
Wayne State University

Geology Faculty Research Publications Geology

5-1-2015

Inferring the Oriented Elastic Tensor from Surface
Wave Observations: Preliminary Application
Across the Western United States
Jiayi Xie
University of Colorado Boulder, jiayi.xie@colorado.edu

Michael H. Ritzwoller
University of Colorado Boulder, michael.ritzwoller@colorado.edu

S. J. Brownlee
Wayne State University, sarah.brownlee@wayne.edu

B. R. Hacker
University of California - Santa Barbara, hacker@geol.ucsb.edu

This Article is brought to you for free and open access by the Geology at DigitalCommons@WayneState. It has been accepted for inclusion in Geology
Faculty Research Publications by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Xie, J., Ritzwoller, M., Brownlee, S.J., & Hacker, B.R., 2015. Inferring the oriented elastic tensor from surface wave observations:
Preliminary application across the Western US, Geophys. J. Int., 201, 996-1021, doi:10.1093/gji/ggv054
Available at: http://digitalcommons.wayne.edu/geofrp/19

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/geofrp
http://digitalcommons.wayne.edu/geo
http://dx.doi.org/10.1093/gji/ggv054


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTICE IN COMPLIANCE WITH PUBLISHER POLICY: This article has been accepted for 
publication in Geophysical Journal International ©: 2015 The Authors. Published by Oxford 
University Press on behalf of the Royal Astronomical Society. All rights reserved. 



Geophysical Journal International
Geophys. J. Int. (2015) 201, 996–1021 doi: 10.1093/gji/ggv054

GJI Seismology

Inferring the oriented elastic tensor from surface wave observations:
preliminary application across the western United States

Jiayi Xie,1 Michael H. Ritzwoller,1 S.J. Brownlee2 and B.R. Hacker3

1Center for Imaging the Earth’s Interior, Department of Physics, University of Colorado Boulder, Boulder, CO 80309-0390, USA.
E-mail: jiayi.xie@colorado.edu
2Department of Geology, Wayne State University, Detroit, MI 48202, USA
3Department of Earth Science, UC Santa Barbara, CA 93106-9630, USA

Accepted 2015 February 2. Received 2015 January 23; in original form 2014 September 14

S U M M A R Y
Radial and azimuthal anisotropy in seismic wave speeds have long been observed using surface
waves and are believed to be controlled by deformation within the Earth’s crust and uppermost
mantle. Although radial and azimuthal anisotropy reflect important aspects of anisotropic
media, few studies have tried to interpret them jointly. We describe a method of inversion that
interprets simultaneous observations of radial and azimuthal anisotropy under the assumption
of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike
angles. We show that observations of radial anisotropy and the 2ψ component of azimuthal
anisotropy for Rayleigh waves obtained using USArray data in the western United States can
be fit well under this assumption. Our inferences occur within the framework of a Bayesian
Monte Carlo inversion, which yields a posterior distribution that reflects both variances of and
covariances between all model variables, and divide into theoretical and observational results.
Principal theoretical results include the following: (1) There are two distinct groups of models
(Group 1, Group 2) in the posterior distribution in which the strike angle of anisotropy in the
crust (defined by the intersection of the foliation plane with Earth’s surface) is approximately
orthogonal between the two sets. (2) The Rayleigh wave fast axis directions are orthogonal to
the strike angle in the geologically preferred group of models in which anisotropy is strongly
non-elliptical. (3) The estimated dip angle may be interpreted in two ways: as a measure of
the actual dip of the foliation of anisotropic material within the crust, or as a proxy for another
non-geometric variable, most likely a measure of the deviation from hexagonal symmetry of
the medium. The principal observational results include the following: (1) Inherent S-wave
anisotropy (γ ) is fairly homogeneous vertically across the crust, on average, and spatially
across the western United States. (2) Averaging over the region of study and in depth, γ

in the crust is approximately 4.1 ± 2 per cent. γ in the crust is approximately the same in
the two groups of models. (3) Dip angles in the two groups of models show similar spatial
variability and display geological coherence. (4) Tilting the symmetry axis of an anisotropic
medium produces apparent radial and apparent azimuthal anisotropies that are both smaller in
amplitude than the inherent anisotropy of the medium, which means that most previous studies
have probably underestimated the strength of anisotropy.

Key words: Surface waves and free oscillations; Seismic anisotropy; Seismic tomography;
Crustal structure.

1 I N T RO D U C T I O N

The study of anisotropy using surface waves is primarily of inter-
est to seismologists because surface waves provide a homogenous
sampling of the Earth’s crust and uppermost mantle over large ar-
eas. Robust inferences about anisotropy from surface waves are
typically not restricted to small regions, allowing conclusions to

be drawn broadly over a variety of geologic and tectonic settings
(e.g. Anderson & Regan 1983; Ekström & Dziewoński 1998; Gung
et al. 2003; Smith et al. 2004; Kustowski et al. 2008; Nettles &
Dziewoński 2008). Cross-correlations of ambient noise principally
present relatively short and intermediate period surface waves for
interpretation. Therefore, the introduction of ambient noise surface
wave tomography has allowed for increasingly detailed information
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Figure 1. (a) Depiction of a tilted hexagonally symmetric medium with definitions of the foliation plane, symmetry axis, strike angle, and dip angle. (b)
Illustrative computation of the variation of apparent S-wave radial (γ̂ , red curve) and SV-wave azimuthal (blue curve) anisotropy as a function of dip angle
θ . All amplitudes are normalized by the amplitude of maximum inherent S-wave anisotropy, γ. These quantities are defined by eqs (9) and (11), and they are
obtained by rotating a hexagonally symmetric elastic tensor based on the effective anisotropic medium theory (Montagner & Nataf 1986). This figure aims to
summarize qualitatively the variation of anisotropy with dip angle. Details (e.g. the absolute amplitude, the zero-crossing angle, and the number of crossing
angles) depend on the elastic tensor.

to be gained about the crust over broad regions (e.g. Shapiro et al.
2005; Yao et al. 2006; Bensen et al. 2009; Moschetti et al. 2010a;
Ritzwoller et al. 2011; Yang et al. 2012; Ekström 2013), and infor-
mation about anisotropy from ambient noise mainly concerns the
crust (e.g. Huang et al. 2010; Moschetti et al. 2010b; Yao et al.
2010; Lin et al. 2011; Xie et al. 2013). In this paper, surface wave
observations obtained from both ambient noise and earthquakes
will be used, and the principal focus will be on the means to infer
crustal anisotropy.

Studies of seismic anisotropy using surface waves primarily take
two forms. In the first, azimuthally averaged (transversely isotropic)
Rayleigh and Love wave traveltime (or dispersion) curves are stud-
ied to determine if they are consistent with an isotropic medium of
propagation. If not, radial anisotropy (or polarization anisotropy)
is introduced to the medium to resolve what is often called the
‘Rayleigh-Love discrepancy’ (e.g. Forsyth 1975; Dziewonski &
Anderson 1981; Moschetti et al. 2010b; Xie et al. 2013). In the sec-
ond form, the directional dependence of surface wave traveltimes
is used to determine azimuthal anisotropy (e.g. Simons et al. 2002;
Marone & Romanowicz 2007; Yao et al. 2010; Lin et al. 2011). In
both cases, the anisotropy is typically interpreted to result from the
mechanism of formation of the medium, either through (1) the crys-
tallographic or lattice preferred orientation of anisotropic minerals
(Christensen 1984; Ribe 1992) or (2) the anisotropic shape distri-
bution of isotropic materials, such as laminated structure (Backus
1962; Kawakatsu et al. 2009) or fluid filled cracks (Anderson et al.
1974; Crampin 1984; Babuška 1991). Indeed, one of the principal
motivations to study seismic anisotropy is to understand the de-
formation that a medium was subject to during its formation and
evolution.

The anisotropic properties of an elastic medium and the
anisotropy of seismic wave speeds both depend on the detailed
constitution of the elastic tensor and on its orientation. With sev-
eral notable exceptions (e.g. Montagner & Jobert 1988; Dziewonski
& Anderson 1981) most studies of seismic anisotropy with surface
waves model only the polarization or azimuthal dependence of shear
wave speeds and do not explicitly attempt to estimate the elastic
tensor. Because, as we discuss below, the directional dependence

of surface waves may be ambiguously related to the deformation
of the transport medium, in order to understand the anisotropy that
seismic waves exhibit and its relationship to the deformation that
causes it, it is important to seek information about the (depth-
dependent) elastic tensor within the crust and mantle together with
its orientation. We refer to the anisotropic properties of a medium
as ‘inherent anisotropy’ when they are based on a measured (or
inferred) elastic tensor with a known orientation. We use the term
‘inherent’ as opposed to ‘intrinsic’ anisotropy because the latter
term often refers to anisotropy that results from a specific cause,
namely, from crystal orientation (Wang et al. 2013; Thomsen &
Anderson 2015). Therefore, we use the term inherent as more gen-
eral than intrinsic or extrinsic anisotropy, but not directly in conflict
with these terms (e.g. Wang et al. 2013). The term inherent may
also be contrasted with ‘apparent’ anisotropy, which would be in-
ferred from observational studies that have not explicitly estimated
the elastic tensor and its orientation.

A useful starting point on which to base estimates of the elas-
tic tensor is the simplifying assumption that the medium possesses
hexagonal symmetry. Such a medium has one symmetry axis, and if
the symmetry axis is either vertical or horizontal the elastic tensor
can be represented with five independent elastic moduli. A hexag-
onally symmetric medium with a vertical symmetry axis (z-axis in
Fig. 1) is referred to as a vertical transversely isotropic medium or
VTI medium. Such a medium is defined by five depth-dependent
elastic parameters (A, C, N, L, F or η), where A and C are compres-
sional moduli and N and L are shear moduli. In this case, the 6 × 6
elastic modulus matrix, Cαβ , the Voigt simplification of the elastic
tensor, can be written as the following symmetric matrix:

V Cαβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A A − 2N F 0 0 0

A − 2N A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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where η = F/(A – 2L) and the superscript V stands for vertical. With
a vertical symmetry axis, a hexagonally symmetric medium will
produce no azimuthal variation in surface wave speeds mainly be-
cause the C44 and C55 matrix elements are identical. A hexagonally
symmetric elastic tensor may display either slow or fast symmetry.
In the slow symmetry case, C < A and L < N, which is referred to as
positive S-wave radial anisotropy and implies that Love waves are
faster than predicted from an isotropic medium that fits Rayleigh
wave speeds. Crustal rocks generally display slow symmetry and a
finely layered medium also requires it (Thomsen & Anderson 2015;
Tatham et al. 2008; Brownlee et al. 2011; Erdman et al. 2013).
For the mantle, however, rocks abundant in olivine are sometimes
considered hexagonally symmetric with a fast symmetry axis, be-
cause seismologists have assumed that the two slower olivine crystal
axes scatter randomly perpendicular to the average fast axis (Park
& Levin 2002). However, melt-rich layers embedded in a meltless
mantle (Kawakatsu et al. 2009; Jaxybulatov et al. 2014) probably
have a slow symmetry axis.

