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Invited Article: 
Improved Randomization Tests for a Class of 
Single-Case Intervention Designs 

Joel R. Levin 
University of Arizona 

Tucson, AZ 

John M. Ferron 
University of South Florida 

Tampa, FL 

Boris S. Gafurov 
George Mason University 

Fairfax, VA

 

 
Forty years ago, Eugene Edgington developed a single-case AB intervention design-and-
analysis procedure based on a random determination of the point at which the B phase 
would start. In the present simulation studies encompassing a variety of AB-type contexts, 
it is demonstrated that by also randomizing the order in which the A and B phases are 
administered, a researcher can markedly increase the procedure’s statistical power. 
 
Keywords: Single-case intervention research, design and statistical analysis, 

randomization tests, statistical power, internal validity, scientific credibility 

 

Introduction 

Single-case designs that focus on behavioral and academic interventions are 

prevalent in a variety of clinical and educational fields (see, for example, 

Kratochwill & Levin, 2014). In contrast to conventional group intervention 

designs, single-case designs typically include only one or a few units (e.g., 

individuals, small groups, classrooms) to whom the intervention is administered. 

In addition, single-case intervention designs are intensive and implemented over 

longer periods of time, with more numerous assessments of the outcome measures 

(Horner & Odom, 2014; Kratochwill et al., 2010). Single-case intervention 

designs that currently incorporate formal criteria to enhance their scientific 

mailto:jrlevin@u.arizona.edu
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credibility (Levin, 1994) include ABAB designs, alternating treatment designs, 

and multiple-baseline designs (Kratochwill et al., 2013).  

As the methodological rigor of single-case intervention designs has evolved 

over the years (Kratochwill & Levin, 2010), so too have the formal statistical-

analysis procedures that accompany them (see, for example, Kratochwill & Levin, 

2014; and Manolov, Evans, Gast, & Perdices, 2014). Although various 

visual/graphical approaches remain an analytic staple of single-case data (e.g., 

Auerbach & Zeitlin, 2014; Kratochwill, Levin, Horner, & Swoboda, 2014; Parker, 

Vannest, & Davis, 2014), improved statistical methods have increasingly been 

considered as viable supplements to visual analysis. These improved statistical 

methods include econometric time-series analyses (e.g., McCleary & Welsh, 

1992), adapted regression- and hierarchical linear modeling procedures (e.g., 

Maggin et al., 2011; Manolov & Solanas, 2013; Moeyaert, Ferron, Beretvas, Van 

den Noortgate, & Beretvas, 2014; Shadish, Kyse, & Rindskopf, 2013), and 

nonparametric permutation and randomization tests (e.g., Edgington & Onghena, 

2007; Ferron & Levin, 2014; Heyvaert & Onghena, 2014). The last of these 

statistical approaches is the focus of the present study. 

Overview of the Present Study 

The motivation for single-case researchers to adopt a randomization test as one 

component of their analytic armament is that randomization tests provide strict 

control of the Type I error rate (i.e., the probability of concluding that phase-to-

phase differences in level, trend, variability, etc. are present when those 

differences are simply chance fluctuations) as long as: (1) the design includes 

randomization; (2) the accompanying statistical test is conducted in a manner that 

is consistent with the design frame; and (3) the test statistic is chosen without 

knowledge of the results (Edgington, 1980; Ferron & Levin, 2014). In contrast, 

demonstration of Type I error control has been elusive in studies of visual 

analysis (e.g., Ferron & Jones, 2006; Fisch, 2001; Stocks & Williams, 1995). 

Moreover, with regression and hierarchical models, Type I error control hinges on 

a relatively strong set of assumptions (Ferron, Moeyaert, Van den Noortgate, & 

Beretvas, 2014). The modeling assumptions include: (1) the error distribution is 

correctly specified (e.g., normally distributed, homogeneous variances across 

phases, and a first-order autoregressive function); (2) the baseline trajectory is 

correctly specified; (3) the baseline trajectory can be extrapolated (i.e., had the 

intervention not been implemented, the baseline trajectory would have continued, 

implying that there were no confounding effects of external events on the time 
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series); and (4) the treatment phase trajectory is correctly specified. Accordingly, 

a single-case researcher may plan a multicomponent analysis in which visual 

analysis serves as the primary analysis tool, a randomization test is employed to 

ensure that the Type I error rate is controlled, and a regression-based or 

hierarchical linear model is examined to summarize and estimate the size of the 

effect(s). 

A concern with the addition of randomization tests to the analytic plan is 

that such tests require the researcher to introduce randomization into the design, 

and if the randomization is not carefully planned it can lead to a design that falls 

short of single-case design standards (e.g., Ferron & Levin, 2014; Kazdin, 1980; 

Kratochwill et al., 2010).  As a consequence, researchers are encouraged to reflect 

carefully on the practical constraints of the context in which the study is 

conducted, on the desired design features (e.g., minimum phase lengths), and then 

tailor the randomization strategy to meet these constraints.  Restricted 

randomization schemes have been developed to ensure that: (1) the desired 

number of phases and minimum phase lengths are included in reversal designs 

(Onghena, 1992); (2) the treatment alternates quickly enough in an alternating 

treatment design (Onghena & Edgington, 1994); (3) the baseline series stabilizes 

prior to commencement of the intervention phase (Ferron & Ware, 1994); (4) the 

intervention start points are staggered by a minimum amount of time in multiple-

baseline designs (Koehler & Levin, 1998), and (5) researchers are able to obtain 

visually acceptable patterns by extending phases in multiple-baseline designs 

(Ferron & Jones, 2006) and reversal designs (Ferron & Levin, 2014). 

The present Monte Carlo simulation study employs nonparametric 

randomization tests in the company of a recently proposed methodological 

addition that greatly enhances the internal validity of AB and ABAB single-case 

intervention designs (Ferron & Levin, 2014; Levin, Evmenova, & Gafurov, 2014). 

In these designs, A typically represents a baseline, control, or standard treatment 

phase containing repeated outcome measurements and B represents an 

intervention, experimental, or new treatment phase also containing repeated 

outcome measurements. Here we examine the methodological addition’s effect on 

the statistical conclusion validity (manifested by both Type I error control and 

increased statistical power) of randomization tests in single-case AB and ABAB 

designs, in both their single-case (N = 1) and multiple-case (N > 1) forms. In the 

following section, we first describe the methodological addition that enhances the 

internal validity (scientific credibility) of single-case intervention research and 

then outline how the addition is incorporated into a randomization test to improve 

the test’s statistical conclusion validity. Our decision to start our investigations 



LEVIN ET AL. 

5 

with a single-participant (N = 1) AB design was not because we are advocating 

for the use of such a design, but because it provides the simplest point to begin 

study of the impact of the methodological addition.  Once we have established the 

effects on statistical conclusion validity in the simplest situation, we will 

progressively add complexities to strengthen the design, building to the multiple-

participant (N > 1) ABAB design. 

Edgington’s (1975) Random Intervention Start-Point Model 

Of four different types of randomization that can be incorporated into 

randomization in single-case AB experimental studies (specifically, within-case 

phase randomization, between-case intervention randomization, case 

randomization, and intervention start-point randomization (see Ferron & Levin, 

2014), the last, highly creative, type was originally developed by Edgington 

(1975) and requires that the researcher: (1) randomly select an intervention start 

point from two or more that had been previously deemed acceptable; and then (2) 

assign to the case the start point that was actually selected. Although not applied 

in the conventional treatment randomization manner, this unique form of 

randomization increases a single-case study’s internal validity and, when 

accompanied by the statistical test described in the following paragraph, it can 

increase the study’s statistical conclusion validity as well. Moreover, this 

randomized intervention start-point approach can function to provide a true (i.e., 

scientifically credible) experimental comparison of two or more intervention (or 

intervention and control) conditions based on either one case or multiple cases per 

condition (for examples and discussion, see Ferron & Levin, 2014; Koehler & 

Levin, 1998; Levin, Lall, & Kratochwill, 2011; Levin & Wampold, 1999; and 

Marascuilo & Busk, 1988). 

With the randomized intervention start-point model, a randomization 

statistical test is conducted on the difference between the means of all B and all A 

series outcomes for each of the intervention start-point divisions (or transitions) 

that could have resulted from the random-selection process (see also Edgington & 

Onghena, 2007). [Moreover, any other summary measure of relevance to the 

researcher’s hypothesis about the nature of change from Phase A to Phase B (e.g., 

change in the series’ medians, slopes, variances) can also be the focus of a 

randomization-test analysis.] 

With the resulting set of mean differences yielding a randomization 

distribution, the mean difference associated with the actual intervention start point 

is examined to see where it falls within the set. The probability of obtaining a 
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mean difference as extreme as or more extreme than the actual mean difference 

represents the unlikelihood of the outcome. Either signed or unsigned mean 

differences are considered for one- and two-tailed hypothesis tests, respectively. 

For example, for an AB design with one case, 25 outcome-assessment periods, 

and 20 potential intervention start points, if the actual start point were found to 

produce the largest mean difference (in the predicted direction) between the B and 

A series outcomes, then the one-tailed significance probability associated with 

that event would be given by p = 1/20 = .05. For a two-tailed test, as or more 

extreme opposite-sign mean differences would also need to be taken into account. 

For instance, if there were a mean difference equal in magnitude but opposite in 

sign to the one just indicated for the actual intervention start point, then the two-

tailed significance probability would be 2/20 = .10. 

In Edgington’s (1975) random intervention start-point model for a one-case 

AB design, it is assumed that the A phase consists of a baseline series, the B 

phase consists of an intervention series, and that the former logically precedes the 

latter. With those assumptions, the number of possible outcomes (B−A mean 

differences) in the randomization distribution is k, the number of potential 

intervention start points. Accordingly, with one case, 30 total observations, and 

k = 10 potential intervention start points, if the actual B−A mean difference 

produced were the largest of the 10 and in the predicted direction, then the one-

tailed significance probability of that outcome would be p = 1/10 = .10. In order 

to achieve statistical significance at a traditional α = .05 level (one-tailed), one 

would need to include at least k = 20 potential intervention start points in the 

randomization distribution (i.e., so that if the most extreme mean difference in the 

predicted direction were obtained, then p would equal 1/20 = .05). To achieve 

statistical significance with α = .05 via a two-tailed test, a longer series with a 

minimum of k = 40 potential intervention start points would be required (i.e., so 

that p = 2/40 = .05 is possible). 

Randomized Order (Dual Randomization) Addition to the Edgington 

Model 

Edgington (1975) proposed his random intervention start-point design-and-

analysis procedure 40 years ago. It has been incorporated into a variety of single-

case intervention designs (e.g., Koehler & Levin, 1998; Levin & Wampold, 1999; 

Marascuilo & Busk, 1988; Onghena, 1992) and is being implemented in its 

original form to this day. However, it will be shown here that an addition to the 

procedure (referred to here as a modified procedure), which enhances its internal 
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validity by eliminating bias due AB phase-order effects, is possible and one that is 

applicable in a number of single-case intervention investigations. To illustrate, 

suppose that instead of A representing a baseline or control phase, it represents 

one type of experimental intervention―say, a behavioral intervention for 

combatting a particular phobia. In contrast, B might represent a cognitive 

intervention targeting the same phobia. Within that context, the case receives both 

interventions. To have a legitimate (unconfounded) comparison of Intervention A 

and Intervention B, it is imperative that the order in which the two interventions 

are administered to the case is randomly (rather than arbitrarily) determined. The 

preceding statement applies whether the investigation includes only one case or 

multiple cases (although in multiple-case situations, systematic counterbalancing 

of intervention orders across cases might be implemented to achieve the same 

goal). 

In addition, it is worth noting that A and B need not refer only to two 

competing interventions. Rather, suppose that A represents a baseline, standard, 

or control condition and B an intervention condition. As has been suggested 

previously (e.g., Kratochwill & Levin, 2010), further suppose that prior to the 

commencement of the actual experiment, a mandatory baseline (or 

adaptation/warm-up) phase (A') is required of all cases. With A' included, it 

would then be possible, appropriate, and presumably acceptable to researchers to 

begin the experiment proper by randomizing each case’s subsequent A and B 

phases (i.e., an A randomly selected to be first means that the case remains in the 

baseline condition, followed by the B intervention condition; and a B randomly 

selected to be first means that the case begins with the intervention condition, 

followed by the A baseline condition). Accordingly, the modified order-

randomization procedure is applicable in either one- or two-intervention AB 

designs, with the prospect of improving both design (internal validity) and 

analysis (statistical-conclusion validity) of two-phase single-case intervention 

studies. 

With intervention-order randomization built into the just-discussed one-case 

example based on 30 total observations and 10 potential intervention start points, 

in addition to the intervention start points associated with the conventional AB 

order of intervention administration, one would also need to consider the 

possibility that Intervention B had been randomly selected to be administered first. 

If that had happened, there would be a corresponding 10 potential intervention 

start points for the BA order of intervention administration, resulting in a total of 

k = 20 potential start-point outcomes that would be included in the complete 

randomization distribution.   
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Multiple-Case Extension of the Modified Edgington Model 

As we will show, the order-randomization procedure applies to multiple-case 

(replicated) AB situations as well, increasing the total number of possible 

randomization-distribution outcomes by a factor of 2N, where N represents the 

number of cases. Specifically, with N cases and one of ki potential intervention 

start points randomly selected for each case, with Marascuilo and Busk’s (1988) 

multiple-case extension of Edgington’s (1975) single fixed-order intervention 

start-point model, a total of 
1

N

i ik  randomization-distribution outcomes are 

possible, and in the special case for which all ki are equal to k, this quantity 

reduces to kN. With the addition of an order-randomization process to create the 

present dual randomization model, the total number of possible randomization-

distribution outcomes increases to 
1 2N N

i ik   and kN × 2N = (2k)N for the general 

and special-case situations, respectively. 

 

Hypothetical example    We illustrate the present random-order 

randomization-test procedure for a replicated single-case AB design by means of 

a hypothetical example. Suppose that a language researcher wishes to improve the 

baseline vocalization output (A phase) of two low word-producing children 

through some type of positive-reinforcement intervention (B phase). For the 

random-order version of the present example we assume that a mandatory A' 

baseline (warm-up) phase was initially administered, followed by a random 

determination of whether the first phase of the actual study would be a baseline 

(A) or an intervention (B) phase, thereby producing either an A'AB or A'BA 

design. Although in comparison to a traditional fixed-order AB design, this type 

of randomized AB design is more scientifically credible (especially when 

replicated across cases), the latter design was not considered in the current What 

Works Clearinghouse (WWC) single-case intervention design Standards 

(Kratochwill et al., 2010). Our hypothetical study is presented simply to illustrate 

both the original (Edgington, 1975) fixed-order and the present random-order 

randomization-test procedures, without taking into account the study’s internal-

validity characteristics. Consideration of internal-validity issues is included later 

in the Discussion section. 

In this hypothetical study, the number of single-word vocalizations by each 

child during a 5-minute play period is recorded, with Child 1 observed in each of 

25 daily sessions and Child 2 observed in each of 15 daily sessions, and where 

both children must be observed in at least 3 A sessions and 3 B sessions (thereby 

resulting in 20 and 10 potential intervention transition points for Child 1 and 
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Child 2, respectively). In addition, because the researcher wishes to randomize the 

intervention order (AB or BA) for each child, three preliminary five-minute A' 

warm-up sessions are provided prior to the start of the children’s actual 

experimental sessions. An initial coin toss determines that Child 1 will be 

administered an AB intervention order, with the 20 potential intervention 

transition points specified from between the 4th and 23rd sessions inclusive and the 

randomly selected actual intervention transition point occurring just prior to 

Session 10. For Child 2, a BA intervention order results from a second coin flip, 

with the 10 potential intervention transitions specified from between the 4th and 

13th sessions inclusive and an actual randomly selected intervention transition 

point just prior to the 7th observation. 

The A- and B-phase observations are presented in Table 1. Given the 

present random-order AB intervention start-point randomization model, the data 

were analyzed with Gafurov and Levin’s (2014) single-case ExPRT (Excel® 

Package of Randomization Tests) package―see Levin et al. (2014) for complete 

information about ExPRT. In Table 2 are presented the B−A mean differences 

associated with each of the potential intervention transition points for the two 

children.  

The first Table 2 entry of 2.41 for Child 1, which corresponds to an A-to-B 

intervention transition point just prior to Observation 4, was calculated by taking 

the average of Child 1’s Observations 4 through 25 (mean B phase = 6.41) minus 

the average of that child’s Observations 1 through 3 (mean A phase = 4.00). The 

same process was followed for each of the subsequent 19 potential intervention 

points for Child 1, which ends with the average of that child’s Observations 23 

through 25 (mean B phase = 8.00) minus the average of that child’s Observations 

1 through 22 (mean A phase = 5.86), resulting in Child 1’s final mean difference 

of 2.14 in Table 2. Next, and as indicated in Table 2’s Footnote a, 20 additional 

mean differences were calculated for Child 1 under the assumption that instead of 

an A−B intervention order, the reverse B−A order had been selected. Under that 

assumption, the first mean difference for Child 1 would be 4.00 − 6.41 = −2.41, 

which is exactly the same numerically but opposite in sign to the previously 

calculated child’s first value in Table 2. The same is true for all of Child 1’s 

calculated reverse-order values, including the 20th one, which is now −2.14. The 

same process applied to Child 2’s data yields the 10 actual B−A mean differences 

presented in Table 2 (i.e.,  6.00 − 4.92 = 1.08 for the first one), as well as 10 

reverse-order and opposite-sign A−B mean differences. 
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Table 1. Hypothetical data for Child 1’s 25-observation series, with a randomly selected 

AB intervention order, 20 potential intervention transition points (between Observations 4 
and 23 Inclusive), and a randomly selected actual intervention transition point just prior to 
Observation 10; and for Child 2’s 15-observation series, with a randomly selected BA 
intervention order, 10 potential intervention transition points (between Observations 4 and 
13 Inclusive), and a randomly selected actual intervention transition point just prior to 
Observation 7 
 

Child 1 Child 2 

Observation Phase Vocalizations Observation Phase Vocalizations 

1 A 4 1 B 6 

2 A 3 2 B 5 

3 A 5 3 B 7 

4 A 5 4 B 5 

5 A 2 5 B 6 

6 A 5 6 B 5 

7 A 3 7* A 4 

8 A 4 8 A 5 

9 A 4 9 A 3 

10* B 5 10 A 5 

11 B 6 11 A 4 

12 B 7 12 A 5 

13 B 6 13 A 6 

14 B 7 14 A 5 

15 B 8 15 A 6 

16 B 7 
   

17 B 9 
   

18 B 8 
   

19 B 6 
   

20 B 8 
   

21 B 9 
   

22 B 8 
   

23 B 7 
   

24 B 9 
   

25 B 8       
 

*Actual intervention transition point. 
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Table 2. The B−A mean difference associated with: (1) each of Child 1’s 20 potential 

intervention transition points (O4-O23) for a randomly selected AB intervention order; and 
(2) each of Child 2’s 10 potential intervention transition points (O4-O13) for a randomly 
selected BA intervention order 
 

  Child 1 Child 2 

Potential Intervention Point B-A Mean Differencea B-A Mean Differenceb 

O4 2.41 1.08 

O5 2.23 0.84 

O6 2.90 1.00 

O7 2.79 0.89* 

O8 3.14 0.55 

O9 3.30 0.52 

O10 3.49* -0.06 

O11 3.53 -0.10 

O12 3.46 -0.50 

O13 3.28 -0.67 

O14 3.29   

O15 3.19   

O16 2.97   

O17 2.94   

O18 2.58   

O19 2.41   

O20 2.69   

O21 2.60   

O22 2.24   

O23 2.14   
 

*Mean difference associated with the actual intervention transition point. a The 20 A−B mean differences are 
also calculated and added to these to form a 40-outcome randomization distribution; all of the A−B mean 

differences are the same as the corresponding B-A mean differences given here but opposite in sign. b The 10 
A−B mean differences are also calculated and added to these to form a 20-outcome randomization distribution; 

all of the mean A−B differences are the same as the corresponding mean B−A differences given here but 

opposite in sign. 

 
 

The resulting joint randomization distribution therefore contains 40 mean 

differences for Child 1 combined with 20 mean differences for Child 2, for a total 

of 40 × 20 = 800 averaged mean differences (i.e., Child 1’s 1st mean difference 

averaged with Child 2’s 1st mean difference, Child 1’s 1st mean difference 

averaged with Child 2’s 2nd mean difference, all the way up to and including 

Child 1’s 40th mean difference averaged with Child 2’s 20th mean difference). 

When that is done by the ExPRT program, it is found that the actual joint mean 
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difference that was obtained in the study is 2.19, which is Child 1’s mean 

difference associated with that child’s actual intervention transition point of O10 

(3.49) averaged with Child 2’s actual intervention transition-point mean 

difference of O7 (.89). Of the 800 outcomes in the joint randomization distribution, 

a value of 2.19 is the 10th highest, which results in a one-tailed significance 

probability of p = 10/800 = .0125. For this example, had a one-tailed Type I error 

probability (α) of .05 been selected, it could be concluded that the positive-

reinforcement intervention (B) distribution values differed statistically from those 

in the baseline distribution (A), with the additional inference that the former 

distribution’s values were higher. We note that both here and in the various 

simulations conducted in the present series of investigations, one-tailed tests are 

conducted because it is assumed that [especially in single-case A (baseline) − B 

(intervention) research] the researcher has a clear and defensible rationale for the 

direction of change that is associated with the intervention.  

Insofar as randomization tests are not tailored to test for the equality of two 

populations’ specific parameters, all that can be tested for is the equality of the 

two population distributions per se. For the present randomization test, the test 

statistic involves sample-mean differences and because that is the test that 

produced a statistically significant result here (favoring the intervention phase 

over the baseline phase), a reasonable inference is that there was an A- to B-phase 

upward shift in the children’s level of responding. 

Advantages of the Order Randomization Modification 

The present order-randomization approach enhances the internal validity of a 

single-case AB design by virtue of its removing bias stemming from intervention-

order effects. As an important byproduct, the approach also elevates the status of 

the basic AB single-case intervention design from a WWC Standards “acceptable 

design” standpoint (Kratochwill et al., 2010), particularly when replicated across 

independent participants at different points in time. According to the WWC 

Standards, two-phase A (Baseline) – B (Intervention) designs are not 

scientifically credible (and therefore unacceptable) because they suffer from too 

many potential sources of internal invalidity. For extended discussion of 

acceptable designs, see Kratochwill, et al. (2010, 2013).  

Including outcomes from both intervention-administration orders in the 

randomization distribution also provides fundamental pragmatic advantages for 

single-case intervention researchers. First, with the original Edgington (1975) 

model, a researcher would need to designate 20 potential intervention start points 
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(based on at least 21 total observations) to produce a randomization test that is 

capable of detecting an intervention effect with a one-tailed Type I error 

probability less than or equal to .05. With the present procedure, a researcher 

would need to designate only half as many potential intervention start points (here, 

10, based on a total of 11 total observations, resulting in 20 possible outcomes) to 

detect an intervention effect. A related reason why the present procedure has 

practical importance for single-case intervention researchers is that (and as will be 

demonstrated here) relative to the original Edgington (1975) model, the modified 

approach may produce statistical-power advantages as well. Thus, for no more 

expense than a coin to flip, a researcher might reap both methodological and 

statistical benefits by adopting the present dual-randomization procedure rather 

than either the original single-randomization Edgington model or Marascuilo and 

Busk’s (1988) multiple-case extension of it. 

Relationship to Traditional Experimental Designs and Statistical 

Analyses 

Although unrecognized at the time that the present order-randomization approach 

was initially conceptualized, its logic maps directly onto a statistical procedure in 

the traditional group randomized treatment-design literature. In particular, 

consider a randomized two-treatment correlated-samples (or within-subjects) 

design based on N participants, to which a nonparametric randomization test is 

applied as an appropriate alternative in (especially small-sample) situations where 

the normality assumption of a correlated-samples t test (or a one-sample repeated-

measures analysis) is questionable.  

To illustrate that situation, we revisit an example that was recently presented 

by Ferron and Levin (2014, p. 174). Suppose that in a sample of N = 8 adults, 

each participant is administered two different fear-reducing treatments, A (a 

behavioral treatment) and B (a cognitive intervention), with the former posited to 

be more effective than the latter. It is determined in advance that the equal-

effectiveness hypothesis will be tested with a randomization test based on a one-

tailed α of .05. To produce a scientifically credible experiment, the order in which 

the two treatments are administered is again randomly determined on a case-by-

case basis by means of coin flips: say, heads represents an AB order and tails a 

BA order. On the basis of that process, let us suppose that 5 participants ended up 

in the AB condition and 3 in the BA condition. Following the administration of 

each treatment, participants’ fear responses are assessed on a 7-point Likert scale, 

with higher numbers indicating greater fear. With the measure of interest defined 



IMPROVED RANDOMIZATION TESTS 

14 

as the difference between each participant’s B and A ratings (i.e., B−A), the 

following outcomes were obtained for the 8 participants: 

 

+3.0    +3.5    −1.5   +2.0    +4.5    +3.5    −2.0    +4.0 

 

The observed test statistic is given by the average of these differences, which is 

equal to +17/8 = 2.125. A randomization distribution is created from the 

2N = 28 = 256 possible ways in each + and − signs could be attached to these 8 

numerical values. For example, the first outcome in the randomization distribution 

(with all + signs) would be: 

 

+3.0    +3.5    +1.5   +2.0    +4.5    +3.5    +2.0    +4.0 

 

yielding a mean difference of +24/8 = 3.000, and the last (with all minus signs) 

would be: 

 

−3.0     −3.5     −1.5    −2.0     −4.5     −3.5     −2.0    −4.0 

 

yielding a mean difference of −24/8 = −3.000. The remaining 254 possible 

outcomes would fall somewhere between these two extremes. 

The actually obtained mean difference of +2.125 appears to be on the higher 

side of this distribution. In fact, it turns out to be among the 9 highest possible 

outcomes (specifically, an outcome that is exceeded by only 5 outcomes and that 

is tied with 3 others). Accordingly, a one-tailed test of the hypothesis that the A 

and B treatments have equal distributions would be associated with a p-value 

(consistent with the alternative hypothesis that Treatment B is producing higher 

fear ratings than Treatment A) that is equal to 9/256 = .035. Because this value is 

less than the predetermined α of .05, it would be concluded that the actually 

obtained mean difference of +2.125 is statistically significant.  

Note that for this conventional-group design and associated randomization 

test, the all-possible assignment of + and – signs to the 8 absolute B−A 

differences corresponds exactly to the logic and operationalization of the single-

case AB order-randomization procedure to be investigated here. In particular, the 

procedure incorporates two separate forms of randomization for each of the N 

participating cases, Edgington’s intervention start-point randomization and AB 

order randomization. In the simplest situation where there is only one potential 

intervention start point for each case (as in the just-presented N = 8 example), the 

total number of possible start-point randomizations is equal to kN = 18 = 1. The 



LEVIN ET AL. 

15 

present order-randomization procedure involves each of the 8 participants 

contributing two differences (i.e., B−A and A−B) to the randomization 

distribution, resulting in 2N = 28 = 256 joint randomization outcomes, and which, 

according to the previously given special-case dual-randomization formula, 

kN × 2N, yields a total of 1 × 28 = 256 possible randomization outcomes. This total 

is identical to the number of possible randomization-distribution outcomes 

associated with the just-presented example. It is instructive to note that the total 

number of possible randomization outcomes associated with order randomization 

can be alternatively expressed as  0

N N

x x , where N = the number of cases and 

x = the number of positive B−A differences that could be associated with the N 

actual outcomes. For the present example, this expression is equal to  8 8

0x x , 

or 

 

 

                 8 8 8 8 8 8 8 8 8

0 1 2 3 4 5 6 7 8

1 8 28 56 70 56 28 8 1

256

       

        



  

 

Thus, when there is only one potential intervention point for each case and 

the AB design includes multiple observations, the present randomized-order test 

based on the difference between the A- and B-phase means maintains the same 

correspondence with a conventional-group correlated-samples randomization test 

as was shown here. Implicit in the conventional correlated-samples test is that 

with random assignment to treatment conditions, outcomes representing both 

orders of treatment administration need to be considered in the randomization test 

distribution. As such, the present order-randomization procedure is not really a 

special case at all, but rather the single-case analog of a correlated-samples 

randomization t test.  

Focus of the Present Investigations 

The focus of our series of simulation investigations was to examine the Type I 

error and statistical power characteristics of the dual-randomization modification 

(intervention start-point plus intervention order) relative to those of Edgington’s 

(1975) and Marascuilo and Busk’s (1988) original single-randomization 

(intervention start-point) test procedures. In this study we present randomized 

intervention-order findings not just for a basic two-phase AB design, but also for 

a randomized pairs variation of that design (Levin & Wampold, 1999), a single-
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case adaptation of the conventional-group crossover design, and Onghena’s 

(1992) four-phase ABAB design. 

Investigations 1-3: Randomized Intervention Order for the 
Basic AB Design 

Investigation 1 

Method In Investigation 1, the focus was on 30-observation designs for a 

single participant (i.e., N = 1), where the intervention start point was randomly 

selected from the middle 20 observations. The series length of 30 was chosen for 

initial examination because: (1) 20 start points is the minimum number needed to 

obtain a statistically significant result with a one-tailed α of .05 for an AB 

randomized start-point design with one case; and (2) the WWC Standards require 

a minimum of five observations in each phase (Kratochwill et al., 2010, 2013).   

Data were generated using SAS IML (SAS, 2013), where the time-series 

data were obtained by adding an error vector to an effect vector. The error vector 

was created such that it was distributed normally and had an autocorrelation of 0 

or .3 by using SAS’s autoregressive moving-average simulation function 

(ARMASIM). The autocorrelation values of 0 and .3 were motivated by a survey 

of actual single-case studies where it was reported that the average autocorrelation 

was .2, after adjusting for bias in the estimates (Shadish & Sullivan, 2011). To 

obtain simulated errors based on an autocorrelation of .3, the autoregressive 

parameter matrix was set to {1 −.3}, the moving average parameter matrix was set 

to {1 0}, and a standard deviation of the independent portion of the error was set 

to 1.0 (for details on the simulation algorithm see Woodfield, 1988). The effect 

vector was coded to have values of 0 for all baseline observations, and values of d 

for all intervention phase observations, and thus d corresponds to the mean shift 

between intervention and baseline observations in standard deviation units, (μB – 

μA)/σ (see Busk & Serlin, 2005), where the standard deviation is based on the 

independent portion of the within-case error term (see, for example, Levin, Ferron, 

& Kratochwill, 2012) (for an alternative operationalization of d that corresponds 

mathematically to a conventional groups effect-size measure, see Shadish et al. 

(2014)). The value of d was varied to examine the one-tailed Type I error 

probability for d = 0 and the powers for ds ranging from .5 to 5 in increments 

of .5.  For reference, if the d used for the present data generation is estimated for 

each of the 200 Phase A-to-Phase B contrasts examined in the survey of single-

case interventions reported by Parker and Vannest (2009), the empirically 
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observed values of d (assuming no autocorrelation for simplicity) for the 10th, 50th, 

and 90th percentile ranks are estimated to be 0.46, 1.70, and 3.88, respectively.  

By crossing each design (single, dual), with each level of autocorrelation 

(r = 0, .3), and each effect size (d = 0 to 5, in increments of .5), 2 × 2 × 11 = 44 

conditions were obtained, and for each of these conditions the data for 10,000 

studies were simulated. The data for each simulated data set were analyzed using 

a randomization test in which the obtained test statistic (MB – MA) was compared 

to the complete randomization distribution.  The proportion of simulated studies 

in which the randomization test led to a one-tailed p-value of .05 or less was 

determined to estimate the rejection rate (Type I error or power) of the 

randomization test for each of the 44 experimental conditions. 
 
 

 
 
Figure 1. Investigation 1: Comparison (α = .05, one-tailed) of randomization tests for a 

one-case (N = 1) AB randomized intervention start-point design (Single) and the 
randomized intervention start-point plus randomized intervention- order design (Dual), 
where the start point was randomly selected between the 6 th through the 25th 
observations inclusive in a 30-observations study. The rejection rate of the null 
hypothesis is shown as a function of the effect size and level of autocorrelation. 
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Results Results are shown in Figure 1 for Edgington’s (1975) original 

procedure (single) and for the present randomized-order modification (dual). As 

may be seen in that figure, when the effect size is 0, all situations are associated 

with empirical powers (which, for d = 0 are equivalent to Type I error 

probabilities) that correspond to their nominal .05 values. Not surprisingly, based 

on previous findings (e.g., Ferron & Sentovich, 2002; Ferron & Ware, 1995; 

Levin et al., 2011), it may also be seen that for ds > 0 power is uniformly higher 

for r = 0 than for r = .3. As the effect size increases, so does power, although 

more rapidly for the dual-randomization procedure than for its single-

randomization counterpart. The largest power differences, favoring the former, 

reach .21 in the r = 0 situation for ds of 1.5 and 2.0; and in the r = .3 situation the 

largest power difference is .18 for a d of 2.5. 

Investigation 2 

Method In Investigation 2, series length (i.e., the number of observations) 

was systematically varied for a single-participant (N = 1) design, while holding 

the effect size constant at d = 2. A d of 2 was chosen because it is a large enough 

effect to typically be of interest to a single-case researcher. Yet, a d of 2 is small 

enough that it is not readily detectable (power < .80) in a single-participant 30-

observations design when there is a moderate autocorrelation of .30 and applying 

either the single- or dual-randomization approach (as may be seen in Figure 1, 

where powers are .50 and .67, respectively). The simulation methods paralleled 

those of the initial investigation (including a one-tailed α of .05), but d was held 

constant at 2.0 for all conditions and series length was varied from 20 to 150 in 

increments of 10. The number of potential intervention start points was always the 

series length minus 10 to ensure at least five observations in the baseline and 

intervention phases. 

 

Results Results for this set of simulations are provided in Figure 2, where 

with an autocorrelation of .30, power of at least .80 is attained for the dual-

randomization approach with 60 observations (power = .81), in contrast to the 

single-randomization design where .80 power is not quite attained even with 150 

observations (power = .79). For 30 to 100 observations, the power difference 

between the two randomization schemes (favoring dual) ranges from .13 to .31 

when the autocorrelation is 0 and from .17 to .30 when the autocorrelation is .30.  
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Figure 2. Investigation 2: Comparison (α = .05, one-tailed) of randomization tests for a 

one-case (N = 1) AB randomized intervention start-point design (Single) and the 
randomized intervention start-point plus randomized intervention-order design (Dual). 
The rejection rate of the null hypothesis is shown as a function of series length and level 
of autocorrelation. The effect size is 2.0 and the number of potential intervention start 
points (x) is equal to the series length minus 10 and encompasses the middle x 
observations. 

 

 
 

It should be noted that the power is 0 for the single-randomization scheme with 20 

observations because there are only 10 possible intervention start points and thus 

statistical significance cannot be obtained at the one-tailed .05 level. In addition, 

the undulation in the power curves for the single-randomization approach makes 

sense when one recognizes that: (1) for a series length of 30, statistical 

significance with α = .05 can be attained only for the most extreme of the 20 

permutations; and (2) with a series length of 40, statistical significance can again 

be attained only for the most extreme permutation, but now there are 30 

permutations and so the most extreme is somewhat more difficult to achieve. 

Although power drops for the 40-observation series, with a series length of 50, 

statistical significance can be attained for either of the two most extreme 

permutations and thus power jumps back up again.  
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Investigation 3a 

Method In Investigation 3a, the effect of multiple-case replications (i.e., 

N > 1) on the power of the single- and dual-randomization procedures was 

examined. More specifically, a design with 15 observations and 5 potential 

intervention start points, randomly selected from observations 6 through 10, was 

examined with 2, 3, 4, 5, and 6 participants based on a one-tailed α of .05. For the 

single-randomization approach, 7 and 8 participants were also included. These 

numbers of participants seemed reasonable given the survey by Shadish and 

Sullivan (2011), in which it was found that the number of cases in single-case 

studies averaged 3.64, with a range of 1 to 13. In the present study, effect sizes 

varied from 0 to 3 in increments of .5 and the autocorrelation was set either to 0 

or .3. 
 
 

 
 
Figure 3. Investigation 3a: Comparison (α = .05, one-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15-
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of 0. 
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Results Results from simulations where the autocorrelation is 0 are shown 

in Figure 3, whereas those for an autocorrelation of .3 are shown in Figure 4. In 

both figures, it may be seen that for all sample sizes the empirical Type I error 

probabilities are well controlled at .05 for both the single- and dual-randomization 

approaches. The important thing to note is that in both figures, for all effect sizes 

the dual approach based on as few as N = 3 participants has associated power that 

is greater than or equivalent to the single approach based on N = 8 participants. 

For example, in Figure 4 it may be seen that with an autocorrelation of .3, N = 3 

dual- and N = 8 single-randomization powers are .66 and .61, respectively, for an 

effect size of 1.0; and they are .90 and .89, respectively, for an effect size of 1.5. 
 
 

 
 
Figure 4. Investigation 3a: Comparison (α = .05, one-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15 
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of .3. 
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Investigation 3b 

Method  In this investigation, the simulations of Investigation 3a were 

replicated with the sole difference being that a two-tailed test with α = .05 was 

conducted, as opposed to a one-tailed test.  

 

Results The results are summarized in Figure 5 for an autocorrelation of 0 

and in Figure 6 for an autocorrelation of .3. Again, it may be seen that all of the 

empirical Type I errors are at the expected .05 level for both autocorrelation 

values. Although the Investigation 3a results (i.e., the equivalence of dual-

randomization N = 3 and single-randomization N = 8) were not identical here, the 

general pattern was. In this case, however, the appropriate power equivalence 

involves dual N = 4 and single N = 8. Specifically, in Figure 6 it may be seen that 

with an autocorrelation of .3, the former and latter powers are .65 and .61, 

respectively, for an effect size of 1.0; and they are .93 and .89, respectively, for an 

effect size of 1.5. 
 
 

 
 
Figure 5. Investigation 3b: Comparison (α = .05, two-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15 
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of 0. 
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Figure 6. Investigation 3b: Comparison (α = .05, two-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15 
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of .3. 

 

 
 

Thus, in the present investigation we observe that for two-tailed tests the 

dual-randomization power benefits (relative to single randomization) are 

comparable to those reported for Investigation 3a’s one-tailed tests. It is important 

to point out, however, that the situations examined here were all based on 

multiple-case (N > 1) designs. It turns out that for the special-case N = 1 situation, 

although the dual- over single-randomization power advantage is evident when 

one-tailed tests are conducted (as was true in Investigations 1 and 2), the dual- 

and single-randomization schemes yield equivalent power results with two-tailed 

tests. Because the two-tailed test is based on randomization-distribution absolute-

value outcomes, the dual-randomization distribution contains every outcome of 

the single-randomization distribution as well as its opposite-order complementary 

outcome, thereby yielding exactly the same p-value for each test. (To illustrate 

these notions, see Child 1’s hypothetical data, including Footnote a in Table 2. 

The 40 unsigned mean differences (i.e., 20 |B−A| plus 20 |A−B|) would constitute 

the dual-randomization distribution for a two-tailed test). Because there are 

across-case combinations when N > 1, there is no longer a one-to-one 
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correspondence between the single- and dual-randomization distributions and so 

their powers will generally differ, with the latter being greater (as was observed in 

Figures 5 and 6). 

Investigation 4: Randomized Intervention Order and/or 
Randomized Intervention Assignment in Levin and 
Wampold’s (1999) AB Pairs Design 

Another type of dual-randomization strategy is possible when a case consists of a 

pair of participants, as in Levin and Wampold’s (1999) simultaneous intervention 

start-point model. With the Levin-Wampold model, N participant (or other unit) 

pairs are created and the members of each pair are randomly assigned to two 

different intervention conditions (or to an intervention and control condition), X 

and Y. With this model, Levin and Wampold presented two hypotheses that 

would be of interest to researchers: (1) a general intervention effectiveness 

hypothesis, namely that averaged across the two intervention conditions, there is 

no difference between Phase A and Phase B performance (analogous to the time 

main effect in a conventional two-treatment pretest-posttest design); and (2) a 

comparative intervention effectiveness hypothesis, namely that the change in 

participants’ performance from Phase A to Phase B is the same in the two 

intervention conditions (analogous to the treatment-by-time interaction in a 

conventional two-treatment pretest-posttest design). Unrecognized by Levin and 

Wampold at the time, the randomization test of each of these hypotheses could 

potentially benefit from an additional randomization component.  For the general 

intervention effectiveness hypothesis, that component is AB order randomization 

of the kind that we have considered in Investigations 1-3, either with or without a 

mandatory A' baseline phase; and for the comparative intervention hypothesis, 

that component consists of within-pair intervention randomization, wherein pair 

members are randomly assigned to the two intervention conditions. 

Implementing either of these randomization types increases the total number 

of possible outcomes from 1

N

i ik  for Levin and Wampold’s (1999) original 

single randomization-test procedure (i.e., the number of potential intervention 

start points for each pair) to 12N N

i ik  for the present dual approach (i.e., either 

the number of possible random assignments of AB orders or the number of 

possible random assignments of interventions to pair members, times the number 

of potential intervention start points for each pair). In Investigation 4, we examine 

the statistical power consequences associated with the dual approach’s additional 
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randomization component, for both the general and the comparative intervention 

effectiveness hypotheses. 

Method  

A power comparison of dual versus single randomization for the two hypotheses 

(general and comparative intervention effectiveness) was conducted with a one-

tailed α of .05. Specifically, designs with 2, 3, and 4 pairs of participants were 

examined based on 15 observations per participant. There were 5 potential start 

points for each pair, randomly selected from observations 6 through 10. For the 

general intervention effectiveness simulations, with single randomization each 

pair received the baseline phase (A) followed by the intervention (B) phase; in 

contrast, with dual randomization the pairs were randomly assigned to either an 

AB or BA order. For the comparative intervention effectiveness simulations, with 

single randomization the first pair member always received Intervention X and 

the second pair member Intervention Y; in contrast, with dual randomization, pair 

members were randomly assigned to the two intervention conditions. 

The time-series data for each case were simulated as described in the 

previous investigations, with the standardized effect size for the pair member 

assigned to Intervention X set to d1 and the standardized effect for the pair 

member assigned to Intervention Y set to d2. For the general intervention 

effectiveness test, d = (d1 + d2)/2 was varied from 0 to 3 in increments of .5 by 

setting d1 = d2 = d. For the comparative intervention effectiveness test, d = d2 − d1, 

d1 was set to 0 and d2 was varied from 0 to 3 in increments of .5. The latter effect 

size can be alternatively written as d = [(μB2 − μA2) − (μB1 − μA1)]/σ, which is 

readily conceptualized and interpreted as a standardized ‘difference in differences’ 

(e.g., Marascuilo & Levin, 1970). The present measure differs from the 

standardized ‘half difference in differences’ effect-size estimator of (d2 − d1)/2 

that is provided in Gafurov and Levin’s (2014) ExPRT program for the 

comparative intervention effectiveness hypothesis. The half difference-in-

differences measure was incorporated into ExPRT because it represents a properly 

scaled interaction contrast when formulated for sample-size and power 

determination purposes from an analysis-of-variance perspective (Levin, 1997). It 

therefore should be kept in mind that a present power estimate associated with a 

difference-in-differences effect size of 2.00 corresponds to the power estimate 

associated with ExPRT’s half difference-in-differences effect size of 1.00. 
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Results 

General intervention effectiveness hypothesis      Dual- and single-randomization 

powers for Levin and Wampold’s (1999) general intervention effectiveness 

hypothesis are presented in Figures 7 and 8 for autocorrelations of 0 and .3, 

respectively. The averaged pair power results presented in Figures 7 and 8 are 

easy to describe, especially when juxtaposed with Investigation 3a’s individual 

results that were previously presented in Figures 3 and 4. Although the actual 

power values differ in the two investigations, the patterns involving single- and 

dual-randomization powers―namely, the magnitudes of the power advantage 

favoring the latter over the former―are remarkably similar. For example, when 

the total number of cases is held constant (e.g., 4 individuals in Investigation 3a, 2 

pairs here; 6 individuals in Investigation 3a, 3 pairs here), with an autocorrelation 

of .3, mid-range effect-size values of d = 1 and 1.5, and two asymptotic power 

situations excluded, the six differences between the dual- and single-

randomization powers all hover around .40. Specifically, from the graphs based 

on N = 4 individuals (Figure 4) and N = 2 pairs (Figure 8), it may be determined 

that the respective power differences are .43 and .37 for d = 1 and are .36 and .39 

for d = 1.5; for N = 6 individuals and N = 3 pairs, the power differences are .42 

and .40 for d = 1. 

 

Comparative intervention effectiveness hypothesis            Dual- and single-

randomization powers associated with Levin and Wampold’s (1999) comparative 

intervention effectiveness hypothesis are presented in Figures 9 and 10 for 

autocorrelations of 0 and .3, respectively. In each of those figures it may be seen 

that the dual-randomization procedure, which incorporates additional 

randomization-distribution outcomes as a result of randomly assigning pair 

members to the two interventions, X and Y, produces substantial power increases 

over Edgington’s (1975) original single-intervention start-point procedure. For 

example, in Figure 10 based on an autocorrelation of .3, N = 3 pairs, and a 

difference-in-differences effect size of 2.0 (which corresponds to ExPRT’s half 

difference in differences of 1.0), power for the dual-randomization procedure 

is .87 as compared to only .46 for the single-randomization procedure. 
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Figure 7 

 

 
Figure 8 

 
Figures 7 and 8. Investigation 4: Comparison (α = .05, one-tailed) of powers for the 

Single and Dual randomized general intervention effectiveness hypothesis replicated 
across N pairs. The rejection rate of the null hypothesis is shown as a function of effect 
size and N, for a 15 observations design with 5 potential intervention start points 
designated from between the 6th and 10th observations inclusive and an autocorrelation of 
0 (Figure 7) or .3 (Figure 8). 
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Figure 9 

 
Figure 10 

 
Figures 9 and 10. Investigation 4: Comparison (α = .05, one-tailed) of powers for the 

Single and Dual randomized Levin-Wampold comparative intervention effectiveness 
hypothesis replicated across N pairs. The rejection rate of the null hypothesis is shown as 
a function of effect size and N, for a 15 observations design with 5 potential intervention 
start points designated from between the 6th and 10th observations inclusive and an 
autocorrelation of 0 (Figure 9) or .3 (Figure 10). Effect sizes are defined in a difference-

in-differences metric, which correspond to half difference-in-differences effect sizes given 
by the present values divided by 2 (see text for further discussion). 
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Discussion 

The present single-randomization powers associated with both the general and 

comparative intervention effectiveness hypotheses are quite consistent with those 

reported in an earlier simulation study by Lall and Levin (2004). However, the 

results of Investigation 4 make it clear that whenever either AB phase 

randomization is employed (general intervention effectiveness hypothesis, as is 

also manifested in Investigations 1-3) or the pair members are randomly assigned 

to the two intervention conditions, X and Y (comparative intervention 

effectiveness hypothesis), then the researcher can justifiably incorporate that 

randomization component into the randomization test. Doing so produces a large 

power boost relative to Levin and Wampold’s (1999) original randomization tests 

that incorporate only intervention start-point randomization. The impressive dual-

randomization power increases for the comparative intervention hypothesis are 

particularly noteworthy and heretofore undocumented. Although Levin and 

Wampold recognized the methodological (internal validity) necessity of randomly 

assigning the XY pair members to intervention conditions when testing that 

hypothesis, their single-randomization test procedure does not capitalize on the 

statistical power benefits that result from random assignment. 

At the same time, and as was suggested by Levin and Wampold (1999, p. 

78), now suppose that instead of X and Y representing two alternative 

interventions to which pair members are randomly assigned (as was examined 

here), they represent some non-randomly assigned participant-differentiating (or 

status) variable of interest (e.g., gender, age, ability, amount of prior experience), 

where one pair member (X) represents one level of the status variable (e.g., male, 

older, higher, more prior experience) and the other pair member (Y) represents a 

different level (female, younger, lower, less prior experience). In that nonrandom-

assignment situation, the additional 2N X vs. Y randomization outcomes of the 

modified Levin-Wampold formula (provided earlier in this section) cannot be 

incorporated into the randomization distribution, in which case the statistical test 

would revert to the original procedure developed by Levin and Wampold. It 

should be noted, however, that: (1) the inclusion of the status variable (e.g., 

gender, age, ability, amount of prior experience) still permits the investigation of 

a possible intervention-by-status interaction (e.g., the intervention is relatively 

more effective for individuals with less prior experience than for individuals with 

more prior experience) with the comparative intervention effectiveness test; and 

(2) if AB phase randomization is included in a nonrandomized status-variable 

study, then the 2N factor associated with phase randomization in the modified 

Levin-Wampold general intervention effectiveness formula (provided earlier in 
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this section and the primary focus of the present order-randomization study) 

would reappear. 

Let us additionally consider a participant-pairs situation in which both the 

XY and the AB factors have randomized components. For example, X and Y 

could represent two randomly assigned instructional interventions: experimental 

vs. control (as in Investigation 4, and the primary factor of interest); and A and B 

could represent two types of practice: teacher- vs. self-directed (the secondary 

factor of interest), the order of which is randomly assigned to each pair. In that 

situation, the currently investigated two-factor randomization design (intervention 

start points and phase orders) could be expanded to encompass a third randomized 

factor (intervention start points, instructional intervention, and practice-type phase 

order). Yet, it is important to note that: (1) incorporating either AB or XY 

randomization into the Levin-Wampold (1999) simultaneous pairs design will 

enhance the design’s internal validity and produce a statistical power increase to 

detect general (AB) or comparative (XY) intervention effectiveness, relative to 

the power of the original procedure; and (2) although incorporating both AB and 

XY randomization components into the design (as in the present three randomized 

factor design example) provides a double internal-validity enhancement, the 

resulting power is exactly the same as that associated with incorporating only one 

of these additional randomization components (i.e., either AB or XY). 

Investigation 5: Randomized Intervention Order for the 
Single-Case Crossover AB Design 

The crossover design is a standard investigative strategy in conventional-group 

educational intervention research (see, for example, Jones & Hall, 1982; and 

Levin et al., 1990, Exp. 1). With a crossover design it is possible to compare two 

intervention conditions (or an intervention and a nonintervention control 

condition) in two independent groups that also receive both intervention 

conditions in counterbalanced orders. Although various single-case designs (e.g., 

the alternating treatment design) allow for each case to receive two or more 

interventions, the within-case structuring and/or rapid alternation of treatments 

does not provide an adequate parallel to capture the essence of the crossover 

design. With a little tweaking, however, the present order-randomization approach 

can be adapted to capture that essence.  

With A and B representing two different interventions, the present order-

randomization modification of Marascuilo and Busk’s (1988) model has all the 

apparent trappings of a crossover design. However, adding a straightforward 
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order-randomization component to that model may not adequately fit a single-

case researcher’s crossover-design bill. Specifically, randomizing the intervention 

order independently for all participants (or other units) in the Marascuilo-Busk 

model does not guarantee that an equal number of participants will receive the 

two orders, AB and BA―something that is desirable, if not essential, for 

producing a study that is completely counterbalanced with respect to the order of 

intervention administration. In fact, in the extreme, a simple randomization 

scheme could actually result in all participants receiving the same order of 

intervention administration. In a single-case intervention study with a small 

number of cases, that situation is not as unlikely as it may initially appear. For 

example, with N = 2 cases it will happen half the time; with N = 3 it will happen 

25% of the time; and with N = 4, it has a 12½% chance of occurring. It should 

also be recognized that it is not possible to have complete (i.e., perfect) order 

counterbalancing with an odd number of participants.  

 Consequently, a potentially useful alternative is a crossover design that is 

completely counterbalanced with respect to the order in which the two different 

interventions are administered. Implementing such a procedure perfectly controls 

for potential contaminating effects associated with the two different intervention 

orders (AB and BA) and therefore eliminates order effects as an internal validity 

concern. This can be accomplished with a restricted randomization scheme, the 

Type I error and power characteristics of which are explored next in the context of 

Investigation 5. 

Method 

In this investigation we examined the effect on Type I error and power 

characteristics of restricting the dual-randomization scheme to ensure a balance 

between cases assigned to crossover design orders AB and BA.  Specifically, a 

restricted dual-randomization crossover design (henceforth referred to as 

restricted) with 15 observations and k = 5 potential start points for each case 

randomly selected from observations 6 through 10 was examined for conditions 

with 2, 3, 4, 5, and 6 cases. For conditions with an even number of participants 

the number assigned to AB was restricted to equal the number assigned to BA, 

resulting in a augmented multiplier factor of    !/ ! !N

x N x N x    to the kN 

potential intervention start-point randomization outcomes (or 1

N

i ik  when the 

number of potential intervention start points differs across cases), where N is the 

total number of cases and x is the number of cases that are to be randomly 

assigned to each of the two administration orders. For an odd number of 
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participants the number assigned to AB was restricted to equal the number 

assigned to BA, plus or minus 1. In the latter (odd number) case, because of the 

dual-randomization process of: (1) randomly determining which order, AB or BA, 

was to be associated with the larger number; and (2) randomly assigning the two 

orders to participants, this resulted in an augmentation factor of 

   2 2 !/ ! !N

x N x N x     (see Levin et al., 2014, p. 192). Effect sizes were 

varied from 0 to 3 in increments of .5, again the autocorrelation was set to 0 or .3, 

and one-tailed α = .05 tests were conducted. 

Results 

Results from the conditions where the autocorrelation is 0 are shown in Figure 11, 

whereas those for an autocorrelation of .3 are shown in Figure 12. For 

comparative purposes, results from the unrestricted-dual randomization designs 

(henceforth referred to as unrestricted) of Investigation 3a are also included in 

those two figures. In Figures 11 and 12 it is clear that for all sample sizes the 

restricted-randomization tests yielded empirical Type I errors (i.e., when the 

effect size was 0) that corresponded with their nominal .05 values. Although it is 

evident from Figures 11 and 12 that the restricted-randomization crossover-design 

powers are uniformly lower than the corresponding unrestricted-randomization 

powers, the difference between the two becomes less and less noticeable with 

increases in sample size. With Ns of 5 and 6, for example, the power differences 

are negligible for all practical purposes. At the same time, it should be pointed out 

that even at the smaller sample sizes the restricted-randomization crossover-

design powers are respectable. To wit, in Investigation 3a it was indicated that 

with an autocorrelation of .3 and N = 3 participants, the unrestricted-

randomization test’s power for detecting an effect size of d = 1.5 was equal to .90 

(reproduced in Figure 11); and as may also be seen in Figure 11, for the same set 

of parameters the restricted-randomization crossover-design test’s power is .865. 
 
 



LEVIN ET AL. 

33 

 
 
Figure 11. Investigation 5: Comparison (α = .05, one-tailed) of randomization tests for the 

Restricted Dual and Unrestricted Dual AB randomized crossover designs replicated 
across N cases. The rejection rate of the null hypothesis is shown as a function of effect 
size and N, for a 15 observations design with 5 potential intervention start points 
designated from between the 6th and 10th observations inclusive and an autocorrelation of 
0. 

 

 

 
 
Figure 12. Investigation 5: Comparison (α = .05, one-tailed) of randomization tests for the 

Restricted Dual and Unrestricted Dual AB randomized crossover designs replicated 
across N cases. The rejection rate of the null hypothesis is shown as a function of effect 
size and N, for a 15 observations design with 5 potential intervention start points 
designated from between the 6th and 10th observations inclusive and an autocorrelation 
of .3. 
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Investigation 6: Randomized Intervention Order for the 
Single-Case ABAB Design 

In Investigation 5 the simulations were extended to four-phase ABAB designs 

(also referred to as reversal or operant designs―see, for example, Kratochwill & 

Levin, 2010). More specifically, Type I error and power were examined for 

Onghena’s (1992) randomized intervention start-point ABAB design (Single) and 

a combined randomized intervention start-point plus random-order (ABAB versus 

BABA) design (Dual), with the dual approach enhancing the ABAB design’s 

internal validity by virtue of its controlling for potentially confounding order 

effects.  

Method 

The effect of case replications (more participants) on power was examined for a 

design with 23 observations and a minimum of 5 observations in each of the four 

phases, which implies that the number of possible permutations for one case is 20 

for the single-randomized design (for computational details, see Onghena, 1992) 

and 40 for the dual-randomized design. The simulations included 1, 2, 3, or 4 

participants, effect sizes that varied from 0 to 3 in increments of .5, and an 

autocorrelation of 0 or .3. Sample sizes greater than 4 were not investigated 

because ABAB designs provide more intervention-effect information per case 

than AB designs and thus they tend to be replicated across fewer participants. 

Thus, the value in extending the study to larger numbers of participants was 

judged not to warrant the increased computational time that would have been 

required. All tests (based on the average of the two B-phase observations minus 

the average of the two A-phase observations) were conducted with a one-tailed 

Type I error probability of .05. In that regard, it should be mentioned that the 

present simulations are based on the weighted (by the number of outcome 

observations, O) A- and B-phase means [i.e., (OA1MA1 + OA2MA2)/(OA1 + OA2) 

and (OB1MB1 + OB2MB2)/(OB1 + OB2)] whereas Gafurov and Levin’s (2014) 

ExPRT program calculations are based on the unweighted means [(MA1 + MA2)/2 

and (MB1 + MB2)/2]. Power differences attributable to the two weighting schemes 

per se should be minimal for the set of parameters that were specified for the 

present simulations, however. 
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Figure 13 

 

 
Figure 14 

 
Figures 13 and 14. Investigation 6: Comparison (α = .05, one-tailed) of randomization 

tests for the Single and Dual randomized ABAB designs replicated across N cases. The 
rejection rate of the null hypothesis is shown as a function of effect size and N, for an 
autocorrelation of 0 (Figure 13) or .3 (Figure 14), and a 23 observations design with a 

minimum of 5 observations in each of the four phases. The resulting number of possible 
randomizations is 20 for the Single randomization scheme and 40 for the Dual 
randomization scheme. 
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Results 

Results from the conditions where autocorrelation was 0 are shown in Figure 13, 

while those for an autocorrelation of .3 are shown in Figure 14. As was true for 

the AB designs, once again the present dual-randomization scheme greatly 

overpowers the single-randomization scheme. For example, with an 

autocorrelation of .30 an effect size given by d = 1.5, and an N = 2 design, single-

randomization ABAB power is equal to .66 whereas dual-randomization ABAB 

power is .895―a nontrivial power difference of almost .24. For the single-

randomization scheme to achieve comparable power (.91) to that of the dual-

randomization scheme (.895) would require twice as many participants, namely 

N = 4. 

Investigations 7 and 8: The Single-Case AB Design 
Revisited 

What follow are two additional AB design investigations, both of which follow 

directly from colleagues’ concerns about data characteristics of the simulations 

reported thus far. One such concern focuses on the series lengths associated with 

all of the simulations conducted so far and the other focuses on the distributional 

characteristics of the outcome measure that comprises all of those simulations. 

These two concerns are addressed in Investigations 7 and 8, respectively. 

Investigation 7 

In a recent survey of single-case intervention research reported in 21 journals and 

based on 809 cases during the year 2008, Shadish and Sullivan (2011) reported 

that the modal and median series length per case consisted of 20 total 

observations. The positively skewed distribution had a mean of 27.0 and range of 

2 to 160. Approximating from Shadish and Sullivan’s frequency histogram 

(Figure 2), one can estimate that 23% of the cases had series lengths in the 20-29 

range, with 16% in the 30-39 range, 6% in the 40-49 range, and 5% that were 50 

or more. Moreover, it is not difficult to locate single-case intervention studies in 

recent years that included 50 or more outcome observations per case―see, for 

example, Lucynski, Hanley, & Rodriguez (2014), with 6 children and 

approximately 50 observations per child; Pellecchia et al. (2011), with 8 children 

and 60 or more observations per child; Hanley, Jin, Vanselow, & Hanratty (2014), 

with 3 children and approximately 70 observations per child; and Donaldson, 
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Trahan, & Kahng (2014), with 1 adult exhibiting dementia and approximately 130 

observations. 

In the present Investigation 1, the simulation consisted of 30 outcome 

observations; in Investigation 2, the range spanned from 20 to 150; in 

Investigations 3 and 4 there were 15 outcome observations; in Investigation 5 

there were 15 and 30; and in Investigation 6 there were 23. Therefore, the series 

lengths for the present simulations do not seem too far out of line with those of 

single-case intervention studies that are being reported in the literature, where at 

least half of them include at least 20 observations (Shadish & Sullivan, 2011). 

Why, in the first place, was a series as long as 30 decided upon for our 

Investigations 1 and 5? The answer is simple with respect to the primary focus of 

the study. Specifically, at least 21 observations (i.e., 20 potential intervention 

points with at least one baseline observation and one intervention observation) are 

required to compare Edgington’s (1975) single randomization-test procedure and 

the present dual modification based on a one-tailed α of .05. We settled on 30 

total observations to provide at least 5 baseline observations and 5 intervention 

observations, thereby obtaining some degree of stability in those two series. 

That said, in Investigation 7 we examined whether the already reported 

power difference favoring the dual- over the single-randomization approach 

would generalize to shorter―in fact, very short―series (N < 10), as was 

analogously examined by Levin et al. (2011) in their short series Investigation 2’s 

AB design.  

 

Method Here, the simulation parameters and procedures of Investigation 3 

were again selected and applied to three short-series conditions. Power for each of 

these conditions was assessed for the single- and dual-randomization test 

procedures (α = .05, one-tailed) for both series based on an autocorrelation of 0 

and those based on an autocorrelation of .30.   

In one condition two cases were included, with 9 outcome observations per 

case. The first two observations were always in the first phase, the last two 

observations were always in the last phase, and the intervention start point was 

randomly chosen from among the middle five observations in the series.  In a 

second condition three cases were included, with 7 outcome observations per case. 

The first two observations were always in the first phase, the last two observations 

were always in the last phase, and the intervention start point was randomly 

chosen from among the middle three observations in the series.  The third 

condition consisted of five cases, with 8 outcome observations per case. The first 

three observations were always in the first phase, the last three observations were 
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always in the last phase, and the intervention start point was randomly chosen 

from among the middle two observations in the series. 
 
 

 
 
Figure 15. Investigation 7: Comparison (α = .05, one-tailed) of randomization tests for the basic AB 

randomized intervention start-point design (Single) and the randomized intervention start-point plus 
randomized intervention-order design (Dual). The rejection rate of the null hypothesis is shown as a 
function of the effect size and level of autocorrelation for: (A) a two-participant design with nine 
observations each where the start point is randomly assigned to one of the middle five observations, 
(B) a three-participant design with seven observations each where the intervention start point is 
randomly assigned to one of the middle three observations, and (C) a five-participant design with 
eight observations each where the start point is randomly assigned to one of the middle two 
observations. 
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Results The results are summarized in the three panels of Figure 15, where 

it may clearly be seen that, as in Investigation 3a, with the Type I error well 

controlled, in all three conditions the dual- randomization test’s powers by far 

surpass those of the single-randomization test. A direct comparison of selected 

dual-over-single power advantages in the long-series Investigation 3a (Figure 4) 

and the present short-series investigations (Figure 15) is summarized in Table 3, 

where it should be noted that the advantages in the short-series investigations are 

comparable to (or larger than) those of the long-series investigations. On that 

basis, it can be concluded that the appeal of the dual-randomization approach is 

not restricted to long-series intervention studies. The approach applies equally 

well, if not better, to intervention studies consisting of a total of 7, 8 or 9 outcome 

observations. 
 
 
Table 3. Selected single- versus dual-randomization power comparisons of the present 

longer (Investigation 3a, Figure 4) and shorter (Investigation 7, Figure 15) series 
simulations (SL = Series Length, PISP = Number of Potential Intervention Start Points) 
 

N d r Size (SL/PISP) Single Dual Difference 

2 2 0.3 Longer (15/5) 0.44 0.85 0.41 

   
Shorter (9/5) 0.42 0.8 0.38 

3 1.5 0.3 Longer (15/5) 0.49 0.9 0.41 

   
Shorter (7/3) 0.28 0.73 0.45 

5 1 0.3 Longer (15/5) 0.45 0.89 0.44 

      Shorter (8/2) 0.15 0.71 0.56 

 
 

As may also be seen in Figure 15, in contrast to the long-series results 

presented in Figures 3 and 4, throughout the present study, and in previous 

investigations, the powers associated with the single-randomization approach do 

not decrease as the autocorrelation increases from 0 to .30. In fact, a slight power 

increase may be observed for the larger effect sizes in Panels B and C. This same 

positive relationship between autocorrelation and power for the single-

randomization approach was also discovered and noted by Levin et al. (2011) in 

their short-series Investigation 2. Those authors offered a speculative 

interpretation of that finding, but a experimental examination of that interpretation 

remains to be conducted. 
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Investigation 8 

In all of the present simulations, the data were generated assuming that the 

outcome measure was continuous and normally distributed, whereas in many 

single-case intervention studies the outcome measures consist of discrete counts 

or rates. Therefore, to assess whether the power differences favoring the dual-

over-single randomization approach would be observed even in an extremely non-

normal distribution situation, Investigation 1 was replicated with the only change 

being that the outcome measure was simulated to be a binary variable as opposed 

to a continuous one.  

 

Method More specifically, the same algorithms were used to generate the 

data, but the resulting values were dichotomized such that all values over 1 were 

recoded as 1 and all values under 1 were recoded as 0. Thus, for conditions 

without autocorrelation, the baseline observations had a probability of .34 of 

being a 1 (and .66 of being a 0), whereas the probability of obtaining a 1 in the 

intervention phase depended on d (e.g., when d equaled 0, 1, 2, 3, 4, and 5, the 

probabilities of obtaining a 1 were .34, .50, .84, .98, .999, .99997). 
 
 

 
 
Figure 16. Investigation 8: Comparison (α = .05, one-tailed) of randomization tests for the basic AB 

randomized intervention start-point design (Single) and the randomized intervention start-point plus 
randomized intervention-order design (Dual), where the outcome is binary and the intervention start 
point is randomly selected between the 6th through the 25th observations inclusive in a 30-
observations study. The rejection rate of the null hypothesis is shown as a function of the effect 
size and level of autocorrelation. 
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Results The results of this simulation may be seen in Figure 16. Similar to 

when the continuous outcome was examined (Investigation 1) the dual-

randomization approach consistently leads to greater power than the single-

randomization approach, but as would be anticipated, the dichotomization of the 

outcome lessens the power for each. Also of note, the power estimates reach a 

ceiling below 1.0, which can be explained by the baseline observations being set 

so there was a .34 probability of observing the desired behavior. If the baseline 

probability had been set lower, say to .01, the difference in probabilities between 

phases could be larger, leading to higher observed maximum powers. 

General Discussion 

In the eight Monte Carlo investigations reported here, we discovered that in 

situations where researchers are able to randomize the order in which the phases 

of single-case AB and ABAB designs (or the interventions themselves in paired-

cases designs) can be administered by, for example, simple coin flips, it is clearly 

advantageous to do so. Order randomization represents a valuable addition to 

Edgington’s (1975) and Onghena’s (1992) randomized start-point models, in that 

it: (1) enhances those designs’ internal validity (a methodological improvement); 

and (2) effectively controls the associated randomization test’s Type I error 

probability, while affording increases in the test’s power (a statistical 

improvement). In many of the instances examined, these power increases were 

dramatic with respect to a single-case researcher’s economic savings. For instance, 

in Investigation 2’s N = 1 simulations we found that an AB design with the 

present dual-randomization scheme could require less than half as many outcome 

observations as Edgington’s original single-randomization scheme. Specifically, 

as may be seen in Figure 2, for α = .05 (one-tailed), an effect size of 2.0, and a 

series autocorrelation of .3, the dual-randomization approach based on 30 

outcomes yields power of .67. In contrast, to achieve similar power with the 

single-randomization approach requires between 80 and 90 outcome observations. 

In alternative economic terms, in Investigations 3 and 5 we found that in N > 1 

investigations, about twice as many participants are required for the single-

randomization approach to achieve power equivalent to that of the dual-

randomization approach (see Figures 3-8). Similar dual-over-single randomization 

power advantages were achieved in the Investigations 4 and 6 randomized pair-

members AB design and four-phase ABAB design, respectively. Importantly to 

single-case researchers from both practical and versatility perspectives, such 

power advantages were also observed in: (a) short-series designs consisting of as 
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few as seven observations (Investigation 7); and (b) single-case intervention 

contexts associated with binary, rather than normally distributed, outcome 

measures (Investigation 8). 

Additional Considerations for the Single-Case Crossover Design 

Restricted or unrestricted randomization: Which is better?     To guarantee order 

balance (and, therefore, greater internal validity) in single-case AB crossover 

designs, a restricted dual-randomization scheme must be employed, rather than an 

unrestricted one. Although the restricted-randomization approach results in 

powers that are uniformly lower than those associated with an unrestricted-

randomization approach, as sample sizes increase beyond N = 2 or 3 cases the 

respective powers of the two designs are quite comparable. So, whenever a 

researcher is considering the tradeoff between a guaranteed crossover-design 

balance of intervention administration order (thereby controlling perfectly for 

order effects), on the one hand, and some degree of increased statistical power, on 

the other, then: (1) if the former is considered to be relatively more important, the 

researcher should select the restricted-randomization procedures of Investigation 

5; and (2) if the latter wins out as being relatively more important, the researcher 

should choose the unrestricted-randomization procedures of Investigation 3, 

especially when the sample size is relatively small (i.e., N < 3 or 4 cases). 

 

Controlling for potential confounding factors        In actual intervention research 

studies based on within-subjects designs, in general, and single-case AB crossover 

designs, in particular (as represented by current Investigation 5), more potentially 

confounding variables than simple order effects must be taken into account and 

controlled. That is, between-phase outcome changes may also be the result of 

other extraneous factors, including: external effects, such as those attributable to 

history; effects associated with the experimenter or instructor; and effects 

associated with the participant, such as novelty, Hawthorne, and “John Henry” 

effects (see, for example, Shadish, Cook, & Campbell, 2002). Such confounding 

variables can severely compromise an intervention study’s internal 

validity―namely, that the manipulated intervention per se was responsible for 

between-phase outcome changes―as well as its construct validity. In research 

now in progress, we are comparing the effects of extraneous factors on internal 

and statistical-conclusion validity in the present unrestricted and restricted 

crossover designs. 
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A random-assignment caveat          A few words of operational caution connected 

to the restricted design crossover design of Investigation 5 should be offered to 

interventionists who elect to implement that design in their research. Specifically, 

some researchers are likely to make a critical random-assignment mistake when it 

comes to implementing the randomization process correctly. With an even 

number of cases, there should be no problem, in that the researcher would 

randomly select half of the cases to receive an AB order of intervention 

administration, with the remaining half receiving the BA order. With an odd 

number of cases, however, the researcher needs to consider possible assignments 

where either the AB order or the BA order receives the larger number of cases. To 

do so, the researcher could go through a two-step randomization process, as 

follows. In Step 1, the researcher would randomly determine whether the larger 

number of cases is to receive the AB order or the BA order (e.g., 4 cases if N = 7). 

Then in Step 2, the researcher would proceed as in the previous “even N” 

situation, namely randomly selecting the N1 cases that will be receiving the AB 

order, with the remaining N2 cases receiving the BA order. Without the researcher 

conducting the restricted-randomization procedure in this two-step fashion (or 

through an analogous completely random-assignment process), subjectivity would 

enter into the researcher’s decision about which order (AB or BA) receives the 

one more (or one fewer) case, resulting in the randomization distribution and its 

associated statistical test being invalid. 

Levin and Wampold’s (1999) Simultaneous Pairs Intervention Start-

Point Model Revisited 

 In the present Investigation 4, we examined Levin and Wampold’s (1999) 

simultaneous pairs, comparative intervention effectiveness hypothesis, with a 

randomized XY intervention variable included in the randomization-test analysis. 

