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Abstract 

Psycholinguists are making increasing use of regression analyses and mixed-effects modeling. In 

an attempt to deal with concerns about collinearity, a number of researchers orthogonalize 

predictor variables by residualizing (i.e., by regressing one predictor onto another, and using the 

residuals as a stand-in for the original predictor). In the current study, the effects of residualizing 

predictor variables are demonstrated and discussed using ordinary least-squares regression and 

mixed-effects models. Some of these effects are almost certainly not what the researcher 

intended and are probably highly undesirable. Most importantly, what residualizing does not do 

is change the result for the residualized variable, which many researchers probably will find 

surprising. Further, some analyses with residualized variables cannot be meaningfully 

interpreted. Hence, residualizing is not a useful remedy for collinearity. 

 

 

Keywords: regression analysis; mixed-effects models; statistical analysis; collinearity; 

residualization; orthogonalization 
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What residualizing predictors in regression analyses does  

(and what it does not do) 

In psycholinguistics there has been a move toward regression studies, which offer several 

advantages over traditional factorial designs. Baayen, Wurm, and Aycock (2007), for example, 

used mixed-effects modeling1 to examine auditory and visual lexical decision and naming times. 

They found a number of curvilinear effects that are difficult to detect with factorial designs. Even 

more interesting, the authors found sequential dependencies in the response times, such that 

response latency on a given trial could be predicted by latencies on the previous four trials. This 

sequential dependency, which cannot be assessed in a factorial design, ultimately exhibited more 

explanatory power than nearly all of the other predictors that were examined.  

A second advantage of regression designs is pragmatic. With the increased complexity of 

many theoretical models, it becomes impractical to isolate a difference on one predictor while 

adequately equating stimulus materials on the growing number of other variables known to affect 

psycholinguistic processing. Baayen et al. (2007) examined 18 predictor variables. The 

influential megastudy of Balota, Cortese, Sergent-Marshall, Spieler, and Yap (2004) examined 

19. A factorial design matching on all but one or two of the variables in situations like these is 

virtually inconceivable, and so a large number of potentially interesting studies simply could not 

be done. The Balota et al. (2004) study is interesting for the additional reason that they included 

as stimuli virtually all single-syllable monomorphemic words in English. An exhaustive study 

such as this cannot be done in a factorial manner, because the words in the language are naturally 

correlated on a number of variables of theoretical interest.  

Many researchers express concern about the extent to which these natural correlations 

between predictors might lead to collinearity and computational problems. For example, 
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Tabachnick and Fidell (2007) assert that, with predictor intercorrelations of .90 and above, there 

are statistical difficulties in the precision of estimation of regression coefficients (citing Fox, 

1991). Further, Cohen, Cohen, West, and Aiken (2003) state that the estimates of the coefficients 

will be "very unreliable" and "of little or no use" (p. 390). In addition, Darlington (1990) 

emphasizes the loss of statistical power of tests on the individual regression slopes.  

However, Friedman and Wall (2005) assert and demonstrate that improvements in 

algorithms and computer accuracy have eliminated the computational difficulties. The current 

study lends additional support to their claim. Further, Friedman and Wall (2005), along with 

others, also note that collinearity per se is not necessarily bad. For example, if a researcher's goal 

is simply to maximize explained variance, collinearity can be ignored (Darlington, 1990; 

Tabachnick & Fidell, 2007). The goal of most psycholinguistic applications of regression, 

though, is to evaluate the effects of several of the individual predictor variables. The potential 

interpretational problems caused by collinearity here can be thorny, even if the computational 

problems are not.  

Because of concerns like this, some researchers have attempted to deal with collinearity 

by residualizing one of the correlated predictor variables. To do this, one runs a preliminary 

regression analysis using one of the predictor variables to predict the other (e.g., using X2 to 

predict X1). The residuals from this analysis constitute a new predictor variable, X1resid, that is 

used in subsequent analyses in lieu of X1. X1resid is guaranteed to be uncorrelated with X2, 

providing an apparent solution to the problem of collinearity. Thus, residualizing seems like a 

useful and appropriate technique.  

Psycholinguists have offered several justifications for residualizing. A review of some of 

those justifications is instructive, as it illustrates a considerable range of beliefs, some erroneous, 
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about what residualizing accomplishes:2 

"To avoid problems with increased multicollinearity, we included the 
residuals...in our mixed-effects model...These residuals are thus corrected for the 
influence of all variables correlated with the original familiarity and 
meaningfulness measures" (Lemhöfer, Dijkstra, Schriefers, & Baayen, 2008, p. 
23) 
 
To dissociate the effect of one predictor from another and demonstrate that the 
effect of one predictor does not explain the effect of the other (Green, Kraemer, 
Fugelsang, Gray, & Dunbar, 2012, pp. 267-268) 
 
To help rule out the possibility that the effect of one predictor masks the effect of 
another (Kuperman, Bertram, & Baayen, 2010, p. 89) 
 
"...to assess the effect of " [a predictor] (Jaeger, 2010, p. 33) 
 
"...to ensure a true effect of" [a predictor] (Cohen-Goldberg, 2012, pp. 191-192) 
 
"...to allow for assessment of the respective contributions of each predictor" 
(Ambridge, Pine, & Rowland, 2012, p. 267) 
 
"...to determine the unique contribution of" [a predictor] (Cohen-Goldberg, 2012, 
p. 188) 
 
To provide "...a reliable estimate of the unique variance explained by each" 
[predictor] (Ambridge et al., 2012, p. 268) 
 
To pit predictors against one another and determine whether one explains 
variance that the other cannot (Ambridge et al., 2012, p. 268) 
 
"...to reliably assess effect directions for collinear predictors" and to be able to 
simultaneously assess "...the independent effects of multiple hypothesized 
mechanisms" (Jaeger, 2010, p. 30; emphasis in original) 
 
to test  the effect of one predictor beyond the properties of two other predictors 
(Jaeger, 2010, p. 33) 
 
"Orthogonalisation of such variables is crucial for the accuracy of predictions of 
multiple regression models. Teasing collinear variables apart is also advisable for 
analytical clarity, as it affords better assessment of the independent contributions 
of predictors to the model’s estimate of the dependent variable" (Kuperman, 
Bertram, & Baayen, 2008, p. 1098). 
 