In contrast, if a hexagonally symmetric medium has a horizontal
symmetry axis (x-axis in Fig. 1), it is referred to as a HTI medium
(horizontal transversely isotropic) and the elastic modulus matrix
has the following form:

H Cαβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C F F 0 0 0

F A A − 2N 0 0 0

F A − 2N A 0 0 0

0 0 0 N 0 0

0 0 0 0 L 0

0 0 0 0 0 L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In this case, if N is larger than L (C44 > C66) then there would be
negative S-wave radial anisotropy, which is observed in the mantle
beneath the mid-ocean ridges (e.g. Ekström & Dziewoński 1998;
Zhou et al. 2006; Nettles & Dziewoński 2008) but is observed only
rarely in the crust (e.g. Xie et al. 2013). Also, mainly because C44 �=
C55, this elastic tensor would generate azimuthal variations in wave
speeds.

Assumptions of either vertical or horizontal hexagonal symmetry
are inconsistent with one another and cannot explain the widely
observed co-existence of positive S-wave radial anisotropy along
with azimuthal anisotropy (e.g. Huang et al. 2010; Yao et al. 2010;
Yuan & Romanowicz 2010; Yuan et al. 2011; Xie et al. 2013;
Burgos et al. 2014; Hacker et al. 2014), at least for the case of
a slow symmetry axis. The purpose of this paper is to describe a
method to interpret observations of radial and azimuthal anisotropy
simultaneously under the assumption of a hexagonally symmetric
elastic tensor with a tilted symmetry axis (Fig. 1a), as was first
suggested by Montagner & Nataf (1988) and applied at a global
scale across the Indian Ocean by Montagner & Jobert (1988). Such
an assumption has been applied before to body wave observations
(e.g. Okaya & McEvilly 2003) as well as studies of the effect of
mode-coupling on surface waves (e.g. Yu & Park 1993).

The assumption of hexagonal symmetry is a starting point de-
signed to reduce the number of free parameters that govern the
anisotropic medium, which simplifies and accelerates the inverse
problem. To describe the medium under this assumption at a given
depth requires seven unknowns, the five moduli that govern the in-
herent characteristics of a hexagonally symmetric medium and two
angles through which the elastic tensor is rotated: the dip and strike
angles. There are, however, reasons to believe that crustal anisotropy,
which is the primary focus of this paper, may display dominantly

hexagonal symmetry. For example, strongly laminated or foliated
rocks are nearly hexagonal in symmetry (Okaya & McEvilly 2003)
and lamination in the lower crust has been observed worldwide
(Meissner et al. 2006). Also, the primary anisotropic mineral in the
middle crust is probably mica (Weiss et al. 1999; Meissner et al.
2006), which displays approximate hexagonal symmetry. There-
fore, if anisotropy derives from the CPO of anisotropic minerals,
then mid-crustal anisotropy may be well approximated by an in-
herently hexagonally symmetric elastic tensor. However, as dis-
cussed later in the paper, amphiboles are also strongly anisotropic
and may be the dominant anisotropic mineral in the lower crust,
but are more orthorhombic than hexagonal in symmetry (Meissner
et al. 2006; Tatham et al. 2008). If amphiboles are a significant
source of anisotropy, then what we estimate by assuming hexag-
onal symmetry may not have direct geologic relevance, but may
yet contain information about the lower-order symmetry of the real
elastic tensor, and inferences that are derived should be cognizant of
this.

Two further comments will conclude this discussion. First,
Rayleigh and Love waves are strongly sensitive only to four (N, L,
θ , φ, as described later) of the seven unknowns that define a rotated
hexagonally symmetric elastic medium. Therefore, a straightfor-
ward inversion for the elastic tensor is impractical using surface
wave data alone. For this reason we cast the inverse problem in
terms of a Bayesian Monte Carlo approach in which we estimate
a range of elastic tensors that agree with the data. This allows
us to estimate uncertainties in all variables as well as the covari-
ances or correlations between them as represented by the ‘poste-
rior distribution’ at each location and depth. As discussed later,
we find that certain elements of the elastic tensor are well deter-
mined, others are not, and the posterior distribution is bimodal
in three important variables. Secondly, the assumption of hexago-
nal symmetry is actually not required for the method we present,
but simplifies it significantly. We could have, for example, cast
the inverse problem in terms of an untilted orthorhombic elas-
tic tensor, but at the expense of introducing two additional free
parameters.

Applications here are made using Rayleigh and Love wave dis-
persion maps from the western United States obtained using the
Transportable Array (TA) stations from EarthScope USArray. We
obtain isotropic Rayleigh wave phase speed maps from 8 to 40 s
period from ambient noise data and from 24 to 90 s period from
earthquake data. Isotropic Love wave maps are taken from ambient
noise data from 10 to 25 s period and from earthquake data from
24 to 50 s period. These observations produce azimuthally isotropic
Rayleigh and Love wave phase speed curves at each point on a
0.2◦ × 0.2◦ grid across the study region. The 2ψ Rayleigh wave
azimuthal anisotropy data are obtained from 10 to 40 s from ambi-
ent noise data and 24–60 s period from earthquake data, where ψ

is the azimuth of propagation of the wave. No azimuthal anisotropy
data from Love waves are used in this study. Love wave azimuthal
variations are expected (and observed) to display dominantly 4ψ

azimuthal variation, which is a much more difficult observation to
make than the 2ψ azimuthal variation of Rayleigh waves.

In Section 2, we briefly describe the data we use and the ob-
servations from surface waves that serve as the input data for the
inversion. In Section 3, we explain the theoretical background of
the inversion, concentrating on the connections between surface
wave observations and elastic constants. In Sections 4 and 5, the
model parametrization and inversion are discussed. Finally, in Sec-
tion 6, we present the inversion results and discuss possible physical
implications of the estimated models.
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2 S U R FA C E WAV E DATA

This paper is motivated by the need for a new inversion method,
which is described in a later section that self-consistently interprets
observations of radial and azimuthal anisotropy of surface waves.
The method is applied here to surface wave data obtained in a region
that encompasses the western United States and part of the central
United States, where USArray stations operated between the years
2005 and 2010. We use continuous ambient noise data to measure
Rayleigh and Love wave phase speeds between station-pairs and
data from earthquakes with Mw > 5.0 to generate dispersion curves
between event-station pairs. We follow the tomographic methods
described by Lin et al. (2009) and Lin & Ritzwoller (2011) known
as eikonal and Helmholtz tomography to estimate phase velocity
maps with uncertainties. Our region of study extends somewhat
further eastward than these earlier studies, however, and we obtain
Love wave dispersion maps in addition to Rayleigh wave maps.

At short periods, we use only ambient noise data and at very
long periods only earthquake data, but there is an intermediate
period range where ambient noise data and earthquake data are
combined. The short period interval extends from 8 to 22 s period
where we apply eikonal tomography to produce the Rayleigh wave
dispersion maps (Lin et al. 2009) from ambient noise. The period
band of overlap of ambient noise and earthquake measurements
for Rayleigh waves is broad, ranging from 24 to 40 s period. Love
wave measurements, however, only extend up to 25 s period for
ambient noise so overlap between ambient noise and earthquake
measurements occurs only at 25 s period. At longer periods (>40 s
for Rayleigh waves, > 25 s for Love waves) earthquake data alone
are used, with Rayleigh wave measurements extending to 90 s period
and Love wave measurements to 50 s period. The signal-to-noise
ratio is smaller at long periods for Love waves than for Rayleigh
waves, which reduces the longest period that Love wave phase
speed maps can be constructed. Following the recommendation of
Lin & Ritzwoller (2011), we apply eikonal tomography up to 50 s
period but apply Helmholtz tomography, which accounts for finite
frequency effects, at periods greater than 50 s. Also following Lin
et al. (2009), the uncertainties in the isotropic maps are scaled
up to encompass the differences between the ambient noise and
earthquake-derived maps.

An example of the output of eikonal (ambient noise data) and
Helmholtz (earthquakes data) tomography for a point in the Basin
and Range province (Point A, Fig. 3a) is shown in Fig. 2 in which

the local azimuthal variation of Rayleigh wave phase velocity is
presented at three periods, where results at 10 s are from ambient
noise, at 50 s from earthquake data, and at 32 s period from a com-
bination of ambient noise and earthquake data. At each period for
each location a truncated Fourier series is fit to the data to estimate
the azimuthal dependence of phase velocity for both Rayleigh and
Love waves:

c(T, ψ) = c0(T )[1 + a2 cos(2(ψ − ϕF A)) + a4 cos(4(ψ − α))],

(3)

where T is period, ψ is the azimuth of propagation of the wave
measured clockwise from north, c0 is isotropic phase speed, ϕFA

is what we call the 2ψ fast axis direction, α is an analogous phase
angle for 4ψ variations in phase speed, and a2 and a4 are the relative
amplitudes of the 2ψ and 4ψ anisotropy. Uncertainties in each of
these quantities are determined at each location and period.

Examples of isotropic phase speed maps for Rayleigh and Love
waves are presented in Fig. 3, where the short period maps (10 s
period) are determined from ambient noise, the long period maps
(Rayleigh: 70 s, Love: 45 s) are from earthquake data, and the inter-
mediate period maps are a combination of both data sets. Although
azimuthally anisotropic phase speed maps are estimated for both
Rayleigh and Love waves, we use only the 2ψ maps for Rayleigh
waves here. Rayleigh wave azimuthal anisotropy is observed to
be dominated by 180◦ periodicity (or 2ψ anisotropy) as expected
for weakly anisotropic media (Simth & Dahlen 1973). For Love
waves, we use only the azimuthally isotropic phase speed maps
because Love wave anisotropy is dominated by 90◦ periodicity (or
4ψ anisotropy), which is a more difficult observable that we choose
not to invoke (comparing with Rayleigh wave, the observation of
azimuthally dependent Love wave requires better azimuthal data
coverage, while the horizontal component of the data is typically
noisier than the vertical component). Examples of observations of
Rayleigh wave azimuthal anisotropy are presented in Fig. 4 at three
periods, where the length of each bar is the peak-to-peak amplitude
of 2ψ anisotropy, 2a2, and the orientation of each bar is the fast axis
direction ϕFA.