In that situation, we found the statistical power of the procedure to be greatly 

enhanced relative to that of the original Levin-Wampold procedure, for which the 

randomized intervention factor is not taken into account. We now consider a 

variation and an extension in conjunction with the present modified procedure. 

For the variation, suppose that the A and B phases represent two competing 

interventions and, as in Investigations 1-3, it is possible to randomize the order in 

which the two phases are administered (A followed by B or B followed by A). 

Within each participant pair, it is randomly determined which pair member is 

assigned the AB administration order and which the BA order (say, X = AB and 

Y = BA). The data are collected and, as in Investigation 4, the comparative 
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intervention effectiveness hypothesis is tested (with the inclusion of the 2N 

multiplier associated with the randomized XY factor) on the difference in 

differences, (XA1 – YB1) – (XB2 – YA2) = (XA1 + YA2) – (XB2 + YB1). Note that in 

this context the interaction actually represents a main effect comparison of 

Intervention A vs. Intervention B, just as it does in a conventional crossover 

design. Accordingly, this paired-cases design then becomes conceptually 

equivalent to the just discussed restricted-order crossover design of Investigation 

5, but because of the pairs structure here, for which it is guaranteed that: (1) there 

will be equal numbers of participants receiving each intervention order; and (2) 

within each pair, the crossover will occur at exactly the same point in time. 

For the extension of the modified Levin-Wampold (1999) simultaneous 

pairs comparative intervention effectiveness test, now suppose that two 

equivalently scaled (or commensurable) outcome measures, M1 and M2, are 

constructed to be differentially sensitive to an intervention; or alternatively, that 

M1 is expected to be more responsive to Intervention X than to Intervention Y and 

M2 is expected to be more responsive to Intervention Y than to Intervention 

X―as with Levin’s (1989) experimental illustrations of Campbell and Fiske’s 

(1959) discriminant validity and Morris, Bransford, and Franks’ (1977) transfer-

appropriate processing. The modified dual-randomization procedure to test Levin 

and Wampold’s comparative intervention effectiveness hypothesis can be readily 

extended to accommodate thedifferential outcome-measure effects addition. 

Specifically, with X and Y representing randomly assigned interventions within 

each pair, A and B representing baseline and intervention phases (as in 

Investigation 4), and M1 and M2 representing commensurable measures or tests, 

the data to be analyzed are simply the intervention-by-phase difference-in-

differences effect associated with M1 minus the same effect associated with M2, 

and which amounts to the three-way interaction of intervention by phase by 

outcome measure. This translates into an assessment of whether whatever 

differential change from Phase A to Phase B that is produced by the two 

interventions is the same on the two outcome measures. As with the Investigation 

4 test of the two-way intervention-by-phase interaction (i.e., the comparative 

intervention effectiveness test), the statistical power to test this extended 

difference would also benefit from the 2N multiplier resulting from within-pair 

randomization of the intervention factor. 
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Extensions to Other Single-Case Intervention Designs and Situations 

Other single-case designs   Research by the present authors is currently 

in progress to extend the present randomized-order design-and-analysis procedure 

(combined with randomized intervention start points) to single-case intervention 

designs other than the AB-type and ABAB designs that were investigated here. 

Our initial efforts have been targeted at alternating treatment designs (Levin et al., 

2012) and multiple-baseline designs. In the former, independently randomizing 

the alternating A and B intervention phases both within and across participants 

has been recommended as an internal-validity enhancer (e.g., Kratochwill & 

Levin, 2010) and incorporating both randomized intervention start points and 

randomization statistical tests into the process is relatively straightforward. In the 

latter, although multiple-baseline designs typically include a set of staggered 

baseline (A) and intervention (B) phases across participants, the present 

randomized-order approach could be adopted for situations in which, as was 

discussed here, an initial mandatory A' series of baseline (warm-up or adaptation) 

observations is included. The approach might also be possible in situations where 

A represents a standard or basic instructional/behavioral practice and B represents 

a competing alternative practice. 

 

Other outcome measures   As well as testing for between-phase mean 

(level) changes, the present randomized-order procedure is similarly applicable to 

testing for changes in slope (trend) and variance (variability). All such tests are 

available in Gafurov and Levin’s (2014) Excel©-based randomization-test 

software, which is freely accessible from the Google Drive ExPRT (Version 1.2) 

website, https://code.google.com/p/exprt/. At the same time, simulation research 

now in progress (Levin et al., 2014) is assessing the Type I error probabilities and 

statistical powers of the present combined randomized intervention start-point and 

randomized-order approaches relative to Koehler and Levin’s (1998) randomized 

intervention start-point approach alone, with respect to tests of slope and variance, 

in various single-case intervention designs. 

 

Other intervention effect types  It is important to note that in the present 

eight-investigation set of Monte Carlo simulations, all intervention effects were 

modeled to represent immediate abrupt changes in the participant’s mean level: 

that is, a constant increase in the participant’s series of observations that is 

coincident with the initial potential intervention point specified by the 

researcher―or, in the case of the four-phase ABAB design, coincident with the 

initial potential phase-change (transition) point that was specified for each of the 

https://code.google.com/p/exprt/
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three phase changes. In some of our research in progress we are modeling other 

types of intervention effects as well, such as immediate gradual effects, delayed 

abrupt effects, and delayed gradual effects (see, for example, Lall & Levin, 2004). 

In each of these ongoing simulation studies our goal is to determine whether the 

present randomized-order approach and associated randomization test afford 

power benefits that are as impressive in other single-case design contexts (and for 

other outcome measures) as were discovered in the present AB and ABAB design 

tests of between-phase changes in level.   

Final Comments 

Although randomization schemes of the type advocated here may be opposed by 

single-case intervention researchers who have been steeped in the response-

guided tradition (see, for example, Ferron & Levin, 2014), we hope that such 

schemes will be received more positively by at least some traditional single-case 

interventionists. In fact, for years many alternating-treatment design users have 

been diligent in assigning interventions to phases or sessions using a block-

randomization process (Kratochwill & Levin, 2010; for a research example, see 

Holden, Bearison, Rode, Kapiloff, Rosenberg, & Rosenzweig, 2002). As a cause 

for further optimism, an increasing number of single-case investigations that have 

incorporated various forms of randomization design and analysis are appearing in 

both student dissertations and the published literature (e.g., Ainsworth, 2014; 

Bardon, Dona, & Symons, 2008; Bice-Urbach, 2015; Bonnet, 2012; Lojkovic, 

2014; Regan, Mastropieri, & Scruggs, 2005). 
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The effect of a number of factors, such as the choice of analytical method, the handling 
method for missing data, sample size, and proportion of missing data, were examined to 
evaluate the effect of missing data treatment on accuracy of estimation. A methodological 
approach involving simulated data was adopted. One outcome of the statistical analyses 
undertaken in this study is the formulation of easy-to-implement guidelines for educational 
researchers that allows one to choose one of the following factors when all others are given: 
sample size, proportion of missing data in the sample, method of analysis, and missing data 
handling method. 
 
Keywords: Missing data, imputation, simulation, listwise deletion, missing value 
analysis 
 

Introduction 

Missing data is an issue that most researchers in education encounter on a routine 
basis. In survey research there can be many reasons for missing data such as 
respondents ignoring a few or all questions, questions being irrelevant to the 
respondent's situation, or inability of survey administrators to locate the respondent. 
Missing data can also occur in non-survey data, such as experimental and 
administrative data (Acock, 2005; Brick & Kalton, 1996; Groves et al., 2004). In 
non-survey samples, missing data can arise due to carelessness in observation, 
errors made during data entry, data loss due to misplacement etc. Regardless of the 
reason why data is missing, once it is missing it becomes part of the dataset that is 
then used by researchers to perform analytical procedures. The quality of such 
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analytical procedures directly depends on the quality of underlying data which in 
turn can be affected by the nature of missing data (Allison, 2001; Schafer & Graham, 
2002).  

Unfortunately there are many different methods of handling missing data 
which can have profoundly different effects on estimation. For this reason it is 
important to select the correct missing data handling method that is suited to a 
researcher's particular circumstances. These circumstances can be expressed as 
factors, such as sample size, proportion of missing data, method of analysis etc., 
some of which may fall under the control of the researcher in a given scenario and 
thus can be manipulated, while others are more difficult to control. 

For example, a researcher working with secondary data will likely not find it 
possible to increase the sample size to offset the effect of missing data but may have 
flexibility regarding the choice of analytical method. On the other hand, a 
researcher who is gathering her own data and who is relying on a specific method 
of analysis to answer her research questions may find it easy to increase her sample 
size in order to lower the proportion of missing cases. As these illustrations suggest, 
the scenario under which a researcher handles missing data can vary considerably 
depending on that researcher's circumstances. 

There were many investigations and comparisons of the performance of 
missing data handling methods, both in general (Afifi & Elashoff, 1966; Graham, 
Hofer, MacKinnon, 1996; Haitovsky, 1968; Peng, Harwell, Liou, & Ehman, 2009; 
Peugh & Enders, 2004; Wayman, 2003; Young, Weckman, & Holland, 2011) and 
in context of specific factors such as proportion of missing data (Alosh, 2009; Knol 
et al., 2010; Rubin, 1987) and sample size (Alosh, 2009; Rubin, 1987). Because the 
current study is not a review of the literature, any comprehensive attempt to 
reproduce that discussion is beyond its immediate scope. For detailed technical 
aspects including mathematically-intensive proofs and theorems, and application 
of these methods in various fields including education, see Madow, Nisselson and 
Olkin (1983), Madow and Olkin (1983), Madow, Olkin, and Rubin (1983), Jones 
(1996), Groves, Dillman, Eltinge, and Little (2002), and Andridge & Little (2010). 

Although several researchers have investigated missing data handling 
methods, their results were based on various combinations of sample size, 
proportion of missing data, method of analysis, and missing data handling method. 
None of the past studies has dealt with all of these factors simultaneously using the 
same dataset in order to control for data-specific characteristics. For this reason, the 
findings of these earlier studies cannot be used to construct general guidelines for 
use with new datasets. This study controls for all of these factors simultaneously, 
and also expands the range of sample size and proportion of missing data in order 
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to improve the generalizability of its findings. Furthermore, in this study the 
missing data handling methods are compared for four analytical methods that are 
frequently employed in educational research: one sample t test, independent 
samples t test, two-way ANOVA, and linear multiple regression. Results of these 
comparisons can be used to correct biases in tests of hypotheses reported in past 
research that employed improper imputation methods, such as mean imputation, 
that are well-known to produce biased parameter estimates. 

Even though the drawbacks of many missing data handling methods are well-
known and have been regularly publicized in leading peer-reviewed journals, 
researchers in social sciences in general and education and psychology in particular 
have shown a remarkable resilience in sticking to some of the simpler and most 
error-prone methods such as listwise deletion, pairwise deletion, and mean 
imputation (Peng et al., 2006; Peugh & Enders, 2004; Roth, 1994; Schafer & 
Graham, 2002). There are various reasons for avoiding sophisticated missing data 
handling methods that range from a lack of expertise in quantitative methodology 
required for a basic understanding of these methods to the inability to practically 
implement those methods using specialized software programs due to a lack of 
programming know-how. A correction of this state of affairs requires a study that 
specifically targets this population of researchers and that can provide general 
guidelines for selection of the best missing data handling method under a variety of 
scenarios. Some prior studies such as Roth (1994) have pointed out the absence of 
an expansive measurement of bias due to missing data and the gain in efficiency 
that can be achieved by imputing that data in social science literature, especially 
psychology, a field from which educational research heavily borrows its 
quantitative methodology. The same study especially stressed development of 
guidelines that can be used to choose the best missing data handling technique in a 
variety of circumstances faced by researchers. 

The main objective of this study is to provide educational researchers with 
general guidelines about which missing data handling method performs best under 
a variety of combinations of sample size, proportion of missing data, and method 
of analysis. More specifically, these guidelines will allow the researcher to choose 
one of the following factors when all others are given: sample size, proportion of 
missing data, method of analysis, and missing data imputation method. 
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Method 

The analytical procedures presented in this study use two sources of data, a 
simulated dataset and empirical samples. A description of these datasets and 
analytical procedures follows. 

Data Simulation 

The primary source of data used for statistical analyses performed in this study was 
a simulated dataset. The main reason for using simulated data was to ensure that 
distributional assumptions governing the methods of analysis applied in this study 
were not violated. The main concern was that violation of underlying model 
assumptions for each method of analysis under some conditions and not the others 
can significantly erode uniformity of the basis on which these methods are 
compared. A reliable way to avoid this problem was to simulate data that satisfied 
all underlying assumptions for analytical methods of interest and that at the same 
time had characteristics that made such data suitable for analysis of real-world 
problems. 

In order to mimic data routinely encountered by educational researchers a 
dataset with 10,000 cases was simulated which included four continuous and one 
categorical variable. Because groups of variables are usually investigated because 
they are related to each other, it is important that the simulated data also mimic such 
relationships. This was achieved by specifying a variance-covariance matrix that 
was not unlike what a typical educational researcher may encounter during her 
research. 

The four continuous variables, Y, X1, X2, and X3, were generated in such a way 
as to simulate weak correlation between Y and X1 (r = .3), moderate correlation 
between Y and X2 (r = .5), and strong correlation between Y and X3 (r = .7), with 
the three X's correlated weakly with each other (r = .2). This pattern was adopted 
to avoid the problem of multicollinearity in linear multiple regression models 
analyzed in this study. It should be noted that the strength of an association is a 
relative concept. While a coefficient of correlation of .7 may be considered weak 
in context of a physical experiment, the same might be considered very strong in 
context of a social study. Cohen (1992), for instance, suggests .1, .3, and .5 as rule 
of the thumb for small, medium, and strong correlation. Values of the four 
continuous variables X1, X2, X3, and Y were drawn from a multivariate normal 
distribution. For ease of interpretation all continuous variables were specified to 
have a mean of 0 and standard deviation of 1. Dichotomous predictor Z1 was 
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constructed using a uniform discrete distribution with values 0 (n = 4,945) and 1 
(n = 5,055). 

Because the assignment of these values to Z1 is random, this mirrors a 
situation where a significant mean difference in Y does not exist across levels of Z1.  
In order to construct the opposite scenario where mean differences do exist, Z2 was 
constructed to have three levels, with mean Y significantly different between these 
levels.  The three levels of Z2 were labeled 1 (n = 1,623), 2 (n = 6,823), and 3 
(n = 1,554) with mean Y being the largest for group 1 and smallest for group 3.  It 
should be noted that even though this means that the pattern of missing data in Y 
now depends on Z2, such dependency rules out only the missing completely at 
random (MCAR) assumption and not the relatively less stringent missing at random 
(MAR) assumption and as the missing values of Y are still independent of their own 
magnitude, the data cannot be considered as not missing at random (NMAR). 

Data Analysis Approach for Simulated Data 
The simulated dataset (n = 10,000) was used to select 10 sub-samples of size 10, 
20, 50, 100, 200, 500, 1000, 2000, 5000, and 10000. Each of these sub-samples was 
then reduced in size by 1%, 2%, 5%, 10%, and 20% in order to simulate datasets 
containing missing data. The cases were discarded randomly from each complete 
sample five times separately in order to make sure that there were no dependencies 
between samples. Each of the five missing data handling methods were applied to 
all samples containing missing data under four methods of analysis. These methods 
of analysis are one sample t test, independent samples t test, two-way ANOVA, and 
multiple regression. 

The main considerations behind the choice of these four methods of analysis 
is their widespread use among educational researchers and the desire not to restrict 
the findings of this study to a single method of analysis. These methods represent 
various modeling regimes encountered routinely by researchers in education. For 
the independent samples t test, the mean difference in Y over levels of Z1, the only 
categorical predictor with two levels, was analyzed. For two-way ANOVA, both 
categorical predictors, Z1 and Z2 were used as factors of Y. And for multiple 
regression, Y was specified as a function of the three X's and Z1. Five missing data 
handling methods were selected for missing data analysis. These methods are 
listwise deletion, mean imputation, regression imputation, maximum likelihood 
imputation (ML), and multiple imputation. These methods were chosen because of 
their ready availability and easy implementation in general statistics packages such 
as SPSS. Application of these five missing data handling methods under various 
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sample sizes with data missing in various proportions, and for different methods of 
analysis forms the core of simulated data analysis. 

For each of the four methods of analysis, model parameter estimates and 
associated tests of hypotheses were obtained generated for the 10 complete and 50 
partial samples using each of the five missing data handling methods. In other 
words, a total of 4 × (10 + 50) × 5 = 1,200 models were fitted. These 1,200 models 
can be categorized into two groups with the first group comprising of 200 models 
based on samples that contain no missing data and the second group comprising of 
1,000 models based on samples that contain missing data. The model significance 
for these two groups was then compared using the t statistic for models involving 
one sample t test and independent samples t tests, and the F statistic for two-way 
ANOVA and multiple regression models. 

For example, the F statistic evaluating model significance for two-way 
ANOVA under multiple imputation of missing data when the sample size is 100 
and proportion of missing data is 5% can be directly compared with the 
corresponding F statistic for the complete sample containing no missing data 
(n = 100). Such a comparison is fair because after imputation the numerator and 
denominator degrees of freedom are the same for both F values. Thus, since the 
two samples are identical in all other respects including power, any fluctuation in 
the observed value of F can be attributed to the deviation of imputed values from 
their true counterparts. Such an approach allows an objective evaluation of the 
effect of an imputation method on the statistic used to test for model significance. 
For instance if the observed F value increases after imputation of missing data, it 
means that the observed probability of making a Type I error, i.e. rejecting H0 when 
H0 should not be rejected, has decreased. 

In order to compare performance of the 1,000 models based on missing data 
with their complete-data counterparts, a unitless standardized measure of error, the 
normalized root mean squared error (RMSE) was utilized. RMSE is in essence the 
average distance of observed error from the true value and can be interpreted as the 
standard deviation of XObserved. This measure thus takes into consideration the 
absolute size of error. However, RMSE calculated in this way has the same unit of 
measurement as X. By dividing RMSE with the range of X, the unit of measurement 
can be removed from RMSE. The resulting statistic is called the normalized RMSE. 
The advantage of using normalized RMSE over RMSE is that it can be used to 
compare error across variables that are not based on the same unit of measurement. 
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Empirical Sample 1 
In order to test the real-world applicability of simulated results, a large scale dataset 
with variables having characteristics similar to those used in the simulated data was 
utilized. This empirical data was obtained from U.S. portion of the Program for 
International Student Assessment (PISA) (NCES, 2003) which is an assessment of 
literacy in mathematics, reading, and science of 15-year old students (n = ,456). 
The questionnaire for this survey was the basis for a large number of variables, 
some of which are comparable to those simulated in this study. The primary idea 
behind using an empirical sample was to test the effectiveness of guidelines 
constructed on the basis of simulated data. The variable selection was based on 
similarity of characteristics of these variables with their simulated counterparts. 

The dependent variable was math achievement which was distributed 
normally, measured on a continuous scale, and ranged between 200 and 800. Three 
continuous variables were chosen as predictors of math achievement on the basis 
of similarity between the variance-covariance matrix of these predictors and that of 
the simulated continuous variables. These predictors are reading achievement, math 
anxiety, and the index of home educational resources. Reading achievement was 
normally distributed and ranged between 200 and 800. Math anxiety is a measure 
of anxiety felt by a student when engaged in math-related tasks. This variable was 
measured on a continuum, was normally distributed, and standardized to have a 
mean of 0 and standard deviation of 1. 

Home educational resources measured educational resources owned by a 
student's household and can be roughly thought of as a component of the student's 
socioeconomic status. The variable was also standardized to have a mean of 0 and 
standard deviation of 1. A comparison between the variance-covariance matrices 
of simulated and empirical predictors showed slight differences in magnitude. 
However, what is more important to note is the similarity in the pattern of 
relationship among the four variables which showed that math achievement was 
correlated somewhat weakly with home educational resources (r = .3), moderately 
with math anxiety (r = −.4), and strongly with reading achievement (r = .8). This 
pattern was not very different from that simulated for Y and its three continuous 
predictors. Similarly, the inter-predictor correlations presented were also weak like 
their simulated counterparts ranging between −.3 and .3. 

The observed deviation between these two variance-covariance structures 
emphasizes the practical difficulty associated with obtaining empirical datasets 
which possess exact distributional characteristics that a researcher may require. In 
addition to continuous variables a categorical predictor, gender was selected from 
the PISA 2003 dataset. Gender has two categories: male, n = 2,740; and female, 
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n = 2,715. One case had a missing value for gender reducing the maximum number 
of observations available for analysis from 5,456 to 5,455. 

For the purposes of this study, the approach used for simulated dataset was 
replicated with PISA data. This allows us to compare estimation results with and 
without missing data imputation. For analysis, we predicted math achievement 
from its predictors using a linear multiple regression equation. 

The empirical variables were used to evaluate the effectiveness of missing 
data handling guidelines formed with simulated data. A portion of the empirical 
dataset was designated as missing and was then analyzed using the same missing 
data handling methods that were employed for simulated data analysis. This 
involved selecting an appropriate analytical method, estimating model parameters, 
and then comparing the estimation results for complete dataset with its incomplete 
and imputed counterparts in order to evaluate whether the differential effects of 
missing data handling methods.  

Empirical Sample 2 

A smaller empirical dataset was employed in order to evaluate the effectiveness of 
missing data handling methods for small datasets. This data comes from the 
Population and Housing portion of decennial U.S. Census published by the U.S. 
Census Bureau (2000). The data chosen for this example is for the states of Virginia 
and Wisconsin and includes the percentage of individuals in each county with at 
least a four year college degree for the year 2000. The dataset consists of 207 
counties (Virginia, n = 135; Wisconsin, n = 72).  

As with empirical sample 1, the objective of using this sample was to illustrate 
the effect of missing data handling methods on accuracy of estimation. This was 
accomplished by specifying a portion of the data as missing using a subset of the 
missing data percentages used for the simulated dataset. Next, missing data were 
imputed and the parameter estimates obtained with and without imputation were 
compared in order to evaluate the effect of various missing data handling methods. 
In contrast to empirical sample 1 for which a relatively advanced method of analysis 
viz. multiple regression was employed, for empirical sample 2 a simpler method 
viz. independent samples t test was used to ensure a broader coverage of analytical 
methods chosen for this study. 
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Results 

Simulated Data 
Results of analytical procedures described in the method section for the simulated 
dataset are presented in this section. In order to see the association between original 
and imputed data, Pearson coefficient of correlation was calculated between 
original data and imputed data separately for each imputation method. These 
correlations were significantly different from zero at 5% level of significance and 
showed a general decreasing trend in magnitude as the percentage of missing data 
increased. 

Furthermore, the correlations tended to be stronger for maximum likelihood 
(ML) imputation and multiple imputation methods as compared to mean imputation 
and regression imputation. When proportion of missing data was 5% or less, almost 
without exception, all imputation methods produced correlations between original 
and imputed data that were in excess of .95. Only for sample sizes that were less 
than 50 with percentage of missing data exceeding 5% did we observe somewhat 
weaker correlations, in one case falling as low as .74. Mean imputation seemed to 
work well as long as the percentage of missing data was 10% or less but the 
correlation between mean imputed and original data fell quickly regardless of 
sample size as this percentage exceeded 10%. The mean correlation (i.e. 
correlations averaged over sample size and percentage of missing data) between 
original and imputed data for mean imputation, regression imputation, maximum 
likelihood imputation, and multiple imputation were .95, .96, .98, and .98 
respectively, suggesting that such correlation was strongest for ML and multiple 
imputation methods and weakest for mean imputation. However, it should be noted 
that the difference in magnitude of these correlations is very small. 

An examination of normalized RMSE values (see Figure 1) showed that 
multiple imputation was the best missing data handling method because it produced 
the smallest normalized RMSE for all four methods of analysis, one sample t test, 
independent samples t test, two-way ANOVA, and multiple regression. For one 
sample t test, all imputation methods performed better than listwise deletion 
although the difference between listwise deletion and mean imputation was small. 
For independent samples t test, listwise deletion did not perform very well but mean 
imputation did. Furthermore, for independent samples t test, the performance of 
mean imputation and ML imputation was almost the same. For two-way ANOVA, 
listwise deletion was as good as ML imputation and better than regression 
imputation and mean imputation, the latter being the most error-prone method. For 
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multiple regression, regression imputation worked almost as well as multiple 
imputation which produced the smallest normalized RMSE, listwise deletion and 
ML imputation behaved similarly, and mean imputation was clearly inferior to all 
other missing data handling methods. 
 

 
 
Figure 1. The average effect of missing data handling method on accuracy of estimation 
for various methods of analysis 
 
 
 

The reason why regression imputation performed so well when the analytical 
method was multiple regression was that using regression-imputed data in a 
regression equation, when the variables used for imputation and model estimation 
are the same, is akin to fitting a regression equation twice to predict the same 
dependent variable. It is important to note here that the results presented in Figure 
1 were averaged over sample size and proportion of missing data and therefore 
cannot be used to evaluate the partial effect of these two factors. 

In fact, such averaging contributes to observance of some contradictory 
results. For example, we see in Figure 1 that mean imputation does not work very 
well in case of one sample t test but does work well for independent samples t test 
even though both methods involve a similar kind of dependence on the sample 
mean of Y and its standard error. For this reason, it is essential that we disaggregate 
the results in order to clarify the partial effects of sample size and proportion of 
missing data. 
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Disaggregated results showed that for one sample t test: with small samples 
(n ≤ 50), ML imputation worked best whether the proportion of missing data was 
low (m ≤ 5%) or high (m > 5%.); with medium samples (50 < n < 1,000), multiple 
imputation worked best regardless of proportion of missing data; and with large 
samples (n ≥ 1,000), ML imputation works best when proportion of missing data 
was low and multiple imputation worked best when proportion of missing data was 
high. It should be noted here that even though we have identified the best missing 
data method under various conditions, in practical terms the increase in efficiency 
gained due to applications of that best method may be too small to justify such 
application. 

Power comparisons for the four methods of analysis suggested that with 
listwise deletion and medium effect sizes as defined by Cohen (1992): one sample 
t test achieved a power of .8 at sample sizes between 20 and 50 for any proportion 
of missing data ranging between 1% and 20%; independent samples t test achieved 
a power of .8 at sample sizes between 100 and 200 for any proportion of missing 
data ranging between 1% and 20%; 2×3 ANOVA achieved a power of .8 at sample 
sizes between 200 and 500 for any proportion of missing data ranging between 1% 
and 20%; and multiple linear regression with one set of four predictors achieved a 
power of .8 at sample sizes between 50 and 100 for any proportion of missing data 
ranging between 1% and 10% and, at sample sizes between 100 and 200 when the 
proportion of missing data was 20%. It should be noted that for the four imputation 
methods, power values at all sample sizes were exactly identical to those of the 
complete data because after imputation sample sizes are at their maximum. 

Statistical results for efficiency gains are summarized as a decision tree in 
Table 1. Out of the 24 possible situations listed in Table 1 based on various 
combinations of method of analysis (one sample t test, independent samples t test, 
two-way ANOVA, multiple regression), sample size (small, medium, large), and 
proportion of missing data (low, high), relative to listwise deletion, in 15 cases 
(62.5%) the best method was multiple imputation, in seven cases (29.1%) the best 
method was maximum likelihood imputation, in only one case (4.2%) the best 
method was regression imputation, and in only one case (4.2%) the best method 
was mean imputation. However, the increase in efficiency gained in each of these 
24 cases was not the same. For example when multiple regression is the method of 
analysis, sample size is small, and proportion of missing data is high, the gain in 
accuracy, defined as the reduction in normalized root mean squared error between 
the most efficient missing data handling method (multiple imputation in this 
scenario) and listwise deletion is only about 1%. Thus, in terms of the time and 
effort required for application of multiple imputation of missing data a researcher 
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may not find it worthwhile to implement missing data imputation at all rather 
relying on listwise deletion and be content with the corresponding 1% loss in 
accuracy that could have been gained otherwise. 
 
 
Table 1. Summary of gain in estimation accuracy from application of missing data 
handling methods for various methods of analysis 
 
 One Sample t Test  Independent Samples t Test 

Sample sizea Small  Medium  Large  Small  Medium  Large 

Incidence of missing datab Low High  Low High  Low High  Low High  Low High  Low High 
Most efficient data 
handling methodc ML ML  MI MI  ML MI  ML MI  R MI  MI MI 

Gain in accuracyd 0.07 0.01  0.05 0.11  0.01 0.07  0.06 0.01  0.07 0.04  0.15 0.24 

 

 Two-Way ANOVA  Multiple Regression 
Sample size Small  Medium  Large  Small  Medium  Large 

Incidence of missing data Low High  Low High  Low High  Low High  Low High  Low High 

Most efficient handling 
method MI MI  MI MI  MI MI  ML MI  ML MI  ML MI 

Gain in accuracy from 
imputation 0.04 0.03  0.03 0.09  0.02 0.10  0.04 0.01  0.03 0.12  0.02 0.10 

 

Note. EM = Expectation maximization imputation. M = mean imputation. MI = multiple imputation. 
R = Regression imputation; aSmall, n ≤ 50; Medium, 50 < n < 1,000; Large, n ≥ 1,000; bLow, missing m ≤ 5%; 
High, missing m > 5%; cMost efficient data handling method is the one that produces smallest normalized root 
mean squared error; dGain in accuracy is measured as the reduction in normalized root mean squared error 
between the most efficient missing data handling method and listwise deletion. When multiplied by 100 this gain 
can be interpreted as a percentage. 
 

Empirical Sample 1 
In order to allow comparison with simulated data results, a multiple regression 
equation was used to predict math achievement from reading achievement, math 
anxiety, home educational resources, and gender. Results for the full dataset and 
the datasets based on various missing data handling methods are presented in 
Tables 2 and 3 under low, m = 5% (n = 5,182) and high, m = 10%  (n = 4,910) 
missing data conditions respectively. 
  



JEHANZEB R. CHEEMA 

65 

Table 2. Predicting math achievement: multiple regression results with 5% missing data 
under various missing data handling methods using PISA 2003 data 
 
 Partial Slope Coefficient Estimates 
 Full Listwise Mean Regression EM Multiple 
Predictors Data Deletion Imputation Imputation Imputation Imputation 
Intercept 47.20*** 48.12*** 72.40*** 48.39*** 48.12*** 48.29*** 
Gendera 30.57*** 30.26*** 28.31*** 30.10*** 30.23*** 30.18*** 
Home educational 
resources 0.68 0.79 0.48 0.76 0.79 0.79 

Math anxiety -11.48*** -11.38*** -11.16*** -11.47*** -11.38*** -11.43*** 
Reading 
achievement 0.85*** 0.85*** 0.80*** 0.84*** 0.85*** 0.84*** 

Model summary       
   F 7676.57*** 7229.55*** 5494.187*** 7640.99*** 8056.30*** 7669.93*** 
   R2 .849*** .848*** .801*** .849*** .855*** .849*** 
   Power 1.000 1.000 1.000 1.000 1.000 1.000 
 

Note. n = 5,455. F = Observed F from regression ANOVA. R2 = proportion of explained variance; aReference 
category is female; * p < .05; ** p < .01; *** p < .001 
 
 
Table 3. Predicting math achievement: multiple regression results with 10% missing data 
under various missing data handling methods using PISA 2003 data 
 
 Partial Slope Coefficient Estimates 
 Full Listwise Mean Regression EM Multiple 
Predictors Data Deletion Imputation Imputation Imputation Imputation 
Intercept 47.20*** 48.36*** 88.21*** 47.24*** 48.36*** 48.84*** 
Gendera 30.57*** 30.35*** 27.53*** 30.65*** 30.35*** 30.22*** 
Home educational 
resources 0.68 0.82 0.58 0.89* 0.82 0.86 

Math anxiety -11.48*** -11.72*** -11.04*** -11.73*** -11.72*** -11.83*** 
Reading 
achievement 0.85*** 0.84*** 0.77*** 0.85*** 0.84*** 0.84*** 

Model summary       
   F 7676.57*** 6927.02*** 4633.834*** 7667.110*** 8462.10*** 7638.26*** 
   R2 .849*** .850*** .773*** .849*** .861*** .849*** 
   Power 1.000 1.000 1.000 1.000 1.000 1.000 
 

Note. n = 5,455. F = Observed F from regression ANOVA. R2 = proportion of explained variance; aReference 
category is female; * p < .05; ** p < .01; *** p < .001 
 
 

These results show that with the exception of mean imputation, all missing 
data handling methods produce regression parameter estimates and model statistics 
such as R2 and overall F for regression ANOVA that are very similar to their full 
data counterparts. Almost without exception, the results of tests of hypothesis from 
each of the models presented in Tables 2 and 3 are identical. The only exception is 
when regression imputation is used under the 10% missing data condition and 
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where home educational resources turns out to be a significant predictor of math 
achievement (B = 0.87, p = .048). This observation of an exception underscores the 
importance of relying on more than one missing data handling method when 
percentage of missing data is large (exceeds 5%) as also suggested by Raymond 
and Roberts (1997). 

Although the R2 values presented in Tables 2 and 3 suggest that regression 
imputation and multiple imputation methods provide effect size estimates that 
closely match their full data counterparts, it should be noted that the resulting gains 
in efficiency are very small compared to listwise deletion (< 1%). In other words, 
for the large sample (n = 5,455) used in this example, listwise deletion is almost as 
good a choice as the best missing data imputation method. The next step is to see if 
this result also holds when the sample size is relatively much smaller. 

Empirical Sample 2 

For the small sample illustration U.S. Census Bureau (2000) data were used. This 
dataset was used to test for mean difference in percentage of individuals, twenty-
five years or older, with college degrees at county level between the states of 
Virginia and Wisconsin. The sample size was 207 (Virginia, n = 135; Wisconsin, 
n = 72). The independent samples t test results based on various missing data 
handling methods are presented in Tables 4 and 5 under low, m = 5% (n = 197) and 
high, m = 10% (n = 186) missing data conditions respectively. 

These results show that, in terms of effect size, best results are obtained with 
listwise deletion (d = .26) and ML imputation (d = .26) when the proportion of 
missing data is small, and with mean imputation (d = .25) when the proportion of 
missing data is large. Power statistics suggest a small increases in power, from .915 
to .926 (gain = 1.2%) when proportion of missing data is small and from .894 
to .926 (gain = 3.8%) when proportion of missing data is large. In terms of the effect 
on test statistic, results were not consistent for all missing data handling methods. 
For instance, with 5% missing data the null hypothesis of no significant mean 
difference in percentage of individuals, twenty-five years or older, with college 
degrees at county level between the states of Virginia and Wisconsin was rejected 
under listwise deletion (t = 2.08, p = .039), mean imputation (t = 2.19, p = .030), 
ML imputation (t = 2.09, p = .038), and multiple imputation (t = 1.87, p = .038), 
but not under regression imputation (t = 1.84, p = .067). With 10% missing data, 
this same null hypothesis was rejected under mean imputation (t = 2.02, p = .044) 
and regression imputation (t = 2.18, p = .031) but not under listwise deletion 
(t = 1.82,  p = .071), ML imputation 
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Table 4. Independent samples t test results for education attainment with 5% missing 
data under various missing data handling methods using the 2000 census data 
 
 Summary statistics 
 Virginia  Wisconsin 
 n M SD  n M SD 
Full data 135 19.70 11.47  72 17.22 6.16 
Listwise deletion 128 19.87 11.38  69 17.26 6.28 
Mean imputation 135 19.87 11.08  72 17.26 6.14 
Regression imputation 135 19.67 11.17  72 17.42 6.36 
EM imputation 135 19.83 11.08  72 17.33 6.15 
Multiple imputation 135 19.76 11.35  72 17.17 6.44 
        
 t test statistics 
 t df p ΔM SE(ΔM) d Power 
Full data 2.02* 204.98 0.045 2.47 1.23 0.25 0.926 
Listwise deletion 2.08* 194.88 0.039 2.62 1.26 0.26 0.915 
Mean imputation 2.19* 204.66 0.030 2.62 1.20 0.27 0.926 
Regression imputation 1.84 204.08 0.067 2.25 1.22 0.23 0.926 
EM imputation 2.09* 204.64 0.038 2.50 1.20 0.26 0.926 
Multiple imputation 1.87* 204.08 0.038 2.59 1.24 0.21 0.926 
 

Note. n = 207. df = degrees of freedom. The t and df values are reported after adjustment for unequal sample 
sizes and unequal group variances. ΔM = mean difference. d = Cohen's d; * p < .05; ** p < .01; *** p < .001 
 
 
Table 5. Independent samples t test results for education attainment with 10% missing 
data under various missing data handling methods using the 2000 census data 
 
 Summary statistics 
 Virginia  Wisconsin 
 n M SD  n M SD 
Full data 135 19.70 11.47  72 17.22 6.16 
Listwise deletion 128 19.87 11.38  63 17.28 6.23 
Mean imputation 135 19.87 11.08  72 17.28 5.82 
Regression imputation 135 19.67 11.17  72 16.83 6.10 
EM imputation 135 19.83 11.08  72 17.48 5.84 
Multiple imputation 135 19.76 11.35  72 17.37 6.64 
        
 t test statistics 
 t df p ΔM SE(ΔM) d Power 
Full data 2.02* 204.98 0.045 2.47 1.23 0.25 0.926 
Listwise deletion 1.82 183.57 0.071 2.37 1.31 0.23 0.894 
Mean imputation 2.02* 204.98 0.044 2.37 1.17 0.25 0.926 
Regression imputation 2.18* 204.96 0.031 2.63 1.21 0.27 0.926 
EM imputation 1.79 204.99 0.075 2.11 1.18 0.22 0.926 
Multiple imputation 1.87 202.46 0.071 2.37 1.27 0.21 0.926 
 

Note. n = 207. df = degrees of freedom. The t and df values are reported after adjustment for unequal sample 
sizes and unequal group variances. ΔM = mean difference. d = Cohen's d; * p < .05; ** p < .01; *** p < .001 
 
 



MISSING DATA GUIDELINES 

68 

(t = 1.79, p = .075), and multiple imputation (t = 1.87, p = .071). These 
contradictory results stand in sharp contrast to results of tests of hypothesis obtained 
earlier in example 1 and underscore the risks inherent in using any missing data 
handling method when a large proportion of data is missing in a small sample. 

Discussion 

The primary objective of this study was to formulate general guidelines that can 
assist educational researchers in the selection of appropriate missing data handling 
methods under various combinations of sample size, proportion of missing data, 
and analytical method. By keeping all of these factors constant, any observed 
differences in performance of missing data handling methods can more or less be 
attributed to the relative efficiency of those methods. The statistical analyses 
conducted in this study can be thought of as a response to recommendations made 
in earlier studies such as Roth (1994) and Young et al. (2011) who identified a need 
for guidelines that can help researchers choose missing data handling methods 
under a variety of scenarios.  

Although previous research exists that has looked at the effect of factors such 
as sample size, proportion of missing data, and method of analysis on the 
effectiveness of missing data handling methods, there are no clear cut guidelines 
which can inform a researcher as to which missing data handling method is best 
under which circumstances. Prior studies used different samples with varying 
proportions of missing data under different analytical methods which makes it very 
difficult to isolate the effect of any single factor. The present study is an attempt to 
rectify this state of affairs. It is hoped that insights provided by the findings of this 
study will further publicize the issues involved and encourage further research in 
this direction. 

In some respects the present study has been able to confirm and support earlier 
findings. For example, our statistical results imply that listwise deletion is one of 
the simplest, easily justified, and least computation-intensive methods under large 
sample and low missing data conditions when the objective is to obtain consistent 
and unbiased estimates of population parameters (Haitovsky, 1968; Wayman, 
2003; Young et al., 2011). On the other hand, the use of this method comes at the 
price of sacrificing additional statistical power that can be gained by imputing 
missing data. One can make a case that if sample size is large enough such that 
achievement of adequate power is not a concern, then listwise deletion provides 
one of the least risky (since it avoids adding another layer of measurement error to 
the data) and most quickly deployable missing data handling methods. Even in 
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cases where listwise deletion is not the best missing data handling method, for 
instance in terms of efficiency, it still remains an attractive choice because the 
efficiency gains offered by competing methods are often trivial making it difficult 
to justify the increased computational complexity in statistical analyses due to their 
employment. 

We further confirmed the general finding of past studies that if missing data 
imputation is unavoidable, then the two best methods for such imputation are 
maximum likelihood imputation (e.g. Expectation-maximization imputation) and 
multiple imputation (Graham et al., 1996; Wayman, 2003; Peugh and Enders, 2004; 
Peng et al., 2006; Young et al., 2011; Knol et al., 2010). This can be clearly seen 
from the figures presented in Table 1 which show that ML and multiple imputation 
methods performed best in 22 out of 24 (91.6%) scenarios depicted therein. In order 
to get a more complete ranking of the five missing data handling methods used in 
this study, we used a simple scoring method where the least-performing to best-
performing methods received a score from 1 to 5 for each of the 120 possibilities 
based on sample size (small, medium, large), proportion of missing data (low, high), 
the five missing data handling methods, and the four methods of analysis. The sum 
of scores across missing data handling methods revealed the following ranking and 
total scores: multiple imputation, 104; expectation maximization, 83; listwise 
deletion, 65; regression imputation, 63; and mean imputation, 45. 

Although listwise deletion is in the third place in this ranking we reiterate our 
earlier contention that it is often preferable over other methods when the gain in 
estimation accuracy offered by those methods is trivial. This ranking of missing 
data handling methods also makes intuitive sense as it ranks these methods in the 
order of their mathematical sophistication, ranging from the most sophisticated, 
multiple imputation which offers most realistic modeling of random variation, to 
the least sophisticated, mean imputation method that offers no accommodation for 
random variability. 

The important thing to note here is that the positive effect of gain in accuracy 
of parameter estimates due to missing data imputation does not always dominate 
the negative effect of measurement error introduced by such imputation. For 
instance, our results showed that in many instances listwise deletion, that is the no 
imputation method, worked better than some imputation methods but not others 
even after controlling for method of analysis, sample size, and proportion of 
missing data. For example, in our simulation two-way ANOVA for a medium 
sample with high proportion of missing data, listwise deletion performed better than 
mean imputation but worse than multiple imputation. For mean imputation in this 
scenario the positive effect of missing data imputation was dominated by the 
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negative effect of larger measurement error due to that imputation. On the other 
hand, the reverse was true for multiple imputation where the positive effect of 
missing data imputation dominated the negative effect of larger measurement error 
due to such imputation. The message here is that missing data imputation is not 
always an improvement over non-imputation and that some missing data 
imputation methods can actually cause more harm than benefit. 

An important implication of our statistical results is that missing data 
imputation can be beneficial in raising the statistical power of tests of hypothesis. 
In our simulated data relative power gain ranged between 0% and 28.8% while 
absolute power gain ranged between 0 and .12, depending on sample size, 
proportion of missing data, and method of analysis used. The gains in statistical 
power were pronounced for small samples, n ≤ 50, in general (min gain = .003 or 
0.4%; max gain = .11 or 28.8%; mean gain = .03 or 10.4%) and for small samples 
with high proportions of missing data (m > 5%) in particular (min gain = .003 or 
2.87%; max gain = .11 or 28.8%; mean gain = .04 or 14.9%). For sample sizes 
exceeding 200, statistical power was not an issue for any of the four methods of 
analysis adopted in this study (min power = .98; max gain = .01 or 1.2%). Similarly 
the gains in power were modest when proportion of missing data was 5% or less 
(max gain = .03 or 6.7%). The bottom line here is that statistical power by itself can 
be an important consideration for choosing missing data imputation even in cases 
where the non-missing pre-imputation data represents the target population well 
and listwise deletion is a viable option. This is especially true for small samples 
with large proportions of missing data. 

The importance of statistical power issues highlighted in the preceding 
paragraphs should not be taken to mean that population representation is a minor 
consideration. Even when sample size is large and statistical power is not an issue, 
the occurrence of missing data can transform the sample in such a way that it is no 
longer representative of its target population. In such cases it is important to impute 
missing data or alternately, if possible, to use adjusted sampling weights in order to 
make the sample representative again. One may argue that the use of sampling 
weights is preferable over missing data imputation because the former method does 
not introduce additional measurement error. 
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Recommendations Based on Sample Size 
Regarding choice of missing data handling method our general recommendation is 
that if (1) sample size is large enough for adequate power, and (2) sample is 
representative of the target population, then use listwise deletion. In cases where 
either of these conditions is not met the best methods are multiple imputation and 
maximum likelihood imputation. It is important to note here that these 
recommendations are for missing data that are either missing at random (MAR) or 
missing completely at random (MCAR), and not for data that are not missing at 
random (NMAR). 

When sample size is large, n ≥ 1,000, lack of statistical power is generally not 
an issue as clearly demonstrated by our simulated results and empirical data 
examples. The decision to impute missing data thus depends on whether or not the 
non-missing data are still representative of the target population. For small samples, 
in terms of gain in accuracy of estimation, the best available methods of missing 
data imputation are maximum likelihood imputation and multiple imputation. 
Although strictly speaking multiple imputation on average performs better than ML 
imputation in small samples we recommend using more than one imputation 
method in general when the sample size is small and in particular when sample size 
is small and proportion of missing data is high in order to lower the risk of getting 
into the unfortunate situation where the negative effect of an increase in 
measurement error due to imputation exceeds the positive effect of a gain in 
estimation accuracy due to that imputation. 

Our recommendations for choice of missing data handling method are 
summarized in Figure 2. If the missing data are MCAR and the resulting sample 
after listwise deletion provides adequate power for tests of hypotheses, then listwise 
deletion should be used. If the missing data are MAR, then listwise deletion should 
only be used if the resulting sample after listwise deletion is still representative of 
the population and there is adequate power for tests of hypotheses. Finally, if 
missing data is NMAR, then the missing data mechanism must be modeled as part 
of the estimation process. Because the term NMAR is an umbrella term for all sorts 
of non-random missing data mechanisms, the exact modeling process depends on 
the type of non-randomness present in the missing data. For example, if the 
missingness is due to selection bias, Heckman correction can be used (Heckman, 
1979). We recommend multiple imputation and maximum likelihood imputation as 
the methods of choice. 
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Figure 2. The decision process governing choice of missing data handling method 
 
 

Scope for Future Research 

There are several directions for future research. First, more work needs to be done 
on the effect of missing data handling methods on method of analysis. All four 
methods of analysis adopted for statistical analyses presented in this study, one 
sample t test, independent samples t test, two-way ANOVA, and multiple 
regression, are special cases of the general linear model. It would be interesting to 
see whether the guidelines developed here are also applicable to nonlinear models, 
for example models of count data such as logistic regression. There is also further 
scope for testing these guidelines in context of longitudinal, repeated measures, and 
multi-level models. 

The second potential line of research is to focus on application. Future studies 
can take an applied approach and use real-life datasets from various subfields of 
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education in order to evaluate the effectiveness of guidelines presented in this study. 
The importance of simulation work notwithstanding, it is the presence or lack of 
empirical evidence which is most important in determining whether or not such 
guidelines may see widespread acceptance in educational research. 
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Data consisting of ranks within blocks are considered for balanced incomplete block 
designs. An F test statistic from ANOVA is better approximated by an F distribution than 
the Durbin statistic is approximated by a chi-squared distribution. Indicative powers 
demonstrate that the F test is generally superior to Durbin’s test. 
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Introduction 

Sometimes the number of treatments to be compared is so large that a complete 
blocks experiment is impractical. This happens, for example, in some agronomic 
variety trials. A balanced incomplete block (BIB) design can be used in such a 
situation. In sensory evaluation trials loss of sensitivity can occur when the subjects 
are not be able to compare more than a few products with any certainty. Again BIB 
designs are useful. 

Consider a balanced incomplete block design with the data being ranks within 
blocks. A traditional test for treatment differences for such a scenario is the Durbin 
(1951) test, based on the statistic D, given by 
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in which there are t treatments, k of which are ranked in each of b blocks. If rij is 
the rank given to treatment i on block j then iR  is defined as the mean rank over 
blocks for the ith treatment. For untied data c = 12(t – 1)r/{t(k2 – 1)} where each 
treatment is ranked r times, with r< b. For tied data, if 

   
22

,
/ 1 / 4iji j

V r rt k    then c = (t – 1)r/(tV). 

It is well known that D has an asymptotic 2
1t 
 distribution. However for 

values of (t, b, k, r) met in practice this approximation to the distribution of D can 
be poor. See, for example, Fawcett and Salter (1987). This has led to the suggestion 
to use a permutation test to obtain p-values for D. See, for example, Bi (2009) and 
Higgins (2004) who does not consider BIBs but who generally advocates 
permutation tests. However, software to calculate a p-value for D via a permutation 
test may not always be readily available. A scientist without access to software for 
a permutation test based on D might find carrying out a permutation test a challenge. 
Conover (1999, p. 389) suggests carrying out an analysis of variance (ANOVA) on 
the ranks and using the F test for treatment differences. This F test is based on 
‘adjusted’ sums of squares from the general linear model readily available in 
statistical packages such as JMP (use ‘fit model’) and MINITAB (use ‘glm’). These 
packages also readily give appropriate multiple comparisons. 

Literature reviews did not reveal any previously published small sample 
studies examining the validity of this F test approach, although Conover (1999, p. 
390) suggested it improves on the Durbin test. As above we observe that we are 
considering situations where the raw data are ranks or ranks of ordered categorical 
data. Many studies have compared parametric and nonparametric tests when data 
are continuous measurements. See, for example, Kelley and Sawilowsky (1997) 
and the references therein. However, such studies are not the focus of our article. 

Sizes and powers 
Test sizes based on 100,000 samples for each (t, b, k, r) combination in Table 1 
were carried out to check the suitability of the 2

1t 
 and Ft–1,df distributions for 

obtaining p-values. Note that, as usual, df = bk – t – b + 1. Table 1 sizes are for data 
with untied ranks with 2

1t 
 and Ft–1,df critical values and were found using 

permutation tests. Sizes for D in this study agree with those of Fawcett and Salter 
(1987). The sizes for the F test statistic F improve on those for D based on the 2

1t 
 

approximation and indicate the F distribution can be used to obtain p-values for F. 
If carrying out a permutation test is not convenient the F probabilities are a 
considerable improvement over the χ2 probabilities for all bk. 
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Table 1. Actual test sizes for nominal 5% level test for various BIBs with no ties 
 
(t, b, k, r) D F bk 
(4, 6, 2, 3) 0.000 0.000 12 
(4, 4, 3, 3) 0.000 0.073 12 
(5, 10, 2, 4) 0.000 0.116 20 
(5, 5, 4, 4) 0.026 0.062 20 
(5, 10, 3, 6) 0.035 0.061 30 
(6, 15, 2, 5) 0.022 0.050 30 
(6, 10, 3, 5) 0.026 0.062 30 
(6, 15, 4, 10) 0.030 0.051 60 
(6, 20, 3, 10) 0.040 0.056 60 
(7, 7, 3, 3) 0.000 0.087 21 
(7, 7, 4, 4) 0.025 0.055 28 
(7, 21, 2, 6) 0.017 0.069 42 
 
 
Table 2. Actual test sizes for nominal 5% level test for various BIBs with ties 
 
(t, b, k, r) D F bk 
(4, 6, 2, 3) 0.000 0.006 12 
(4, 4, 3, 3) 0.005 0.051 12 
(5, 10, 2, 4) 0.001 0.045 20 
(5, 5, 4, 4) 0.018 0.044 20 
(5, 10, 3, 6) 0.031 0.052 30 
(6, 15, 2, 5) 0.012 0.053 30 
(6, 10, 3, 5) 0.024 0.050 30 
(6, 15, 4, 10) 0.042 0.050 60 
(6, 20, 3, 10) 0.040 0.050 60 
(7, 7, 3, 3) 0.001 0.054 21 
(7, 7, 4, 4) 0.020 0.050 28 
(7, 21, 2, 6) 0.020 0.054 42 
 
 

To allow for ties, sizes were calculated as in Brockhoff et al. (2004, section 4 
and also see the discussion in section 6). For each block and treatment one of the 
scores 1, 2, …, k was randomly assigned, each with probability 1/k. These values 
were ranked by block with ties given mid-rank values. This was repeated 100,000 
times for each of the (t, b, k, r) combinations in Table 2. Very infrequently the value 
V or the error sum of squares was zero. Such data sets were discarded and new ones 
inserted. Sizes for D are still poor but those for F are better for the ties case than 
for the no ties case. If, for tied ranks, permutation tests rather than the Monte Carlo 
tests suggested herein had been used to get sizes for Table 2, results would have 
been conditional on a ties structure and so not of as general applicability as those 
given. 
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A power comparison between the tests is now provided based on D and F. In 
practice it is expected that most scientists will use the χ2 and F distributions and so 
powers based on these are provided. However Tables 1 and 2 show that the test 
based on D hardly ever has size near 0.05; thus, the D powers based on χ2 critical 
points will be disadvantaged in comparison to the F powers based on the F 
distribution. If test sizes for tied data are examined, it is observed that D sizes for 
(t, b, k, r) = (6, 15, 4, 10) and (6, 20, 3, 10) are at least not too far from 0.05 and so 
the D test should not be too disadvantaged. Subsequent powers are calculated 
following the size method but with all treatments in a given treatment group having 
probabilities (p1, p2, p3, p4) of getting a score (1, 2, 3, 4) respectively in any given 
block instead of (0.25, 0.25, 0.25, 0.25). Thus for (t, b, k, r) = (6, 15, 4, 10) with 
probabilities (0.25, 0.25, 0.25, 0.25) for treatments 1, 2 and 3, and probabilities 
(0.08, 0.08, 0.42, 0.42) for treatments 4, 5 and 6 for a nominal 5% level of 
significance, it was found that the D and F test powers are 0.31 and 0.34 
respectively. Recall that under the null hypothesis all treatment probabilities are 
(0.25, 0.25, 0.25, 0.25). The powers here are close, and the difference could be 
explained by the discrepancy in the actual sizes. It is expected that - if there was no 
difference in the sizes - the sizes would be, as here, very close, and there would be 
no reason, based on power, to use D rather than F. For (t, b, k, r) = (6, 20, 3, 10) 
and treatment group probabilities as above, then the D and F powers are 
respectively 0.26 and 0.29. Again, these are very similar and any difference may 
well be due to the size advantage enjoyed by the F test. It must be stressed that the 
powers just given are for a BIB design where the actual size was near the nominal 
size. For the many BIB designs where this is not so, powers of the test based on D 
would be very poor compared to those of the test based on F. 

To further compare the powers of the tests based on D and F and to check 
whether or not it is the slight size difference that is causing the differences in power, 
Table 3 gives powers for (t, b, k, r) = (6, 15, 4, 10) for a number of alternative 
treatment probabilities, using an estimated critical value of 10.64 for the test based 
on D. Also given are powers using the 2

5  critical value of 11.07, which gives a test 
size of 0.042, whereas 10.64 gives a test size of 0.05. 

In all cases the F test power is found to be slightly superior to the Durbin test 
power; using the estimated critical value of 10.64 it is superior by so little as to be 
inconsequential. Using the 2

5  critical value the difference is small but not 
inconsequential. Therefore, use of the F test is recommended based on its test sizes 
being closer to nominal than the Durbin test sizes. Moreover the F test power is 
generally not inferior, and when the Durbin test has a low size, it is generally 
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inferior. The F test is easy to use and has ready availability of multiple comparisons 
in general linear model platforms. 
 
 
Table 3. Powers for a 5% significance level, (t, b, k, r) = (6, 15, 4, 10), with ties allowed 
and alternative probabilities as shown 
 
Treatment 
groups Alternative probabilities D (11.07) D (10.64) F 

(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 0.112 0.129 0.133 (4, 5, 6) (0.15, 0.15, 0.35, 0.35) 
(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 

0.229 0.258 0.262 (4, 5, 6) (0.1, 0.1, 0.4, 0.4) 
(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 0.437 0.473 0.478 
(4, 5, 6) (0.05, 0.05, 0.45, 0.45) 
(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 0.598 0.634 0.639 (4, 5, 6) (0.02, 0.02, 0.48, 0.48) 
(1, 2) (0.25, 0.25, 0.25, 0.25) 

0.102 0.119 0.122 (3, 4, 5, 6) (0.15, 0.15, 0.35, 0.35) 
(1, 2) (0.25, 0.25, 0.25, 0.25) 0.207 0.233 0.236 
(3, 4, 5, 6) (0.1, 0.1, 0.4, 0.4) 
(1, 2) (0.25, 0.25, 0.25, 0.25) 0.400 0.433 0.437 (3, 4, 5, 6) (0.05, 0.05, 0.45, 0.45) 
(1, 2) (0.25, 0.25, 0.25, 0.25) 

0.546 0.578 0.584 (3, 4, 5, 6) (0.02, 0.02, 0.48, 0.48) 
(1, 2) (0.25, 0.25, 0.25, 0.25) 

0.551 0.584 0.588 (3, 4) (0.1, 0.1, 0.4, 0.4) 
(5, 6) (0.02, 0.02, 0.48, 0.48) 
(1, 2) (0.25, 0.25, 0.25, 0.25) 

0.175 0.197 0.201 (3, 4) (0.1, 0.1, 0.4, 0.4) 
(5, 6) (0.15, 0.15, 0.35, 0.35) 
 

Examples 

Ice cream data 
Suppose, as in Conover (1999, p. 390) that seven varieties of ice cream are to be 
compared. Also suppose it is known that tasting more than three ice creams at a 
time will result in poor responses due to sensory fatigue. The seven ice cream 
judges are each asked to rank three of the seven varieties. The results are in  
Table 4. 

Table 4 shows that t = b = 7, r = k = 3 and each variety is compared with every 
other variety once. This is a balanced incomplete block layout; no ties are observed 
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and D = 12. Using the 2
6  approximation the p-value is 0.06 and so with a 5% level 

of significance it may be concluded that no difference exists in the preference for 
the seven varieties. However Conover calculates an exact p-value of 0.018. This 
study calculated F = 8 and, using the F6,8 distribution, the p-value is 0.005: this is 
much closer to the exact Conover p-value for D, is easier to calculate and is 
significant at the 5% level. Knowing that the χ2 approximation to D is poor, it is 
necessary to reverse the initial judgement and conclude that varieties are not equally 
preferred. As here the χ2 p-values are often too conservative. 
 
 
Table 4. Rankings of seven ice cream varieties 
 

Judge Variety 
1 2 3 4 5 6 7 

1 2 3 - 1 - - - 
2 - 3 1 - 2 - - 
3 - - 2 1 - 3 - 
4 - - - 1 2 - 3 
5 3 - - - 1 2 - 
6 - 3 - - - 1 2 
7 3 - 1 - - - 2 

Sum 8 9 4 3 5 6 7 
 
 
Table 5. Rankings for breakfast cereals 
 

Judge Cereal 
A B C D E 

1 1.5 1.5 3 - - 
2 1 2.5 - 2.5 - 
3 1.5 3 - - 1.5 
4 1 - 2 3 - 
5 1.5 - 3 - 1.5 
6 1 - - 3 2 
7 - 2 3 1 - 
8 - 2.5 2.5 - 1 
9 - 3 - 2 1 

10 - - 3 2 1 
Sum 7.5 14.5 16.5 13.5 8 
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Breakfast cereal (tied) data 
Kutner et al. (2005, section 28.1) consider a taste-test in which five breakfast 
cereals (t = 5) were scored on a ten point hedonic scale by ten judges (b = 10) three 
at a time (k = 3). Each cereal was tasted six times (r = 6). The ranked data are shown 
in Table 5 (note that there are tied ranks). 

It was found that D = 14.92 with a 2
4  p-value of 0.005 and F = 11.56 with 

an F4,16 p-value of 0.0001. Using a 5% significance level a decision would be made 
that there was a difference in the preference ranking of the cereals. 

Conclusion 

The test based on the ANOVA F statistic F provides an easily applied alternative 
to Durbin’s rank test. The test based on the F statistic has better test sizes than the 
test based on D, has better power if chi-squared critical values are used for D, and 
can be calculated using the general linear model software available in many 
statistical packages, which also readily provide multiple comparisons. Based on the 
results in this study, it is suggested that, for bk ≥ 50, the F statistic p-value based 
on the F distribution can be used rather than p-values from permutation or Monte 
Carlo tests. For smaller bk the F probabilities are a considerable improvement over 
the χ2 probabilities and should be used when carrying out a permutation test is not 
convenient. 
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Prediction with High Dimensional Data 
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High dimensional data is the situation in which the number of variables included in an 
analysis approaches or exceeds the sample size. In the context of group classification, 
researchers are typically interested in finding a model that can be used to correctly place 
an individual into their appropriate group; e.g. correctly diagnose individuals with 
depression. However, when the size of the training sample is small and the number of 
predictors used to differentiate the groups is larger, standard approaches such as 
discriminant analysis may not work well. In order to address this issue, statisticians have 
developed a number of tools designed for supervised classification with high dimensional 
data. The goal of this simulation study was to compare several such approaches for 
supervised classification with high dimensional data in terms of their ability to correctly 
classify individuals into groups, and to identify the number of variables associated with 
group separation. Results of the study showed that the Random Forest ensemble recursive 
partitioning algorithm was optimal for group prediction, while the Nearest Shrunken 
Centroid and Regularized Discriminant Analysis methods were optimal for identifying the 
number of salient predictor variables. The standard linear discriminant analysis approach 
was generally the worst performer across all high dimensional simulated conditions. 
Implications of these results to practice and directions for future research are discussed. 
 
Keywords: Group prediction, Discriminant Analysis, High dimensional data, 
Regularlization methods 
 

Introduction 

High dimensional data refers to the case where the number of variables to be 
included in an analysis is equal to or exceeds the sample size (Bühlmann & van de 
Geer, 2011), and is written symbolically as p>>n. High dimensional data can create 
a variety of problems for many standard data analytic techniques, including those 
used in prediction and classification. In particular, when the number of predictors 
exceeds the sample size it is frequently not possible to obtain model parameter 
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estimates because covariance matrices are often singular. In addition, in the high 
dimensional case there may be more unknown parameters than known data, leading 
to indeterminate estimation problems. Finally, in the high dimensional data case the 
correlations among variables is often very high, making parameter estimation very 
difficult. The result of all of these problems is that parameters and their 
corresponding standard errors are frequently not estimable in the high dimensional 
case. Furthermore, any estimates that are obtained are likely to be ill-conditioned 
and therefore unreliable (Kriegel, Kröger, & Zimek, 2009).  

Given these difficulties, researchers have developed a set of statistical 
methods for the problem of high dimensional data. These methods are useful in a 
variety of contexts, including fitting of linear models, clustering observations based 
on a number of variables (often referred to as features in high dimensional 
literature), and classificaiton of individuals into one of several groups, using many 
predictors. The focus of the current research is on this latter application to group 
classification. Often in standard data problems where n>p, such classification is 
done using discriminant analysis. However, as we will see below, this approach is 
ill suited for use when p>>n, or even when p approaches n (Hastie, Buja, & 
Tibshirani, 1995). This Monte Carlo simulation study examines several methods 
that have been proposed for the high dimensional classification problem, including 
several based on discriminant analysis, as well as a variation of nearest centroid 
classificiation, and the recursive partitioning random forest methodology. The 
remainder of the manuscript is organized as follows: First we discuss discriminant 
analysis and explain why its use when p>>n is problematic, followed by a 
description of alternative classifiers that have been proposed for this case. After 
next describing the study goals, we then outline the simulation study design, 
followed by a description of the simulation results. Finally, we discuss the results 
of our simulation and place them in the context of the broader high dimensional 
classification literature. 

Goals of the current study 

The goal of the current study was to compare the performance of several methods 
for group classification in the presence of high dimensional data. This comparison 
was made using both simulated data and an existing data example. This work adds 
to the literature in the field in three primary ways. First of all, there has not been 
another published study in which all of these classification methods have been 
compared with one another using Monte Carlo methods. While prior research has 
demonstrated the utility of several of these approaches using extant data (e.g. 
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Clemmensen, Hastie, Witten, & Ersbøll, 2011; Zhang, Dai, Xu, & Jordan, 2010; 
Hastie, Buja, & Tibshirani, 1995) or small simulations (Hastie, Tibshirani, & 
Friedman, 2009), no prior published study has systematically compared the 
performance of all of the methods described here, each of which has been suggested 
as a possible alternative for the high dimensional case. Thus, the current study 
should further the literature in this regard by providing researchers with more 
information about which such tools might be optimal under which conditions.  The 
second goal of this study was to investigate the performance of RF in the presence 
of high dimensional data. While there have been some initial calls for such 
simulation research (Xu, Huang, Williams, Wang, & Ye, 2012), and some 
demonstrations with existing data (e.g. Zhang, Yu, Singer, & Xiong, 2001) there 
has not been a great deal of work done examining RF in this context. Finally, the 
third goal of this study was to introduce methods for high dimensional group 
prediction to social science researchers, in particular. Traditionally these methods 
have been used primarily with gene expression data, as a review of Bühlmann and 
van d Geer (2011) demonstrates. However, there are scenarios in the social sciences 
in which researchers are faced with small samples as well (e.g., Siklos & Kerns, 
2007; Palmer, 2006; Sanden, 2008). 

Methods for classification with high dimensional data 

Linear Discriminant Analysis 
Perhaps one of the most widely used classification methods is linear discriminant 
analysis (LDA). This technique, which is based upon a multivariate linear model, 
is used when there exists a grouping variable and a set of predictors that are believed 
to distinguish members of the 2 or more groups. The algorithm identifies weights 
for each of the predictors such that their linear combination maximally separates 
the groups from one another (Huberty & Olejnik, 2006). This linear combination 
appears in equation (1). 
 

 0
j

ji j jm mi

n
C x ln

N
 

 
    

 
   (1) 
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The terms in (1) are defined as: 
 

jiC Classification score for group j for subject i 

0j Constant for group j 

jm Weight for predictor m for group j 

mix Value of predictor m for subject i 

jn  Sample size for group j 
N Total sample size 

 
The natural log of the ratio of group size to the total sample serves as prior 

information about the relative frequency of the group in the population. In many 
applications, this prior probability of group membership is calculated using the 
values of jn  and N from the sample, as described above. However, the prior 
probability can also be provided directly by the researcher, bypassing the use of 
relative group size in the sample. This might be a useful strategy if it is known that 
the sample is not representative of the population in terms of the relative frequency 
with which members of each group appear. Determination of the coefficients in (1) 
is made so as to maximize the following criterion: 

 
  subject to 1T T

j b j j w j         (2) 
 

Here, the coefficients () are as defined previously, with b being the 
between class covariance matrix, and w  the within class covariance matrix. The 
resulting linear combination in (1) can be used to determine category membership 
for each observation in the original training data or in a cross-validation sample. 
Values of Cj are calculated for each member of the sample, and individuals are 
classified into the group for which they have the largest such score. 

In terms of determining variable importance in terms of group classification, 
researchers typically rely on the structure matrix, which can be interpreted as the 
correlation matrix between the individual predictors and C. While there is not a 
hypothesis test for these values, recommendations for cut values have been 
suggested, including 0.32 (Tabachnick & Fidell, 2013), which will be used in the 
current study. Thus, absolute values of the structure matrix elements greater than 
0.32 are taken as indicative that a predictor contributes to a classification solution. 

In the case when P >N, which is the focus of this study, LDA is not typically 
a good choice for group classification because the within class covariance matrix 
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estimated using the sample is likely to be singular (Witten & Tibshirani, 2011). 
Even when this is not the case, Witten and Tibshirani have shown that the classifier 
in (1) will most likely exhibit a high variance, thereby degrading the resulting 
prediction model. Finally, in the case when P itself is large (irrespective of the size 
of N), LDA can prove problematic because the classifier in (1) will, by definition 
include all of the predictor variables, potentially leading to problems with 
interpreting the classifier function (Witten & Tibshirani). Therefore, while it is a 
popular and frequently used tool for researchers interested in classification, LDA 
may not be appropriate for cases in which the number of predictor variables is 
almost as large as, or larger than the number of subjects in the sample (Hastie, 
Tibshirani, & Friedman, 2009). Given these limitations, we will need to turn to 
alternative methods of classification better suited to the high dimensional problem. 

Penalized LDA 

One alternative for high dimensional classification is penalized LDA (PLDA), as 
proposed by Hastie, Buja, and Tibshirani (1995).  PLDA is based upon a 
regularization of the discriminant function; i.e. a reduction in the number of 
predictors (sometimes referred to as features) used to develop the prediction 
algorithm. By limiting the number of predictors, the resultant discriminant function 
should not suffer from the problems associated with LDA when P >N. The key to 
this method working optimally is the use of an appropriate regularization strategy.  
PLDA shares the basic methodology described above for LDA, including the form 
of (1) for the prediction algorithm. However, (2) is adjusted to the following: 
 
    subject to 1T T

j b j j j w jP          (3) 

 
In (3), P is a penalty function designed to regularize the set of predictor 

variables, by reducing it to only those that are most salient in differentiating the 
groups. 

 Witten and Tibshirani (2011) describe the penalty function to be used in (3) 
as the PLDA-L1 algorithm appearing in (4): 

 
  subject to 1T T

j b j j j j w j           (4) 
 
In this case, j  is the within class standard deviation for predictor j, and   is a 
tuning parameter that is set by the researcher. When   is large, the relative 
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importance of individual predictors is reduced, and some will even go to 0, meaning 
that they do not contribute to the classification function in (1) at all. The value of 
  is determined through the use of jackknife cross-validation, in which each 
member of the sample is removed in turn and various values of the tuning parameter 
are used with each jackknife sample. The optimal value is determined to be the one 
that minimizes classification error across the cross-validation samples. In addition, 
the inclusion of j  means that predictors with greater variation within classes will 
contribute less to the overall classification function than those with less such 
variability. Witten and Tibshirani assert that using PLDA-L1 will result in a 
function involving a subset of the predictors, and is most appropriate if the 
researcher desires a relatively sparse classifier function. It should be noted that 
Witten and Tibshirani also describe a second method for determining the penalty 
in (3), based on the fused Lasso method of regularization (Tibshirani, Saunders, 
Rosset, Zhu, & Knight, 2005). However, this approach was not employed in the 
current study because it assumes a linear ordering of the predictors, which was felt 
to be a limitation to its use in many applied settings. 

Regularized Discriminant Analysis (RDA) 

Guo, Hastie, and Tibshirani (2007) introduced an alternative to LDA in the high 
dimensional case that focuses on shrinking the within class covariance matrix ( w ) 
in the sample toward the diagonal matrix, through the use of a tuning parameter,  . 
This shrunken version of w  takes the following form 
 
    1w w wdiag        (5) 
 

The value of   ranges between 0 and 1, where 1   corresponds to 
standard LDA, and 0   yields highly regularized discriminant functions, in 
which a small number of predictors contribute to the within class covariance matrix. 
As with PLDA, jackknife cross-validation is used to identify the optimal value of 
 . When w  is obtained, it is applied to (2), and the classifier in (1) is developed 
based upon this shrunken within class covariance matrix. In practice, RDA yields 
a classification function that utilizes many fewer predictors than are present in the 
data, or than would be used in standard LDA, thus avoiding problems associated 
with complex classifiers containing many correlated predictors, as cited above. 
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Sparse Discriminant Analysis (SDA) 
RDA regularized the set of predictors by applying a penalty to the within class 
covariance matrix. Alternatively, regularization could be achieved through 
applying the penalties directly to the discriminant function coefficients for the 
predictors ( j ). This approach, known as sparse discriminant analysis (SDA) was 
described in Clemmensen, Hastie, Witten, and Ersboll (2011). It is based on the 
elastic net (Zou & Hastie, 2005), which is used with linear models in the presence 
of high dimensional and/or highly collinear data. In the context of discriminant 
analysis, this elastic net approach seeks to minimize the following function: 
 
 2 ΩT

j j j j jY X        (6) 
 

The parameters  and   are tuning parameters, Y  is an indicator variable for 
whether an individual belongs to a particular group, j  is a score matrix, and Ω  is 
a positive definite penalty matrix. In the current study, we use the elastic net 
approach suggested by Clemmensen, et al., such that Ω I , where I is the identity 
matrix. Jackknife cross-validation is used to determine the optimal values of  and 
 . The elastic net approach to regularization has some theoretical advantages over 
other approaches, including the lasso based PLDA method described above. Chief 
among these advantages are that highly correlated predictors tend to have similar 
coefficients in the final equation, and a greater number of predictors might be 
included in the final equation (Zou & Hastie, 2005).   