 
Most researchers do not specify precisely what would trigger the strategy. Cohen-
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Goldberg (2012) said it was done when a predictor "...was collinear with one or more control 

variables..." (p. 188). Jaeger and Snider (2013) did it "since the two predictor variables were 

correlated" (p. 63). Kahn and Arnold (2012) residualized "Because of high correlations" between 

the predictor variables (p. 317). This last case is interesting for the additional fact that the 

residualization was restricted to variables that were included only for purposes of statistical 

control. The individual effects of these variables were not of interest -- the goal was simply to be 

able to assure readers that the analysis had controlled for them. Below, we show that 

residualizing accomplishes literally nothing in this case. Further, examination of the cut-off 

values that are reported reveals a lack of consensus about when one should residualize: 

Kuperman et al. (2008) residualized whenever a zero-order correlation between predictors 

exceeded 0.50, whereas Bürki and Gaskell (2012) used 0.30 as a cut-off.  

Use of this strategy in psycholinguistics is a relatively recent phenomenon. The earliest 

example we have identified is Baayen, Feldman, and Schreuder (2006). The scope of what 

Baayen et al. (2006) did was restricted, and the reasons for it were principled and clearly 

articulated. They wanted to determine if a subjectively-rated version of word frequency offered 

anything beyond various objective measures. They partialed the objective measures from the 

subjective measure, and added the residuals to a model they had already specified as more or less 

complete. They did mention collinearity in this context, but it was not their primary motivation. 

Indeed, in this study, they handled collinearity among their primary predictors in other ways. 

Examples of residualizing can be found in at least a dozen papers published in three of 

the top journals in the field in 2012 (Cognition; Journal of Experimental Psychology: Learning, 

Memory, and Cognition; Journal of Memory and Language). Judging by the descriptions found 

in these studies, some of which were included above, there seems to have been significant drift in 
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researchers' implementation of the strategy. Concerned that enthusiasm for the technique might 

be outpacing understanding of what it does, we decided to examine more closely exactly what is 

(and what is not) achieved by residualization of predictor variables. Our ultimate goal is to clear 

up some misconceptions and improve statistical practice in psycholinguistics. 

Study 1: Reanalysis of Data from Lorch and Myers (1990) 

Lorch and Myers (1990) presented a data set to illustrate a recommended way to analyze 

repeated-measures regression data. The DV was time to read a sentence. The predictor variables 

of theoretical interest were the number of words in the sentence (WORDS) and the number of 

new arguments in the sentence (NEWARGS). They also included an index of the serial position 

of each sentence in the experimental list. To make certain points clearer, we exclude this variable 

from analysis. The data set included seven sentences, each of which was read by 10 participants. 

Here, we reanalyze those data with and without residualization, showing that different results 

obtain depending on which variable is residualized. 

Method 

We analyzed the data using a linear mixed-effects model with participant and sentence 

included as crossed random effects (Baayen et al., 2008). The DV in all analyses was reading 

time in seconds. Fixed effects included WORDS (either the original variable or residualized from 

NEWARGS) and/or NEWARGS (either the original variable or residualized from WORDS). We 

used version 2.11.1 of R (R Development Core Team, 2010) and version 1.0 of the languageR 

library (Baayen, 2010). 

Results and Discussion 

We begin by presenting the results of two linear mixed-effects analyses, one for each of 

the predictor variables in its original form, with no other predictors in the model. As can be seen 
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in Table 1, each predictor has a significant effect when it is the sole predictor of reading times.  

Both of these effects make sense. Sentences with more words require longer to read, and 

sentences with more new linguistic arguments also require longer to read. Note, however, that 

because these analyses include only one predictor each, the effect in each case reflects nothing 

more than that predictor's zero-order correlation with the DV.  

A researcher might reasonably wonder whether the effect of NEWARGS holds when 

accounting for the number of words in the sentence, and whether the effect of WORDS holds 

when accounting for the number of new arguments in the sentence. The typical way to answer 

this type of question is to include both predictors in one simultaneous analysis. Table 2 presents 

the results of such an analysis. The statistical tests on the regression coefficients indicates that 

the effect of WORDS is statistically different from 0 and the effect of NEWARGS is not.  

Figure 1 illustrates this situation with a Venn diagram. WORDS is assigned the variance 

represented by section a and NEWARGS is assigned the variance represented by section b. 

Neither predictor is given credit for the variance represented by section c because it is not 

uniquely attributable to either one. Contrast this with Figure 2, which shows the situation when 

NEWARGS was the only predictor in the model. In this analysis, NEWARGS is assigned the 

variance represented by both sections b and c. 

In Table 2, the standard error for NEWARGS has decreased from .477 to .424. 

Examination of the equation for the standard error shows why such a reduction is usually to be 

expected when moving from a one-predictor to a two-predictor model. When there is only one 

predictor, the standard error for an unstandardized regression coefficient is calculated as 

 

            (1) 



Residualizing Predictors in Regression 9	  

 

where S stands for the standard deviation. When there are two predictors, the equation is 

 

            (2) 

 

As is to be expected because linguistic arguments require words, these two predictor 

variables are positively correlated (r = .696). Psycholinguists seem to be increasingly expected to 

demonstrate that such intercorrelations do not contaminate their key results and render them 

unstable or somehow "incorrect" (e.g., Roland, Mauner, O'Meara, & Yun, 2012, p. 496). In the 

current example, we might decorrelate the predictors by residualizing the WORDS variable. We 

would regress WORDS on NEWARGS and save the unexplained portion of the variance in this 

analysis (the residuals) as a new predictor variable, WORDSresid. Balling and Baayen (2012) say 

that a residualized variable created in this way "...can be straightforwardly understood as [the 

residualized predictor] in so far as this cannot be predicted from [the other predictor] " (p. 87).  

Though it might seem like a minor quibble, we believe that this language can invite the 

interpretation that WORDSresid is somehow a purer or improved (or "corrected" -- see Lemhöfer 

et al., 2008) measure of the number of words in a sentence. Lemhöfer et al. (2008) illustrate this 

danger when they change from calling a variable "residual meaningfulness" to "meaningfulness" 

in the same sentence: "Both residual familiarity and residual meaningfulness had significant 

facilitatory effects on RTs: familiarity (β = –.0002), t(38800) = –1.99, p  < .05; meaningfulness 

(β = –.0001), t(38800) = –2.38, p < .02" (p. 23). This is perhaps understandable as shorthand 

presentation of a statistical result, but the next sentence from the main text says "Meaningfulness 

also interacted with participant group, with a stronger facilitatory effect of..." (p. 23). What they 



Residualizing Predictors in Regression 10	  

are calling meaningfulness is not meaningfulness. Similarly, in the current context, WORDSresid 

is not an improved, purified, or corrected version of WORDS; it is simply the errors of prediction 

with which one is left when predicting the number of words in a sentence from the number of 

new arguments in the sentence.  

Table 3 shows the results of the analysis with WORDSresid and NEWARGS as predictors. 