Examples of characteristic maps (Rayleigh: 32 s period, Love:
25 s period) of the estimated uncertainties in these quantities are
presented in Fig. 5. The spatially averaged uncertainties for the
isotropic Rayleigh and Love wave speeds (Figs 5a and b) are 8 and
18 m s–1, respectively, illustrating that Love wave uncertainties are
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Figure 2. Examples of 10, 32 and 50 s period Rayleigh wave phase velocity observations as a function of azimuth for location A identified in Fig. 3(a), observed
using ambient noise data, the combination of ambient noise and earthquake data and earthquake data, respectively. Blue dashed lines give the best-fitting 2ψ

curves, where ψ is the azimuth of wave propagation defined positive clockwise from north.
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Figure 3. Examples of Rayleigh and Love wave isotropic phase speed maps. (a)–(c) Rayleigh wave phase speed maps at 10, 32 and 70 s period derived from
ambient noise data, the combination of ambient noise and earthquake data and earthquake data, respectively. (d)–(f) Love wave phase speed maps at 10, 25
and 45 s period, similarly defined from ambient noise data, the combination of ambient noise and earthquake data and earthquake data, respectively.
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Figure 4. The observed Rayleigh wave 2ψ azimuthal anisotropy maps, where ψ is the azimuth of wave propagation defined positive clockwise from north.
(a)–(c) Rayleigh wave azimuthal anisotropy maps at 10, 32 and 50 s period derived from ambient noise data, the combination of ambient noise and earthquake
data and earthquake data, respectively. The bars are Rayleigh wave fast directions with lengths representing the peak-to-peak amplitude (in per cent).
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Figure 5. Uncertainty maps for (a) the isotropic Rayleigh wave phase speeds at 32 s period, (b) the isotropic Love wave phase speed at 25 s period, (c) the fast
azimuth direction of Rayleigh wave azimuthal anisotropy at 32 s period and (d) the amplitude of Rayleigh wave azimuthal anisotropy at 32 s period.

typically more than twice as large as Rayleigh wave uncertainties.
Uncertainties in the fast axis directions depend on the amplitude
of azimuthal anisotropy and the regions of large uncertainty in
Fig. 5(c) occur where the amplitude of azimuthal anisotropy is small.
The average peak-to-peak amplitude of 2ψ anisotropy for the 32 s
Rayleigh wave is approximately 0.8 per cent, and for this amplitude
the uncertainty of the fast axis direction averages about 8◦. The
uncertainty grows sharply as the amplitude of anisotropy reduces
below about 0.5 per cent and diminishes slowly as the amplitude
grows above 1 per cent. The average uncertainty in the amplitude
of 2ψ anisotropy for the 32 s Rayleigh wave is about 0.24 per cent,
which is less than 1/3 of the average amplitude of anisotropy. Thus,

the amplitude of the 2ψ Rayleigh wave anisotropy is determined
typically to better than 3σ .

From the maps of isotropic phase speed for Rayleigh and Love
waves and the amplitude and fast axis direction of 2ψ anisotropy
for Rayleigh waves (and their uncertainties), we generate at loca-
tion on a 0.2◦ × 0.2◦ grid in the study area isotropic phase speed
curves (dispersion curves) for both Rayleigh and Love waves and
2ψ anisotropic period-dependent curves for Rayleigh waves. This
raw material forms the basis for the later inversion for a 3-D model.
Fig. 6 presents examples for two locations (A: Basin and Range,
B: Colorado Plateau identified in Fig. 3a) that illustrate how these
curves can vary. For Point A, the fast azimuth of the Rayleigh
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Figure 6. (a–c) The local dispersion curves for Point A in the Basin and Range province (identified in Fig. 3a). The local (a) phase speed, (b) fast azimuth
direction and (c) azimuthal anisotropy amplitude curves are presented as one-standard deviation error bars. Red error bars are the Love wave data and blue
error bars are the Rayleigh wave data. The solid and dashed lines are the dispersion curves computed from the average of the posterior distribution for Point A:
solid lines are from Group 1 models while dashed lines are from Group 2 models (defined in Section 4). (d–f) Similar to (a–c) but for Point B in the Colorado
Plateau (Fig. 3a).

wave does not change strongly with period, but the amplitude of
azimuthal anisotropy increases with period. In contrast, for Point B,
the fast azimuth changes with period, but the amplitude of azimuthal
anisotropy tends to decrease with period.

Similar data sets have been used previously to study the
anisotropic structure of the western United States. For example,
Moschetti et al. (2010a,b) used isotropic Rayleigh and Love wave
phase speed dispersion curves such as those presented in Figs 6(a)
and (d) to image apparent crustal radial anisotropy. Lin et al. (2011)
used azimuthally anisotropic dispersion curves similar to those in
Figs 6(b), (c), (e) and (f) to image the apparent crustal and up-
permost mantle azimuthal anisotropy. These two data sets were
interpreted separately, but here we attempt to explain both radial
and azimuthal anisotropy simultaneously using tilted hexagonally
symmetric media (Fig. 1).

3 T H E E L A S T I C T E N S O R A N D
S U R FA C E WAV E A N I S O T RO P Y

In a linearly elastic medium, stress and strain are related by a lin-
ear constitutive equation, σi j = Ci jklεkl , where Ci jkl is the elastic
tensor that describes the behaviour of the medium under strain and,
therefore, determines the speed of seismic waves. Without loss of
generality, the elastic tensor can be compacted into the 6 × 6 elas-
tic modulus matrix, Cαβ , following the Voigt recipe (e.g. Thomsen
1986). Although a general elastic tensor is described by 21 elastic
moduli, hexagonal symmetry is often used to characterize Earth
materials due to its simplicity (e.g. Dziewoński & Anderson 1981;
Montagner & Nataf 1988), and can approximate many media within
the Earth (e.g. laminated structures, LPO of mica or micaceous
rocks, alignment of olivine crystals along the a axis with randomly
oriented b and c axes). The hexagonally symmetric elastic modulus
matrices with vertical (V Cαβ ) and horizontal (H Cαβ ) symmetry axes

are presented in Section 1. A general reorientation of the symme-
try axis, which we call a tilt, is achieved by rotating V Cαβ through
the dip and strike angles defined in Fig. 1(a), as described in the
Appendix. The elastic constants for a tilted hexagonally symmetric
medium can be characterized by seven independent parameters, five
unique elastic constants (A, C, N , L , F) that describe the un-tilted
hexagonally symmetric (transversely isotropic) elastic tensor, and
two for the orientation of the symmetry axis (Montagner & Nataf
1988).

For a model of the elastic tensor as a function of depth at a given
location, the forward problem in which period and azimuth depen-
dent Rayleigh and Love wave phase speed curves are computed is
described in the Appendix. For weakly anisotropic media, surface
wave velocities are only sensitive to 13 elements of the elastic ten-
sor and the remaining 8 elements are in the null space of surface
wave velocities (Montagner & Nataf 1986). There is an additional
symmetry in surface wave observations: phase speeds with dip an-
gles of θ and π − θ (with constant φ) are indistinguishable, as are
observations at strike angles of φ and π + φ (with constant θ ). This
means that surface wave observations cannot distinguish between
the left-dipping foliation plane in Fig. 1(a) from a right-dipping
foliation plane that has been rotated about the z-axis by 180◦.

Some terminology is needed to help distinguish between
the properties of the anisotropic medium from observations of
anisotropy with surface waves. By ‘inherent anisotropy’ we mean
the anisotropy of the untilted hexagonally symmetric elastic ten-
sor given by the moduli A, C, N , L , F . We often summarize the
inherent anisotropy of a hexagonally symmetric medium using the
Thomsen parameters (Thomsen 1986; Helbig & Thomsen 2005;
Thomsen & Anderson 2015):

ε ≡ A − C

2C
≈ VP H − VPV

VP
(4)
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γ ≡ N − L

2L
≈ VSH − VSV

VS
(5)

δ ≡ (F + L)2 − (C − L)2

2C(C − L)
≈ F + 2L − C

C
, (6)

where ε is referred to as inherent ‘P-wave anisotropy’ and γ is called
inherent ‘S-wave anisotropy’. A so-called ‘elliptical’ anisotropic
medium is one in which δ = ε, in which case P wave and
SH wave fronts are elliptical and SV wave fronts are spherical
(Thomsen 1986). As shown in the Appendix, upon tilting and reori-
enting in strike angle, a hexagonally symmetric elastic tensor can be
decomposed into the sum of an azimuthally invariant (or effective
transversely isotropic) tensor and an azimuthally anisotropic tensor.
We refer to the moduli that compose the azimuthally invariant ten-
sor ( Â, Ĉ, N̂ , L̂, F̂) as the ‘apparent’ transversely isotropic mod-
uli because these moduli govern the azimuthally averaged phase
speeds of Rayleigh and Love waves. The Thomsen parameters
can be recomputed using these moduli and they define appar-
ent quasi-P- and quasi-S-wave radial anisotropy: ε̂ ≡ ( Â − Ĉ)/2Ĉ ,
γ̂ ≡ (N̂ − L̂)/2L̂ . As discussed later, previous observational stud-
ies of radial anisotropy have estimated apparent radial anisotropy
rather than the inherent anisotropy of the medium if Earth media
are, in fact, not oriented with a vertical symmetry axis.

A tilted hexagonally symmetric elastic tensor will generate both
radial and azimuthal anisotropy in surface waves. Fig. 1(b) demon-
strates how apparent SV-wave azimuthal and apparent S-wave radial
anisotropy (Rayleigh-Love discrepancy) vary as a function of dip
angle. Note that only the dip angle is changing so that the inherent
anisotropy is constant as apparent anisotropy changes. These curves
are computed from a simple elastic tensor with a slow symmetry
axis. For this model, the amplitude of azimuthal anisotropy increases
with increasing dip angle (θ ), and the apparent radial anisotropy de-
creases with increasing dip angle. When the dip angle is 0, there is
strong positive apparent S-wave radial anisotropy but no azimuthal
anisotropy. At some dip angle, the apparent radial anisotropy van-
ishes but the azimuthal anisotropy is non-zero. As the dip angle
increases further, the apparent radial anisotropy becomes negative
(meaning L̂ > N̂ ) and azimuthal anisotropy attains its maximum
value. This example is intended to qualitatively illustrate the trend
with dip angle; the details (e.g. the absolute amplitude, the crossing
point in dip angle, and the number of crossing points) depend on
the elastic tensor itself (especially F or η).

The computation of Rayleigh and Love wave phase velocities
from a given tilted hexagonally symmetric medium is discussed in
the Appendix.

4 M O D E L PA R A M E T R I Z AT I O N A N D
C O N S T R A I N T S I N T H E I N V E R S I O N

Our model parametrization, as well as the allowed variations in the
model, are similar to those described by Shen et al. (2013a,b) in
the inversion of isotropic Rayleigh wave phase speeds and receiver
functions for an isotropic apparent VSV model of the crust and
uppermost mantle in the western and central United States. In fact,
our model covers a subset of the region of Shen’s model, which is
the starting model for the inversion performed in this paper. Shen’s
model is isotropic with V 0

S = VSH = VSV , η0 = 1 and V 0
P = VPV =

VP H = 2.0VS in the sediments, V 0
P = VPV = VP H = 1.75VS in the

crystalline crust and mantle, density is computed through depth-
dependent empirical relationships relative to VS (Christensen &
Mooney 1995; Brocher 2005), and the Q model is taken from the

AK135 model (Kennett et al. 1995). Here, we fix the density and Q
models to those values found by Shen.

In the crust and mantle we assume that the elastic tensor possesses
hexagonal symmetry with orientation given by the dip and strike
angles (Fig. 1a). The depth dependence of the elastic moduli A, C,
N, L and F (or VPV ,VP H , VSH , VSV and η) is represented by four
B-splines in the crystalline crust from the base of the sediments to
Moho, and five B-splines in the mantle from Moho to 200 km depth.
Beneath 200 km the model is identical to AK135. The B-spline basis
set imposes a vertical smoothing constraint on the model in both
the crust and the mantle. If sedimentary thickness in Shen’s model
is less than 5 km, then the sediments are isotropic and are fixed
to the 3-D starting model (Shen et al. 2013b) in which the depth
dependence of VS is represented by a linear function. Otherwise, as
described below, S-wave anisotropy is introduced in the sediments
by varying VSH .