Nearest Shrunken Centroids (NSC) 

Another approach that we will examine for dealing with the high dimensionality 
classification problem is based upon an approach known as diagonal-covariance 
LDA. This method is based upon centroid classification, in which a multivariate 
mean (centroid) across all predictors is estimated for each group, and then new 
cases are placed in the class to whose centroid their scores are closest. NSC is a 
variant of this approach in which the class centroids are shrunken toward the overall 
centroid of the sample by an amount equal to a predetermined threshold value. The 
nearest centroid classification rule is expressed as: 

 

 2 2im jm
ij j

m

x x
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     (7) 
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In (7) ij  is the discriminant score of subject i for category j, jmx  is the mean 
for predictor m in category j, 2

ms  is the variance of predictor m pooled across all 
categories, and imx  is the value of predictor m for subject i. An individual is placed 
into the group for which their value of ij  is smallest. 

NSC adjusts the nearest centroid classification in the following way. First, the 
value jmd  is calculated, reflecting the difference between each group mean and the 
overall mean, as seen in (8). 

 

 
 0
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 (8) 

 

Here, terms are as defined in (7), with the addition that mx  is the overall mean 

across categories for predictor m, 2 1 1
j

k

m
n n

  , and 0s  is the median of the ms  

values. Its purpose is to ensure that jmd  does not become too large if the value of a 
given predictor is close to 0. The second step in NSC involves determining the 
degree to which the individual predictors’ group means should be shrunk toward 
the overall mean across groups. In order to do so, the value of the threshold 
parameter,  must be made. This is typically done using jackknife cross-validation 
in which a potential  is used and predictions are made for each jackknife sample. 
The threshold value that yields the most accurate cross-validation predictions is the 
one to be used in the final NSC algorithm. Shrinkage occurs by adjusting jmd  as in 
(9): 

 
   '

jm jm jmd sign d d     (9) 

 
Finally, (8) is solved for jmx  and shrunken versions of the predictor means 

are calculated as in (10). 
 

  ' '
0jm m j m jmx x m s s d     (10) 

 
The shrunken centroids obtained in (10) are then used in (7). An important 

point to note here is that if for a given predictor, the shrinkage takes its centroid 
value down to (or past) 0, the centroid is assigned the value of 0. As an example, if 
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a predictor centroid is 1 and the amount of shrinkage determined using (9) and (10) 
is -2, then the shrunken centroid value would be 0, because 1-2 takes the value 
down to (and past) 0. NSC is known to have two advantages when used with high 
dimensional data. First, it reduces the impact of predictors with high variances, thus 
also reducing the amount of noise in the predictions themselves. Second, it creates 
a de facto predictor selection algorithm by removing the impact of variables that 
contribute relatively less to group separation (Tibshirani, Hastie, Narasimhan, & 
Chu, 2002). 

Random Forest 

The final method of classification to be considered in this study is the Random 
Forest (RF) of Brieman (2001), which is based upon the classification and 
regression tree (CART) recursive partitioning algorithm that Breiman, Friedman, 
Olshen, & Stone (1984) described. For CART with a categorical outcome variable, 
predictors are used to partition members of the sample in ever more heterogeneous 
groups, with respect to the outcome. The partitioning continues until a 
predetermined stopping rule has been reached such that no further divisions of the 
sample will yield appreciable gains in prediction accuracy. 

A problem with CART is that it has a tendency to overfit the training data, 
making the resultant prediction algorithm less generalizable to the general 
population. However, it is also true that CART solutions are unbiased so that if they 
are averaged across a great many samples from the population, the results should 
provide very accurate prediction heuristics (Dietterich, 2000; Bauer & Kohavi, 
1999). Brieman used this unbiasedness property in developing RF, which consists 
of an ensemble of CART results applied to a sample, and then averaged to create a 
single prediction algorithm. RF works by randomly selecting B subsamples of the 
original sample, either with replacement and therefore being of size n, or only a 
portion of the total sample without replacement so that the subsample is less than 
n. Those individuals not included in a subsample for a given tree are referred to as 
the out of bag sample. In addition, a subsample of the predictors is also randomly 
selected, and used with CART to create a prediction tree for the subsample of 
individuals. This process is completed a large number of times (e.g. 1000), and the 
resulting trees are saved after each analysis. Each tree is then applied to members 
of the training sample, or to new individuals, and a predicted outcome (e.g. 
classification) is obtained. These results are then averaged across the B trees for 
each individual in order to obtain a RF predicted value. The diversity of solutions 
introduced through the large number of trees based on subsamples of both 
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individuals and predictors results in a final solution that is more generalizable than 
any individual CART model. 

Variable importance in prediction is determined through permutation tests 
(Nicodemus, Malley, Strobl, & Ziegler, 2010). For RF, the permutation importance 
of an individual predictor variable is calculated by comparing the number of correct 
predictions made by the actual data (i.e. the predictor ordered as it appears in the 
original dataset) with the number of correct predictions made when the variable has 
been permuted (i.e. randomly shuffled), averaged across all trees in the ensemble. 
The classification accuracy rate across trees for the original variable with no 
permutation is then compared with that of the mean accuracy rate for the permuted 
trees. If the difference in prediction accuracy is large, and presumably in favor of 
the tree based on the original data, we would conclude that the variable is important 
in accurately predicting group membership. On the other hand, if the difference in 
classification accuracy between the actual and permuted values is very small, then 
we would conclude that the variable does not contribute much more to determining 
group membership than if it were random and thus totally unrelated to the outcome. 
More formally, importance for variable xm for a single tree (t) is calculated as: 
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If variable xm is not included in the tree, then VI=0. In order to obtain the 

overall variable importance measure for the RF, we then calculate 
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where T is the total number of trees in the ensemble. 
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Methods 

The research questions outlined above were addressed through the use of a Monte 
Carlo simulation study carried out with in the R software system, version 2.15.1 (R 
Foundation for Statistical Computing, 2011). The variables that were manipulated 
in the simulation study were selected in order to mirror conditions that researchers, 
particularly in the social sciences, might see when faced with a high dimensional 
dataset. For all conditions, data were simulated for two groups and unless otherwise 
noted the data were from a standard multivariate normal distribution. 

Manipulated variables 

Method   A total of 6 methods were examined in this study, 
including LDA, RF, PLDA, SDA, NSC, and RDA. For methods relying on the 
setting of tuning parameters for optimal performance, the jackknife cross-validation 
methods described above were incorporated into the simulation code. 
 
Sample size    Sample size conditions included in the study were 10, 
20, 30, 40, and 50.  In all cases group sizes were held equal. 
 
Number of predictors  The number of predictors simulated in this study 
were 14, 28, and 50.  Taken together with the sample size conditions discussed 
above, the ratios of P to N ranged from 5/1 to just over 1/4. While these conditions 
would not be considered terribly high dimensional in genetics, or another science 
where extreme high dimensionality is common, they do represent relatively high 
dimensional data in the context of psychology, education, and other social sciences, 
in which researchers typically strive to have many more subjects than variables. 
 
Group mean separation  The separation between group means was 
quantified in terms of Cohen’s d effect size.  For all predictors the groups’ means 
differed by the same amount, either 0.2, 0.5, or 0.8. Thus, for example, in the P=50 
group mean difference 0.5 case, all 50 variables were simulated to differ by 0.5 
between the two groups. Group 1 was simulated to have means of 0 and standard 
deviations of 1 across conditions, and group 2 was simulated with means of 0.2, 
0.5, or 0.8 and standard deviations of 1 for all predictors, depending on the group 
mean separation condition. 
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Correlation among predictors  The predictors were simulated to have 
correlations among one another of 0, 0.5, or 0.8.  These values were selected in 
order to assess performance of the methods in two relatively extreme cases (no 
correlation, very high correlation), and when the correlation was in the middle. 
 
Distribution of the predictors  In order to investigate the performance of the 
methods when data were normal and when they were not, two distribution 
conditions were simulated:  multivariate normal and skewed with skewness of 2.5. 
Given the reliance of some of the methods on the assumption of normality, in 
particular LDA, it was of some interest to ascertain the impact that violating the 
assumption would have on performance of the methods. 
 
Simulation outcomes    Two outcome variables were examined in 
this study. First, the overall misclassification rate for a cross-validated sample 
drawn from the identical distribution as the training sample for a given combination 
of simulation conditions was recorded. This rate simply represents the proportion 
of cases that were incorrectly classified by each method. The second outcome 
variable of interest was the proportion of predictor variables that were correctly 
identified as being associated with group separation. As noted above, all predictors 
were simulated to differ between the groups, so in the population this proportion 
was 1 for every simulation condition. Therefore, this outcome variable reflects the 
proportion of predictors that each method correctly found to contribute to group 
differences. For LDA, a variable was considered to contribute to the classification 
solution if the absolute value of its structure value was 0.32 or greater (Tabachnick 
& Fidell, 2013).  With respect to RF, variables were considered to be important if 
the permutation test statistic described above was statistically significant at  
With regard to RDA, SDA, and PLDA variable importance was determined through 
the standardized discriminant weights. Based on findings in Cao, Boitard, and 
Besse (2011), variables were considered to be important predictors if these 
standardized values were greater than or equal to 0.1. Finally, with respect to NSC, 
a predictor was considered to contribute to the prediction if its weights were not 
shrunken to 0, again in keeping with recommendations in the literature (Christin, 
Hoefsloot, Smilde, Hoekman, Suits, Bischoff, & Horvatovich, 2013). 

All simulation conditions were completely crossed with one another for a total 
of 324 different simulations. For each of these simulations, 1000 replications were 
generated and analyzed. In order to ascertain which main effects and interactions 
of the manipulated conditions contributed significantly to the outcome variables, 
repeated measures analysis of variance (ANOVA) models were used. For each 



A COMPARISON OF METHODS FOR GROUP PREDICTION 

96 

combination of simulation conditions, the outcome variables were calculated for 
each of the methods studied here, for each replication. These outcomes were then 
averaged across the 1000 replications in order to create individual values for the 
two outcomes of interest. These values then served as the dependent variables in 
two separate ANOVA models (one for misclassification and one for proportion of 
predictors correctly identified). The within subjects variable was method of 
classification, and the between subjects variables were the other manipulated 
factors described above. In addition to the statistical significance of the main effects 
and interactions of these factors, the  effect size was also used to identify model 
effects worthy of post hoc investigation. Main effects and interactions that were 
statistically significant, and which had  of 0.1 or greater were considered 
“important”, because they were associated with at least 10% of the variance in the 
outcome variable. 

Results 

Classification accuracy 
The ANOVA used to determine which of the manipulated factors or their 
interactions were related to overall classification accuracy. The interaction of 
method (M) by sample size (N) by correlation (C) was significantly associated with 
classification accuracy ( 2

40,952 3.621,  0.001,  0.132F p    ), as was the 
interaction of M by number of predictors (P) 
( 2

8,472 11.937,  0.001,  0.168F p    ), and the interaction M by mean difference 

(D) ( 2
68,952 10.514,  0.001,  0.429F p    ). The overall misclassification rates by 

method, sample size, and correlation among the predictors appear in Table 1. 
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Table 1.  Misclassification rates by Method, Sample Size (N), and Correlation among the 
predictor variables (C) 
 
N C LDA RF PLDA SDA NSC RDA 
10 0 0.34 0.09 0.24 0.24 0.21 0.21 
 0.5 0.39 0.13 0.23 0.23 0.35 0.37 
 0.8 0.42 0.16 0.20 0.21 0.40 0.41 
20 0 0.29 0.10 0.19 0.24 0.19 0.19 
 0.5 0.37 0.12 0.18 0.24 0.35 0.35 
 0.8 0.42 0.09 0.18 0.16 0.40 0.40 
30 0 0.29 0.04 0.20 0.31 0.20 0.20 
 0.5 0.37 0.07 0.17 0.13 0.36 0.36 
 0.8 0.41 0.07 0.18 0.14 0.39 0.40 
40 0 0.26 0.05 0.18 0.35 0.18 0.18 
 0.5 0.36 0.08 0.18 0.17 0.35 0.35 
 0.8 0.40 0.09 0.19 0.19 0.39 0.39 
50 0 0.24 0.08 0.18 0.36 0.17 0.17 
 0.5 0.37 0.10 0.16 0.21 0.36 0.36 
 0.8 0.42 0.10 0.20 0.23 0.41 0.41 
200 0 0.19 0.07 0.16 0.33 0.16 0.16 
 0.5 0.36 0.08 0.18 0.30 0.36 0.36 
 0.8 0.39 0.09 0.20 0.33 0.39 0.39 

 
 

The results in Table 1 show that RF uniformly had the lowest 
misclassification rates of the methods studied here, across both sample size and 
correlation among the predictor variables. The highest misclassification rates 
belonged to LDA, particularly for the combination of N less than 40, and C of 0.5 
or 0.8.  For the combination of N less than 50 and C of 0.5 or 0.8, SDA had among 
the lowest misclassification rates, after RF, though when the predictors were 
uncorrelated, these rates were among the highest, particularly for larger sample 
sizes. Finally, PLDA did not exhibit increases in misclassification rates with 
increasing sample sizes, unlike SDA, and it generally had lower misclassification 
rates for C of 0.5 or 0.8 than any other method except for RF, and SDA with N less 
than 50. In short, PLDA generally maintained consistent misclassification rates at 
or just under 0.2 for the conditions simulated here. 
  



A COMPARISON OF METHODS FOR GROUP PREDICTION 

98 

Table 2: Overall Misclassification Rates by Method and number of Predictors (P) 
 
P LDA RF PLDA SDA NSC RDA 
14 0.37 0.14 0.31 0.22 0.34 0.33 
28 0.34 0.09 0.23 0.21 0.32 0.31 
50 0.33 0.10 0.15 0.20 0.31 0.30 

 
 

Table 2 includes the misclassification rates for M by P.  Each of the 
approaches exhibited lower misclassification rates in the presence of more 
predictors. This effect was muted, however, for all of the methods except PLDA.  
In the latter case, the decrease in the proportion of misclassified cases was 0.16 
from 14 to 50 predictors, whereas for the other methods, the decline in 
misclassification was never more than 0.04. In other words, the number of 
predictors included in the analysis had a much greater impact on the performance 
of PLDA than it did on any of the other methods studied here. Finally, Table 3 
includes the overall misclassification rates for M by D. Across all methods, 
misclassification rates declined as differences in group means increased.  This 
decline was particularly notable for PLDA, which produced a difference in 
misclassification of 0.29 between D=0.2 and D=0.8. Similarly, LDA, NSC, and 
RDA also evinced declines in misclassification of more than 0.2 between the 
smallest and largest group separation conditions. On the other hand, both RF and 
SDA displayed much smaller such declines, though for these methods as well, the 
rates declined with increasing group separation. 

 
Table 3: Overall Misclassification Rates by Method and Difference in Group Means (D) 
 
D LDA RF PLDA SDA NSC RDA 
0.2 0.47 0.15 0.45 0.26 0.45 0.43 
0.5 0.35 0.11 0.19 0.21 0.31 0.30 
0.8 0.23 0.07 0.16 0.17 0.21 0.21 

 
 

Correct Identification of Predictors Contributing to Group Separation 

As with the misclassification rates, ANOVA used to determine which of the 
manipulated factors or their interactions were related to the proportion of predictors 
correctly identified as being associated with group separation. The interaction of M 
by P was significantly associated with the proportion of predictors correctly 
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identified as related to group differences ( 2
40,392 2.818,  0.001,  0.223F p    ). 

In addition, the interaction of M by D ( 2
68,952 10.514,  0.001,  0.457F p    ), and 

M by predictor distribution (PD) ( 2
4,94 17.556,  0.001,  0.428F p    ) were also 

significantly related to the proportion of predictors identified as important. 
 
 
Table 4: Proportion of Predictors Associated with Group Differences Correctly Identified 
by Method and Number of Predictors (P) 
 
P LDA RF PLDA SDA NSC RDA 
14 0.19 0.53 0.18 0.53 0.85 0.83 
28 0.003 0.41 0.08 0.38 0.66 0.73 
50 0.001 0.08 0.05 0.24 0.57 0.55 

 
 

Table 4 includes the proportion of the number of predictors by M and P.  LDA 
consistently displayed among the lowest, if not the lowest proportion of predictors 
correctly identified. The next lowest rates belonged to PLDA, which performed 
similarly to LDA with P=14, and somewhat better for P=28 and 50.  RF and SDA 
had comparable predictor identification rates for P=14 and 28, but the performance 
of RF fell more dramatically for P=50 than was the case for SDA. The best 
performers in terms of correctly identifying predictor variables associated with the 
group differences were NSC and RDA, each of which had proportions that were 
0.2 or higher than their nearest competitors. For example, when P=14, both 
methods accurately identified over 80% of the predictors as being associated with 
group separation. This value dropped to 57% and 55%, respectively, when P=50, 
which represented more accurate performance than any of the other methods, even 
at their best, when P=14. 

The proportion of predictors correctly identified by the method (M) and group 
mean separation (D) appears in Table 5. 
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Table 5: Proportion of Predictors Correctly Identified by Method and Difference in Group 
Means (D) 
 
D LDA RF PLDA SDA NSC RDA 
0.2 0.47 0.15 0.45 0.26 0.45 0.43 
0.5 0.35 0.11 0.19 0.21 0.31 0.30 
0.8 0.23 0.07 0.16 0.17 0.21 0.21 

 
 

As was evident in Table 4, across methods LDA had the lowest correct 
proportion of predictors, except for D=0.8, in which case PLDA had the lowest 
proportion. Indeed, the ability of PLDA to correctly identify the number of 
predictors associated with group membership did not seem to be associated with 
group separation, as its rate stayed large constant. RF and SDA had similar rates to 
one another for D=0.2 and D=0.8, but SDA performed somewhat better when 
D=0.5. Neither of these methods performed as well as RDA or NSC, however.  
RDA had the highest proportion of predictors correctly identified for both D=0.2 
and 0.5, and was slightly lower than NSC for D=0.8. Furthermore, the rates for 
RDA were largely unaffected by the degree of group separation, making it almost 
as accurate for low mean differences as for high ones. On the other hand, the 
performance of NSC was much more strongly influenced by D, as is evidenced by 
the change in the proportion of predictors from 0.2 to 0.8. 

Table 6 includes the proportion of predictors by PD. 
 
 
Table 6: Proportion of Features Correctly Identified as Important by Method and Predictor 
Distribution 
 
PD LDA RF PLDA SDA NSC RDA 
Normal 0.13 0.38 0.20 0.43 0.66 0.98 
S2.5 0 0.30 0.07 0.33 0.65 0.42 

 
 

Several of the methods were deleteriously impacted by the presence of 
skewness in the distribution of predictors, in particular RDA, which was nearly 
perfect in identifying the correct number of important predictor variables when the 
data were normal, but did so less than half the time for skewed data. Similarly, LDA, 
RF, PLDA, and SDA all had proportions of predictor rates for the S2.5 condition 
0.08 or more lower than was the case with normal data. On the other hand, the 
performance of NSC in terms of correctly identifying the number of predictors was 
virtually unaffected by predictor distribution. 
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Discussion 

The goal of this simulation study was to compare several methods for supervised 
group classification in the presence of high dimensional data. Prior work in this 
area has tended to focus on a small number of such methods using applied examples 
with single datasets, or small simulation studies with relatively few manipulated 
conditions. The goal of this study was to expand upon these earlier efforts in several 
ways. First, by utilizing a larger set of simulated conditions than has been seen 
previously, we were able to test the various methods across a wider array of 
scenarios. In addition, we included a number of methods in this study that had not 
been previously compared with one another, including RF, which has never been 
systematically studied in the high dimensional case. Finally, this study examined 
the performance of the methods both in terms of their ability to correctly classify 
individuals into groups, and in terms of their use of salient predictors. 

As described above, the results of this simulation study clearly support the 
use of RF if the primary goal of the researcher is to correctly classify individuals 
into their appropriate groups. No other method was nearly as effective in this regard, 
across all conditions simulated here. Conversely, standard LDA was the worst 
performer in terms of prediction accuracy, across virtually all conditions simulated 
here. The other approaches, each of which relied on some type of regularization or 
penalty function, produced misclassification rates between these two methods. In 
examining why RF might have performed so much better than the alternatives, we 
might consider its very nature as a recursive partitioning algorithm. As noted above, 
a problem with many prediction models in the high dimensional case is that the 
covariance matrices used to obtain model coefficients are ill behaved and 
sometimes singular. The regularization methods studied here (e.g. RDA, PLDA, 
SDA, NSC) each attempts to deal with this problem by reducing the number of 
predictors that are used in the prediction. However, in doing so, they also reduce 
the number of variables that contribute to group prediction, including those that 
might be salient. RF, on the other hand, does not use the covariance matrix at all, 
and thus does not face the problem of poor estimation of model coefficients faced 
by LDA, and reduction in the number of variables used in prediction that is a part 
of the regularized approaches. RF simply divides the sample based on the available 
data, selecting the best predictors at each step of the tree building process. 
Furthermore, because it relies on a large number of such trees, each of which is 
based upon a subset of the predictors and members of the sample, it should be more 
generalizable to the population than perhaps are some of the other methods. And 
indeed, we found this to be the case in the current study. 
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While RF provided the most accurate predictions of group membership, it was 
not particularly effective at identifying the number of salient predictors of group 
separation. The permutation test used to do so is still fairly new and untried, and so 
while it has been shown to work reasonably well with larger samples (Nicodemus, 
Malley, Strobl, & Ziegler, 2010), there has been little work done with small samples, 
regardless of the number of predictors. Given that significance for a given predictor 
variable is determined by comparing classification accuracy using it in its natural 
state, and when it is randomly ordered, it is possible that with small samples and 
many predictors there is simply little difference in accuracy associated with any 
one variable. On the other hand, both NSC and RDA were much more accurate in 
terms of identifying the number of predictors associated with group separation. In 
considering which of these methods might be optimal if a researcher’s goal is to 
identify variables associated with group separation, the results of this study would 
suggest that the decision should be based upon the nature of data being used. For 
example, if the researchers are unsure as to how different the predictor group means 
are, or if it is known that differences for some of them are relatively small, and the 
data are normally distributed, then RDA might be the best choice. Its ability to 
correctly identify the number of salient predictors was optimal when the data were 
multivariate normal, and it seemed largely uninfluenced by the degree of mean 
separation. In particular, it was the most effective approach when the effect size 
separating the groups was small. On the other hand, if the researcher knows that the 
data are not normally distributed, NSC might be the best approach to use because 
it was the least affected by the skewness simulated here.  RDA performed relatively 
poorly in the presence of skewed data. 

Recommendations and directions for future research 

The results of this study suggest some recommendations for practice for researchers 
faced with high dimensional data. First, if the primary goal is to develop some type 
of prediction algorithm to be used with future cases, then RF seems to be the best 
choice. It provided much more accurate predictions than any of the other methods, 
regardless of the nature of the data. On the other hand, if the researcher is most 
interested in trying to identify which variables are most associated with group 
separation, then NSC or RDA may be better choices than RF. In particular, if the 
data are normally distributed, RDA would be recommended, whereas if the data are 
skewed then NSC is likely the optimal choice. In all cases, LDA is not 
recommended when the number of predictors approaches, or is larger than the 
sample size. 
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The current study represents an extension of prior work in this area in terms 
of the number of high dimensional prediction methods examined, and the number 
of conditions simulated. However, it also has limitations that future research should 
seek to address. First of all, only two groups were simulated here.  Future studies 
in this area need to compare the performance of these methods with three or more 
groups. In addition, all of the variables were simulated to be related to group 
separation. However, in reality researchers are often faced with a situation in which 
only some of the variables are related to group differences. Therefore, future 
simulation studies should include some predictors that are not different between the 
groups. Finally, given the clear impact of predictor distribution on the accuracy of 
some methods, future studies should expand upon the nature of nonnormal data, 
including some categorical variables. 
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Factor loadings optimally account for the non-diagonal elements of the covariance matrix 
of observed variables. Principal component analysis leads to components accounting for a 
maximum of the variance of the observed variables. Retained-components factor 
transformation is proposed in order to combine the advantages of factor analysis and 
principal component analysis. 
 
Keywords: Factor analysis, principal component analysis, exploratory factor 
analysis. 
 

Introduction 

Common factor analysis (FA) is regularly used in order to identify latent constructs 
accounting for the covariance of observed variables whereas principal components 
analysis (PCA) is primarily used in order to explain as much of the variance as 
possible with a minimum of components (Conway & Huffcutt, 2003; Fabrigar, 
Wegener, MacCallum, Strahan, 1999; Preacher & MacCallum, 2003). There is a 
broad literature referring to similarities and differences between FA and PCA (Bentler 
& De Leeuw, 2011; Ogasawara, 2003; Harris, 2001; Velicer & Jackson, 1990; Unkel 
& Trendafilov, 2010). It is also known that both methods can produce identical or 
extremely similar results under specific conditions (Schneeweiss, 1997; Schneeweiss 
& Mathes, 1995) and that PCA is often used as a substitute for FA (Sato, 1990). 
Nevertheless, an important difference between FA and PCA is that communalities or 
unique error variances of the variables are not estimated in PCA whereas they are 
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estimated in FA (Harman, 1976; Tabachnick & Fidell, 2007). The estimation of 
communalities avoids an inflation of loadings in FA whereas an inflation of loadings 
regularly occurs in PCA (Widaman, 1993; Snook & Gorsuch, 1989). 

Another difference between PCA and FA is related to the scores resulting from 
these methods: The component scores are clearly determined in PCA whereas the 
factor scores are indeterminate in FA (Guttman, 1955; Lovie & Lovie, 1995; Grice, 
2001). Moreover, the component scores account for a maximum of the variance of the 
observed variables so that they represent an optimal data reduction. The principal 
components represent best summarizers for the observed variables (ten Berge & Kiers, 
1997), which might be relevant for psychological assessment. By contrast, in FA 
different factor score predictors with different advantages and disadvantages have 
been proposed (Beauducel & Rabe, 2009; Krijnen, 2006; ten Berge, Krijnen, 
Wansbeek, & Shapiro, 1999), however, there is no factor score predictor that is an 
optimal summarizer of the observed variables. In consequence, a method that 
combines an optimal estimation of the loading size (without inflation) with scores that 
represent an optimal data reduction is not available. Researchers have to decide: If 
they want to have an optimal representation of a latent construct and the corresponding 
loadings, they should opt for FA, if they want to get optimal summarizers of the 
observed variables, they should use PCA. In the present paper we start from the idea 
that a researcher wants to get both: An optimal (not inflated) loading matrix 
representing the common variance of latent constructs adequately and optimal 
summarizers of the observed variables. A method that combines the estimation of 
loading magnitude of FA with the optimal data reduction of PCA could be the 
projection of the factor loadings on the column space of the loadings of the 
components retained in PCA. The focus on the components retained for rotation and 
interpretation is necessary because typically the number of components retained in 
PCA is considerably smaller than the number of observed variables. Accordingly, the 
transformation resulting in factor loadings in the column space of the retained PCA 
loadings is called ‘retained-components factor transformation’ (RFT). First, some 
definitions are given, then RFT is introduced and RFT-factor scores summarizing 
the observed variables like principal component scores are presented. Finally, some 
properties of RFT are described and illustrated by means of a small simulation study 
and by means of an empirical example. 
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Methodology 

The principal component model 
According to Hotelling (1933) it is possible to decompose x, the random vector of 
observations of order p by means of a linear combination of components  with 
component loadings L. The observations x and the components  are assumed to 
have an expectation zero (E[x] = 0, E[] = 0) 
 
   x L  (1) 
 

This decomposition by means of components represents a population model. 
The principal component representation implies that L´L is diagonal with elements 
ordered from large to small (ten Berge & Knol, 1985). Moreover, it is assumed that 
L  0. When the principal component model is applied to sample data, it will be 
reasonable to distinguish between a random vector r of order q representing the 
intended and substantial variance and therefore the components retained for 
interpretation and a random vector n of order p - q representing the unintended or 
trivial variances and therefore the components not retained for interpretation 
(Hotelling, 1933). Accordingly, it is necessary to distinguish between M, the p x q 
loading matrix of the retained components and N the p x (p - q) loading matrix of 
the components not retained with L = [M  N]. This yields 

 
 r n  x M N  (2) 
 
with M´N = 0 and N´M = 0 following from L´L being diagonal. The population 
covariance matrix of the observed variables can be decomposed as follows: 
 
           LL MM NN  (3) 

The common factor model 

The common factor model that is assumed to hold in the population is given 
by 

 
 [ | ] c u         x  (4) 
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where x is the random vector of observations of order p,  is the random vector of 
factors consisting of q common factors c and p orthogonal unique factors u.  is 
the factor pattern matrix of order p by q,  is the p x p diagonal unique loading 
matrix. It is assumed that  contains only positive values and that   0. The factors 
 are assumed to have an expectation zero (E[] = 0) and the standard deviation of 
 is one. Moreover, the expectation of the covariance of c with u is zero. The 
covariance matrix  can be decomposed into 
 
  2ΨΣ ΛΦΛ= +  (5) 
 
where  represents the q by q factor correlation matrix. 

Results 

Retained-components factor transformation 
In order to transform the retained component matrix M to be as similar as possible 
to the factor loading matrix  the following transformation was used: 

 
  MT  (6) 

 
with  the transformation matrix T and the factor loading matrix  as a target matrix, 
much like in procrustes rotation (Hurley & Cattell, 1962). Solving Equation 6 for 
T yields 
 

 1)(  M MT M  (7) 
 
Entering T into Equation 6 yields *, because the transformed component 

loadings will in most cases be similar, but not identical to the target matrix . 
Accordingly, * contains the loadings resulting from retained-components factor 
transformation (RFT), 

 

 1 *)(    M M MM  (8) 
 
Equation 2 and Equation 4 both explain the variance of the observed variables 

x, so that they can be equated. This yields 
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 r n c u      M N  (9) 
 
Premultiplication of Equation 9 with M(M´M)-1M´ yields 

 
 

 
   

   

1 1

1 1 ´
r n

c u

 

 

 

 


   

    

M M M M M M M M M N

M M M M M M M M
 (10) 

 
Since M´N = 0 and according to Equation 8 it is possible to write 

 
 * *

r c u    M  (11) 
 
with * = M(M´M)-1M´. Equation 11 gives a factorial representation of the 
retained components r. Thus, each retained component is decomposed into a 
projection from the common factors and from the unique factors. According to 
Equation 2 it is possible to write 
 
 * *

c u n     x N  (12) 
 

Thus, the RFT has two error terms: One term representing the unique error of 
the factorial decomposition of the retained-components and the other error term 
represents the residual PCA components (i.e., those components that are not 
retained for interpretation). The covariance matrix of observed variables can be 
computed from RFT by means of 

 

   
* *

* *

* * * s

c u n c u n

c n u n

     

   


       

          

N

N N N

N

N
 (13) 

 
Postmultiplication of Equation 9 with c´, subsequent premultiplication with  
(N´N)-1N´ and transposing yields  

 
  

1
c n 


  N N N  (14) 
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Postmultiplication of Equation 9 with u, subsequent premultiplication with 
 

1
 N N N  and transposing yields  

 
  

1
u n 


  N N N  (15) 

 
Entering Equation 14 and 15 into Equation 13 and some transformation yields 
 

 

   

   

 

1 1*2 2

1 1*2

1*2

* *

* *

*

*

2

*

* *

( )

( )

´ 

 



       

         

     

 

   

 

    

    

NN M M M M N N N N

NN M M M M NN N N N N

NN MM N N N N

M

N

M

N

 (16) 

 
since M´N = 0. Thus, the residual covariances that are represented by the loadings 
of the irrelevant components N have no covariance with * of RFT, since N´M = 0 
implies N´M(M´M)-1M´ = 0. In contrast, the residual covariances represented by 
N might be related to the FA-loadings, that is, N´  is not necessarily zero. One 
would therefore expect that advantages of RFT over conventional FA in terms of 
stability of parameters occur when the PCA residuals in NN´ primarily represent 
covariances due to sampling error. Moreover, RFT should help to avoid the 
overestimation of loadings as it occurs with PCA, because the PCA loadings are 
transformed in order to be as similar as possible to the factor loadings. Accordingly, 
a simulation study was performed in order to explore the quality of the sample RFT-
loadings as estimators of population factor loadings. 

Properties of the Retained-components factor score predictors 
A main reason for proposing RFT was that it allows for factor score predictors that 
are optimal summarizers of the observed variables. This property holds for 
Harman´s ideal-variable factor score predictor. The weights for Harman’s (1976) 
ideal-variable factor score predictor based on RFT are given by 

 

  
1

* * *
 

   HB  (17) 
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Moreover, according to Equation 2, the weights of the retained components are 
given by  

 
  

1
rB M M M  (18) 

 
The relation between the component scores and Harman’s ideal variables 

scores for RFT can be expressed in terms of correlations. Therefore, the correlations 
between weighted composites of the observed variables can be computed. Entering 
BH and Br into the formula for the correlations between weighted composites 
(Harris, 2001), yields  

 

  
0.5

     H r H H r r HrB B B B B B C  (19) 

 
where the main diagonal of CHr contains the correlation matrix between Harman’s 
factor score predictor based on RFT and the retained principal components. 
Entering Equation 17 and 18 into Equation 19 and some transformation yields 

 
         

11 1 1 11 1 1


             G M M M M M M G M M M M M M G G I  (20) 

 
with G= (M´M)-1M´. Thus, the correlations between the component scores and 
Harman’s ideal variables scores are all perfect for the RFT-solution. This implies 
that Harman’s ideal variables scores of the RFT-solution are optimal summarizers 
of the observed variables as are the principal components. 

Since Thurstone’s (1935) least squares regression score predictor is often 
used and recommended (Krijnen, 2006), the relationship between the regression 
score predictor based on RFT and the principal component scores was explored. 
Since the principal component scores have the interesting property of being the 
optimal summarizers of the observed variables, they should be regarded as a 
criterion and the RFT regression factor scores as predictors. Thus, q multiple 
regressions and corresponding multiple correlations can be calculated for the q 
retained components. If the multiple correlations between the regression score 
predictors and the principal component scores as criterion is one, this indicates that 
the scores represent the same overall individual differences, even though they might 
be distributed differently on the factors and components. The weights for 
Thurstone’s regression factor score predictor based on RFT are 
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11 * 1          TB M M M M  (21) 

 
The corresponding regression weights for the prediction of the retained 

principal components from Thurstone’e regression factor score predictor are  
 

  
1* 1 * 1 *( )  ´       B M M M  (22) 

 
The multiple correlation is calculated as 

 

      

   

1 1 12 *

1 1* * 1 * 1 *(  )

   

  

      

         



 

R B M M M M M M M M M

M M M M M M
 (23) 

 
Some transformation yields 

 
 2 1 1( )  R M M  (24) 

 
A singular value decomposition of  yields  = SDS´, with D containing a 

diagonal matrix of eigenvalues in descending order. Accordingly it is possible to 
write 

 
 1/2 1/2    LL SD D S S  (25) 

 
From -1= (SD-1S´)´ we get L-1L´= SD1/2D-1D1/2S´ = Ip x p, which implies 

 
 1 1/2 1 1/2

         q x qM M  SD D D S I  (26) 
 
and, accordingly, (M´-1M)-1=Iq x q, which implies that all multiple correlations 
with the RFT regression factor scores as predictors and each principal component 
as criterion are one. 

Simulation Study  

The expectation that the RFT-loadings are more stable than the FA-loadings when 
the residual covariances represent sampling error was investigated by means of a 
small simulation study based on orthogonal and oblique three-factor models. For 
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the Models 1 to 4, the population FA-loadings were identical to the population 
RFT-loadings. Schneeweiss and Mathes (1995) have shown that factor loadings can 
be perfectly transformed into the retained component loadings when all unique 
factor loadings are equal. Whenever the retained component loadings can be 
perfectly transformed into the factor loadings, it follows from Equations 6 and 7 
that the RFT-loadings will be identical to the factor loadings (* = ), because 
Equation 7 yields the transformation matrix for the transformation of the retained 
component loadings into factor loadings. The condition of equal uniqueness of all 
variables holds for population Models 1 and 2. Moreover, population Models 1 to 
4 represent a perfect simple structure (independent clusters) where all non-salient 
loadings are zero and the salient loadings on each factor are identical even when 
there are different salient loadings on different factors for Models 3 and 4 (see Table 
1). This implies that multiplication with a scalar will allow to transform each vector 
of factor loadings into the corresponding component loadings. Again, a perfect 
transformation of retained component loadings into factor loadings implies that the 
RFT-loadings and the factor loadings are identical. 

Whereas Model 1 represents an orthogonal perfect simple structure with large 
salient loadings Model 2 represents an orthogonal perfect simple structure with 
moderate salient loadings. Model 3 represents an oblique perfect simple structure 
with large salient loadings and Model 4 represents an oblique perfect simple 
structure with moderate salient loadings (see Table 1). 
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Table 1: Population loadings for models with identical FA- and RFT-loadings 
 

Model 1 Model 2 
.700 .000 .000 .500 .000 .000 
.700 .000 .000 .500 .000 .000 
.700 .000 .000 .500 .000 .000 
.700 .000 .000 .500 .000 .000 
.700 .000 .000 .500 .000 .000 
.000 .700 .000 .000 .500 .000 
.000 .700 .000 .000 .500 .000 
.000 .700 .000 .000 .500 .000 
.000 .700 .000 .000 .500 .000 
.000 .700 .000 .000 .500 .000 
.000 .000 .700 .000 .000 .500 
.000 .000 .700 .000 .000 .500 
.000 .000 .700 .000 .000 .500 
.000 .000 .700 .000 .000 .500 
.000 .000 .700 .000 .000 .500 

  Model 3 Model 4 
.714 .000 .000 .520 .000 .000 
.714 .000 .000 .520 .000 .000 
.714 .000 .000 .520 .000 .000 
.714 .000 .000 .520 .000 .000 
.714 .000 .000 .520 .000 .000 
.000 .665 .000 .000 .472 .000 
.000 .665 .000 .000 .472 .000 
.000 .665 .000 .000 .472 .000 
.000 .665 .000 .000 .472 .000 
.000 .665 .000 .000 .472 .000 
.000 .000 .616 .000 .000 .424 
.000 .000 .616 .000 .000 .424 
.000 .000 .616 .000 .000 .424 
.000 .000 .616 .000 .000 .424 
.000 .000 .616 .000 .000 .424 

 inter-factor correlations 
1.000   1.000 -.061 .363 
-.032 1.000  -.061 1.000 -.475 
.273 -.329 1.000 .363 -.475 1.000 
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Population FA-loadings and the corresponding RFT-loadings for models with 
unequal FA- and RFT-loadings ( ≠ *) are given in Table 2 and 3. Models 5 and 
6 are orthogonal, Model 5 has a simple structure with large salient loadings, and 
Model 6 has a simple structure with moderate salient loadings (see Table 2). 
Moreover, Model 7 has an oblique simple structure and high salient loadings 
whereas Model 8 represents an oblique simple structure with low to moderate 
salient loadings (see Table 3). The eight models with their corresponding 
population factor loading matrices presented in Tables 1, 2, and 3 were used in 
order to generate population correlation matrices according to Equation 5. It should 
be noted that even for those population models where the FA- and RFT-loadings 
were not equal, the means of the FA- and the RFT-loadings were generally similar 
(see Tables 2 and 3, bottom). The only exception was found for the first factor of 
Model 7, where the mean RFT-loading was a bit smaller than the mean factor 
loading. Overall, this demonstrates that the RFT-loadings are not inflated. 

From each population 500 random normal samples with 50, 75, 150, 300, and 
1000 cases were taken. Maximum likelihood factor analysis (MLFA), unweighted 
least squares factor analysis (ULFA), and PCA were performed for each sample 
correlation matrix. It should be noted that the relative size of the MLFA-loadings 
does not depend on the standard deviations of the observed variables, which means 
that MLFA is scale free (Lawley, 1940). On the other hand, PCA is not scale free 
so that the relative size of the PCA-loadings can be affected by different standard 
deviations of the observed variables. Since RFT is based on PCA, it is not 
recommended to calculate RFT for ML-factors when covariance matrices are 
analyzed. Therefore, the present simulation study was based on correlation matrices 
so that no effects of scaling on the loadings were expected. It was decided to include 
a correlation-based MLFA into the simulation study, because ML-estimation is 
rather common in the context of factor analysis.  
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Table 2: Popluation loading matrices of Model 5 and 6 
 

 FA-loadings RFT-loadings 
 Model 5 
 .600 .000 .000 .638 .000 .000 
 .650 .000 .000 .673 .000 .000 
 .700 .000 .000 .705 .000 .000 
 .750 .000 .000 .734 .000 .000 
 .800 .000 .000 .759 .000 .000 
 .000 .600 .000 .000 .638 .000 
 .000 .650 .000 .000 .673 .000 
 .000 .700 .000 .000 .705 .000 
 .000 .750 .000 .000 .734 .000 
 .000 .800 .000 .000 .759 .000 
 .000 .000 .600 .000 .000 .638 
 .000 .000 .650 .000 .000 .673 
 .000 .000 .700 .000 .000 .705 
 .000 .000 .750 .000 .000 .734 
 .000 .000 .800 .000 .000 .759 

M .233 .233 .233 .234 .234 .234 
   Model 6 
 .400 .000 .000 .437 .000 .000 
 .450 .000 .000 .474 .000 .000 
 .500 .000 .000 .507 .000 .000 
 .550 .000 .000 .535 .000 .000 
 .600 .000 .000 .559 .000 .000 
 .000 .400 .000 .000 .437 .000 
 .000 .450 .000 .000 .474 .000 
 .000 .500 .000 .000 .507 .000 
 .000 .550 .000 .000 .535 .000 
 .000 .600 .000 .000 .559 .000 
 .000 .000 .400 .000 .000 .437 
 .000 .000 .450 .000 .000 .474 
 .000 .000 .500 .000 .000 .507 
 .000 .000 .550 .000 .000 .535 
 .000 .000 .600 .000 .000 .559 

M .167 .167 .167 .167 .167 .167 
 
Note. "M" denotes the column mean. 
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Table 3: Popluation loading matrices of Model 7 and 8 
 

 FA-loadings RFT-loadings 
 Model 7 
 .673 .000 .000 .654 .001 .005 
 .694 .000 .000 .666 .000 .002 
 .714 .000 .000 .677 .000 .000 
 .734 .000 .000 .688 .001 .002 
 .755 .000 .000 .698 .001 .005 
 .000 .624 .000 .001 .636 .006 
 .000 .644 .000 .000 .648 .003 
 .000 .665 .000 .000 .659 .000 
 .000 .686 .000 .001 .671 .003 
 .000 .706 .000 .001 .681 .006 
 .000 .000 .573 .005 .006 .586 
 .000 .000 .594 .003 .003 .597 
 .000 .000 .616 .000 .000 .609 
 .000 .000 .638 .003 .004 .620 
 .000 .000 .659 .006 .007 .629 

M .238 .222 .205 .227 .221 .205 
  
 inter-factor correlations 
 1.000   1.000   
 -.031 1.000  -.035 1.000  
 .271 -.327 1.000 .265 -.340 1.000 

  
 Model 8 
 .478 .000 .000  .496  .002  .007 
 .498 .000 .000  .508  .001  .003 
 .520 .000 .000  .521  .000  .000 
 .540 .000 .000  .531  .001  .004 
 .561 .000 .000  .541  .002  .007 
 .000 .428 .000  .002  .446  .010 
 .000 .450 .000  .001  .458  .005 
 .000 .471 .000  .000  .468  .001 
 .000 .492 .000  .002  .478  .006 
 .000 .514 .000  .003  .487  .011 
 .000 .000 .376  .009  .012  .397 
 .000 .000 .399  .004  .006  .407 
 .000 .000 .423  .001  .001  .417 
 .000 .000 .446  .006  .008  .425 
 .000 .000 .470  .011  .015  .433 

M .173 .157 .141 .176 .159 .142 
  
 inter-factor correlations 
 1.000   1.000   
 -.060 1.000  -.067 1.000  
 .359 -.468 1.000 .340 -.505 1.000 
 
Note. "M" denotes the column mean. 
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Varimax-rotation was performed for the orthogonal models (Model 1, 2, 5, and 6) 
and Promax-rotation (Kappa=4) was performed for the oblique models (Model 3, 
4, 7, and 8). Then, according to Equation 8 the RFT-loadings were computed from 
the unrotated sample PCA retained component loadings and the factor loadings. 
Varimax-rotation of the RFT-loadings was performed for the orthogonal models 
and Promax-rotation (Kappa=4) was performed for the oblique models.  

Although the RFT constitutes a new model comprising aspects both from 
PCA and FA, researchers might want to use the RFT especially as a substitute for 
FA. Therefore, the root mean square (RMS) difference between the sample FA-
loadings and the corresponding population FA-loadings was compared with the 
RMS difference between the sample RFT-loadings and the corresponding 
population FA-loadings (Figures 1 and 2). The RMS difference represents the 
overall difference between sample and population FA-loadings, but it does not 
indicate whether an over- or underestimation occurs. Therefore, the mean-
difference between the mean sample loadings and the population FA-loadings was 
also calculated (see Table 4). The mean-difference is negative when the sample 
RFT-, FA-, or PCA-loadings underestimate the population FA-loadings and it is 
positive when the sample loadings overestimate the population FA-loadings.  

Figure 1 contains the RMS differences between the sample MLFA-loadings, 
sample ULFA-loadings, sample ML-RFT-loadings, sample UL-RFT-loadings, 
sample PCA-loadings and the corresponding population FA-loadings for Models 1 
to 4. RMS differences were equal or smaller for RFT-loadings based on ML-
estimation than for MLFA-loadings. Moreover, RMS differences were equal or 
smaller for RFT-loadings based on UL- estimation than for ULFA-loadings. Thus, 
when the population FA-loadings and the population RFT-loadings are equal, the 
precision of the sample RFT-loadings as estimates of the population FA-loadings 
is at least as high as the precision of the FA-loadings. The mean-differences 
between sample MLFA-loadings, sample ULFA-loadings, sample RFT-loadings 
and the corresponding population FA-loadings were extremely small for Models 1 
to 3 (see Table 4). They were a bit larger for Model 4, where a slight tendency for 
an underestimation of loadings was found for all methods. PCA-loadings have, in 
general, the largest RMS and, thus, the lowest precision as estimates of the FA-
loadings, especially for sample sizes of 150 cases and above (see Figure 1) and the 
mean-differences were of a relevant size (see Table 4), indicating the known 
tendency of PCA-loadings to overestimate the population FA-loadings. 
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Figure 1. Root mean squared difference (RMS) between the sample MLFA-, ULFA-, ML-
RFT-, UL-RFT-, PCA- loadings and the corresponding population factor loadings for 
Models 1 to 4. 
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Table 4. Mean-difference between sample loading estimates and population FA-loadings 
 

Model N MLFA ML-RFT ULFA UL-RFT PCA 
 50 -.003 -.002 -.002 -.001 .019 
 75 -.002 -.001 -.001 -.001 .021 

1 150 -.001 .000 -.001 .000 .022 
 300 .000 .000 .000 .000 .023 
 1000 .000 .000 .000 .000 .023 
        50 -.002 -.008 .000 .001 .032 
 75 -.002 -.001 .001 .001 .036 

2 150 .000 .001 .001 .001 .041 
 300 .000 .001 .000 .001 .043 
 1000 .000 .000 .000 .000 .044 
        50 -.005 -.002 -.003 -.001 .021 
 75 -.003 -.001 -.002 -.001 .023 

3 150 -.001 .000 -.001 .000 .025 
 300 .000 .000 .000 .000 .026 
 1000 .000 .000 .000 .000 .026 
        50 -.020 -.045 -.016 -.014 .013 
 75 -.017 -.024 -.015 -.012 .020 

4 150 -.012 -.007 -.006 -.006 .032 
 300 -.006 -.003 -.002 -.002 .041 
 1000 -.002 -.002 -.001 -.001 .046 
        50 -.002 -.002 -.002 -.001 .019 
 75 -.002 -.001 -.001 -.001 .020 

5 150 -.001 -.001 -.001 .000 .021 
 300 .000 .000 .000 .000 .022 
 1000 .000 .001 .000 .001 .023 
        50 -.001 -.018 .001 .002 .033 
 75 .000 .001 .001 .002 .036 

6 150 .000 .001 .000 .002 .040 
 300 .000 .001 .000 .001 .042 
 1000 .000 .001 .000 .001 .043 
        50 -.021 -.009 -.010 -.008 .015 
 75 -.012 -.009 -.010 -.008 .015 

7 150 -.009 -.007 -.008 -.007 .018 
 300 -.006 -.006 -.006 -.006 .021 
 1000 -.006 -.006 -.006 -.006 .021 
        50 -.017 -.044 -.015 -.014 .013 
 75 -.018 -.017 -.016 -.015 .017 

8 150 -.013 -.009 -.011 -.008 .031 
 300 -.007 -.004 -.006 -.003 .040 
 1000 -.003 -.002 -.004 -.002 .046 

M  -.005 -.006 -.004 -.003 .028 
 

Note. "M" denotes the column mean. 
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The RMS differences between population FA-loadings and corresponding 
sample FA-loadings, sample RFT-loadings, and sample PCA-loadings were 
presented for Models 5 to 8 in Figure 2. Both for ML- and UL-estimation, the RMS 
differences were smaller for the RFT-loadings than for the FA-loadings. Although 
the population RFT-loadings were different from the population FA-loadings for 
Models 5 to 8, the sample RFT-loadings were at least as precise estimators of the 
population FA-loadings as the sample FA-loadings. The mean-differences between 
sample and population loadings were extremely small for MLFA-, ULFA-, ML-
RFT-, and UL-RFT-loadings in Models 5 and 6. They tend to be a bit more negative 
for Model 7 and especially for Model 8 for samples comprising 50 and 75 cases 
(see Table 4). The overall mean-difference between UL-based RFT-loadings and 
population factor loadings was slightly smaller than the overall mean-difference for 
any other method (see Table 4, bottom). Again, the PCA-loadings had the lowest 
precision as estimates of the population FA-loadings both in terms of RMS (Figure 
2) and in terms of the mean-differences, which indicate the overestimation of 
population FA-loadings by means of PCA (Table 4). 
 
 

 
 
Figure 2. Root mean squared difference (RMS) between the sample MLFA-, ULFA-, ML-
RFT-, UL-RFT-, PCA- loadings and the corresponding population factor loadings for 
Models 5 to 8. 
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The RMS differences between the inter-correlations of the population factors 
and the sample inter-correlations for MLFA, ULFA, the corresponding RFT, and 
the sample principal components were presented for the oblique population models 
(Model 3, 4, 7, and 8, see Figure 3). For Models 4, 7, and 8 and sample sizes below 
150 cases the RMS differences were smaller for MLFA than for the RFT based on 
ML-estimation. Especially, when based on 50 cases, the RMS was large for the 
ML-based RFT for Models 4 and 8. However, this effect did not occur for the UL-
based RFT. In contrast, when sample size was at least 150 cases the RMS was 
smaller for the ML-based RFT than for MLFA. For UL-based RFT the RMS tends 
to be equal or smaller than for ULFA. Overall, the mean-differences between 
sample inter-correlations and population factor inter-correlations indicate that the 
correlations tend to be underestimated (see Table 5). The effect of underestimation 
was most pronounced for PCA. Moreover, the underestimation of inter-factor 
correlations was less pronounced for RFT-solutions than for the FA-solutions with 
all methods (see Table 5). 
 
 

 
 
Figure 3. Root mean squared difference (RMS) between the inter-correlations for sample 
MLFA-, ULFA-, ML-RFT-, UL-RFT-, PCA and the corresponding population factor inter-
correlations for the oblique models (Model 3, 4, 7, and 8). 
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Table 5. Mean-difference between sample factor and component inter-correlations and 
population inter-factor correlations for the oblique models (Model 3, 4, 7, and 8) 
 
Model N MLFA ML-RFT ULFA UL-RFT PCA 

3 

50 -0.054 -0.039 -0.045 -0.041 -0.073 
75 -0.023 -0.017 -0.022 -0.019 -0.057 

150 -0.014 -0.011 -0.013 -0.011 -0.052 
300 -0.007 -0.006 -0.007 -0.006 -0.049 

1000 -0.003 -0.003 -0.003 -0.003 -0.047 
       

4 

50 -0.226 -0.167 -0.21 -0.194 -0.232 
75 -0.189 -0.112 -0.17 -0.151 -0.207 

150 -0.124 -0.076 -0.105 -0.082 -0.174 
300 -0.06 -0.038 -0.053 -0.041 -0.15 

1000 -0.017 -0.014 -0.017 -0.014 -0.135 
       

7 

50 -0.047 -0.034 -0.041 -0.038 -0.072 
75 -0.027 -0.019 -0.025 -0.021 -0.061 

150 -0.013 -0.01 -0.012 -0.01 -0.053 
300 -0.007 -0.005 -0.007 -0.005 -0.05 

1000 -0.002 -0.001 -0.002 -0.001 -0.047 
       

8 

50 -0.211 -0.151 -0.207 -0.189 -0.228 
75 -0.183 -0.138 -0.166 -0.15 -0.208 

150 -0.121 -0.079 -0.108 -0.087 -0.177 
300 -0.061 -0.04 -0.056 -0.042 -0.151 

1000 -0.018 -0.012 -0.017 -0.013 -0.135 
M  -0.07 -0.049 -0.064 -0.056 -0.118 

 

Note. "M" denotes the column mean. 

Empirical Study 

Since the simulation study focused on the loadings and factor inter-correlations, the 
empirical example presented in the following focused on the robustness of factor 
score predictors. A sample of 497 German participants (353 females; 71 %; age: M 
= 33.1; SD = 12.6) was recruited by means of newspaper advertising and through 
advertising in university courses. The participants indicated written informed 
consent and filled in 20 items (10 extraversion items, 10 neuroticism items) of the 
German Version of the Eysenck Personality Inventory (EPI; Eggert, 1983). Since 
there are more females in the sample, the data do not represent a balanced sample 
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of the population. Nevertheless, asymmetries of demographic parameters are not 
rare in empirical research, so that it seemed reasonable to demonstrate RFT by 
means of this sample. 

Two factors were extracted by means of ULFA, because two factors 
(Extraversion and Neuroticism) were expected to occur. The Promax-rotated 
ULFA-solution (Kappa=4), the corresponding Promax-rotated RFT-solution, and 
the Promax-rotated PCA-solution are presented in Table 6. The Neuroticism-factor 
is rather clear whereas the Extraversion-factor is rather weak, because four items 
do not load as expected. Overall, the ULFA loading pattern and the corresponding 
RFT loading pattern were very similar, although some of the largest ULFA loadings 
were a bit smaller in the RFT-solution. Moreover, inspection of Table 6 reveals the 
well-known overestimation of loadings that occurs with PCA. 
 
Table 6. Pattern-loadings of Promax-solution of ULFA, UL-based RFT, and PCA for 20 
items of the EPI 
 

 ULFA UL-RFT PCA 
item N E N E N E 
e01 -.02 .48 -.03 .47 -.04 .58 
e03 -.46 .18 -.46 .18 -.52 .22 
e05 .17 .28 .18 .32 .20 .40 
e08 .16 .37 .16 .40 .17 .50 
e10 .38 .18 .39 .19 .44 .24 
e13 .00 .51 -.01 .50 -.01 .62 
e15 -.16 .44 -.17 .43 -.20 .53 
e17 -.05 .57 -.06 .52 -.08 .65 
e20 .00 .03 .00 .03 .00 .04 
e22 .15 .19 .16 .22 .18 .27 
n02 .47 .11 .47 .11 .53 .14 
n04 .36 .07 .38 .07 .43 .09 
n07 .63 .15 .59 .14 .67 .18 
n09 .49 -.07 .49 -.07 .55 -.09 
n11 .33 -.16 .35 -.18 .40 -.22 
n14 .53 -.03 .53 -.03 .60 -.04 
n16 .49 -.08 .49 -.08 .56 -.09 
n19 .24 .13 .25 .14 .29 .18 
n21 .38 .07 .40 .07 .45 .09 
n23 .57 -.06 .55 -.06 .63 -.07 

 Inter-correlations 
 -.05 -.05 -.03 

First 10 eigenvalues of unrotated PCA: 
3.34, 2.20, 1.40, 1.25, 1.09, 1.02, .96, .89, .86, .79 
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In some occasions researchers want to get scores for each participant, so that 
Thurstone’s regression score predictor was computed for the ULFA-solution and 
for the RFT-solution (see Equation 21). Since gender was distributed rather 
unequally, the robustness of factor score predictors might be questioned. In order 
to investigate the robustness of the score predictors, 150 random splits of the total 
sample into two subsamples (249 vs. 248 participants) were performed. The 
weights for the computation of score predictors were calculated for ULFA, for UL-
based RFT, and for PCA component scores in each sub-sample. Then, the weights 
were applied to compute the score predictors and component score in the total 
sample so that the root mean squared (RMS) correlation between the scores based 
on the two sub-samples was computed as an indicator of the robustness of the score 
predictors. The RMS correlation was .94 with a standard deviation of .06 for 
ULFA, .97 with a standard deviation of .04 for the UL-RFT score predictors, 
and .95 with a standard deviation of .07 for PCA. 

Conclusion 

A transformation of the retained principal component loadings to be as similar as 
possible to the factor loading matrix was proposed. This transformation was called 
‘retained-components factor transformation’ (RFT). It was shown that Harman’s 
ideal variables factor score predictor based on RFT has perfect correlations with 
the principal components. It can therefore be concluded that Harman’s factor score 
predictor based on RFT is an optimal summarizer of the observed variables. 
Moreover, Thurstone’s regression score predictor based on RFT was shown to have 
a perfect multiple correlation with the principal components, indicating that the 
RFT based regression score predictor summarizes the same overall individual 
differences as the principal components, even when the variances are distributed 
differently on the RFT factors and principal components. Thus, the RFT based 
regression score predictor is also an optimal summarizer of the observed variables. 

In a simulation study based on orthogonal and oblique simple structure the 
means of the population loadings were very similar for FA and RFT. This 
demonstrates that the RFT-loadings are not inflated as has been found for PCA-
loadings when compared to FA-loadings (Widaman, 1993; Snook & Gorsuch, 
1989). Moreover, the RMS difference between the population factor loadings and 
the sample loadings was overall equal or smaller for RFT-loadings than for FA-
loadings and PCA-loadings. This implies that RFT-loadings can be used as 
estimates of population factor loadings. Moreover, the mean-difference between 
the RFT-loadings and the population factor loadings was smallest for the RFT 
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based on UL-estimates. This indicates that the UL-based RFT-loadings might be 
slightly more precise than other estimates of the factor loadings. Moreover, the 
underestimation of inter-factor correlations was less pronounced for RFT-solutions 
than for the FA-solutions. 

The empirical example was based on 20 items of the EPI. The simple structure 
of the two-factor solutions was not perfect and the sample had an unbalanced 
gender distribution. Thus, the sample contains imperfect data as they occur in 
empirical research. The Promax loading pattern of the ULFA-solution and the 
Promax loading pattern of the UL-based RFT-solution were very similar and would 
probably lead to the same interpretation of the factors whereas the PCA-loadings 
were again inflated. Nevertheless, many of the largest loadings in the ULFA-
solution were smaller in the RFT-solution. The total sample was divided into two-
subsamples and the weights for Thurstone’s regression score predictor were 
computed in the subsamples. These weights were then applied to the total-sample 
in order to compute score predictors. The RMS of the correlation between the score 
predictors based on sub-sample weights was a bit smaller for ULFA than for the 
UL-based RFT. This indicates that score predictors that are based on UL-RFT could 
be a valuable alternative to conventional scores.  

To summarize, RFT could be regarded as interesting in several applied 
settings because the simple structure models investigated in the present simulation 
study and in the empirical study are relevant for many areas of research. It was 
found that RFT allows for a model without inflated loadings, which can be used as 
estimates of population factor loadings. The underestimation of inter-factor 
correlations was less pronounced when based on RFT than for FA. Moreover, the 
RFT model implies score predictors that are optimal summarizers of the observed 
variables and the regression score predictor based on UL-RFT was more robust 
than the ULFA-based regression score predictor. In this sense, RFT combines the 
advantages of PCA (score predictors that are optimal summarizers of observed 
variables) with the advantages of FA (RFT-loadings are not inflated).  

It should be noted that the computation of the RFT-loadings can be based on 
any initial factor model when the analyses are based on the inter-correlations of the 
observed variables (maximum likelihood, unweighted least-squares, principal axis 
factoring, etc.). Although RFT was also calculated for MLFA, it should be noted 
that this is only possible when the analyses are based on the inter-correlations of 
the observed variables. When covariances are used instead of correlations, MLFA 
will lead to a scale-free solution whereas PCA will depend on scaling, so that the 
RFT might be biased. Accordingly, when RFT is based on covariances ULFA or 
principal axis factoring would be an appropriate method. Moreover, the stability of 
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the results of the simulation study indicates that the UL-based RFT-loadings should 
be preferred over ML-based RFT-loadings in small samples. A small R script that 
can be used in order to compute the RFT-loadings from an initial loading matrix is 
available from the authors (http://beauducel.de/research.html). 
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In multiple linear regression, the ordinary least squares estimator is very sensitive to the 
presence of multicollinearity and outliers in the response variable. To handle these 
problems in the data, Winsorized shrinkage estimators are proposed and the performance 
of these estimators is evaluated through mean square error sense. 
 
Keywords: Multicollinearity, outliers, contaminated normal error, Winsorization, 
mean square error, multiple linear regression 
 

Introduction 

In the multiple linear regression model 
 
 Y X   ,  (1) 
 
Y is an vector of n observations on the response variable, X is an n×p matrix of 
independent variables known as regressor variables, β is a p×1 vector of unknown 
regression parameters and ε is an n×1 vector of unobserved random errors. 
Classically, it is assumed that the εi, i = 1, 2, ..., n, are independent and identically 
normally distributed with zero mean and constant variance σ2. 

It is well known that when the normality assumption holds, the ordinary least 
squares (OLS) estimator becomes a maximum likelihood estimator and the best 
linear unbiased estimator of the unknown regression parameters and has the 
smallest variance in the class of all linear unbiased estimators. However, the real 
life data often may not satisfy these assumptions and the violation of assumptions 
dramatically affects the OLS estimation and consequently the prediction based on 
the OLS estimator. In the literature, the effect of violation of assumptions has been 
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discussed by many authors (see Birkes and Dodge, 1993; Draper and Smith, 1998; 
Montgomery, Peck and Vining, 2006). 

The near linear dependency between the set of regressor variables produces 
the problem of multicollinearity in the data. Due to the presence of multicollinearity, 
the variance of the OLS estimator gets inflated. Consequently, the OLS estimates 
become unstable and may give misleading results. Various techniques are available 
in the literature to deal with the problem of multicollinearity. Hoerl and Kennard 
(1970a, b), Hoerl, Kennard and Baldwin (1975), Liu (1993), Liu (2003) are 
praiseworthy. 

Another important problem that has received considerable attention is the 
presence of outliers in Y- space. Huber (1973) and Rousseeuw and Leroy (1987) 
pointed out that the presence of outliers significantly affect the performance of the 
OLS estimator. In most of the situations, outliers in Y- space are due to heavy tailed 
distribution of error variable. The least squares fit may be spoiled by small but 
reasonable deviation from normal error distribution (see Huber, 1973; Andrews, 
1974). Many robust parameter estimation methods are available in the literature to 
handle the problem of outliers in the data. 

A simultaneous occurrence of multicollinearity and outliers in Y-space due to 
non-normality of error variable is considered. To handle the problem of 
multicollinearity and outliers in the data, a class of Winsorized shrinkage estimators 
is proposed and the performance is evaluated through estimated mean square error 
(EMSE). An extensive simulation study was conducted to evaluate the performance 
of the proposed and existing estimators. Also, a real data example is used to 
illustrate the performance of the estimators.  

Regression Model and Some Estimators 

To reduce the notational complexity and lengthy expressions, various authors like 
Liu (1993), Liu (2003), Montgomery, Peck and Vining (2006), Gao and Liu (2011) 
used a canonical form of a multiple linear regression model. It is given as 
 
 Y Z   ,  (2) 
 
where Z = XQ, α = Q'β and Q = ( q1, q2, …, qp ) is an orthogonal matrix of 
eigenvectors q1, q2, …, qp corresponding to eigenvalues λ1, λ2, …, λp ≥ 0 of X'X 
matrix. Note that, the use of canonical form does not affect the mean square error 
(MSE) of the estimator (Liu, 2003). 
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Some existing estimators were examined to handle the problem of multicollinearity 
and problem of outliers individually present in the data.  

Ordinary Least Squares (OLS) Estimator 

It is well known that, when ε ~ N ( 0, σ2I ), then the optimal estimator of regression 
parameters is the OLS estimator. It is denoted by 
 
 1ˆOLS Z Y      (3) 
 
where Λ = diag( λ1, λ2, …, λp ). It is widely used in regression analysis due to its 
computational ease. Because the OLS estimator is unbiased, the MSE of ˆOLS  is 
given by 
 

 
    

2
1

ˆ ˆ

1/
OLS OLS

p
j j

MSE tr Cov 

 



 
  (4) 

 
where the error variance 2  is unknown and estimated by 

     2 ˆ ˆˆ ' /OLS OLS OLSY Z Y Z n p       . 

Ordinary Ridge Regression (ORR) Estimator 

To overcome the problem of multicollinearity, several methods are put forwarded 
in the literature, but the ordinary ridge regression estimator (ORR) proposed by 
Hoerl and Kennard (1970a, b) is one of the most popular biased estimators for 
regression parameters. It is defined as 
 
  

1ˆ ˆORR OLSkI 


     (5) 
 
where k > 0 is a ridge parameter and I is an identity matrix of an order p×p. Because, 
the ORR estimator is biased, the MSE of ORR estimator is obtained as 
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The ridge parameter k plays an important role in minimizing the MSE of the 
ORR estimator. Various choices for estimator of k are available in the literature, 
but the estimator proposed by Hoerl, Kennard and Baldwin (1975) is widely used. 
It is defined as 

 
2ˆ

ˆ ˆ
OLS

OLS OLS

pk 

 



  (7) 

 
where 2ˆOLS  is the estimate of error variance based on the OLS estimator ˆOLS . 
However, ˆORR  is nonlinear function of k. So, using some of the proposed methods 
to obtain the value of k becomes complicated. 

Liu (LIU) Estimator 

Liu (1993) proposed a new biased estimator of α called as LIU estimator and is 
given by 
 
    

1ˆ ˆLIU OLSI dI 


     (8) 
 
where 0 < d < 1, is a Liu parameter. The advantage of the LIU estimator is that 
ˆLIU  is a linear function of d. Therefore, it is easier to choose d in ˆLIU  than to 

choose k in ˆORR . Liu (1993) obtained the MSE of the LIU estimator as 
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where the optimal value of d is 
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  (10) 

 
The unknown parameters α and σ2 are replaced by their unbiased OLS estimates 
ˆOLS  and 2ˆOLS  respectively.  
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Linearized Ridge Regression (LRR) Estimator 
Very recently, Liu and Gao (2011) proposed a linearized ridge regression (LRR) 
estimator to combat the problem of multicollinearity. It can be expressed as 
 
    

1ˆ ˆLRR OLSI D 


     (11) 
 
where  1 2 , 1,2,, , , , ,p j jD diag d d d d p  . The optimal value of jd

proposed by Gao and Liu (2011) is given by 
 

 
 2 2

2 2 , 1,2, ,j j
j

j j

d j p
  

  


 


  (12) 

 
and the unknown quantities α and σ2 are replaced by their OLS estimates to obtain 
the estimate of dj, j = 1, 2, …, p. Gao and Liu (2011) showed that the LRR 
estimator attends the lower bound of the MSE of the generalized shrinkage 
estimators (GSE). The MSE of the LRR estimator is given by (Gao and Liu, 2011) 
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Here, σ2 and α are replaced by their suitable estimates 2ˆOLS  and ˆOLS  respectively 
to obtain the estimate of the MSE of LRR estimator.  

Winsorization Approach 

Many robust parameter estimation methods have been developed in the literature 
to deal with the presence of outliers (see Huber, 1973; Birkes and Dodge, 1993). 
Winsorization is one of the robust techniques that aim to diminish the effect of 
outliers in the data. Dixon (1960), Bickel (1965), Dixon and Tukey (1968), Chen 
and Dixon (1972) discussed this approach. Mutan and Senoglu (2008) noted that 
the Winsorization does not worsen a good linear relationship on non-contaminated 
data. Winsorized regression is an effective alternative to the least squares 
estimation method which reduce the effect of contamination on the regression 
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coefficient. To illustrate the advantage of Winsorization in estimation of regression 
coefficients, Yale and Forsythe (1976) introduced various methods of 
Winsorization and compared with each other and with the OLS estimates. Further 
study in Winsorization is done by Tan and Tabatabai (1988), Chen Welsh and Chan 
(2001). A general Winsorization procedure proposed by Yale and Forsythe (1976) 
is briefly introduced as follows. 

Winsorization Methodology 

Yale and Forsythe (1976) explained the Winsorization procedure for simple linear 
regression. It can be easily generalize to the multiple linear regression. In this article, 
following stepwise algorithm is used to obtain the least squares Winsorized (LSW) 
estimator. Step 1 to Step 5 are used to obtain least squares Winsorized (LSW) 
estimator for model given in (1) and Step 6 to Step 8 gives LSW estimator in 
canonical form of model defined in (2). 

Stepwise Algorithm 

Step 1. Using the model given in (1), obtain the OLS estimates and the 
predicted values ( îY ) of iY , i = 1, 2, ..., n. 

Step 2. Set number of points (g) to be Winsorized at each extreme. 
Step 3. Obtain the residual values as ˆ

i i ir Y Y   and order them. Let 
r1 ≤ r2 ≤ ⋯ ≤ rn be ordered OLS residuals. 

Step 4. Obtain the least squares estimator using n observations on Y ' and X, 
where 

 
 ˆ

i i iY Y r     
 
 and 
 

 
1 1,2, ,

1, ,
1, ,

g

i i

n g

r i g
r r i g n g

r i n g n






    
   

  

 
Step 5. Repeat the above Step 4 for fixed number of iteration (b). For each 

iteration, the baseline data on response variable (Y) has been modified 
as Y=Y' (after first iteration), Y=Y'' (after second iteration), Y=Y''' (after 
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third iteration) and so on by generating new set of residuals (r', r'', r'''  
and so on). 

Step 6. The modified dataset at the end of bth iteration is denoted by (Y*, X). 
Standardize the modified dataset in such a way that Y*X denote the 
correlation between the modified response variable and the set of 
regressor variables. 

Step 7. Convert the standardized modified dataset to canonical form using the 
matrix of eigenvectors (Q) of X 'X matrix. 

Step 8. Using the canonical form of model, perform the OLS estimation to 
obtain the LSW estimates of unknown regression parameters. 

