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An Extended Weighted Exponential 
Distribution 
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A new class of weighted distributions is proposed by incorporating an extended 
exponential distribution in Azzalini’s (1985) method. Several statistics and reliability 
properties of this new class of distribution are obtained. Maximum likelihood estimators 
of the unknown parameters cannot be obtained in explicit forms; they have to be obtained 

by solving some numerical methods. Two data sets are analyzed for illustrative purposes, 
and show that the proposed model can be used effectively in analyzing real data. 
 
Keywords: Exponential distribution, extended exponential distribution, hazard rate 
function, maximum likelihood estimation, weighted exponential distribution 

 

Introduction 

Adding an extra parameter to an existing family of distribution functions is 

common in statistical distribution theory. Introducing an extra parameter often 

brings more flexibility to a class of distribution functions, and it can be very 

useful for data analysis purposes. Azzalini (1985) introduced the skew normal 

distribution by introducing an extra parameter to bring more flexibility to the 

normal distribution. Afterwards, extensive works on introducing shape parameters 

for other symmetric distributions have been defined, and several properties and 

their inference procedures have been discussed by several authors; see for 

example Balakrishnan and Ambagaspitiya (1994), Arnold and Beaver (2000), and 

Nadarajah (2009). 

Recently, there has been an attempt to use Azzalini's method for non-

symmetric distributions. Gupta and Kundu (2009) introduced a class of weighted 

exponential (WE) distribution that has a shape parameter. It is said that a random 

variable X follows the WE(α, λ) distribution if its density function is given by 

https://doi.org/10.22237/jmasm/1493597760
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where x > 0, α > 0, and λ > 0. 

Shakhatreh (2012) generalized the WE distribution to the two-parameter 

weighted exponential (TWE) distribution. A random variable X is said to have a 

TWE distribution with shape parameters α1 > 0, α2 > 0 and scale parameter λ > 0 

if the PDF of X is given by 
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It is observed that the WE and TWE distributions can provide a better fit for 

survival time data relative to other common distributions such as the gamma, 

Weibull, or generalized exponential distributions. 

The aim of this study is to introduce an extended weighted exponential 

(EWE) distribution based on extended exponential (EE) distribution introduced 

by Gómez, Bolfarine, and Gómez (2014). A random variable X follows the EE 

distribution with parameters λ and β if its density function is given by 

 

  
 2 1

f ; , , 0

xx e
x x

 
 

 


 


  (3) 

 

where λ > 0 and β > 0 with the notation X ~ EE(λ, β). 

One of the goals of the introduction of the EWE is that involves the WE as 

its sub-model. The EWE has three parameters, one scale parameter and two shape 

parameters, which makes it more flexible in describing different types of real data 

than its sub model. 

It is observed that the EWE distribution has several desirable properties. The 

generation of random samples from the EWE is straight forward. The maximum 

likelihood estimators (MLEs) of unknown parameters can be obtained by solving 

three nonlinear equations. For illustrative purposes we have analyzed the two real 

data sets. After analyzed the data using the EWE model, observe that EWE 

provides a better fit than the WE model and TWE. 
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Definition, Interpretations, and Generation 

Definition: A random variable X is said to have an extended weighted 

exponential distribution with shape parameters α > 0, β > 0 and scale parameter 

λ > 0, denoted by EWE(α, β, λ), if the density function of X is given as below 
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  (4) 

 

for x > 0 and 0 otherwise. 

Plots of the EWE density function for fixed scale parameter λ = 1 and 

selected shape parameters are given in Figure 1. It is a unimodal density function 

for various values of the shape parameters. It is easy to show that if α → 0 then (4) 

converges to gamma(2, λ) and if α → ∞ then (4) converges to exp(λ). Note that, 

when β = 0, then EWE(α, β = 1, λ) = WE(α, λ). 

 

Interpretation 1: EWE distribution can be obtained the same way that 

Azzalini obtained the skew-normal distribution. Suppose X1 and X2 are two 

independent variables and X1 ~ exp(λ), X2 ~ EE(λ, β). For any α > 0, consider a 

new random variable X = X1 given that αX1 > X2. It can be easily observed that the 

density function of X is (4). 