In addition to the parametrization, there are model constraints
that govern the allowed variations around the starting model (V 0

S ,
V 0

P , η0) in the inversion (described in the next section). Because
we perform a Monte Carlo inversion, which involves only for-
ward modelling, the imposition of the constraints is straightfor-
ward as they affect only the choice of models that we compare
with data; that is, which models are used to compute the likelihood
function. In the following, when referring to the seismic velocities
(VPV = √

C/ρ, VP H = √
A/ρ, VSV = √

L/ρ, VSH = √
N/ρ) and

η = F/(A–2L) we mean the inherent elements of a hexagonally
symmetric elastic tensor; that is, the inherent characteristics of the
elastic tensor prior to tilting.

The constraints that are imposed during inversion are the fol-
lowing: (1) Constancy of tilt angles in the crust and mantle: At
each location, the dip and strike angles (tilt angles θ , φ) that de-
fine the orientation of the symmetry axis of anisotropy are constant
through the crystalline crust and constant through the mantle, al-
though the crustal and mantle angles are allowed to differ from
each other. (2) Range of model variables: The allowed variations
of the elastic parameters in the crystalline crust and mantle relative
to the starting model are as follows:VSV ± 0.05V 0

S , VSH ± 0.15V 0
S ,

VPV ± 0.15V 0
P and VP H ± 0.15V 0

P . In addition, in the crust ηcrust∈
[0.6,1.1] and in the mantle it lies in the smaller range ηmantle∈
[0.85,1.1]. Also, the tilt angles range through the following inter-
vals: θ ∈ [0◦, 90◦], φ ∈ [0◦, 180◦]. The reasons for the choice of the
ranges of model variables are explained in subsequent paragraphs.
(3) Sedimentary model: If sedimentary thickness is less than 5 km
in Shen’s model, the sedimentary part of the model remains un-
changed (i.e. it is isotropic and identical to Shen’s model). If the
thickness is greater than 5 km, then only the VSH part of the model is
perturbed to introduce S-wave radial anisotropy with γ ∈ [0, 0.2];
that is, this is a maximum S-wave anisotropy of 20 per cent. No tilt
is introduced to the elastic tensor in the sediments. (4) VP/VS ra-
tio: VP/VS ≈ (VPV + VP H )/(VSV + VSH ) ∈ [1.65,1.85]. (5) Mono-
tonicity constraint: VSV , VSH , VPV and VP H each increase monoton-
ically with depth in the crystalline crust. A monotonicity constraint
is not imposed on η or on any of the variables in the mantle. (6) Pos-
itive inherent anisotropy:VSH > VSV , VP H > VPV . This indicates
that our inverted hexagonally symmetric tensor has a slow symme-
try axis (N > L, A > C, VP and VS are slower in the direction of
symmetry axis and faster in the foliation plane). (7) Fixed points of
the model: Density, sedimentary thickness and crustal thickness are
not changed relative to the starting model.

The constraints can be considered to fall into two groups, one
group is based on prior knowledge and the other is introduced to
simplify the model. The VP/VS ratio, positive anisotropy, and the
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fixed points of the model constraints are based on prior knowledge.
For example, the inherent anisotropies are set to be positive (slow
symmetry axis) because most crustal rock samples display slow
velocities perpendicular to the foliation plane and fast velocities
within the foliation plane, and anisotropy caused by layering re-
quires positive inherent anisotropy (Tatham et al. 2008; Brownlee
et al. 2011; Erdman et al. 2013; Thomsen & Anderson 2015). In
addition, we have tested negative inherent anisotropy (fast symme-
try axis), which is probably consistent with crustal rocks abundant
in quartz and amphibole, but this kind of medium cannot explain
our observations across the region of study. We set the sedimentary
thickness and crystalline crustal thickness constant based on the
receiver function observations by Shen et al. (2013b). The VP/VS

ratio is constrained to be within 1.65–1.85 because most observa-
tions of VP/VS fall in this range (e.g. Christensen 1996; Lowry &
Pérez-Gussinyé 2011; Buehler & Shearer 2014).

In contrast, constraints such as the vertically constant tilt an-
gle in the crust and mantle and the monotonic increase of seismic
wave speeds in the crust are used to simplify the resulting mod-
els. Everything else being equal, we prefer simpler models because
they are more testable and falsifiable. For example, we could have
parametrized the tilt angles as depth-varying and still fit our data.
(In fact, there are always an infinite number of possible and more
complex alternatives that include more ad hoc assumptions.) With-
out prior knowledge, more complex models can hardly be proven
wrong because they can always fit the data. Besides, little can be
learned from such complexities because they are not derived from
the data. On the other hand, a simple model cannot always fit the data
(e.g. a constant velocity profile cannot fit the dispersion curves), so
it is easier to prove wrong (if it is). When a model is too simple to fit
the data, we then add complexity to the model or loosen constraints.
Because this kind of added complexity is motivated by the data, it is
more likely to provide information about the Earth. Therefore, we
view the vertically constant tilt angle and monotonicity constraints
as hypotheses that we test empirically. If we are unable to fit aspects
of the data acceptably, we will return and loosen these constraints
to help fit the data. Otherwise, these constraints are kept to generate
a simple model.

In summary, we seek an anisotropic model that is relatively close
to the isotropic model of Shen, possesses hexagonally symmetric
anisotropy with a slow symmetry axis of locally constant but ge-
ographically variable orientation in the crystalline crust and upper
mantle, has only positive P-wave and S-wave anisotropy, a VP/VS

ratio that varies around that of a Poisson solid and possesses seismic
velocities that increase with depth in the crust. Given the allowed
variations in the elastic moduli, the maximum S-wave anisotropy
(γ ) considered in both the crust and mantle is 20 per cent. Because
Shen’s model was constructed with Rayleigh wave data alone (and
receiver functions) it only weakly constrains VP and VSH , but has
rather strong constraints on the sedimentary and crustal thicknesses
and VSV in the crust. For this reason, we allow in our inversion wider
variation in VPV and VSH than in VSV . η is allowed to vary through a
wider range in the crust than in the mantle based on measurements of
elastic tensors for crustal rocks (Tatham et al. 2008; Brownlee et al.
2011; Erdman et al. 2013) and olivine (Babuška 1991), which is
believed to be the major contributor to mantle anisotropy, and also
to be consistent with mantle elastic moduli in other studies (e.g.
Montagner & Anderson 1989). We do not allow sedimentary thick-
ness or crustal thickness to vary at all because receiver functions
are not used in our inversion. However, we find that in areas where
the sediments are thicker than 5 km, radial anisotropy is needed
in order to fit the data at short periods. In this case, we introduce

only S-wave anisotropy in the sediments (no P-wave anisotropy, no
deviation of η from unity), which is probably physically unrealistic,
so we do not interpret the resulting model of anisotropy in the sed-
iments. However, regions where sediments are thicker than 5 km in
Shen’s model are relatively rare in the western United States, being
confined to a few regions, most notably southwestern Wyoming.

5 B AY E S I A N M O N T E C A R L O
I N V E R S I O N

The data that are inverted are similar to those shown in Fig. 6 for two
locations in the western United States. We apply a Bayesian Monte
Carlo method to invert the data at every location on a 1◦ × 1◦

grid. The implementation of the inversion is very similar to the
method described in detail by Shen et al. (2013a), but we do not
apply receiver functions. We construct observations such as those
in Fig. 6 on a 0.2◦ × 0.2◦ grid. The isotropic model constructed by
Shen et al. (2013b), which is our starting model, is constructed on
the irregular grid given by the station locations where the receiver
functions are defined. In contrast, we construct our model on a
regular 1◦ × 1◦ grid across the central and western United States.
At each grid point, the starting model in our inversion is Shen’s
model at the nearest station, which in some cases may be as much
as 40 km away.

At each location the prior probability distribution is defined rel-
ative to Shen’s model based on the constraints described in the pre-
vious section. The prior distribution guides the sampling of model
space. A model is determined to be acceptable or not based on its
likelihood function L(m), which is related to the chi-squared misfit
S(m) (Shen et al. 2013a; Xie et al. 2013). L(m) and S(m) are defined
as follows:

L(m) = exp

[
−1

2
S(m)

]
, (7)

where

S(m) =
∑

i

[
D(m)predicted

i − Dobserved
i

]2

σ 2
i

. (8)

The chi-squared misfit S(m) measures the weighted difference be-
tween the observed and predicted dispersion curves, where the for-
ward model is computed as described in the Appendix. The chi-
squared misfit is composed of four terms, corresponding to the four
curves at each location shown in Fig. 6. The first two are for isotropic
Rayleigh and Love waves. The other two are for the amplitude and
fast-axis direction of Rayleigh wave azimuthal anisotropy. The only
weights in the misfit function are the standard deviations of the
measurements.

The model sampling process and acceptance criteria follow the
procedure described by Xie et al. (2013) where the partial deriva-
tives are updated when each additional 200 models are accepted.
Because the model sampling will not complete until at least 5000
models are initially accepted, the partial derivatives are updated at
least 25 times during the sampling. After the sampling is complete,
the entire set of initially accepted models is put through the selec-
tion process again to remove models with larger misfit (Xie et al.
2013). On average, models are accepted up to about twice the rms
misfit of the best-fitting model. This reselected model set composes
the (truncated) posterior probability distribution, which is the prin-
cipal output of the inversion. The posterior distribution satisfies the
constraints and observations within tolerances that depend on data
uncertainties.
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Figure 7. Map view of the misfit for the best-fitting models (from Group 1
models) across the study region. The misfit is defined as

√
S/N where S is

the chi-squared misfit defined in eq. (8), and N is the number of observations.
Average value across the map is inset.

Fig. 7 presents map views of the misfit for the best-fitting models
(from Group 1, defined below) across the study region. Here the mis-
fit is defined as

√
S/N where S is the chi-squared misfit defined in eq.

(8), and N is the number of observations. In general, our data can be
well fit with an average misfit around 1.2. The misfit is larger along
the coast and near the Green River Basin and other basins in south-
western Wyoming, where thick sediments exist. This indicates that
our parametrization is not optimal in regions with thick sediments.
In the future, we plan to improve the inversion in the sediments
by incorporating the Rayleigh wave H/V ratio from ambient noise
(Lin et al. 2012, 2014) that provide additional sensitivity to shallow
structures. Misfit from Group 2 (defined below) models is similar.

Examples of prior and posterior probability distributions for the
inherent moduli at 20 km depth are shown in Figs 8 and 9 for
the same two locations for which we present the data in Fig. 6.
The prior distributions are strongly shaped by the model constraints
and are displayed as white histograms in each panel. For example,
VSV displays a narrower prior distribution because only 5 per cent
perturbations relative to the starting model are sampled compared
to 15 per cent perturbations in VSH , VPV and VP H . The non-uniform
shape of many of the distributions arises from constraints that tie
model variables between different depths or of different types, such
as the monotonicity constraint. The prior distributions for the dip
and strike angles are uniform, however, because they are constant
across the crust and, therefore, are not explicitly tied to choices
of variables at different depths or of different types. The posterior

distribution is wider for variables that are poorly constrained by the
data (e.g.VP H , η) than for those that are well constrained (e.g. θ , φ,
VSV , VSH ). Note that the crustal dip and strike angles, θ and φ, are
well constrained by the data in that their posterior distributions are
relatively narrow. However, the posterior distribution of the crustal
strike angle is bimodal, defining two model groups in which strike
angles differ by 90◦, on average. These two groups of models are
presented as blue and red histograms in Figs 8 and 9. The physical
cause of this bifurcation is discussed in Section 6.2.