 
In this article, 10% and 20% observations are considered for Winsorization 

(g = 0.1n, 0.2n). Nevitt and Tam (1998) conducted a pilot study to decide the 
number of iterations (b). They found that, after five iterations of data modification, 
the results shows very little change in parameter estimates. So, five iterations are 
considered to obtain the LSW estimator. Because, the Winsorization is done only 
in Y, the diagonal matrix of eigenvalues (Λ) and the corresponding matrix of 
eigenvectors (Q) of X remains unchanged. Using the canonical form of model given 
in (2), estimators of unknown regression parameters α are proposed to tackle the 
problem of multicollinearity and outliers simultaneously in the data. 

Proposed Estimators 

New estimators based on the LSW estimator are now proposed to handle the 
simultaneous occurrence of multicollinearity and outliers in the data. The proposed 
estimators are called as Winsorized shrinkage estimators because they reduce the 
impact of multicollinearity by shrinking the LSW estimator. The different forms of 
shrinkage quantity produce the different Winsorized shrinkage estimators. In the 
following subsections, some Winsorized shrinkage estimators are introduced and 
their modified MSE Expressions are obtained. The technique suggested by Kan, 
Alpu and Yazici (2013) is implemented to obtain the modified MSE of the proposed 
estimators. 
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Ordinary Ridge Regression Winsorized (ORRW) Estimator 
The ordinary ridge regression Winsorized (ORRW) estimator of α, based on the 
ORR estimator (Hoerl and Kennard, 1970a, b),  is defined as 
 
  

1ˆ ˆORRW LSW LSWk I 


     (14) 
 
where LSWk  is the unknown ridge parameter. It is estimated by using the formula 

2ˆ ˆ ˆˆ /LSW LSW LSW LSWk p   , where p denote the number of regressor variables, the 
ˆLSW  denote the LSW estimator of α and 

     2 ˆ ˆˆ /LSW LSW LSWY Z Y Z n p       is the estimator of σ2 based on the LSW 
estimator. The modified MSE of the ORRW estimator is given by 
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The unknown parameters σ2, α and kLSW are replaced by 2ˆ LSW , ˆLSW  and ˆ

LSWk  
respectively. 

Liu Winsorized (LIUW) Estimator 

The Liu Winsorized estimator (LIUW), based on the Liu estimator (Liu, 1993), is 
defined as 
 
    

1ˆ ˆLIUW LSW LSWI d I 


     (16) 
 
where dLSW is a Liu parameter and it is obtained by using the following formula 
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  (17) 

 
The estimate of LSWd  denoted by ˆ

LSWd  is obtained by replacing the unknown 
parameters σ2 and α in (17) by their estimates based on the LSW estimator. The 
modified MSE of LIUW estimator is obtained by 
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and the unknown parameters are replaced by their corresponding estimates based 
on the LSW estimator.  

Linearized Ridge Regression Winsorized (LRRW) Estimator 

The LRRW estimator based on the LSW estimator, (Liu and Gao, 2011) is defined 
as 
 
    

1ˆ ˆLRRW LSW LSWI D 


     (19) 
 
where    

1
LSWI D

   is a shrinkage matrix and a diagonal matrix LSWD  is an 
order of p×p with diagonal elements , 1,2,...,

jLSWd j p  such that 
jLSWd   is 

obtained by using the formula 
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  (20) 

 
where α and σ2 are estimated using the LSW estimators ˆLSW  and 2ˆ LSW . The 
modified MSE of the LRRW estimator is given by 
 

  
 

 

 
 

2 2
2

2
1 12 2

1
ˆ

1 1
j jj LSW LSW jp p

LRRW j j

j j j

d d
MSE

 
 

  
 

 
 

 
    (21) 

 
Here, σ2 and α are replaced by their suitable estimates based on the LSW estimator.  

Simulation Study 

A simulation study was carried out to evaluate the performance of proposed 
estimators. First, the estimated MSE’s (EMSE) of the different estimators are 
obtained and based on the average EMSE (AEMSE), the existing and proposed 
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estimators are compared. Secondly, the relative average EMSE’s (RAEMSE) of 
estimators with respect to the OLS estimator are obtained and the average reduction 
in the estimated MSE’s of the estimators with respect to the OLS estimator for the 
different Winsorization proportions is noted. 

Comparison of Estimators through Estimated MSE 
The regressor variables are generated using a simulation design proposed by 
McDonald and Galarneau (1975) as 
 
    

1
22

11 , 1,2,..., , 1,2,...,ij ij i px i n j p  


       (22) 

 
where ζij are independent pseudo random numbers generated from standard normal 
distribution and ρ2 is the correlation between any two regressor variables. The 
following regression model is used to generate n observations on the response 
variables 
 
 1 2 3 410 4 6 2 8Y X X X X         
 
where the error variable ε is generated using the contaminated normal distribution. 
The δ% contamination is done using the following mixture of normal distributions 
 
        2~ 1 0,1 0,10 .

ii f N N          

 
For δ = 0%, 10%, 20% and 30%, and n = 20, 30, and 50, the different degrees of 
multicollinearity have been achieved by generating regressor variables using the 
model given in (22) for ρ = 0.9, 0.99, 0.999 and 0.9999. The 0.1n and 0.2n points 
are Winsorized at each extreme to reduce the effect of outlier observations. Hence, 
the 10% and 20% Winsorized estimators of OLS, ORR, LIU and LRR are denoted 
by LSW10, ORRW10, LIUW10, LRRW10 and LSW20, ORRW20, LIUW20, 
LRRW20 respectively.  
 
The EMSE of OLS, ORR, LIU, LRR, OLSW10, ORRW10, LIUW10, LRRW10, 
OLSW20, ORRW20, LIUW20 and LRRW20 estimators are obtained by replacing 
the values of unknown parameters with their suitable estimates in their respective 
MSE expressions. Note that, the EMSE of the LIU, LIUW10 and LIUW20 is 
considered corresponding to those iterations where the estimate of Liu parameter 
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(d) lies between 0 and 1. For each combination of sample size (n), degree of 
multicollinearity (ρ) and contamination proportion (δ), the above simulation 
experiment is repeated 10,000 times and the AEMSE of these estimators are 
obtained and reported in Table 1. Also, for sample size n = 30, the AEMSE of each 
estimator was plotted for all combinations of ρ and δ. They are depicted graphically 
in Figure 1. 
 
 
Table 1. AEMSE of Estimators 
 

n = 20 δ = 0%  δ = 10% 
0.9 0.99 0.999 0.9999  0.9 0.99 0.999 0.9999 

OLS 0.0031 0.0254 0.2512 2.4896  0.0315 0.2629 2.6386 26.5099 
ORR 0.0030 0.0203 0.1254 1.1043  0.0226 0.1301 1.1880 11.8995 
LIU 0.0029 0.0199 0.1804 1.7630  0.0209 0.1525 1.7741 18.4332 
LRR 0.0024 0.0133 0.0934 0.8641  0.0153 0.0979 0.9179 9.2182 
LSW10 0.0020 0.0169 0.1671 1.6480  0.0081 0.0676 0.6723 6.7148 
ORRW10 0.0020 0.0144 0.0979 0.8729  0.0072 0.0476 0.4125 4.0837 
LIUW10 0.0020 0.0138 0.1219 1.1870  0.0069 0.0500 0.5392 5.5197 
LRRW10 0.0017 0.0098 0.0727 0.6783  0.0053 0.0349 0.3179 3.1419 
LSW20 0.0013 0.0105 0.1045 1.0304  0.0043 0.0354 0.3482 3.4815 
ORRW20 0.0013 0.0095 0.0704 0.6329  0.0040 0.0291 0.2608 2.5935 
LIUW20 0.0013 0.0091 0.0789 0.7568  0.0039 0.0292 0.2931 2.9764 
LRRW20 0.0011 0.0068 0.0527 0.4941   0.0032 0.0221 0.2048 2.0340 
 δ = 20%   δ = 30% 
  0.9 0.99 0.999 0.9999  0.9 0.99 0.999 0.9999 
OLS 0.0584 0.4960 4.8625 48.0399  0.0849 0.7186 7.0523 69.7408 
ORR 0.0383 0.2290 2.1818 21.7413  0.0526 0.3279 3.1753 31.3082 
LIU 0.0371 0.3185 3.3957 34.1454  0.0550 0.4875 4.9287 48.9810 
LRR 0.0261 0.1766 1.6910 16.7676  0.0363 0.2545 2.4522 24.1812 
LSW10 0.0193 0.1598 1.5703 15.5570  0.0345 0.2865 2.8498 28.0075 
ORRW10 0.0156 0.0998 0.9268 9.1832  0.0263 0.1691 1.6315 16.0833 
LIUW10 0.0148 0.1131 1.2099 12.2463  0.0255 0.2045 2.1224 20.8768 
LRRW10 0.0112 0.0754 0.7156 7.0553  0.0185 0.1298 1.2524 12.3462 
LSW20 0.0092 0.0755 0.7412 7.2817  0.0162 0.1347 1.3280 12.9899 
ORRW20 0.0082 0.0582 0.5489 5.4090  0.0140 0.0989 0.9536 9.4040 
LIUW20 0.0080 0.0606 0.6169 6.0481  0.0136 0.1064 1.0715 10.4862 
LRRW20 0.0063 0.0448 0.4308 4.2137   0.0104 0.0768 0.7429 7.3156 
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Table 1, continued. 
    

n = 30 δ = 0%  δ = 10% 
0.9 0.99 0.999 0.9999  0.9 0.99 0.999 0.9999 

OLS 0.0018 0.0152 0.1504 1.5042  0.0188 0.1618 1.5641 15.4151 
ORR 0.0018 0.0133 0.0829 0.6727  0.0154 0.0851 0.6966 6.9166 
LIU 0.0018 0.0126 0.1122 1.1217  0.0145 0.1003 1.0987 11.5955 
LRR 0.0015 0.0091 0.0586 0.5276  0.0104 0.0619 0.5456 5.3711 
LSW10 0.0012 0.0102 0.1008 1.0052  0.0037 0.0309 0.2943 2.9777 
ORRW10 0.0012 0.0093 0.0646 0.5373  0.0035 0.0244 0.1856 1.8383 
LIUW10 0.0012 0.0088 0.0763 0.7571  0.0034 0.0241 0.2343 2.4833 
LRRW10 0.0011 0.0066 0.0457 0.4190  0.0028 0.0173 0.1428 1.4246 
LSW20 0.0008 0.0063 0.0621 0.6184  0.0019 0.0159 0.1519 1.5370 
ORRW20 0.0008 0.0059 0.0455 0.3881  0.0018 0.0141 0.1177 1.1710 
LIUW20 0.0008 0.0056 0.0486 0.4768  0.0018 0.0137 0.1290 1.3243 
LRRW20 0.0007 0.0044 0.0327 0.3036   0.0015 0.0106 0.0924 0.9255 
 δ = 20%   δ = 30% 
  0.9 0.99 0.999 0.9999  0.9 0.99 0.999 0.9999 
OLS 0.0354 0.3013 2.9141 29.3682  0.0511 0.4325 4.1930 42.7257 
ORR 0.0268 0.1462 1.3014 12.9487  0.0363 0.2013 1.8649 19.0030 
LIU 0.0256 0.2055 2.1456 21.7532  0.0365 0.3080 3.1180 31.5423 
LRR 0.0177 0.1105 1.0168 10.0854  0.0239 0.1550 1.4581 14.8004 
LSW10 0.0090 0.0761 0.7419 7.4299  0.0176 0.1485 1.4250 14.6328 
ORRW10 0.0081 0.0523 0.4451 4.4012  0.0149 0.0924 0.8218 8.4375 
LIUW10 0.0078 0.0559 0.5759 5.8704  0.0142 0.1084 1.1069 11.2143 
LRRW10 0.0060 0.0383 0.3453 3.4063  0.0105 0.0690 0.6388 6.5194 
LSW20 0.0039 0.0325 0.3183 3.1710  0.0071 0.0592 0.5764 5.8364 
ORRW20 0.0038 0.0274 0.2455 2.4276  0.0066 0.0470 0.4311 4.3970 
LIUW20 0.0037 0.0274 0.2684 2.6864  0.0064 0.0484 0.4791 4.8429 
LRRW20 0.0030 0.0209 0.1938 1.9226   0.0051 0.0359 0.3402 3.4536 
          

n = 50 δ = 0%  δ = 10% 
0.9 0.99 0.999 0.9999  0.9 0.99 0.999 0.9999 

OLS 0.0010 0.0084 0.0832 0.8325  0.0107 0.0893 0.8805 8.6261 
ORR 0.0010 0.0078 0.0536 0.3722  0.0097 0.0540 0.3981 3.8131 
LIU 0.0010 0.0074 0.0646 0.6398  0.0092 0.0606 0.6416 6.5740 
LRR 0.0009 0.0057 0.0351 0.2932  0.0069 0.0366 0.3126 2.9891 
LSW10 0.0007 0.0057 0.0560 0.5618  0.0015 0.0124 0.1236 1.2125 
ORRW10 0.0007 0.0054 0.0408 0.3007  0.0015 0.0111 0.0847 0.7510 
LIUW10 0.0007 0.0052 0.0442 0.4342  0.0015 0.0105 0.0996 0.9978 
LRRW10 0.0006 0.0041 0.0273 0.2347  0.0013 0.0079 0.0628 0.5858 
LSW20 0.0004 0.0035 0.0344 0.3439  0.0008 0.0066 0.0655 0.6442 
ORRW20 0.0004 0.0034 0.0279 0.2184  0.0008 0.0062 0.0539 0.4973 
LIUW20 0.0004 0.0033 0.0279 0.2713  0.0008 0.0060 0.0560 0.5517 
LRRW20 0.0004 0.0027 0.0193 0.1703   0.0007 0.0048 0.0415 0.3962 
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Table 1, continued. 
    

n = 50 
δ = 20%   δ = 30% 

0.9 0.99 0.999 0.9999  0.9 0.99 0.999 0.9999 
OLS 0.0200 0.1674 1.6402 16.3004  0.0288 0.2411 2.3471 23.6339 
ORR 0.0170 0.0894 0.7280 7.1945  0.0234 0.1218 1.0353 10.4008 
LIU 0.0161 0.1205 1.2570 12.4734  0.0224 0.1807 1.8062 18.3140 
LRR 0.0114 0.0638 0.5749 5.6323  0.0153 0.0907 0.8127 8.1273 
LSW10 0.0038 0.0314 0.3116 3.0516  0.0082 0.0682 0.6680 6.7232 
ORRW10 0.0037 0.0249 0.1946 1.8493  0.0076 0.0480 0.3886 3.8843 
LIUW10 0.0036 0.0245 0.2442 2.4453  0.0073 0.0513 0.5133 5.2782 
LRRW10 0.0029 0.0173 0.1497 1.4394  0.0056 0.0342 0.3015 3.0003 
LSW20 0.0015 0.0126 0.1242 1.2294  0.0028 0.0230 0.2242 2.2560 
ORRW20 0.0015 0.0115 0.1006 0.9742  0.0027 0.0201 0.1762 1.7555 
LIUW20 0.0015 0.0111 0.1067 1.0578  0.0027 0.0197 0.1902 1.9220 
LRRW20 0.0013 0.0087 0.0795 0.7768   0.0022 0.0152 0.1390 1.3828 
 
 

 

 
 
Figure 1. AEMSE plot of various estimators for different combinations of ρ and δ 
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Figure 1, continued. 
 
 
 

Table 1 and Figure 1 clearly indicate that 
 

 For each combination of n, ρ and δ, the LRRW20 estimator has 
consistently smaller AEMSE value than that of the other estimators. 
It clearly indicates that the estimator LRRW20 shows better 
performance as compare to the other estimators in the EMSE sense. 

 The AEMSE of each estimator decreases with increase in sample size 
(n), but it increases with increase in the proportion of contamination 
(δ) in the error variable.  

 When degree of multicollinearity increases, the AEMSE of each 
estimator is also increases. 

 For any combination of n, ρ and δ, as degree of Winsorization (δ) 
increases, the AEMSE of each estimator goes on decreases.  
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Relative AEMSE (RAEMSE) comparison 
The RAEMSE is one of the suitable measure to evaluate the performance of 
estimators. The RAEMSE of estimator ‘T’ with respect to the OLS estimator is 
obtained by using the formula 
 

RAEMSET = (AEMSEOLS - AEMSET) / AEMSEOLS 
 
where AEMSEOLS and AEMSET denote the AEMSE of the OLS estimator and 
considered estimator ‘T’. The maximum value of RAEMSET is one. RAEMSET 
greater than zero indicates the corresponding estimator ‘T’ performs better than the 
OLS estimator in AEMSE sense. The RAEMSET close to one indicates the 
corresponding estimator ‘T’ outperforms as compare to the OLS estimator.  

Using the AEMSE’s of the OLS, ORR, LIU, LRR, OLSW10, ORRW10, 
LIUW10, LRRW10, OLSW20, ORRW20, LIUW20 and LRRW20 estimators 
obtained in Table 1, the RAEMSE of each estimator was computed with respect to 
the OLS estimator. For all combinations of ρ and δ with n = 30, the RAEMSE of 
each estimator is presented in Table 2. Also, RAEMSE of all considered estimators 
with respect to the OLS estimator is plotted in Figure 2. 
 
 
Table 2. RAEMSE of estimators with the OLS estimator for n = 30 
 

 ρ = 0.9  ρ = 0.99 
  δ = 0% δ = 10% δ = 20% δ = 30%   δ = 0% δ = 10% δ = 20% δ = 30% 

ORR 0.0000 0.1809 0.2429 0.2896  0.1250 0.4740 0.5148 0.5346 
LIU 0.0000 0.2287 0.2768 0.2857  0.1711 0.3801 0.3180 0.2879 
LRR 0.1667 0.4468 0.5000 0.5323  0.4013 0.6174 0.6333 0.6416 
LSW10 0.3333 0.8032 0.7458 0.6556  0.3289 0.8090 0.7474 0.6566 
ORRW10 0.3333 0.8138 0.7712 0.7084  0.3882 0.8492 0.8264 0.7864 
LIUW10 0.3333 0.8191 0.7797 0.7221  0.4211 0.8511 0.8145 0.7494 
LRRW10 0.3889 0.8511 0.8305 0.7945  0.5658 0.8931 0.8729 0.8405 
LSW20 0.5556 0.8989 0.8898 0.8611  0.5855 0.9017 0.8921 0.8631 
ORRW20 0.5556 0.9043 0.8927 0.8708  0.6118 0.9129 0.9091 0.8913 
LIUW20 0.5556 0.9043 0.8955 0.8748  0.6316 0.9153 0.9091 0.8881 
LRRW20 0.6111 0.9202 0.9153 0.9002   0.7105 0.9345 0.9306 0.9170 
    
    
    
    
    
    
    



ROBUST WINSORIZED SHRINKAGE ESTIMATORS 

146 

Table 2, continued. 
    
 ρ = 0.999  ρ = 0.9999 
  δ = 0% δ = 10% δ = 20% δ = 30%   δ = 0% δ = 10% δ = 20% δ = 30% 
ORR 0.4488 0.5546 0.5534 0.5552  0.5528 0.5513 0.5591 0.5552 
LIU 0.2540 0.2976 0.2637 0.2564  0.2543 0.2478 0.2593 0.2617 
LRR 0.6104 0.6512 0.6511 0.6523  0.6492 0.6516 0.6566 0.6536 
LSW10 0.3298 0.8118 0.7454 0.6601  0.3317 0.8068 0.7470 0.6575 
ORRW10 0.5705 0.8813 0.8473 0.8040  0.6428 0.8807 0.8501 0.8025 
LIUW10 0.4927 0.8502 0.8024 0.7360  0.4967 0.8389 0.8001 0.7375 
LRRW10 0.6961 0.9087 0.8815 0.8477  0.7214 0.9076 0.8840 0.8474 
LSW20 0.5871 0.9029 0.8908 0.8625  0.5889 0.9003 0.8920 0.8634 
ORRW20 0.6975 0.9247 0.9158 0.8972  0.7420 0.9240 0.9173 0.8971 
LIUW20 0.6769 0.9175 0.9079 0.8857  0.6830 0.9141 0.9085 0.8867 
LRRW20 0.7826 0.9409 0.9335 0.9189   0.7982 0.9400 0.9345 0.9192 
 
 

 

  
 
Figure 2. Line plot plot of RAEMSE of estimators with respect to the OLS estimator 
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Table 2 and Figure 2 show that 
 
 For 0% contamination, as degree of multicollinearity (ρ) increases, the 

RAEMSE of each estimator with respect to the OLS estimator is also 
increases. 

 With 0% contamination and for ρ = 0.9, on an average, 10% 
Winsorized shrinkage estimators (LSW10, ORRW10, LIUW10 and 
LRRW10) shows 34.72% reduction in AEMSE with respect to the 
OLS estimator. Similarly, for ρ = 0.99, 0.999 and 0.9999, it shows 
42.60%, 52.23% and 54.82% reduction respectively. Also for ρ = 0.9, 
0.99, 0.999 and 0.9999, the 20% Winsorized shrinkage estimators 
(LSW20, ORRW20, LIUW20 and LRRW20), on an average shows 
56.94%, 63.49%, 68.60% and 70.30% reduction in AEMSE 
respectively.  

 On the similar line, for δ = 30%, the 10% Winsorization shows on an 
average 72.02%, 75.82%, 76.20% and 76.12% reduction in AEMSE 
for ρ = 0.9, 0.99, 0.999 and 0.9999 and for 20% Winsorization, it is 
87.67%, 88.99%, 89.11% and 89.16% respectively.  

Real Data Example 

A real data set on tobacco blends given by Myers (1990) is used to evaluate the 
performance of various estimators. The response variable Y measures the heat 
evolved from tobacco during the smoking process. This data set contains 30 
observations and four regressor variables namely X1, X2, X3, and X4. Arslan and 
Billor (2000) noted that the tobacco blends data suffers from the problem of 
multicollinearity and outliers simultaneously. The variance inflation factor (VIF) 
values for each term are 324.1412, 45.1728, 173.2577 and 138.1753. It indicates 
the severe problem of multicollinearity.  

For this real data, the estimate of the bias (EBIAS), variance (EVAR) and 
MSE (EMSE) of the OLS, ORR, LIU, LRR, OLSW10, ORRW10, LIUW10, 
LRRW10, OLSW20, ORRW20, LIUW20 and LRRW20 estimators were obtained 
and are reported in Table 3. Also, the relative EMSE (REMSE) of each estimator 
with respected to the OLS estimator is computed and presented in Table 3. Positive 
value of REMSE implies the performance of the corresponding estimator is better 
than the OLS estimator. 
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Table 3. EBIAS, EVAR, EMSE and REMSE of Estimators 
 
Estimators EBIAS EVAR EMSE REMSE REMSE (in %) 

OLS 0.000000 1.120600 1.120600 - - 

ORR 0.352000 0.482000 0.937300 0.163573 16.357300 

LIU -0.058100 0.544200 0.883900 0.211226 21.122600 

LRR 0.078300 0.647300 0.850400 0.241121 24.112100 

LSW10 0.000000 0.607500 0.607500 0.457880 45.788000 

ORRW10 0.125700 0.325700 0.480600 0.571123 57.112300 

LIUW10 -0.157600 0.382400 0.507900 0.546761 54.676100 

LRRW10 0.120200 0.367800 0.469400 0.581117 58.111700 

LSW20 0.000000 0.088100 0.088100 0.921381 92.138100 

ORRW20 0.045000 0.080400 0.086700 0.922631 92.263100 

LIUW20 -0.012700 0.083900 0.086000 0.923255 92.325500 

LRRW20 0.018600 0.083200 0.085600 0.923612 92.361200 

 
 

From Table 3, it seems that the increase in Winsorization proportion reduces 
the EVAR and EMSE of each estimator. 10% and 20% Winsorization on an average 
shows 53.92% and 92.27% reduction in the EMSE with respect to the OLS 
estimator respectively. Also, LRRW20 shows smaller EMSE as compare to other 
estimators. 

Conclusion 

A Winsorized form of the OLS estimator, ORR estimator, LIU estimator and LRR 
estimators are introduced. A simulation study and a real data example show that the 
Winsorization procedure reduces the EMSE of estimators and improve the 
performance of the estimators. Also, it reveals that the LRR estimator with 20% 
Winsorization shows consistently minimum EMSE among the all other considered 
estimators.  
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Sometimes a random sample of subjects or patients may be exposed to a battery of 
diagnostic tests or medication over time and interest is on determining whether there is 
progressive remission of condition, disease or symptom. Also perhaps early in a program 
or experiment, subjects or candidates may be required to significantly improve in their 
performance rates at the current trial relative to an immediately preceding trial, otherwise 
they may have to withdraw from or drop out. The research interest would then be to 
determine some critical minimum marginal success rate to guide the management in 
decision making as well as in policy implementation. Success rates lower than the 
minimum expected value would indicate a need for some remedial actions. A method of 
estimating these rates is proposed assuming that the requirement is at the second trial. 
Pairwise comparisons of proportions of success or failure by subjects or candidates in a 
sequence of experiments or trials over time or space are conducted to ascertain which 
subject or combinations is responsible for the rejection of the null hypothesis. The proposed 
methods is illustrated and shown to be at least as efficient and powerful as competitors.  
 
Keywords: Repeated measures, data coding, pairwise comparison  
 

Introduction 

Sometimes a researcher may obtain repeated measurements or responses on objects, 
subjects or items, often measured on an ordinal scale over space or over a number 
of time periods or set of treatment conditions, experiments or trials. The subjects or 
candidates are considered random but the treatment conditions may be either fixed 
or also random. These data may not be available in numerical form, but in the form 
of letter grades earned by candidates at examinations, continuous assessments or 
job interviews, grades (or grade point averages) earned at the end of each year 
during students’ studies in an educational institution, etc. Thus each subject or 
candidate is exposed to each of the experimental conditions over time or space. 

mailto:cyprainoyeka@yahoo.com
mailto:nnanatuchibuzor@yahoo.com
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At each of these instances, the interest may be in determining whether the 
subjects improved their performances or chances of success over the set of 
treatment conditions during the study or experimental period. That is, interest is in 
testing whether the proportions of positive responses are the same or different over 
a set of treatment conditions. 

If the null hypothesis of no improvement is rejected in which case, there 
perhaps exists some improvements in performance or increases in proportions of 
positive responses, one may then proceed further to statistically examine any 
observed patterns in these increases, with a view to ascertaining which of the 
treatment conditions or their combinations may have led to a rejection of the null 
hypothesis of equal experimental conditions or treatment proportions of success. 
Often interest in these regards may be in determining whether the subjects on the 
average successively improve their performance rather than in multiple 
comparisons of all the treatment conditions. That is, research interest may be in 
pairwise comparisons of proportions of success or failure by subjects or candidates 
in a sequence of experiments or trials over time or space. 

Several nonparametric methods exist for answering these questions. For 
example one may rank order the observations for each subject or candidate across 
the treatment conditions and then apply any of the non-parametric methods used in 
analyzing ordered data (see for example Conover, 1980; Friedman, 1937; Oyeka, 
1986; Page, 1963; Prentice, 1978; Puri and Sen, 1967; Kempthorne, 1979). 

The Proposed Method 

A method is proposed based on an earlier work by Oyeka (1990). Assume that there 
are r independently drawn subjects candidates involved in the study each of whom 
is observed and scored at each of time periods, location or treatment conditions. 

Specifically let xij be the score or grade earned by the ith subject at the jth 
treatment condition or trial for i = 1, 2, …, r and j = 1, 2, …, c. The data format is 
as in Table 1. 

Now let 
 

  , 11, if 
0, otherwise

ij i jx x
iju 
  (1) 

 
For i = 1, 2, …, r and j = 2, 3, …, c 

Thus the ith subject or candidate is assigned a score of 1 if the subject’s score 
or grade of the current trial, interview, examination, experiment or location is 
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higher than the subject score of the immediately preceding trial; otherwise the 
candidate is assigned a score of 0. 
 
 
Table 1. Data format for the scores or grades earned by the ith subject at the jth treatment 
condition. 
 

Subject 
Treatment 

1 2 3 …  c 
1 x11 x12 x13 …  x1c 
2 x21 x22 x23 …  x2c 
3 x31 x32 x33 …  x3c 

⋮ ⋮ ⋮ ⋮  ⋮ 
r xr1 xr2 xr3 …  xrc 

 
 

This coding scheme is also appropriate if interest is in comparing one 
treatment, location or period (control) with the others. In this case an observation 
in any of the other treatments is coded if it is greater than the corresponding 
observation in the control treatment, otherwise it is coded 0. 

 
Let 

 
               j    (2) 

 
and 
 

                  =
1

r

ij
i

u


   (3) 

 
Note that tj is the number of ones (1’s) or successes by subjects in the current trial 
relative to the immediately preceding trial. The corresponding number of zeroes 
(0’s) or failures is r – tj. Let 
 
                 

2

c
jj

t t


    (4) 

 
be the total number of 1’s for all the c experimental conditions and let 
 
                  2

1c
jj

r t r c t


       (5) 
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j
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be the total number of 0’s or failures for all the c treatment conditions. 
 
Hence, 
 
             ; 1j ij j jVar u       (6) 

 
and 
 
            =    ; 1j j j jr Var t r      (7) 

 
Note that πj is the proportion of 1’s or successes in the current jth trial relative to the 
immediately preceding ( j – 1 )th trial and is estimated as 
 

                  (8) 

 
and the corresponding variance is estimated as 
 

        
 

3

1j j
j jt r t

r r

 
  

       (9) 

 
If the proportions of successes are the same for all the c trials or treatments then the 
common proportion may be estimated as 
 

                   
 1

t
r c




  (10) 

 
These results may be summarized in a 2 × (c – 1) table, as in Table 2. 

The observed number of 1’s or successes and number of 0’s or failures for the 
jth treatment condition are respectively 
 
 1 2 and j j j jO t O r t     (11) 
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=
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Table 2. 2 × (c – 1) Table for Analysis for Repeated Measures. 
 

Observations 
Treatment Conditions 

2 3 …  c Total 
Number of 1's (tj) t2 t3 …  tc t 
Number of 0's (r – tj) r – t2 r – t3 …  r – tc r (c – 1) – t 
Total r r …  r r (c – 1) 

Proportion (pj) p2 p3 …  pc p= 
t 

r (c – 1) 
 
 

Under the Null hypothesis of equal population proportions of successes for 
all the treatment or experimental conditions, the corresponding expected numbers 
of 1’s (successes) and 0’s (failures) are respectively  
 

 
 

  
 1 2

1
 and 

1 1j j

r r c trtE E
r c r c

 
 

 
  (12) 

 
and under the null hypothesis of no difference between treatments or periods in the 
success rates achieved, the test statistic 
 

                
 

2
2

2

1 2

c
ij ij

i j ij

O E
E


 


   (13) 

 
has approximately a chi-square distribution with c – 1 degrees of freedom and may 
be used to test the null hypothesis of no difference in success rates. 

Now using Equations (11) and (12) 
 

                

 
 

 

 

  
 

  
 

2 2
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1 1

j

c c

j
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    (14) 

 
which when simplified yields 
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22
2

2

1
11

c j

j

t tr c
ct r c t







 
   (15) 

 
which has approximately a chi-square distribution with c – 1 degrees of freedom. 

An equivalent expression for Equation (13) in terms of the proportions in 
Equations (8) and (10) is 
 

                
 

2

22

c

j
j

r p p

pq









  (16) 

 
and may be used to test the null hypotheses of equal population proportion success 
provided rc > 30, where q = 1 – p. 
The null hypothesis, H0 is rejected at the α level of significance if 
 
 2 2

1 ; 1c      (17) 
 
otherwise H0 is accepted. 

If H0 is rejected then one may wish to proceed to investigate further which 
treatments, experimental conditions or their combinations may have led to the 
rejection of the null hypothesis. In particular, one may wish to test whether subjects 
are successively improving their performance over time, space or experimental 
conditions. 

Now let πj and πk as defined above be the population proportions of positive 
responses or successes at the jth and kth trials respectively for j, k = 2, 3, …, c, j ≠ k, 
with the corresponding sample estimates of pj and pk respectively. 
 

  as in equation (8). 

 
Note that πj and πk respectively measure the percentage increases in 

performance by a population of subjects at the jth and kth treatment conditions 
relative to their performance at the ( j – 1 )th and ( k – 1 )th treatment conditions 
respectively. Interest may then be in testing either the null hypothesis that these 
relative improvement rates differ by some constants or the null hypothesis that each 
of the relative difference equal to some constant or the null hypothesis that there is 

  
p

j
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t
j

r
 and p

k
=

t
k
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no relative improvement. Notationally, these null hypotheses may be expressed as 
either 
 

1. Ho: πj − πk ≥ π0 versus H1: πj − πk < π0, say, j ≠ k, (−1 < π0 < 1)  (18) 
 

2. Ho: πj − π0 versus H1: πj < π0, say j = 2, 3, …, c  (19) 
 

To test the null hypothesis of equation (18), note that the sample estimate of 
πj − πk is pj − pk. Let 
 

 
 

 
j k o

e j k

p p
z

s p p

 



  (20) 

 
where  is the standard deviation of pj − pk given as 

 

        2 ,e j k j k j ks p p Var p Var p Cov p p      
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Now  assumes the value 1 if and only if  both assume the 

value 1 with probability . 
Therefore, 
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Hence, 
 
  , 0j k j k j kCov p p         

 
Therefore, 
 
      j k j kVar p p Var p Var p     (21) 

 
Under the null hypothesis of (18) the statistic z of (20) 
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which is the unit normal distribution. Hence, 
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  (22) 

 
has approximately a chi-square distribution with 1 degree of freedom where pj is 
given in (8) and 
 

  
 

3
j j

j

t r t
Var p
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  , see equation (9).  

 
 

Under the null hypothesis of no difference between the population or 
treatment proportions of success and overall estimate of πj namely pj is p given in 
(10). Hence the variance of pj may be estimated as 
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Therefore, the test statistic for testing the null hypothesis, H0 of Equation (18), is 
given in Equation (24) as:  
 

 
     

2 2

2 2
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j jk k
o o

j k
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r r r r

z
Var pVar p Var p
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where under H0, 
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, see equation (23)
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The test statistics of (22) may be expressed as 
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           (25) 

 
or equivalently in terms of the proportions in (8) and (10) 
 

                
  

 

2

2

2 1
j k or p p

p p




 



  (26) 

 
which has approximately a chi-square distribution with 1 degree of freedom. 

The test statistics of equation (26) may be used to test the null hypothesis that 
the proportion of positive responses or successes in the jth treatment condition is 
higher than the corresponding proportion in the kth treatment condition by at least 
some value, πo. The statistics of equation (26) may be compared with an 
appropriately chosen critical value of the chi-squared distribution with degrees of 
freedom at a specified significance level . However to keep the type 1 error small 
and control for erroneous conclusions, it is suggested that all comparisons be made 
against critical chi-square values with c – 1 degrees of freedom at a specified  
level. 
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To test the null hypothesis of equation (19), that is that the positive response 
or success rate at the jth experimental or treatment condition is greater than the 
corresponding success rate at the ( j – 1 )th experimental condition by at least some 
constant πo, we use the test statistics 
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2 j o

j

p

Var p





  

 
Under Ho this becomes 
 

                
 

 

 

  
 

 

2
232 2

2

1

11

j
o

j o o

j

t
r cp r pr

p pt r c tVar p


 



 
      

 
 (27) 

 
which has approximately a chi-square distribution with 1 degree of freedom. The 
test statistics of equation (27) may therefore similarly be used to test the null 
hypothesis that the proportion of positive responses or successes in the current, that 
is in the jth treatment condition is at least equal to the corresponding proportion of 
positive responses in the immediately preceding, that is in the (j – 1)th treatment on 
experimental condition, although as suggested earlier all comparisons should 
preferably be made against critical chi-square values with c – 1 degrees of freedom. 

If subjects or candidates are required to significantly improve their success 
rates early in the study or experiment, for example, at the second trial so that the 
success rate at the second trial is expected to be significantly greater than the 
success rate in the first trial then the null hypothesis of no difference between the 
success rates in these two trials must be rejected. This implies that for a given value 
of r and specified  level, the test statistics of equation (27) must be such that 
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and thus 
 

 
2
1 ;12

21
p

p r
 




  (28) 

 
(28) is an estimate of the odds that a randomly selected candidate or subject 

performs significantly better in the second than in the first trial. In other words for 
a given number of subjects r and specified significance level , the estimated 
probability p2 that a randomly selected subject for some experiment or study, 
performs significantly better or significantly improves his performance at the 
second trial relative to the first trial must be such that 
 

 
2
1 ;1

2 2
1 ;1

p
r
















  (29) 

Illustrative Examples 

Example 1 
If r = 20 and  = 0.05 or 0.01, then 
 

 2 2
3.841 5.9910.161,  or  0.23
23.841 25.991

p p      

 
Under these circumstances a randomly selected subject or candidate in the 

program of interest would have to earn at least 16.1 percent or 23.0 percent higher 
in the current or second trial relative to the immediately preceding or first trial to 
be able to continue with the experiment or program. 

Example 2 

Shown in Table 3 are the grade-point-averages (GPAs) earned in each of the five 
years a random sample of 23 students who studied medical statistics at a certain 
university. 
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Table 3. Grade Point Averages (GPA) of a Random Sample of Students 
 
 Year of Study 
Student Year I Year 2 Year 3 Year 4 Year 5 
1 2.06 2.05 2.29 2.67 1.00 
2 1.38 2.08 2.42 2.76 1.00 
3 3.54 3.71 3.88 3.57 5.00 
4 1.33 2.17 2.33 1.86 2.22 
5 2.02 2.37 2.29 2.60 1.00 
6 3.08 3.30 3.36 3.73 1.00 
7 1.21 2.30 2.70 2.00 2.44 
8 1.35 2.25 2.06 2.00 2.44 
9 1.88 1.82 3.64 3.39 2.00 
10 2.06 3.14 2.44 3.00 1.00 
11 1.85 2.50 2.51 2.80 1.00 
12 1.94 1.39 1.83 1.06 1.00 
13 2.91 3.39 2.91 2.13 4.00 
14 4.16 2.17 1.57 1.21 1.25 
15 1.50 1.90 1.50 1.79 3.50 
16 1.54 2.85 2.73 1.00 1.50 
17 1.96 2.21 2.57 2.00 1.00 
18 1.24 2.29 1.04 1.74 2.00 
19 1.26 2.67 1.20 1.18 1.50 
20 1.49 2.21 2.57 1.71 1.00 
21 1.55 2.50 1.86 1.21 2.00 
22 2.46 2.39 3.56 3.50 1.00 
23 1.33 2.16 1.25 2.12 1.43 
 
 

The research interest is to determine whether or not students in the program 
progressively improved their academic performance. To answer this question apply 
(1) with the data of Table 2 to generate the corresponding coded data of 1’s and 0’s 
shown in Table 4. 
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Table 4. Patterns of 1’s and 0’s for Data in Table 3. 
 
 Year of study 
Student Year 2 Year 3 Year 4 Year 5 Total  
1 0 1 1 0 -- 
2 1 1 1 0 -- 
3 1 1 0 1 -- 
4 1 1 0 1 -- 
5 1 0 1 0 -- 
6 1 1 1 0 -- 
7 1 1 0 1 -- 
8 1 0 1 0 -- 
9 0 1 0 0 -- 
10 1 0 1 0 -- 
11 1 1 1 0 -- 
12 0 1 0 0 -- 
13 1 0 0 1 -- 
14 1 0 0 1 -- 
15 1 0 1 1 -- 
16 1 0 0 1 -- 
17 1 1 0 0 -- 
18 1 0 1 1 -- 
19 1 0 0 1 -- 
20 1 1 0 0 -- 
21 1 1 0 1 -- 
22 0 1 0 0 -- 
23 1 0 1 0 -- 
No of 1's (tj) 19 12 10 10 51 
No of 0's (r-tj) 4 11 13 13 41 
Total r 23 23 23 23 92 
Proportion of 1's (pj) 0.826 0.522 0.435 0.435 0.554 
 
 

Now using the proportion of 1’s or successes of Table 3 in (4), we have 
 

 

        

  

  

  

2 2 2 2
2 23 0.272 0.032 0.119 0.119

0.554 0.446

23 0.074 0.001 0.014 0.014
0.247

23 0.103 2.3695 9.591
0.247 0.247
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With c – 1 = 5 – 1 = 4 degrees of freedom it is statistically significantly at 
 = 0.05  2

0.95,4 9.488  . This means that students’ performance seems to differ 

significantly from year to year. In fact the results of Table 3 suggest that students’ 
success rates declined progressively during the years of study. Further interest may 
now be in comparing some of the years in terms of success rates achieved to 
determine which ones may be responsible for the rejection of Ho. For example, one 
may wish to compare year 5 with year 2 to determine whether there is any 
significant difference in the relative success rates for the two years. That is interest 
may be in testing the null hypothesis of (18) with πo ≥ 0. 

Again using the data of Table 3 with p5 = 0.435 and p2 = 0.826 in (26) 
 

 
  

   

2
2 23 0.435 0.826 3.516 7.117

2 0.554 0.446 0.4942



     

 
With c – 1 = 5 – 1 = 4 degrees of freedom it is not statistically significant at  = 0.05. 

Similar comparisons can also be made for other pairs of years. Pairwise 
comparisons for other years (e.g., year 2 versus year 1, year 3 versus year 2) may 
be conducted to ascertain whether the relative success rates for these pairs of years 
are statistically different from zero. Thus for year 3 versus year 2, from Table 3 that 
p3 = 0.522. From (27) with πo = 0 
 

               2  
  

  

223 0.522 6.267 25.372
0.554 0.446 0.247

     

 
which with 4 degrees of freedom is statistically significant at  = 0.05. Similarly 
for year 2 relative to year 1, p2 = 0.826, 
 

               2  
  

  

223 0.826 15.692 63.530
0.554 0.446 0.247

     

 
and with 4 degrees of freedom is also statistically significant at  = 0.05. 

These results indicate that students significantly improved their performances 
during their second and third years of study relative to the immediately preceding 
years. Note that if it is required that students must achieve some critical minimum 
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score at the end of the second year relative to the first year, then if =0.05, the 
required minimum score is from equation (29). 
 

               2p  3.841 3.841 0.143,  or 14.3 percent
23 3.841 26.841

  


  

 
which is much less than the average success rate of 82.6 percent achieved in year 2 
relative to year 1. Note also that for year 3 and year 2, 
 

               2  
 

  

223 0.522 0.826 2.126 4.384
2 0.544 0.446 0.486


     

 
which with 4 degrees of freedom is not statistically significant at  = 0.05. This 
implies that there is no statistical difference between the improvement rates of 
students at their junior year relative to their sophomore year and the improvement 
rates at the sophomore year relative to the freshman years. In other words the 
students may have improved their performances equally well in their third year 
relative to their second year as in the second relative the first year. 

Other values of qjk are similarly calculated and the results are presented in 
Table 5. 
 
 
Table 5. Values of qjk (Under H0: πo = 0) 
 

 k 
j 2 (0.826) 3 (0.522) 4 (0.435) 5 (0.435) Marginal 

2 (0.826) -- -- -- -- 63.530 
3 (0.522) 4.302 -- -- -- 23.372 
4 (0.435) 7.117 0.352 -- -- 17.619 
5 (0.435) 7.117 0.352 0.000 -- 17.619 

 

Note: j = Current Trial Relative Proportions; k = Immediate Past Trial Relative Proportions 
 
 

All chi-square values in Table 5 which are at least equal to 9.488, the critical 
chi-square value with 4 degrees of freedom at  = 0.05 are statistically significant. 
Therefore, all the years are here responsible for the observed significant difference 
in the relative success rates of students during their study period. 

In order to illustrate the efficiency of this proposed method, Friedman Two-
way Analysis Of Variance is applied to the above data. The observations within 
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each row (r) or blocks are ranked from the largest to the smallest with the rank of 
‘1’ assigned to the largest value and the rank of ‘2’ assigned to the next largest 
value and so on, until the rank c is assigned to the smallest value, where c is the 
number of treatments. The test statistics for ( r ≥ 10, c ≥ 4) are given by 
 

 
 

 2 2

1

12 3 1
1

c

j
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R r c
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Table 6. An illustration of the Friedman Two-way Analysis of Variance by Ranks. 
 
Student Year 1 Year 2 Year 3 Year 4 Year 5 
1 2.06(3) 2.05(4) 2.29(2) 2.67(1) 1.00(5) 
2 1.38(5) 2.08(3) 2.42(2) 2.76(1) 2.00(4) 
3 3.54(4) 3.71(3) 3.88(2) 3.51(5) 5.00(1) 
4 1.33(5) 2.17(3) 2.33(1) 1.86(4) 2.22(2) 
5 2.02(4) 2.37(2) 2.29(3) 2.60(1) 1.00(5) 
6 3.08(4) 3.30(3) 3.36(2) 2.73(1) 1.00(5) 
7 1.21(5) 2.30(3) 2.70(1) 2.00(4) 2.44(2) 
8 1.35(5) 2.25(2) 2.06(3) 2.43(1) 2.00(4) 
9 1.88(4) 1.82(5) 3.64(1) 3.39(2) 2.00(3) 
10 2.06(4) 3.14(1) 2.44(3) 3.00(2) 1.00(5) 
11 1.85(4) 2.50(3) 2.51(2) 2.80(1) 1.00(5) 
12 1.94(1) 1.39(3) 1.83(2) 1.06(4) 1.00(5) 
13 2.91(3.5) 3.39(2) 2.91(3.5) 2.13(5) 4.00(1) 
14 1.16(5) 2.17(1) 1.57(2) 1.21(4) 1.25(3) 
15 1.50(4.5) 1.90(2) 1.50(4.5) 1.79(3) 3.50(1) 
16 1.54(3) 2.85(1) 2.73(2) 1.00(5) 1.50(4) 
17 1.96(4) 2.21(2) 2.57(1) 2.00(3) 1.00(5) 
18 1.24(4) 2.29(1) 1.04(5) 1.74(3) 2.00(2) 
19 1.26(3) 2.67(1) 1.20(4) 1.18(5) 1.50(2) 
20 1.49(4) 2.21(2) 2.57(1) 1.71(3) 1.00(5) 
21 1.55(5) 2.50(1) 1.86(3) 1.21(5) 2.00(2) 
22 2.46(3) 2.39(4) 3.56(1) 3.50(2) 1.00(5) 
23 1.33(4) 2.16(1) 1.25(5) 2.12(2) 1.43(3) 
Rank Sum (Rj) 90 53 56 67 79 
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Now using 
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               2  16.76  
 
which is also significant at  = 0.05, because 2 2

1 ; 1c    , 16.76 > 9.488, and 
2 2 2
1 ; 1 1 0.05;5 1 0.95;4 9.488c        . The results are also significant like the 

proposed methods. 

Conclusion 

The proposed method of pairwise comparisons in repeated measures is suitable 
when interest is not only on testing whether the null hypothesis of no difference is 
rejected or accepted, but if the null hypothesis is rejected, which individual subjects 
or their combinations actually contributed to the rejection of the null hypothesis. It 
is at least as efficient and powerful as competitors. 
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A bivariate distribution whose marginal are gamma and beta prime distribution is 
introduced. The distribution is derived and the generation of such bivariate sample is shown. 
Extension of the results are given in the multivariate case under a joint independent 
component analysis method. Simulated applications are given and they show consistency 
of our approach. Estimation procedures for the bivariate case are provided. 
 
Keywords: Gamma distribution, Gamma function, Beta function, Beta distribution, 
generalized Beta prime distribution, incomplete gamma function 
 

Introduction 

The gamma and beta distributions are the two most commonly used distribution 
when it comes to analyzing skewed data. Since Kibble (1941), the bivariate gamma 
has gained considerable attention. The multivariate form of the gamma has been 
proposed in Johnson et al. (1997) and by many other authors, but there is no 
unifying formulation. Even in the multivariate exponential family of distributions, 
there is no known multivariate gamma (Joe, 1997 ). The simplest of the multivariate 
cases, the bivariate gamma distribution, is still raising debates, and has been 
proposed in Balakrishnan and Lai (2009). The marginal densities of the bavariate 
gamma can sometimes belong to other class of distributions. A modified version of 
Nadarajah (2009) bivariate distribution with Gamma and Beta marginals is 
considered, and a conditional component to the modeling is brought into account. 
Kotz et al (2004) proposed a bivariate gamma exponential distribution with gamma 
and Pareto distribution as marginals. In this article, a bivariate gamma distribution 
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with gamma and beta prime as marginal distributions is defined. By including the 
dependence structure, more flexibility is added. Consider two random variables X, 
identified as the common measure, and Y related to X, and assuming that X is a 
gamma random variable with parameters α and β and the distribution of Y | X is a 
gamma random variable with parameters a and X. The first section following this 
introduction shows the bivariate distribution with the conditional gamma. In the 
next section, ‘Properties,’ the main properties of the bivariate conditional gamma 
distribution are given. Extension to the multivariate setting is given in the next 
section, followed by a development of computational aspects in the inference. The 
calculations in this paper involve several special functions, including the 
incomplete gamma function defined by 
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x a ta x t e dt

a
  

  , 

 
and the complementary gamma function defined as 
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Also, the beta function is defined as 
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for a, b, and x positive real values. For x   [0,1], α > 0 and β > 0, the beta 
distribution can be defined as 
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Model Building and Density functions 

Let X be a gamma rv’s with shape and rate parameters denoted by α and β, 
respectively. The probability density function (pdf) of X is given by 
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where α > 0 and β > 0. Many authors have developed structural models with the 
underlying gamma distribution. Consider another random variable Y such that the 
distribution of the random variable Y given a realization of X at x is a gamma with 
the parameters a and x. That is the density of Y | X is given by 
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where a > 0 and x > 0 are the shape and rate parameters respectively. So the joint 
density of the random variables defined above is given by the expression below 
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with parameters α > 0, β > 0 and a > 0. Equation (3) integrates to 1, so this is a 
legitimate distribution. Figure 1 shows the plot of the joint distribution defined in 
Equation (3) for different values of α, β and a. 

Thus the cumulative distribution of the random variable X and Y is 
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              a) α = 2.5, β = 1.3, a = 3.2           b) α = 1.5, β = 3.3, a = 2.2 
 
Figure 1. Joint Probability Density Function of (X,Y) 
 
 

Properties 

The main properties of the distribution as defined in (3), such as the marginal 
densities, their moments, their product products and covariance, are derived here. 

Marginal Density and Moments: 

The marginal density of X is given by (1). Marginal density of Y is given by the 
theorem below.  
 
Theorem 1: If the joint density of (X,Y) is given in (3), then the marginal density 
of Y is given by  
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Proof.  The marginal density of Y is given by 
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Probability density function of Y is a special form of Generalized Beta prime 
density with shape parameter 1 and scale parameter β. Figure 2 describes its pdf for 
different values of α. Probability density of generalized beta prime distribution with 
scale p and shape q is given by 
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Let T be a random variable such that T ~ Beta(a, α). Then 
1

TY
T





, has density 

given by (5). 
 
Theorem 2: Let Y be a random variable with a pdf given in (5). The mth moment 
of the random variable Y exists only if α > m. 
 
Proof:  From the previous theorem it can be seen that if T: Beta(a, α) and 

1
tY
t





, then the density of Y will be same as defined in (5). And the mth moment 

of Y is 
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The choice of α > 2 is made so that E[Y] and Var[Y] will both exist. 
 
 

 
 
Figure 2. The Probability Density Function of Y as defined in (5) 
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Product Moments 
Theorem 3: The product moment of the random variables (X,Y) associated with 
the pdf defined in (3) can be expressed as 
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Proof:  For m > 0 and n > 0 one can write 
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provided the integrals exist. Now for the mth product moment by choosing n = m in 
the above expression, one can write the product moment as 
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Note that the product moment depends only on a. 
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Covariance Matrix 
With the density of X and Y as given in Equations (1) and (5), respectively, the 
variance-covariance matrix of X and Y is given by the following theorem 
 
Theorem 4: Denote the Variance-Covariance matrix of X and Y by Cov(X,Y), 
then 
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Proof:  Using Theorem 2, the variance and expectation of the random 
variable Y can be computed 
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Equation (2) implies that the distribution of X is a Gamma distribution with shape 
α and rate β. So variance of X is given by 
 

   2Var X 


  (9) 

 
Now the covariance between X and Y can be written as 
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Using the Equations (8), (9) and (10) the result follows. Note that the covariance 
between X and Y exists only when α ≠ 1, and is positive when α < 1. Variance of Y 
only exists when α > 2. 

Multivariate Extension Case 

Consider the multivariate case of the model: take n + 1 random variables as follows: 
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where Xi | X0 and Xj | X0 are independent components for i ≠ j and 
(i, j)  {1, 2, …, n}. Then using the same argument as in ‘Properties,’ the joint 
independent component model is built and the marginal density function for each 
random variable Xi is derived. In general, the density function of Xi is given by 
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Using the independence assumption of the above model, the joint density of 
X0, X1, …, Xn is then derived. The derived joint density will be of the form 
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The density of the joint distribution (X1, X2, …, Xn) and its variance 

covariance expression are derived next. 
For the density of (X1, X2, …, Xn), the integration of the joint density with 

respect to the variable X0 is needed. 
 

Density Function 

To derive the density function, the integral below is computed 
 

      1 0 0 00
1

,..., |
i n

n i
i

f x x f x f x x dx






   (12) 

 
And solving the integral in (12), the joint density is as follows 
 

  
   

 

 
1

1

1 1
1

1
1

,...,

i i

n

i
i

n n
a a

i i i
i i

n n
an

i
i i i

i

a b x
f x x

a
b x





 








 







 
  
 

   
 

 

 




 (13) 

 
where xi > 0, ai > 0 for all i = 1, 2, …, n, and α >0, β > 0. In the distribution 
obtained from (13), if the choices of β = 1 and bi = 1 for all i = 1, 2, …, n are made, 
then the inverted Dirichlet distribution is obtained. The application of this 
distribution can be found in many places in the literature. Taio and Cuttman (1965) 
introduced this type of distribution and discussed about their applications. 

Covariance  

The covariance between Xi and Xj for i ≠ j is derived in Theorem 5. 
 
Theorem 5: If the random variables X1, X2, …, Xn have the density function 
defined in (13), then the covariance between Xi and Xj for i ≠ j is given by the 
expression below 
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Proof:  Using the same arguments in Theorem 2, the mth moments of Xi are 
derived. Based on the density of Xi defined by (11) 
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From (13) this useful identity is obtained 
 

 
   

1

1

1 1
0 0

1 1
1

i

n

i i
i

n n
a
i i

i i
n n

a an
i i

i ii i
i

x a

b a
b x

 



 






 
 



 



 


         

 

 
 

 


 (15) 

 
Using the identity in (15), the (m1, m2, …, mn)th mixed moment is given as 
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provided 
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m  . In particular, the covariances between Xi and Xj, for i = 1, 2, …, n, 
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Note that the covariance between X0 and Xi for i = 1, 2, …, n is also derived as 
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Bivariate cases will reduce to Equation (10). 

Likelihood and Estimation for Bivariate Case 

In this section, the maximum likelihood estimation process and Fisher information 
matrix for the bivariate model are introduced. Statistical analysis software (SAS) is 
used to generate data and R is used to get the maximum likelihood estimates 
(MLEs). 

Log likelihood 

Let (xi, yi), for i = 1, 2, …, n, be a sample of size n from the bivariate gamma 
distribution as defined in Equation (3). Then, the log likelihood function is 
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The first order derivatives of the log likelihood with respect to the three parameters 
are 
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where ( ) ln( ( ))dx x
dx

    is the Digamma function. 

Solving above Equations (19-21) simultaneously, the MLEs of the parameters 
can be formulated. As the MLEs are not in a closed form, an R code is developed 
to get the estimates. 
 

Fisher Information Matrix 
The Fisher information matrix g is given by the expectation of the covariance of 
partial derivatives of the log likelihood function. Let (θ1, θ2, θ3) = (α, β, a); then the 
components of the Fisher information matrix are given by 
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Inverting the fisher information matrix, the asymptotic standard errors of the 
maximum-likelihood estimates can be obtained. 

Example Using Simulated Data 

 A number of simulations are performed to evaluate the statistical properties and 
the estimation are computed using maximum likelihood method. Because of the 
complexity of the target density and of the likelihood, there is no closed form of the 
estimators. Effective sample sizes will be directly impacting the estimates. R 
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program is used to do the optimization, but SAS 9.3 version is used to simulate data 
with samples of sizes n = 200 and 25. 

Accordingly, for each set of parameters and sample size, X0 is simulated from 
a gamma distribution with parameters α and β. Then, for each X0, generate X1 based 
on X0 according to Equation (3) with the same value of a. 

The simulation results presented under the table give the estimates of the 
parameters. Figure 3 gives the plot of log likelihood and shows the uniqueness of 
the solution estimate for each parameter at sample size 200. 

The results show that the larger the sample size, the more accurate the 
estimates are. A plot of the estimates versus sample size is given in Figure 4. 

Simulation results 
Table 1. Estimation of parameters for different sample sizes 
 

 Estimates (SE) 
Actual Values n = 200 n = 25 

α = 2.5 ̂  = 2.326 (0.819) ̂  = 2.001 (1.175) 

β = 1.3 ̂  = 1.206 (0.474) ̂  = 1.061 (0.708) 

a = 3.2 â  = 3.229 (0.442) â  = 3.075 (0.772) 
   

α = 6.3 ̂  = 6.816 (2.503) ̂  = 5.287 (3.243) 

β = 2.1 ̂  = 2.225 (0.848) ̂  = 1.757 (1.131) 

a = 1.2 â  = 1.169 (0.232) â  = 1.280 (0.415) 
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Figure 3. MLE estimates of parameters for a sample of 200 
 
 
 

 
 

Figure 4. Parameter estimation for increasing sample size 
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Conclusion 

In this paper, a bivariate conditional gamma and its multivariate form are proposed. 
Their associated properties are presented and the simulation studies have shown 
significant improvement in the parameter estimations, taking into account the intra-
correlation and dependence among the observed mixing random variables. While 
our proposed model process is guided by a formal fit criteria, Bayesian approach is 
another option to determine the parameters. However, the proposed approach has 
the advantage of giving a simple implementation for mixed outcome data. 
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Maximum likelihood estimates (MLE) of regression parameters in the generalized linear 
models (GLM) are biased and their bias is non negligible when sample size is small. This 
study focuses on the GLM with binary data with multiple observations on response for 
each predictor value when sample size is small. The performance of the estimation methods 
in Cordeiro and McCullagh (1991), Firth (1993) and Pardo et al. (2005) are compared for 
GLM with binary data using an extensive Monte Carlo simulation study. Performance of 
these methods for three real data sets is also compared. 
 
Keywords: Binomial regression, modified score function, bias corrected MLE, 
Minimum ϕ-divergence estimation, Monte Carlo Simulation 
 

Introduction 

Generalized linear models (GLM) are frequently used to model small to medium 
size data. In case of binomial distributed response, logistic regression finds 
application to model the relationship between response and predictors. Maximum 
likelihood estimation (MLE) is usually used to fit a logistic regression model. It is 
well known that under certain regularity conditions, MLE of regression coefficients 
are consistent and asymptotically normal. However, for finite sample sizes, MLE 
tend to overestimate with an absolute bias that tends to increase with the magnitude 
of the parameter and with the ratio of the number of parameters to the number of 
observations. The bias in MLE decreases with the sample size and goes to zero as 
sample size tends to infinity. See Byth and McLachlan, (1978), Anderson and 
Richardson (1979), McLachlan (1980), Pike et al. (1980), Breslow (1981) and 
Hauck (1984) for the details. As a consequence, methods taking care of bias were 
explored. Jackknifed MLE and its versions and methods based on approximation 
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of bias using Taylor series expansion are widely studied in the literature. See Bull 
et al. (1994) and references therein. Cordeiro and McCullagh (1991) proposed 
second order unbiased MLE in GLM. Further, to simultaneously tackle the problem 
of bias and separation, Firth (1993) modified the score function to estimate the 
parameters unbiasedly up to first order. Maiti and Pradhan (2008) empirically 
established the superiority of these two methods over conditional maximum 
likelihood estimator in non-separable case through extensive simulation study.  

In the last decade, the minimum distance estimators have gained importance 
in many fields of statistics. Read and Cressie (1988) and Pardo (2006) outlined the 
use and importance of the ϕ-divergence measures in statistics. Pardo et al. (2005) 
proposed the minimum ϕ-divergence estimator or minimum distance estimator 
based on the family of power divergence (Cressie and Read, 1984) characterized 
by a tuning parameter λ for estimation of regression coefficients in logistic 
regression. The minimum ϕ-divergence estimator is a generalization of MLE 
(λ = 0). Other distance estimators like minimum chi-square estimator (λ = 1) and 
minimum Hellinger distance estimator (λ = −1/2) are particular cases as well. An 
extensive simulation study in Pardo et al. (2005) and Pardo and Pardo (2008) to 
choose among the estimators in logistic regression concluded that 2/3 is a good 
choice for λ. Hence, minimum ϕ-divergence estimator with λ = 2/3 emerged as an 
alternative to MLE in the sense of MSE for small size. The comparison of the 
minimum distance estimators with those taking care of bias remains the untouched 
problem of interest. 

Estimation in logistic regression 
Let Z be a response binary random variable taking value 1 or 0, generally referred 
to as “success” or “failure” respectively. Let k explanatory variables kx  are 
observed along with the response variable.    1| kP Z   x x  represents the 

conditional probability, of the value 1  given kx . Let X be the N × (k + 1) 
matrix with rows xi = (xi0,  xi1, …, xik), i = 1, …, N where xi0 = 1,   i. The logistic 
regression model is defined by the conditional probability 
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x   (1) 

 
For more discussion on logistic regression see Hosmer and Lemeshow (1989) and 
Agresti (1990).  
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In laboratory or controlled setting, many individuals share same values for 
their explanatory variables. In other words, for each value of the explanatory 
variables there are several observed values of the random variable Z. The focus here 
is on this situation. The notations described earlier are required to be changed 
slightly. For this, the notations used in Pardo et al. (2005) were followed. Let there 
be I distinct values of xi = (xi0, xi1, …, xik), i = 1, 2, …, I. It is assumed that, for each 
xi, there is a binomial random variable 1

in
i i iY Z  with parameters ni and π(xi). 

The values ni1, …, nI1 are the observed values of the random variables Y1, …, YI, 
representing the number of successes in n1, …, nI trials respectively when the 
explanatory variables are fixed. This divides the entire sample of size N into I 
subgroups each of size ni so that 1

I
i in . Because Zi's are independent, Yi's are 

also independent. Thus, the likelihood function for the logistic regression model is 
given by 
 
         

11

10 1, , 1 i ii
i

i

n nnnI T T
k i n i iL    



  x x    (2) 

 

The MLE, ̂  is derived as a solution to score equation 
 
    l U   0    (3) 
 
where l (β) = log L(β) is the log likelihood function. 

Second order bias corrected MLE 
As discussed earlier, there are various methods which give rise to bias corrected 
versions of MLE in logistic regression (Anderson and Richardson, 1979; 
McLachlan, 1980; Schaefer, 1983; Copas, 1988 and Cordeiro and McCullagh, 
1991). Cordeiro and McCullagh (1991) derived an expression for the first order 
bias using Taylor series expansion. Let μ be the mean of response variable. The n−1 

bias of ̂  in GLM is given by 
 
    

1

1
T TB X WX X
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where  1 2W diag V     is an n × n weight matrix and 

 
  

1 12 dW H
   1F . 

 
ψ is the dispersion parameter of the GLM, Hd is an n × n diagonal matrix with the 
elements of H = X(XTWX)−1XT and F = diag{V−1μ'μ''} is also an n × n diagonal 
matrix. The MLE of B1(β) is then subtracted to obtain the second order bias 
corrected estimate 
 
    2

1
ˆ ˆ ˆ .B      

 

Modified score function method 

The bias in MLE is due to unbiasedness and curvature of score function. The score 
function is linear in case of normal error regression and hence MLE is unbiased. 
Firth (1993) modified the score function by introducing small bias in score function. 
This produces a separation resistant estimator with zero first order bias. 

The modified score function is defined as 
 
        *

1 0U U i B        
 
where i(β) is the Fisher information matrix. 

The solution point of the modified score equation locates a stationary point of 
 
      * 1

2 logl l i      

 
or equivalently, of the penalized likelihood function 
 
      

1/2*L L i      

 
where |i(β)|1/2 is the Jeffreys (1946) invariant Prior for the problem. 

In GLM with Binary data, the modified score function is (Firth, 1993) 
 

    * TU U X W      
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In logistic regression, Wξ has ith element hi (πi − 1/2) and hi is the ith diagonal 
element of the hat matrix. The solution  * ˆ0,U  MS   is free from the first order 
bias. 

Minimum ϕ-Divergence Estimation 

Let  1
T

i i  x   and  2 2 11 ,T
i i i i in n n    x   and 1

I
i iN n . To 

maximize (2) is equivalent to minimizing the Kullback divergence measure 
between the probability vectors 
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MLE for the GLM parameter β can be defined by 
 
   ˆ ˆarg min , ,KullbackD p p    (4) 
 
where the Kullback divergence measure is given by (see Kullback, 1985) 
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This measure is a particular case of the ϕ-divergence defined by Csiszar (1963) and 
Ali and Silvey (1966), 
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where Φ is the class of all convex functions ϕ(x), x > 0 such that at 
x = 1, ϕ(1) = ϕ'(1) = 0, ϕ''(1) > 0 and at x = 0, 0 ϕ(0/0) = 0 and 
0 ϕ(p/0) = p lim u → ∞ ϕ(u)/u. For more details, see Vajda (1989) and Pardo (2006). 
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Cressie and Read (1984) introduced an important family of ϕ-divergences called 
the power divergence family 
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It is interesting to note that 
 
      

0
ˆ ˆ, , .KullbackD D p p p p    (7) 

 
The minimum ϕ-divergence estimator (Pardo et al., 2005) in logistic regression is 
given by 
 
   ˆ ˆarg min ,D   p p    (8) 

Methodology 

Performance comparison for real data 
Usefulness of any method can be established only when it can be applied to a real 
data. To this end, the performance of these methods is compared for prediction 
purposes when real data is used. Three real data sets are employed as examples. 
The numbers of predictors in each real data are not same. A single predictor, two 
predictor and multiple predictor situations are considered in real data to compare 
the prediction performance of the methods. 

Example 1: Single Predictor Case 

First, for the single predictor case, pneumoconiosis data (Montgomery et. al., 2006; 
pp. 449) concerning the proportion of coal miners who exhibit symptoms of severe 
pneumoconiosis and the numbers of years of exposure (X1) is analyzed. The data 
includes n = 8 observations on number of years of exposure, number of severe cases 
and total number of miners. Table 1 presents the estimated regression coefficients 
using the methods discussed earlier.   
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Table 1. Estimates of regression coefficients: Example 1 
 
Predictors ̂   

 2
̂  ˆ

  ˆ MS  
Intercept -4.55621 -4.47047 -4.54838 -4.48677 
# Years of Exposure 0.07889 0.07707 0.08753 0.07747 
 

Example 2: Two Predictors Case 

The two predictors case example uses ingots data, which appeared in Cox and Snell 
(1989, pp. 10-11). This data is a result of an industrial experiment concerning steel 
ingots. It consists of 19 observations on the number of ingots not ready for rolling 
out of certain number of trials tested for a number of heating time (X1) and soaking 
time (X2). This data is also analyzed by Pardo et al. (2005) to illustrate the use of 
minimum ϕ-divergence estimator. Table 2 presents the estimates of regression 
coefficients in the binomial logistic regression.  
 
 
Table 2. Estimates of regression coefficients: Example 2 
 

Predictors ̂  
 2

̂  ˆ
  ˆ MS  

Intercept -5.51316 -5.42360 -4.88651 -5.47685 
Heating time 0.07688 0.07573 0.06881 0.07690 

Soaking time 0.07201 0.11485 0.04469 0.10876 
 

Example 3: Multiple Predictors Case  

In this next example, a real data with more than two predictors is analyzed and 
considers data (Andersen 1997, pp. 171) used by Pardo and Pardo (2008) to 
illustrate the variable selection method based on minimum ϕ-divergence estimator. 
The data consists of observations on 6 objective indicators (X1, …, X6) of the actual 
indoor climate in 10 classrooms of a Danish Institute, the number of students in the 
class and the number of yes-answers to the question whether they felt that the 
indoor climate at the moment was pleasant or not so pleasant. Table 3 presents the 
estimates of regression coefficients in the binomial logistic regression. The 
minimum ϕ-divergence estimate of coefficient of X3 and X5 differ in magnitude as 
compared to estimates from other three methods to a larger extent. 
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Table 3. Estimates of regression coefficients: Example 3 
 

Predictors ̂  
 2

̂  ˆ
  ˆ MS  

Intercept 5.75029 5.48737 7.15570 5.50296 

X1 0.53530 0.51090 1.29870 0.51380 

X2 -0.51320 -0.49247 -1.15230 -0.49442 

X3 9.04758 8.65945 19.28910 8.69477 

X4 0.64191 0.61565 1.42370 0.61780 

X5 8.93732 8.67950 25.20410 8.67973 

X6 -0.04478 -0.04263 -0.07700 -0.04283 
 
 

It is not possible decide between the estimators merely by looking at the 
estimated regression coefficients. To compare the performance in each example, 
the predicted probabilities of success using each estimator were computed. As a 
measure of discrepancy between estimated and observed probability of success, the 
Pearson chi-square defined as 
 

 

2

1

1 1 2

ˆ
Pearson chi-square

ˆ ˆ
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was used, where, 1i

i

n
i nP    and c represents the method used to estimate probability 

of success. The Pearson chi-square corresponding to estimators considered for all 
the examples are listed in the Table 4. The Pearson chi-square for ˆ

  is smallest in 
case of Examples 1 and 3. For Example 2, value of Pearson chi-square is smallest 

for ̂ . It reveals that the performance of minimum ϕ-divergence estimators to 
predict probabilities of success in binomial logistic regression applied to real data 
is better than MLE and its bias corrected versions. 
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Table 4. Pearson chi-square 
 

Estimator ̂  
 2

̂  ˆ
  ˆ MS  

Example 1 0.0058 0.0057 0.0056 0.0019 
Example 2 0.7570 0.8733 0.8648 0.8682 

Example 3 0.2419 0.2393 0.2394 0.0216 
 

Monte-Carlo Simulation Study 
Estimation methods were compared using Monte-Carlo simulation; a two predictor 
binomial logistic regression model including an intercept was considered. The 
design matrix is of order 11 × 3 with first column as ones. The other two columns 
contain random numbers from two independent standard uniform distributions. To 
generate observations on response variable, two different parameter structures were 
considered and accordingly two different models were defined as Model I: 
β = (1, 2, −3); Model II: β = (1, −1.5, 2). 
 