 

Interpretation 2: EWE distribution can be obtained by the hidden truncation 

model proposed by Arnold and Beaver (2000). Suppose Z and Y are two 

dependent random variables with the joint density function 
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It can be shown that the conditionally random variable Z |Y ≤ α has the EWE 

distribution. 
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Figure 1. Plots of the EWE density function for fixed scale parameter λ = 1 and some 

selected shape parameters 

 

 

Interpretation 3: Using the moment generating function (MGF) the 

stochastic representation of X can be easily obtained. Suppose U and V are two 

independent variables with distributions exp(λ) and EE(λ(1 + α), αβ), respectively. 

Then it can be observed that if 

 

 X U V    (6) 

 

then X has the density function (4). 

 

Generation: All the above three interpretations can be used to generating 

random numbers from EWE distribution. Note that the simplest way to generate 

EWE random number is to use the stochastic representation (6). 

Statistical and Reliability Properties 

If X ~ EWE(α, β, λ), then the MGF of X for any t < λ is given by 
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By straightforward integration, the row moments of X about the origin are 

found to be 
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In particular, mean and E(X 2) are given, respectively, by 
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The distribution function for the random variable X is given by 
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where 
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Also, the survival function and hazard rate function (HRF) of X can be placed in 

the following compact forms respectively: 
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Figure 2. Plots of the EWE hazard rate function for fixed scale parameter λ = 1 and some 

selected shape parameters 

 

 
 

In Figure 2, the HRF of the EWE distribution is plotted for selected values 

of the shape parameters and fixed scale parameter λ = 1. The HRF is an increasing 

function. The concept of an increasing failure rate is very attractive in an 

engineering context, where it has often been related to a mathematical 

representation of wear out (Marshall & Olkin, 2007). 

One of the well-known properties of the life time distribution is mean 

residual life time. For the EWE distribution it can be written as 
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Maximum Likelihood Estimation 

The MLEs will be derived for the unknown parameters of the EWE distribution 

from complete samples only. 

Let X1,…, Xn be a random sample from GWE(α, β, λ). The log-likelihood 

function based on the observed sample {x1,…, xn} is 
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To find the MLE estimates for the EWE model parameters, differentiate the 

log-likelihood function and equating the resulting expressions to 0 as follows: 
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The MLEs of the unknown parameters cannot be obtained explicitly. They 

have to be obtained by solving some numerical methods, like the Newton-
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Raphson method, Gauss-Newton method, or their variants. In this paper we use 

the optim function from the statistical software R (R Core Team, 2013) to 

estimate the unknown parameters. 

Simulation 

Some simulation results are presented to see how the maximum likelihood 

estimators behave for different sample sizes and for different parameter values. 

The sample sizes, namely n = 20, 40, 60, and 80 and two different sets of 

parameter values: Set 1: α = 0.5, λ = β = 1, and Set 2: β = 0.5, α = λ = 1. In each 

case, the maximum likelihood estimators of the unknown parameters are 

computed by maximizing the log-likelihood function (15). The average estimates 

and mean squared errors were computed over 1000 replications and the results are 

reported in Table 1. In all the cases the performances of the maximum likelihood 

estimates are quite satisfactory. As sample size increases the average estimates 

and the mean squared error decrease for all the parameters, as expected. It verifies 

the consistency properties of the MLEs. 

 

 
Table 1. The average MLEs and the associated square root of the mean squared errors 

(within brackets) 
 

 
Set 1 

 
Set 2 

n α β λ 
 

α β λ 

20 0.6143 1.1257 1.1014 
 

1.1316 0.6013 1.1286 

 
(0.0726) (0.0793) (0.0563) 

 
(0.0811) (0.0701) (0.0599) 

40 0.5825 1.1094 1.0614 
 

1.1105 0.5784 1.0742 

 
(0.0592) (0.0696) (0.0352) 

 
(0.0713) (0.0501) (0.0431) 

60 0.5675 1.0835 1.0452 
 

1.0922 0.0553 1.0562 

 
(0.0411) (0.0536) (0.0261) 

 
(0.0658) (0.0398) (0.0371) 

80 0.5595 1.0658 1.0352 
 

1.0715 0.5462 1.0402 

  (0.0388) (0.0414) (0.0201) 
 

(0.0456) (0.0321) (0.0245) 

 

Data Analysis 

Two real data sets are considered to demonstrate the performance of the proposed 

distribution in practice. For each data set, the results of the fitted proposed model 

are compared with the WE, TWE, and EE models. To see which one of these 

models is more appropriate to fit the data set, the MLEs of unknown parameters 

and Akaike information criterion (AIC) were computed. The Kolmogorov-
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Smirnov (K-S) distance between the empirical cumulative distribution function 

and the fitted distribution function was obtained in each case, as well as the 

associated p-value. 