We define ‘Group 1’ (red histograms) to be the set of models
with a crustal strike angle that approximately parallels the Rayleigh
wave fast direction averaged between 10 and 22 s period. ‘Group
2’ is the set of models with a strike angle that is approximately
orthogonal to the Rayleigh wave fast axis direction in this period
range. There are subtle differences between the crustal moduli A, C,
N and L between the two groups, but much stronger differences in
η, dip angle θ and the non-ellipticality parameter (ε – δ). Typically,
Group 1 has larger values of η and more nearly elliptical anisotropy
(ε ≈ δ) in the crust, whereas Group 2 has smaller η and a more non-
elliptical anisotropy. Also, Group 1 models tend to have a slightly
larger crustal dip angle, on average. We believe that the bifurcation
in model space is controlled fundamentally by η, which is poorly
constrained in the prior distribution or by the data. The effect of the
bifurcation on our conclusions also will be discussed further in the
next section of the paper.

Ultimately, we summarize each posterior distribution by its mean
and standard deviation, which define the final model and uncertainty
at each depth, and for each model variable. Table 1 presents these
statistics for the posterior distributions shown in Figs 8 and 9. Fig. 10
presents vertical profiles of inherent VSV and VSH (related to the
moduli L and N), showing the mean and standard deviation for
Group 1 and Group 2 models separately at locations A and B in
the Basin and Range and Colorado Plateau (Fig. 3a), respectively.
Differences between the moduli of the two groups are discussed
further below. These profiles are derived to fit the data presented in
Fig. 6, where we also show how well the data are fit by the mean
model from each group (Group 1: solid lines, Group 2: dashed
lines). The two groups fit the isotropic phase speed data nearly
identically but do display small differences in the details of the fit to
Rayleigh wave azimuthal anisotropy, although both fit within data
uncertainties. The differences in fit are largest for the amplitude of
azimuthal anisotropy above 30 s period where uncertainties in this
variable grow. Note that both groups fit the fast azimuth direction
of Rayleigh wave azimuthal anisotropy equally well, even though
the strikes angles of the crustal anisotropy differ by 90◦.

In addition, posterior covariances between model variables at a
particular depth or different depths are also determined from the
posterior distributions. In practice, we compute posterior correla-
tion matrices in which the elements of the covariance matrix are
normalized by the appropriate standard deviation, which normal-
izes the diagonal elements of the matrix to unity. We use the terms
correlation and covariance interchangeably, however.

As an example, the posterior covariance matrix for five variables
(γ, ε, δ, θ, φ) at 20 km depth is presented in Fig. 11(a) for a point in
the Basin and Range province (point A in Fig. 3a). Most correlations
are relatively weak, γ is negatively correlated with ε and δ, ε and δ

are strongly positively correlated with each other in order to keep
a relatively constant ε − δ. Importantly, the dip angle θ has no
correlation with other variables except δ. A correlation between
these two variables is probably not surprising because δ affects the
speed of waves propagating at an angle through the medium (oblique
to the symmetry axis) and θ orients the medium.
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Figure 8. Prior and posterior distributions for several model parameters at 20 km depth for Point A (in the Basin and Range, Fig. 3a). White histograms shown
with black lines indicate the prior distributions; both red and blue histograms are the posterior distributions but result from model groups 1 and 2, respectively.

Similarly, Figs 11(b)–(f) shows the posterior covariance matrix
for each model variable with itself at different depths. This is again
for point A in the Basin and Range province, where crustal thickness
is about 31 km; depths greater than 31 km are in the mantle and
shallower depths are in the crust. Most of the correlations in this case
are positive. The correlation length (a measure of the rate of decay
of the covariance with distance) in the crust is smaller than in the
mantle because the vertical resolution is better. The B splines in the

crust only span from the bottom of the sediments to the Moho (less
than 30 km here), whereas in the mantle they span about 170 km.
The correlation length for γ is smaller than for ε and δ, indicating
a better vertical resolution of γ .

Covariance matrices such as the examples presented here illumi-
nate the implications of the parametrization and constraints imposed
in the inversion, but we only interpret this information qualitatively;
it is not used formally.
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Figure 9. Similar to Fig. 8 but for Point B in the Colorado Plateau (Fig. 3a).

Table 1. The mean and standard deviations for the posterior distributions in Figs 8 and 9.
√

L/ρ = VSV
√

N/ρ = VSH
√

C/ρ = VPV
√

A/ρ = VP H Dip angle θ Strike angle φ F/(A–2L) = η Non-ellipticality
(km s–1) (km s–1) (km s–1) (km s–1) (◦) (◦) ε − δ

Point A ρ = 2.79 g cm−3 Group 1 3.57 (0.04) 3.74 (0.06) 6.14 (0.15) 6.52 (0.15) 21 (6) 37 (12) 0.87 (0.07) − 0.01 (0.04)
Group 2 3.54 (0.03) 3.72 (0.07) 6.15 (0.13) 6.47 (0.18) 22 (7) 126 (13) 0.74 (0.05) 0.06 (0.02)

Point B ρ = 2.73 g cm−3 Group 1 3.48 (0.04) 3.63 (0.04) 5.94 (0.17) 6.28 (0.18) 34 (7) 19 (6) 0.82 (0.06) 0.02 (0.03)
Group 2 3.45 (0.04) 3.61 (0.04) 6.06 (0.12) 6.24 (0.19) 27 (6) 110 (5) 0.72 (0.03) 0.08 (0.01)
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Figure 10. (a) Group 1 posterior distribution at Point A showing the inherent VSV (blue) and VSH (red), where the one-standard deviation extent of the posterior
distribution is shown with the grey corridors and the average of each distribution is plotted with bold solid lines. (b) Same as (a), but for Group 2, Point A.
(c) Same as (a), but for Group 1, Point B. (d) Same as (a), but for Group 2, Point B. Points A and B are identified in Fig. 3(a).

6 R E S U LT S

Love wave phase speed dispersion curves extend only up to 50 s
period and the Rayleigh wave anisotropic dispersion curves also
do not extend to very long periods. Thus, constraints on crustal
structure are stronger than on the mantle. We have tested variations
in mantle parametrizations and constraints, and found that changes
affect estimated crustal structure within uncertainties. In the fol-
lowing, therefore, we will concentrate detailed discussion on the
crustal part of our model, and will discuss mantle structure princi-
pally in a spatially averaged sense. Later work will specifically aim

to improve and interpret the mantle model in a spatially resolved
sense.

6.1 Crustal anisotropy across the western United States

The results presented to this point are only for two locations, in
the Basin and Range province and the Colorado Plateau (points A
and B, Fig. 3a). We have applied the Bayesian Monte Carlo inver-
sion described above to the United States west of 100◦W longitude
and produced a 3-D model of the tilted crustal elastic tensor (with
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Figure 11. Aspects of the correlation (or normalized covariance) matrix observed at Point A. (a) The correlations between several model parameters at 20 km
depth. (b) The correlations between γ at different depths. (c–f) Similar to (b), but for four other model parameters: ε, δ, θ and φ. θ is the dip angle, φ is the
strike angle and γ , ε, δ are Thomsen parameters that summarize the elastic tensor.

uncertainties) on a 1◦ × 1◦ grid across the region. The mean and
standard deviation of aspects of the posterior distribution averaged
across the crystalline crust (from the base of the sediments to Moho)
are shown in Figs 12 and 13.

As discussed above, the posterior distribution bifurcates at each
location into two disjoint groups of models based on the strike
angle, and we present results in the crust for both groups of models.
For Group 1, crustal anisotropy is nearly elliptical meaning that the
Thomsen parameters ε and δ, defined in eqs (4) and (6), are nearly
identical. Fig. 12(a) shows that ε – δ is small across the entire
western United States for Group 1 models. We refer to ε – δ as the
‘non-ellipticality’ parameter because values much larger than zero
indicate the deviation from elliptical anisotropy. Group 2 models
have more non-elliptical anisotropy as Fig. 12(d) illustrates, and ε

is generally greater than δ so that the non-ellipticality parameter is
generally positive. The non-ellipticality parameter is about an order
of magnitude larger for Group 2 than Group 1 models.

Although the elastic tensors in the two groups of models differ in
the extent to which the anisotropy is non-elliptical, the geographical

distribution and the amplitude of inherent S-wave anisotropy, given
by the Thomsen parameter γ (eqn. 5), are similar. This amplitude
averages about 3.9 per cent for Group 1 and 4.2 per cent for Group
2 (Figs 12b and e). The differences in γ between Groups 1 and 2
are within estimated uncertainties (Figs 13a and d), which average
about 2 per cent across the region. On average, γ does not vary
strongly with depth in the crust, as Fig. 14 illustrates. The error
bars represent the inherent S-wave anisotropy at crustal depths nor-
malized by local crustal thickness averaged across the study region.
γ tends to be somewhat stronger in the shallow (∼4 ± 2 per cent)
and deep (∼6 ± 3 per cent) crust than in the middle crust (∼3 ±
2 per cent), but the trend is weak and does not occur everywhere.
The amplitude of inherent S-wave anisotropy is everywhere posi-
tive (as it is constrained to be), and is fairly homogeneous laterally
across the western United States. It is, however, largest in the Basin
and Range province and smallest in the Colorado Plateau and the
western Great Plains. The positivity constraint on γ , motivated by
elastic tensors measured on crustal rocks, does not have to be re-
laxed anywhere to fit the data. γ is larger than its uncertainty across
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Figure 12. Map view of the crustal averaged non-ellipticality of anisotropy (ε−δ), the crustal averaged inherent S-wave anisotropy (γ ), the crustal dip (θ ) and
strike (φ) angles for Group 1 (a–c) and Group 2 (d–f) models. In (c) and (f), dip angles are represented by the background colour and strike angle directions
are given by the black bars. Average values across each map are inset.

nearly the entire western United States with the possible exception
of some of the peripheral regions where uncertainties grow due to
less than ideal data coverage. For this reason, we suggest that γ not
be interpreted near the Pacific coast.

Compared with earlier estimates of (apparent) S-wave radial
anisotropy across the western United States (e.g. Moschetti et al.
2010a,b), the amplitude of γ (inherent S-wave anisotropy) does not
change as strongly across the region. This discrepancy is correlated
with the difference between ‘inherent’ and ‘apparent’ anisotropy,
and is discussed below in Section 6.5.

In contrast with γ , the dip angle θ does change appreciably
across the study region and the dip and strike angles differ ap-
preciably between the two model groups. Differences between dip
angles, shown by varying the background coloration in Figs 12(c)
and (f), are somewhat subtle. The spatially averaged uncertainty
in the dip angle across the western United States is 9◦–10◦ for
both model groups. The geographical distribution of the variation
in dip angle is similar between the two groups of models, but mod-
els in Group 2 have dip angles that average about 25◦ whereas
Group 1 models average about 30◦. Recall that the dip angle in

the elastic tensor is introduced to produce azimuthal anisotropy.
Thus, elastic tensors with nearly elliptical anisotropy must be tilted
more to fit the azimuthal anisotropy data than tensors with sub-
stantially non-elliptical anisotropy. The dip angle in the crust ev-
erywhere across the western United States is less than about 70◦

and greater than about 10◦, with the majority of the angles falling
within the range of 10◦ and 45◦. The Basin and Range province has
a shallower dip whereas the Colorado Plateau has a steeper dip, on
average.