 
Table 5. AMSE with its SD 

  ̂  
 2

̂  
ˆ
  ˆ MS  

Model I 

n1 
2.4014  2.4195  2.4173  0.2902  

(0.5287) (0.5235) (0.5244) (0.3909) 

n2 
2.4055  2.4355  2.4298  0.4202  

(0.6030) (0.5951) (0.5956) (0.5254) 

n3 
2.3944  2.4068  2.4055  0.1768  

(0.4684) (0.4646) (0.4654) (0.2292) 

n4 
2.4228  2.4553  2.4512  0.4210  

(0.5837) (0.5739) (0.5759) (0.4849) 

n5 
2.4455  2.4945  2.4873  0.7497  

(0.7145) (0.6952) (0.6992) (1.0160) 

n6 
2.4371  2.4811  2.4757  0.7200  

(0.7172) (0.6996) (0.7032) (0.9379) 

n7 
2.4201  2.4518  2.4464  0.4432  

(0.5828) (0.5755) (0.5761) (0.5208) 

n8 
2.4332  2.4562  2.4537  0.3410  

(0.5633) (0.5566) (0.5580) (0.3640) 

n9 
2.5535  2.6306  2.6189  1.5971  

(0.9460) (0.8986) (0.9091) (5.8009) 

n10 
2.6685  2.7568  2.7364  3.1885  

(1.1593) (1.0321) (1.0605) (6.3671) 
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Table 5, continued 

    ̂  
 2

̂  ˆ
  ˆ MS  

Model II 

n1 
1.8489  1.8528  1.8524  0.3023  

(0.2223) (0.2206) (0.2207) (0.3825) 

n2 
1.8673  1.8732  1.8723  0.5364  

(0.2760) (0.2722) (0.2725) (0.7490) 

n3 
1.8511  1.8537  1.8535  0.2053  

(0.1868) (0.1857) (0.1858) (0.3301) 

n4 
1.8588  1.8653  1.8648  0.5813  

(0.2877) (0.2828) (0.2833) (0.8713) 

n5 
1.8819  1.8913  1.8903  0.8732  

(0.3377) (0.3297) (0.3305) (1.1947) 

n6 
1.8753  1.8840  1.8833  0.7925  

(0.3233) (0.3165) (0.3172) (0.9626) 

n7 
1.8644  1.8705  1.8695  0.5432  

(0.2984) (0.2935) (0.2942) (0.6855) 

n8 
1.8500  1.8550  1.8547  0.4296  

(0.2526) (0.2498) (0.2501) (0.8013) 

n9 
1.9098  1.9237  1.9221  1.8013  

(0.4462) (0.4260) (0.4284) (3.5744) 

n10 
1.9155  1.9282  1.9268  2.1006  

(0.4511) (0.4276) (0.4305) (7.0825) 
 
Table 6. Average absolute bias 

  ̂  
 2

̂  
ˆ
  ˆ MS  

Model I 

n1 0.2556  0.2534  0.2535  0.0023  
n2 0.2580  0.2539  0.2545  0.0048  
n3 0.2546  0.2531  0.2531  0.0018  
n4 0.2550  0.2508  0.2511  0.0002  
n5 0.2576  0.2508  0.2513  0.0065  
n6 0.2640  0.2575  0.2580  0.0108  
n7 0.2586  0.2543  0.2548  0.0055  
n8 0.2516  0.2487  0.2488  0.0094  
n9 0.2606  0.2471  0.2485  0.0210  
n10 0.2721  0.2475  0.2510  0.0010  

Model II 

n1 0.5785  0.5780  0.5780  0.0075  
n2 0.5793  0.5785  0.5786  0.0149  
n3 0.5780  0.5777  0.5777  0.0031  
n4 0.5788  0.5779  0.5779  0.0159  
n5 0.5792  0.5778  0.5779  0.0258  
n6 0.5787  0.5774  0.5774  0.0120  
n7 0.5782  0.5773  0.5774  0.0093  
n8 0.5783  0.5776  0.5776  0.0079  
n9 0.5842  0.5813  0.5814  0.0309  
n10 0.5810  0.5781  0.5782  0.0182  
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Consider the following 10 different combinations of number of trials 
 

 

1

2

3

4

5

6

:15,15,15,15,30,30,30,30, 40, 40, 40
: 5,5,5,5,15,15,15,15, 40, 40, 40
: 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40
:10,10,10,10, 20, 20, 20, 20,15,15,15
:10,10,10,10,5,5,5,5,15,15,15
:10,10,10,10,10,10,10,10,10,10,

n
n
n
n
n
n

7

8

9

10

10
: 5,5,5,5,30,30,30,30,15,15,15,15
: 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
: 5,5,5,5,5,5,5,5,5,5,5
: 5,5,5,5,5,5,5,5, 4, 4, 4

n
n
n
n

  

 
The observations on response variable are random numbers from B(ni, πi1). In this 
way, 20 models were generated differing in parameter structure and structure of 
number of trials. Unknown regression coefficients were estimated using four 
methods including MLE. To compute the minimum ϕ-divergence estimate, the 
power divergence family in (6) with λ = 2/3 were used as suggested in Pardo et. al. 
(2005). Each model was simulated 1,000 times and average MSE (AMSE) and 
average absolute bias in estimate due to each estimation method are reported in the 
Tables 5 and 6. The figures in parentheses represent standard deviation (SD) of 
MSE. The AMSE and average absolute bias were computed using the following 
formulae 
 

  
1000 2 2

1 0

1 1 ˆAMSE .
1000 3

c
ij j

i j
 

 

     

 
1000 2

1 0

1 1 ˆAverage absolute bias .
1000 3

c
ij j

i j
 

 

     

Results 

It is evident from the Tables 5 and 6, the minimum ϕ-divergence estimator has 
smaller MSE and bias as compared to others for all combinations of number of 
trials. For a small magnitude of number of trials, as in case of last combination, the 



COMPARISON OF ESTIMATORS IN GLM WITH BINARY DATA 

196 

AMSE of all the estimators is more or less same; however, variability in the 
minimum ϕ-divergence estimate is quite high. The estimate based on modified 
score function and second order bias corrected MLE are close enough to 
uncorrected MLE in this setting. The bias correction obtained as such is negligible. 
From Tables 5 and 6, performance of minimum ϕ-divergence estimator is better 
than the others for all but last two combinations of number of trials i.e., n9 and n10.  

The variation in MSE and absolute bias averaged over the three regression 
coefficients is shown in Figures 1 and 2 respectively for n1 and n10. Although the 
motivation behind defining the minimum ϕ-divergence estimator was altogether 
different, it performs better than the bias corrected versions of MLE. This makes 
the minimum ϕ-divergence estimator an attractive alternative to MLE as well as is 
its bias corrected versions in binomial logistic regression. 
 
 

   
(a) Model I: n1             (b) Model II: n1 

 
 
Figure 1 (a, b). Box Plot of MSE of estimates averaged over three regression 
coefficients. 
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(c) Model I: n10           (d) Model II: n10 

 
Figure 1 (c, d). Box Plot of MSE of estimates averaged over three regression 
coefficients. 
 
 

 
(a) Model I: n1 

 

 
(b) Model I: n10 

 

Figure 2 (a, b). Box Plot of bias of estimates averaged over three regression coefficients. 
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(c) Model II: n1 

 

 
(d) Model II: n10 

 
Figure 2 (c, d). Box Plot of bias of estimates averaged over three regression coefficients. 
 
 

Conclusion 

The performance of some of the estimators belonging to two different classes, i.e., 
minimum distance estimators and bias corrected MLE in a binomial logistic 
regression model, was compared. Three real data examples from different fields 
followed by a Monte Carlo simulation study were used to illustrate the comparisons. 
Results show that second order bias corrected MLE and estimates obtained using 
modified score function method lead to an estimate, which is same as MLE when 
number of trials is large. From this comparison study it may be concluded that, for 
a number of trials greater than 5, minimum ϕ-divergence estimator is an attractive 
alternative to MLE as well as bias corrected and modified score function method. 
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Some properties of the Gumbel-Weibull distribution including the mean deviations and 
modes are studied. A detailed discussion of regions of unimodality and bimodality is given. 
The method of maximum likelihood is proposed for estimating the distribution parameters 
and a simulation is conducted to study the performance of the method. Three tests are given 
for testing the significance of a distribution parameter. The applications of Gumbel-
Weibull distribution are emphasized. Five data sets are used to illustrate the flexibility of 
the distribution in fitting unimodal and bimodal data sets. 
 
Keywords: Mean deviation, bimodality, maximum likelihood estimation, lifetime 
data 
 

Introduction 

Problems on extreme values appeared in the work of Nicholas Bernoulli back in 
1709 for studying the problem of the mean largest distance from origin for n 
random numbers on a straight line (see Johnson et al., 1995, p. 1). During 1920s 
and 1930s, many papers on the distribution of extremes appeared in the literature. 
Gumbel (1958) gave detailed results on extreme value theory in his book Statistics 
of Extremes. Furthermore, Gumbel (1958) has been referred to by Johnson et al. 
(1995) as the first to bring attention to the possibility of using the Gumbel 
distribution to model extreme values of random data. For more information on 
extreme value distributions, see Johnson et al. (1995), Gumbel (1958), Kotz and 
Nadarajah (2000), and Beirlant et al. (2006). 

The Weibull distribution is well known for its ability to model different types 
of data. Weibull distribution also has many applications in risk analysis and quality 

mailto:carl.lee@cmich.edu
mailto:felix.famoye@cmich.edu


GUMBEL-WEIBULL DISTRIBUTION 

202 

control because its hazard rate is decreasing when the shape parameter a < 1, 
constant when a = 1, and increasing when a > 1. For more information on Weibull 
distribution, see Johnson et al. (1994). 

Alzaatreh, Lee and Famoye (2013) proposed a method for generating new 
distributions, namely, the T-X family. The cumulative distribution function (CDF) 

of the T-X family is defined as        
  W F x

G x r t dt R W F x


  , where X is 

any continuous random variable with CDF F(x) and probability density function 
(PDF) f(x), r(t) and R(t) are the PDF and the CDF of a continuous random variable 
T. They further studied a T-X family by defining W(F(x)) = −log(1−F(x)), where 
the random variable T is defined on (0, ∞). Al-Aqtash et al. (2014) defined and 
studied a family of T-X distributions arising from the logit function 
W(F(x)) = ln{F(x)/(1− F(x))} and provided some general properties of this T-X 
family, including symmetry, quantile function and Shannon entropy. The CDF of 
the T-X distribution has the form 

          
     ln / 1

ln / 1
F x F x

G x r t dt R F x F x



   , where T is defined on 

(−∞, ∞). The main difference from the T-X family studied by Alzaatreh, Lee and 
Famoye (2013) is that the random variable T is defined on (−∞, ∞) instead of (0, ∞). 
Taking T to be Gumbel with PDF      ( )/ ( )/1/ expt tr t e e          and X to 

be Weibull with PDF         1/ / exp /a af x a x x  


  , Al-Aqtash et al. 

(2014) defined the four-parameter Gumbel-Weibull distribution (GWD) with CDF 
 

        
1/ 1/

/ //exp 1 exp 1 ,
a ax xG x e e e

 
   

    
        

   
  

 

where /0 , , , , 0x e a        and   . The corresponding PDF is 
 

            
1 1/ 1/1 / / // 1 exp 1 .

a a aa x x xag x x e e e
 

  
 



  
  

    
 

  (1) 

 
Al-Aqtash et al. (2014) derived some properties of GWD such as moments 

and Shannon entropy. In this article, additional properties including the mean 
deviations and modality are studied. In particular, the applications of this 
distribution are emphasized. 
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Mean deviations 

Two measures of spread, namely the mean deviation from the mean and the mean 
deviation from the median for GWD are now presented. Let X be a random variable 
from the GWD with mean μ and median M. 

The mean deviation from the mean is given by 
 

 
           

   

0 0 0

0

2

2 2 ,

E X x g x dx x g x dx x g x dx

G xg x dx





   

 

 

      

 

  


  (2) 

 

where    
0

G g x dx


   . In a similar way, the mean deviation from the median 

is given by 
 

 

   

       

 

0

0 0

 0

2

2 .

M

M

E X M x M g x dx

M x g x dx x M g x dx

xg x dx





  

   

 



 



 (3) 

 

The integral  
0

v
xg x dx  in (2) and (3) can be computed numerically. 

Modes of Gumbel-Weibull distribution 

Al-Aqtash et al. (2014) studied the moments and skewness in detail, and mentioned 
that GWD can be unimodal or bimodal. However, no study on GWD modes was 
given. The modes of GWD are provided and the regions of unimodality and 
bimodality for specific values of β are investigated. Differentiating the density of 
GWD in (1) with respect to x results in 
 

           

              

2 1/ 1/2 / / /
2

1/
/ / /

/ 1 exp 1

1 1 / / / 1 1 .

a a a

a a a

a x x x

a ax x x

ag x x e e e

a e a x a x e e
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The derivative g'(x) does not exist when x = 0. Other critical point(s) satisfy 
g'(x) = 0, hence if there is a mode for GWD, then it will be either at x = 0 or it will 
satisfy equation 
 

               
1/

/ / /1 1 / / / 1 1 0
a a aa ax x xa e a x a x e e


  

   
 

       
 

. (4) 

 
In (4), set λ = 1 because λ is a scale parameter and it will not affect the distribution 
shape. The expression on the left hand side of (4) simplifies to 
 
        

1/
1 1 / 1 1 .

a a ax a a x xa e ax a x e e


 


        (5) 

 
Analytical solution of equating (5) to zero is not possible. Numerical 

approximation is applied to study the modes and the regions of unimodality and 
bimodality. To study the modes of the GWD, fix β and allow a and σ to change 
from 0.01 to 10 at an increment of 0.01. This gives one million different ordered 
pairs (σ, a). For each ordered pair, (5) is computed as a vector using a vector x with 
values 0.000001, 0.00001, 0.0001, 0.001, and then from 0.01 to 10 at an increment 
of 0.01. Values of x below 0.000001 cause execution errors as a approaches 10, 

because  
1/

1
axe



  grows rapidly toward ∞ as x approaches zero. Because it was 

observed that the PDF of GWD quickly approaches zero when x > 10, x less than 
10 was chosen. 

A 1000×1000 matrix P was constructed to store the symbols {–2, –1, 1, 2}, 
and track how many times the sign of the components of the vector (5) changes. If 
the vector is always negative, set P(σ,a) = –1 indicating one mode at point x = 0. If 
(5) starts negative, then changes to positive and finally becomes negative, set 
P(σ,a) = –2 indicating one mode at point x = 0 and another mode at x > 0. If (5) starts 
positive and becomes negative, then changes to positive, and finally becomes 
negative, set P(σ,a) = 2 indicating two distinct modes at x > 0. Finally, if (5) starts 
positive, then becomes negative, set P(σ,a) = 1 indicating one mode at x > 0. 

For fixed β, the parameter space of GWD is made up of four regions, each 
region contains a symbol from {–1, –2, 2, 1}, separated by boundary curves. The 
boundary curves are estimated by using regression model. The four distinct regions 
for GWD modes are marked R1, R2, R3, and R4 corresponding to symbols –1, –2, 
2 and 1 respectively. The regions R1 and R4 determine the region of unimodality, 
while the regions R2 and R3 determine the region of bimodality. Figures 1, 2 and 
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3 show the regions of unimodality and bimodality are not robust to the parameter 
β. To save space the following three cases are presented to demonstrate the 
complexity of the modal property of GWD. 

Case 1 (β = 0.5) 

Figure 1 shows the four distinct regions R1, R2, R3, and R4 for GWD modes, and 
four PDFs representing the four regions when λ = 1. For example, the PDF of GWD 
with parameters σ = 10 and a = 1.7 falls in R2, thus it is bimodal with one mode at 
0 and the other mode is at x = 2.71. In this case, only two curves C1 and C2 are 
found as boundaries for the four regions. The regression models for C1 and C2 have 
R2 = 100% and are given by 
 
 C1: 2 30.04373 5.556 0.1453 0.04509 , 1.85a a a a       , and 
 C2:  

21 2 30.6539 0.5853 0.2609 0.2292 ,1.52 10.a a a a


          

 
 

 
 
Figure 1. Regions of unimodality and bimodality and PDFs of GWD when β=0.5 and λ=1 
 
 

Case 2 (β = 1) 
Figure 2 shows the four distinct regions R1, R2, R3, and R4 for GWD modes, and 
four PDFs from the four regions when λ = 1. For example, the PDF corresponding 
to σ = 10 and a = 1.4 is bimodal, the first mode is at 0 and the other mode is at 
x = 3.55. Three curves C1, C2, and C3 separate the four regions. The regression 
models for C1, C2, and C3 all have R2 = 100% and are given by 
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 C1: 2 30.05499 6.977 0.2862 0.1072 , 1.49a a a a       ,  
 C2:  

11/2 3/21.668 2.999 1.655 0.3443 ,1.27 3.26,a a a a


        and 

 C3: 1/2 3/212.26 14.43 4.332 0.5391 ,3.26 10.a a a a          
 
 

 
 
Figure 2. Regions of unimodality and bimodality and PDFs of GWD when β=1 and λ=1 
 

Case 3 (β = 2) 

Figure 3 shows the four distinct regions R1, R2, R3, and R4 for GWD modes 
separated by three curves and four PDFs from the four regions when λ = 1. For 
example, the PDF corresponding to σ = 10 and a = 1 is bimodal with modes at 0 
and at x = 6.83. The three regression models, all with R2 = 100%, are given by 
 
 C1:  

2/33/2 3 9/20.01444 25.78 0.1418 0.1129 , 1.15,a a a a         

 C2:  
22 4 60.9390 2.688 1.814 0.4480 ,0.93 1.289,a a a a


        and 

 C3: 2 30.3479 1.531 0.1226 0.004977 ,1.289 5.05.a a a a         
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Figure 3. Regions of unimodality and bimodality and PDFs of GWD when β=2 and λ=1 
 
 
 
The distance between the two modes when GWD is bimodal was also examined, 
which is demonstrated in Table 1. From Table 1 it is observed that, when σ 
increases and all the other parameters are fixed, the distance between two modes 
increases, and when a increases, the distance decreases. However, no clear 
increasing or decreasing pattern is observed as β increases when all other 
parameters are fixed. Figure 4 further illustrates the diverse shapes of GWD and 
the distances between two modes when σ, β, or a changes, respectively. 
 
 

 
 
Figure 4. PDFs of GWD when the distribution is bimodal and λ=1 
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Table 1. Distance between two modes when GWD is bimodal and λ = 1 
 

a σ β = 0.6 β = 0.8 β = 1 β = 1.5 β = 2 

2 

4       1.68   
5  1.62 1.91 2.13 2.14 
6 1.82 2.07 2.21 2.44 2.57 
7 2.14 2.29 2.43 2.68 2.87 
8 2.34 2.49 2.61 2.89 3.10 
9 2.51 2.65 2.79 3.07 3.30 

10 2.65 2.80 2.94 3.25 3.49 

 3 

4  1.23 1.20   
5 1.50 1.52 1.51 1.35  
6 1.68 1.70 1.71 1.67  
7 1.81 1.85 1.87 1.88 1.78 
8 1.91 1.96 1.99 2.03 2.01 
9 1.99 2.05 2.09 2.16 2.18 

10 2.06 2.12 2.17 2.27 2.31 

4  

4 1.04 0.98 0.87     
5 1.27 1.22 1.15   
6 1.43 1.39 1.35   
7 1.55 1.53 1.50 1.37  
8 1.62 1.62 1.61 1.53  
9 1.69 1.71 1.70 1.67 1.54 

10 1.75 1.77 1.78 1.77 1.69 

5  

4 0.87 0.78       
5 1.07 0.99 0.88   
6 1.22 1.16 1.08   
7 1.33 1.29 1.23   
8 1.43 1.39 1.35 1.17  
9 1.49 1.47 1.44 1.32  

10 1.55 1.54 1.52 1.42 1.21 

6  

4 0.73 0.62    
5 0.92 0.81    
6 1.05 0.97 0.87   
7 1.17 1.09 1.02   
8 1.26 1.20 1.13   
9 1.34 1.29 1.23 1.03  

10 1.40 1.36 1.32 1.16   
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Parameter estimation 

Next, the parameter estimation using the maximum likelihood method is addressed 
and a simulation is conducted to study the performance of the method. Let (x1, x2 
… xn) be a random sample from a GWD with parameters β, σ, a, and λ, then the 
log-likelihood function from (1) is given by 
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The first partial derivatives of (6) are 
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and 
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On setting (7) through (10) equal to zero and solving the system of equations 

iteratively using NLMIXED procedure in SAS, the maximum likelihood estimates 
of the parameters are obtained. 

Because the parameters a and λ are from Weibull distribution (WD), and the 
parameters β and σ are from Gumbel distribution (GD), moment estimates of WD 
parameters and GD parameters are used as initial estimates. By assuming that (x1, x2 
…  xn) has WD, wi = ln(xi) can be computed. The initial estimates for a and λ are 

 0 / 6wa s  and  0 0exp /w a   , where w  and sw are respectively the 

mean and the standard deviation of the sample (w1 …  wn) (Johnson et al., 1994, pp. 
635-643), and  (1) 0.57722     is Euler’s constant. The random sample (x1, x2 

…  xn) is transformed to a sample from GD by 0
0ln(exp( / ) 1)a

i iz x   . The initial 

estimates for β and σ are 0 0/
0 e    and 0 6 /zs  , where 0 0z     and σ0 

are the moment estimates from GD, z  and sz are respectively the mean and standard 
deviation of (z1 …  zn) (Johnson et al., 1995, p. 12). 

A simulation study is conducted to examine the performance of the maximum 
likelihood estimates (MLEs). The bias (actual – estimate) and standard deviation 
are used to measure the performance. Three sample sizes n = 250, 500 and 1000 
are used. The data are simulated from standard exponential distribution and then 
transformed into GWD using the transformation  

1/
ln{( / ) 1}

a
X Y     . The 

process is repeated 100 times for each parameter combination and each sample size. 
This simulation study is conducted for many parameter combinations, but for 
brevity the results for the parameter combinations β = 0.5, 1, 4, σ = 2, a = 1, 2, 4, 
and λ = 1 are reported. 

The average bias and the standard deviation of the MLEs are computed and 
presented in Table 2. From the table it is observed that the bias appears reasonable 
and in general the standard deviation decreases as n increases. These observations 
also hold for the other parameter combinations that are not reported in Table 2. The 
simulation study shows that the maximum likelihood method is appropriate for 
estimating the GWD parameters. 
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Table 2. Average bias and standard deviation for MLEs when σ = 2 and λ = 1 
 

  

   

β a n bias sd bias sd bias sd bias sd 

0.5 

1 

250 -0.0096 0.0867 -0.0354 0.1514 -0.0734 0.2750 -0.0307 0.2047 

500 0.0082 0.0830 -0.0473 0.1326 -0.0853 0.2192 -0.0574 0.1931 

1000 0.0097 0.0642 -0.0329 0.1003 -0.0532 0.1565 -0.0471 0.1482 

2 

250 0.0065 0.0942 -0.1094 0.3163 -0.0893 0.2785 -0.0336 0.1140 

500 0.0136 0.0879 -0.1103 0.2745 -0.0921 0.2170 -0.0341 0.1054 

1000 0.0110 0.0652 -0.0674 0.2015 -0.0532 0.1565 -0.0230 0.0754 

4 

250 0.0065 0.0942 -0.2188 0.6325 -0.0893 0.2785 -0.0151 0.0562 

500 0.0148 0.0874 -0.2270 0.5470 -0.0935 0.2162 -0.0156 0.0512 

1000 0.0114 0.0650 -0.1363 0.4031 -0.0539 0.1570 -0.0109 0.0372 

1 

1 

250 -0.0049 0.1832 -0.0319 0.1281 -0.0644 0.2429 -0.0380 0.2055 

500 0.0443 0.1597 -0.0413 0.1030 -0.0482 0.1738 -0.0862 0.1872 

1000 0.0346 0.1375 -0.0300 0.0893 -0.0317 0.1248 -0.0625 0.1626 

2 

250 0.0335 0.2084 -0.1343 0.3083 -0.0905 0.2539 -0.0462 0.1276 

500 0.0663 0.1723 -0.1317 0.2518 -0.0755 0.1812 -0.0550 0.1061 

1000 0.0426 0.1435 -0.0790 0.1956 -0.0431 0.1287 -0.0348 0.0845 

4 

250 0.0335 0.2084 -0.2685 0.6166 -0.0905 0.2539 -0.0210 0.0625 

500 0.0682 0.1715 -0.2591 0.4872 -0.0722 0.1788 -0.0263 0.0512 

1000 0.0415 0.1431 -0.1498 0.3893 -0.0410 0.1296 -0.0160 0.0416 

4 

1 

250 -0.0876 0.7596 -0.0017 0.0956 -0.1131 0.4299 0.0160 0.2424 

500 0.0049 0.6856 -0.0160 0.0792 -0.0755 0.2637 -0.0192 0.2154 

1000 -0.0265 0.7518 -0.0021 0.0774 -0.0249 0.2223 -0.0195 0.2401 

2 

250 0.3277 0.8897 -0.1143 0.2423 -0.0298 0.3595 -0.0722 0.1654 

500 0.3395 0.8917 -0.1004 0.2081 0.0101 0.2951 -0.0761 0.1637 

1000 0.3088 0.8031 -0.0810 0.1858 0.0276 0.2184 -0.0657 0.1430 

4 

250 0.3712 0.8546 -0.1404 0.4622 -0.0696 0.4325 -0.0225 0.0836 

500 0.3876 0.8298 -0.1720 0.3838 -0.0244 0.2715 -0.0283 0.0754 

1000 0.2294 0.8272 -0.1171 0.3705 -0.0106 0.2208 -0.0189 0.0720 

Tests about parameter β  

When β = 1, the GWD reduces to 
 

       
1 1/ 1/1 ( / ) ( / ) ( / )

0 ( ) / 1 exp 1
a a aa x x xag x x e e e

 
  



  
    . (11) 

 
The three-parameter GWD in (11) can be compared with the four-parameter 

GWD in (1) by testing the null hypothesis 
 
 0 1: 1 against : 1H H   . (12) 

̂ ̂ â ̂
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The hypotheses in (12) are tested by using the likelihood ratio test (Neyman 
and Pearson, 1928), the Wald test (Wald, 1943), or the score test (Rao, 1948). 

The likelihood ratio statistic for testing (12) is 

0 1
ˆ ˆˆ ˆ2 ( , , ) ( , , , )a a        

 
, where 0 ( , , )a   is the log-likelihood value 

of the three-parameter GWD and 1
ˆ ˆˆ ˆ( , , , )a    is the log-likelihood value of the 

four-parameter GWD. The likelihood ratio statistic η has asymptotic chi-square 
distribution with one degree of freedom. 

The Wald statistic for testing (12) is ˆ ˆ
ˆ( 1) /Z SE

 
  , where ̂  is the MLE 

from the four-parameter GWD and ˆSE


 is the standard error of ̂ . The Wald 

statistic ˆZ

 has an approximate standard normal distribution. 

The score statistic for testing (12) is S = VTI−1V, where the score vector V is 
the 4×1 gradient vector of  with entries i iV    , I is the 4×4 information 

matrix with entries 2
, [ ]i j i jI E       ,  is the GWD log-likelihood function 

in (6), θ1 = β, θ2 = σ, θ3 = a, and θ4 = λ, and S is computed under the null hypothesis 
β = 1. The score statistic S has an approximate chi-square distribution with one 
degree of freedom. 

A simulation study is conducted to compare the powers of the three tests for 
parameter β. Three sample sizes n = 250, 500 and 1000 are used in the study. The 
data are simulated from GWD as described under Parameter Estimation, and the 
parameters are estimated by the method of maximum likelihood. The simulation is 
repeated 200 times for each parameter combination and each sample size. The 
proportion of times of rejecting H0 is used to estimate the power of each test. Two 
significance levels, 5% and 10%, are used and the results are similar. Many 
parameter combinations are used in the simulation. For brevity, Table 3 reports the 
results for 5% and the parameter values β = 0.5, 1, 2, 4, σ =1.6, 2, a = 1, 2, 3, 4, and 
λ = 1. 

When β ≤ 1, it is observed from Table 3 that the score test is the most powerful 
followed by the Wald test while the likelihood ratio test is poor. On the contrary, 
when β > 1, the likelihood ratio test is the most powerful followed by the score test 
and the Wald test. In general, the power increases as the sample size increases. 
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Table 3. The proportion of times the null hypothesis is rejected when λ = 1 
 

  n=250 n=500 n=1000 

σ β a LR Wald Score LR Wald Score LR Wald Score 

1.6 

0.5 

1 0.000 0.005 0.430 0.000 0.045 0.745 0.020 0.600 0.955 

2 0.000 0.000 0.420 0.000 0.060 0.685 0.040 0.600 0.940 

3 0.000 0.005 0.435 0.000 0.060 0.650 0.010 0.530 0.945 

4 0.000 0.000 0.495 0.000 0.060 0.690 0.020 0.620 0.970 

1 

1 0.000 0.000 0.015 0.000 0.005 0.050 0.005 0.040 0.070 

2 0.000 0.000 0.060 0.000 0.060 0.165 0.015 0.125 0.145 

3 0.000 0.000 0.070 0.000 0.060 0.140 0.010 0.060 0.095 

4 0.000 0.000 0.070 0.000 0.045 0.120 0.015 0.055 0.080 

2 

1 0.090 0.000 0.005 0.340 0.010 0.020 0.740 0.110 0.405 

2 0.070 0.000 0.005 0.220 0.000 0.020 0.720 0.055 0.340 

3 0.070 0.000 0.000 0.315 0.005 0.050 0.670 0.095 0.395 

4 0.065 0.000 0.005 0.295 0.000 0.030 0.675 0.115 0.350 

4 

1 0.605 0.010 0.120 0.980 0.050 0.450 1.000 0.515 0.975 

2 0.585 0.015 0.075 0.935 0.040 0.435 1.000 0.400 0.945 

3 0.490 0.000 0.065 0.935 0.025 0.385 1.000 0.410 0.945 

4 0.650 0.030 0.100 0.935 0.075 0.475 1.000 0.585 0.980 

2 

0.5 

1 0.000 0.090 0.660 0.030 0.560 0.945 0.480 0.970 1.000 

2 0.000 0.085 0.715 0.020 0.495 0.925 0.545 0.990 1.000 

3 0.000 0.080 0.740 0.035 0.490 0.940 0.525 0.985 1.000 

4 0.005 0.120 0.745 0.025 0.575 0.960 0.545 0.985 1.000 

1 

1 0.000 0.000 0.050 0.000 0.000 0.060 0.005 0.030 0.090 

2 0.000 0.020 0.100 0.010 0.050 0.110 0.030 0.070 0.080 

3 0.000 0.000 0.085 0.000 0.065 0.105 0.025 0.045 0.055 

4 0.000 0.010 0.090 0.005 0.065 0.080 0.010 0.025 0.030 

2 

1 0.360 0.005 0.030 0.730 0.080 0.360 0.985 0.760 0.925 

2 0.345 0.010 0.060 0.655 0.130 0.345 0.920 0.715 0.820 

3 0.290 0.005 0.055 0.645 0.105 0.360 0.940 0.735 0.830 

4 0.290 0.005 0.040 0.715 0.115 0.370 0.930 0.775 0.860 

4 

1 0.940 0.160 0.425 1.000 0.515 0.935 1.000 1.000 1.000 

2 0.840 0.110 0.285 1.000 0.380 0.835 1.000 0.955 1.000 

3 0.875 0.100 0.305 1.000 0.485 0.885 1.000 0.940 1.000 

4 0.880 0.095 0.365 1.000 0.510 0.905 1.000 0.965 1.000 

Applications 

Applications of the GWD to five data sets are now presented. These five data sets 
exhibit various shapes of distribution including right-skewed, approximately 
symmetric, left-skewed, reversed J-shape and bimodal distributions for 
demonstrating the flexibility of the GWD for fitting real world data. The parameters 
are estimated by using the method of maximum likelihood. The fit is compared to 
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other distributions based on the p-value of the Kolmogorov-Smirnov (K-S) statistic, 
and the Akaike information criterion (AIC). 

Breaking stress of carbon fibers data 

The data for breaking stress of carbon fibers of 50 mm length (GPa) in Table 4 is 
obtained from Nicholas and Padgett (2006). This data was used by Cordeiro and 
Lemonte (2011) to illustrate the application of the four-parameter beta-Birnbaum-
Saunders distribution (BBS) when compared to the two-parameter Birnbaum-
Saunders distribution (Birnbaum and Saunders, 1969). The data set is unimodal and 
is approximately symmetric (skewness = – 0.13 and kurtosis = 0.34). 
 
 
Table 4. Breaking stress of carbon fibers data 
 

0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84 
1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50 

2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82 

2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15 

3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39 

3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90 
 
 
Table 5. MLEs for breaking stress of carbon fibers data (standard errors in parentheses) 
 
Distribution BBS* BED BGE GWD 

Parameter 
estimates 

â  = 0.1930  â  = 7.5072  â  = 0.6473  ̂  = 3.4359  

(0.0259) (0.7642) (0.3077) (1.1494) 
    

b̂  = 1876.7324  b̂  = 20.9967  b̂  = 1198.50  ̂  = 5.5673  
(605.05) (1.4865) (5.9057) (2.8064) 

    
̂  = 1.0445  ̂  = 0.1131  ̂  = 5.099  â  =2.4231  

(0.0036) (0.0170) (1.9670) (0.5078) 
    

̂  = 57.6001   ̂  = 0.0824  ̂  = 1.1324  

(0.3313)  (0.0419) (0.4524) 

Log Likelihood – 91.36 – 91.22 – 85.96 – 84.83 
AIC 190.7 188.4 179.9 177.7 
K-S 0.1422 0.1338 0.0817 0.0666 
p-value 0.1384 0.1884 0.7710 0.9313 
 

*Parameter estimates and value of AIC statistic from Cordeiro and Lemonte (2011).  
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Figure 5. Histogram and the fitted PDFs for the breaking stress of carbon fibers data 
 
 
 

Four distributions are used to fit the data: the beta-exponential (BED) 
defined by Nadarajah and Kotz (2006), the beta-generalized exponential (BGE) 
defined by Barreto-Souza et al. (2010), the beta-Birnbaum-Saunders, and GWD. 
The MLEs and goodness of fit statistics are presented in Table 5. The MLEs, 
standard errors of MLEs, and the AIC statistic of BBS distribution are obtained 
from Cordeiro and Lemonte (2011). Figure 5 displays the histogram and the PDFs 
of the fitted distributions. 

To compare the four-parameter GWD in (1) to the three-parameter GWD in 
(11), the likelihood ratio statistic η = 14.302, the Wald statistic ˆZ


 = 2.119, and the 

score statistic S = 6.630 are obtained. All the test statistics lead to rejecting the null 
hypothesis of three-parameter GWD in favor of the four-parameter GWD at 5% 
significance level. The four-parameter GWD outperforms the other three 
distributions by comparing the AIC and K-S statistics. This application suggests 
that the four-parameter GWD fits unimodal symmetric data very well when 
compared to the other distributions. 

Australian athletes’ data 

The Australian athletes’ data reported by Cook and Weisberg (1994) contains 13 
variables on 102 male and 100 female Australian athletes collected at the Australian 
Institute of Sport. Jamalizadeh et al. (2011) used the heights for the 100 female 
athletes and the hemoglobin concentration levels for the 202 athletes to illustrate 
the application of a generalized skew two-piece skew-normal distribution. 
Choudhury and Abdul Matin (2011) also used percentage of the hemoglobin blood 
cell for the male athletes to illustrate the application of an extended skew 
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generalized normal distribution. Next, the GWD was applied to two of the variables 
in the Australian athletes’ data, the sum of skin folds (SSF) and the height in 
centimeters for the 100 female athletes. 

The Weibull-Pareto distribution (WPD) defined by Alzaatreh, Famoye and 
Lee (2013), the beta-normal distribution (BND) defined by Eugene et al. (2002), 
the exponentiated-Weibull (EWD) defined by Mudholkar and Srivastava (1993), 
and the GWD are used to fit both data sets. 

The sum of skin folds for the 100 female athletes in Table 6 is right skewed 
(skewness = 0.79, kurtosis = 0.73). The MLEs and the goodness of fit statistics are 
in Table 7. The histogram and the densities of the fitted distributions are provided 
in Figure 6. 
 
 
Table 6. The sum of skin folds data 
 

33.8 36.8 38.2 41.1 41.6 42.3 43.5 43.5 46.1 46.2 46.3 47.5 

47.6 48.4 49.0 49.9 50.0 52.5 52.6 54.6 54.6 55.6 56.8 57.9 

58.9 59.4 61.9 62.6 62.9 65.1 67.0 68.3 68.9 69.9 70.0 71.3 

71.6 73.9 74.7 74.9 75.1 75.2 76.2 76.8 77.0 80.1 80.3 80.3 

80.3 80.6 83.0 87.2 88.2 89.0 90.2 90.4 91.0 91.2 95.4 96.8 

97.2 97.9 98.0 98.1 98.3 98.5 99.8 99.9 101.1 102.8 102.8 103.6 

103.6 104.6 106.9 109.0 109.1 109.5 109.6 110.2 110.7 111.1 113.5 114.0 

115.9 117.8 122.1 123.6 125.9 126.4 126.4 131.9 136.3 143.5 148.9 156.6 

156.6 171.1 181.7 200.8                 

 
 

The three tests about parameter β are used to compare the three- and four-
parameter GWD and the tests are not significant. Thus, the three-parameter GWD 
is adequate to fit the data. On fitting the three-parameter GWD, the K-S statistic 
shows that it is not as good as the four-parameter GWD. By comparing the 
goodness of fit statistics among the four distributions in Table 7, it is observed that 
all distributions provide good fits. The GWD provides the best fit based on the K-
S statistic. This application suggests that GWD fits right skewed data very well. 
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Table 7. MLEs for sum of skin folds data (standard errors in parentheses) 
 
Distribution WPD BND EWD GWD 

Parameter 
estimates 

ĉ  = 3.6308 â  = 9.7706 â  = 1.2245 ̂  = 1.0299 

(1.0568) (0.4008) (0.4378) (1.0094) 
    

̂  = 0.7183 b̂  = 0.1967 ̂  = 6.5038 ̂  = 1.3303 

(0.1799) (0.0223) (6.3413) (0.3218) 
    

̂  = 23.0497 ̂  = 9.1517 ̂  = 41.4980 â  = 2.2896 

(7.6212) (4.3612) (24.4832) (0.9184) 
    
 ̂  = 25.4309  ̂  = 81.7841 
 (0.9049)  (27.2786) 

Log Likelihood – 486.07 – 487.06 – 487.17 – 485.89 
AIC 978.1  982.1  980.3  979.8  
K-S 0.0825  0.0711  0.0808  0.0705  
p-value 0.5043  0.6925  0.5307  0.7022  
 
 

 
 
Figure 6. Histogram and the fitted PDFs for sum of skin folds data 
 
 
 

The height in centimeters for the 100 Australian female athletes in Table 8 is 
unimodal and left skewed (skewness = –0.57, kurtosis = 1.32). The MLEs and the 
goodness of fit statistics are in Table 9. The histogram and the PDFs of the fitted 
distributions are plotted in Figure 7. 

The hypothesis in (12) is used to test the significance of the parameter β. All 
the tests, the likelihood ratio (η = 13.772), the Wald ( ˆZ


 = 2.309), and the score 
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(S = 4.487) reject the null hypothesis in favor of the four-parameter GWD. By 
comparing the goodness of fit statistics among the four distributions it was found 
that all distributions are competitors as they provide good fits to the data. The four-
parameter GWD appears to provide the best p-value of the K-S statistic, and shares 
the best value of the AIC statistic with the exponentiated-Weibull distribution. This 
application suggests that GWD fits left skewed unimodal data very well. 
 
 
Table 8. The heights data 
 

148.9 149.0 156.0 156.9 157.9 158.9 162.0 162.0 162.5 163.0 163.9 165.0 

166.1 166.7 167.3 167.9 168.0 168.6 169.1 169.8 169.9 170.0 170.0 170.3 

170.8 171.1 171.4 171.4 171.6 171.7 172.0 172.2 172.3 172.5 172.6 172.7 

173.0 173.3 173.3 173.5 173.6 173.7 173.8 174.0 174.0 174.0 174.1 174.1 

174.4 175.0 175.0 175.0 175.3 175.6 176.0 176.0 176.0 176.0 176.8 177.0 

177.3 177.3 177.5 177.5 177.8 177.9 178.0 178.2 178.7 178.9 179.3 179.5 

179.6 179.6 179.7 179.7 179.8 179.9 180.2 180.2 180.5 180.5 180.9 181.0 

181.3 182.1 182.7 183.0 183.3 183.3 184.6 184.7 185.0 185.2 186.2 186.3 

188.7 189.7 193.4 195.9                 

 
 
Table 9. MLEs for heights data (standard errors in parentheses) 
 
Distribution WPD BND EWD GWD 

Parameter 
estimates 

ĉ  = 8.1823 â  = 0.8697 â  = 14.7405 ̂  = 6.2028 

(3.3244) (0.6607) (3.2361) (2.2535) 
    

̂  = 2.8449 b̂  = 6.3120 ̂  = 2.7836 ̂  = 3.9326 

(1.1079) (0.7454) (1.3390) (2.9597) 
    

̂  = 125.1377 ̂  = 191.46 ̂  = 170.26 â  = 12.268 

(16.9742) (3.9729) (4.5462) (2.1530) 
    
 ̂  = 12.0376  ̂  = 147.02 
 (3.1219)   (12.5835) 

Log Likelihood – 351.03 – 350.31 – 350.37 – 349.33 
AIC 708.1 708.6 706.7 706.7 
K-S 0.0801 0.0725 0.0711 0.0565 
p-value 0.5427 0.6692 0.6923 0.9071 
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Figure 7. Histogram and the fitted PDFs for heights data 
 
 

Application to lifetime data 

Two data sets that represent the stress rapture life in hours of Kevlar 49/epoxy 
strands when subjected to a constant sustained stress level pressure until failure are 
used to illustrate an application to lifetime data. Both data sets are from Andrews 
and Herzberg (1985) and the original source is Barlow et al. (1984). Cooray and 
Ananda (2008) used the data sets to illustrate the usefulness of the generalized half 
normal distribution (GHN) when compared to other commonly used distributions. 
Four distributions are used to fit both data sets: the exponentiated-Weibull, beta-
normal, generalized half normal, and GWD. The MLEs, log-likelihood value, and 
the value of K-S statistic of GHN distribution are obtained from Cooray and 
Ananda (2008). 

The data set in Table 10 represents the failure times of Kevlar 49/epoxy 
strands when the pressure is at 90% stress level. This data is leptokurtic, unimodal, 
highly right skewed, and has reversed-J shape with a potential outlier (skewness = 
3.05, kurtosis = 14.47). 

The MLEs, log likelihood values, values of AIC and K-S, and p-values of 
the K-S are in Table 11. Figure 8 contains the histogram and the PDFs of the fitted 
distributions. The three tests about parameter β are used to test its significance. 
Only the likelihood ratio test rejects the null hypothesis of the three-parameter 
GWD, while the other two tests fail to reject the null hypothesis in (12). Because 
the likelihood ratio test is the most powerful when β > 1, one can conclude that the 
parameter β is significant. 
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Table 10. Kevlar 49/epoxy strands failure times data (pressure at 90%) 
 

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 

0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 

0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40 

0.42 0.43 0.52 0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 

0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90 

0.92 0.95 0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10 1.11 

1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43 1.45 1.50 

1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 

1.80 1.81 2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 

4.69 7.89                   

 
 
Table 11. MLEs for Kevlar 49/epoxy strands failure times data (pressure at 90%) 
(standard errors in parentheses) 
 
Distribution GHN* EWD BND GWD 

Parameter 
estimates 

̂  = 1.2238 â  = 1.0604 â  = 12.4298 ̂  = 1.8064 

 (0.2399) (0.3071) (0.5037) 
    

̂  = 0.7108 ̂  = 0.7929 b̂  = 0.4467 ̂  = 3.2713 
 (0.2870) (0.0475) (0.6459) 
    
 ̂  = 1.2180 ̂  = -1.5065 â  = 0.9200 

 (0.3933) (0.1347) (0.1594) 
    
  ̂  = 1.1413 ̂  = 0.2071 
    (0.0317) (0.1072) 

Log Likelihood – 103.33 – 102.79 – 132.98 – 100.23 
AIC 210.7 211.6 274.0 208.5 
K-S 0.0800 0.0844 0.1129 0.0687 
p-value 0.5377 0.4680 0.1526 0.7266 
 

*MLEs, log likelihood, and K-S from Cooray and Ananda (2008), the standard errors were not given. 
 
 

By comparing the p-value of the K-S and the AIC among the four 
distributions, it is observed that the GWD outperforms the other distributions. This 
application suggests that the GWD fits unimodal reversed-J shape data very well. 
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Figure 8. Histogram and the fitted PDFs for failure times data (90% pressure) 
 
 
 

The second part of the Kevlar data in Table 12 represent the failure times 
when the pressure is at 70% stress level. This data is multimodal, platykurtic, and 
approximately symmetric (skewness = 0.1, kurtosis = –0.79) with very wide range. 
Table 13 contains the MLEs, AIC and K-S statistics, and the p-value of the K-S 
statistic. Figure 9 provides the histogram and the PDFs of the fitted distributions. 
 
 
Table 12. Kevlar 49/epoxy strands failure times data (pressure at 70%) 
 

1051 1337 1389 1921 1942 2322 3629 4006 4012 4063 

4921 5445 5620 5817 5905 5956 6068 6121 6473 7501 

7886 8108 8546 8666 8831 9106 9711 9806 10205 10396 

10861 11026 11214 11362 11604 11608 11745 11762 11895 12044 

13520 13670 14110 14496 15395 16179 17092 17568 17568   

 
 

When the three tests about β are used to compare the three-parameter GWD 
with the four-parameter GWD, the parameter β is not significantly different from 
1. The three-parameter GWD was also fitted to the data and the result is comparable 
to that of four-parameter GWD. By using the K-S statistic, the three-parameter 
GWD is not as good as the four-parameter GWD. 

By comparing the goodness of fit statistics in Table 13 among the four 
distributions, it was found that the four distributions are competitors and fit the data 
very well. The GWD and the beta-normal distribution capture the data with a 
bimodal density curve. The GHN with the smallest AIC and largest p-value of the 
K-S statistic does not capture the bimodality property. This application suggests 
that GWD is capable of providing an adequate fit to bimodal data. 
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Table 13. MLEs for Kevlar 49/epoxy strands failure times data (pressure at 70%) 
(standard errors in parentheses) 
 
Distribution GHN* EWD BND GWD 

Parameter 
estimates 

̂  = 10906.98 â  = 5.2226 â  = 0.1626 ̂  = 1.3118 

 (2.9883) (0.1039) (0.5144) 
    

̂  = 1.64067 ̂  = 0.2644 b̂  = 0.1157 ̂  = 4.1091 
 (0.1887) (0.0199) (1.0456) 
    
 ̂  = 14559 ̂  = 7826 â  = 2.6948 

 (2007.54) (1759.97) (0.8101) 
    
  ̂  = 1339.35 ̂  = 6165.69 
    (245.62) (1749.51) 

Log Likelihood – 479.56 – 479.03 – 480.52 – 478.51 
AIC 963.1 964.1 969.0 965.0 
K-S 0.067 0.0825 0.0797 0.0749 
p-value 0.9804 0.8926 0.9144 0.9462 
 

* MLEs, log likelihood, and K-S from Cooray and Ananda (2008), the standard errors were not given. 
 
 

 
 
Figure 9. Histogram and the fitted PDFs for failure times data (70% pressure) 
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Summary and conclusion 

In this article, some properties of the four-parameter GWD, a member of the T-X 
family of distributions are provided. The paper provides important properties such 
as modes and mean deviations for GWD. The method of maximum likelihood is 
proposed for parameter estimation. The result of the simulation on the performance 
of the maximum likelihood method shows that the method is appropriate for 
estimating the parameters of GWD. Three test statistics are used to test the 
significance of the parameter β. The score test is the most powerful when β ≤ 1, 
while the likelihood ratio test is the most powerful when β > 1. Five datasets are 
used to illustrate the application of the GWD and the results are compared to other 
existing distributions. The results of these applications suggest that GWD can be 
used to fit right-skewed, left-skewed, symmetric, unimodal and bimodal data. 
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A Bayesian analysis was developed with different noninformative prior distributions such 
as Jeffreys, Maximal Data Information, and Reference. The aim was to investigate the 
effects of each prior distribution on the posterior estimates of the parameters of the 
extended exponential geometric distribution, based on simulated data and a real application. 
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Introduction 

Adamidis & Loukas (2005) introduced an extension of the exponential geometric 
distribution (Adamidis & Loukas, 1998), naming it as an extended exponential 
geometric (EEG) distribution, to analyze lifetime data. This distribution provides 
increasing or decreasing hazard functions, depending on the values of its 
parameters. In this way, EEG gives a great flexibility of fit for the data. 

If T is a random variable denoting the lifetime of a component with an 
extended exponential geometric (EEG) distribution, then the probability density is 
given by: 
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with t > 0 and parameters γ > 0 and λ > 0. Let us denote this distribution as 
EEG( γ, λ ). 
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The survival and hazard functions of EEG( γ, λ ) distribution, for a fixed time 
t, is given by 
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respectively. 

The mean and variance of the EEG distribution are given, respectively, by 
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where Ψ( z, s, a ) is known as Lerch transcendental function (Erdelyi et al., 1953), 
given by 
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Adamidis et al. (2005) and Kitidamrongsuk (2010) gave additional properties of 
the EEG distribution. 

Figures 1 and 2 present different forms for the density, survival and hazard 
functions for the EEG distribution considering different values of γ and λ. 

The motivation here is to present a Bayesian analysis when there is little prior 
knowledge available or that reflects mainly the information from the sample.. In 
this situation, it is important to use noninformative priors, however, it can be 
difficult to choose a prior distribution that represent one of this situations. Thus, the 
main aim of this paper is to choose a noninformative prior distribution is for the 
parameters parameters λ and γ of the EEG distribution and to study the effects of 
these different priors in the resulting posterior distributions, especially in situations 
of small sample sizes, a common situation in applications. 
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Figure 1. Probability density functions for the EEG distribution with values for the scale 
and shape parameters given respectively, by λ = 0.5, 1.0, 1.5 and γ = 0.5, 1.5, 2.0, 2.5, 
3.0, 3.5. 
 
 
 

 
 
Figure 2. Survival functions and hazard functions for the EEG distribution with values for 
the scale and shape parameters given respectively, by λ = 0.5, 1.0 and γ = 0.5, 1, 3, 5. 
 
 
 

Commonly used noninformative prior distributions are derived, such as 
uniform (Bayes, 1763; Laplace, 1774), Jeffreys (1967), reference priors (Bernardo, 
1979; Berger & Bernardo, 1992), and the uncommon MDIP prior (Zellner, 1977, 
1984). A simulation study is conducted comparing their performance in terms of 
their summaries and coverage rates of credible intervals. 
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Numerical integration based on stochastic simulation methods as the Markov 
Chain Monte Carlo (MCMC) will be used to simulate samples of the marginal 
posterior distribution of interest. In particular, we will be using the Metropolis-
Hastings algorithm to obtain the posterior summaries of interest (see Gelfand & 
Smith, 1990 or Chib & Greenberg, 1995). 

Methodology 

Maximum Likelihood Estimation 
Let X1, …, Xn be a random sample from EEG( γ, λ ) distribution with density (1). 
The likelihood function for the parameters γ and λ is given by 
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where γ > 0 and λ > 0. 

The logarithm of the likelihood function (4) is given by 
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By setting ∂l(x; γ, λ ) / ∂γ = 0 and ∂l(x; γ, λ ) / ∂λ = 0 and after some algebraic 

manipulations, we obtain the likelihood equations 
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whose solutions provide the maximum likelihood estimators of the parameters γ 
and λ. Note that the solutions of the likelihood equations (6) cannot be obtained 
analytically and hence numerical approaches need to be used. 

Adamidis et al. (2005) propose to use the EM algorithm (Dempster et al., 
1977) to solve the nonlinear equations (6) and find the MLE of γ and λ. The EM 
iterations are given by 
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Kitidamrongsuk (2010) shows in detail the computations of the expected 

Fisher information matrix Ι(γ,λ) of the EEG distribution, given by 
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is a polygarithmica function (Erdelyi et al., 1953). The maximum likelihood 
estimates for γ and λ are biased for small sample problems. In the case of large 
samples they become unbiased and asymptotically efficient. Such estimates are 
asymptotically Normal distributed with joint distribution given by 
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Bayesian Analysis  

In this section we consider the Bayesian estimation of the unknown parameters λ 
and γ. 

First, a prior distribution which expresses little information on the parameters 
γ and λ can be obtained from uniform densities, which do not favor any particular 
value of λ and γ. In this case, the joint prior distribution for λ and γ is given by 
 
  ,  constant.U      (11) 
 
Another widely-used method to specify prior information is through the product of 
independent gamma distributions for each parameter λ and γ, since γ > 0 and λ > 0, 
that is, γ ~ Gamma(α1, β1) and λ ~ Gamma(α2, β2), where Gamma(a,b) denotes a 
gamma distribution with mean a/b and variance α/b2; and α1, α2, β1 and β2 are 
known hyperparameters. Thus, the joint prior distribution for λ and γ is given by 
 
    1 21 1

1 2, exp .G
          

     (12) 
 
Assume α1 = α2 = β1= β2 = 0.01, that is, a non-informative prior given by (12). 

An another well-known existing non-informative prior, which represents a 
situation with little a priori information on the parameters was introduced by 
Jeffreys (1967), also known as the Jeffreys rule. The Jeffreys prior has been widely 
used due to the invariance property for one to one transformations of the parameters. 
The Jeffreys prior is defined as 
 
    , det , .J     I   (13) 

 
where Ι(γ, λ) is the Fisher information matrix defined in (8) and (9). 

From the equation (13), we get 
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It is interesting to observe it was found in (14) independent priors for the 

parameters λ and γ, but this joint prior has a dependence structure. 
Zellner (1977, 1984) proposed a non-informative prior based on the 

Shannon's entropy (1948). The idea is to maximize the information from the data 
in relation to the prior information on the parameters. This non-informative prior 
distribution known as "Maximal Data Information Prior" is obtained from the 
solution of the equation 
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For the EEG distribution given in (1) the resulting non-informative prior is 

given by 
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where Ψ(z,s,a) is defined in (5). 

The proposed Zellner prior distribution (15) has limited invariance properties, 
where invariance is only verified under linear transformations of the vector (γ, λ) 
and not for all differentiable one by one transformations. Bernardo (1979) and 
Berger & Bernardo (1992) use the Kullback-Liebler distance between the posterior 
distribution p (θ | x) the prior distribution π (θ) to maximize the information from 
the data in relation to the known prior information for the parameters to find a non-
informative prior. Additional information about the reference prior can be found in 
Bernardo (2005). 
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An important feature in this approach is the different treatment for interest 
and nuisance parameters when θ is a vector of parameters. In the presence of 
nuisance parameters, a typical case in this paper, one must establish an ordered 
parameterization with the parameter of interest singled out and then follow the 
procedure below. The algorithm of Berger and Bernardo (1992) to derive the 
reference prior can be described in four steps, as follows. We will present here the 
two-parameters case in details. 

Let θ = (θ1, θ2) be the two parameters vector; θ1 will be considered the 
parameter of interest and θ2 is the nuisance parameter. The algorithm used to obtain 
the reference prior is given by 
 
Step 1:  Find the conditional reference prior π2 (θ2 | θ1), assuming that θ1 is 
given by 
 
    2 2 1 22 1 2| , ,     I   (17) 

 
where I22 (θ1, θ2) is the term of order (2,2) of the information Fisher matrix. 
 
Step 2:  Normalize π2 (θ2 | θ1). If π2 (θ2 | θ1) is improper, choose a sequence 
of sets Ω1 ⊆ Ω2 ⊆  ⋯→ Ω, where π2 (θ2 | θ1) is proper. Find 
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Step 3:  Find the reference prior for θ1. The result is given by the solution of 
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Step 4:  Find the prior distribution for (θ1, θ2), when θ2 is the nuisance 
parameter 
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where *

1  is any fixed point within the positive density for all πm. 
 

For the EEG distribution given in (1), the reference prior when λ is the 
parameter of interest is given by 
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The reference prior when γ is the parameter of interest is given by 
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Finally, derive the prior distributions for the parameters the resulting joint 

posterior distributions for γ and λ is proportional to the product of the likelihood 
function (4) and the prior distributions π (γ, λ) given in (11), (12), (14), (16), (22) 
and (23), that is 
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By using any prior distribution proposed is not possible to derive the marginal 
posterior distributions in an analytical form for the parameters γ and λ. Thus, to 
obtain the posterior information on the parameters of interest as the point estimator 
and Bayes credibility intervals, we use MCMC algorithms to simulate samples of 
the values of γ and λ from the joint posterior distributions. 

Results 

Two applications of the theoretical results discussed in the previous sections are 
presented. The first involves a comparison of the estimation methods based on 
simulated data; the second shows an application of the EEG distribution to real data.  

Analysis via numerical simulation 

In this example, some simulations are performed via the Monte Carlo method. The 
goal is to study the effect of different non-informative prior distributions on the 
posterior summaries and also to compare these results with the obtained results 
using classical inference analysis. Posterior summaries of interest are evaluated 
using Monte Carlo Markov Chain (MCMC) methods. The influence of sample size 
on the accuracy of the obtained estimators is also examined. The following 
procedure was adopted: 
 

1. Determine the values of γ and λ. 
2. Specify the sample size n. 
3. Generate values of a distribution EEG(γ,λ) with size n. 
4. Using the data obtained in Step 3, calculate the estimates for the 

parameters γ and λ using MCMC in the Bayesian approach and MLE 
in the classical approach. 

5. Repeat the steps 3 and 4 N times. 
 

Consider two set of the true values for the parameter (γ, λ) given by 
(γ, λ) = (0.5, 2) and (γ, λ) = (2, 4) representing decreasing and increasing hazard 
functions, respectively. The simulated data are generate from EEG distribution with 
the parameter values above for different sample sizes, as n = 10, 25 and 50. 
Tables 1 and 2 show the posterior mean and median, respectively, by considering 
the non-informative priors proposed in this paper for the parameters. The maximum 
likelihood estimates (MLE) are also available.  
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Table 1. Posterior medians and MLE for λ = 2 and γ = ½ for 1000 samples of sizes 10, 
25 and 50. 
 

λ = 2 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 
n=10 2.98(1.62) 2.80(0.84) 2.96(0.87) 2.88(0.81) 3.61(1.54) 1.15(1.06) 3.44(2.61) 
n=25 2.62(1.10) 3.00(1.05) 2.93(0.88) 2.92(0.83) 2.95(1.00) 2.01(1.06) 2.54(1.26) 
n=50 2.17(0.76) 2.52(0.70) 2.58(0.67) 2.71(0.67) 2.56(0.72) 2.07(0.77) 2.26(0.80) 

        
γ = ½ Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  
n=10 1.01(0.43) 1.31(0.77) 1.12(0.17) 1.13(0.14) 1.50(0.77) 0.35(0.49) 1.51(2.02) 
n=25 0.87(0.39) 0.92(0.42) 0.95(0.23) 0.99(0.21) 0.97(0.46) 0.56(0.41) 0.81(0.68) 
n=50 0.63(0.32) 0.71(0.27) 0.81(0.27) 0.89(0.26) 0.76(0.32) 0.56(0.29) 0.64(0.36) 

 
 
Table 2. Posterior medians and MLE for λ = 4 and γ = 2 for 1000 samples of sizes 10, 25 
and 50. 
 

λ = 4 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 
n=10 4.85(1.21) 4.62(1.50) 5.31(1.55) 4.73(0.99) 5.08(1.25) 5.08(1.25) 4.86(2.03) 
n=25 4.56(0.81) 4.02(0.77) 3.82(0.71) 3.90(0.73) 4.77(0.87) 3.50(0.84) 4.41(1.42) 
n=50 3.76(0.57) 3.98(0.61) 3.51(0.41) 3.56(0.40) 3.40(0.64) 3.67(0.65) 4.22(0.94) 

        
γ = 2 Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  
n=10 3.07(0.50) 1.81(0.40) 3.25(0.42) 3.33(0.40) 3.26(0.42) 3.26(0.42) 3.65(3.23) 
n=25 2.70(0.49) 1.76(0.34) 1.62(0.25) 1.74(0.27) 2.94(0.53) 1.52(0.56) 2.87(2.06) 
n=50 1.71(0.45) 1.90(0.41) 1.53(0.29) 1.60(0.32) 1.95(0.45) 1.70(0.52) 2.43(1.16) 

 
 

From Tables 1 and 2, it is observed that when the hazard function is 
decreasing (0 < γ < 1) the prior distribution given by product of independent 
gamma distributions gives the best estimation for the parameters while for the 
increasing hazard function (γ > 1) the MDIP prior distribution provides the best one 
for all sample sizes considered. 

A criterion for comparison of the prior distributions consists on checking the 
frequentist coverage probabilities of the posterior intervals. We therefore compare 
the frequency at which the true values of γ and λ are included in their 95% posterior 
intervals. This frequency should be close to 95% for large numbers of repeated 
experiments.  
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Table 3. Coverage probabilities for λ = 2 and γ = ½ for 1000 samples of sizes 10, 25 and 
50. 
 

λ = 2 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 
n=10 98.50% 99.10% 95.70% 96.70% 90.60% 96.50% 95.20% 
n=25 95.20% 91.60% 89.70% 90.00% 93.40% 97.20% 95.00% 
n=50 97.50% 94.30% 95.00% 91.30% 92.20% 96.60% 94.70% 

        
γ = ½ Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  
n=10 99.20% 98.00% 95.70% 94.80% 90.60% 97.10% 94.60% 
n=25 95.50% 97.80% 97.90% 97.70% 95.00% 97.80% 95.50% 
n=50 97.60% 97.90% 96.00% 95.50% 93.70% 97.70% 95.40% 

 
 
Table 4. Coverage probabilities for λ = 4 and γ = 2 for 1000 samples of sizes 10, 25 and 
50. 
 

λ = 4 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 
n=10 95.50% 96.60% 88.10% 98.00% 91.20% 91.20% 96.60% 
n=25 94.60% 98.20% 96.80% 97.00% 94.00% 95.60% 94.30% 
n=50 97.30% 98.40% 96.00% 97.60% 98.50% 96.60% 95.00% 

        
γ = 2 Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  
n=10 97.10% 99.50% 93.80% 97.00% 96.60% 96.60% 92.50% 
n=25 98.50% 99.10% 99.50% 99.90% 98.50% 97.10% 92.00% 
n=50 98.20% 98.90% 97.00% 99.50% 98.80% 96.50% 93.90% 

 

An example with literature data 

Now consider a lifetime dataset related to an electrical insulator subjected to 
constant stress and strain, introduced by Lawless (1982). The dataset does not have 
censored values and represents the lifetime (in minutes) to failure: 0.96, 4.15, 0.19, 
0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 16.03, 4.85, 2.78, 4.67, 1.31, 12.06, 
36.71 and 72.89.  

Assume that the EEG distribution is appropriated to analyze this dataset, and 
then it will be compared with other lifetime distributions such as Weibull, Gamma, 
and Lognormal. As shown, the efficiency of the different non-informative prior 
distributions changes with the shapes of the hazard functions, therefore, to get good 
inferences on parameters of interest it is necessary to have some prior information 
on how the hazard function behaves for the Lawless data set. In this way, Barlow 
& Campo (1975) proposed a simple graphical technique that has been widely used 
to verify the behavior of the risk function called TTT plot (total time for testing). 
The graph is constructed with the plot of the consecutive quantities [r/n, G (r/n)], 
where G (r/n) is a function given by 
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where r = 1, ..., n and t(i), i = 1, …, n are the order statistics in the sample. 

Using the TTT curve in an empirical scale, one can determine the shape of 
the hazard function for the lifetime data. A diagonal line indicates that the data have 
a constant hazard function; if the curve is convex the risk is decreasing; if it is 
concave, there is an indication that the risk is increasing; if first is convex and after 
this is concave then there is an indication that there is a bathtub shape for the hazard 
function; if it is first concave and after this convex, there is an indication of inverse 
form of the bath for the hazard function. The Figure 3 shows how to verify the 
behavior of the hazard function. 
 
 

 
 
Figure 3. TTT plots for different distributions indicating the shape of the hazard function. 
 
 
 

Some TTT transformations can be studied to solve other problems. Nair et al. 
(2008) show some of these transformations applied in survival analysis. Figure 4 
shows the TTT plot for the Lawless data set. 
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Figure 4. TTT plot for the dataset lifetime related to an electrical insulator subjected to 
constant stress and strain (Lawless data). 
 
 
 

It is observed in Figure 4 that the TTT plot is convex; then it can be concluded 
that the risk is a decreasing function. When the hazard function is decreasing, it was 
observed from the results of section 4.1, that non-informative priors obtained 
through the product of independent gamma distributions is the best prior with little 
prior information about the parameters of interest. The joint posterior distribution 
of λ and γ (24) is obtained by replacing π(γ, λ) by (12). It is necessary to use 
numerical methods to extract information from the marginal posterior distributions 
λ and γ. MCMC methods are used to simulate samples for the joint posterior 
distribution; that is, also for the marginal posterior distributions of interest. 

It was generated 110,000 iterations with a “burn-in“ of 10,000 values and 
jumps of size 10; so we get chains of the marginal posterior distributions for λ and 
γ of size 10,000 obtained using MCMC methods. To verify the convergence of the 
chains, we have used Geweke (1992) diagnosis, which indicated the convergence 
of the two chains. The convergence and autocorrelations is also observed in the 
trace-plots of the simulated series given in Figure 5. 

To verify the performance of other lifetime distributions we also consider as 
non-informative prior, the product of independent gamma distributions 
γ ~ Gamma (0.01, 0.01), λ ~ Gamma (0.01, 0.01) assuming the following lifetime 
distributions: EGE, Weibull, Gamma and Lognormal distribution. The results are 
compiled in Tables 5 and 6, respectively. 
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Figure 5. Trace-plots and autocorrelation graphs for the generated values of λ and γ. 
 
 
 
Table 5. Posterior estimates (means) for γ and λ considering different probability 
distributions for the Lawless data set. 
 

Parameters EGE Weibull Gamma Log-normal 
γ 0.0482 (0.0161) 0.7629(0.1356) 0.6725(0.1870) 1.6880(0.3969) 
λ 0.4513 (0.1649) 7.8250(4.2250) 0.0474(0.0183) 2.6410(1.0200) 

 
 
Table 6. Obtained results for the DIC, BIC and AIC criteria for the different probability 
distributions for the Lawless data set. 
 

Criteria EGE Weibull Gamma Log-normal 
DIC 138.96 140.70 141.30 141.30 
BIC 140.55 148.06 143.13 151.62 
AIC 142.44 149.95 141.24 149.73 

 
 

Based on any of the criteria used by the table it can be concluded that EGE 
was the best fit to the offered data. 

Conclusion 

The use of extended exponential geometric (EEG) distributions showed a good 
flexibility of fit for lifetime data applications and could be an alternative 
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distribution to other usual distributions in Survival analysis. The great number of 
existing non-informative prior distributions can cause difficulties in the choice of 
an adequate prior with little information a priori, mainly when these prior 
distributions do not produce similar posterior summaries. In this way, the 
development of a general theory for the construction of non-informative prior 
distributions is an important topic to be investigated by researchers in the Bayesian 
inference. 

The results showed the effects of different non-informative prior distributions 
related to the changes in the risk function using extended exponential geometric 
(EEG) distributions. Therefore, we recommend the product of gamma distributions 
Gamma (0.01, 0.01) when the hazard function is decreasing and the non-
informative MDIP prior distribution when the hazard function is increasing. With 
these choices of prior we surely get better inferences for the parameters. 
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A discrete analogue of generalized Burr-type XII distribution is introduced using a general 
approach of discretizing a continuous distribution. It may be worth exploring the possibility 
of developing a discrete version of the six parameter generalized Burr-type XII distribution 
for use in modeling a discrete data. This distribution is suggested as a suitable reliability 
model to fit a range of discrete lifetime data, as it is shown that hazard rate function can 
attain monotonic increasing (deceasing) shape for certain values of parameters. The 
equivalence of discrete generalized Burr-type XII (DGBD-XII) and continuous generalized 
Burr-type XII (GBD-XII) distributions has been established. The increasing failure rate 
property in the discrete setup has been ensured. Various theorems relating this new model 
to other probability distributions have also been proved. 
 
Keywords: Discrete generalized Burr-type XII distribution, discrete lifetime models, 
reliability, failure rate 
 

Introduction 

In reliability theory a number of continuous life models is now available in the 
subject to portray the survival behavior of a component or a system. Many 
continuous life distributions have been studied in details (see for example Kapur & 
Lamberson, 1997; Lawless, 1982; Sinha, 1986). However, it is sometimes 
impossible or inconvenient in life testing experiments to measure the life length of 
a device on a continuous scale. For example the lifetime of an on/off switching 
device is a discrete random variable, or life length of a device receiving a number 
of shocks it sustain before it fails is also a discrete random variable.  

Recently, the special roles of discrete distributions have received recognition 
from survival analysts. Many continuous distributions have been discretized. For 
example, the Geometric and Negative binomial distributions are the discrete 
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versions of Exponential and Gamma distributions. Nakagawa (1975) discretized 
the Weibull distribution. The discrete versions of the normal and Rayleigh 
distributions were also proposed by Roy (2003, 2004). Discrete analogues of 
Maxwell, two parameter Burr-type XII and Pareto distributions were also proposed 
by Krishna and Punder (2007, 2009). Recently the inverse Weibull distribution was 
also discretized by Jazi, Lai and Alamatsaz (2010). This article addresses the 
problem of discretization of generalized Burr-type XII (GBD-XII) distribution, 
because there is a need to find more plausible discrete lifetime distributions to fit 
to various life time data. 

The Discrete Generalized Burr XII Distribution: 

Roy (1993) pointed out that the univariate geometric distribution can be viewed as 
a discrete concentration of a corresponding exponential distribution in the 
following manner 
 
      1p X x s x s x     when 0,1,2,x   
 
where X is discrete random variable following geometric distribution with 
probability mass functions as 
 
    1 , 0,1,2,xp x x      
 
where s(x) represents the survival function of an exponential distribution of the 
form s(x) = exp(−λx), clearly θ = exp(−λ), 0 < θ < 1. Thus, one to one 
correspondences between the geometric distribution and the exponential 
distribution can be established, the survival functions being of the same form. 

The general approach of discretizing a continuous variable is to introduce a 
greatest integer function of X i.e., [X] (the greatest integer less than or equal to X 
till it reaches the integer), in order to introduce grouping on a time axis. If the 
underlying continuous failure time X has the survival function s(x) = p(X > x) and 
times are grouped into unit intervals, so that the discrete observed variable is 
dX = [X]. 
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The probability mass function of dX can be written as 
 

 
     

   

   

1

1

1 , 0,1,2,

p x p dX x p x X x

x x

s x s x x

     

  

   

  

 
 x  being the cumulative distribution function of random variable X. 

In reliability theory, many classification properties and measures are directly 
related to the functional form of the survival function. The increasing failure rate 
(IFR), decreasing failure rate (DFR), Increasing failure rate average (IFRA), 
decreasing failure rate average (DFRA), new better than used (NBU), new worse 
than used (NWU), new better (worse) than used in expectation NBUE (NWUE) 
and increasing (decreasing) mean residual lifetime IMRL (DMRL) etc. are 
examples of such class properties as may be seen from Barlow and Proschan (1975). 
If discretization of a continuous life distribution can retain the same functional form 
of the survival function then many reliability measures and class properties will 
remain unchanged. In this sense, the discrete concentration concept is considered 
herein as a simple approach that can generate a discrete life distribution model. 
Thus, given any continuous life variable with survival function s(x) a discrete 
lifetime variable X with probability mass function p(x) is defined by 
 
      1 , 0,1,2,p x s x s x x      
 
Using this concept for the purpose of discretizing generalized Burr-type XII 
distribution, suppose that Y1 and Y2 are independently distributed continuous 
random variables. If Y1 has an exponential density function 
  1

1 1, , 0; 0yf y e y  
    and Y2 has a gamma distribution with pdf

 
 

2 1
2 2 2; , , 0; 0; 0

k
y kf y k e y k y

k


     


, then the random variable 

1

2

YX c
Y

  has a six parameter generalized Burr-type XII distribution with 

parameters (μ = 0, σ = 1, α, θ, c, k) with a density function 
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  (1) 

 
The pdf plot for DGB-XII variate X for different values of parameters is shown in 
Figure 1. It is evident that the distribution of the random variable X is right skewed. 
 