Notice that the result for WORDSresid is identical to the result for the original WORDS variable 

in Table 2. This includes not only the coefficient, but the standard error as well (and thus the t 

value and the significance level). 

The fact that residualizing does not affect any aspect of the outcome for the residualized 

variable may come as a surprise to some researchers, as illustrated by much of the language 

reviewed in the Introduction. The following quote from Cohen-Goldberg (2012) provides a very 

typical example of the underlying logic while at the same time illustrating the result we have just 

shown: 

A significant inhibitory effect of similarity was found (β = .02; s.e. = .005; t = 
4.7). Since onset–onset similarity was strongly correlated with sonority (r = .78), 
initial segment voicing (r = .74) and moderately correlated with letter similarity (r 
= .41), additional tests were performed to ensure a true effect of similarity... a 
significant inhibitory effect remained when similarity was residualized against 
sonority, initial segment voicing, and letter similarity (β = .02; s.e. = .005; t = 4.7) 
(pp. 191-192).  
 

The statistical result for similarity is identical before and after it is residualized.  

Ambridge et al. (2012) seem similarly unaware of this consequence of residualizing, and 

in fact misinterpret the outcome for one of their key theoretical variables -- Pre-emption. Across 

three different age groups, the βs for Pre-emption changed from -.27, -.28, and .00 in  single-

predictor models to +.28, +.17, and +.60 in two-predictor models (their Table 5). Such sign 

changes are what many researchers hope to avoid by residualizing (e.g., Jaeger, 2010), but 
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Ambridge et al. conclude that residualizing in fact caused them:  

...the residualized pre-emption predictor is working in the opposite direction to 
that predicted...This most likely reflects a statistical quirk arising from the 
residualization process... Supporting this interpretation, note that for the older 
children and adults, the pre-emption predictor is in the predicted negative 
direction in the Pre-emption-only model, but the residualized version flips  
(though is not significant) in the Entrenchment + Pre-emption model (p. 271). 
 

Their conclusion that residualizing is an appropriate strategy in light of these results is, to say the 

least, puzzling; but, in any event, they are incorrect about what caused the results. As just 

demonstrated, residualizing has no effect on the result for the residualized variable. The positive 

βs are what would have been observed in two-variable models even without residualization. 

What caused the changes in sign is not residualization, but moving from one-variable to two-

variable statistical models. Study 2 (below, including the Extensions section) illuminates this 

issue further. 

We turn next to the result for NEWARGS. Note that the coefficient (1.512) is the same as 

that observed in the one-variable model (Table 1). Figure 3 illustrates why: Residualizing 

WORDS assigns section c to NEWARGS. Note also that the standard error (.305) is smaller than 

in Table 1. A reduction was expected based on Equations 1 and 2 above, but what is interesting 

is that the standard error is also considerably less than that observed in the two-variable model of 

Table 2. Equation 3 shows why this happens. When the two predictors are uncorrelated, as they 

must be with residualization, Equation 2 simplifies to 

 

           (3) 

 

It is crucial to understand that this result for NEWARGS does not control for WORDS; it 

controls for WORDSresid. That is, it controls for that part of WORDS which is independent of 



Residualizing Predictors in Regression 12	  

NEWARGS, which is to say that it controls for nothing.  

An additional point is worth noting here: The outcome for WORDSresid is not only 

exactly the same as the result from the analysis using the original unresidualized WORDS (Table 

2), but it is also exactly the same as would be obtained for the original unresidualized WORDS 

variable in a hierarchical (rather than simultaneous) analysis. In Table 4, we show the results of 

such an analysis. NEWARGS was entered at Step 1 and WORDS was entered at Step 2.  

The result for NEWARGS is identical to that shown in Table 1, as it must be because 

Step 1 of the hierarchical analysis is identical to the one-predictor model. The WORDS result is 

identical to that seen in Table 2, and to the result for WORDSresid in Table 3. Thus, a 

simultaneous analysis with WORDSresid and NEWARGS produces the same coefficients as a 

hierarchical analysis with NEWARGS entered a step prior to WORDS. The difference is that the 

statistical significance of NEWARGS is exaggerated in the analysis using WORDSresid because 

of an artificially small standard error.  

For the sake of completeness, Table 5 shows the results of a (simultaneous) analysis that 

includes the original version of WORDS and a residualized version of NEWARGS. The results 

are predictable from the foregoing demonstrations. The result for NEWARGSresid is identical to 

that involving the original, unresidualized NEWARGS in Table 2. The coefficient for WORDS 

(.437) is the same value observed in Table 1, when WORDS was the only predictor in the model, 

but its statistical importance is exaggerated here.  

It is worth noting that the models in Tables 2-5 explain exactly the same proportion of 

variance and have identical values on all five of the model fit indices produced by the software 

(version 2.11.1 of R; R Development Core Team, 2010). Thus, the differences between the 

models concern only the individual coefficients and their associated statistical tests. We have 
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seen that the results vary depending on whether (and on which predictor) residualization is done.  

We conclude that the potential for misinterpretation of results involving residualized 

predictors is extremely high. Indeed, as our review of researchers' language in the Introduction 

suggested, some researchers using this approach either misunderstand what it does or do an 

inadequate job of describing their results. As another example of the high potential for 

misunderstanding, one reviewer proposed residualizing both predictors against each other and 

using the two residualized variables in an analysis together in place of the original variables. 

Given a particular specific circumstance this might seem  to be a reasonable course of action. 

However, the correlation between two variables residualized against each other will always have 

the same magnitude as that between the original variables, with the opposite sign. For example, 

in the Lorch and Myers (1990) data set, the correlation between WORDS and NEWARGS is 

.696, and the correlation between WORDSresid and NEWARGSresid is -.696. Such an analysis 

thus does not reduce collinearity, and worse, contains neither of the original predictors of 

interest. 

What, then, should we consider the "true" effect of WORDS or of NEWARGS (as 

Cohen-Goldberg, 2012, put it)? It depends on what is meant by "true," but we argue that the 

simultaneous analysis with the original predictors (see Table 2) comes closest to what 

researchers generally want. According to Darlington (1990), one would say that the effect of 

WORDS, holding NEWARGS constant, is .317. The effect of NEWARGS, holding WORDS 

constant, is .664. In the language of Lorch and Myers (1990), the unique effect of WORDS 

adjusted for NEWARGS is .317 and the unique effect of NEWARGS adjusted for WORDS is 

.664. Baayen and Moscoso del Prado Martín (2005) would say that the independent contribution 

of WORDS, while NEWARGS is held constant, is .317 and the independent contribution of 
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NEWARGS, while WORDS is held constant, is .664. Cohen et al. (2003) would say that, for any 

given value of NEWARGS, the effect of WORDS is .317 and, for any given value of WORDS, 

the effect of NEWARGS is .664. Trying to apply this language to any table other than Table 2 

quickly leads to tortured text and logic, and dramatically increases the likelihood that a 

researcher will produce an inappropriate or inaccurate description of the results. We are not 

advocating needlessly technical language, but rather, careful and clear descriptions. If one's text 

and logic are tortured, it is possible that a different analysis might have been more appropriate. 