There is a more prominent difference in strike angle than dip angle
between the two groups of models. The strike angle directions for
Group 1 and Group 2 models differ by 90◦. This is a significant
enough observation to warrant its own subsection, and is discussed
further in Sections 6.2 and 6.3. Uncertainty in strike angle averages
12◦–13◦ across the study region.

There are also significant differences between the two groups
of models in η and the other Thomsen parameters, ε (inherent
P-wave anisotropy) and δ. η averages about 0.83 (±0.08) for
Group 1 models and 0.077 (±0.07) for Group 2. In addition, there
are larger values of inherent P-wave anisotropy (ε) in Group 1 (8.1 ±
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Figure 13. Local uncertainties for the model variables shown in Fig. 12. Average uncertainties across each map are inset.

4.8 per cent) than in Group 2 (6.6 ± 4.2 per cent). Group 1 mod-
els have nearly elliptical anisotropy, so δ ≈ ε. Thus, for Group 1
models, δ is on average larger (8.5 ± 6.7 per cent) than for Group 2
models (2.8 ± 5.3 per cent). For Group 2 models δ 
 ε, on average.

6.2 On the cause of the bifurcation in strike angle
of crustal anisotropy

The fact that two groups of solutions with orthogonal strike angles
both fit the crustal sensitive Rayleigh wave data may be explained
in terms of the phase speed surface produced by different elastic
tensors. The phase speed surface can be computed by solving the
Christoffel equation. For waves traveling in any direction, there
are always three mutually orthogonal wave solutions, one (quasi-)
P wave and two (quasi-) S waves. Normally, the S wave with faster
speed is called S1, and the slower one is called S2. Note that S1 and
S2 should not be associated with SV or SH waves, because S1 and
S2 are defined based on the wave speed instead of the polarization
direction. The discussion below only aims to provide a qualitative
understanding of the bifurcation. For more insight, more sophisti-

cated forward computations would be required, which is beyond the
scope of this paper.

Fig. 15 shows the phase speed surface of P, S1 and S2 waves,
together with the polarization direction of the S1 wave for two tilted
elastic tensors with hexagonal symmetry, one is elliptical with a dip
angle of 20◦ and strike angle of 210◦, the other is non-elliptical with
dip angle 20◦ and a strike angle 300◦. Each surface plots a particular
speed (Vs1, Vs2 and P) for waves propagating in different directions.
Each panel is a lower hemisphere plot so that horizontally propagat-
ing waves (surface waves) are sensitive to wave speeds at the edge
of the diagram. These two tensors represent our Group 1 and Group
2 models that have different ellipticality of anisotropy and orthog-
onal strike angles. The most prominent feature of the non-elliptical
(Group 2) tensor is that the polarization direction of the S1 wave
suddenly changes from radial to tangential at some degree oblique to
the symmetry axis. A Rayleigh wave that is propagating horizontally
in a hexagonally symmetric medium with a shallow to moderate dip
is mainly sensitive to the phase speed of the S2 wave (Vs2). In the
following paragraphs, therefore, we will concentrate discussion on
the speed Vs2. We will demonstrate that the two groups of elastic
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Figure 14. The spatially averaged inherent S-wave anisotropy (γ ) as a func-
tion of depth in the crust, where depth is normalized by local crustal thick-
ness. The middle of the error bar is the average value of γ , in per cent, and
the half width of the error bar is the spatial average of the one-standard
deviation uncertainty. The blue dashed line indicates 4 per cent anisotropy,
which is the amplitude of anisotropy averaged over the whole crystalline
crust and over the study region.

tensors produce the same azimuthal pattern in wave speed Vs2 even
though their strikes angles differ by 90◦.

In an elliptical hexagonally symmetric anisotropic medium
(Group 1), the Vs2 surface has its minimum value oblique to the
symmetry axis. In a non-elliptical hexagonal material, the pattern
of the Vs2 surface is reversed: Vs2 has its maximum value oblique
to the symmetry axis. Because horizontally propagating Rayleigh
waves only sample the outer margin of the wave speed surface, we
plot the value of Vs2 at the edge of the surface as a function of
azimuth (Fig. 16a). We find that despite the orthogonal strike direc-
tions, the two groups of models produce similar azimuthal patterns
of Vs2, with the same fast axis directions. Group 1 models have their
Vs2 fast axis direction parallel to the strike angle of the elastic tensor,
whereas Group 2 models have their fast axis directions orthogonal
to the strike. This phenomenon results in the same fast direction for
the Rayleigh waves, even when the orientation of the inherent elas-
tic tensor is different. These results highlight the fact that the fast
direction of Rayleigh wave is not necessarily parallel to the strike of
anisotropy, but depends on a property of the medium, whether the
anisotropy is elliptical or not. This phenomenon is similar to what
Song & Kawakatsu (2012) found for shear wave splitting.

In contrast with the propagation of S2 waves, however, a horizon-
tally propagating P wave is always fastest parallel to the strike of a
dipping hexagonally symmetric elastic tensor (Fig. 16b). Therefore,
a P wave’s fast direction always indicates the strike direction.

In conclusion, for both groups of models the Rayleigh wave fast
axis direction is the same even though the strike of the anisotropy
differs by 90◦. However, the P wave fast directions in the two groups
will be orthogonal to each other, consistent with a 90◦ rotation of
the strike. Therefore, observations of P wave anisotropy provide
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unambiguous information about the orientation of the strike an-
gle of anisotropy, but Rayleigh wave traveltimes do not. In addi-
tion, observations from waves with near-vertical incidence angles,
such as receiver functions (e.g. Levin & Park 1997; Savage 1998;
Bianchi et al. 2008, 2010; Liu & Niu 2012; Schulte-Pelkum & Ma-
han 2014a,b), may also provide unambiguous information about the
orientation of the strike angle of anisotropy.

6.3 The strike angle of crustal anisotropy and the Rayleigh
wave fast axis direction

As discussed in Section 5 and earlier in this section, the posterior
distribution divides into two disjoint groups of crustal models ac-
cording to the estimated strike angle (φ) of anisotropy, which is
defined in Fig. 1(a). The physical cause of this bifurcation is dis-
cussed in Section 6.2. Thus, at each spatial grid point there are two
distinct distributions of elastic tensors and orientations (or tilts) that
fit the Rayleigh wave azimuthal anisotropy observations approxi-
mately equally well. For Group 1, the set of models with approxi-
mately elliptical anisotropy (ε ≈ δ) and typically larger value of η,
the distribution of strike angles is shown in Fig. 12(c). These strike
angles are very similar to the Rayleigh wave fast axis directions for
waves that sample the crust (e.g. 10–20 s period, Fig. 4a). Fig. 17
illustrates this fact by plotting as blue dots the 16 s period Rayleigh
wave fast axis directions against the Group 1 strike angles (φ1) at
each location . The mean and standard deviation of the difference
are 0.2◦ and 21.0◦, respectively. The geographical distribution of the
strike angles (and fast axis directions for crustal sensitive Rayleigh
waves) are similar to those found by Lin et al. (2011), who dis-
cuss the geological coherence of the observations, so we forgo this
discussion here.
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Figure 17. (Red dots) Comparison between the Group 2 strike angle (φ2)
and the Group 1 strike angle (φ1) across the study region, where the red
line represents y = x + 90◦. The strike angles in the two groups are approxi-
mately orthogonal. (Blue dots) Comparison between the fast azimuth of the
Rayleigh wave at 16 s period to the Group 1 strike angle, where the blue
line represents y = x. Crustal sensitive Rayleigh wave fast axis directions
are approximately parallel to Group 1 strike directions and perpendicular to
Group 2 strike directions.

The second group of models, Group 2, possesses strike angles that
are distinct from Group 1, ε is typically significantly larger than δ,
so the anisotropy is decidedly non-elliptical and η is usually smaller
than 0.8. As Fig. 17 also shows with red symbols, the strike angles
of Group 2 (φ2) are, on average, perpendicular to the strike angles of
Group 1 (φ1) such that the average angular difference and standard
deviation are 90.2◦ and 8.8◦, respectively. This distribution is tighter
than the comparison with Rayleigh wave fast axis directions because
Rayleigh wave fast axes at a particular period are measurements and
are, therefore, noisy.

In summary, Rayleigh wave fast axis directions are ambiguously
related to the strike of inherent crustal anisotropy. In fact, the fast
axis direction will only parallel the strike direction if the crustal
anisotropy is largely elliptical in nature. As petrological information
has grown concerning the seismic anisotropy in the crust, evidence
has mounted that crustal anisotropy is probably not strongly ellip-
tical (e.g. Tatham et al. 2008; Brownlee et al. 2011; Erdman et al.
2013). Thus, the geologically favoured models are probably from
Group 2. Therefore, crustal sensitive Rayleigh waves must only be
used with caution to reveal the orientation of the geological fea-
tures that are causing the anisotropy. It is probably more likely for
the fast axis direction of crustal sensitive Rayleigh waves to point
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perpendicular to the strike direction than parallel to it. Similarly,
assuming nearly vertical shear waves, crustal shear wave splitting
will have its fast axis in the direction of the Rayleigh-wave fast axis.
Therefore, the fast splitting direction of crustal SKS is also more
likely to point perpendicular to the strike direction than parallel to it.

To recover unambiguous information about the strike angle, other
types of data need to be introduced. As discussed in Section 6.2,
observations of crustal P-wave anisotropy can resolve the ambiguity
because the P wave fast direction is always parallel to the strike
direction as can observations of anisotropy using receiver functions.
Admittedly, however, these are difficult observations to make.

6.4 On the interpretation of the inferred dip angle

There are two alternative interpretations of the inferred dip angle,
θ : that it is a measurement of the actual geometry of the foliation
plane of material composing the crust or that it is a proxy for another
potentially unknown non-geometric variable. We will first discuss
the latter alternative.

First, it is possible that the observed dip angle is proxy for other
variables. Even though our models are expressed in terms of a tilted
hexagonally symmetric medium, crustal anisotropy may not actu-
ally be hexagonally symmetric, or the approximation to hexagonal
symmetry may not be accurate everywhere. Crustal anisotropy may
indeed possess lower order symmetry than hexagonal. Tilting a ma-
terial can have the effect of decreasing the apparent symmetry of
the material if viewed in the same coordinate system (Okaya &
McEvilly 2003). In principle, therefore, a lower order of symmetry
could be approximated by a higher order of symmetry (e.g. hexag-
onally symmetric) through tilting. It is possible that the efficacy of
this approximation is enhanced by the fact that surface wave trav-
eltime data are insensitive to 8 of the 21 moduli that constitute a
general elastic tensor (the Appendix). It is conceivable, therefore,
that the effect on our data that we interpret as a tilt (non-zero dip
angle) could have resulted from the non-hexagonal component of
the actual elastic tensor of the medium. What we would estimate in
this case is an ‘apparent dip angle’ that is proxy for the extent to
which the medium deviates from hexagonal symmetry.

