29 
 

0.67 0.26 0.25 0.22 
 

0.65 0.24 0.30 0.23 0.04 

27 2.27 0.24 0.69 0.23 
 

0.68 0.25 0.26 0.04 
 

0.69 0.22 0.32 0.06 -0.06 

21 2.06 0.35 0.52 0.01 
 

0.52 0.34 0.02 0.06 
 

0.53 0.32 0.06 0.08 -0.02 

18 1.91 0.09 0.62 0.06 
 

0.63 0.06 0.03 0.10 
 

0.62 0.05 0.07 0.11 0.12 

cor   0.56 -0.79 0.49   -0.79 0.48 0.38 0.56   -0.85 0.52 0.31 0.51 0.05 

 
 

So we can see by negative correlations of FA loadings and means that it is 

possible to identify the variables gravitating to the levels of “does not really apply 

to me” and “does not apply to me at all”. Such attributes do not supply useful 

information elicited from the respondents. Thus, the factors negatively correlated 
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with means can be skipped from the analysis and interpretation. For illustration, 

the loadings of the second factor in the solution with three factors (FA-3 solution, 

the factor F2 in Table 3) are shown in Figure 3, which clearly describes a negative 

pattern of correlation. 

Cleaning data from inadequate variables always helps to a meaningful 

statistical analysis, so FA can be re-run without the redundant variables of mostly 

the irrelevant levels on the limited scale. It is also interesting to note that the PCA 

loadings even without rotation produce similar to FA correlations with means. For 

instance, correlations of three first PCA vectors with the vector of means are 0.72, 

-0.62, and 0.31, so very close to three factor solution’s correlations given at the 

last row in Table 3. 
 
 
Table 4. Correlations of means and FA loadings for several factor solutions with 45 

attributes measure by 7-point Likert scale 
 

  F1 F2 F3 F4 F5 F6 

FA-3 0.89 0.08 -0.89 
   

FA-4 0.87 0.03 -0.87 0.19 
  

FA-5 0.82 0.14 -0.94 0.21 0.17 
 

FA-6 0.83 0.15 -0.95 0.21 0.14 0.07 

 
 

 
 
Figure 4. FA-3 solution for 45 attributes with the third factor loadings versus means 
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Table 5. FA-3 loadings sorted by means for 45 attributes measured by 7-point Likert 

scale 
 

item mean F1 F2 F3 
 

item mean F1 F2 F3 

21 5.79 0.62 0.19 -0.02 
 

13 5.14 0.48 0.31 0.30 

22 5.74 0.75 0.15 -0.01 
 

15 5.14 0.45 0.55 0.28 

20 5.72 0.70 0.11 0.04 
 

28 5.14 0.28 0.70 0.20 

41 5.63 0.57 0.15 0.07 
 

31 5.14 0.41 0.66 0.20 

18 5.60 0.65 0.41 0.04 
 

37 5.14 0.52 0.16 0.35 

26 5.57 0.70 0.37 0.13 
 

29 5.13 0.32 0.68 0.21 

43 5.56 0.69 0.42 0.09 
 

12 5.12 0.46 0.34 0.26 

10 5.55 0.63 0.40 0.10 
 

40 5.07 0.51 0.17 0.26 

14 5.48 0.65 0.36 0.18 
 

17 5.05 0.24 0.70 0.25 

32 5.43 0.59 0.48 0.18 
 

36 5.01 0.53 0.17 0.38 

5 5.42 0.73 0.24 0.28 
 

38 5.00 0.57 0.17 0.47 

3 5.41 0.60 0.37 0.19 
 

25 4.94 0.41 0.47 0.29 

42 5.37 0.59 0.19 0.19 
 

35 4.93 0.34 0.66 0.26 

45 5.37 0.64 0.28 0.17 
 

44 4.86 0.45 0.36 0.50 

7 5.33 0.54 0.45 0.21 
 

2 4.63 0.37 0.20 0.62 

24 5.28 0.56 0.46 0.25 
 

39 4.59 0.27 0.43 0.42 

16 5.24 0.56 0.15 0.36 
 

30 4.26 0.01 0.60 0.40 

33 5.23 0.57 0.16 0.27 
 

23 3.93 0.18 0.32 0.57 

19 5.22 0.43 0.64 0.22 
 

8 3.76 0.08 0.41 0.60 

27 5.19 0.59 0.23 0.23 
 

9 3.70 0.11 0.18 0.76 

34 5.17 0.52 0.47 0.31 
 

6 3.68 0.11 0.22 0.74 

1 5.16 0.56 0.20 0.51 
 

11 3.04 0.03 0.10 0.70 

4 5.15 0.63 0.23 0.40 
 

cor   0.89 0.08 -0.89 

 
 

In another data set from the same marketing research project, forty five 

attributes had been measured by a 7-point Likert scale, from 7 meaning 

“extremely important” to 1 meaning “not at all important.” A general structure of 

the relations between mean values and FA loadings is very similar to that 

described above for the smaller set of attributes. Table 4 presents the correlations 

between mean values and factors loadings from three factor solution (FA-3 in the 

first row) to six factor solution (FA-6 in the last row). 

It is useful to note that PCA loading correlated with mean values also yield 

negative values. PCA constructed by correlation matrix gives three first 

correlations 0.93, 0.66, and -0.21, and PCA by covariance matrix produces 

correlations 0.97, -0.29, and -0.11. By Table 4 we see that adding more factors 

does not change the correlations of the first three factors (F1, F2, and F3 in the 

first columns) with the mean values of attributes. So, for illustration on the FA 

loading sorted by means of the attributes, it is sufficient to use the FA-3 solution 

which is presented in Table 5. This solution demonstrates that the negative 
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correlation of the loadings with means is observed for the third factor mostly 

defined by the attributes with mean values below the mid-point of the scale. So 

there is no need to consider and interpret this 3rd factor defined mostly by the 

“non-important” attributes. The last factor’s loadings for 45 attributes solution 

from Table 5 is presented in Figure 4 with decreasing loadings profiled by the 

mean values. 

Another interesting example of factor analysis performed on eighty 

adjectives measured by a 5-point Likert scale for characterizing the beauty of a 

mathematical proof can be found in Inglis and Aberdein (2014), with the second 

factor excluded from interpretation because of correspondence to lower levels of 

description accuracy. 

Summary 

The work considers the possibility to identify factors which can be skipped from 

interpretation and further application. The analysis is based on correlations of 

factor loadings with means of variables constituting the factors. Although the 

factor and principal component loadings are defined up to their sign, the 

correlations of factor loadings with variables’ means permit the identification of 

factors consisting mostly of variables measured in Likert scales related to non-

relevant values. The variables’ means can influence the variances and correlations, 

which in turn define the factor loadings. In some factors the loading structure 

defined by subsets of highly-related variables can correspond to the “non-

important” levels by Likert scale. Factor loadings after rotation to a simpler 

structure contain mostly the positive elements, so their negative correlations with 

the attribute means is a convenient indicator of the redundant factors which can be 

skipped from further analysis. Thus, depending on the content of a scale levels, 

there are studies with all main factors making sense, so they can be interpreted 

and used. Negative correlation of the loadings with mean values of variables in 

such a case simply shows that lower-level observations define this factor. But on 

the other hand, there could be studies where factors negatively correlated with 

mean values can be excluded from consideration because they rather correspond 

to the absence of analyzing features. 
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