Study 2: Simulated Data 

Friedman and Wall (2005) demonstrated that r12 is merely one of the three pieces of 

information that determine the presence and extent of problems relating to collinearity. We now 

simulate data for additional analyses, incorporating all three pieces of information, with the goal 

of achieving a more systematic revelation and understanding of the underlying issues. 

In a typical behavioral study of word recognition, a researcher might have each of 50 

participants respond to each of 100 items. A traditional way of analyzing such data would be to 

calculate a mean reaction time (RT) for each of the items by averaging over participants, and 

using item-specific values on some variables to try to predict those RTs. There are more 

sophisticated ways to analyze such data that take their repeated-measures nature into account, 

such as the multi-level models used in Study 1. However, at present there is no agreed-upon 

method for calculating R2 for those models, so for Study 2 we opt for the traditional method of 

analysis in order to demonstrate certain points more clearly.  

For the simulations, five different values of predictor intercorrelation were examined: ρ12 

= -.50, 0, .35, .75, and .95. The case where ρ12 = 0 illustrates the idealized situation in which 

interpretation of the individual coefficients is least ambiguous. Because we built a medium and a 
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small effect into the data (details are provided below), each of the other four values of ρ12 resides 

in a distinct region discussed in Friedman and Wall's (2005) very useful computational 

framework.  

Method 

Data were simulated with the mvrnorm module of the MASS package (version 7.3-6; 

Venables & Ripley, 2002) and version 2.11.1 of R (R Development Core Team, 2010). Each call 

to mvrnorm produces a sample of a desired size (100 in this case, to simulate data for 100 

imaginary items) from a specified multivariate normal distribution. As our starting point, we 

specified a covariance matrix in which ρ12 = 0, ρY1 = .32, and ρY2 = .22. That is, the predictor 

variables were uncorrelated, X1 correlated .32 with Y, and X2 correlated .22 with Y. On average 

these values produce a medium effect for X1 (roughly 10% explained variance) and a small 

effect for X2 (roughly 5% explained variance). After each of 10,000 calls to mvrnorm, the 

simulated data were analyzed with a linear model. Y was the DV and X1 and X2 were predictors. 

All three variables were z-scores, so the resulting regression coefficients are standardized (βs) 

rather than unstandardized (bs). Several statistics were recorded from each analysis: r12, rY1, rY2, 

β1, β2, R2, and the p-values associated with the test on each β. An additional 40,000 calls were 

made to mvrnorm, 10,000 at each of the other values of ρ12, and the data were analyzed in the 

same way. 

Results and Discussion 

Table 6 presents the results. As can be seen from the first column of Table 6, when 

predictor variables are uncorrelated, the regression analysis reflects the underlying correlation 

between the DV and each predictor. To two decimal places, mean β1 = mean rY1 and mean β2 = 

mean rY2. Mean adjusted R2 = .15, which is the sum of the medium effect (.322) and the small 
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effect (.222) that were built into the data. Power is quite acceptable for the medium effect and a 

bit less than the desired .80 for the small effect. 

The second column shows the results when ρ12 = -.50. Each predictor has a positive 

relationship with the DV, but the predictors have a negative relationship with each other. This is 

in a region Friedman and Wall (2005) call Region I, Enhancement. Both β1 and β2 are greater 

than in the uncorrelated case, and . This is one example of the kind of situation 

Hamilton (1987) had in mind (see also Region IV below) when cautioning against the conclusion 

that correlated variables are necessarily redundant. For both effects, the likelihood of statistical 

significance is nearly 1. 

The third column shows the results when ρ12 = .35. This is in a region Friedman and Wall 

(2005) call Region II, Redundancy. Both β1 and β2 are smaller than in the uncorrelated case, and 

. The likelihood of either effect reaching statistical significance is lower, 

substantially so in the case of the smaller effect. The Lorch and Myers (1990) data analyzed in 

Study 1 provide an example of Redundancy, and this would seem to be the region in which 

researchers most often find themselves. We would generally expect the correlation between 

predictors with the same kind of effect on the DV to be positive. The interpretation here is 

familiar and sensible: We would say that the effect of X2 no longer holds when one takes X1 into 

account, as we concluded in connection with Table 2 above.  

The fourth column shows the results when ρ12 = .75. This is in a region Friedman and 

Wall (2005) call Region III, Suppression. The main characteristics of this region are that the β 

for the smaller effect has changed sign, and the β for the larger effect is greater than in the ideal 

uncorrelated case. R2 in this region is increasing from a minimum value but remains less than 

.3 The likelihood of either effect reaching statistical significance is low (extremely so for 

€ 

R2 > rY1
2 + rY2

2

€ 

R2 < rY1
2 + rY2

2

€ 

rY1
2 + rY2

2
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the smaller effect). The likely conclusion here is the same as in Region II: The effect of X2 no 

longer holds when one takes X1 into account. 

The last column shows the results when ρ12 = .95. Friedman and Wall (2005) call this 

Region IV, Enhancement, as . It is distinguished from Region I, also called 

Enhancement, by the changed sign of β2. Both βs are becoming more extreme, and the power 

values indicate a strong likelihood that both effects, including the one with the changed sign, will 

be statistically significant. 

The general boundaries of the regions are shown in Table 7. The lower bound of Region I 

and the upper bound of Region IV are the theoretical minimum and maximum values of r12, 

respectively. Figure 4 illustrates the behavior of the βs over the range of possible values of r12 in 

the specific context of the effect sizes used here (-.854 < r12 < .995). The behavior of the βs in 

the figure is the straightforward result of the regression equation arriving at the optimal least-

squares solution to the analytical problem.  

A major part of Jaeger's (2010) motivation in residualizing appeared to relate to effects 

changing sign (i.e., Regions III and IV). One might wonder how common this is. For a data set 

like the Lorch and Myers (1990) example used in Study 1, r12 needs to be above .903 for entry 

into Region III and above .995 for entry into Region IV. For a data set with perhaps more 

realistic effect sizes, like the one simulated here, r12 needs to be above .688 for entry into Region 

III and above .934 for entry into Region IV. We doubt that researchers will find themselves in 

this territory all that often, unless they are using regression to adjudicate between two highly-

correlated predictor variables. We assert that regression is not well-suited to this task. We return 

to this point below, under "Recommendations and Conclusion."  