We have experimented with numerically fitting tilted hexago-
nally symmetric elastic tensors to nearly orthorhombic tensors from
crustal rock samples (Tatham et al. 2008; Brownlee et al. 2011;
Erdman et al. 2013) using only the 11 combinations to which obser-
vations of the 2ψ component of Rayleigh wave and the azimuthally
isotropic Rayleigh and Love wave data are sensitive (the Appendix).
We estimate an apparent dip angle that measures the medium’s de-
viation from hexagonal symmetry. Apparent dip angles resulting
from this fit typically range between 15◦ and 25◦. The dip angles
that we infer, therefore, may be a result of approximating orthorhom-
bic or other lower-symmetry material with hexagonally symmetric
tensors, in which case steeper dip angles would reflect a greater
deviation from hexagonal symmetry.

Secondly, there is also likely to be at least some component of
the inferred crustal elastic tensors related to the actual dip of the
foliation of the material. In fact, variations in observed dip an-
gles make geologic sense in some regions. For example, observed
dips are shallow beneath the Basin and Range province, which is
consistent with large-scale crustal extension along low-angle nor-
mal faults and horizontal detachment faults (e.g. Xiao et al. 1991;
Johnson & Loy 1992; John & Foster 1993; Malavieille 1993). The
steeper dip angles observed in California are also consistent with a
lower crust consisting of foliated Pelona-Orocopia-Rand schist (e.g.

Jacobson 1983; Jacobson et al. 2007; Chapman et al. 2010), which
was underplated during Laramide flat-slab subduction (e.g. Jacob-
son et al. 2007). In other regions, such as beneath the Colorado
Plateau, the potential geologic meaning of the steeper observed dip
angles is less clear; perhaps the steeper dips are an indication of
a change in crustal composition resulting in an elastic tensor with
low symmetry.

6.5 Comparison with previous studies: inherent
versus apparent anisotropy

A tilted hexagonally symmetric elastic tensor will generate both ap-
parent radial and azimuthal anisotropy in surface waves as demon-
strated by Fig. 1(b). At a given depth, referencing the notation in
the Appendix, we define apparent S-wave radial anisotropy as:

γ̂ = (N̂ − L̂)/2L̂, (9)

where

N̂ = (C11 + C22)/8 − C12/4 + C66/2 L̂ = (C44 + C55)/2,

(10)

We also define the amplitude of apparent SV-wave azimuthal
anisotropy as:

|G|/L =
√

G2
c + G2

s /L , (11)

where

Gc = (δC55 − δC44)/2 = (C55 − C44)/2 (12)

Gs = δC45 = C45. (13)

The components of the modulus matrix, Cαβ , are functions of the
inherent elastic moduli (A, C, N , L , F) and tilt (θ, φ). The strength
of inherent S-wave anisotropy is defined by eq. (5).

As shown in Fig. 1(b), when the inherent elastic moduli
(A, C, N , L , F) are fixed, variations in dip angle θ produce the
variations in the apparent anisotropies. The amplitudes of appar-
ent anisotropies are always smaller than the inherent anisotropy
except for two extreme cases, θ = 0◦ and θ = 90◦. Thus, if Earth
structure has θ ∈ (0◦, 90◦), then neither apparent radial nor appar-
ent azimuthal anisotropy will reflect the real strength of anisotropy
(inherent anisotropy) in the Earth.

In studies of anisotropy based either on isotropic dispersion
curves or azimuthally anisotropic dispersion curves alone, it is the
apparent anisotropy instead of the inherent anisotropy that is esti-
mated. For example, in studies of radial anisotropy using surface
waves (e.g. Moschetti et al. 2010a,b; Xie et al. 2013), only the
azimuthally isotropic Rayleigh and Love wave dispersion curves
are used to produce a transversely isotropic model, which produces
no azimuthal anisotropy. Because the azimuthally isotropic disper-
sion curves are only sensitive to the effective transversely isotropic
part of the elastic tensor ( Â, Ĉ, N̂ , L̂, F̂ , the Appendix), this trans-
versely isotropic model is the effective transversely isotropic (ETI)
part of our model. To prove this, we compute the ETI part of our
model, from which the apparent S-wave radial anisotropy can be
generated (Fig. 18). The apparent S-wave radial anisotropy for both
Group 1 and Group 2 models are very similar to each other, they
both change appreciably across the study region, with large am-
plitudes in the Basin and Range province and small amplitudes in
the Colorado Plateau. This pattern is very similar to that observed
by Moschetti et al. (2010b), and thus demonstrates that inversion
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Figure 18. The mean of the posterior distribution of apparent S-wave radial anisotropy, γ̂ , averaged vertically across the crust for (a) Group 1 models and (b)
Group 2 models. Average values across the crust and region of study are inset.

with isotropic dispersion curves alone results in observations of
apparent S-wave radial anisotropy, γ̂ . Similarly, inversion with az-
imuthally anisotropic dispersion curves alone results in apparent
quasi-SV-wave azimuthal anisotropy (e.g. Lin et al. 2011).

The apparent radial and apparent azimuthal anisotropy reflect
different aspects of the inherent elastic tensor and both mix infor-
mation from the inherent elastic moduli and the orientation. As
described in Section 6.1, the amplitude of γ , the inherent S-wave
anisotropy, does not change strongly across the region, and averages
about 4 per cent. In contrast, the amplitude of γ̂ , the apparent radial
anisotropy, changes strongly across the region in a pattern similar
to the variation of the dip angle θ , and averages to about 2 per cent.
Thus, the lateral variation of γ̂ results mainly from the variation of θ ,
and does not reflect the strength of γ .

In most surface wave studies, only the apparent anisotropies are
estimated. Therefore, the results depend on the unknown orientation
of the medium (or the non-hexagonality of medium for which the
dip angle may be a proxy), which limits their usefulness to con-
strain the elastic properties of the medium (e.g. the inherent S-wave
anisotropy, γ ).

6.6 Mantle anisotropy across the western United States

Although the focus of this paper is on crustal anisotropy we present
here a brief discussion of the mantle anisotropy that emerges from
the inversion. Fig. 19 shows the prior and posterior distributions
at 60 km depth at point A in the Basin and Range province. At
this point, the mean of the posterior distribution is between 4 and

5 per cent for both inherent S-wave (γ ) and P-wave (ε) anisotropy,
both the dip and strike angles are fairly well resolved with a mean
dip angle of 27◦ (±7◦) and strike angle of 66◦ (±8◦), the mean of
the posterior distribution for η is 0.96 (±0.04) which is much higher
than in the crust, and the anisotropy is indistinguishable from ellip-
tical (ε–δ = –0.04 ± 0.06). The nearly elliptical nature of mantle
anisotropy is also quite different from what we observe in the crust.
This location is fairly typical of mantle anisotropy across the west-
ern United States, as γ averages 4.4 per cent (±2.6 per cent) across
the western United States with an average dip angle of 21◦ (±8◦).
We note in passing that such a steep dip angle may result from a
strong orthorhombic component to the mantle elastic tensors and
may not result from the actual tilt of the medium. Because, unlike
the crust, the posterior distribution in the mantle does not bifurcate
according to strike angle, Rayleigh wave fast axis directions are
unambiguously related to the strike angle in the mantle. Because
mantle anisotropy is nearly elliptical (with η close to one), Rayleigh
wave fast axes actually align with the strike angle rather than or-
thogonal to it. However, mantle strike angle is not everywhere well
determined across the region as the average uncertainty is nearly
30◦. The inability to resolve mantle strike angle unambiguously
across the region with the current data set and method is one of the
reasons we focus interpretation on crustal anisotropy here and we
plan to return to mantle anisotropy in a later contribution.

7 S U M M A RY A N D C O N C LU S I O N S

The motivation for this paper is to present a method of inversion
that explains surface wave observations of both radial and azimuthal
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Figure 19. Prior and posterior distributions for several model parameters in the mantle at 60 km depth for Point A (in Basin and Range, identified in Fig. 3a).
Similar to Fig. 8, white histograms indicate the prior distributions and red histograms represent the posterior distributions. Posterior distributions in the mantle
are not bimodal as they are in the crust.

anisotropy, which are seldom explained simultaneously. The method
we present here inverts for the inherent properties of the medium
represented by a hexagonally symmetric elastic tensor, with an ar-
bitrarily oriented symmetry axis, which we refer to as ‘tilted’. The
elastic tensor itself at each depth is given by five elastic moduli
(A, C, N, L and F or η) and the tilt is defined by two rotation angles:
the dip and strike, which are illustrated in Fig. 1(a). We refer to
these moduli as ‘inherent’, as they reflect the characteristics of the
elastic tensor irrespective of its orientation.

We show that observations of radial anisotropy and the 2ψ com-
ponent of azimuthal anisotropy for Rayleigh waves obtained using
USArray in the western United States can be fit well by tilted hexag-
onally symmetric elastic tensors in the crust and mantle, subject to
the constraints listed in the text. The inversion that we apply is a
Bayesian Monte Carlo method, which yields a posterior distribution
that reflects both the data and prior constraints. The most note-
worthy constraint is that the tilt angles (dip, strike) are constant in
the crust and mantle, but may differ between the crust and mantle.
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The results are summarized as posterior distributions of smoothly
depth-varying inherent (unrotated) moduli (A orVP H , C or VPV , N
or VSH , L or VSV and F or η) as well as dip and strike angles. The
standard deviation of the posterior distribution defines the uncer-
tainties in these quantities. Anisotropy can be summarized with the
Thomsen parameters, inherent S-wave anisotropy (γ ) and inherent
P-wave anisotropy (ε), and either η or δ (which is the third Thomsen
parameter).

Because the crust is constrained by the data better than the mantle
and γ (inherent S-wave anisotropy) is determined more tightly than
ε (inherent P-wave anisotropy), we focus interpretation on γ in the
crust as well as the tilt angles. Major results include the following.
(1) γ is fairly homogeneous vertically across the crust, on average,
and spatially across the western United States. (2) Averaging over
the region of study and in depth, γ in the crust is approximately 4
± 2 per cent. (3) Crustal strike angles (φ) in the posterior distribu-
tions bifurcate into two sets of models that we refer to as Groups
1 and 2. Models in Group 1 have strike angles that approximately
parallel crust-sensitive Rayleigh wave fast axis directions, and typ-
ically have larger values of η and nearly elliptical anisotropy (ε ≈
δ). Group 2 models have strike angles that are approximately or-
thogonal to crust-sensitive Rayleigh wave fast directions, smaller
values of η, and more strongly non-elliptical anisotropy where typ-
ically ε > δ. Mantle strike angles do not bifurcate as they do in
the crust because of tighter constraints imposed on η in the in-
version. (4) γ in the crust is approximately the same in the two
groups of models. (5) Dip angles in the two groups of models vary
spatially in similar ways and display geological coherence; for ex-
ample, they are smaller in the Basin and Range province than in the
Colorado Plateau or the Great Plains. However, in Group 1 they are
slightly larger than in Group 2, averaging 30◦ ± 10◦ in Group 1 and
25◦ ± 9◦ in Group 2. (6) Rayleigh wave fast axis directions are
ambiguously related to the strike of anisotropy, but recent studies of
the anisotropy of crustal rocks (e.g. Tatham et al. 2008; Brownlee
et al. 2011; Erdman et al. 2013) imply that the crustal anisotropy is
probably not nearly elliptical, which favours Group 2 models. There-
fore, under the assumption that crustal anisotropy is approximately
hexagonally symmetric with an arbitrary tilt, Rayleigh wave fast
axis directions for crustal sensitive Rayleigh waves will be oriented
orthogonal rather than parallel to the strike of anisotropy. Inter-
pretation of Rayleigh wave fast axis directions in terms of crustal
structure must be performed with caution. (7) The estimated dip
angle may be interpreted in two alternative ways. It is either an ac-
tual measure of the dip of the foliation plane of anisotropic material
within the crust, or it is proxy for another non-geometric variable,
most likely a measure of the deviation from hexagonal symmetry
of the medium. (8) By attempting to estimate the inherent moduli
that compose the elastic tensor of the crust (and mantle), our ap-
proach differs from earlier studies that produce measurements of
‘apparent’ moduli. Because tilting a medium produces apparent ra-
dial and apparent azimuthal anisotropies that are both smaller than
the inherent anisotropy in amplitude, previous studies have tended
to underestimate the strength of anisotropy.