 

Data Set 1: Bjerkedal (1960) provided a data set consisting of survival times of 

72 Guinea pigs injected with different amount of tubercle. We consider only the 

study in which animals in a single cage are under the same regimen. The data 

represents the survival times of Guinea pigs in days. The data are given below: 

 

 

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60

60 60 60 61 62 63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 85 87 91 95 96

98 99 109 110 121 127 129 131 143 146 146 175 175 211 233 258 258 263 297

341 341 376

  

 
 
Table 2. The MLEs of parameters, AIC, and K-S statistics for the Guinea pigs data 

 

Model MLE of the parameters AIC K-S statistics p-value 

EE(β, λ) 10.1738, 0.0200 792.6086 0.1334 0.1544 

WE(α, λ) 1.6312, 0.0138 791.1381 0.1153 0.2939 

TWE(α1, α2, λ) 2.8013, 2.8013, 0.0142 789.0153 0.1132 0.3147 

EWE(α, β, λ) 3.9035, 3.0313, 0.0141 788.7657 0.1129 0.3174 

 
 

 
 
Figure 3. The fitted EWE distribution and the relative histogram for the Guinea pigs data 
(a); Empirical and fitted survival functions for the Guinea pigs data (b) 
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Table 3. The MLEs of parameters, AIC, and K-S statistics for the melanoma data 

 

Model MLE of the parameters AIC K-S statistics p-value 

EE(β, λ) 4.1321, 0.0019 913.2957 0.1551 0.1158 

WE(α, λ) 1.6197 ,0.0010 912.5643 0.0767 0.8651 

TWE(α1, α2, λ) 0.0136 0.2099 0.0022 913.3586 0.0696 0.9271 

EWE(α, β, λ) 0.0375, 0.1435, 0.0021 912.0859 0.0620 0.9710 

 
 

It is clear from Table 2 that, based on the AIC value and also based on the 

K-S statistic, the proposed EWE model provides a better fit than the WE, TWE 

and EE models for this specific data set. The relative histogram and the fitted 

EWE distribution are plotted in Figure 3. In order to assess if the model is 

appropriate, the plots of the fitted EWE survival function and empirical survival 

function are displayed in Figure 3. 

 

Data Set 2: This data set relates to survival time for 57 patients in Denmark 

with malignant melanoma (Andersen, Borgan, Gill, & Keiding, 1993). The data 

are given below: 

 

 

185 204 210 232 279 295 386 426 469 529 621 629 659 667 718 752 779 793

817 833 858 869 872 967 977 982 1041 1055 1062 1075 1156 1228 1252 1271

1312 1435 1506 1516 1548 1560 1584 1621 1667 1690 1726 1933 2061 2062

2103 2108 2256 2388 2467 2565 2782 3042 3338

  

 

The results are given in Table 3. The lowest values of the AIC and K-S test 

statistics are obtained for the EWE distribution. Based on these measures, the 

EWE is the best distribution among all those used here to fit the data set. In order 

to assess if the model is appropriate, the histogram of the data and the plot of the 

fitted EWE model are displayed in Figure 4. 
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Figure 4. The fitted EWE distribution and the relative histogram for the melanoma data 

(a); Empirical and fitted survival functions for melanoma data (b) 

 

Conclusion 

A new class of weighted distributions based on the extended exponential 

distribution were introduced. The proposed model contains the WE model as its 

submodel. It is shown that the distribution function, hazard function, and moment 

generating function can be obtained in closed form. The MLEs can be computed 

using numerical algorithms. The failure rate function of proposed distributions is 

an increasing function. The flexibility of the proposed distribution and increased 

range of skewness was able to fit and capture features in two real data sets much 

better than the WE and other popular distributions. 
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