However, there is a more important point. The regression model is not influenced by 

€ 

R2 > rY1
2 + rY2

2
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whether the sign of a coefficient makes sense given the researcher's theoretical model. A 

changed sign may be an indication that the variable under consideration is of lesser theoretical 

importance. The variable that changes sign will always have the smaller of the two correlations 

with the DV. It does not relate to the DV in the way theorized, but operates "as a measure of the 

sources of error" in the other predictor (Darlington, 1990, p. 155), whose effect is stronger. Put 

another way, the predictor whose sign has changed accounts for (or suppresses) a portion of the 

variance in the other predictor that is unrelated to the DV (Pandey & Elliott, 2010).  

What Happens When X1 is Residualized? 

The simulated data were reanalyzed, using the original version of predictor X2 but a 

residualized version of X1. The results of these analyses are shown in Table 8. 

A row-wise comparison of Tables 6 and 8 shows that residualization has affected some 

aspects of the results while leaving others unchanged. r1resid2 is of course now 0 for all values of 

ρ12, as it must be. Thus, we can now conceptualize the analytic situation as being at the X=0 

location on figures like Figure 4, but we must remember that Figure 4 is no longer the correct 

representation because residualizing has changed the multivariate correlational structure of the 

data. Not surprisingly, residualization of X1 had no effect on rY2, but the zero-order correlation 

between the other predictor and the DV has changed. That is, rY1resid does not equal rY1, because 

X1resid is not X1 unless r12 = 0.  Therefore, although we may find it comforting that this analysis 

will produce "true" βs because the predictor intercorrelation has been set to 0, it must be 

remembered that those βs will be for variables that are not the original variables.  

It is worth noting that residualizing X1 had no effect whatsoever on the β or on the 

likelihood of detecting an effect of what was originally X1. This was to be expected given Study 

1 but, given some of the language reviewed in the introduction, this outcome might surprise 
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some authors. Residualizing X1 also had no effect on any of the R2 values. What differs, then, is 

how the total pool of explained variance is being assigned. As argued in Study 1, this is a 

function of what we have artificially done by giving X2 first access to the variance. This point 

can also be seen by examination of the β2 values. In all cases, they have the same value as rY2.  

To our knowledge, no researcher has ever discussed the effect of residualizing X1 on the 

likelihood of finding an effect of X2, even though it can be fairly dramatic. In Regions I and IV 

(i.e., ρ12 = -.50 and .95), residualizing X1 has decreased the probability of finding an effect of X2 

by .297 and .167, respectively. In Regions II and III residualizing X1 has increased the 

probability of finding an effect of X2 by .403 and .556, respectively. This is an unappealing state 

of affairs given the logic usually invoked for residualizing: A researcher wanting to know the 

"true" or "incremental" effect of X1, over and above the effect of X2, residualizes X1. The result 

for X1resid is identical to what it would have been for X1, but the procedure has had a dramatic 

effect on the likelihood of finding an effect of the other predictor, X2.  

What Happens When X2 is Residualized? 

The data from Table 6 were reanalyzed using the original version of predictor X1 but a 

residualized version of X2. The results of these analyses are shown in Table 9. In general, they 

are quite predictable from the foregoing analyses. Compared to the original analysis in Table 6, 

we can see that residualizing X2 has had no effect on any of the R2 values, or on rY1, or on the β, 

or on the likelihood of finding an effect of what was originally X2. Where it did have an effect is 

in the zero-order correlation between the DV and what was originally X2, and on β1, and on the 

likelihood of finding an effect of X1 (which now exceeds .90 in all cases).  

The reappearance of the -.046 in the fourth column of the table is interesting. This is of 

course exactly the same value that was observed in Table 6 but, in the current analyses, it is not 
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suppression. Residualization in fact changed rY2resid to negative, so this β does not represent a 

change in sign. We believe most researchers will consider this an unexpected and unwelcome 

outcome given that the effect built into these data was positive.  

This last point underscores how much it matters which variable is residualized. If it is the 

one with the larger effect, the result will be two coefficients with no apparent suppression. If it is 

the one with the smaller effect, the result can be apparent suppression that is not really 

suppression. We believe that this situation captures what was happening in the data of Ambridge 

et al. (2012), which they dismissed as a "quirk arising from the residualization process" (p. 271).  

Power for the non-residualized variable has been affected, as in the analyses in which X1 

was residualized. In Regions I and IV (i.e., ρ12 = -.50 and .95), residualizing X2 has decreased 

the probability of finding an effect of X1 by .058 and .046, respectively. In Regions II and III, 

residualizing X2 has increased the probability of finding an effect of X1 by .133 and .232, 

respectively. These are smaller than the corresponding numbers from the previous section 

because X2 is the smaller of the two effects built into the data. 

Extensions 

One might wonder whether our results scale up to more realistic data sets. We present 

three different pieces of evidence showing that they do. First, we mentioned above an analysis in 

which Cohen-Goldberg (2012) found an exactly identical result for a predictor before and after 

residualizing it. That analysis included more than 10,000 responses and had 19 predictor 

variables. The predictor in question had been residualized against three other predictors. 

Second, we took an actual data set consisting of lexical decision times for 106 items, each 

of which was responded to by 88 subjects. Response errors were deleted, making the data array 

ragged (i.e., not all subjects are represented an equal number of times, and not all items are 



Residualizing Predictors in Regression 21	  

represented an equal number of times). We chose 10 numeric predictor variables, all measured 

on different scales. Their distributions deviated by varying degrees from normal; in some cases 

this deviation was substantial. Predictor intercorrelations ranged from -.66 to +.67. We added 

three more predictors consistent with a real-world analysis: Trial number, and two two-level 

factors (subject gender and voicing of the onset phoneme).  

We used mixed-effects analyses with subjects and items as crossed random factors, the 

same type of analysis used in Study 1. Adopting a strategy cited in the Introduction, we 

residualized whenever a predictor correlation exceeded .50 in absolute magnitude (i.e., 

regardless of sign). There were five such correlations, involving seven of the 10 numeric 

predictors. X1 was residualized against X6. X9 was residualized against X5. X3 was residualized 

against X5, X7, and X12. We believe that the difficulties in interpretation noted above only get 

worse with each additional residualizing variable, but this is sometimes done (e.g., Kahn & 

Arnold, 2012). We make no defense of such a statistical model, but present it as an example of 

realistic complexity with real data. 