 

 
 
Figure 1. PDF plot for GBD-XII (α, θ, c, k) 
 
 
 

Introducing location parameter μ and scale parameter σ in (1) results in 
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Reliability measures of GBD-XII random variable X 
Various reliability measures of GBD-XII random variable X are given by 
 
Survival Function: 
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rth Moment: 
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Failure Rate: 
 

  
 

   

1

, 0; 0; 0; 0; 0
c

c

f x k cxr x x k c
s x x


 

 



      


  

 
Second Rate of Failure: 
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A discrete generalized Burr XII variable, dX can be viewed as the discrete 

concentration of the continuous generalized Burr-type XII variate X distribution, 
where the corresponding probability mass function of dX can be written as 
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The pmf of DGBD-XII takes the form 
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Figures 2 through 5 give the pmf plot of (2) for 

(α = 0.3; θ = 0.1; c = 4; β = 0.1), (α = 0.3; θ = 0.1; c = 1; β = 0.1), 
(α = 0.3; θ = 0.01; c = 0.5; β = 0.1), and (α = 1; θ = 1; c = 2; β = 0.5), respectively. 
 
 

 
 

Figure 2. PMF plot for DGBD-XII     Figure 3. PMF plot for DGBD-XII 
(α = 0.3; θ = 0.1; c = 4; β = 0.1)                   (α = 0.3; θ = 0.1; c = 1; β = 0.1) 
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  Figure 4. PMF plot for DGBD-XII          Figure 5. PMF plot for DGBD-XII 
          (α = 0.3; θ = 0.01; c = 0.5; β = 0.1)                     (α = 1; θ = 1; c = 2; β = 0.5) 
 
 
 
The pmf at x = 0 is independent of the shape parameter c. It is monotonic decreasing 
if 
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log loglog log 2
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otherwise it is no longer monotonic decreasing but is unimodal, having a mode at 
x = 1 i.e., it takes a jump at x = 1 and then decreases for all x ≥ 1.For α = θ = c = 1 
pmf of discrete generalized Burr-type XII distribution coincides with discrete 
pareto distribution and for α = θ = 1 DGBD-XII reduces to discrete Burr-type XII 
distribution. 

To introduce location parameter μ and scale parameter σ then the discretized 
version of f(x1) is given as 
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where ∅(x1) represents cumulative distribution function of random variable X. 

The survival function of discrete generalized Burr-type XII random variable 
dX is given by 
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Thus, survival function of discrete generalized DGBD-XII is same as continuous 
GBD-XII for integer points of x. 

The failure rate of discrete generalized Burr-type XII random variable is given 
by 
 

  
 

 

 

 
log 1
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  (3) 

 
i.e., the conditional probability that failure occurs at a time x given that the system 
has not failed by x − 1. 

Note that r(0) = r(1) gives 
 log 2

log 2
c a


 

   (for example). If α = θ = 1, the 

hazard function of discrete generalized Burr-type XII distribution coincides with 
two parameter discrete Burr-type XII distribution. Note that r(x) is decreasing in x 
if 0 < c < a and for c = a; r(0) = r(1) and for c > a, r(0) > r(1) i.e., monotonic 
increasing, and r(x) < r(x − 1)   x > 2 i.e., r(x) decreases for all x > 1, uniformly 
in β. 
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For different values of α and θ, c can take different values as: 
 
a) θ = .5; α = 100 gives c = 1.003 
b) θ = .99; α = .5 gives c = 1.993 
c) θ = 9999; α = .9 gives c = 13.43 
d) θ = 1; α = 1 gives c = 1.585 

 
Taking part a) it could be seen that for  

 
θ = .5; α = 100 gives c = 1.003 (for example as above) 
r(0) > r(1), for 0 < c < a (for example when c = 1) 
and for c = a; r(0) = r(1) 
and for c > a, r(0) < r(1) implies a monotonic increasing  
and r(x) < r(x − 1) ∀ x ≥ 2  
i.e., r(x) takes a jump at r = 1 and decreases for all x ≥ 1, uniformly in β. 

 
Similarly, for all other cases where c can take different values for different 

values of α and θ, r(x) will show its monotonicity accordingly as in the above case. 
For discrete generalized Burr-type XII distribution i.e., DGBD-XII(α, θ, c, β) 
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and to see whether SRF(x) shows the same monotonicity as r(x) 
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For SRF(0) = SRF(1) 
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     (for example) 
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Using the same procedure as in (3) it is clear that SRF(x) shows the same 
monotonicity as that of r(x). 
 
 

 
 

Figure 6. second rate of failure        Figure 7. second rate of failure 
plot of DGBD-XII        plot of DGBD-XII  

    (α = 1; θ = 1; c = 2; β = 0.1)        (α = 1; θ = 1; c = 1.585; β = 0.1) 
 
 
 

 
 

Figure 8. second rate of failure        Figure 9. second rate of failure 
plot of DGBD-XII        plot of DGBD-XII  

   (α = 1; θ = 1; c = 0.5; β = 0.1)          (α = 1; θ = 1; c = 0.1; β = 0.1) 
 
 

Figures 6 through 9 illustrate the alternative hazard rate plot for DGBD-XII 
for different values of parameters. Note that SRF(x) is decreasing in x if 0 < c < a 
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and for c = a; SRF(0) = SRF(1) and for c > a, SRF(0) > SRF(1) i.e., monotonic 
increasing, and SRF(x)  < SRF(x − 1)   x > 2 i.e., SRF(x) decreases for all x > 1. 

The rth moment of discrete generalized Burr-type XII distribution, i.e. DGBD 
(α, θ, c, β), is as follows 
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which are infinite series and cannot be written as closed form. The parameter β of 
DGBD-XII (α, θ, c, β) and the parameter k of GBD-XII (α, θ, c, k), are matched via 
β = e−k. It is therefore observed from the survival functions of DGBD-XII and 
GBD-XII distributions 
 

        loglog log log
1 00

c ckx xk c
x xx dx           

      

       

 
In other words, μd−1 < μc < μd where μc and μd are the means of the continuous and 
discrete generalized Burr XII distributions, respectively. 
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Appendix: Some theorems related to discrete generalized 
Burr XII distribution 

Lemma 1 
If X is a continuous random variable with increasing (decreasing) failure rate IFR 
(DFR) distribution, then dX = [X] has a discrete increasing (decreasing) failure rate 
dIFR (dDFR). 
 
Proof:  (See Roy and Dasgupta, 2001) 

Lemma 2 
If X is a non-negative continuous random variable and Y is a non-negative integer 
valued discrete random variable, then 
 
  X Y X Y     
 
Proof:  Note that 
 
             X Y X Y X Y X Y         

 
where the last equality holds because Y is integer valued. Therefore 
 
     X Y X Y     

Theorem 1 

If X ~ DGBD-XII (μ = 0; σ = 1; α, θ, c, β) then 
 

  log ~ where ; 0; 0; 0; 0
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kxY Geo e c k 
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Proof:   
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  ~y Geo      y = 0, 1, 2, … 
 
As βy is the survival function of geometric random variable. 

Theorem 2 

If X ~ GBD-XII (μ = 0; σ = 1; α, θ, c, k) then Y = [X] ~ DGBD-XII (μ = 0; σ = 1; α, 
θ, c, β); where β = e−k; α > 0; c > 0; k > 0; θ > 0 
 
Proof: 
 
              P Y y     P X y P X y     

  

by Lemma 2 

  
kk cy  



    

  loglog
cy  

      y = 0, 1, 2, … 
       β = e−k; 0 < β < 1 
 
Thus, Y = [X]~DGBD-XII (α, θ, c, β) 
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Theorem 3 
If X ~ exp(k), the exponential distribution with failure rate k. Then 
 

1/log cXeY
 



  
   
   

 ~ DGBD-XII (α, θ, c, β), where β = e−k; α > 0, c > 0, k > 0, 

θ > 0. 
 
Proof: 
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   by Lemma 2 

  log logcP X y      
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              P Y y   loglog
cy  

     y = 0, 1, 2, … 
 
which is the survival function of DGBD-XII (α, θ, c, β). Thus, Y ~ DGBD-XII (α, 
θ, c, β). 

Theorem 4 

Let X be a random variable following continuous generalized Burr XII distribution 
with E(Xr) < ∞   r = 1, 2, … 
 
Then E(Yr) < ∞ where Y = [X] ~ DGB (α, θ, c, k) 
 
Proof:  Proof is straightforward, because 0 ≤ [X] ≤ X, so clearly if 
E(Xr) < ∞   r = 1, 2, …, then E([X]2) < ∞. 
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Recently, the Bayesian analysis of the two-component mixture of lifetime models under 
singly type I censored samples was discussed. The Bayes estimation of the parameters of 
mixture of two Rayleigh distributions (MTRD) is developed under doubly censoring. 
Different informative priors, under squared error loss function and k-loss function, have 
been assumed for the posterior estimation. The performance of different estimators has 
been compared in terms of posterior risks by analyzing the simulated and real life data sets. 
 
Keywords: Inverse transformation method, mixture model, doubly censoring, loss 
functions, Bayes estimator  
 

Introduction 

In survival analysis, data are subject to censoring. The most common type of 
censoring is right censoring, in which the survival time is larger than the observed 
right censoring time. In some cases, however, data are subject to left, as well as, 
right, censoring. When left censoring occurs, the only information available to an 
analyst is that the survival time is less than or equal to the observed left censoring 
time. A more complex censoring scheme is found when both initial and final times 
are interval-censored. This situation is referred as double censoring, or the data with 
both right and left censored observations are known as doubly censored data. 

Analysis of doubly censored data for simple (single) distribution has been 
studied by many authors. Fernandez (2000) investigated maximum likelihood 
prediction based on type II doubly censored exponential data. Fernandez (2006) has 
discussed Bayesian estimation based on trimmed samples from Pareto populations. 
Khan et al. (2010) studied predictive inference from a two-parameter Rayleigh life 
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model given a doubly censored sample. Kim and Song (2010) have discussed 
Bayesian estimation of the parameters of the generalized exponential distribution 
from doubly censored samples. Khan et al. (2011) studied sensitivity analysis of 
predictive modeling for responses from the three-parameter Weibull model with a 
follow-up doubly censored sample of cancer patients.  Pak et al. (2013) has 
proposed the estimation of Rayleigh scale parameter under doubly type-II 
censoring from imprecise data.  

In statistics, a mixture distribution is signified as a convex fusion of other 
probability distributions. It can be used to model a statistical population with 
subpopulations, where constituent of mixture probability densities are the densities 
of the subpopulations. Mixture distribution may appropriately be used for certain 
data set where the subsets of the whole data set possess different properties that can 
best be modeled separately. They can be more mathematically manageable, because 
the individual mixture components are dealt with more ease than the overall 
mixture density. The families of mixture distributions have a wider range of 
applications in different fields such as fisheries, agriculture, botany, economics, 
medicine, psychology, electrophoresis, finance, communication theory, geology 
and zoology. 

 Soliman (2006) derived estimators for the finite mixture of Rayleigh model 
based on progressively censored data. Sultan, et al. (2007) described the properties 
and estimation of mixture of two inverse Weibull distributions. Sultan, et al. (2007) 
have discussed some properties of the mixture of two inverse Weibull distributions. 
Saleem and Aslam (2008) presented a comparison of the Maximum Likelihood 
(ML) estimates with the Bayes estimates assuming the Uniform and the Jeffreys 
priors for the parameters of the Rayleigh mixture. Kundu and Howalder (2010) 
considered the Bayesian inference and prediction of the inverse Weibull 
distribution for type-II censored data. Saleem et al. (2010) considered the Bayesian 
analysis of the mixture of Power function distribution using the complete and the 
censored sample. Shi and Yan (2010) studied the case of the two parameter 
exponential distribution under type I censoring to get empirical Bayes estimates. 
Eluebaly and Bouguila (2011) have presented a Bayesian approach to analyze finite 
generalized Gaussian mixture models which incorporate several standard mixtures, 
widely used in signal and image processing applications, such as Laplace and 
Gaussian. Sultan and Al-Moisheer (2012) developed approximate Bayes estimation 
of the parameters and reliability function of mixture of two inverse Weibull 
distributions under Type-2 censoring. 
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The Proposed Mixture Model and the Likelihood Function 

The probability density function (pdf) of the Rayleigh distribution with rate 
parameter  i  is 
 
    2 2 2 22 exp ,   0 ,   0,   1,2,  and 1,2,...,i ij ij i ij i ij i if x x x x i j n           (1) 

 
The cumulative distribution function (CDF) of the distribution is 
 
    2 2 21 exp ,   0 ,   0,   1,2,  and 1,2,...,i ij i ij ij i iF x x x i j n           (2) 

 
A density function for mixture of two components densities with mixing weights 
(p1, 1- p1) is 
 
        1 1 1 2 11 ,   0 1.f x p f x p f x p      (3) 
 
The cumulative distribution function for the mixture model is: 
 
        1 1 1 21F x p F x p F x    (4) 
 

Consider a random sample of size ‘ n ’ from Rayleigh distribution, and let 

1, ,...,r r sx x x  be the ordered observations that can only be observed. The remaining 
‘ 1r  ’ smallest observations and the ‘ n s ’ largest observations have been 
assumed to be censored. Now based on causes of failure, the failed items are 
assumed to come either from subpopulation 1 or from subpopulation 2; so the 

1 11 1,...,r sx x and 
2 22 2,...,r sx x  failed items come from first and second subpopulations 

respectively.  The rest of the observations which are less than rx and greater than 

sx have been assumed to be censored from each component. Where 

 1 21, 2,max ,s s sx x x  and  1 21, 2,min ,r r rx x x . Therefore, 1 1 1 1m s r   and 

2 2 2 1m s r   number of failed items can be observed from first and second 
subpopulations respectively. The remaining ( 2)n s r    items are assumed to be 

censored observations, and 2s r  are the uncensored items. Where 1 2r r r   , 
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1 2s s s  and 1 2m m m  . Then the likelihood function for the Type II doubly 

censored sample     1 1 2 21 1 2 2x ,..., , ,...,r s r sx x x x , assuming the causes of the failure 

of the left censored items are identified, can be written as:
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 (6) 

 

 

Bayes Estimation 

For the Bayesian estimation, let us assume that the parameters i 1 and  1,2p i   are 
independent random variables, and then we consider the following priors for 
different parameters: 

Bayesian Estimation using Nakagami Prior 

The prior for the rate parameters  i for i = 1, 2, is assumed to be the Nakagami 
distribution, with the hyper-parameters ai and bi, given by 
 

  

where   W x1 j( ) = x2
1 i( )

i=r1

s1

å + n - s - k3( )x2
s( ) + kx2

r1( ) ,    W x2 j( ) = x2
2 i( )

i=r2

s2

å + k3x
2

s( ) + kx2
r2( ) ,

m 1= s1 - r1 +1,  and m2 = s2 - r2 +1
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a af a b
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 (7) 

 
The prior for p1 is assumed to be the beta distribution, whose density is given 

by 
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 (8) 

 
From equation (7)-(8), propose the following joint prior density of the vector
  1  2 1, , p    
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112 1
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 (9) 

 
By multiplying Equation (9) with Equation (6), the joint posterior density for 

the vector   given the data becomes 
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 (10) 

 
Marginal distributions of i 1 and  1,2 p i   can be obtained by integrating the 

nuisance parameters. 

Bayesian Estimation using Chi Prior 

The prior for the rate parameters  i  for i=1, 2, is assumed to be the chi distribution, 
with the hyperparameter ei, given by 
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 (11) 

The prior for p1 is assumed to be the beta distribution, whose density is given 
by 
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From equation (11)-(12), we propose the following joint prior density of the 

vector   1  2 1, , p    
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 (13) 

 
By multiplying Equation (13) with Equation (6), the joint posterior density 

for the vector   given the data becomes 
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 (14) 

Bayesian Estimation using Rayleigh Prior 

The prior for the rate parameters  i for i=1, 2, is assumed to be the Rayleigh 
distribution, with the hyperparameter vi given by 
 

  
2
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 (15) 

  
The prior for p1 is assumed to be the beta distribution, whose density is given 

by 
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 (16) 

From equation (15)-(16), propose the following joint prior density of the 
vector   1  2 1, , :p    
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By multiplying Equation (17) with Equation (6), the joint posterior density 

for the vector   given the data becomes 
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 (18) 

 
Marginal distributions of i 1 and  1,2 p i   can be obtained by integrating the 

nuisance parameters. 

Bayes Estimation of the Vector of Parameters   
The Bayesian point estimation is connected to a loss function in general, signifying 
the loss induced when the estimate ̂ differ from true parameter . Because there 
is no specific rule that helps us to identify the appropriate loss function to be used, 
squared error loss is used in this article as it serve as standard loss. It is well known 
that under the squared error loss function, the Bayes estimator of a function of the 
parameters is the posterior mean of the function and risk is the posterior variance. 

It is defined as    
2ˆ ˆ,l      . 

It was originally used in estimation problems when the unbiased estimator of 
θ was being considered. Another reason for its popularity is due to its relationship 
to least squares theory. The use of SELF makes the calculations simpler. 
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The K-Loss function (KLF), defined as:    
2ˆ ˆ ˆ, /l       , was proposed 

by Wasan (1970). It is well fitted for a measure of inaccuracy for an estimator of a 
scale parameter of a distribution defined on  0, .R    Under K-Loss function 

the Bayes estimates and posterior risks are defined as 1ˆ ( | ) / ( | ),E E    x x  and 

   1ˆ 2 ( | x) ( | x) 1E E      respectively. 

The respective marginal distribution of each parameter has been used to 
derive the Bayes estimators and posterior risks for 1 2,   and p1 under the squared 
error loss function (SELF) and K- loss functions (KLF). The Bayes estimators and 
posterior risks of 1 2,   and p1 under squared error loss function (SELF) assuming 
Nakagami prior are given as: 

 
The Bayes estimators of 1 2,   and p1are: 
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The Posterior risks of 1 2,   and p1 are: 
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The Bayes estimators of 1 2,   and p1 under KLF are:
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The Posterior risks of 1 2,   and p1 under KLF are: 
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Where 1N   is formulized as 
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1 3 1 1A n s k s c      and 2 2 3 1A s k d    

 
Similarly, expressions for Bayes estimators and their posterior risks under the 

rest of the priors can be obtained with little modifications. 
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Elicitation 

 In Bayesian analysis the elicitation of opinion is a crucial step. In statistical 
inference, the characteristics of a certain predictive distribution proposed by an 
expert determine the hyper-parameters of a prior distribution. Focus on a method 
of elicitation based on prior predictive distribution. The elicitation of hyper-
parameter from the prior  p   is a difficult task. The prior predictive distribution 
is used for the elicitation of the hyper-parameters which is compared with the 
experts' judgment about this distribution and then the hyper-parameters are chosen 
in such a way so as to make the judgment agree as closely as possible with the given 
distribution. See also Grimshaw et al. (2001), O’Hagan et al. (2006), Jenkinson 
(2005) and Leon et al. (2003). According to Aslam (2003), the method of elicitation 
is to compare the prior predictive distribution with experts’ assessment about this 
distribution and then to choose the hyper-parameters that make the assessment 
agree closely with the member of the family. The prior predictive distributions 
under all the priors are derived using: 
 

   ( )p y p y p d


    |  

Elicitation under Nakagami distribution 

The prior predictive distribution using Nakagami prior is: 
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 (19) 

 
For the elicitation of the six hyper-parameters, six different intervals are considered. 
From Equation (19), the experts’ probabilities/assessments are supposed to be 0.10 
for each case. The six integrals for equation (19) are considered with the following 
limits of the values of random variable ‘Y’: (0, 10), (10, 20), (20, 30), (30, 40), (40, 
50) and (50, 60) respectively. For the elicitation of the hyper-parameters a1, a2, b1, 
b2, c1, and d1. These six equations are solved simultaneously through computer 
program developed in SAS package using the command of PROC SYSLIN. Thus 
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the values of hyper-parameters obtained by applying this methodology are: 
0.000231, 0.012109, 0.52114, 4.99325, 0.52130, and 0.14790 respectively. 

Elicitation under Chi Prior 

The prior predictive distribution using Chi prior is: 
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Now, elicit four hyper-parameters, so consider the four integrals. The expert 
probabilities are assumed to 0.15 for each integral with the following limits of the 
values of random variable ‘Y’: (0, 15), (15, 30), (30, 45) and (45, 60). Using the 
similar kind of program, as discussed above, we have the following values of the 
hyper-parameters e1 = 20.1056, e2 = 14.23569, c2 = 0.09377 and d2 = 0.08749. 

Elicitation under Rayleigh Prior 

The prior predictive distribution using Rayleigh prior is: 
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Again, elicit four hyper-parameters, so consider the four integrals. The expert 
probabilities are assumed to 0.15 for each integral with the following limits of the 
values of random variable ‘Y’: (0, 15), (15, 30), (30, 45) and (45, 60). Using the 
similar kind of program, as discussed above, we attained the following values of 
the hyper-parameters v1 = 5.052104, v2 = 5.03251, c3 = 0.67213 and d3 = 0.91035. 

Simulation Study and Comparisons  

A simulation study is carried out in order to investigate the performance of Bayes 
estimators under tenfold choice of the parametric values, different sample sizes, 
and the different values of the mixing proportion. Take random samples of sizes n 
= 20, 40, and 80 from the two component mixture of Rayleigh distributions with 
tenfold choice of parameters 
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          1 2( , ) 0.1,  0.12 , 1,  1.2 , 10,  12 , 0.1,  12 , 10,  0.12 ,   1 0.45 and 0.6.p 

To generate a mixture data we make use of probabilistic mixing with probabilities 
p1 and (1- p1). A uniform number u is generated n times and if u < p1 the 
observation is taken randomly from 1F  (the Rayleigh distribution with parameter

1 ) otherwise from 2F (from the Rayleigh distribution with parameter 2 ). The 
choice of the censoring time is made in such a way that the censoring rate in the 
resultant sample is approximately 20%. To implement censored samplings, we 
considered that the

1 11 1,...,r sx x  and 
2 22 2,...,r sx x  failed items come from first and 

second subpopulations respectively. The rest of the observations which are less than 
rx and greater than sx have been assumed to be censored from each component. 

Where  1 21, 2,max ,s s sx x x and  1 21, 2,min ,r r rx x x . The simulated data sets have 

been obtained using following steps: 
 

Step 1: Draw samples of size ‘n’ from the mixture model 
Step 2: Generate a uniform random no. u for each observation 
Step 3: If u  , the take the observation from first subpopulation 
otherwise from the second subpopulation 
Step 4: Determine the test termination points on left and right, that is, 
determine the values of rx and sx  
Step 5: The observations which are less than rx and greater than sx have 
been considered to be censored from each component 
Step 6: Use the remaining observations from each component for the 
analysis 

 
To avoid an extreme sample, we simulate 10, 000 data sets each of size n. The 

Bayes estimates and posterior risks (in parenthesis) are computed using 
Mathematica 8.0. The average of these estimates and corresponding risks are 
reported in tables 1- 15. The abbreviations used in the tables are: B.Es: Bayes 
estimators; P.Rs: Posterior risks; NP: Nakagami prior; CP: Chi prior; RP: Rayleigh 
prior. 
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Table 1: B.Es and P.Rs under NP using  1 2 1, , (0.1, 0.12, 0.45) and (0.1, 0.12, 0.60)p    
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
0.104076 0.127713 0.498425 0.099628 0.135951 0.665779 

(0.000479) (0.000558) (0.013229) (0.000285) (0.000904) (0.011667) 

40 
0.099427 0.12652 0.48622 0.094406 0.131125 0.659375 

(0.000223) (0.000306) (0.007231) (0.000127) (0.000431) (0.006346) 

80 
0.099036 0.125807 0.478841 0.092618 0.13063 0.61648 

(0.000114) (0.000161) (0.003865) (0.000057) (0.000230) (0.003218) 
k-loss function 

20 
0.101884 0.123181 0.480102 0.095373 0.136428 0.655312 

(0.086648) (0.069120) (0.129905) (0.056005) (0.104087) (0.061058) 

40 
0.101669 0.123008 0.471869 0.096164 0.131118 0.645074 

(0.045012) (0.037679) (0.070063) (0.027334) (0.053150) (0.031642) 

80 
0.090768 0.121778 0.470942 0.097312 0.125869 0.640866 

(0.021446) (0.019760) (0.034345) (0.014017) (0.028207) (0.016573) 
        

 
Table 2: B.Es and P.Rs under NP using  1 2 1, , (1, 1.2, 0.45) and (1, 1.2, 0.60)p  

 
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
1.03790 1.26375 0.498181 0.978002 1.35085 0.665995 

(0.046897) (0.054602) (0.013210) (0.027554) (0.087625) (0.011594) 

40 
1.00642 1.25934 0.482283 0.979230 1.31290 0.657711 

(0.022787) (0.028565) (0.007234) (0.013363) (0.045048) (0.005650) 

80 
0.996073 1.25518 0.478649 0.989340 1.307418 0.616586 

(0.011180) (0.015747) (0.003863) (0.006855) (0.023781) (0.003222) 
k-loss function 

20 
1.02547 1.297250 0.484873 10.11040 12.737600 0.481255 

(0.085012) (0.069721) (0.126936) (0.083902) (0.068839) (0.129790) 

40 
0.972684 1.24985 0.477066 9.85076 12.45580 0.474996 

(0.043184) (0.037322) (0.068486) (0.043278) (0.037003) (0.069297) 

80 
0.994972 1.22715 0.469378 9.91883 12.11990 0.468498 

(0.024387) (0.021374) (0.037459) (0.022678) (0.019891) (0.036650) 
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Table 3: B.Es and P.Rs under NP using  1 2 1, , (10, 12, 0.45) and (10, 12, 0.60)p  
 

 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
10.82959 12.9605 0.497084 9.58255 13.61630 0.663355 

(4.256710) (4.8388) (0.013244) (2.66321) (7.85146) (0.01170) 

40 
10.12890 12.88640 0.479166 9.77352 13.49536 0.656693 
(2.39442) (2.71684) (0.007305) (1.40887) (4.29918) (0.006435) 

80 
9.61493 12.67810 0.462094 9.88275 13.45520 0.616606 

(1.05203) (1.58376) (0.003820) (0.58717) (2.30094) (0.003233) 
k-loss function 

20 
10.11040 12.73760 0.481255 9.84880 12.80650 0.653839 

(0.083902) (0.068839) (0.12979) (0.056169) (0.104837) (0.061849) 

40 
9.85076 12.45580 0.474996 9.94419 12.63070 0.651788 

(0.043278) (0.037003) (0.069297) (0.027645) (0.054150) (0.031611) 

80 
9.91883 12.11990 0.468498 9.95821 12.58110 0.640724 

(0.022678) (0.019891) (0.036650) (0.013426) (0.028228) (0.015684) 
        

 
Table 4: B.Es and P.Rs under NP using  1 2 1, , (0.10, 12, 0.45) and (0.10, 12, 0.60)p  

 
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
0.095619 13.67980 0.534912 0.092487 13.81620 0.687435 

(0.000301) (4.868910) (0.012036) (0.000201) (7.189420) (0.010396) 

40 
0.090655 13.54530 0.51823 0.091992 13.63860 0.677511 

(0.000131) (2.343030) (0.006457) (0.000096) (3.41382) (0.005650) 

80 
0.090905 13.48370 0.509322 0.091260 13.5980 0.672210 

(0.000065) (1.148460) (0.003346) (0.000048) (1.767790) (0.002953) 
k-loss function 

20 
0.0914225 12.87110 0.522308 0.093144 13.86210 0.679012 
(0.067737) (0.053268) (0.097694) (0.048171) (0.078296) (0.049925) 

40 
0.092511 12.72830 0.511618 0.0951075 13.70450 0.673099 

(0.032515) (0.025796) (0.052023) (0.023389) (0.037372) (0.026303) 

80 
0.09455 12.37891 0.505934 0.096113 12.96763 0.669953 

(0.015937) (0.012696) (0.026871) (0.011527) (0.018268) (0.013511) 
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Table 5: B.Es and P.Rs under NP using  1 2 1, , (10, 0.12, 0.45) and (10, 0.12, 0.60)p  
 

 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
11.92930 0.112064 0.403231 11.53870 0.113048 0.585750 

(4.278770) (0.000325) (0.011879) (3.16833) (0.000483) (0.011740) 

40 
11.5720 0.114125 0.412042 11.46580 0.11513 0.586132 

(2.13578) (0.000155) (0.006265) (1.51987) (0.000219) (0.006334) 

80 
11.17240 0.118567 0.42970 11.40931 0.116862 0.589618 
(1.08183) (0.000075) (0.003216) (0.756977) (0.000103) (0.003294) 

k-loss function 

20 
11.64350 0.10762 0.417776 10.98420 0.106840 0.574552 

(0.067737) (0.053254) (0.15071) (0.048171) (0.078242) (0.078744) 

40 
11.44770 0.118174 0.423946 10.87421 0.108845 0.586549 

(0.032519) (0.025790) (0.080978) (0.023391) (0.037356) (0.041779) 

80 
11.15780 0.119735 0.438659 10.74670 0.109872 0.596061 

(0.015944) (0.012698) (0.042023) (0.011528) (0.018256) (0.021540) 
        

 
Table 6: B.Es and P.Rs under CP using  1 2 1, , (0.1, 0.12, 0.45) and (0.1, 0.12, 0.60)p  

 
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
0.160528 0.169018 0.479278 0.134094 0.195013 0.664322 

(0.000519) (0.000592) (0.013082) (0.000277) (0.000893) (0.0116345) 

40 
0.133714 0.147046 0.468172 0.11004 0.172682 0.663936 

(0.000286) (0.000329) (0.007333) (0.000116) (0.000448) (0.006115) 

80 
0.111222 0.139219 0.448705 0.103352 0.151533 0.66273 

(0.000147) (0.000196) (0.004006) (0.000058) (0.000223) (0.003196) 
k-loss function 

20 
0.161522 0.158551 0.465088 0.13577 0.198858 0.653999 
(0.04053) (0.043568) (0.145568) (0.029991) (0.049799) (0.061370) 

40 
0.122886 0.14806 0.464529 0.112829 0.167765 0.652043 

(0.030112) (0.031199) (0.072191) (0.019077) (0.034061) (0.030841) 

80 
0.104790 0.132506 0.463772 0.101234 0.143011 0.650817 
(0.02132) (0.020869) (0.038239) (0.010604) (0.020665) (0.015416) 
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Table 7: B.Es and P.Rs under CP using  1 2 1, , (1, 1.2, 0.45) and (1, 1.2, 0.60)p  
 

 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
1.52970 1.57752 0.476725 1.35361 1.88630 0.663527 

(0.046080) (0.051958) (0.013179) (0.027818) (0.080777) (0.011650) 

40 
1.26130 1.41822 0.469789 1.16501 1.66429 0.659758 

(0.026077) (0.031378) (0.007406) (0.013935) (0.044256) (0.006292) 

80 
1.14492 1.25617 0.45906 1.05707 1.42491 0.656866 

(0.014751) (0.015752) (0.004146) (0.006667) (0.021669) (0.003355) 
k-loss function 

20 
1.53236 1.49543 0.454182 1.32818 1.84131 0.654349 

(0.041669) (0.045185) (0.147876) (0.028990) (0.048999) (0.0615537) 

40 
1.25475 1.43835 0.452576 1.13137 1.63107 0.654126 

(0.028827) (0.028914) (0.073808) (0.019386) (0.034167) (0.031362) 

80 
1.06717 1.33081 0.450778 1.04654 1.43309 0.653583 

(0.018469) (0.018471) (0.036839) (0.0119729) (0.024099) (0.016246) 
        
 
Table 8: B.Es and P.Rs under CP using  1 2 1, , (10, 12, 0.45) and (10, 12, 0.60)p  

 
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
5.53623 5.39552 0.470341 5.58208 5.00538 0.640696 

(0.433161) (0.43394) (0.013715) (0.415167) (0.452878) (0.012735) 

40 
6.27422 6.44220 0.456349 6.62719 5.85830 0.629771 

(0.39050) (0.396637) (0.0072919) (0.356135) (0.422084) (0.006889) 

80 
7.34364 7.76371 0.45011 7.60293 7.02488 0.625043 

(0.339835) (0.337258) (0.003809) (0.287163) (0.384135) (0.003610) 
k-loss function 

20 
5.52495 5.37683 0.453655 5.8203 4.95789 0.629618 

(0.029004) (0.030637) (0.14971) (0.024786) (0.037429) (0.072137) 

40 
6.24029 6.40839 0.447779 6.59809 5.99867 0.623712 

(0.020289) (0.019526) (0.077333) (0.016483) (0.025214) (0.037649) 

80 
7.05432 7.72934 0.448146 7.46259 6.96302 0.622423 

(0.012209) (0.010219) (0.040194) (0.010121) (0.015946) (0.019236) 
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Table 9: B.Es and P.Rs under CP using  1 2 1, , (0.10, 12, 0.45) and (0.10, 12, 0.60)p  
 

 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
0.135859 5.51759 0.526231 0.13051 5.08452 0.682633 

(0.000265) (0.447943) (0.012354) (0.000208) (0.461858) (0.010735) 

40 
0.115993 6.65447 0.513532 0.112149 6.04774 0.674904 

(0.000132) (0.40904) (0.006542) (0.000099) (0.435674) (0.005747) 

80 
0.099126 8.88344 0.506878 0.102298 7.33437 0.670852 

(0.000059) (0.346268) (0.003368) (0.000048) (0.384372) (0.002976) 
k-loss function 

20 
0.142139 5.48345 0.513036 0.129112 5.04152 0.673849 

(0.028685) (0.030311) (0.104196) (0.024474) (0.037048) (0.052484) 

40 
0.115279 6.60253 0.506765 0.110234 6.371890 0.670396 

(0.019664) (0.018872) (0.053772) (0.015909) (0.024397) (0.026986) 

80 
0.105346 8.09129 0.503448 0.104518 7.380910 0.668463 

(0.012065) (0.010753) (0.027325) (0.009303) (0.015178) (0.0141179) 
        

 
Table 10: B.Es and P.Rs under CP using  1 2 1, , (10, 0.12, 0.45) and (10, 0.12, 0.60)p  

 
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
5.62845 0.146896 0.421965 5.96024 0.151952 0.578365 

(0.441878) (0.000328) (0.012086) (0.424476) (0.000431) (0.012083) 

40 
6.44104 0.127722 0.43595 6.85842 0.136448 0.578932 

(0.400232) (0.000153) (0.006316) (0.368546) (0.000225) (0.006429) 

80 
7.58808 0.117307 0.45587 8.06977 0.120046 0.5886153 

(0.343598) (0.000074) (0.0032287) (0.302239) (0.000104) (0.003318) 
k-loss function 

20 
5.58490 0.14275 0.405755 5.89857 0.159564 0.566651 

(0.028685) (0.030323) (0.162971) (0.024474 ) (0.037102) (0.083544) 

40 
6.40615 0.126893 0.417657 6.84141 0.132547 0.561311 

(0.019662) (0.018875) (0.084299) (0.015908) (0.024410) (0.043066) 

80 
7.44424 0.117069 0.439330 7.71344 0.121066 0.558488 

(0.01207) (0.010756) (0.042888) (0.009358) (0.014498) (0.021872) 
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Table 11: B.Es and P.Rs under RP using  1 2 1, , (0.1, 0.12, 0.45) and (0.1, 0.12, 0.60)p  
 

 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
0.105782 0.135123 0.434012 0.103079 0.138375 0.645401 

(0.000427) (0.000581) (0.012329) (0.000282) (0.000938) (0.003282) 

40 
0.10453 0.131766 0.474736 0.096193 0.138033 0.641649 

(0.000233) (0.000296) (0.007004) (0.000128) (0.000453) (0.006242) 

80 
0.096183 0.129324 0.468102 0.093818 0.130254 0.64095 

(0.000103) (0.0001600) (0.003756) (0.000058) (0.000234) (0.003206) 
k-loss function 

20 
0.101651 0.123051 0.485036 0.093688 0.114119 0.630198 

(0.0687089) (0.066684) (0.119068) (0.049411) (0.088853) (0.06578) 

40 
0.101989 0.112941 0.467163 0.0975664 0.129533 0.624327 

(0.042361) (0.036825) (0.069873) (0.026666) (0.049849) (0.031978) 

80 
0.100056 0.118725 0.46499 0.0978534 0.124279 0.623173 

(0.022779) (0.020242) (0.037457) (0.0121946) (0.023696) (0.014910) 
        

 
Table 12: B.Es and P.Rs under RP using  1 2 1, , (1, 1.2, 0.45) and (1, 1.2, 0.60)p  

 
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
1.05922 1.33314 0.433188 1.03293 1.51575 0.644157 

(0.042667) (0.056026) (0.012338) (0.027869) (0.098507) (0.011345) 

40 
1.00664 1.29054 0.476983 0.970745 1.39351 0.642962 

(0.021771) (0.029663) (0.007093) (0.012762) (0.045143) (0.006225) 

80 
0.983895 1.289237 0.475851 0.983541 1.37069 0.62145 

(0.011111) (0.016032) (0.003774) (0.011043) (0.019325) (0.003245) 
k-loss function 

20 
1.16454 1.28713 0.468544 0.996425 1.09914 0.62148 

(0.072345) (0.063822) (0.131557) (0.064813) (0.119828) (0.070912) 

40 
1.00749 1.12108 0.466946 0.985194 1.35608 0.620150 

(0.041506) (0.035513) (0.069635) (0.027093) (0.050711) (0.032581) 

80 
0.954177 1.11020 0.457543 0.995916 1.34535 0.618873 

(0.020998) (0.019217) (0.034475) (0.013199) (0.025414) (0.015959) 
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Table 13: B.Es and P.Rs under RP using  1 2 1, , (10, 12, 0.45) and (10, 12, 0.60)p    
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
9.58324 11.43070 0.427949 9.58708 10.9565 0.634954 

(3.169330) (3.83663) (0.012469) (2.322100) (5.00616) (0.011817) 

40 
9.67622 11.78300 0.47243 9.599110 11.9233 0.630872 

(1.924840) (2.34378) (0.007076) (1.29289) (3.42684) (0.006453) 

80 
9.68654 12.34210 0.470593 9.73014 12.86730 0.615151 

(0.947672) (1.416400) (0.003749) (0.586285) (2.08719) (0.003283) 
k-loss function 

20 
8.12011 11.32660 0.464824 10.09989 12.1777 0.629444 

(0.068480) (0.058682) (0.133263) (0.0493049) (0.088018) (0.066076) 

40 
9.37871 11.84870 0.461711 9.41742 11.96030 0.616346 

(0.038674) (0.034311) (0.069343) (0.027143) (0.051405) (0.034086) 

80 
9.42150 11.9648 0.460929 9.571406 12.45630 0.610353 

(0.021294) (0.019479) (0.036338) (0.012793) (0.025410) (0.015892) 
        

 
Table 14: B.Es and P.Rs under RP using  1 2 1, , (0.10, 12, 0.45) and (0.10, 12, 0.60)p  

 
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
0.094884 11.89990 0.469921 0.098341 11.96510 0.664261 

(0.000263) (3.293650) (0.011542) (0.000209) (4.61595) (0.010333) 

40 
0.095518 12.63033 0.509872 0.098953 12.78527 0.656383 

(0.000137) (1.93028) (0.006313) (0.000098) (2.78527) (0.005624) 

80 
0.091143 12.39790 0.495107 0.099681 12.49280 0.646003 

(0.000063) (1.10531) (0.003307) (0.000047) (1.58923) (0.002943) 
k-loss function 

20 
0.114775 12.94880 0.506062 0.107666 13.3107 0.655632 

(0.059662) (0.048205) (0.099563) (0.043940) (0.067830) (0.052989) 

40 
0.094401 12.89850 0.503309 0.091838 12.75870 0.646092 

(0.030531) (0.024543) (0.052498) (0.022345) (0.034796) (0.027125) 

80 
0.091618 12.72390 0.501733 0.0904158 12.41740 0.636729 

(0.015444) (0.012387) (0.026989) (0.011268) (0.017632) (0.013727) 
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Table 15: B.Es and P.Rs under RP using  1 2 1, , (10, 0.12, 0.45) and (10, 0.12, 0.60)p    
 
n 

1̂  2̂  1p̂  
1̂  2̂  1p̂  

 squared error loss function 

20 
10.7884 0.11846 0.372751 10.50830 0.119567 0.567091 

(3.33464) (0.000331) (0.010833) (2.35803) (0.000474) (0.0113719) 

40 
10.3168 0.11824 0.406198 10.41890 0.116756 0.567909 

(1.92637) (0.000153) (0.006094) (1.30849) (0.000221) (0.006219) 

80 
10.30871 0.119613 0.427844 10.39070 0.1198576 0.585739 

(0.992713) (0.000074) (0.003169) (0.686735) (0.0001029) (0.003262) 
k-loss function 

20 
9.81163 0.152163 0.406292 9.22044 0.127570 0.555927 

(0.059662) (0.048174) (0.150848) (0.043940) (0.067755) (0.081129) 

40 
10.94770 0.111752 0.419822 10.64808 0.12357 0.55487 

(0.030533) (0.024540) (0.080943) (0.022345) (0.034789) (0.042404) 

80 
10.57770 0.112851 0.429373 10.41660 0.123356 0.550732 

(0.015446) (0.012385) (0.042003) (0.011269) (0.017625) (0.021699) 
        

 
Numerical results of the simulation study, presented in tables 1-15, reveal 

interesting properties of the proposed Bayes estimators. The estimated values of the 
parameters converge to the true values, and amounts of posterior risks tend to 
decrease for lager choice of sample size. Another interesting point concerning the 
posterior risks of the estimates of 1 2,   is that increasing (decreasing) the 
proportion of the component in mixture reduces (increases) the amount of the 
posterior risk for the estimates of λ1. In addition, when SELF is assumed and values 
of λi are relatively smaller i.e. for (λ1, λ2) = (0.1, 0.12) and (1, 1.2), the Bayes 
estimates assuming Rayleigh prior are more precise than the rest of the informative 
priors, as the averaged posterior risks of the mixture components are smaller as 
compared to those under other priors. On the other hand, for quite larger values of 
parameters, i.e. for (λ1, λ2) = (10, 12), and for significantly different values of the 
parameters, i.e. for (λ1, λ2) = (0.1, 12), the estimates under chi prior (with few 
exceptions) perform better than those under Nakagami and Rayleigh priors. 
However, the estimates for the mixing parameter (p1), under Rayleigh prior, are 
associated with the minimum amounts of posterior risks irrespective of choice of 
true parametric values. When KLF is assumed, the estimates under chi prior are 
found to be the most efficient for all combinations of the values of the parameters, 
with an exception in case of (λ1, λ2) = (0.1, 0.12), where the estimates under the 
assumption of Nakagami prior are better than those under other priors. However, 
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the estimates for the mixing parameter (p1) are having mixed behavior, as for 
various choices of the true parametric values indicate the preference of different 
priors. 

 The Bayes estimates of the lifetime parameters are over/under-estimated but 
the size of over/under-estimation is greater under squared error loss function. On 
the other hand, estimates of the mixing proportion parameter have mixed behavior 
sometimes over-estimated and sometimes under-estimated, but the Bayes estimates 
under Rayleigh prior are much closer to the true parametric value. In comparison 
of loss functions it has been assessed that the magnitudes of posterior risks under 
squared error loss function are smaller than those under k-loss function for smaller 
choice of true parametric values i.e. for (λ1, λ2) = (0.1, 0.12) and (1, 1.2). On the 
other hand, for quite larger values of parameters, i.e. for (λ1, λ2) = (10, 12), and for 
significantly different values of the parameters, i.e. for (λ1, λ2) = (0.1, 12) and (10, 
0.12), the k-loss function produces the better results. It should also be mentioned 
here that the squared error loss function produces better convergence than k-loss 
function. 

Real Data Analysis 

In this section, real datasets are analyzed to illustrate the methodology discussed in 
the previous sections. In order to show the usefulness of the proposed mixture 
model, we applied the findings of the paper to the survival times (in years) of a 
group of patients given chemotherapy treatment. The data has been reported by 
Bekker et al. (2000). We have used the Kolmogorov-Smirnov and chi square 
tests to see whether the data follow the Rayleigh distribution. These tests say that 
the data follow the Rayleigh distribution at 5% level of significance with p-values 
0.2170 and 0.2681 respectively. The data consisting of 46 survival times (in years) 
for 46 patients are: 
 
Table 16: Survival times (in years) of patients given chemotherapy treatment 
 
 
0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 
0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 0.841, 
0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 
2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. 
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Consider the case when the data are doubly type II censored. Data are 
randomly grouped into two sets using probabilistic mixing for p1 = 0.60. 
 
Table 17: Doubly censored mixture real life data regarding survival times of patients 
given chemotherapy treatment 
 
Population-I Population-II 
  
0.197, 0.534, 0.115, 0.296, 0.121, 0.466, 0.529, 
1.447, 0.863, 0.132, 0.395, 0.696, 2.825, 3.658, 
3.978, 3.743,  2.343, 2.178, 0.540,  4.003,  1.553,  
1.485,  2.83, 2.416 

0.260, 1.099, 0.501, 0.458, 0.641, 
0.334, 0.570, 0.164, 0.203, 0.282, 
0.047, 1.271, 1.589, 1.326, 0.841, 
2.444 

  
 
 

The following characteristics are extracted from censored data for the analysis 
of mixture model: 

 
p1 = 0.6, n = 40, r = 5, r1 = 2, r2 = 3, n − r = 9, s = 36, s1 = 22, s2 = 14, n1 = 24, n2 
= 16, 

1 1 2 2
0.121,  3.978,  0.203,  and 2.444.r s r sx x x x     

1 2

1 2

2 2
1( ) 2( )84.6037 and 15.2833.

s s

i i
i r i r

x x
 

  
 

 
The similar methodology has been employed when p1 = 0.45. 

 
p1 = 0.45, n = 40, r = 5, r1 = 2, r2 = 3, n − r = 9, s = 36, s1 = 16, s2 = 20, n1 = 18, n2 
= 22, 

1 1 2 2
0.121,  3.658,  0.164,  and 3.978,r s r sx x x x     

1 2

1 2

2 2
1( ) 2( )48.704 and 37.1999.

s s

i i
i r i r

x x
 

  
 

 
Bayes estimates are obtained assuming informative priors under squared error 

loss function, and k-loss function. 
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Table 18: B.Es and P.Rs in parentheses under squared error loss function, and k-loss 
function for real data set. 
 

Priors squared error loss function  k-loss function 
p1 = 0.6 1̂  2̂  1p̂   

1̂  2̂  1p̂  

Nakagami 
Prior 

0.383514 
(0.001682) 

0.947312 
(0.016257) 

0.677477 
(0.005652) 

 0.38129 
(0.023399) 

0.938511 
(0.037685) 

0.673064 
(0.026312) 

Chi Prior 0.462925 
(0.001678) 

1.148390 
(0.015708) 

0.674903 
(0.005747) 

 0.461094 
(0.015909) 

1.141450 
(0.024405) 

0.670395 
(0.026986) 

Rayleigh 
Prior 

0.392190 
(0.001681) 

0.980312 
(0.016213) 

0.665364 
(0.005626) 

 0.390017 
(0.022350) 

0.971852 
(0.034973) 

0.6608996 
(0.027130) 

p1 = 0.45 1̂  2̂  1p̂   
1̂  2̂  1p̂  

Nakagami 
Prior 

0.377204 
(0.0024201) 

0.722023 
(0.007572) 

0.516536 
(0.006537) 

 0.373998 
(0.034429) 

0.716491 
(0.030999) 

0.509802 
(0.053186) 

Chi Prior 0.482646 
(0.002974) 

0.837202 
(0.008188) 

0.511665 
(0.006693) 

 0.479778 
(0.023980) 

0.831775 
(0.026185) 

0.504667 
(0.055851) 

Rayleigh 
Prior 

0.388672 
(0.002412) 

0.740606 
(0.007504) 

0.508438 
(0.006381) 

 0.385574 
(0.032264) 

0.735272 
(0.029121) 

0.50177 
(0.053512) 

 
 

The findings from the real life analysis are in close accordance with those of 
simulation study. It can be assessed that the chi prior produces better results for 
parameters λ1and λ2, while in case of mixing parameter the Rayleigh prior provides 
comparatively better results than other priors. It should further be noted that the 
estimates under squared error loss function are associated with smaller amounts of 
posterior risks. 

Conclusion 

The Bayesian inference of the mixture of Rayleigh model under doubly type II 
censoring has been considered assuming informative priors. The simulation study 
has displayed some interesting properties of the Bayes estimates. It is noted in each 
case that the posterior risks of estimates of lifetime parameters are reduced as the 
sample size increases. The results indicated that by using SELF and relatively 
smaller values of λi i.e. for (λ1, λ2) = (0.1, 0.12) and (1, 1.2), the Bayes estimates 
assuming Rayleigh prior are more precise than the rest of the informative priors. 
While, for quite larger values of parameters, i.e. for (λ1, λ2) = (10, 12), and for 
significantly different values of the parameters, i.e. for (λ1, λ2) = (0.1, 12) and (10, 
0.12), the estimates under chi prior perform better than other priors. Similarly, when 
KLF is considered, the estimates under chi prior are found to be the most efficient 
for most of the combinations of the values of the parameters. The performance of 
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the squared error loss function is better than k-loss function for (λ1, λ2) = (0.1, 0.12) 
and (1, 1.2). However, for (λ1, λ2) = (10, 12), (0.1, 12) and (10, 0.12), the k-loss 
function produces the better results. It should also be mentioned here that the 
squared error loss function produces better convergence than k-loss function for 
almost all the cases. The real life example further strengthened the findings from 
the simulation study. The study can further be extended by considering some other 
censoring techniques, and using some more flexible probability distribution. 
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Three re-sampling techniques are used to estimate the survival probabilities from an 
exponential life-time distribution. The aim is to employ a technique to obtain a parameter 
estimate for a two-parameter exponential distribution. The re-sampling methods 
considered are: Bootstrap estimation method (BE), Jackknife estimation method (JE) and 
the k-repeated Jackknife estimation method (KJE). The methods were computed to obtain 
the mean square error (MSE) and mean percentage error (MPE) based on simulated data. 
The estimates of the two-parameter exponential distribution were substituted to estimate 
survival probabilities. Results show that the MSE value is reduced when the K–repeated 
jackknife method is used. 
 

Introduction 

Modern statistics is anchored in the use of statistics and hypothesis tests that only 
have desirable and well-known properties when computed from populations that 
are normally distributed. While it is claimed that many such statistics and 
hypothesis tests are generally robust with respect to non-normality, other 
approaches that require an empirical investigation of the underlying population 
distribution or of the distribution of the statistic are possible and in some instances 
preferable. In instances when the distribution of a statistic, conceivably a very 
complicated statistic, is unknown, no recourse to a normal theory approach is 
available and alternative approaches are required. Statistical models and methods 
for estimating survival data and other time-to-event data are extensively used in 
many fields, including the biomedical sciences, engineering, the environmental 
sciences, economics, actuarial sciences, management, and the social sciences. 

mailto:jadewara@unilag.edu.ng
mailto:mmbataugochukwu@yahoo.com
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Survival analysis refers to techniques for studying the occurrence and timing of 
events. It is concerned with studying the random variable T, representing the time 
between entry to a study and some event of interest, such as: death, the onset of 
disease, time until equipment failures, earthquakes, automobile accidents, time-to-
promotions, time until stock market crashes, revolutions, job terminations, births, 
marriages, divorces, retirements or arrests. There are many different models for 
survival data, and what often distinguishes one model from another is the 
probability distribution for T. Resampling statistics refer to the use of the observed 
data or of a data generating mechanism (such as a die) to produce new hypothetical 
samples (resamples) that mimic an underlying population, the results of which can 
then be analyzed. With numerous cross-disciplinary applications especially in the 
sub-disciplines of the life science, resampling methods are widely used because 
they are options when parametric approaches are difficult to employ or otherwise 
do not apply. 

Resampled data is derived using a manual mechanism to simulate many 
pseudo-trials. These approaches were difficult to utilize prior to 1980s because 
these methods require many repetitions. With the incorporation of computers, the 
trials can be simulated in a few minutes and is why these methods have become 
widely used. The methods that will be discussed are used to make many statistical 
inferences about the underlying population. The most practical use of resampling 
methods is to derive confidence intervals and test hypotheses. This is accomplished 
by drawing simulated samples from the data themselves (resamples) or from a 
reference distribution based on the data; afterwards, you are able to observe how 
the statistic of interest in these resamples behaves. Resampling approaches can be 
used to substitute for traditional statistical (formulaic) approaches or when a 
traditional approach is difficult to apply. These methods are widely used because 
their ease of use. They generally require minimal mathematical formulas, needing 
a small amount of mathematical (algebraic) knowledge. These methods are easy to 
understand and stray away from choosing an incorrect formula in your diagnostics. 

Two general approaches considered here are: Jackknife approach and 
Bootstrap approach. The aim of this study is to employ a technique to obtain an 
estimate of the parameter of the two-parameter exponential distribution. The 
methods considered in this paper are: Bootstrap estimation method (BE), Jackknife 
estimation method (JE) and the k-repeated Jackknife estimation method (KJE). The 
estimates of the two-parameter exponential distributions are used to estimate the 
survival probability. Methodology under Bootstrap, Jackknife and the proposed K-
repeated Jackknife is presented, followed by data analysis, results, discussion and 
a conclusion. 
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Two-Parameter Exponential Distribution 

Re-sampling methods are becoming increasingly popular as statistical tools. These 
methods involve sampling or scrambling the original data numerous times. Two 
general approaches are considered here. They are: Jackknife approach and 
Bootstrap approach. The two-parameter exponential distribution is adopted when 
failure will never occur prior to some specified time, t0. The parameter t0 is a 
location parameter that shifts the distribution an amount equal to t0 towards the right 
on the time line. When t   t0, the probability density function of exponential 
distribution becomes: 
 

    0 0
1 1; , 0, 0,f t exp t t t t t 
 

 
      

 
  (1) 

 
and the survival function is given by:  
 

    ;
t

S t f t dt


    (2) 

where 
1




  . 

Bootstrap Estimation Method 

Bootstrapping is a modern, computer-intensive, general purpose approach to 
statistical inference, falling within a broader class of re-sampling methods to 
simplify the often intricate calculations of traditional statistical theory. A 
parametric bootstrap method is considered in this article. 

The general theory (see Rizzo, 2008) is as follows. Suppose 1 2, , , nt t t  is a 

random sample from the distribution of T. An estimator ̂  for a parameter   is an 
n variate function  1 2, ,ˆ ˆ , nt t t    of the sample. Functions of the estimator ̂  
are therefore n–variate functions of the data, also. For simplicity, let 

 1 2, , , ,T n
nt t t t R   and    1 2, ,t t denote a sequence of independent random 

samples generated from the distribution of T. Random variables from the sampling 
distribution of ̂  can be generated by repeatedly drawing independent random 
samples  jt and computing         1 2,ˆ , ,ˆj j j j

nt t t    for each sample. The mean of 

the replicates is given as  

http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Resampling_(statistics)
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The mean squared error (MSE) is defined by    
2ˆ ˆMSE E    

  
. If m 

random samples      1 2, , , mt t t  are generated from the distribution of T then 
estimate of the MSE of  1 2, ,ˆ ˆ , nt t t    is 
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where         1 2,ˆ , ,ˆj j j j

nt t t   . 

Estimate of the standard error of the bootstrap estimate, B̂  is given by 
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100(1− )% confidence interval for   is given by 
 
  

2
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B BZ SE    (6) 

 
The mean percentage error (MPE) is  
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If the bootstrap estimator B̂  is known from (3) then the estimate of survival 
function is given as 
 

   0ˆ
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  (8) 
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Jackknife Estimation  
The jackknife is a more orderly version of the bootstrap. As opposed to re-sampling 
randomly from the entire sample like the bootstrap does, the jackknife takes the 
entire sample except for 1 value, and then calculates the test statistic of interest. It 
repeats the process, each time leaving out a different value, and each time 
recalculating the test statistic. This method was introduced by Quenouille (1949) 
and further modification in Quenouille (1956). The theory is as follows: 

Let ̂  be an estimator of the parameter θ based on the complete sample of 
size n with g subgroups. Let ˆ

i
 be the corresponding estimator based on the 

sample at the ith deletion. Define 
 
    ˆ 1 1,2ˆ , ,i ig g i g         (9) 
 

The ith deletion of the total could be one individual observation or several 
observation. The latter case is called group- or block-based jackknife if one 
replication or one block observations are deleted. In equation (1) estimation i  is 
called the ith pseudo value and the estimator in equation (2) is the jackknife 
estimator for the parameter θ, where θ can be a variance component, covariance 
component, correlation coefficient, or any other parameter of interest. 
 

  
1 1

1ˆ1 1 ˆ
g g

i i
j j

g g
g g

   

 

       (10) 

 
In equation (10),   is called a pseudo jackknife estimate. A t-test can then be 

used to test significant deviation from a given parameter value, 0 with degrees of 
freedom 1g   (Miller, 1974a, b). The equation (9) can be rewritten as 
 
      1 1 1,ˆ ˆ 2ˆ ˆ , ,ˆ

i i ig g g i g               .  (11) 

 

Thus, it is obvious that pseudo value i  in equation (11) is related to choices 

for g . When g  is large, a slight difference between ̂  and ˆ
i

will cause 
unfavorable values. More importantly, it will potentially cause a large standard 
error for an estimate and thus decrease the power for the parameter being tested. If 
it is assumed that the estimate ˆ

i
 in equation (9) for the ith deletion is unbiased, 
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then it is easy to prove that ̂  in equation (12) is unbiased too. It is often true if ̂  
is an unbiased estimate of θ, then ˆ

i
 will be unbiased after a few individuals in the 

original data are deleted. 
 

 1
ˆ

ˆ
g

ii
jack

g





 .  (12) 

 

In equation (12), ̂  is called a non-pseudo jackknife estimate of the parameter 
θ. For each non-normally distributed variable, based on the Central Limit Theorem, 
̂  is approximately normally distributed when g  is large. Thus, an approximate z-
test can be used when g  is large or t-test can be used to test significant deviation 
from a given parameter value, 0 , with the degrees of freedom 1g  . An estimate 

of the mean square error (MSE) of the jackknife estimate, ˆ jack  is given by 
 

    
2

11
ˆ ˆ ˆ

g

jack i
i

gMSE
g

  



 

   (13) 

 
Estimate of the standard error of the jackknife estimate, ˆ jack   is given by 
 

    
2

1

ˆ ˆ ˆ
1

g

jack i
i

gSE
g

  



 

   (14) 

 
100(1− )% confidence interval for  is given by 
 

 
2, 1

ˆ ˆjack jack
g

t SE 


  

The mean percentage error (MPE) is  
 

  

1

ˆ ˆ

ˆ
ˆ

ig

i

jackMPE
g

 









 
 
 
 
 



.  (15) 
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If the jackknife estimator ˆ
jack  is known from (12) then the estimate of survival 

function is given as  
 

   0

jack

ˆ
ˆ
i

jack
t tS t exp


 
  

 
 

.  (16) 

K – Repeated Jackknife Estimation Method 

The K – Repeated jackknife procedure is a re-sampling iterative scheme for mean 
square error (MSE) reduction. This involves jackknifing the observed data k-time, 
where k equals the sample size of the observed data. The procedure is conveniently 
applied when the sample size is small. The stopping rule for the repeated jackknife 
replications depends on the sample size of the original data. The procedure 
converges before or at kth time, where the estimate from the jackknife replications 
is the same as estimator of the parameter θ based on the complete sample of size n. 
At the Kth time, the kth – repeated jackknife estimate of bias is highly negligible.   

The method involves the following steps from the usual jackknife procedure: 
 

Step 1.  Observe a random sample T = (t1, t2, . . . ,tn) 
 
Step 2.  Compute  ˆ t  a function of the data which estimates the parameter 
  of the model. 
 

 
1

ˆ                      1 1,2, ,
n

i
i

t i n
n




     (17) 

 
Step 3.  For i up to n 
 

 generate a jackknife sample  1 1 1, , , ,i i i nT t t t t     by leaving out the 
ith observation 

 calculate ˆ
i
 from each of the Jackknife sample iT  by  

 

 
1

11
ˆ 1 n

i i
i

T
n




 





   (18) 
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Step 4.  Repeat step 3 using the estimates from ˆ
i
 to form pseudo samples. 

The new pseudo samples are used to generate another set of jackknife estimates; 
this is continued until the kth time. This implies that the process is repeated k times, 
and at any given stage the preceding jackknife estimates are used as new samples 
in the next stage until the kth time.  
 
Step 5.  At the kth time the K-repeated Jackknife estimate is calculated as 
 

 1
1

ˆ ˆ1 nK
K

i
ik

  



    (19) 

 
The K – repeated jackknife estimate of mean square error (MSE) is given by  
 

 
 

2

1
1

ˆ ˆ( )
1

ˆ1 nK K
K

i
i

MSE
k k

  



 
  

  
   (20) 

 
The K – repeated jackknife estimate of standard error is given by 
 

 
 

2

1
1

1ˆ ˆ ˆ
1

nK K
K
i

i

SE
k k

  



   
    

   
   (21) 

 
An approximate (1– )% confidence interval for   is given by 
 

 
, 12

ˆ ˆK K

K
t SE 



 
  

 
  (22) 

 
The mean percentage error (MPE) is  
 

 

1

1

ˆ ˆ

ˆ
ˆ

K
K

i
n

Ki

K
MPE

k

 









 
 

 
 
     

 



.  (23) 
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If the K – repeated jackknife estimator ˆK
  is known from (19), then the estimate 

of survival function is 
 

   0ˆ
ˆ

K i
K

t tS t exp


 
  
 
 

.  (24) 

 
The general iterative scheme is as follows: from a random sample  1 2, , , nT t t t   
 

 

1
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1
1
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1
1

11
1

1. 
1

ˆ ˆ
n

K K

i

K
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Thus, 

1
1

ˆ ˆ1 nK
K

i
in

  



    

 
where K = n (sample size) indicates the stopping rule. Other estimators such as 
variance, standard error and confidence interval can be estimated as in (20), (21), 
(22) and (23). 

This study described three types of parameter estimation methods based on 
re-sampling technique: the bootstrap method, the jackknife method and the k-
repeated jackknife method. However, the intention of this study is to use Monte 
Carlo simulated data to compare the three methods based on mean squared error 
(MSE) and mean percentage error (MPE), hence survival estimation. 
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Data and Analysis 

Exploratory data analysis approach using simulated data generated by R-statistical 
program is adopted in this research work. This is to validate the statistical 
assumptions of an exponential distribution. In statistics, every statistical model has 
its own assumptions that have to be verified and met, to provide valid results. In 
the case of exponential distribution, the confidence interval for the mean life of an 
event requires two major assumptions: the time-to-occurrence of events of interest 
are independent, and the time for occurrence of event is exponentially distributed. 
These two statistical assumptions must be satisfied for the corresponding 
confidence interval to cover the true mean with the prescribed probability. The 
simulated data is based on random generation of values which satisfies both the 
assumption of independence and exponentially identical distribution. Some 
properties of the exponential distribution are as follows: the theoretical mean and 
standard deviation are equal. Hence, (1) the sample values of mean and standard 
deviation should be close. (2) Histogram should show that the distribution is right 
skewed (Median < Mean). (3) A plot of Cumulative-Failure vs. Cumulative-Time 
should be close to linear. (4) The regression slope of Cum-Failure vs. Cum-Time is 
close to the failure rate. (5) A plot of Cum-Rate vs. Cum-Failure should 
decrease/stabilize at the failure rate level. (6) Plots of the Exponential probability 
and its scores should also be close to linear. Some of these properties are explained 
by the exploratory data analysis displayed in Figures 1, i - xii. 
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Table 1. Generation Parameters 
 

Sample 1 (Sample size = 10,   = 0.5) Sample 7 (Sample size = 20,   = 1.5) 
Sample 2 (Sample size = 10,   = 1.0) Sample 8 (Sample size = 20,   = 2.0) 
Sample 3 (Sample size = 10,   = 1.5) Sample 9 (Sample size = 30,   = 0.5) 
Sample 4 (Sample size = 10,   = 2.0) Sample 10 (Sample size = 30,   = 1.0) 
Sample 5 (Sample size = 20,   = 0.5) Sample 11 (Sample size = 30,   = 1.5) 
Sample 6 (Sample size = 20,   = 1.0) Sample 12 (Sample size = 30,   = 2.0) 

 
 

 
 
Figure 1. Histogram for each of the Randomly Generated Sample (i – xii) 
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Table 2. Descriptive Statistics of samples 1 to 12 
 

Sample (i) N λ  Mean Median Std.Dev. 
Sample 1 10 0.5 2.6006960 1.4973290 3.7961510 
Sample 2 10 1.0 0.9211933 0.7875227 0.7792381 
Sample 3 10 1.5 0.7320056 0.5990053 0.5961606 
Sample 4 10 2.0 0.8510537 0.7067248 0.8785794 
Sample 5 20 0.5 1.8608660 1.1843510 1.8059580 
Sample 6 20 1.0 1.2379810 0.9922479 1.0967930 
Sample 7 20 1.5 0.5363318 0.2470020 0.6540290 
Sample 8 20 2.0 0.7281072 0.2824484 1.0112260 
Sample 9 30 0.5 1.5960620 1.0194960 1.6278560 

Sample 10 30 1.0 0.8559385 0.5422463 0.8296031 
Sample 11 30 1.5 0.6353941 0.3864003 0.5880883 
Sample 12 30 2.0 0.4639596 0.2700518 0.5150784 

Results 

The results of descriptive statistics show that as the sample sizes 10, 20 and 30 
increase the mean and standard deviation are decreasing which satisfied one of the 
properties of that the theoretical mean and standard deviation are equal. The sample 
mean and standard deviation obtained are very close also as the value of λ increases 
the median values obtained get smaller. Figure 1 above shows that the observed 
distribution agrees with the exponential distribution property 1 and property 2 
described in the data above. Figures 1, i–xii show right-skewness, which supported 
the attribute of an exponential distribution.   

Table 3 shows the parameter estimation of the three methods. The results 
reveal that the estimation of the bootstrap approach is better than the other two 
methods that is the jackknifing and K repeated jackknifing. Table 4 is the result of 
the mean square error (MSE) of the analysis which is about the variance of the three 
methods. Results reveal that, as λ values increase, the results of jackknifing and K 
repeated jackknifing are better than the bootstrapped approach. Table 5 is the 
computation of the mean percentage error (MPE) the result shows that estimation 
of the bootstrap approach is better than the other two methods.  
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Table 3. Estimation Using the Three Methods Bootstrap, Jackknifing and K repeated 
jackknifing 
 

    ˆ
BS t   ˆ

jackS t   ˆKS t  

10 

0.5 0.568858094 0.568879887 0.568879887 
1 0.476453626 0.476456925 0.476456925 

1.5 0.461343936 0.461328523 0.461328523 
2.0 0.529933691 0.529937819 0.529937819 

     

20 

0.5 0.491722891 0.491777729 0.491777729 
1 0.490229963 0.490240047 0.490240047 

1.5 0.544947075 0.544930402 0.544930402 
2.0 0.553586925 0.553580134 0.553580134 

     

30 

0.5 0.527441921 0.527445588 0.527445588 
1 0.491819455 0.491882638 0.491882638 

1.5 0.491085203 0.491099760 0.491099760 
2.0 0.528125037 0.528118624 0.528118624 

 
 
Table 4. Estimation to the Bootstrap, Jackknifing and K repeated jackknifing using MSE 
methods 
 

    ˆ
BS t   ˆ

jackS t   ˆKS t  

10 

0.5 0.004741437 0.004744439 0.004744439 
1 0.000554432 0.000554276 0.000554276 

1.5 0.001494291 0.001495483 0.001495483 
2.0 0.000896026 0.000896273 0.000896273 

     

20 

0.5 0.000068511 0.000067606 0.000067606 
1 0.000095454 0.000095257 0.000095257 

1.5 0.002020240 0.002018741 0.002018741 
2.0 0.002871559 0.002870831 0.002870831 

     

30 

0.5 0.000753059 0.000753260 0.000753260 
1 0.000066921 0.000065892 0.000065892 

1.5 0.000079474 0.000079214 0.000079214 
2.0 0.000791018 0.000790657 0.000790657 
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Table 5. Bootstrap, Jackknifing and K-repeated jackknifing using MPE methods 
 

    ˆ
BS t   ˆ

jackS t   ˆKS t  

10 

0.5 0.137716188 0.137759774 0.137759774 
1 0.047092748 0.047086150 0.047086150 

1.5 0.077312128 0.077342954 0.077342954 
2.0 0.059867382 0.059875638 0.059875638 

     

20 

0.5 0.016554218 0.016444542 0.016444542 
1 0.019540074 0.019519906 0.019519906 

1.5 0.089894150 0.089860804 0.089860804 
2.0 0.107173850 0.107160268 0.107160268 

     

30 

0.5 0.054883842 0.054891176 0.054891176 
1 0.016361090 0.016234724 0.016234724 

1.5 0.017829594 0.017800480 0.017800480 
2.0 0.056250074 0.056237248 0.056237248 

 
 
Table 6. Survival Estimation Using the Three Methods with Respect to MSE and MPE 
 

  BOOTSTRAP METHOD (1)  

Size    ˆ
BS t  MSE MPE REMARK 

10 

0.5 0.568858094 0.004741437 0.137716188 1 
1 0.476453626 0.000554432 0.047092748 2,3 

1.5 0.461343936 0.001494291 0.077312128 1 
2.0 0.529933691 0.000896026 0.059867382 1 

      

20 

0.5 0.491722891 0.000068511 0.016554218 2,3 
1 0.490229963 0.000095454 0.019540074 2,3 

1.5 0.544947075 0.002020240 0.089894150 2,3 
2.0 0.553586925 0.002871559 0.107173850 2,3 

      

30 

0.5 0.527441921 0.000753059 0.054883842 1 
1 0.491819455 0.000066921 0.016361090 2,3 

1.5 0.491085203 0.000079474 0.017829594 2,3 
2.0 0.528125037 0.000791018 0.056250074 2,3 
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Table 6, cont’d. Survival Estimation Using the Three Methods with Respect to MSE and 
MPE 
 

   
JACKKNIFE METHOD (2)  

Size    ˆ
jackS t  MSE MPE REMARK 

10 

0.5 0.568858094 0.004741437 0.137716188 1 
1 0.476453626 0.000554432 0.047092748 2,3 

1.5 0.461343936 0.001494291 0.077312128 1 
2.0 0.529933691 0.000896026 0.059867382 1 

      

20 

0.5 0.491722891 0.000068511 0.016554218 2,3 
1 0.490229963 0.000095454 0.019540074 2,3 

1.5 0.544947075 0.002020240 0.089894150 2,3 
2.0 0.553586925 0.002871559 0.107173850 2,3 

      

30 

0.5 0.527441921 0.000753059 0.054883842 1 
1 0.491819455 0.000066921 0.016361090 2,3 

1.5 0.491085203 0.000079474 0.017829594 2,3 
2.0 0.528125037 0.000791018 0.056250074 2,3 

 
  K-REPEATED JACKKNIFE METHOD (3)  

Size      ˆKS t  MSE MPE REMARK 

10 

0.5 0.568858094 0.004741437 0.137716188 1 
1 0.476453626 0.000554432 0.047092748 2,3 

1.5 0.461343936 0.001494291 0.077312128 1 
2.0 0.529933691 0.000896026 0.059867382 1 

      

20 

0.5 0.491722891 0.000068511 0.016554218 2,3 
1 0.490229963 0.000095454 0.019540074 2,3 

1.5 0.544947075 0.002020240 0.089894150 2,3 
2.0 0.553586925 0.002871559 0.107173850 2,3 

      

30 

0.5 0.527441921 0.000753059 0.054883842 1 
1 0.491819455 0.000066921 0.016361090 2,3 

1.5 0.491085203 0.000079474 0.017829594 2,3 
2.0 0.528125037 0.000791018 0.056250074 2,3 
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Discussion 

The comparison of parametric estimators of exponential distribution using 
Bootstrap, Jackknife, and K-Repeated Jackknife methods indicates that the 
estimates of the population parameter are very close which implies that the 
estimators are unbiased. A comparison of the mean square error (MSE) and mean 
percentage error (MPE) of the estimators shows that K-Repeated Jackknife method 
has a minimum variance unbiased estimator (MVUE); irrespective of the sample 
size whether it is small or large at any given values of lambda (λ).  The three 
methods are used to estimate the survival function for exponential distribution and 
its mean square error (MSE) and mean percentage error (MPE). The results can be 
deduced that the performance of the two jackknife procedures over the bootstrap 
procedure is 66.67% to 33.33%. This result has been able to show the effect or 
influence of jackknife method, especially the k-repeated procedure on error 
reduction in estimating population parameter. 