In the future, we intend to improve long period data in order
to produce improved results for the mantle and apply the method
more generally to observations of surface wave anisotropy in the
United States and elsewhere. It will also be desirable to apply in-
creasingly strong constraints on allowed anisotropy and continue
to revise the interpretation of results as more information accrues
about crustal anisotropy from laboratory measurements on crustal
rocks. In particular, it may make sense to experiment with more
general theoretical models of anisotropy in the inversion, perhaps

by considering a mixture of elastic tensors with hexagonal and or-
thorhombic symmetry. Ultimately, we aim to interpret the results
in terms of petrological models that agree with the inferred elastic
tensor.
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A P P E N D I X : T H E F O RWA R D P RO B L E M : C O M P U TAT I O N O F P E R I O D A N D
A Z I M U T H A L LY VA R I A B L E P H A S E S P E E D S F O R A N A R B I T R A R I LY O R I E N T E D
H E X A G O NA L LY S Y M M E T R I C E L A S T I C T E N S O R

Given an elastic tensor that varies with depth at a given location, we seek to compute how Rayleigh and Love wave phase velocities change
with period T and azimuth ψ . The code MINEOS (Masters et al. 2007) computes period dependent Rayleigh and Love wave phase speeds
at high accuracy for a transversely isotropic medium; that is, a medium with hexagonal symmetry and a vertical symmetry axis. Instead, we
are interested in a medium whose elastic properties are given by an elastic tensor for a hexagonally symmetric medium with an arbitrarily
oriented symmetry axis.

First, let the moduli A, C, N, L and F represent the elastic tensor at a particular depth for a hexagonally symmetric medium with a vertical
symmetry axis, given by eq. (1) in the Introduction. Four of the five moduli are directly related to P and S wave speeds for waves propagating
perpendicular or parallel to the symmetry axis using the following relationships: A = ρV 2

P H , C = ρV 2
PV , L = ρV 2

SV , N = ρV 2
SH . Here, ρ

is density, VP H and VPV are the speeds of P waves propagating horizontally and vertically respectively, VSV is the speed of the S wave
propagating horizontally and polarized vertically or propagating vertically and polarized horizontally and VSH is the speed of the S wave
that is propagating in a horizontal direction and polarized horizontally. The modulus F = η(A − 2L) affects the speed of waves propagating
oblique to the symmetry axis and controls the shape of the shear wave phase speed surface (Okaya & Christensen 2002). For an isotropic
medium, A = C, L = N , F = A − 2L , η = 1.

Next, rotate the tensor in eq. (1) through the two angles, θ (the dip angle) and φ (the strike angle), defined in Fig. 1(a), to produce the
modulus matrix Cαβ (θ, φ). We refer to a general reorientation of the symmetry axis as a tilt, which is achieved by pre- and post-multiplying
the elastic modulus matrix by the appropriate Bond rotation matrix and its transpose, respectively (e.g. Auld 1973; Carcione 2007), which
act to rotate the fourth-order elasticity tensor appropriately. The order of the rotations matters because the rotation matrices do not commute:
first a counter-clockwise rotation through angle θ around the x-axis is applied followed by a second counter-clockwise rotation through angle
φ around the z-axis. The rotation can fill all components of the modulus matrix but will preserve its symmetry:

Cαβ (θ, φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)
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Montagner & Nataf (1986) showed that this modulus matrix may be decomposed into an effective transversely isotropic (azimuthally
independent) part, C ET I

αβ , and an azimuthally anisotropic part, C AA
αβ , as follows:

Cαβ (θ, φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â Â − 2N̂ F̂ 0 0 0

Â − 2N̂ Â F̂ 0 0 0

F̂ F̂ Ĉ 0 0 0

0 0 0 L̂ 0 0

0 0 0 0 L̂ 0

0 0 0 0 0 N̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δC11 δC12 δC13 δC14 δC15 δC16

δC12 δC22 δC23 δC24 δC25 δC26

δC13 δC23 δC33 δC34 δC35 δC36

δC14 δC24 δC34 δC44 δC45 δC46

δC15 δC25 δC35 δC45 δC55 δC56

δC16 δC26 δC36 δC46 δC56 δC66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

where Â = 3(C11 + C22)/8 + C12/4 + C66/2, Ĉ = C33, N̂ = (C11 + C22)/8 − C12/4 + C66/2, L̂ = (C44 + C55)/2 and F̂ = (C13 + C23)/2
Eqs (1) and (A2) present a clear definition of what we call the ‘inherent’ and ‘apparent’ elastic moduli, respectively. The inherent

moduli areA, C, N , L , F from the elastic tensor with a vertical symmetry axis and the apparent moduli are Â, Ĉ, N̂ , L̂, F̂ from the effective
transversely isotropic part of the rotated elastic tensor.

We seek expressions for the period dependence of the phase speed for both Rayleigh and Love waves as well as the 2ψ azimuthal dependence
for Rayleigh waves because these are the observations we make. This computation is based on the introduction of a transversely isotropic
reference elasticity tensor composed of the depth dependent reference moduli A0, C0, N0, L0, F0. The code MINEOS will compute Rayleigh
and Love wave phase speed curves for the reference model [cR

0 (T ), cL
0 (T )]. Then we define the effective transversely isotropic moduli relative

to this reference:

Â = A0 + δ Â, Ĉ = C0 + δĈ, N̂ = N0 + δ N̂ , L̂ = L0 + δ L̂ and F̂ = F0 + δ F̂ .

In this case, Montagner & Nataf (1986) present the required expressions for Rayleigh and Love wave phase speeds, which break into
contributions from the reference moduli, the perturbation by the effective transversely isotropic (ETI) moduli relative to the reference moduli,
and the azimuthally anisotopic (AA) moduli:

cR(T, ψ) = cR
0 (T ) + δcET I

R (T ) + δcAA
R (T, ψ) (A3)

cL (T ) = cL
0 (T ) + δcET I

L (T ) (A4)

where

δcET I
R (T ) =

∫ ∞

0

{
δ Â

∂cR

∂ A

∣∣∣∣
0

+ δĈ
∂cR

∂C

∣∣∣∣
0

+ δ L̂
∂cR

∂L

∣∣∣∣
0

+ δ F̂
∂cR

∂ F

∣∣∣∣
0

}
dz (A5)

δcET I
L (T ) =

∫ ∞

0

{
δ N̂

∂cL

∂ N

∣∣∣∣
0

+ δ L̂
∂cL

∂L

∣∣∣∣
0

}
dz (A6)

δcAA
R (T, ψ) =

∫ ∞

0

{
(Bc cos 2ψ + Bs sin 2ψ)

∂cR

∂ A

∣∣∣∣
0

+ (Gc cos 2ψ + Gs sin 2ψ)
∂cR

∂L

∣∣∣∣
0

+ (Hc cos 2ψ + Hs sin 2ψ)
∂cR

∂ F

∣∣∣∣
0

}
dz. (A7)

The depth-dependent moduli Bc, Bs, Gc, Gs, Hc and Hs are linear combination of the components of the azimuthally variable part of
the elastic modulus matrix in eq. (A2), δC AA

αβ , as follows: Bc = (δC11 − δC22)/2, Bs = δC16 + δC26, Gc = (δC55 − δC44)/2, Gs = δC54,
Hc = (δC13 − δC23)/2 and Hs = δC36. Note that the azimuthally independent and 2ψ variations in surface wave phase speeds are sensitive
only to 13 of the elements of the elastic tensor, and notably only the (1,6), (2,6), (3,6) and (4,5) elements of the elastic tensor outside of the
nine elements occupied under transverse isotropy. The other eight elements of the elastic tensor [(1,4), (1,5), (2,4), (2,5), (3,4), (3,5), (4,6),
(5,6)] are in the null space of surface wave phase speed measurements.

Montagner & Nataf (1986) present explicit formulas for the partial derivatives in eqs (A5)–(A7) in terms of normal mode eigenfunctions.
Instead of using these expressions we recast the problem by computing the partial derivatives numerically which are computed relative to
the reference model. The partial derivatives in the expression for the azimuthal term, δcAA

R (T, ψ) are equal to the partial derivatives of the
azimuthally independent terms [cR

0 (T ), cL
0 (T )] with respect to the corresponding transversely isotropic parameters (A, C, F, L, N). This feature

facilitates the forward computation because the azimuthal dependence of surface wave speeds can be computed using only the partial derivatives
with respect to the five elastic parameters of a transversely isotropic medium, which can be achieved using the MINEOS code (Masters et al.
2007). Fig. A1 presents the sensitivity of Rayleigh and Love wave phase speeds at 20 s period to perturbations in L, N, C, A and F as a
function of depth. Love waves are sensitive almost exclusively to N, being only weakly sensitivity to L, and completely insensitive to C, A or F.
In contrast, Rayleigh waves are sensitive to all of the parameters except N.

We represent the depth variation of the moduli by defining each on a discrete set of nodes distributed with depth and linearly interpolating
the moduli between each node (Fig. A2). With this approach, we compute the partial derivatives using MINEOS by linear finite differences
and convert the integrals to sums in eqs (A5)–(A7). The method is more accurate for Rayleigh than for Love waves and at longer rather than
at shorter periods. For example, a constant 10 per cent relative perturbation in the modulus N ((N̂ − N0)/N0 = 0.1, which is 5 per cent in
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Figure A1. Example sensitivity kernels for Rayleigh and Love wave phase speeds at 20 s period to perturbations in L, N, C, A and F as a function of depth.
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Figure A2. Illustration of the model discretization. At each grid point, the model profile is represented by a vertical set of nodes. Each model parameter is
perturbed at each node as shown to compute the depth sensitivity of surface wave data.

VSH ) across the entire crust produces an error in the computed Love wave phase speed of less than 0.1 per cent except at periods less than
10 s where it is only slightly larger. For Rayleigh waves, a similar constant 10 per cent perturbation in L ((L̂ − L0)/L0 = 0.1, 5 per cent in
VSV ) results in an error less than 0.05 per cent at all periods in this study. These errors are more than an order of magnitude smaller than final
uncertainties in estimated model variables and, therefore, can be considered negligible.
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