We first ran the analysis with all of the original variables. Then, we substituted the three 

residualized versions for their original counterparts and re-ran the analysis. The results for the 

three residualized variables matched the results of the first analysis, in line with the findings 

presented above. The results for the residualizing variables (X5, X6, X7, and X12) changed, again 

in line with the findings above. Finally, the results for the remaining variables, uninvolved in any 

residualizations, remained unchanged. 

Our third kind of evidence is conceptual. Consider the result for X3 vs. X3resid, for 

example. In the original analysis, X3 was assigned the variance it could explain that no other 

predictor could. This exact same variance was assigned to X3resid in the second analysis: Variance 
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that used to be explainable by  X3 and/or X5 and/or X7 and/or X12 was expressly taken away from 

X3, but X3 was never given credit for that variance anyway. Thus, our findings do scale up as 

expected. 

General Discussion 

The current study has shown several of the effects of residualizing a predictor variable 

(assume X1 here) in regression analyses. First and foremost, it produces an intercorrelation 

between predictors of 0, which was of course its desired effect. It is important to note that it does 

this by substituting a new predictor for one of the originals (e,g., X1resid for X1). This has the 

concomitant effect of substituting rY1resid for rY1. The difference between these two correlations 

depends on r12 and can be dramatic. 

Residualizing also gives the non-residualized predictor first access to the shared variance, 

which (conceptually) could be desirable and appropriate. Refusing to give a new predictor the 

same access to variance as more established predictors would seem to be a conservative 

approach. However, this creates an analysis that is neither simultaneous nor hierarchical in terms 

of the original variables, but which blends aspects of both. Specifically, residualizing 

exaggerates the statistical importance of the non-residualized predictor in a region of 

Redundancy or Suppression, and underestimates it in a region of Enhancement (as defined by 

Friedman & Wall, 2005). Finally, residualizing replaces the problem of collinearity (to the extent 

that it is a problem) with one that is less obvious and less well-understood. For these reasons, 

residualizing sometimes creates conceptual difficulty and leaves the researcher unable to draw 

any firm conclusions. 

The current study has also demonstrated several things that residualizing does not do. 

Probably the most important is that it does not change the result for the predictor that was 
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residualized. Further, residualizing (a) does not create an improved, purified, or corrected version 

of the original predictor,  (b) does not change the overall explanatory power of the model, and (c) 

does not change any of the indices of model fit (AIC, BIC, log likelihood, etc.).  

Additional Interpretational Issues 

Psycholinguists using regression have been concerned about statistical undercontrol (i.e., 

failing to take some important variable into account), but aside from collinearity concerns, they 

seem to have placed far less emphasis on the issue of statistical overcontrol (i.e., including too 

many predictor variables in a model). Meehl (1970) framed the conceptual consequences of this 

in terms of investigators interpreting counterfactual situations (e.g., a world in which written 

word frequency is uncorrelated with spoken word frequency) after having created a "virtual or 

idealized sample" (p. 401) that is given fictional values. He asserts that "When a social scientist 

of methodological bent tries to get clear about the meaning, proof, and truth of those 

counterfactuals that interpret statistical formalisms purporting to 'control the influence' of 

nuisance variables, he is disappointed to discover that the logicians are still in disagreement 

about just how to analyze counterfactuals" (p. 385; see also Campbell, Converse, & Rodgers, 

1976). Anderson (1963) was succinct in making a similar point: "...one may well wonder exactly 

what it means to ask what the data would be like if they weren't what they are" (p. 170). 

Breaugh (2006) presents an illustrative example built around the hypothesis that taller 

basketball players get more rebounds. Regression analyses using data downloaded from the 

website of the National Basketball Association suggest that the hypothesis is true only if players' 

weights are not controlled for. However, Breaugh questions whether a height variable from 

which weight has been residualized is even interpretable as anything. In the real world, these 

quantities are strongly correlated, so how are we to conceptualize this new variable? Breaugh 
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(2006) says that "...making subjunctive statements based upon a residual variable is 

inappropriate. Simply stated, there is no basis to assume that, if in reality height and weight were 

uncorrelated, height would not be related to rebounds. Given they are correlated, and highly so, 

we simply have no way of knowing" (p. 439).  

Recommendations and Conclusion 

Some researchers consider mean-centering to be a viable alternative to the residualizing 

of predictors because they contend that it reduces collinearity (Kromrey & Foster-Johnson, 

1998). However, the strategy is misguided because it ignores the crucial distinction between 

essential and non-essential collinearity (e.g., Dalal & Zicker, 2012). Mean-centering reduces 

non-essential collinearity, which is due to the way in which variables are scaled, but not essential 

collinearity, which is due to the underlying relationships between variables. As Pedhazur (1997) 

notes: "...centering X in the case of essential collinearity does not reduce it, though it may mask 

it by affecting some of the indices used to diagnose it" (p. 306; see also Belsey, 1984). Mean-

centering can sometimes facilitate interpretation of regression coefficients (but cf. Cohen, 1978; 

Kromrey & Foster-Johnson, 1998); but it does not reduce essential collinearity. 

It might be worthwhile to investigate the effectiveness and appropriateness of techniques 

that have not been widely used in psycholinguistics but that have been developed to solve similar 

analytic issues. One such technique, random forests, (Strobl, Malley, & Tutz, 2009) uses 

permutations of predictor variables to rank the importance of predictors. Many models are 

computed, with variables in their original and permuted forms. If the permuted versions of a 

variable lead to substantially worse models, that variable is assigned a relatively higher 

conditional importance. One disadvantage is that even with modern computers and algorithms, 

computation of the models can take many hours (Tagliamonte & Baayen, 2012). 
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Another alternative is ridge regression (Hoerl, 1962). In the context of high collinearity, 

ridge regression produces parameter estimates with less error variance than that seen with 

ordinary least-squares regression. The price a researcher pays is that the parameter estimate has a 

slight conservative bias. A far more important shortcoming for most psycholinguistic 

applications is that there is no way to use this in a repeated-measures design. One would need to 

collapse across items or participants. 

A method of model comparison exists that formally tests whether a more complex model 

is statistically justified (i.e., whether the additional explained variance is worth increasing the 

complexity of a model). Cohen-Goldberg (2012) employs this method, as does Jaeger (2010), 

who notes that it is "robust against collinearity" (p. 37) and thus does not suffer from the reduced 

power associated with the t-test on a regression coefficient. Jaeger (2010) also points out the 

shortcoming of the method: The direction of the effect cannot be assessed.  