Conclusion 

This study demonstrates that both methods of re-sampling technique are very 
efficient in estimating the population parameters and their mean square errors 
(MSE), as viewed by Efron (1998). These methods were used to find the best 
minimum variance unbiased estimator, using mean square error (MSE) and mean 
percentage error (MPE). The estimates of the two-parameter exponential 
distribution are used to estimate the survival probability. The attractiveness of 
jackknifing and bootstrapping is that they provide investigators with an important 
and unattainable type of information. Jackknifing and bootstrapping have their 
limitations and inherent assumptions as all statistical procedures do. The three 
methods are computationally intensive. However, these techniques represent an 
important step in refining the process of data analysis more especially the k-
repeated procedure. Hence, it can be deduced that bootstrapping is a method for 
evaluating the variance of an estimator while jackknife is a method for reducing the 
bias of an estimator, and evaluating the variance of an estimator. This is clearly 
shown in the MSE results. The MSE value is reduced using the K–repeated 
jackknife method.  
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Appendix 

Simulated Data 
Table A1. Sample Size = 10 
 

S/N Sample 1(λ= 0.5) Sample 2(λ= 1.0) Sample 3(λ= 1.5) Sample 4(λ= 2.0) 
1 0.38672500 2.27994293 0.20192160 0.01058359 
2 0.11665480 0.71411938 0.48301090 2.51951031 
3 0.12661390 0.75298901 0.12473380 1.94495769 
4 4.42286640 2.19289233 1.99662440 0.67531853 
5 2.00704600 0.04442099 0.67780240 1.05647689 
6 2.34689070 0.35021824 0.75981590 0.01373747 
7 0.86211020 1.01674933 0.87373650 0.08979746 
8 1.03118540 0.82205630 0.21055390 0.73813115 
9 12.74339800 0.02251542 1.47164790 0.07333057 

10 1.96347260 1.01602885 0.52020820 1.38869338 
 
 
Table A2. Sample Size = 20 
 

S/N Sample 5(λ= 0.5) Sample 6(λ= 1.0) Sample 7(λ= 1.5) Sample 8(λ= 2.0) 
1 2.62129072 0.13858938 0.61025422 0.20816883 
2 3.66009415 0.23677409 1.39562321 0.10508682 
3 0.28671927 0.65882621 1.64585069 0.16343073 
4 0.53614812 2.03913598 1.11779841 4.47429656 
5 1.67262059 3.07310425 0.64918675 0.31910786 
6 0.08521250 0.85047816 0.05778008 0.21707275 
7 0.84341716 0.93587816 0.04898416 0.04360368 
8 1.87988871 3.97283307 0.12098188 0.11505109 
9 3.13213741 1.91406287 0.55509004 0.24578897 

10 6.82508233 1.04861761 0.19238185 1.05875641 
11 0.02900937 0.03350444 0.26953211 0.00355591 
12 1.74900498 1.30175357 0.01133644 0.05922794 
13 1.24431388 1.52538027 0.28231025 0.20815442 
14 1.12438751 0.06504098 2.50193518 1.48214568 
15 1.02901637 1.90192968 0.52524965 0.89694421 
16 2.19818977 0.71117769 0.20890800 1.53327300 
17 5.75705560 2.66119925 0.12742349 1.11055824 
18 0.67605113 1.38839741 0.09933566 0.81368075 
19 0.79778248 0.30239189 0.08220231 0.46919296 
20 1.06989471 0.00054309 0.22447181 1.03504680 
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Table A3. Sample Size = 30 
 

S/N Sample 9(λ= 0.5) Sample 10(λ= 1.0) Sample 11(λ= 1.5) Sample 12(λ= 2.0) 

1 1.09871091 0.17085314 0.24591320 0.03006484 

2 1.30597223 0.31266839 0.78554402 0.01316790 

3 0.43742079 0.21960578 0.26193004 0.08580695 
4 0.57034193 1.09603105 0.07651001 0.06684230 

5 1.02475744 0.54796524 0.29620540 0.75349995 

6 1.53172531 0.13561858 0.58560088 0.56383185 
7 0.57173448 0.46805576 0.56401687 0.10014385 

8 3.18835121 0.58675535 0.41054238 0.39468972 

9 1.01423546 0.41116558 1.42498655 0.26076246 
10 0.05104055 3.42353290 0.03212381 0.38563026 

11 2.99399940 1.09817464 0.19768464 0.96558979 

12 2.95112802 0.35962685 0.24295821 0.27934118 
13 4.74244122 1.98862082 0.16056365 0.01547041 

14 0.04628853 1.11964839 0.24140637 0.34343548 

15 5.35809191 0.48539163 0.06956623 0.80092480 
16 4.26185504 1.09365222 1.49188159 1.49780414 

17 0.04367701 0.73949713 0.22345808 0.90349970 

18 0.05851474 0.34345758 1.56937093 0.18701462 
19 0.46455153 0.29243694 0.59195204 0.00288255 

20 0.09371455 0.25904558 0.42176436 0.74330912 

21 2.96970220 1.79180600 1.11983745 0.25455636 
22 0.54133977 0.01809066 0.28416911 0.81341579 

23 1.29204462 2.94010580 0.65638599 0.10230827 

24 0.02923826 0.79327459 0.12515747 2.24807427 
25 2.28724168 1.13577062 2.26479793 0.08718112 

26 3.62406597 0.05051664 1.73361763 1.15865739 

27 0.55831489 0.53652729 0.36225826 0.02484439 
28 4.24494133 1.08361205 1.41035274 0.48756216 

29 0.13192788 0.25488727 0.93471466 0.25596331 

30 0.39449119 1.92176066 0.27655395 0.09251206 
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Life Testing Analysis of Failure Censored 
Generalized Exponentiated Data 
Anwar Hassan 
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Riyadh, Saudi Arabia 
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A generalized exponential distribution is considered for analyzing lifetime data; such 
statistical models are applicable when the observations are available in an ordered manner. 
This study examines failure censored data, which consist of testing n items and terminating 
the experiment when a pre-assigned number of items, for example r ( < n), have failed. 
Due to scale and shape parameters, both have flexibility for analyzing different types of 
lifetime data. This distribution has increasing, decreasing and a constant hazard rate 
depending on the shape parameter. This study provides maximum likelihood estimation 
and uniformly minimum variance unbiased techniques for the estimation of reliability of a 
component. Numerical computation was conducted on a data set and a comparison of the 
performance of two different techniques is presented. 
 
Keywords: Generalized exponential distribution, lifetime data, censored data, 
uniformly minimum variance unbiased estimation  
 

Introduction 

Usually observations made on a random variable do not become available in an 
ordered manner. If n items are taken from a machine and measured for some 
characteristics such as diameter, it would be an anomaly – as well as a cause for 
concern – if the first item taken had the smallest diameter; the second item, the 
second smallest diameter, etc. However, there exist numerous practical situations, 
for example, life testing fatigue and other kinds of destructive test situations, where 
the data become available in this way. If n radio tubes are put through a life test, 
for example, then the weakest will fail first in time, the second weakest one fails 
next, etc. Based on this pattern, it seems clear that observations will naturally occur 
in an ordered manner in life test situations, regardless of whether the test is the life 
of electric bulbs, life of radio tubes, life of ball bearings, life of various kinds of 

mailto:anwar.hassan2007@gmail.com
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physical equipment or length of life after some treatment performed on animals or 
human beings. There are other situations – for example, testing the current needed 
to blow out a fuse, the voltage needed to break down a condenser, the force needed 
to rupture some physical material, etc. – where observations become available in 
order if the test is arranged in such a way that every item in the sample is subjected 
to the same stimulus (current, voltage, stress, dosage, etc.), so that the first weakest 
item fails, then the second weakest item fails, and so on. 

Put in general terms, if n items drawn at random from some generalized 
exponential population are tested, and the data become available in such a way that 
the smallest observation comes first, the second smallest second, and so on until 
finally the largest observation is last, then it is possible to discontinue 
experimentation after observing the first r failures in a life test. The two principal 
advantages associated with the possibility of stopping before all n observations are 
made stem from the observations occurring in an ordered manner and the ability to 
reach a decision in a shorter time or with fewer observations than if utilizing a 
procedure that involves observing what happens to all items being tested. Thus, this 
study is devoted to failure censored data, which consists of putting n items on test 
and terminating the experiment when a pre-assigned number of items, for example 
r (< n), have failed. The data obtained from such experimentation is almost 
mandatory in dealing with high cost sophisticated items such as televisions. 

The Generalized Exponential Distribution (GED), which more accurately 
represents time to failure, is used instead of the more commonly used exponential 
distribution. Although incorporation of the GED in life testing modeling adds to 
the complexity of modeling and estimation, it fits life data more accurately than the 
exponential distribution due to its flexibility. 

The two parameter GED was proposed and studied extensively by Gupta and 
Kundu (1999, 2001a, 2001b, 2002), Raqab (2002), Raqab and Ahsanullah (2001) 
and Zheng (2002) and the two parameter GED distribution has: density function 
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cumulative distribution function (cdf) 
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and hazard function 
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Here α > 0 and λ > 0 are the shape and scale parameters respectively. For different 
values of the shape parameter, the density function can take different shapes. 
Hereafter, the GED with shape parameter α and scale parameter λ will be denoted 
by GE(α,λ). This article focuses on the maximum likelihood estimate and the 
minimum variance unbiased estimate of the shape parameter when the scale 
parameter is known. 

Estimation Based on MLE 

Maximum Likelihood Estimation 
Suppose n items are subjected to test without replacement and the test is terminated 
after r items have failed. If the failure censored data consist of the lifetimes of the 
r items that failed (X(1) < X(2) < … < X(r)) and the fact that (n − r) items have 
survived beyond X(r). The likelihood of the ordered sample failure times is given 
below if the failure times are generalized exponentially distributed with pdf (1). 

For given ordered failures times when it is desired to estimate α when λ is 
known: 
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The log likelihood function of the observed sample is 
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The MLE of α, for example, ̂  for known λ is 
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Unbiasedness of ̂   

If the n items are tested and observation continues until r units have failed then (T(1), 
T(2), …, T(r)) are the transferred failure time from exponential population with mean 
life α. Because X1, X2, …, Xr are independently and identically distributed (iid) 
GED(α,λ), then T(i), the transformed ordered failures, are iid as Expo(α). In this plan 
the number of items exposed at any time is n, the joint distribution of T(1), T(2), …, 
T(r), that is, the number of failed items out of n items tested is given by 
 
     1 ( )
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Using transformation Zi = (n – i + 1)(T(i) – T(i–1)), i = 1,2,3, …, r, with T(o) = 0, 
then 
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This results in the joint distribution of Z1, Z2, …, Zr as g(Z1, Z2, …, Zr | α) =

1
r
i izre  , thus Z1, Z2, …, Zr are iid as g(z | α) = αe−αz; z, α ≥ 0 
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(1961) as 
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and the pdf of ̂  is  
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Moments of ̂  

It is necessary to extract the first two moments of ̂ , to find in general the kth 
moment of ̂  as 
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Thus  ˆE   , which clearly shows that the MLE of α is not an unbiased estimate 
of α, but instead it is asymptotically unbiased estimate of α. 

Sufficiency of ̂  
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Using the transformation as in Lemma 1 (see Appendix A) results in, 
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Using the transformation as in (6) results in, 
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which is independent of the unknown parameter α, thus ̂  is a sufficient estimator 
for α. 
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MLE of Reliability 

Because the MLE of α i,e 
 1 1
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r r
i i r i i

r r
T n r T Z


 

 
  

 has been calculated 

using a property of MLE, that function of an MLE is also an MLE, thus the MLE 

of reliability of GED is denoted by  R̂ t  and is given as    
ˆˆ 1 1 tR t e


   . 

Expectation of Reliability and its Standard Error 
To evaluate the expectation of reliability and its standard error, results from Watson 

(1952)  
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modified Bessels function of the second kind of order r. 
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Estimation Based on Minimum Variance Unbiased Estimate 

Minimum Variance Unbiased Estimate 
The Minimum Variance Unbiased Estimate (MVUE) approach is now considered. 
Note that ̂  is biased, but the bias can be easily corrected as 
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Recall the proven result that 1
r
i iZ   follows Gamma(r) and 
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 follows the inverted gamma density of Raiffa and 

Schlaifer (1961) as 
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Clearly    ˆV V  . However, equality holds for r = ½ which is not an integer, 
thus it implies that this inequality never holds for integral value of n. 
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Sufficiency of   
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Using the transformation in Lemma 1 results in 
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Using the transformation in (6) results in 
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which is independent of the unknown parameter α and, thus,   is a sufficient 
estimator for α. 

Completeness 

A family of density functions  , ,f X H   (Parametric Space) is called 
complete if E (u(x)) = 0 for all H  implies u(x) = 0 with probability 1, for all 
H . 

That is, there are no two different functions of X which have the same 
expected value for all H . Thus, for example, if a sufficient statistic is complete, 
there will be only one unbiased estimator of α which is a function of the sufficient 
statistic. 
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where  *   includes all other terms. 

Now using Laplas transformation that    
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Thus   is also a complete estimate of α because E( ) = α, it follows that   is a 
uniformly minimum variance unbiased estimate (UMVUE) of α. 

UMVUE of Reliability 

Previously 
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reliability  R t  is derived next. The general method of finding the UMVUE is to 

search for any unbiased statistics  1 2, , , nT x x x  and a complete and sufficient 

statistic if one exists. Consider a function  1 2, , , nT x x x  such that  1 1T x   if 

1x t  and = 0 otherwise. Thus, T is a function of x1 alone, denoted by  1T x . 
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Because t(1) and y  are independently distributed, the joint distribution of T  and 
T(1) can be obtained by using the transformation 
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The conditional distribution of t(1) is then obtained as      
 

1

1

, |
| ,

|

f t t
f t t

f t





   

 

     

 

2
1

1 1
1| , 1 ;0

rtrf t t t rt
rt rt





 
    

  
  

 

Using 
1

1
r
i i

r
T








 results in 
1rt

nr


  and using this value in the above pdf of t(1) 

 

     

 

2
1

1 1
1| 1 ;0

1

rt rf t t
r


 




  
    

  
  

 
Thus UMVUE of reliability  R t  is obtained as 
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Expectation of MVUE Reliability and Its Standard Error 
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Data Analysis 

Sixty items were tested and the test was terminated after the first 10 items failed. 
The failure times (in months) were recorded as 0.12, 0.21, 0.39, 0.52, 0.68, 0.72, 
0.87, 0.99, 1.14, 1.27. Assume that failure times are distributed as generalized 
exponentially distributed.  

The mean value of failure times is 0.69 months. The parameter α and 
reliability was estimated using the MLE and MVUE for various known values of λ 
and the behavior of two different estimations on the estimation of reliability and 
parameter estimation was studied; results are shown in Tables 1 and 2 (see 
Appendix A). 
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Appendix A 

Lemma 1 
Part 1  If Xi are random variables independently and identically generalized 
exponentially distributed GED(α,λ), with λ known, then 
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Tables 1 and 2 
 
Table 1. Estimate of parameter α and reliability using the MLE for various known values 
of λ 
 

λ ̂  S.E( ̂ ) ˆ ( )R t  ˆ( ( ))E R t  ˆ. ( ( ))S E R t  
0.01 0.03697 0.01452 0.68107 0.82608 0.08094 
0.02 0.04362 0.01714 0.70618 0.82435 0.08484 
0.03 0.04872 0.01914 0.72496 0.82303 0.08778 
0.04 0.05309 0.02086 0.74074 0.82192 0.09027 
0.05 0.05704 0.02241 0.75471 0.82091 0.09248 
0.06 0.06071 0.02385 0.76745 0.81999 0.07015 
0.07 0.06418 0.02521 0.77928 0.81912 0.07197 
0.08 0.06750 0.02652 0.79041 0.81830 0.07369 
0.09 0.07070 0.02778 0.80099 0.81751 0.07533 
0.10 0.07382 0.02900 0.81111 0.81675 0.07690 
0.12 0.07987 0.03137 0.83027 0.81530 0.07989 
0.14 0.08573 0.03368 0.84830 0.81391 0.08273 
0.15 0.08862 0.03481 0.85697 0.81324 0.08409 
0.18 0.09716 0.03817 0.88194 0.81127 0.08805 
0.20 0.10279 0.04038 0.89786 0.80999 0.09059 
0.30 0.13107 0.05149 0.90123 0.80388 0.06835 
0.40 0.16051 0.06305 0.90110 0.79796 0.07581 
0.50 0.19190 0.07539 0.85735 0.79209 0.08300 
0.60 0.22575 0.08868 0.85331 0.78618 0.09004 
0.70 0.26245 0.10310 0.84784 0.78022 0.09695 
0.80 0.30232 0.11876 0.84001 0.77419 0.07782 
0.90 0.34569 0.13580 0.82882 0.76812 0.08284 
1.00 0.39284 0.15432 0.80001 0.76201 0.08778 
2.00 1.12735 0.44286 0.71003 0.70934 0.01114 
3.00 2.42090 0.95102 0.63922 0.70982 0.00853 
4.00 4.15967 1.63407 0.60843 0.59425 0.10358 
5.00 6.12946 2.40788 0.45982 0.63671 0.23600 

10.00 19.33348 7.59491 0.24577 0.39212 0.20864 
20.00 90.37409 35.50230 0.24575 0.35531 0.28917 
30.00 338.40470 132.93700 0.24565 0.29058 0.29601 
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Table 2. Estimate of parameter α and reliability using the UMVUE for various known 
values of λ 
 

λ   S.E( ) ( )R t  ( ( ))E R t  . ( ( ))S E R t  
0.01 0.03327 0.01176 0.53961 0.52654 0.08460 
0.02 0.03926 0.01388 0.56303 0.54956 0.08372 
0.03 0.04385 0.01550 0.58055 0.56679 0.08306 
0.04 0.04778 0.01689 0.59529 0.58126 0.08251 
0.05 0.05134 0.01815 0.60834 0.59408 0.08202 
0.06 0.05464 0.01932 0.62023 0.60577 0.08157 
0.07 0.05776 0.02042 0.63129 0.61662 0.08115 
0.08 0.06075 0.02148 0.64169 0.62684 0.08076 
0.09 0.06363 0.02250 0.65158 0.63655 0.08039 
0.10 0.06644 0.02349 0.66104 0.64584 0.08004 
0.12 0.07188 0.02541 0.67896 0.66344 0.07936 
0.14 0.07716 0.02728 0.69583 0.68000 0.07873 
0.15 0.07975 0.02820 0.70396 0.68797 0.07842 
0.18 0.08744 0.03091 0.72733 0.71091 0.07755 
0.20 0.09251 0.03271 0.74224 0.72553 0.07699 
0.30 0.11796 0.04171 0.81143 0.79338 0.07439 
0.40 0.14446 0.05107 0.87503 0.85569 0.07200 
0.50 0.17271 0.06106 0.93523 0.91465 0.06974 
0.60 0.20318 0.07183 0.94094 0.97121 0.06757 
0.70 0.23620 0.08351 0.94992 0.90141 0.06548 
0.80 0.27209 0.09620 0.95738 0.89999 0.06345 
0.90 0.31112 0.11000 0.96834 0.89320 0.02318 
1.00 0.35356 0.12500 0.95637 0.81830 0.02318 
2.00 1.01461 0.35872 0.82882 0.79209 0.02318 
3.00 2.17881 0.77033 0.80001 0.78618 0.02318 
4.00 3.74370 1.32360 0.61843 0.78022 0.02318 
5.00 5.51652 1.95038 0.49867 0.43011 0.02318 

10.00 17.40010 6.15188 0.36759 0.42673 0.02318 
20.00 81.33660 28.75680 0.32793 0.33867 0.02318 
30.00 304.56400 107.67900 0.27546 0.31526 0.02318 
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Some Methods of Estimation from Censored 
Samples in Exponential and Gamma Models 
R. R. L. Kantam 
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B. Sriram 
ANU College of Engineering & Technology  
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Two popular life testing models exponential and one where its generalization is gamma are 
considered. Estimation of scale parameter from a general Type-II doubly censored sample 
is attempted by the principle of maximum likelihood method. Resulting equations found to 
be giving iterative solutions. As an alternative to iterative solution certain admissible 
modifications to the estimating equations are suggested in special cases. The resulting 
estimates are compared with the exact maximum likelihood estimates analytically or 
through simulation. The results are also extended for reliability estimation. 
 
Keywords: Maximum likelihood estimation, Type-II doubly censored sample, order 
statistics, modified maximum likelihood estimate, asymptotic variance, BLUE, left 
censored sample, reliability estimation 
 

Introduction 

Exponential distribution is the distribution of a continuous life time random 
variable and is the focal distribution of any reliability study just as normal 
distribution in classical statistical inference. The gamma distribution is an extension 
of exponential distribution and its shape parameter  is more than one. Such an IFR 
model specifying  = 2 is considered so that the resulting density is a weighted 
exponential distribution/length biased version of exponential distribution. The 
probability density function, the cumulative distribution function, the reliability 
function, the failure rate of such a distribution are respectively 
 
 ( ) zf z ze   (1) 
 
 ( ) 1 (1 )zF z e z     (2) 
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 ( ) (1 )zR z e z    (3) 
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1

zh z
z




 (4) 

 
If a scale parameter  is introduced these functions become respectively 
 

  2( )
xxf x e 





   (5) 

 

 ( ) 1 (1  )
x xF x e 





     (6) 

 

 x( )  (1  ) 
x

R x e 





    (7) 

 

 ( ) x (1  )

xh x








  (8) 

 
Generally the life time sample data are generated through a life testing 

experiment of a sample items giving rise to observations as soon as a sample items 
fail. The observations flow in a natural order giving rise to ordered sample data (the 
weaker items fail earlier, stronger items later). In view of the nature of a life testing 
experiment, it is possible to sometimes have an incomplete data with missing 
observations on either extremes of the sample – because of very early failures 
before data collection itself or because some items not failing at all even after a 
long waiting. Such a sample is called a doubly Type II censored sample. If n items 
are originally put to test in which it was not possible to have data on lives of the 
weakest r1 items, strongest r2 the sample would be as follows 

 
 [r1 missing] 

1 1 2  1  ........    r r n rx x x    
[r2 missing] 

 ___________________________________________ 
 
 1  1 2 21,2,3........ , 1............... , 1,......r r n r n r n     
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This paper deals with the problem of estimation of  and reliability function 
R(x;) of a gamma distribution from a doubly Type II censored samples. 

Estimation of  in a gamma distribution using the well-known ML method is 
attempted by many researchers from complete as well as censored samples. 
Whenever a particular method of estimation is resulting in iterative solutions as 
values of the estimator in any density some admissible adhoc modifications are 
suggested to that method of estimation by many researchers in order to overcome 
iterative solution and get a reasonably efficient estimator. In this context Tiku 
(1967), Mehrotra and Nanda (1974), Cohen and Whitten (1982), Balakrishanan and 
Cohen (1990), Tiku and Suresh (1992), Rosaiah et al. (1993a), Rosaiah et al. 
(1993b), Rosaiah et al. (1997), Kantam and Srinivasa Rao (2002), Srinivasa Rao 
and Kantam (2004), Kantam et al. (2007), Rosaiah et al. (2007) and the references 
therein are some instances. 

Motivated by the modified methods of estimation reported in the literature 
some modifications are proposed to estimate the scale parameter  of gamma 
distribution from a doubly Type II censored sample starting with the well-known 
maximum likelihood method of estimation. Later modified estimates are used to 
obtain the reliability estimates also, in addition an attempt is made to establish the 
asymptotic equivalence of the proposed modifications. Small sample comparisons 
are also presented. Results of exponential distribution are also given. The findings 
about estimation of  are described in the following section and those of reliability 
estimation are given in the section with that heading.  

Parametric Estimation 

Let 
1 1 21 1    .......  r r n rX X X     be a doubly Type II censored sample from a scale 

gamma distribution out of an originally planned random sample of size n in which 
the least r1 observations, the largest r2 observations are missing. The likelihood 
function of such a sample is given by 
 

    
2 2

1

1 2
1

1
1

( ) 1
n r r

r
r i n r

i r
L F x f x F x



 
 

           
  (9) 

 
Where f(.), F(.) are given in Equations (5), (6). Substituting the relevant expressions, 
taking logarithms, differentiating with respect to  and equating to zero, after some 
simplifications, results in 
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1 2
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   (10) 

 

Where zi = ix


, 1 2.1,.....  i r n r    

It can be observed that Equation (10) must be solved iteratively to obtain the 

MLE of . However the complete sample situation (r1=r2=0) gives ^

2
x

   . The 

failure censored sample situation (r1=0, r2= r) simplifies Equation (10) to the form 
 
 2 0A B C     = (11) 
 

 n-r
1

n-r
2

i
i 1

where A 2(n-r)

           B 2(n-r)x

           C x . .

n r

i
i

n r n r

x

x r x





 








  



  






  (12) 

 
It can be proved that the quadratic Equation (11) will have only one positive root 
and hence is the maximum likelihood estimate of  , which is  
 

 
2

^ 4
2

B B AC
A


  

   (13) 

 
The exact variance of MLE in Equation (13) cannot be obtained analytically and 
has to be computed only through simulation and the results were given in Table 4 
(all Tables can be found in Appendix A). The asymptotic variance is given by 
formula 
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The left censored sample situation (r1 = r, r2 = 0) is of some interest. The estimating 
equation in this situation becomes 
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This equation cannot be solved for  analytically because of the structure of the 

term 
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 corresponding to the left censored portion of the sample. 

Using the fact that i
i

x z

  and Equations (5), (6) results in 
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  (16) 

 
Unless the portion given by (16) of the Equation (15) is approximated by a 

reasonable simpler expression, Equation (15) will not give analytical solution for  
to get the MLE from a left censored sample. Similar approximations and 
modifications are suggested by many authors in many densities earlier. Among 
such works Tiku (1967) Balakrishanan and Cohen (1990, Ch.6), Tiku and Suresh 
(1992) are of relevance in the present investigation. Apart from these, specifically 
for gamma distribution, Mehrotra and Nanda (1974) suggested that the expression 
in (16) be approximated by its expected value to get simpler estimates of . Their 
approximation resulted in the well-known trimmed mean adjusted for unbiasedness 
as the approximate maximum likelihood estimator of . 

The commonness in the modifications of Tiku (1967), Balakrishnan and 
Cohen (1990) and Tiku and Suresh (1992) is that they have approximated the 

expression 1

1

( )
( )

r

r

f z
F z





 of Equation (16) by a linear expression of the form z   

(say), where   and   are to be suitably found. This investigation assesses the 
strength of linearity of the two functions, namely 
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and  
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in neighborhoods of r+1th quantile of the population. Let 1
1

rp
n





, define 

 1
1 
1r

rf
n

 





 so that r  is the rth quantile. Let 
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  (19) 

 
Where q=1-p. Let (z', z") be the solutions of the equations F (z') = P' and F (z") = 
P' where F(z) is given by Equation (6). Thus (z', z") is an interval in which 1r 

is 
expected to fall. For this purpose the values of F(z) for z = 0 (0.01) to 11.89 have 
been tabulated and these are given in Table 1. For each combination of n=3(1)10, 
r=1,2,….n-2, identified from Table 1 the values of z close to F(z'), F(z") and 
supposed to contain the interval (z' , z"). For example, when n = 5, r = 1: 
 

1 2,
3 3

p q    

 

0.1225, 0.54413

( ') 0.1225, ( ") 0.54413

pq pqp p
n n

F z F z

   

 

 

 
From Table 1, search for the values of F(z) closest to 0.1225 and less than 0.1225, 
closest to 0.54413 and more than 0.54413. In Table 1 when z = 0.6, F(z) = 0.121901, 
when z = 0.61, F(z) = 0.125205 we take z* = 0.6. Similarly when z = 1.82, F(z) = 
0.543087, when z = 1.83 F(z)=0.54603. We take z** = 1.83. By the non-decreasing 
property of distribution function the interval (z', z") falls in the interval (z*, z**). 

Table 1 was utilized to obtain the intervals of the type (z*, z**) for n = 3(1)10 
r=1,2,…n-2. The functions h1(z) and h2(z) given by Equations (17), (18) 
respectively are then evaluated at various values of z over (z*, z**). The Karl 
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Pearson’s product moment correlation coefficient is computed between (z, h1(z)), 
(z,h2(z)) for z  (z*, z**) with the chosen combinations of n & r. These are given 
in Table 2. 

From Table 2 it may be observed that 2 is larger than 1 uniformly. Therefore 
it may be concluded that linearization of h2(z) is preferable to linearization of h1(z) 
for z(z*, z**). Because (z', z") is subset of (z*, z**) we approximate the expression 
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of Equation (16) by a linear equation. 
 
i.e., 
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where   and   are to be suitably found. Substituting (21) in (15) and solving it 
for   results in the modified maximum likelihood estimate of   from left 
censored sample as  
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  (22) 

 
This is a linear estimator and its variance can be found using the moments and 

cross moments of standard ordered gamma statistics given by Prescott (1974), 
Balasooriya (1992), provided values of   and   are known. Three different 
methods for calculating ,   are now considered. The basic works relevant to 
these three methods are – Tiku (1967), Balakrishnan and Cohen (1990, Ch.6), Tiku 
and Suresh (1992). The methods of getting   and   are described using these 
works. 

Here it should be reemphasized that linearization by earlier authors is for h1(z), 
whereas the linearization herein is for h2(z), because h2(z) was found to be more 
linear than h1(z) as evidenced from sample Table 2.   
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Method I: 

Consider the equations F(z') = P', F(z”) = P” where 1
1

rp
n





, q = 1-p, P'= pqp
n

 , 

P"= pqp
n

 . The values of (z', z") can be obtained from Table 2.1 for a given, z, 

n. The values of   and   are given by  
 

 ( ") ( ')
" '

F z F z
z z







  (23) 

 
 "

2 2( ) " ( ') 'h z z or h z z       (24) 
 
The values of ,   for n=3(1)10 and r = 1,2,….,n-2, were calculated and are 
presented in Table 3. With a specific choice of n and r the modified maximum 
likelihood estimate by this method is given by Equation (22), Let it be denoted by 
^

1. The bias, variance and mean square error of ^
1 are calculated using the 

moments of standard gamma order statistics, given by Gupta (1960), Prescott 
(1974). These are given in Table 5. 

Method II: 

In this method Taylor’s series expansion of h2(z) in the neighborhood of (r+1)th 
quantile of the population up to the first derivative is considered, so that h2(zr+1) is 
approximately equal to  +  zr+1 where    
 
  '

2 1rh     (25) 
 

Here 1r   is the solution of 1
1( )
1r

rF
n

 





. 

 
  2 1 1 r rh        (26) 
 
Calculating 1r   by interpolation from Table 1 for n=3(1)10 and r = 1,2,….,n-2, 
which in turn are used in Equations (25), (26) to obtain   and  . These values of 
  and   can be used in Equation (22) to get another linear estimator as modified 
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maximum likelihood estimator say ^
2. For the chosen combinations of n and r the 

values of   and   by this method are given in Table 3. As described in Method I 
the bias, variance and mean square error of ^

2 are given in Table 5. 

Method III: 

In this method the Taylor’s series expansion of h2(z) in the neighborhood of 
expected value of (r+1)th standard order statistic, up to first derivative say er+1 i.e., 
E(zr+1) = er+1 was considered. If the linear approximation is denoted by the same 
notation as that of Methods I and II without any scope for confusion results in  
 

2 1 1( )   r rh z z     
 
where 
 
 '

2 1( )rh e    (27) 
 
and 
 
 2 1 1( ) ( )r rh e e      (28) 
 
Using the moments of gamma order statistics given by Gupta (1960)   and   for 
n=3(1)10 and r = 1,2,…., n-2 have been evaluated, these are given in Table 3. 
Substituting the values of   and   in Equation (22) results in another modified 
maximum likelihood estimator of ^

3 for example, 
 

 ^
3

1
1

n

i i
i r
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 ,   in the above 1i’s are given in Table 3 for a specific choice of r and n. Because 
^

3 is also a linear estimator its bias, variance and mean square error can be 
calculated using the moments of gamma order statistics. These three sampling 
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characteristics of ^
3 are given in Table 5. For the sake of comparison of ^

1^
2, ^

3 
which are linear estimators the variance of BLUE from a left censored sample of a 
gamma distribution borrowed from Kantam et al. (1989) is also included in 
 Table 5. 

As a matter of academic interest and comparison between CFR and a specific 
IFR model the calculations for exponential distribution have also been included. 
Table 6 gives the, values for n and r. Table 7 gives the bias, variance, MSE of 
^

1^
2, ^

3 respectively. 

Asymptotica Variance 

The log-likelihood equation to estimate ^ from the left censored sample (r1= r, r2 
= 0) can be written as  
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2 i
i r 1

log   h  - 2(n-r)- z  L z
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In the suggested three methods of modifications h2(z) as z in the neighborhood 
of population’s r+1 quantile or population’s mean value of (r+1) sample order 
statistics were approximated. Because sample quantiles are consistent estimators of 
population quantiles, sample moments are consistent estimators of population 
moments, in all the three methods of modification the function h2(z) is 
approximated as a linear function of z. For large values of n the neighborhood of 
population quantile or population mean value becomes narrower thereby giving 
more linearity of h2(z) in that neighborhood, that is the closeness of h2(z) to z 

is stronger, the larger the sample size. Hence for large n, log L





 is almost equal to 

z. 
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MMLEs of Method I, Method II, Method III have the same asymptotic bias, 
asymptotic variance as that of MLE. Also BLUE of  is asymptotically as efficient 
as MLE and conversely MLEs are asymptotically linear (David 1981, p. 136., p. 
273). As such the three MMLEs are asymptotically equivalent to BLUE, exact 
MLE in the case of left censored samples. For a right censored sample it is the exact 
MLE and BLUE that stand in competition, which are asymptotically equal. 

Small Sample Comparison 

The following comparative conclusions from Table 4 are drawn about the 
performance of exact MLE, BLUE in right censored sample. With respect to 
variance as well as MSE, it is maximum likelihood estimator that is preferable to 
BLUE from right censored samples. In case of left censored samples, from Table 5 
MMLE under Method I is the recommended estimator.for exponential population 
also the MMLE under Method I is most preferable.  

Reliability Estimation 

The reliability of any item whose life time variate follows gamma distribution is 
given by  
 

 
x( )  (1  )

x

R x e 





    (30) 

 
where  a scale parameter and x is is the time instant at which the reliability is 
desired. If  is not known reliability is to be estimated through estimators of  or 
otherwise Next an attempt is made to estimate reliability using the BLUE, MLE, 
MMLEs of three methods of Section 2. It is proposed that the corresponding 
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estimate of reliability with  in R(x) replaced by ^. This is analogous to the well-
known invariance property of ML method of estimation. Though the non ML 
methods of estimation in this discussion are not established to have invariance 
property it is exploited here as per remark in Sinha (1986). Accordingly four 
additional estimators of reliability corresponding to the four methods of estimation 
of  are obtained. For one such estimator of reliability the asymptotic variance is 
given by  
 

 
2^ R ˆvar  (x;  )   . asvar( )as R  



 
  

 
  (31) 

 
where ˆvar( )as   is the asymptotic variance of ̂  obtained by a particular method. 
For a gamma distribution with shape 2 and scale parameter, Equation (31) 
becomes  
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where z = x/. 

Therefore all the five reliability estimates are asymptotically equally efficient 
as explained in Section 2. At the same time the small sample variances of the 
reliability estimates are not mathematically tractable. Monte-Carlo simulation 
method was used to assess the small sample behavior. 3,000 samples of size n = 
3(1)10 are generated from a gamma distribution. For each sample after ordering all 
possible right censored situation with r = 1(1) n-2 are extracted. For each right 
censored sample the exact MLE as the unique positive root of quadratic Equation 
(11) is computed say ^M. In order to get the BLUE of  for the right censored 
sample the coefficients of uncensored observations for a gamma distribution need 
to be supplied by a general formula of Lloyd (1952) in scaled densities. As these 
coefficients are not exhaustively available in published form, they have been 
evaluated making use of the expected values of Gupta (1960) and variance 
covariances of Prescott (1974) of gamma order statistics. These coefficients are 
used to get the BLUE of  from a right censored sample say ^B. The gamma 
reliability function R(x;) is calculated with  replaced by ^M, ^B in succession 
at values of x corresponding to R(x) = 0.1(0.1)0.9. The bias, the variance and MSE 
of the estimated reliabilities for a given x, n, r a method of estimation across the 
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3,000 simulated runs are evaluated and these empirical sample characteristic are 
presented in Table 8.  

For left censored samples the exact MLE ^M for each simulated sample is 
obtained as an iterative solution of Equation (15) by Newton-raphson method. The 
BLUE ^B is computed as narrated in the case of right censored samples with the 
distinction that the weights are calculated for the suffixes of available observations. 
The three modified maximum likelihood estimators ^1, ^2, ^3 of the Methods I, 
II, III respectively are also calculated for each simulated sample using the constants 
of linearization given in Table 3 in Equation (22).The reliability estimate of left 
censored sample is obtained in five different ways by successively replacing  in 
R(x;) with ^M ,^B ,^1, ^2, ^3 at values of x corresponding to R(x) = 0.1(0.1)0.9 
for all left censored samples with n = 3(1)10, r = 1(1)n-2 . The empirical bias, 
variance, MSE of all the reliability estimates across the 3,000 simulation runs are 
presented in Table 9 for R(x)=0.9 only a byproduct this entire work is carried out 
for exponential distribution also in the case of left censored sample only. These 
results are given in Table 10. 

The competition of rating for preferability fell between the use of MLE/BLUE 
to estimate the gamma reliability function from right censored samples. In the case 
of left censored samples Method I or Method II of MMLE are therefore suggested. 
In the case of single parameter exponential distribution the use of BLUE is 
suggested, although the use of MML Method I or the MML Method II are equally 
good. 
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Appendix A 
Table 1. Values of cumulative distribution function of Gamma distribution with shape 
parameter 2 
 

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.00 0.00000 0.00005 0.00019 0.00044 0.00077 0.00120 0.00173 0.00233 0.00303 0.00381 

0.10 0.00467 0.00562 0.00664 0.00775 0.00893 0.01018 0.01151 0.01291 0.01438 0.01591 

0.20 0.01752 0.01919 0.02092 0.02272 0.02458 0.02649 0.02847 0.03050 0.03259 0.03474 

0.30 0.03693 0.03918 0.04148 0.04383 0.04622 0.04867 0.05116 0.05369 0.05627 0.05889 

0.40 0.06155 0.06425 0.06699 0.06977 0.07258 0.07543 0.07832 0.08124 0.08420 0.08918 

0.50 0.09020 0.09325 0.09632 0.09943 0.10256 0.10572 0.10891 0.11212 0.11536 0.11862 

0.60 0.12190 0.12520 0.12853 0.13187 0.13524 0.13862 0.14202 0.14544 0.14888 0.15233 

0.70 0.15580 0.15928 0.16278 0.16629 0.16982 0.17335 0.17690 0.18046 0.18403 0.18761 

0.80 0.19120 0.19480 0.19841 0.20203 0.20565 0.20928 0.21291 0.21656 0.22020 0.22386 

0.90 0.22751 0.23117 0.23484 0.23851 0.24218 0.24585 0.24953 0.25320 0.25688 0.26056 

1.00 0.26424 0.26792 0.27159 0.27527 0.27895 0.28262 0.28630 0.28997 0.29364 0.29730 

1.10 0.30097 0.30463 0.30828 0.31193 0.31558 0.31923 0.32287 0.32650 0.33013 0.33375 

1.20 0.33737 0.34098 0.34458 0.34818 0.35177 0.35536 0.35894 0.36251 0.36607 0.36963 

1.30 0.37317 0.37671 0.38024 0.38376 0.38728 0.39078 0.39428 0.39776 0.40124 0.40471 

1.40 0.40816 0.41161 0.41505 0.41847 0.42189 0.42530 0.42869 0.43208 0.43545 0.43882 

1.50 0.44217 0.44551 0.44884 0.45216 0.45547 0.45876 0.46205 0.46532 0.46858 0.47183 

1.60 0.47506 0.47829 0.48150 0.48470 0.48789 0.49106 0.49423 0.49738 0.50051 0.50364 

1.70 0.50675 0.50985 0.51294 0.51601 0.51907 0.52212 0.52515 0.52817 0.53118 0.53418 

1.80 0.53716 0.54013 0.54308 0.54603 0.54895 0.55187 0.55477 0.55766 0.56054 0.56340 

1.90 0.56625 0.56908 0.57190 0.57471 0.57751 0.58029 0.83059 0.58581 0.58855 0.59128 

2.00 0.59399 0.59669 0.59938 0.60205 0.60471 0.60735 0.60999 0.61261 0.61521 0.61780 

2.10 0.62038 0.62295 0.62550 0.62803 0.63056 0.63307 0.63557 0.63805 0.64052 0.64298 

2.20 0.64543 0.64786 0.65027 0.65268 0.65507 0.65745 0.65981 0.66216 0.66450 0.66683 

2.30 0.66914 0.67144 0.67373 0.67600 0.67826 0.68051 0.68274 0.68497 0.68717 0.68937 

2.40 0.69155 0.69373 0.69588 0.69803 0.70016 0.70228 0.70439 0.70649 0.70857 0.71064 

2.50 0.71270 0.71474 0.71675 0.71880 0.72081 0.72281 0.72479 0.72676 0.72872 0.73067 

2.60 0.73261 0.73454 0.73645 0.73835 0.74024 0.74212 0.74399 0.74584 0.74768 0.74951 

2.70 0.75134 0.75314 0.75494 0.75673 0.75850 0.76027 0.76202 0.76376 0.76549 0.76721 

2.80 0.76892 0.77061 0.77230 0.77398 0.77564 0.77729 0.77894 0.78057 0.78219 0.78380 

2.90 0.78540 0.78700 0.78858 0.79015 0.79170 0.79325 0.79479 0.79632 0.79784 0.79935 
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Table 1 (contd.). Values of cumulative distribution function of Gamma distribution with 
shape parameter 2 
 

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

3.00 0.80085 0.80234 0.80381 0.80528 0.80674 0.80819 0.80963 0.81106 0.81248 0.81389 

3.10 0.81529 0.81669 0.81807 0.81944 0.82080 0.82216 0.82350 0.82484 0.82617 0.82749 

3.20 0.82879 0.83009 0.83139 0.83267 0.83394 0.83521 0.83646 0.83771 0.83895 0.84018 

3.30 0.84140 0.84261 0.84382 0.84501 0.84620 0.84738 0.84855 0.84971 0.85087 0.85201 

3.40 0.85315 0.85418 0.85541 0.85652 0.85763 0.85873 0.85982 0.86090 0.86198 0.86305 

3.50 0.86411 0.86516 0.86621 0.86724 0.86827 0.86930 0.87031 0.87132 0.87232 0.87332 

3.60 0.87431 0.87529 0.87626 0.87723 0.87818 0.87914 0.88008 0.88102 0.88195 0.88288 

3.70 0.88379 0.88471 0.88561 0.88651 0.88740 0.88829 0.88916 0.89004 0.89090 0.89176 

3.80 0.89262 0.89346 0.89430 0.89514 0.89597 0.89679 0.89761 0.89842 0.89922 0.90002 

3.90 0.90082 0.90160 0.90238 0.90316 0.90393 0.90469 0.90545 0.90620 0.90695 0.90769 

4.00 0.90842 0.90915 0.90988 0.91060 0.91131 0.91202 0.91272 0.91342 0.91411 0.91480 

4.10 0.91548 0.91616 0.91683 0.91750 0.91816 0.91881 0.91947 0.92011 0.92075 0.92139 

4.20 0.92202 0.92265 0.92327 0.92389 0.92451 0.92511 0.92572 0.92632 0.92691 0.92750 

4.30 0.92809 0.92867 0.92925 0.92982 0.93039 0.93095 0.93151 0.93206 0.93261 0.93316 

4.40 0.93370 0.93424 0.93478 0.93531 0.93583 0.93635 0.93687 0.93738 0.93789 0.93840 

4.50 0.93890 0.93940 0.93989 0.94038 0.94087 0.94135 0.94183 0.94231 0.94278 0.94325 

4.60 0.94371 0.94417 0.94463 0.94508 0.94553 0.94598 0.94642 0.94686 0.94730 0.94773 

4.70 0.94816 0.94858 0.94901 0.94943 0.94984 0.95025 0.95066 0.95107 0.95147 0.95187 

4.80 0.95227 0.95266 0.95305 0.95344 0.95382 0.95420 0.95458 0.95496 0.95533 0.95570 

4.90 0.95607 0.95643 0.95679 0.95715 0.95750 0.95785 0.95820 0.95855 0.95889 0.95923 

5.00 0.95957 0.95991 0.96024 0.96057 0.96090 0.96122 0.96155 0.96187 0.96218 0.96250 

5.10 0.96281 0.96312 0.96343 0.96373 0.96403 0.96433 0.96463 0.96493 0.96522 0.96551 

5.20 0.96580 0.96608 0.96637 0.96665 0.96693 0.96720 0.96748 0.96775 0.96802 0.96829 

5.30 0.96855 0.96882 0.96908 0.96934 0.96959 0.96985 0.97010 0.97035 0.97060 0.97085 

5.40 0.97109 0.97134 0.97158 0.97182 0.97205 0.97229 0.97252 0.97275 0.97298 0.97321 

5.50 0.97344 0.97366 0.97388 0.97410 0.97432 0.97454 0.97475 0.97497 0.97518 0.97539 

5.60 0.97559 0.97580 0.97601 0.97621 0.97641 0.97661 0.97681 0.97700 0.97720 0.97739 

5.70 0.97758 0.97777 0.97796 0.97815 0.97833 0.97852 0.97870 0.97888 0.97906 0.97924 

5.80 0.97941 0.97959 0.97976 0.97993 0.98010 0.98027 0.98044 0.98061 0.98077 0.98094 

5.90 0.98110 0.98126 0.98142 0.98158 0.98173 0.98189 0.98204 0.98220 0.98235 0.98250 

  



ESTIMATION FROM SAMPLES IN EXPONENTIAL & GAMMA MODELS 

340 

Table 1 (contd.). Values of cumulative distribution function of Gamma distribution with 
shape parameter 2 
 

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

6.00 0.98265 0.98280 0.98294 0.98309 0.98323 0.98338 0.98352 0.98366 0.98380 0.98394 

6.10 0.98408 0.98421 0.98435 0.98448 0.98461 0.98475 0.98488 0.98501 0.98513 0.98526 

6.20 0.98539 0.98551 0.98564 0.98576 0.98588 0.98600 0.98612 0.98624 0.98636 0.98648 

6.30 0.98660 0.98671 0.98682 0.98694 0.98705 0.98716 0.98727 0.98738 0.98749 0.98760 

6.40 0.98771 0.98781 0.98792 0.98802 0.98812 0.98823 0.98833 0.98843 0.98852 0.98832 

6.50 0.98872 0.98882 0.98892 0.98901 0.98911 0.98920 0.98930 0.98939 0.98948 0.98957 

6.60 0.98966 0.98975 0.98984 0.98993 0.99001 0.99010 0.99019 0.99027 0.99036 0.99044 

6.70 0.99052 0.99060 0.99069 0.99077 0.99085 0.99093 0.99100 0.99108 0.99116 0.99124 

6.80 0.99131 0.99139 0.99146 0.99154 0.99161 0.99168 0.99176 0.99183 0.99190 0.99197 

6.90 0.99204 0.99211 0.99218 0.99224 0.99231 0.99238 0.99245 0.99251 0.99258 0.99264 

7.00 0.99271 0.99277 0.99283 0.99289 0.99296 0.99302 0.99308 0.99314 0.99320 0.99326 

7.10 0.99332 0.99338 0.99343 0.99349 0.99355 0.99360 0.99366 0.99372 0.99377 0.99382 

7.20 0.99388 0.99393 0.99399 0.99404 0.99409 0.99414 0.99419 0.99424 0.99429 0.99434 

7.30 0.99439 0.99444 0.99449 0.99454 0.99459 0.99463 0.99468 0.99473 0.99477 0.99482 

7.40 0.99487 0.99491 0.99496 0.99500 0.99504 0.99509 0.99513 0.99517 0.99522 0.99526 

7.50 0.99530 0.99534 0.99538 0.99542 0.99546 0.99550 0.99554 0.99558 0.99562 0.99566 

7.60 0.99570 0.99573 0.99577 0.99581 0.99585 0.99588 0.99592 0.99595 0.99599 0.99603 

7.70 0.99606 0.99610 0.99613 0.99616 0.99620 0.99623 0.99626 0.99630 0.99633 0.99636 

7.80 0.99639 0.99643 0.99646 0.99649 0.99652 0.99655 0.99658 0.99661 0.99664 0.99667 

7.90 0.99670 0.99643 0.99676 0.99679 0.99682 0.99684 0.99687 0.99690 0.99693 0.99695 

8.00 0.99698 0.99701 0.99703 0.99706 0.99709 0.99711 0.99714 0.99716 0.99719 0.99721 

8.10 0.99724 0.99726 0.99729 0.99731 0.99733 0.99736 0.99738 0.99741 0.99743 0.99745 

8.20 0.99747 0.99750 0.99752 0.99754 0.99756 0.99758 0.99761 0.99763 0.99765 0.99767 

8.30 0.99769 0.99771 0.99773 0.99775 0.99777 0.99779 0.99781 0.99783 0.99779 0.99787 

8.40 0.99789 0.99791 0.99792 0.99794 0.99796 0.99798 0.99800 0.99801 0.99803 0.99805 

8.50 0.99807 0.99808 0.99810 0.99812 0.99814 0.99815 0.99817 0.99818 0.99820 0.99822 

8.60 0.99823 0.99825 0.99826 0.99828 0.99830 0.99831 0.99833 0.99834 0.99836 0.99837 

8.70 0.99838 0.99840 0.99841 0.99843 0.99844 0.99846 0.99847 0.99848 0.99850 0.99851 

8.80 0.99852 0.99854 0.99855 0.99856 0.99858 0.99859 0.99860 0.99861 0.99863 0.99864 

8.90 0.99865 0.99866 0.99867 0.99869 0.99870 0.99871 0.99872 0.99873 0.99874 0.99876 
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Table 1 (contd.). Values of cumulative distribution function of Gamma distribution with 
shape parameter 2 
 

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

9.00 0.99877 0.99878 0.99879 0.99880 0.99881 0.99882 0.99883 0.99884 0.99885 0.99886 

9.10 0.99887 0.99888 0.99889 0.99890 0.99891 0.99892 0.99893 0.99894 0.99895 0.99896 

9.20 0.99897 0.99898 0.99899 0.99900 0.99901 0.99902 0.99902 0.99903 0.99904 0.99905 

9.30 0.99906 0.99907 0.99908 0.99908 0.99909 0.99910 0.99911 0.99912 0.99912 0.99913 

9.40 0.99914 0.99915 0.99916 0.99916 0.99917 0.99918 0.99919 0.99919 0.99920 0.99921 

9.50 0.99924 0.99922 0.99923 0.99924 0.99924 0.99925 0.99926 0.99926 0.99927 0.99928 

9.60 0.99928 0.99929 0.99930 0.99930 0.99931 0.99931 0.99932 0.99933 0.99933 0.99934 

9.70 0.99934 0.99935 0.99936 0.99936 0.99937 0.99937 0.99938 0.99939 0.99939 0.99940 

9.80 0.99401 0.99941 0.99941 0.99942 0.99942 0.99943 0.99943 0.99944 0.99944 0.99945 

9.90 0.99945 0.99946 0.99946 0.99947 0.99948 0.99948 0.99948 0.99949 0.99949 0.99950 

10.00 0.99950 0.99951 0.99951 0.99951 0.99952 0.99952 0.99953 0.99953 0.99954 0.99954 

10.10 0.99954 0.99955 0.99955 0.99956 0.99956 0.99956 0.99957 0.99957 0.99958 0.99958 

10.20 0.99958 0.99959 0.99959 0.99960 0.99960 0.99960 0.99961 0.99961 0.99961 0.99962 

10.30 0.99962 0.99962 0.99963 0.99963 0.99963 0.99964 0.99964 0.99964 0.99965 0.99965 

10.40 0.99965 0.99966 0.99966 0.99966 0.99967 0.99967 0.99967 0.99968 0.99968 0.99968 

10.50 0.99968 0.99969 0.99969 0.99969 0.99970 0.99972 0.99970 0.99970 0.99971 0.99971 

10.60 0.99971 0.99971 0.99972 0.99972 0.99972 0.99975 0.99973 0.99973 0.99973 0.99973 

10.70 0.99974 0.99974 0.99974 0.99974 0.99975 0.99977 0.99975 0.99975 0.99976 0.99976 

10.80 0.99976 0.99976 0.99976 0.99977 0.99977 0.99979 0.99977 0.99977 0.99978 0.99978 

10.90 0.99978 0.99978 0.99978 0.99979 0.99979 0.99981 0.99979 0.99979 0.99980 0.99980 

11.00 0.99980 0.99980 0.99980 0.99981 0.99981 0.99983 0.99981 0.99981 0.99981 0.99982 

11.10 0.99982 0.99982 0.99982 0.99982 0.99982 0.99984 0.99983 0.99983 0.99983 0.99983 

11.20 0.99983 0.99984 0.99984 0.99984 0.99984 0.99986 0.99984 0.99984 0.99985 0.99985 

11.30 0.99985 0.99985 0.99985 0.99985 0.99985 0.99987 0.99986 0.99986 0.99986 0.99986 

11.40 0.99986 0.99986 0.99986 0.99987 0.99987 0.99987 0.99987 0.99987 0.99987 0.99987 

11.50 0.99987 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 

11.60 0.99988 0.99988 0.99989 0.99989 0.99989 0.99989 0.99989 0.99989 0.99989 0.99989 

11.70 0.99990 0.99989 0.99990 0.99990 0.99990 0.99989 0.99990 0.99990 0.99990 0.99990 

11.80 0.99990 0.99991 0.99991 0.99991 0.99991 0.99991 0.99991 0.99991 0.99991 0.99991 
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Table 2. Gamma (2) distribution correlation coefficients of (z, h1(z)), (z, h2(z)), z    
(z*, z**) 
 

n r z* z** r1 r2 

5 1 0.6 1.83 0.9528 0.999 

 2 1.03 2.56 0.9633 0.99838 

 3 1.54 3.64 0.9626 0.99548 

10 1 0.39 1.11 0.94753 0.99177 

 2 0.63 1.42 0.97025 0.9992 

 3 0.86 1.73 0.97219 0.99897 

 4 1.09 2.07 0.97798 0.99922 

 5 1.34 2.45 0.979 0.9992 

 6 1.63 2.92 0.97784 0.99693 

 7 1.97 3.54 0.9769 0.99597 

 8 2.42 4.53 0.9555 0.98629 
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Table 3. Gamma (2) distribution constants of linear approximation for MMLEs from left 
censored sample 
 
    Method I Method II Method III 

n r a b a b a b 
3 1 1.84091 -0.43072 1.81952 -0.45748 1.78597 -0.43832 

4 
1 1.90320 -0.48750 1.88015 -0.49717 1.86883 -0.48912 
2 1.73474 -0.37991 1.73608 -0.41238 1.68453 -0.38802 

5 
1 1.93150 -0.51815 1.91158 -0.52169 1.90748 -0.51826 
2 1.83181 -0.44270 1.81953 -0.45749 1.79827 -0.44516 
3 1.64480 -0.34330 1.66186 -0.37794 1.59699 -0.35086 

6 

1 1.94746 -0.53785 1.93053 -0.53854 1.92936 -0.56374 
2 1.87819 -0.47836 1.86467 -0.48625 1.85453 -0.47943 
3 1.83834 -0.43395 1.76285 -0.42596 1.73350 -0.41111 
4 1.56715 -0.31499 1.59551 -0.35027 1.52114 -0.32191 

7 

1 1.95763 -0.55182 1.94311 -0.55099 1.94331 -0.55119 
2 1.90588 -0.50233 1.89266 -0.50650 1.88752 -0.50261 
3 1.82782 -0.44717 1.81952 -0.45748 1.80406 -0.44845 
4 1.70687 -0.38095 1.71033 -0.39994 1.67437 -0.38346 
5 1.50449 -0.29485 1.53614 -0.32743 1.45456 -0.29843 

8 

1 1.96537 -0.56323 1.95270 -0.56142 1.95288 -0.56163 
2 1.92479 -0.52065 1.91298 -0.52285 1.90898 -0.51950 
3 1.86766 -0.47549 1.83779 -0.46865 1.84663 -0.47270 
4 1.77636 -0.41916 1.77284 -0.43123 1.75654 -0.42269 
5 1.64785 -0.35591 1.65752 -0.37605 1.62040 -0.36036 
6 1.43326 -0.27115 1.47800 -0.30651 1.39558 -0.27889 

9 

1 1.96979 -0.57064 1.95863 -0.56838 1.95988 -0.56989 
2 1.93576 -0.53244 1.92511 -0.53351 1.92395 -0.53246 
3 1.88952 -0.49297 1.88015 -0.49717 1.87488 -0.49338 
4 1.82588 -0.44958 1.81952 -0.45748 1.80735 -0.45034 
5 1.73608 -0.39956 1.73608 -0.41237 1.71209 -0.40077 
6 1.60303 -0.33858 1.61677 -0.35886 1.57737 -0.34312 
7 1.38549 -0.25722 1.32181 -0.29151 1.34407 -0.26268 

10 

1 1.97368 -0.57735 1.96373 -0.57476 1.96506 -0.57649 
2 1.94494 -0.54287 1.93525 -0.54308 1.93487 -0.5427 
3 1.90697 -0.50797 1.89806 -0.51069 1.89489 -0.50822 
4 1.85793 -0.47124 1.84941 -0.47607 1.84165 -0.47108 
5 1.78869 -0.42895 1.78506 -0.43782 1.76991 -0.42967 
6 1.69455 -0.38063 1.69791 -0.39414 1.67028 -0.38164 
7 1.55743 -0.32171 1.57513 -0.34224 1.52547 -0.32349 
8 1.3371 -0.24336 1.38993 -0.27708 1.29554 -0.24805 
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Table 4. Gamma (2) distribution empirical sample characteristics of MMLEs of  from 
right censored sample 
 

  BIAS VAR MSE 
n r EXACT MLE EXT MLE BLUE EXACT MLE 
3 1 0.00975 0.22591 0.22803 0.22600 

4 
1 0.00277 0.15943 0.15510 0.15944 
2 0.01334 0.21390 0.21523 0.21408 

5 
1 0.00563 0.12188 0.11782 0.12191 
2 0.00281 0.15087 0.14766 0.15088 
3 0.02190 0.19516 0.20653 0.19564 

6 

1 0.00870 0.09425 0.09509 0.09433 
2 0.00771 0.11231 0.11285 0.11237 
3 0.01401 0.14175 0.14221 0.14194 
4 0.02220 0.18893 0.20008 0.18942 

7 

1 0.00963 0.07646 0.07975 0.07655 
2 0.00852 0.08823 0.09154 0.08830 
3 0.01057 0.10779 0.10913 0.10790 
4 0.01027 0.13416 0.13807 0.13426 
5 0.02869 0.17353 0.19505 0.17435 

8 

1 0.00434 0.06593 0.06870 0.06594 
2 0.01160 0.07706 0.07708 0.07720 
3 0.00288 0.08631 0.08878 0.08632 
4 0.00109 0.10277 0.10614 0.10277 
5 0.01748 0.12868 0.13469 0.12899 
6 0.01791 0.19094 0.19103 0.19126 

9 

1 0.00464 0.06160 0.06035 0.06163 
2 0.00044 0.06707 0.06661 0.06707 
3 0.00442 0.07414 0.07495 0.07416 
4 0.00048 0.08776 0.08654 0.08776 
5 0.00136 0.10196 0.10372 0.10196 
6 0.01426 0.12706 0.13196 0.12726 
7 0.02398 0.17928 0.18767 0.17986 

10 

1 0.00018 0.05285 0.05382 0.05285 
2 0.00243 0.05726 0.05867 0.05726 
3 0.00086 0.06598 0.06492 0.06598 
4 0.00204 0.07066 0.07319 0.07067 
5 0.00035 0.08212 0.08465 0.08212 
6 0.01394 0.09408 0.10168 0.09428 
7 0.00585 0.12892 0.12963 0.12895 
8 0.03092 0.17385 0.18487 0.17481 

 



KANTAM & SRIRAM 

345 

Table 5. Gamma (2) distribution empirical sample characteristics of MMLEs of σ from left censored sample 
 

  BIAS VAR MSE 

n r  M 1 2 3  M  B 1 2 3  M 1 2 3 

3 1 0.00029 0.00312 0.00893 0.00874 0.17905 0.17425 0.17425 0.17427 0.17426 0.17905 0.17629 0.17748 0.17739 

4 
1 0.01058 0.00088 0.00381 0.00378 0.13410 0.12758 0.12758 0.12757 0.12758 0.13422 0.12735 0.12856 0.12855 

2 0.00624 0.00435 0.01450 0.01408 0.13459 0.13744 0.13745 0.13749 0.13746 0.13463 0.13628 0.14172 0.14156 

5 

1 0.00050 0.00040 0.00204 0.00203 0.10704 0.10115 0.10118 0.10323 0.12016 0.10704 0.10110 0.10366 0.12065 

2 0.00016 0.00120 0.00670 0.00668 0.10403 0.10489 0.10491 0.11263 0.11227 0.10403 0.10466 0.11420 0.11382 

3 0.02087 0.00510 0.01820 0.01759 0.12203 0.11552 0.11547 0.12794 0.12668 0.12247 0.11433 0.13296 0.13148 

6 

1 0.01104 0.00023 0.00125 0.00125 0.08554 0.08394 0.08394 0.08394 0.08394 0.08566 0.08390 0.08415 0.08414 

2 0.00055 0.00053 0.00381 0.00378 0.08389 0.08575 0.08575 0.08575 0.08575 0.08389 0.08566 0.08643 0.08641 

3 0.00691 0.00409 0.00891 0.00876 0.09437 0.09008 0.08963 0.09009 0.09008 0.09442 0.08891 0.09178 0.09175 

4 0.01417 0.00568 0.02067 0.01998 0.10788 0.10087 0.10088 0.10093 0.10089 0.10808 0.09976 0.10557 0.10536 

7 

1 0.00943 0.00015 0.00083 0.00083 0.07002 0.07178 0.07179 0.07178 0.07178 0.07011 0.07178 0.07190 0.07190 

2 0.00152 0.00031 0.00241 0.00241 0.07475 0.07279 0.07278 0.07278 0.07278 0.07475 0.07274 0.07314 0.07314 

3 0.00479 0.00063 0.00523 0.00518 0.07750 0.07497 0.07497 0.07498 0.07497 0.07753 0.07488 0.07579 0.07578 

4 0.00659 0.00163 0.01057 0.01036 0.08170 0.07958 0.07958 0.07959 0.07958 0.08174 0.07932 0.08140 0.08134 

5 0.01722 0.00495 0.02249 0.02174 0.09591 0.09093 0.09034 0.09039 0.09052 0.09620 0.08947 0.09501 0.09479 
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Table 5 (contd.). Gamma (2) distribution empirical sample characteristics of MMLEs of σ from left censored sample 
 
  BIAS VAR MSE 

n r  M 1 2 3  M  B 1 2 3  M 1 2 3 

8 

1 0.00487 0.00010 0.00059 0.00059 0.06025 0.06273 0.06127 0.06273 0.06273 0.06027 0.06126 0.06280 0.06280 

2 0.00484 0.00017 0.00165 0.00165 0.06430 0.06393 0.06333 0.06334 0.06333 0.06432 0.06331 0.06355 0.06355 

3 0.00107 0.00030 0.00342 0.00339 0.06424 0.06459 0.06459 0.06461 0.06459 0.06424 0.06455 0.06504 0.06504 

4 0.00773 0.00079 0.00636 0.00196 0.06513 0.06699 0.06699 0.06700 0.06758 0.06519 0.06683 0.06789 0.06785 

5 0.00540 0.00193 0.01179 0.01161 0.07190 0.07173 0.07173 0.07175 0.07173 0.07193 0.07145 0.07359 0.07355 

6 0.02547 0.00672 0.02374 0.02308 0.08639 0.08295 0.08235 0.08241 0.08236 0.08704 0.08129 0.08693 0.08674 

9 

1 0.00389 0.00008 0.00044 0.00044 0.05602 0.05571 0.05571 0.05571 0.05571 0.05604 0.05569 0.05576 0.05575 

2 0.00179 0.00013 0.00119 0.00119 0.05655 0.05610 0.05610 0.05610 0.05610 0.05655 0.05608 0.05624 0.05624 

3 0.00049 0.00021 0.00238 0.00238 0.05533 0.05689 0.05689 0.05689 0.05689 0.05533 0.05686 0.05716 0.05716 

4 0.00800 0.00039 0.00425 0.00422 0.05885 0.05891 0.05831 0.05831 0.05831 0.05891 0.05826 0.05883 0.05882 

10 

5 0.00482 0.00077 0.00733 0.00723 0.06151 0.06084 0.06085 0.06085 0.06085 0.06154 0.06075 0.06180 0.06178 

6 0.00731 0.00191 0.01288 0.01258 0.06874 0.06563 0.06563 0.06565 0.06563 0.06880 0.06538 0.06752 0.06746 

7 0.02974 0.00662 0.08570 0.02413 0.08059 0.07607 0.07607 0.07613 0.07608 0.08147 0.07512 0.09708 0.08038 

1 0.00178 0.00003 0.00036 0.00036 0.04805 0.05011 0.05010 0.05059 0.05059 0.04805 0.05010 0.05063 0.05063 

2 0.00181 0.00005 0.00095 0.00095 0.04765 0.05038 0.05036 0.05258 0.05258 0.04766 0.05036 0.05268 0.05268 
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Table 6. Exponential distribution constants of linear approximation for MMLEs from left 
censored sample 
 
    Method I Method II Method III 

n r      

3 1 0.97063 -0.35651 0.96090 -0.38629 0.94408 -0.36425 

4 
1 0.98576 -0.40146 0.97853 -0.41559 0.97211 -0.40386 
2 0.93657 -0.31895 0.93287 -0.35143 0.90767 -0.32622 

5 
1 0.99154 -0.42443 0.98640 -0.43278 0.98329 -0.42550 
2 0.96653 -0.36966 0.96091 -0.38629 0.95039 -0.37206 
3 0.90325 -0.29059 0.90521 -0.32396 0.87336 -0.29720 

6 

1 0.99438 -0.43859 0.99062 -0.44413 0.98887 -0.43916 
2 0.97914 -0.39740 0.97431 -0.40769 0.96890 -0.39851 
3 0.94575 -0.34405 0.94226 -0.36208 0.92807 -0.34628 
4 0.87203 -0.26813 0.87888 -0.30155 0.84178 -0.27408 

7 

1 0.99600 -0.44824 0.99313 -0.45218 0.99166 -0.44857 
2 0.98570 -0.41520 0.98179 -0.42224 0.97864 -0.41581 
3 0.96487 -0.37474 0.96090 -0.38629 0.95328 -0.37579 
4 0.92481 -0.32278 0.92354 -0.34159 0.90617 -0.32484 
5 0.85945 -0.26815 0.85414 -0.28279 0.81291 -0.25510 

8 

1 0.99711 -0.45577 0.99487 -0.45867 0.99404 -0.45546 
2 0.98988 -0.42856 0.98674 -0.43361 0.98441 -0.42803 
3 0.97598 -0.39663 0.97245 -0.40443 0.96711 -0.39564 
4 0.95142 -0.35785 0.94852 -0.36968 0.93727 -0.35632 
5 0.90254 -0.30299 0.90357 -0.32247 0.88505 -0.30655 
6 0.81412 -0.23256 0.82901 -0.26546 0.78652 -0.23915 

9 

1 0.99767 -0.46057 0.99586 -0.46287 0.99537 -0.46072 
2 0.99206 -0.43689 0.98947 -0.44081 0.98812 -0.43714 
3 0.98165 -0.40959 0.97853 -0.41559 0.97555 -0.40995 
4 0.96397 -0.37744 0.96091 -0.38629 0.95493 -0.37798 
5 0.93461 -0.33850 0.93287 -0.35143 0.92133 -0.33935 
6 0.88472 -0.28916 0.88748 -0.30855 0.86495 -0.29076 

10 

7 0.79223 -0.22112 0.80946 -0.25295 0.76233 -0.22551 
1 0.99815 -0.46478 0.99666 -0.46662 0.99630 -0.46488 
2 0.99374 -0.44402 0.99158 -0.44710 0.99063 -0.44420 
3 0.98582 -0.42056 0.98315 -0.42518 0.98111 -0.42079 
4 0.97280 -0.39354 0.96993 -0.40019 0.96597 -0.39387 
5 0.95220 -0.36188 0.94976 -0.37125 0.94247 -0.36234 
6 0.91952 -0.32366 0.91892 -0.33695 0.90570 -0.32440 
7 0.86594 -0.27553 0.87044 -0.29494 0.84590 -0.27695 
8 0.76974 -0.20972 0.78932 -0.24079 0.74009 -0.21367 
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Table 7. Exponential distribution empirical sample characteristics of MMLEs of σ from left censored sample 
 

  BIAS VAR MSE 

n r             

3 1 0.00703 0.00231 0.00934 0.00887 0.32718 0.34211 0.34214 0.34219 0.34215 0.32723 0.34056 0.34870 0.34833 

4 
1 0.00041 0.00039 0.00349 0.00339 0.25367 0.25252 0.25253 0.25254 0.25253 0.25367 0.25233 0.25432 0.25426 

2 0.02048 0.00398 0.01613 0.01523 0.27658 0.26521 0.26526 0.26537 0.26528 0.27699 0.26317 0.27262 0.27366 

5 

1 0.00198 0.00011 0.00167 0.00164 0.20104 0.20098 0.20098 0.20098 0.20098 0.20104 0.20093 0.20165 0.20164 

2 0.00613 0.00080 0.00678 0.00655 0.20473 0.20523 0.20525 0.20527 0.20525 0.20477 0.20492 0.20810 0.20798 

3 0.01019 0.00520 0.02083 0.01963 0.22971 0.21966 0.21976 0.21984 0.21973 0.22981 0.21753 0.22952 0.22882 

6 

1 0.00057 0.00004 0.00122 0.00092 0.16817 0.16712 0.16712 0.16702 0.16712 0.16817 0.16711 0.16743 0.16743 

2 0.00737 0.00025 0.00351 0.00343 0.16318 0.16894 0.16895 0.16896 0.16895 0.16324 0.16887 0.17016 0.17013 

3 0.00210 0.00115 0.00946 0.00911 0.16966 0.17425 0.17427 0.17431 0.17427 0.16967 0.17387 0.17771 0.17755 

4 0.02233 0.00601 0.02419 0.02283 0.04620 0.18944 0.18949 0.18963 0.18951 0.20512 0.18725 0.19950 0.19878 