Whatever statistical technique is chosen, researchers must be clear about what they wish 

to test. Language about "true" or "accurate" or "reliable" effects is probably meaningless without 

further elaboration. A review of the literature (see examples in the Introduction) suggests that 

researchers' hypotheses in these situations are usually about the unique explanatory power of a 

predictor, beyond that of other predictors. When this is true, simultaneous multiple regression 

with the original predictors is the way to proceed (Breaugh, 2006; Lorch & Myers, 1990; 

Pedhazur, 1997) because this provides the basis for the appropriate interpretation of the resulting 

coefficients. As we have seen, these resulting coefficients need not reflect the zero-order 

correlation between any given independent variable and the dependent variable, because that is a  

different statistical question which is not addressed by multiple regression. 

A hierarchical analysis might sometimes be preferable, insofar as it makes explicit the 



Residualizing Predictors in Regression 26	  

researcher's desire to know if a single additional predictor explains variance beyond that of an 

already-established model. We repeat, though, that the result of this analysis as regards the last 

added predictor is identical to the result of the simultaneous analysis (e.g., the result for 

WORDS in Tables 2 and 4). 

Tabachnick and Fidell (2007) list several options for researchers concerned about 

collinearity: Ignore it (if the goal is simply to maximize R2); eliminate one or more of the 

variables; make a composite variable (for example, by making ratios of different frequency 

measures, as was done in Baayen et al., 2006 and Wurm, 2007); or subject the variables to a 

principle components analysis (as was done, for example, in Baayen et al., 2006). However, none 

of these is satisfactory if the researcher's goal is to evaluate the effects of one or more of the 

individual predictors. Models that differ by just one predictor can suggest dramatically different 

effects. For example, omitting a suppressor variable produces underestimates of the effect of X 

on Y (Cohen et al., 2003), and we have shown above that residualizing such a variable has 

differing effects depending on whether the variable resides in Region III or IV of Friedman and 

Wall's (2005) framework. Making a composite variable destroys any possibility of choosing 

between two similar variables for theory-building purposes, as does a principle component 

analysis.  

Worries about suppression might be overblown, though. Darlington (1990) says 

"Suppression rarely occurs in real data" (p. 155), and Cohen et al. (2003) say that it is more 

likely to be seen in fields like economics where variables or actions often have simultaneous 

equilibrium-promoting effects. The computational framework of Friedman and Wall (2005) 

provides an easy way to see whether an analysis will produce a sign change (or any of the other 

possibilities discussed above): Assuming rY1 > rY2 > 0, the sign of the coefficient for X2 will 
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change if r12 exceeds rY2/rY1. Above, we showed that these cut-off values were .903 for the Lorch 

and Myers (1990) data set, and .688 for the parameters used in Study 2. As reviewed in the 

Introduction, some researchers residualize at values of r12 considerably smaller than this.4 The 

larger point, and one of our main conclusions, is that to the extent that collinearity is a problem, 

residualizing does not solve it.  

Researchers should understand that suppression does not indicate computational 

problems or model instability. Thus, one of the reasons given for residualizing, namely 

instability of computational estimates in the context of high collinearity, appears not to be valid. 

Friedman and Wall (2005) write (and demonstrate) that, because of advances in computational 

algorithms and accuracy, "multicollinearity does not affect standard errors of regression 

coefficients in ways previously taught" (p. 127). 

Researchers might mean something different by "instability," though. It is true that in the 

presence of high collinearity relatively minor changes in the structure of a data set, even small 

differences due to random error in a replication study, can potentially reverse the order of 

importance of X1 and X2. The current study has shown that under some circumstances this could 

lead to opposite conclusions about whether a predictor's effect is facilitative or inhibitory. 

Pedhazur (1997) discusses these issues, but crucially, concludes that "none of the proposed 

methods of dealing with collinearity constitutes a cure. High collinearity is symptomatic of 

insufficient, or deficient, information, which no amount of data manipulation can rectify" (p. 

318).  

When psycholinguists encounter high collinearity, they should examine closely the 

reason(s) why. In such situations they may have to come to terms with the possibility that 

multiple regression is simply ill-suited to some of the purposes for which they would like to use 
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it. Darlington (1990), amplifying earlier remarks (Darlington, 1968), wrote that it is a 

"misconception about collinearity...that more advanced statistical methods might someday 

eliminate the problem. But the problem is essentially that when two variables are highly 

correlated, it is harder to disentangle their effects than when the variables are independent. This 

is simply an unalterable fact of life" (p. 131; see also Breaugh, 2006; Meehl, 1970; Pedhazur, 

1997). We are not as comfortable as Darlington in predicting what might be possible with future 

statistical techniques, but we have shown in the current study that residualization of predictor 

variables is not the hoped-for panacea.  
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Footnotes 

1The distinction between ordinary least-squares regression and the kind of mixed-effects 

model described by Baayen, Davidson, and Bates (2008) is unimportant for the current study. 

Both techniques are used here, and the same findings and conclusions hold.  

2One reviewer wondered if perhaps researchers were guilty of imprecise writing, rather 

than misunderstanding residualization. Evidence is presented later that there is genuine 

misunderstanding in at least some of these cases. 

3Discussion of the different definitions of suppression is beyond the scope of this paper. 

Here we use the capitalized word Suppression in referring specifically to Region III as defined 

by Friedman and Wall (2005). We use suppression (lower case) in the generic sense of a 

predictor's regression coefficient having a different sign than that predictor's zero-order 

correlation with the DV, as it is such sign changes that seem to call for either an explanation or 

countermeasures in psycholinguistic analyses (e.g., Ambridge et al., 2012; Jaeger 2010). 

4One reviewer noted that there are no such simple rules of thumb when one gets beyond 

two predictors. Deriving such cross-over points with several predictors is indeed complex, but it 

can be done if one wants them (e.g., Peters & Van Voorhis, 1935; Peters & Wykes, 1931a, 

1931b). If it is simply the presence of a sign change that is of interest, it would be far easier to 

simply check whether the zero-order correlation between a predictor and the DV has a different 

sign that that predictor's regression coefficient. 
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Table 1. Results of two linear mixed-effects analyses of reading time. In one, the predictor 
variable is the number of words. In the other it is the number of new arguments (data from Lorch 
and Myers, 1990). Neither analysis involved residualization. 

 
___________________________________________________________________ 

       b  SE b     t   
___________________________________________________________________ 
Analysis 1: Predictor = WORDS  0.437  0.090  4.857*  
------------- 
Analysis 2: Predictor = NEWARGS  1.512  0.477  3.169* 
___________________________________________________________________ 
*p < .05 
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Table 2. Results of linear mixed-effects analysis of reading time as a function of number of words 
and new arguments (data from Lorch and Myers, 1990). Neither predictor was residualized. 
 
______________________________________________________________ 
Predictor      b  SE b     t   
______________________________________________________________ 
WORDS   0.317  0.110  2.875*  
NEWARGS   0.664  0.424  1.566  
______________________________________________________________ 
*p < .05 
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Table 3. Results of linear mixed-effects analysis of reading time as a function of number of words 
and new arguments (data from Lorch and Myers, 1990). WORDS was residualized. 
 
______________________________________________________________ 
Predictor      b  SE b     t   
______________________________________________________________ 
WORDSresid   0.317  0.110  2.875*  
NEWARGS   1.512  0.305   4.964*  
______________________________________________________________ 
*p < .05 
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Table 4. Results of hierarchical linear mixed-effects analysis of reading time as a function of 
number of words and new arguments (data from Lorch and Myers, 1990). Neither predictor was 
residualized, but they were entered in two discrete steps. 
 
______________________________________________________________ 

Predictor      b  SE b     t   
______________________________________________________________ 
Step 1 

NEWARGS   1.512  0.477   3.169*  
Step 2  

WORDS   0.317  0.110  2.875*  
______________________________________________________________ 
*p < .05 
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Table 5. Results of linear mixed-effects analysis of reading time as a function of number of words 
and new arguments (data from Lorch and Myers, 1990). NEWARGS was residualized. 
 
______________________________________________________________ 
Predictor      b  SE b     t   
______________________________________________________________ 
WORDS   0.437  0.079  5.518*  
NEWARGSresid  0.664  0.424   1.566    
______________________________________________________________ 
*p < .05 
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Table 6. Results of simulations (N = 10,000 for each value of ρ12). Neither X1 nor X2 was 
residualized. 
______________________________________________________________________________ 

 
                                                 ρ12      

    ______________________________________________________ 
 

  0  -.50  .35  .75  .95 
______________________________________________________________________________ 
Mean r12   -0.001   -0.498   0.347   0.747   0.950 
Mean rY1    0.317   0.319   0.319   0.316   0.319 
Mean rY2    0.220   0.220   0.218   0.217   0.219 
Mean β1    0.318   0.572   0.277   0.351   1.135 
Mean β2     0.220    0.506    0.122   -0.046   -0.860 
Mean R2    0.165   0.306   0.132   0.118   0.189 
Mean adjusted R2   0.148   0.291   0.114   0.100   0.173 
 
Power for effect of: 

X1    0.913   > .999   0.777   0.673   0.964 
X2    0.646   0.998   0.222   0.060   0.818 

______________________________________________________________________________ 

 
 
  



Residualizing Predictors in Regression 42	  

Table 7. r12 boundaries of the four regions discussed in Friedman and Wall (2005), assuming rY1 
> rY2 > 0.   
______________________________________________________________________________ 

 
Region         Lower bound   Upper bound 
______________________________________________________________________________ 
 

I, Enhancement     0 

II, Redundancy  0               

III, Suppression                     

IV, Enhancement           

______________________________________________________________________________ 

 

rY1rY2 - 1-rY1
2( ) 1-rY22( )

rY2
rY1

rY2
rY1

2rY1rY2
rY1
2 +rY2

2

2rY1rY2
rY1
2 +rY2

2 rY1rY2+ 1-rY1
2( ) 1-rY22( )
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Table 8. Reanalysis of data from Table 6 with X1 residualized. 

______________________________________________________________________________ 
 
                                                 ρ12      

    ______________________________________________________ 
 

  0  -.50  .35  .75  .95 
______________________________________________________________________________ 
Mean r1resid2    0.000   0.000   0.000   0.000   0.000 
Mean rY1resid    0.316   0.493   0.258   0.232   0.353 
Mean rY2    0.220   0.220   0.218   0.217   0.219 
Mean β1resid    0.318   0.572   0.277   0.351   1.135 
Mean β2     0.220    0.220    0.218   0.217   0.219 
Mean R2    0.165   0.306   0.132   0.118   0.189 
Mean adjusted R2   0.148   0.291   0.114   0.100   0.173 
 
Power for effect of: 

X1resid    0.913   > .999   0.777   0.673   0.964 
X2    0.638   0.701   0.625   0.616   0.651 

______________________________________________________________________________ 
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Table 9. Reanalysis of data from Table 6 with X2 residualized. 

______________________________________________________________________________ 
 
                                                 ρ12      

    ______________________________________________________ 
 

  0  -.50  .35  .75  .95 
______________________________________________________________________________ 
Mean r12resid    0.000   0.000   0.000   0.000   0.000 
Mean rY1    0.317   0.319   0.319   0.316   0.319 
Mean rY2resid    0.219   0.436   0.114   -0.031   -0.267 
Mean β1    0.317   0.319   0.319   0.316   0.319 
Mean β2resid     0.220    0.506    0.122   -0.046   -0.860 
Mean R2    0.165   0.306   0.132   0.118   0.189 
Mean adjusted R2   0.148   0.291   0.114   0.100   0.173 
 
Power for effect of: 

X1    0.914   0.941   0.910   0.905   0.918 
X2resid    0.646   0.998   0.222   0.060   0.818 

______________________________________________________________________________ 
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Figure Captions 

Figure 1. Venn diagram illustrating the effects of WORDS and NEWARGS in a simultaneous 
analysis with no residualization. Section a represents the variance assigned to WORDS and 
section b represents the variance assigned to NEWARGS. The variance represented by section c 
is included in the R2 calculations but is not assigned to either predictor variable because it is not 
uniquely attributable to either one. 
 
Figure 2. Venn diagram illustrating the effect of NEWARGS when it is the only predictor in the 
model. Sections b and c represent the variance assigned to NEWARGS. 
 
Figure 3. Venn diagram illustrating the effects of WORDSresid and NEWARGS. Residualizing 
WORDS assigns section c to NEWARGS. 
 
Figure 4. β values for X1 and X2 as a function of  the correlation between the predictors (r12), 
following Friedman and Wall (2005). rY1 is the effect built into the data for X1. rY2 is the effect 
built into the data for X2. Region I = Enhancement, as both β1 and β2 are greater than in the 
uncorrelated case, and . Region II = Redundancy, as both β1 and β2 are smaller than 
in the uncorrelated case, and . Region III = Suppression, as the β for the smaller 
effect has changed sign, and the β for the larger effect is greater than in the ideal uncorrelated 
case. R2 remains less than . Region IV = Enhancement, as . It is 
distinguished from Region I, also called Enhancement, by the changed sign of β2. It begins at a 
value of r12 = .934, and is too small to label. 
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