7 

1 0.00628 0.00024 0.00058 0.00063 0.14681 0.14309 0.14309 0.14309 0.14309 0.14685 0.14302 0.14326 0.14327 

2 0.00422 0.00008 0.00207 0.00203 0.14469 0.14401 0.14401 0.14401 0.14401 0.14471 0.14398 0.14461 0.14459 

3 0.00313 0.00037 0.00518 0.00504 0.13967 0.14645 0.14645 0.14646 0.14645 0.13968 0.14634 0.14801 0.14796 

4 0.00177 0.00143 0.01161 0.01117 0.15265 0.15239 0.15239 0.15245 0.15241 0.15265 0.15196 0.15614 0.15596 

5 0.03487 0.00384 0.02668 0.02522 0.18565 0.16786 0.16796 0.16804 0.16791 0.18687 0.16927 0.17784 0.17712 
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Table 7 (contd.). Exponential distribution empirical sample characteristics of MMLEs of σ from left censored sample 
 

  BIAS VAR MSE 

n r             

8 

1 0.00925 0.00000 0.00037 0.00037 0.12555 0.12514 0.12514 0.12514 0.12514 0.12563 0.12514 0.12523 0.12523 

2 0.01269 0.00002 0.00132 0.00129 0.12342 0.12564 0.12565 0.12565 0.12565 0.12358 0.12564 0.12626 0.12597 

3 0.00446 0.00004 0.00317 0.00309 0.12944 0.12693 0.12693 0.12694 0.12693 0.12946 0.12692 0.12775 0.12773 

4 0.01985 0.00019 0.00667 0.00642 0.13718 0.12979 0.12981 0.12982 0.12981 0.13757 0.12976 0.13161 0.13152 

5 0.01327 0.00188 0.01321 0.01279 0.14771 0.13612 0.13614 0.13619 0.13615 0.14789 0.13563 0.13998 0.13981 

6 0.02799 0.00755 0.02836 0.02702 0.15657 0.15162 0.15166 0.15182 0.15168 0.15736 0.14943 0.16134 0.16071 

9 

1 0.01059 0.00000 0.00026 0.00026 0.10773 0.11119 0.11119 0.11119 0.11119 0.10784 0.11119 0.11125 0.11125 

2 0.00398 0.00002 0.00088 0.00087 0.10740 0.11150 0.11149 0.11149 0.11149 0.10741 0.11149 0.11169 0.11169 

3 0.00990 0.00008 0.00207 0.00204 0.11348 0.11224 0.12224 0.11224 0.11224 0.11357 0.11222 0.11271 0.11270 

4 0.00332 0.00023 0.00414 0.00406 0.10735 0.11381 0.11382 0.11382 0.11381 0.10736 0.11376 0.11478 0.11476 

5 0.01077 0.00063 0.00781 0.00758 0.12049 0.11698 0.11698 0.11700 0.11698 0.12061 0.11684 0.11889 0.11883 

6 0.01098 0.00189 0.01469 0.01412 0.12623 0.12353 0.12355 0.12359 0.12568 0.12635 0.12309 0.12747 0.12945 

7 0.01943 0.00752 0.03000 0.02846 0.14248 0.13894 0.13897 0.13911 0.13898 0.14286 0.13695 0.14849 0.14785 

10 

1 0.00435 0.00000 0.00018 0.00018 0.10156 0.10006 0.10006 0.10006 0.10006 0.10158 0.10003 0.10007 0.10007 

2 0.00630 0.00001 0.00063 0.00062 0.09815 0.10025 0.10025 0.10025 0.10025 0.09819 0.10023 0.10035 0.10035 

3 0.00134 0.00004 0.00143 0.00142 0.09606 0.10070 0.10071 0.10072 0.10071 0.09607 0.10071 0.10100 0.10100 

4 0.01044 0.00011 0.00279 0.00275 0.10234 0.10164 0.10165 0.10166 0.10161 0.10245 0.10163 0.10224 0.10223 

5 0.00136 0.00028 0.00503 0.00493 0.10330 0.10343 0.10344 0.10448 0.10344 0.10398 0.10338 0.10556 0.10448 

6 0.01078 0.00072 0.00884 0.00857 0.11406 0.10680 0.10680 0.10681 0.10680 0.11418 0.10664 0.10879 0.10870 

7 0.00377 0.00205 0.01584 0.01523 0.11753 0.11348 0.11349 0.11353 0.11348 0.11755 0.11302 0.11741 0.11720 

8 0.02827 0.00780 0.03117 0.02961 0.13595 0.12873 0.12875 0.12888 0.12876 0.13674 0.12681 0.13801 0.13737 
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Table 8. Gamma (2) distribution empirical sample characteristic of reliability estimates in 
right censored samples 
 

   BIAS VAR MSE 

n r R(x) MLE BLUE MLE BLUE MLE BLUE 

3 1 0.9 0.05736 0.05572 0.01769 0.01745 0.02098 0.02056 

4 
1 0.9 0.03791 0.03717 0.00964 0.00957 0.01108 0.01095 

2 0.9 0.05728 0.05449 0.01736 0.01697 0.02064 0.01994 

5 
1 0.9 0.02948 0.02907 0.00660 0.00657 0.00747 0.00742 

2 0.9 0.03647 0.03517 0.00925 0.00912 0.01058 0.01035 

3 0.9 0.05637 0.05276 0.01764 0.01715 0.02082 0.01993 

6 

1 0.9 0.01921 0.01896 0.00434 0.00433 0.00471 0.00469 

2 0.9 0.02764 0.02690 0.00611 0.00605 0.00687 0.00678 

3 0.9 0.03724 0.03549 0.00921 0.00904 0.01060 0.01030 

4 0.9 0.05420 0.04995 0.01598 0.01541 0.01892 0.01790 

7 

1 0.9 0.01917 0.01900 0.00353 0.00352 0.00389 0.00388 

2 0.9 0.02165 0.02117 0.00406 0.00404 0.00453 0.00449 

3 0.9 0.02779 0.02677 0.00602 0.00595 0.00679 0.00666 

4 0.9 0.03534 0.03324 0.00907 0.00887 0.01031 0.00997 

5 0.9 0.05240 0.04762 0.01491 0.01430 0.01765 0.01657 

8 

1 0.9 0.01534 0.01522 0.00274 0.00274 0.00298 0.00297 

2 0.9 0.01915 0.01882 0.00328 0.00326 0.00365 0.00362 

3 0.9 0.02042 0.01976 0.00435 0.00431 0.00477 0.00470 

4 0.9 0.02414 0.02290 0.00538 0.00530 0.00597 0.00582 

5 0.9 0.03573 0.03330 0.00862 0.00841 0.00990 0.00951 

6 0.9 0.05261 0.04739 0.01540 0.01471 0.01816 0.01695 

9 

1 0.9 0.01248 0.01238 0.00238 0.00238 0.00253 0.00253 

2 0.9 0.01499 0.01475 0.00284 0.00283 0.00307 0.00305 

3 0.9 0.01760 0.01714 0.00331 0.00329 0.00362 0.00358 

4 0.9 0.01982 0.01900 0.00416 0.00411 0.00455 0.00447 

5 0.9 0.02368 0.02224 0.00506 0.00497 0.00562 0.00546 

6 0.9 0.03404 0.03136 0.00787 0.00764 0.00903 0.00862 

7 0.9 0.05323 0.04765 0.01601 0.01528 0.01884 0.01755 

10 

1 0.9 0.01131 0.01124 0.00193 0.00192 0.00205 0.00205 

2 0.9 0.01285 0.01267 0.00219 0.00219 0.00236 0.00235 

3 0.9 0.01493 0.01459 0.00281 0.00280 0.00303 0.00301 

4 0.9 0.01612 0.01553 0.00301 0.00299 0.00327 0.00323 

5 0.9 0.01874 0.01778 0.00380 0.00375 0.00415 0.00407 

6 0.9 0.02543 0.02379 0.00534 0.00523 0.00598 0.00579 

7 0.9 0.03207 0.02919 0.00772 0.00747 0.00875 0.00832 

8 0.9 0.05336 0.04741 0.01511 0.01435 0.01796 0.01660 
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Table 9. Gamma (2) distribution empirical sample characteristic of reliability estimates in left censored samples 
 

   BIAS VARIANCE MSE 

n r R(x) MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE 

3 1 0.9 0.04216 0.04425 0.04173 0.04177 0.04360 0.01196 0.01220 0.01192 0.01192 0.01213 0.01374 0.01416 0.01366 0.01367 0.01403 

4 
1 0.9 0.02725 0.02787 0.02696 0.02696 0.02769 0.00656 0.00661 0.00654 0.00654 0.00660 0.00731 0.00739 0.00727 0.00727 0.00737 

2 0.9 0.02912 0.03225 0.02855 0.02861 0.03137 0.00715 0.00741 0.00711 0.00711 0.00733 0.00800 0.00845 0.00792 0.00793 0.00832 

5 

1 0.9 0.02414 0.02443 0.02396 0.02396 0.02097 0.00513 0.00515 0.00512 0.00512 0.00494 0.00571 0.00575 0.00569 0.00569 0.00538 

2 0.9 0.02355 0.02469 0.02315 0.02317 0.02078 0.00512 0.00520 0.00510 0.00510 0.00495 0.00567 0.00581 0.00563 0.00563 0.00538 

3 0.9 0.02171 0.02554 0.02111 0.02121 0.02063 0.00521 0.00547 0.00516 0.00517 0.00513 0.00568 0.00612 0.00561 0.00562 0.00556 

6 

1 0.9 0.01654 0.01669 0.01642 0.01642 0.01665 0.00364 0.00365 0.00364 0.00364 0.00365 0.00392 0.00393 0.00391 0.00391 0.00392 

2 0.9 0.01845 0.01898 0.01817 0.01817 0.01888 0.00368 0.00370 0.00366 0.00366 0.00370 0.00402 0.00406 0.00399 0.00399 0.00405 

3 0.9 0.01915 0.02167 0.01872 0.01875 0.02039 0.00406 0.00420 0.00404 0.00405 0.00414 0.00443 0.00467 0.00439 0.00440 0.00455 

4 0.9 0.02053 0.02494 0.01992 0.02006 0.02385 0.00467 0.00495 0.00463 0.00465 0.00489 0.00509 0.00557 0.00503 0.00505 0.00546 

7 

1 0.9 0.01762 0.01771 0.01753 0.01753 0.01769 0.00316 0.00316 0.00315 0.00315 0.00316 0.00347 0.00347 0.00346 0.00346 0.00347 

2 0.9 0.01591 0.01622 0.01571 0.01571 0.01615 0.00296 0.00297 0.00295 0.00295 0.00297 0.00321 0.00324 0.00320 0.00320 0.00323 

3 0.9 0.01612 0.01686 0.01578 0.01579 0.01674 0.00324 0.00327 0.00322 0.00322 0.00326 0.00350 0.00355 0.00347 0.00347 0.00355 

4 0.9 0.01644 0.01824 0.01598 0.01602 0.01794 0.00336 0.00345 0.00334 0.00334 0.00343 0.00363 0.00378 0.00359 0.00360 0.00376 

5 0.9 0.01657 0.02104 0.01596 0.01609 0.02009 0.00364 0.00387 0.00361 0.00362 0.00383 0.00392 0.00432 0.00387 0.00388 0.00423 
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Table 9 (contd.). Gamma (2) distribution empirical sample characteristic of reliability estimates in left censored samples 
 

   BIAS VARIANCE MSE 

n r R(x) MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE 

8 

1 0.9 0.01405 0.01411 0.01398 0.01398 0.01409 0.00239 0.00240 0.00239 0.00239 0.00240 0.00259 0.00259 0.00259 0.00259 0.00259 

2 0.9 0.01484 0.01503 0.01469 0.01469 0.01499 0.00254 0.00255 0.00254 0.00254 0.00255 0.00277 0.00278 0.00275 0.00275 0.00278 

3 0.9 0.01412 0.01455 0.01387 0.01387 0.01450 0.00273 0.00275 0.00272 0.00272 0.00275 0.00293 0.00296 0.00291 0.00291 0.00296 

4 0.9 0.01299 0.01395 0.01266 0.01267 0.01382 0.00270 0.00274 0.00269 0.00269 0.00273 0.00287 0.00293 0.00285 0.00285 0.00292 

5 0.9  0.01440 0.01647 0.01397 0.01399 0.01611 0.00279 0.00287 0.00277 0.00277 0.00286 0.00300 0.00314 0.00297 0.00297 0.00312 

6 0.9 0.01294 0.01795 0.01241 0.01253 0.01670 0.00313 0.00336 0.00311 0.00312 0.00331 0.00330 0.00369 0.00326 0.00327 0.00359 

9 

1 0.9 0.01136 0.01140 0.01130 0.01130 0.01138 0.00210 0.00210 0.00210 0.00210 0.00210 0.00223 0.00223 0.00223 0.00223 0.00223 

2 0.9 0.01205 0.01217 0.01194 0.01194 0.01215 0.00222 0.00222 0.00221 0.00221 0.00222 0.00236 0.00237 0.00235 0.00235 0.00237 

3 0.9 0.01201 0.01228 0.01182 0.01182 0.01224 0.00214 0.00215 0.00213 0.00213 0.00215 0.00228 0.00230 0.00227 0.00227 0.00230 

4 0.9 0.01122 0.01178 0.01095 0.01095 0.01170 0.00222 0.00224 0.00222 0.00222 0.00224 0.00235 0.00238 0.00234 0.00234 0.00238 

5 0.9 0.01235 0.01346 0.01200 0.01202 0.01332 0.00235 0.00239 0.00234 0.00234 0.00239 0.00250 0.00257 0.00248 0.00248 0.00256 

6 0.9 0.01326 0.01550 0.01281 0.01287 0.01515 0.00259 0.00268 0.00258 0.00258 0.00267 0.00277 0.00292 0.00274 0.00274 0.00290 

7 0.9 0.01067 0.01575 0.00034 0.01025 0.01453 0.00265 0.00285 0.00225 0.00263 0.00280 0.00276 0.00310 0.00225 0.00274 0.00302 

10 

1 0.9 0.01058 0.01060 0.01053 0.01053 0.01059 0.00172 0.00172 0.00172 0.00172 0.00172 0.00183 0.00183 0.00183 0.00183 0.00183 

2 0.9 0.01050 0.01058 0.01040 0.01040 0.01056 0.00172 0.00172 0.00172 0.00172 0.00172 0.00183 0.00183 0.00183 0.00183 0.00183 

3 0.9 0.01159 0.01177 0.01143 0.01143 0.01174 0.00195 0.00196 0.00195 0.00195 0.00196 0.00209 0.00210 0.00208 0.00208 0.00209 

4 0.9 0.01075 0.01114 0.01054 0.01055 0.01109 0.00188 0.00189 0.00187 0.00187 0.00189 0.00199 0.00201 0.00198 0.00198 0.00201 

5 0.9 0.01075 0.01143 0.01047 0.01048 0.01136 0.00199 0.00201 0.00198 0.00198 0.00201 0.00211 0.00214 0.00209 0.00209 0.00214 

6 0.9 0.01139 0.01262 0.01102 0.01104 0.01247 0.00208 0.00212 0.00207 0.00207 0.00211 0.00221 0.00228 0.00219 0.00219 0.00227 

7 0.9 0.01114 0.01352 0.01069 0.01076 0.01316 0.00227 0.00235 0.00225 0.00226 0.00234 0.00239 0.00253 0.00237 0.00237 0.00251 

8 0.9 0.01079 0.01613 0.01027 0.01042 0.01488 0.00263 0.00285 0.00261 0.00262 0.00280 0.00275 0.00311 0.00271 0.00273 0.00302 
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Table 10. Exponential distribution empirical sample characteristic of reliability estimates in left censored samples 
 

   BIAS VAR MSE 

n r R(x) MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE 

3 1 0.9 0.03982 0.04103 0.03949 0.03955 0.03952 0.00954 0.00967 0.00951 0.00951 0.00935 0.01112 0.01135 0.01107 0.01108 0.01091 

4 
1 0.9 0.02706 0.02734 0.02689 0.02690 0.02848 0.00517 0.00519 0.00516 0.00516 0.00575 0.00590 0.00594 0.00588 0.00588 0.00656 

2 0.9 0.02632 0.02816 0.02586 0.02596 0.02821 0.00555 0.00568 0.00551 0.00552 0.00541 0.00624 0.00647 0.00618 0.00619 0.00621 

5 

1 0.9 0.02079 0.02088 0.02068 0.02069 0.02335 0.00363 0.00363 0.00362 0.00362 0.00357 0.00406 0.00407 0.00405 0.00405 0.00411 

2 0.9 0.02035 0.02091 0.02008 0.02010 0.02077 0.00347 0.00350 0.00346 0.00346 0.00383 0.00389 0.00394 0.00386 0.00387 0.00427 

3 0.9 0.02212 0.02453 0.02162 0.02175 0.02082 0.00408 0.00422 0.00406 0.00406 0.00383 0.00457 0.00483 0.00452 0.00454 0.00427 

6 

1 0.9 0.01727 0.01732 0.01721 0.01721 0.01784 0.00278 0.00278 0.00278 0.00278 0.00300 0.00308 0.00308 0.00308 0.00308 0.00332 

2 0.9 0.01742 0.01765 0.01724 0.01725 0.01769 0.00261 0.00262 0.00261 0.00261 0.00271 0.00292 0.00293 0.00290 0.00290 0.00302 

3 0.9 0.01739 0.01822 0.01707 0.01711 0.01875 0.00287 0.00290 0.00285 0.00286 0.00291 0.00317 0.00324 0.00314 0.00315 0.00326 

4 0.9 0.01736 0.02010 0.01685 0.01698 0.02028 0.00310 0.00323 0.00307 0.00308 0.00320 0.00340 0.00363 0.00336 0.00337 0.00361 

7 

1 0.9 0.01333 0.01335 0.01329 0.01329 0.01509 0.00196 0.00197 0.00196 0.00196 0.00226 0.00214 0.00214 0.00214 0.00214 0.00249 

2 0.9 0.01493 0.01505 0.01482 0.01483 0.01542 0.00213 0.00214 0.00213 0.00213 0.00241 0.00236 0.00236 0.00235 0.00235 0.00265 

3 0.9 0.01379 0.01415 0.01357 0.01358 0.01521 0.00206 0.00207 0.00205 0.00205 0.00202 0.00225 0.00227 0.00224 0.00224 0.00225 

4 0.9 0.01510 0.01613 0.01474 0.01479 0.01417 0.00221 0.00225 0.00220 0.00220 0.00224 0.00244 0.00251 0.00242 0.00242 0.00244 

5 0.9 0.01339 0.01525 0.01287 0.01302 0.01714 0.00242 0.00249 0.00240 0.00241 0.00240 0.00260 0.00273 0.00257 0.00258 0.00269 
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Table 10 (contd.). Exponential distribution empirical sample characteristic of reliability estimates in left censored samples 
 

   BIAS VAR MSE 

n r R(x) MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE MLE MET. I MET. II MET. III BLUE 

8 

1 0.9 0.01136 0.01137 0.01133 0.01133 0.01145 0.00170 0.00170 0.00170 0.00170 0.00176 0.00183 0.00183 0.00183 0.00183 0.00190 

2 0.9 0.01422 0.01428 0.01414 0.01414 0.01219 0.00192 0.00192 0.00191 0.00191 0.00179 0.00212 0.00212 0.00211 0.00211 0.00194 

3 0.9 0.01206 0.01224 0.01190 0.01191 0.01291 0.00168 0.00169 0.00168 0.00168 0.00174 0.00183 0.00184 0.00182 0.00182 0.00190 

4 0.9 0.01117 0.01163 0.01092 0.01095 0.01395 0.00183 0.00184 0.00182 0.00182 0.00186 0.00195 0.00198 0.00194 0.00194 0.00205 

5 0.9 0.01224 0.01346 0.01187 0.01192 0.01382 0.00182 0.00185 0.00181 0.00181 0.00191 0.00197 0.00203 0.00195 0.00195 0.00210 

6 0.9 0.01170 0.01494 0.01121 0.01134 0.01492 0.00205 0.00216 0.00204 0.00204 0.00205 0.00219 0.00238 0.00216 0.00217 0.00228 

9 

1 0.9 0.01178 0.01179 0.01176 0.01176 0.01159 0.00144 0.00144 0.00144 0.00144 0.00160 0.00158 0.00158 0.00158 0.00158 0.00173 

2 0.9 0.00997 0.01001 0.00991 0.00991 0.01143 0.00134 0.00134 0.00134 0.00134 0.00162 0.00144 0.00144 0.00144 0.00144 0.00175 

3 0.9 0.01244 0.01255 0.01233 0.01233 0.01095 0.00157 0.00157 0.00156 0.00156 0.00155 0.00172 0.00173 0.00172 0.00172 0.00167 

4 0.9 0.01109 0.01136 0.01091 0.01091 0.01175 0.00149 0.00149 0.00148 0.00148 0.00155 0.00161 0.00162 0.00160 0.00160 0.00169 

5 0.9 0.01030 0.01090 0.01004 0.01006 0.01124 0.00151 0.00153 0.00151 0.00151 0.00141 0.00162 0.00165 0.00161 0.00161 0.00154 

6 0.9 0.01098 0.01233 0.01061 0.01067 0.01273 0.00165 0.00169 0.00164 0.00165 0.00165 0.00178 0.00184 0.00176 0.00176 0.00181 

7 0.9 0.01096 0.01436 0.01047 0.01063 0.01405 0.00172 0.00182 0.00171 0.00171 0.00194 0.00184 0.00203 0.00182 0.00183 0.00214 

10 

1 0.9 0.01025 0.01026 0.01024 0.01024 0.00879 0.00128 0.00128 0.00128 0.00128 0.00121 0.00139 0.00139 0.00139 0.00139 0.00129 

2 0.9 0.01030 0.01032 0.01026 0.01026 0.00821 0.00128 0.00128 0.00127 0.00127 0.00123 0.00138 0.00138 0.00138 0.00138 0.00130 

3 0.9 0.00974 0.00981 0.00966 0.00966 0.00946 0.00132 0.00132 0.00132 0.00132 0.00128 0.00142 0.00142 0.00141 0.00141 0.00137 

4 0.9 0.00902 0.00918 0.00888 0.00889 0.00971 0.00137 0.00137 0.00137 0.00137 0.00131 0.00145 0.00146 0.00144 0.00144 0.00141 

5 0.9 0.01030 0.01064 0.01009 0.01011 0.00963 0.00136 0.00136 0.00135 0.00135 0.00126 0.00146 0.00148 0.00145 0.00145 0.00135 

6 0.9 0.00979 0.01050 0.00952 0.00954 0.01009 0.00145 0.00147 0.00144 0.00145 0.00121 0.00155 0.00158 0.00154 0.00154 0.00131 

7 0.9 0.01081 0.01226 0.01042 0.01048 0.01022 0.00148 0.00151 0.00147 0.00147 0.00142 0.00159 0.00166 0.00158 0.00158 0.00152 

8 0.9 0.00903 0.01253 0.00856 0.00870 0.01249 0.00148 0.00157 0.00147 0.00148 0.00170 0.00157 0.00173 0.00155 0.00155 0.00186 
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Hoerl and Kennard (1970) suggested the ridge regression estimator as an alternative to the 
Ordinary Least Squares (OLS) estimator in the presence of multicollinearity. This article 
proposes new methods for estimating the ridge parameter in case of ordinary ridge 
regression. A simulation study evaluates the performance of the proposed estimators based 
on the Mean Squared Error (MSE) criterion and indicates that, under certain conditions, 
the proposed estimators perform well compared to the OLS estimator and another well-
known estimator reviewed. 
 
Keywords: Ordinary Least Squares, ill-condition, ridge regression, simulation. 
 

Introduction 

In regression problems the goal is usually to estimate the parameters in the general 
linear regression model 
 
 Y X e    (1) 
 
where Y is an (n × 1) response vector, X is an (n × p) matrix of n observations of p 
predictors. It is important to note that X is not a square matrix since the number of 
data values n is usually larger than the number of predictors of p. β is an (p × 1) 
vector of unknown regression parameters, and e is an (n × 1) vector of the random 
noise in the observed data vector Y, it is often assumed that they are distributed as 
Gaussian with E(e) = 0 and Var(e) = σ2. 

However, a method is needed to estimate the parameter vector β. The most 
common method is the least squared regression by finding the parameter values 
which minimize the sum of squared residuals, given by 
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 2SSR Y X    (2) 
The solution turns out to be a matrix equation, defined by 
 
 1ˆ ( )X X X Y     (3) 
 
where X' is the transpose of the matrix X and the exponent (−1) indicates the matrix 
inverse of the given quantity. 

It is expected that the true parameters will provide the most likely result, so 
the least squares solutions, by minimizing the sum of squared residuals, gives the 
maximum likelihood values of the parameters vector β. It is known from the Gauss-
Markov theorem that the least squares estimate results the best linear unbiased 
estimator of the parameters; thus, this is one reason why least squares method is 
very popular. The estimates of the least squares are unbiased (i.e., the expected 
values of the parameters are the true values), and of all the unbiased estimators, it 
gives the least variance. 

However, there are cases for which the best linear unbiased estimator is not 
necessarily the best estimator. One pertinent case occurs when the two (or more) of 
the predictor variables are very strongly correlated. In other words, when terms are 
correlated and the columns of the design matrix X have an approximate linear 
dependence, the matrix (X'X)−1 becomes close to singular. As a result, the least 
squares estimate, given by (3), becomes highly sensitive to random errors in the 
observed response Y, producing a large variance. To solve this problem, one 
approach is to use an estimator which is no longer unbiased, but has considerably 
less variance than the least squares estimator. 

Ridge Regression and Multicollinearity 

Ridge Regression is a technique for analyzing multiple regression data that suffer 
from multicollinearity. When multicollinearity occurs, least squares estimates are 
unbiased but their variances are large so they may be far from the true value, deflate 
the partial t-test for the regression coefficients give false non-significant p-values 
and degrade the predictability of the model. Thus, by adding a degree of bias to the 
regression estimates, ridge regression reduces the standard errors and the matrix 
needed to invert no longer has a determinant near zero; therefore, the solution does 
not lead to uncomfortably large variance in the estimated parameters. Now, given 
a response vector Y and a predictor matrix X, the ridge regression coefficients are 
given by 
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1ˆ k X X kI X Y


     (4) 
where k is the ridge parameters and I is the identity matrix. When k = 0, the linear 
regression estimate is given by (3), and when k = 1, ˆ( ) 0k  , finally, for k in 
between, two ideas are balanced: fitting a linear model of Y on X’s and shrinking 
the coefficients. Small positive values of k improve the conditioning of the problem 
and reduce the variance of the estimates. While biased, the reduced variance of 
ridge estimates often result in a smaller MSE when compared to least squares 
estimates. 

The amount of shrinkage is controlled by k, the ridge parameter that multiplies 
the ridge penalty. Large k means more shrinkage, thus, different coefficient 
estimates are obtained for different values of k. In fact, choosing an appropriate 
value of k is important and also difficult, but it can be shown that there exists a 
value of k for which the MSE (the variance plus the bias squared) of the ridge 
estimator is less than that of the least squares estimator. As a result, under the 
condition of multicollinearity, a huge price is paid for the unbiasedness property 
that is achieved by using the OLS estimator. 

Choosing the Ridge Parameter k  

One of the main obstacles in using ridge regression is in choosing an appropriate 
value of k. For selecting the best ridge estimator, several criteria have been 
proposed in the literature (see for example; Hoerl & Kennard, 1970; Hoerl et al., 
1975; Hoerl & Kennard, 1976; Lawless & Wang, 1976; Gibbons, 1981; Saleh & 
Kibria, 1993; Troskie & Chalton, 1996; Kibria, 2003; Khalaf & Shukur, 2005; 
Dorugade & Kashid, 2010; and Khalaf, 2013). Next, some formulas for determining 
the value of k to be used in (4) are discussed. 

Hoerl and Kennard (1970) suggested using a graphic which they called the 
ridge trace. This plot shows the ridge regression coefficients as a function of k. 
When viewing the ridge trace, the value of k is chosen at which the regression 
coefficients have reasonable magnitude, sign and stability, while the MSE is not 
grossly inflated. In fact, letting βmax denote the maximum of the Βi, Hoerl and 
Kennard (1970) showed that choosing 
 

 
2

2
max

ˆˆ
ˆk 


   (5) 
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implies that 2 1

1

ˆ ˆ ˆ( ( )) ( )
p

i
i

MSE k MSE t   



   , where 2̂  is the usual estimator of 

σ2, defined by 2
ˆ ˆ( ) ( )ˆ

1
Y X Y X

n p
 


 


 

. The estimator, given by (5), will be 

denoted by HK. 
Hoerl, Kennard and Baldwin (1975) argued that a reasonable choice of k is 

 

 
2pk 

 



  (6) 

 
if these quantities were known. They suggested using 
 

 
2ˆˆ

ˆ ˆ
pk 

 



 (7) 

 
as an estimate of k in (6). This ridge estimator will be denoted by HKB. 

Hoerl and Kennard (1976) proposed an iterative method for selecting k. This 
method is based on the formula given by (7). To obtain the first value of k, they 
used the least squares coefficients. This produces a value of k. Using this new k, a 
new set of coefficients is found, and so on. In fact, this procedure does not 
necessarily converge. 

Lawless and Wang (1976) concluded that the ridge estimators using (5) and 
(7) performed very well indeed and that they were substantially better than any of 
the other estimators included in their study. Gibbons (1981) conducted a simulation 
study to compare 10 promising algorithms for selecting k. She found too that the 
estimators using the ridge estimator given by (7) performed well. In the light of 
these remarks, which indicate the satisfactory performance and the potential for 
improvement of the estimators HK and HKB, new methods are proposed to 
determine ridge parameter in case of ordinary ridge regression for the ridge 
parameter k as 
 

1) KIa = The Arithmetic Mean of (HK, HKB) 

 
2

2
max

ˆ 1
ˆ ˆ ˆ2

p

  

 
    

   (8) 
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2) KIh = The Harmonic Mean of (HK, HKB) 

 
2

2
max

ˆ2 2
ˆ ˆ1 1 ˆ

HK HKB p



 


 
 

  (9) 

 
3) KIg = The Geometric Mean of (HK, HKB) 

 2
2
max

ˆ. ˆ ˆ ˆ.
pHK HKB 

  
 


  (10) 

 

4) KIs 
The sum of ( , ), if 1
The sum of ( , ) / 2, if 1

HK HKB HK HKB
HK HKB HK HKB

 
 

 
. (11) 

 
If the resulting HK+HKB, given by (11), is less than one, then it is used as an 
estimator for the ridge parameter k. However, if the resulting HK+HKB is greater 
than or equal to one then the new value of the ridge parameters equal to the value 
of (HK+HKB) divided by two. 

Simulation Study 

A simulation study was conducted in order to draw conclusions about the 
performance of the proposed estimators relative to HK, HKB and the OLS estimator. 
To achieve different degrees of collinearity, following Kibria (2003), the 
independent variables were generated by using the following equation 
 

  
1

2 21 , 1,2,..., 1,2,...,ij ij ipx z z i n j p       (12) 

 
where zij are independent standard normal distribution, p is the number of the 
explanatory variables and ρ is specified so that the correlation between any two 
independent variables is given by ρ2. Four different sets of correlation were 
considered according to the value of ρ = 0.7, 0.9, 0.95 and 0.99. 

The other factors varied were sample size (n) and the number of regressors 
(p). Models consisting of 15, 25, 50 and 100 observations and with 5 and 9 
explanatory variables were generated. 

The criterion proposed for measuring the goodness of an estimator is the MSE 
using the following formula 
 



RIDGE REGRESSION AND ILL-CONDITIONING 

360 

    
1

1 ˆ ˆ ,
2000

p

i i
i

MSE    



     (13) 

 
where ˆ

i  is the estimator of β obtained from the OLS estimator or from the ridge 
estimator for different estimated value of k considered for comparison reasons and, 
finally, 2000 is the number of replications used in the simulation. In this study the 
error was forced to have variances equal to 0.5 and 1. 

Simulation results show that increasing the number of regressors leads to a 
higher estimated MSE, while increasing the sample size leads to a lower estimated 
MSE (see Khalaf & Shukur, 2005; Alkhamisi & Shukur, 2008; Khalaf, 2011). 

Results 

Tables 1 and 2 present the output of the simulation concerning properties of the 
different methods that used to choose the ridge parameter k. 

Results show that the estimated MSE is affected by all factors that were varied. 
It is also noted that the higher the degree of correlation the higher estimated MSE, 
but this increase is much greater for the OLS than the ridge regression estimator. 
The sample size and the number of explanatory variables having a different impact 
of the estimators.  

In Tables 1 and 2 when ρ = 0.7 and n is large, note that the estimated MSE 
decreases substantially and the performance of KIs is much better than the other 
ridge estimators from the MSE point of view. Finally, the OLS estimator is defeated 
by all of estimators. 

Conclusion 

Ridge regression is one of the more popular estimation procedures for addressing 
issues of multicollinearity. The procedures discussed herein fall into the category 
of biased estimation techniques. They are based on this notion: though the OLS 
gives unbiased estimates and indeed enjoy the minimum variance of all linear 
unbiased estimators, there is no upper bound on the variance of the estimators and 
the presence of multicollinearity may produce large variance. Biased estimation is 
used to attain a substantial reduction in variance with an accompanied increase in 
stability of the regression coefficients. The coefficients become biased, but the 
reduction in variance is of greater magnitude than the bias induced in the estimators. 
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New methods were proposed for estimating the ridge parameters in the 
presence of multicollinearity. The performance of the proposed ridge parameter 
was evaluated through the simulation, for different combinations of correlation 
between predictors (ρ), the number of explanatory variables (p), sample size (n) and 
variance of the error variable (σ2). The evaluation of the estimators was done by 
comparing the MSE of the OLS estimator with the proposed estimators and the 
other estimators reviewed in this study. Finally, it was found that the performance 
of the proposed estimators is satisfactory over the others and KIs has the least MSE. 
 
 
Table 1. Estimated MSE when p = 5 
 

ρ σ2 n   OLS HK HKB KIa KIg KIh KIs 

0.7 

0.05 

15  4.53 2.75 1.92 2.23 2.34 2.44 1.68 
25  2.13 1.63 1.19 1.37 1.43 1.48 1.14 
50  0.95 0.84 0.67 0.74 0.77 0.79 0.68 
100  0.42 0.40 0.36 0.38 0.38 0.39 0.36 

1 

15  1.16 0.95 0.73 0.82 0.85 0.88 0.73 
25  0.54 0.50 0.42 0.45 0.47 0.48 0.43 
50  0.23 0.22 0.20 0.21 0.21 0.22 0.21 
100  0.1025 0.1013 0.0981 0.0995 0.1009 0.1001 0.0991 

0.9 

0.05 

15  14.06 6.13 4.44 4.95 5.25 5.56 3.08 
25  6.44 3.62 2.40 2.86 3.01 3.17 1.90 
50  2.83 2.04 1.35 1.62 1.72 1.81 1.21 
100  1.27 1.08 0.79 0.90 0.95 0.99 0.78 

1 

15  3.510 2.209 1.475 1.752 1.851 1.948 1.321 
25  1.633 1.293 0.908 1.064 1.121 1.174 0.892 
50  0.7063 0.6391 0.5068 0.5643 0.5867 0.6061 0.5224 
100  0.3279 0.3130 0.2744 0.2921 0.2990 0.3046 0.2841 

0.95 

0.05 

15  28.00 10.00 7.00 8.43 9.00 10.00 4.00 
25  13.97 6.09 4.31 4.87 5.17 5.48 2.89 
50  5.91 3.41 2.21 2.67 2.82 2.97 1.72 
100  2.78 2.02 1.33 1.61 1.70 1.79 1.18 

1 

15  6.91 3.53 2.34 2.76 2.92 3.09 1.82 
25  3.38 2.26 1.49 1.79 1.89 1.99 1.31 
50  1.46 1.19 0.84 0.99 1.04 1.09 0.83 
100  0.68 0.62 0.49 0.54 0.57 0.59 0.50 

0.99 

0.05 

15  156.00 49.00 38.00 36.00 41.00 47.00 20.00 
25  73.00 23.00 18.26 18.08 20.00 22.00 10.00 
50  32.00 12.00 8.00 9.00 10.00 11.00 5.00 
100  15.00 6.76 4.71 5.35 5.70 6.06 3.08 

1 

15  39.00 14.17 10.35 10.73 11.90 13.17 6.25 
25  18.00 7.37 5.33 5.82 6.26 6.72 3.35 
50  8.16 4.17 2.79 3.29 3.48 3.67 2.01 
100   3.78 2.43 1.56 1.89 2.01 2.11 1.29 
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Table 2. Estimated MSE when p = 9 
 

ρ σ2 n   OLS HK HKB KIa KIg KIh KIs 

0.7 

0.05 

15  16.29 8.70 4.76 5.98 6.65 7.35 4.17 
25  5.38 4.18 2.50 3.09 3.41 3.71 2.40 
50  2.03 1.86 1.35 1.55 1.67 1.76 1.38 
100  0.89 0.86 0.73 0.78 0.82 0.84 0.74 

1 

15  4.04 2.93 1.7483 2.13 2.35 2.58 1.7482 
25  1.33 1.23 0.93 1.04 1.11 1.17 0.96 
50  0.48 0.47 0.42 0.44 0.45 0.46 0.43 
100  0.216 0.214 0.203 0.208 0.211 0.213 0.206 

0.9 

0.05 

15  48.00 19.00 11.00 13.00 15.00 16.00 8.00 
25  16.63 9.46 5.07 6.52 7.23 7.95 4.19 
50  6.28 4.83 2.72 3.46 3.87 4.25 2.51 
100  2.72 2.40 1.55 1.87 2.06 2.22 1.53 

1 

15  12.36 6.74 3.52 4.50 5.07 5.66 3.14 
25  4.00 3.19 1.85 2.31 2.59 2.84 1.82 
50  1.52 1.40 1.00 1.16 1.25 1.33 1.03 
100  0.70 0.67 0.56 0.61 0.64 0.66 0.58 

0.95 

0.05 

15  105.00 38.00 21.00 24.00 28.00 33.00 14.00 
25  34.18 16.43 8.87 11.20 12.50 13.85 6.79 
50  12.62 8.01 4.21 5.49 6.14 6.78 3.55 
100  5.78 4.47 2.50 3.19 3.58 3.94 2.29 

1 

15  25.25 11.93 6.38 7.98 9.01 10.08 5.15 
25  8.65 5.84 3.08 4.00 4.50 4.98 2.80 
50  3.10 2.63 1.60 1.97 2.20 2.39 1.59 
100  1.36 1.26 0.89 1.04 1.13 1.19 0.92 

0.99 

0.05 

15  563.00 197.00 111.00 122.00 146.00 173.00 73.00 
25  185.00 70.00 40.00 46.00 53.00 61.00 26.00 
50  71.00 30.00 17.00 20.00 23.00 26.00 12.00 
100  31.00 15.00 8.00 10.00 12.00 13.00 6.00 

1 

15  140.00 48.00 28.00 31.00 36.00 42.00 18.00 
25  48.95 21.11 11.95 14.40 16.24 18.15 8.62 
50  18.09 10.11 5.29 6.86 7.67 8.48 4.30 
100   7.96 5.49 2.93 3.82 4.32 4.80 2.62 
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Comparison of Individual and Moving Range 
Chart Combinations to Individual Charts in 
Terms of ARL after Designing for a Common 
“All OK” ARL 
Dewi Rahardja 
U.S. Department of Defense 
Indianapolis, Indiana 
 
 
In some process monitoring situations, consecutive measurements are spaced widely apart 
in time, making monitoring process aim and spread difficult. This study uses three cases to 
compare the effectiveness of two such monitoring schemes, i.e., the X chart alone (X-only 
chart) and the Individuals and Moving Range Chart Combination (X/MR chars), in terms 
of Average Run Length (ARL) after designing for a common “all OK” (in-control) ARL. 
The study finds that X chart alone is sufficient (and hence, recommended) in detecting 
changes in all the 3 cases: changes in the process mean, changes in the process standard 
deviation, and changes in both process mean and standard deviation. 
 
Keywords Individual chart, X-chart alone, moving range chart, X/MR chart, ARL, 
Average Run Length, “all OK” ARL 
 

Introduction 

In some process monitoring situations, consecutive measurements are spaced 
widely apart in time. For example, an engineering process may allow only one 
measurement per day. In some cases, a series of individual items are produced in 
such a way that no natural subgrouping is possible (Crowder, 1987a). When this 
happens, exactly how to monitor process aim and spread is not completely obvious. 
One sensible possibility is to simply plot individual observations on their own chart 
(X-only chart). Another possibility is to plot a combination of a chart for individual 
measurements and a moving range chart based on two consecutive observations. 
Duncan (1974) outlines such a procedure. 

The purpose of this study is to compare the effectiveness of these two 
monitoring schemes, i.e., the X chart alone (X-only chart) and the Individuals and 

mailto:Dewi.G.Rahardja.civ@mail.mil
mailto:rahardja@gmail.com
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Moving Range Chart Combination (X/MR chars), in terms of Average Run Length 
(ARL) after designing for a common “all OK” (in-control) ARL.  

The run length of any process monitoring procedure is the number of 
sampling periods before an out-of-control signal is given. An out-of-control signal 
suggests that some change in the process has occurred and that action should be 
taken to find and correct any assignable causes. The average run length (ARL) is 
often used to describe the likely performance of a control procedure. A large ARL 
is desired when the process is stable or in control, and a small ARL otherwise 
(Crowder, 1987a). 

Comparison of monitoring schemes will be made under three sets of 
circumstances. The first case is where the process mean changes from its standard 
value, the second case is where the process variability changes, and third case is 
where both process mean and process variability change from standard values. In 
each of these three cases, a small ARL is desired, since it will indicate quick 
detection of the out-of-control situation. 

Literature Review 

Vardeman and Jobe (1999) discussed the charting of individuals and moving ranges 
and some other process monitoring techniques that improve on Shewhart charts in 
situations where it is important to quickly detect small process changes. That is, 
they also considered EWMA and CUSUM process monitoring schemes. Four types 
of process monitoring schemes were originally considered in the present study: The 
X chart alone, Individuals and Moving Range Chart Combinations, EWMA and 
CUSUM process monitoring schemes. However, because EWMA and CUSUM 
schemes are known to be better than an X chart alone for detecting small process 
changes, no further analysis is needed (for EWMA and CUSUM) if the X chart 
alone is better than Individual and Moving Range Chart Combinations. 

Crowder (1987a, 1987b) discussed the Computation of ARLs for Combined 
Individual Measurement and Moving Range Charts. Numerical procedures and a 
control chart design strategy are presented. ARLs are given for various choices of 
the control limits and shifts in the level of the process mean and standard deviation. 
Also, a Fortran computer program was presented that allows inputting control limits 
for combined individual measurement and moving range charts and then returns the 
approximate average run length (ARL) for the normal case with standard deviation 
1 and various shifts in the process mean. 

Roes, et al. (1993) discussed several options in designing a Shewhart-type 
control chart for Individual Observations. A number of possible estimators of the 
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standard deviation were considered and a two-stage procedure is suggested for 
retrospective testing. It was argued that adding a Moving Range Chart has no real 
added value and, therefore, was ill-advised. 

Rigdon, et al. (1994) discussed design strategies for Individuals and Moving 
Range Control Charts. These authors argue that an X chart alone is nearly as 
efficient as the combined X/MR chart for detecting changes in the process 
variability. For the same in-control ARL, the X-only chart is more effective than 
the X/MR chart combination with moving ranges of k = 2, 3, 4 for detecting shifts 
in the process mean, while the two schemes are about equally effective in detecting 
changes in the process variability. The size (k) of the window for the moving range 
has little effect on the ARL for changes in the process variability. 

Radson, et al. (1995) considered the possibility of a shift from the in-control 
standard deviation, σ0, to a standard deviation level of σ1, where σ1 = k · σ0. In their 
study, k ranged from 0.1 to 3.0 in increment of 0.1. They demonstrated that the 
moving range can be used to detect variance reduction. This was best achieved by 
constructing limits based on the true underlying distribution for the moving range. 

Adke and Hong (1997) discussed the X chart and the Moving Range chart for 
the normally distributed observations when there is a shift in the process variance. 
They concluded that a Moving Range chart does provide useful information. 

Amin (1998) showed that there is no disadvantage in using an X/MR 
procedure. The discussion is limited to normality assumption. 

Marks and Krehbiel (2009) evaluated the Individual Chart and X/MR Chart 
Combinations for just the first 2 cases mentioned above: mean change only and 
variability change only, from standard values. But they did not consider the third 
case, where both mean and variability changes occur, from standard values. 

Methods 

Several “all OK” (in-control) ARLs are chosen and control limits set to produce 
them (The “all OK” ARL is the ARL when the process mean and process standard 
deviation are on-target, i.e., the process mean and process standard deviation are 
equal to standard values). Then, supposing the mean and/or standard deviation are 
off-target, new ARLs for both the X/MR Chart Combinations and the X-only Chart 
are computed and compared (a smaller off-target ARL is preferred since the 
corresponding charting method then gives quicker detection of non-standard 
conditions). 
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X-only Chart Monitoring Scheme 
First, an “all OK” (in-control) ARL is chosen. Then, using µ0 = 0 and σ0 = 1 as the 
standard conditions, control limits for the X-only Chart are 
 

 0 0

0 0

X only

X only

UCL L L
LCL L L

 

 





  

   
  

 
where the given “all OK” (in-control) ARL is simply 1/r for 
 

 
   

1 point plots outside the  control limitsstr P

r P Z L P Z L

   

    
 

 
which can be calculated from the standard normal distribution table. 

After control limits are set, the off-target ARL of the X-only Chart for any 
other µ and σ combination, i.e., non-standard conditions, can be computed as 
follows. 

Let 
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where D = constant (i.e., a shift in the process mean) and T = constant (i.e., a change 
in the process standard deviation). 

Then, 
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for n = 1, since the natural sample size is one. Finally, 
 
  
 
and the new ARL, i.e., the off-target ARL is 1/rnew. 

X/MR Chart Combinations Monitoring Scheme 

Crowder (1987a, 1987b) noted that ARLs of X/MR chart combinations can be 
obtained by solving certain integral equations as follows. ARLs for control schemes 
are typically evaluated under the model yt = µ + εt, t = 1, 2, 3, …, where εt’s are 
independent N(0, σ2) random variables and y is the observation made at time t. 
Suppose we wish to control the process mean and standard deviation at nominal 
levels µ0 = 0 and σ0 = 1. The X/MR procedure is to plot on separate charts the 
individual observations yt and the successive moving ranges rt = | yt – yt−1|. The 
process is deemed out-of-control at observation one if |yt| > M and out-of-control at 
time t > 1 if either |yt| > M or rt > R, where M and R are specified positive constants. 

Let L(u) be the mean additional time until an out-of-control signal, given that 
the most recent observation is u. If the next observation, y, is more than R units 
from u or is larger in magnitude than M, an out-of-control signal is given. Otherwise, 
the run continues with y as the most recent observation. Thus, supposing that 
observations are normal with mean µ and variance σ2, 
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where f(x) is the N(0, σ2) density. Now letting T be the run length associated with 
the procedure and conditioning on y1, 
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Note that L(x) in (3) is unknown. Thus, to approximate the ARL, values of 

L(x) on the interval (-M, M) are first approximated using (2). The solution to the 
integral equation (2) can be obtained by replacing the integral equation with a 
system of linear algebraic equations and solving them numerically using 
trapezoidal quadrature. The ARL can then be approximated via (3), again using 
trapezoidal quadrature and the approximations of L(x) at each of the subinterval 
points. Crowder’s published Fortran program (1987b) will compute this ARL. 

Vardeman and Jobe (1999) identified several M/R combinations giving each 
of several choices of “all OK” (in-control) ARLs as shown in Table 1. These M/R 
combinations will be compared to the X-only possibility. 
 
 
Table 1. Several M/R combinations for various choices of “all OK” ARLs 
 

"all OK" ARL Smallest M 
possible    Smallest R 

possible 

50 
M = 2.33 M = 2.40 M = 2.55 M = 2.80 (M = 3.3+) 

(R = 4.5+) R = 3.66 R = 3.41 R = 3.28 R = 3.24 
      

100 
M = 2.58 M = 2.65 M = 2.80 M = 3.00 (M = 3.5+) 

(R = 5.0+) R = 4.04 R = 3.77 R = 3.67 R = 3.60 
      

250 
M = 2.88 M = 2.95 M = 3.10 M = 3.30 (M = 3.80+) 

(R = 5.5+) R = 4.47 R = 4.22 R = 4.11 R = 4.05 
      

370 
M = 3.00 M = 3.10 M = 3.20 M = 3.40 (M = 3.8+) 

(R = 6.0+) R = 4.40 R = 4.40 R = 4.29 R = 4.23 
      

500 
M = 3.09 M = 3.30 M = 3.30 M = 3.50 (M = 4.0+) 

(R = 6.0+) R = 4.53 R = 4.53 R = 4.42 R = 4.36 
      

750 
M = 3.21 M = 3.45 M = 3.45 M = 3.60 (M = 4.0+) 

(R = 6.0+) R = 4.88 R = 4.66 R = 4.59 R = 4.55 
      

1000 
  

M = 3.29 M = 3.40 M = 3.50 M = 3.65 (M = 4.0+) 
(R = 6.5+) R = 4.96 R = 4.82 R = 4.72 R = 4.65 

 

Source: Vardeman & Jobe (1999) 
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Because Crowder’s published program requires M and R values for inputs and 
outputs σ = 1 ARLs for various means, the following procedures are necessary to 
use the program to evaluate the ARLs we desire. 

As before, without loss of generalities, standard values µ0 = 0 and σ0 = 1 are 
used. From expression (1), then with 
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new
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must be used with Crowder’s program (1987b). 

Notice that for M large (The “Smallest Possible R” values in Table 1), the 
ARLs can essentially be considered ARLs of the Moving Chart alone (Crowder, 
1987a). Similarly, for R large (The “Smallest Possible M” values in Table 1), the 
ARLs can essentially be considered ARLs of the Individual Chart alone. Therefore, 
the smallest possible M’s from Table 1 are the same as the L’s obtained for the 
Individual Chart alone. 

Results 

A variety of “all OK” (in control) ARLs, namely 50, 100, 250, 370, 500, 750 and 
1000 from Vardeman and Jobe (1999) are selected from this study. 
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Comparisons of the monitoring schemes under the sets of circumstances 
mentioned in the Introduction are made in Tables 2-4 and Figures 1-3. Because the 
results for the different ‘‘all OK’’ ARLs all turned out to be similar, only Tables 
and Figures for the ARL = 370 case are presented here. In Tables 2-4, the smallest 
ARLs for a given set of parameters are bold, indented, and underlined. Table 2 and 
the corresponding Figure 1 show the case where only the process mean changes. 
Table 3 and the corresponding Figure 2 show the case where only the process 
standard deviation changes. Finally, Table 4 and Figure 3 show the case where both 
process mean and process standard deviation change from standard values. 

Mean Changes Only (Table 2 and Figure 1) 

As shown in Table 2, the smallest ARLs (bold, indented, and underlined) fall either 
in the X-only Chart region or in X/MR Chart Combinations region with R large 
(Smallest Possible M). As noted in ‘Methods’ above, X/MR Chart Combinations 
with R large (Smallest Possible M) can essentially be considered the X-only Charts. 
Therefore, the first 2 “ARL-Columns” (from left) in all the Tables 2-4 are in fact 
equivalent. 
 
 
Table 2. Mean Changes – ARL = 370 
 

D X-only 
X/MR Chart Combinations 

M = 3.00 M = 3.10 M = 3.20 M = 3.40 M = 3.8+ 
R = 6.0+ R = 4.57 R = 4.40 R = 4.29 R = 4.23 

0.00 370.0 370.0 367.8 370.9 363.0 374.8 
0.25 277.8 280.9 299.7 318.4 336.5 369.6 
0.50 156.3 155.1 182.9 212.5 265.1 349.2 
0.75 81.3 81.2 100.5 123.3 177.3 303.6 
1.00 43.9 43.9 54.9 68.4 105.5 231.5 
1.25 24.9 24.9 30.9 38.3 59.9 152.7 
1.50 15.0 15.0 18.2 22.3 34.2 90.8 
1.75 9.5 9.5 11.3 13.6 20.1 52.0 
2.00 6.3 6.3 7.4 8.7 12.4 29.9 
2.25 4.4 4.4 5.1 5.8 8.0 17.8 
2.50 3.2 3.2 3.7 4.1 5.4 11.1 
2.75 2.5 2.5 2.8 3.1 3.9 7.2 
3.00 2.0 2.0 2.2 2.4 2.9 5.0 
3.25 1.7 1.7 1.8 1.9 2.3 3.6 
3.50 1.4 1.4 1.5 1.6 1.9 2.7 
3.75 1.3 1.3 1.3 1.4 1.6 2.1 
4.00 1.2 1.2 1.2 1.3 1.4 1.7 
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Series 1 (X-only Chart)  Series 4 (M = 3.20, R = 4.40) 
Series 2 (M = 3.00, R = 6.0+)  Series 5 (M = 3.40, R = 4.29) 
Series 3 (M = 3.10, R = 4.57)  Series 6 (M = 3.8+, R = 4.23) 

 
Figure 1. Plotted ARL values of Table 2 
 
 

Theoretically, the ARLs shown in these 2 “ARL-Columns” should be exactly 
equal. However, small differences might come from the trapezoidal approximation 
in Crowder’s published program as well as rounding effects, and also the fact that 
the normal distribution table used in this work shows only 4 decimals places. 

Thus, for Mean Change situation, the X-only Chart is better than the X/MR 
Chart Combinations since it gives the smallest off-target ARLs (quickest detection 
of mean process changes). 

Sigma Changes Only (Table 3 and Figure 2) 
For the second case (Sigma Changes Only), generally, the X/MR Chart with the 
second smallest M give the smallest off-target ARLs most of the time, except for 
several large changes in the process standard deviation (i.e., several large T values). 
For a large increase in process standard deviation (a large T), the Individual Chart 
alone is better than the X/MR chart Combinations (see Table 3 and Figure 2, for 
example). 
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Table 3. Sigma Changes – ARL = 370 
 

T X-only         
(L = 3) 

X/MR Chart Combinations 
M = 3.00 M = 3.10 M = 3.20 M = 3.40 M = 3.8+ 
R = 6.0+ R = 4.57 R = 4.40 R = 4.29 R = 4.23 

1.0 370.0 370.0 370.0 370.0 370.0 370.0 
1.5 21.9 22.0 20.6 20.7 21.8 24.0 
2.0 7.5 7.5 7.2 7.3 7.7 8.5 
2.5 4.3 4.3 4.2 4.3 4.5 4.9 
3.0 3.2 3.2 3.1 3.2 3.3 3.6 
3.5 2.6 2.6 2.5 2.6 2.7 2.9 
4.0 2.2 2.2 2.2 2.2 2.3 2.5 

 
 

 
Series 1 (X-only Chart)  Series 4 (M = 3.20, R = 4.40) 
Series 2 (M = 3.00, R = 6.0+)  Series 5 (M = 3.40, R = 4.29) 
Series 3 (M = 3.10, R = 4.57)  Series 6 (M = 3.8+, R = 4.23) 

 
Figure 2. Plotted ARL values of Table 3. ARL = 370 when T = 1 for all series. 
 
 

Mean and Sigma Change (Table 4 and Figure 3) 

For the third case (Both Mean and Sigma Change), an Individual Chart or X/MR 
Chart Combination with R large (smallest possible M) gives the smallest off-target 
ARLs. Only a few exceptions appear for D = 0.5 with some large T values, where 
the X/MR Chart Combination with the second smallest M gives the smallest off-
target ARL. 
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Where the second smallest M improves on the off-target ARL of the X-only 
chart, the size of the improvement is clearly quite small. Thus generally speaking, 
the Individual Chart alone is better than the X/MR Chart Combination (see Table 4 
and Figure 3, for example). 
 
 
Table 4. Mean and Sigma Change – ARL = 370 
 

T D X-only         
(L = 3) 

X/MR Chart Combinations 
M = 3.00 M = 3.10 M = 3.20 M = 3.40 M = 3.8+ 
R = 6.0+ R = 4.57 R = 4.40 R = 4.29 R = 4.23 

1.5 

0.0 21.9 22.0 20.6 20.7 21.8 24.0 
0.5 13.7 13.7 14.0 14.9 16.7 20.8 
1.0 6.3 6.2 6.8 7.4 8.9 12.8 
1.5 3.2 3.2 3.5 3.8 4.5 6.5 
2.0 2.0 2.0 2.1 2.3 2.5 3.4 
2.5 1.4 1.4 1.5 1.6 1.7 2.1 
3.0 1.2 1.2 1.2 1.2 1.3 1.5 
3.5 1.1 1.1 1.1 1.1 1.1 1.2 
4.0 1.0 1.0 1.0 1.0 1.0 1.1 

2.0 

0.0 7.5 7.5 7.2 7.3 7.7 8.5 
0.5 5.5 5.5 5.5 5.7 6.2 7.3 
1.0 3.2 3.2 3.3 3.4 3.8 4.7 
1.5 2.0 2.0 2.1 2.2 2.4 2.8 
2.0 1.4 1.4 1.5 1.5 1.6 1.9 
2.5 1.2 1.2 1.2 1.2 1.3 1.4 
3.0 1.1 1.1 1.1 1.1 1.1 1.2 
3.5 1.0 1.0 1.0 1.0 1.0 1.1 
4.0 1.0 1.0 1.0 1.0 1.0 1.0 

2.5 

0.0 4.3 4.3 4.2 4.3 4.5 4.9 
0.5 3.5 3.5 3.5 3.6 3.8 4.2 
1.0 2.3 2.3 2.4 2.4 2.6 2.9 
1.5 1.6 1.6 1.6 1.7 1.8 2.0 
2.0 1.3 1.3 1.3 1.3 1.4 1.5 
2.5 1.1 1.1 1.1 1.1 1.1 1.2 
3.0 1.0 1.0 1.0 1.0 1.1 1.1 
3.5 1.0 1.0 1.0 1.0 1.0 1.0 
4.0 1.0 1.0 1.0 1.0 1.0 1.0 

3.0 

0.0 3.2 3.2 3.1 3.2 3.3 3.6 
0.5 2.7 2.7 2.7 2.7 2.9 3.1 
1.0 2.1 1.9 1.9 2.0 2.1 2.3 
1.5 1.5 1.4 1.5 1.5 1.5 1.7 
2.0 1.2 1.2 1.2 1.2 1.2 1.3 
2.5 1.1 1.1 1.1 1.1 1.1 1.1 
3.0 1.0 1.0 1.0 1.0 1.0 1.0 
3.5 1.0 1.0 1.0 1.0 1.0 1.0 
4.0 1.0 1.0 1.0 1.0 1.0 1.0 
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T D X-only         
(L = 3) 

X/MR Chart Combinations 
M = 3.00 M = 3.10 M = 3.20 M = 3.40 M = 3.8+ 
R = 6.0+ R = 4.57 R = 4.40 R = 4.29 R = 4.23 

3.5 

0.0 2.6 2.6 2.5 2.6 2.7 2.9 
0.5 2.2 2.2 2.2 2.3 2.4 2.6 
1.0 1.9 1.7 1.7 1.7 1.8 2.0 
1.5 1.4 1.3 1.4 1.4 1.4 1.5 
2.0 1.1 1.1 1.2 1.2 1.2 1.2 
2.5 1.1 1.1 1.1 1.1 1.1 1.1 
3.0 1.0 1.0 1.0 1.0 1.0 1.0 
3.5 1.0 1.0 1.0 1.0 1.0 1.0 
4.0 1.0 1.0 1.0 1.0 1.0 1.0 

4.0 

0.0 2.2 2.2 2.2 2.2 2.3 2.5 
0.5 2.0 2.0 2.0 2.0 2.1 2.2 
1.0 1.8 1.6 1.6 1.6 1.7 1.8 
1.5 1.3 1.3 1.3 1.3 1.3 1.4 
2.0 1.1 1.1 1.1 1.1 1.1 1.2 
2.5 1.0 1.0 1.0 1.0 1.1 1.1 
3.0 1.0 1.0 1.0 1.0 1.0 1.0 
3.5 1.0 1.0 1.0 1.0 1.0 1.0 
4.0 1.0 1.0 1.0 1.0 1.0 1.0 

 
 

 
Series 1 (X-only Chart)  Series 4 (M = 3.20, R = 4.40) 
Series 2 (M = 3.00, R = 6.0+)  Series 5 (M = 3.40, R = 4.29) 
Series 3 (M = 3.10, R = 4.57)  Series 6 (M = 3.8+, R = 4.23) 

 
Figure 3. Plotted ARL values of Table 4 
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Conclusion 

It has been found that X chart alone (X-only Chart) is better than the Individuals 
and Moving Range Chart Combinations (X/MR Chart Combinations) in detecting 
changes in the process mean. The Individual Chart alone gives smaller off-target 
ARLs for detecting changes in the process mean. 

For the case where the process standard deviation changes, most of the time, 
X/MR Chart Combinations (with the 2nd smallest M) are better than the Individual 
Chart alone. Only for small “all OK” ARL values (ARL = 50 and 100), is the 
Individual Chart alone better than the X/MR Chart Combinations for large T. 
Specifically, for “all OK” (in-control) ARL = 50, the X-only Chart is better than 
X/MR Chart Combination when T > 2.5. Also for “all OK” (in-control) ARL = 100, 
the Individual Chart alone gives smaller off-target ARLs than X/MR Chart 
Combinations when T > 3.0. For large “all OK” (in-control) ARLs (ARL = 250, 
370, 500, 750, and 1000), X/MR Chart Combination are better than the Individual 
Chart alone except for ARL = 370 and 750 with T = 4.0, where the Individual Chart 
alone is better. 

Finally, the case where both process mean and process standard deviation 
change, most of the time the X-only Chart is better than the X/MR Chart 
Combinations. The X/MR Chart Combination can be better than the X-only Chart 
only when D = 0.5 for some values of large T. 

Although the X-only chart can be better, the improvement in the off-target 
ARLs for the last two cases as described above is not really significant (coming in 
only the 3rd decimal place or beyond). If we round-off the results to the closest 
integer value, both results will typically be rounded to the same value. Therefore, 
in general, we can say that X/MR Chart Combination is “nearly” as efficient as the 
X-chart alone in detecting changes in the process standard deviation. Also, in 
general, with the same reason as above, the two monitoring schemes are “about” 
equally effective detecting changes in both process mean and process standard 
deviation (case 3). 
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Recommendation 
If changes in only the process mean are of concern, it is definitely better to use the 
X-only Chart monitoring scheme. 

If increases in the process standard deviation are the only ones of concern, the 
recommendation is to use the X-only Chart (for simplicity) even though the X/MR 
Chart Combinations is “nearly” as efficient as the Individual Chart alone. 

Similarly where one is concerned both process mean and standard deviation 
changes, the recommendation is to use X-only Chart. 
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Discrete distributions have played an important role in the reliability theory. In order to 
obtain Bayes estimators, researchers have adopted various conventional techniques. 
Generalizing the results of Maiti (1995), Chaturvadi and Tomer (2002) dealt with the 
problem of estimating P{X1, X2, …, Xk ≤ Y}, where random variables X and Y were 
assumed to follow a negative binomial distribution. Agit et al. obtained Bayesian estimates 
of the reliability functions and P{X1, X2, …, Xk ≤ Y} considering X and Y following 
binomial and Poisson distributions. The reliability function of the generalized Poisson and 
generalized geometric distribution is investigated. The expression for P{X1, X2, …, Xk ≤ Y} 
was obtained with X’s and Y following a Poisson distribution and some particular cases are 
shown. 
 
Keywords: Generalized Poisson distribution generalized geometric distribution, 
reliability function, Bayes estimators 
 

Introduction 

Much research exists in the literature for estimating various parametric functions 
of several discrete distributions through classical and Bayesian approaches. 
Cacoullos and Charalambildes (1975) obtained MVUE for truncated binomial and 
negative binomial distributions. Bayesian estimation of the parameter of binomial 
distribution has been considered by Chew (1971). Barton (1961) and Glasser (1962) 
obtained UMVUE of P(X = x) for Poisson distribution. Blyth (1980) studied the 
absolute error of UMVUE of the probability of success of binomial distribution. 
For a random variable X following binomial distribution, Pulskanp (1990) has 
shown that the UMVUE of P(X = x) is admissible under squared-error loss function 
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when X = 0 or n. Irony (1992) developed Bayesian estimation procedures related to 
Poisson distribution. Guttman (1958) and Patil (1963) provided UMVUEs of 
parametric functions of negative binomial distribution. Patil & Wani (1966) 
obtained UMVEUs of distribution function of various distributions. Roy & Mitra 
(1957) considered the problem of minimum variance unbiased estimation of 
univariate power series distribution. Patil (1978) generalized their results to 
multivariate modified power series distribution. Patil & Bildikar (1966) derived 
MVUE for logarithmic series distribution. 

Discrete distributions have played important role in reliability theory. Kumar 
& Bhattacharya (1989) considered negative binomial distribution as the life time 
modal and obtained UMVUEs of the mean life and reliability function. Another 
measure of reliability is under stress-strength setup in the probability Pr{X ≤ Y}, 
under the assumption that X and Y followed geometric distribution and derived 
UMVUE & Bayes estimator. Chaturvedi & Tomer (2002) considered classical & 
Bayesian Estimation procedures for the reliability function of the negative binomial 
distribution from a different approach generalizing the results of Maiti (1995), they 
dealt with the problem of estimating P{X1, X2, …, Xk ≤ Y}, where random variables 
X & Y were assumed to follow negative binomial distributions. Chaturvadi, et al. 
(2007) considered Bionomail and Poisson distribution and obtained the Bayesian 
estimators of reliability function and dealt with the problem of estimating 
P{X1, X2, …, Xk ≤ Y}, where the random variables X & Y were assumed to follow 
binomial and Poisson distributions. 

In order to obtain Bayes estimators of parameter and various parametric 
functions of different distributions, researchers have adopted a conventional 
technique, i.e., obtaining their posterior means. This article considers the 
Generalized Poisson and Generalized Geometric distributions and the problems of 
estimating reliability functions and P = P{X1, X2, …, Xk ≤ Y} from a Bayesian 
viewpoint. Bayes estimators of these parametric functions are derived. It is worth 
mentioning that in contrary to conventional approach, only estimators of factorial 
moments are needed to estimate these parametric functions and no separate dealing 
is needed. 
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Generalized Poisson Distribution 

The random variable follows Generalized Poisson distribution with parameter λ and 
β if its pmf is 
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The reliability function at a specific mission time, for example, t0 (≥ 0) is 
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and the hazard rate function is 
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Let {Xi}, i = 1, 2, 3, …, k be k independent random variables following a 

generalized Poisson distribution (1) with parameters λi and β (known) and Y is a 
random variable, independent of X’s following generalized Poisson distribution 
with parameter u. Denoting 
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From additive property of generalized Poisson distribution 
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Next, Bayes estimators of R(t0) and ‘P’ for generalized Poisson distribution are 
estimated. 
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Bayes Estimation Of R(t0) and ‘P’ For Generalized Poisson Distribution 

The likelihood function given the random sample information  
X = (X1, X2, …, Xn)   is 
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Because, λ > 0 consider the prior distribution for λ when β is known to be gamma 
with parameters (α,θ) and pdf 
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From (6) and (7), the posterior density function of λ is given by 
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The Bayesian estimator of λp, for p > 0, is given by 
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Now, Equation (1) can be written as 
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On using (9) the Bayes estimator of P(x;λ) at a specific point ‘X’ is 
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Using (10) in (2), in order to obtain Bayesian estimator of R(t0), results in 
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Also, for obtaining Bayesian estimator for ‘P’ we consider independent priors for 
λ* and u to be gamma with parameters (α1, θ1) and (α2, θ2) respectively and using 
equations (4) and (10) is 
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Special Cases 

For β = 0, equation (1) reduces to Poisson distribution, therefore for β = 0, 
equations (11) and (12) give the Bayesian estimators for R(t0) and P (see Chaturvedi, 
et al., 2007) and are 
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Generalized Geometric Distribution 

The random variable ‘X’ follows Generalized Geometric distribution with 
parameters α and β if its pmf is 
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The reliability function at a specific mission time, for example, t0 (≥ 0) is 
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and the hazard rate function is 
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Bayes Estimation Of R(t0) For Generalized Geometric Distribution 

The likelihood function given the random sample information  
X = (X1, X2, …, Xn)   is 
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Because, 0 < α < 1, it is assumed that the prior information about α when β is known 
from Beta distribution with pdf 
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The posterior distribution from (15) and (16) can be written as 
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The Bayesian estimator of αp, for p > 0, is given by 
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Now, equation (13) can be written as 
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On using (18) the Bayes estimator of P(x;λ) at a specific point ‘X’ is 
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Using (19) in (14), in order to obtain Bayesian estimator of R(t0), results in 
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In a system with standby redundancy, there are a number of components only one of which 
works at a time and the other remain as standbys. When an impact of stress exceeds the 
strength of the active component, for the first time, it fails and another from standbys, if 
there is any, is activated and faces the impact of stresses, not necessarily identical as faced 
by the preceding component and the system fails when all the components have failed. 
Sriwastav and Kakaty (1981) assumed that the components stress-strengths are similarly 
distributed. However, in general the stress distributions will be different from the strength 
distributions not only in parameter values but also in forms, because stresses are 
independent of strengths and the two are governed by different physical conditions. 
Assume the components in the system for both stress and strength are independent and 
follow different probability distributions viz. Exponential, Gamma, Lindley. Different 
conditions for stress and strength were considered. Under these assumptions the 
reliabilities of the system have been obtained with the help of the particular forms of 
density functions of n-standby system when all stress-strengths are random variables. The 
expressions for the marginal reliabilities R(1), R(2), R(3) etc. have been obtained based on 
its stress-strength models. Results obtained by J. Gogoi and M. Bohra are particular case 
presentations. 
 
Keywords: Reliability, standby redundancy, exponential distribution, Lindley 
distribution. 
 

Introduction 

The reliability of a system is the probability that when operating under stated 
environmental conditions, the system will perform its intended function adequately. 
For stress-strength models both the strength of the system, X, and the stress, Y, 
imposed on it by its operating environments are considered to be random variables. 
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The reliability, R, of the system is the probability that the system is strong enough 
to overcome the stress imposed on it, that is to say  PrR X Y  . 

In a standby system, that is, a system with standby redundancy, there are 
number of components only one of which works at a time and the other remains as 
standby. When an impact of stress exceeds the strength of the active component, 
for the first time, it fails and the another component from standbys, if there is any, 
is activated and faces the impact of stresses, not necessarily identical as faced by 
the preceding component. The system fails when all the components have failed. 
This problem has a long history starting with the pioneering work of Birnbaum 
(1956) and Birnbaum and McCarty (1958). The term stress-strength was first 
introduced by Church and Harris (1970). Since then significant amount of work has 
been done both from parametric and non-parametric point of view. A 
comprehensive treatment of the different stress-strength models till 2001 can be 
found in the excellent monograph by Kotz et al. (2003). Some of the recent work 
on the stress-strength model can be obtained in Kundu and Gupta (2005, 2006), 
Raqab and Kundu (2005), Krishnamoorthy et al. (2007). Gogoi, Borah and 
Sriwastav (2010) gave an interference model with number of stress a Poisson 
Process. Gogoi and Borah (2012) obtained the reliability expressions when the 
stress-strength of the components follow different distributions.  

It has been assumed the components stress-strengths are similarly distributed 
but in general the stress distributions will be different from the strength 
distributions not only in parameter values but also in forms because stresses are 
independent of strengths and the two are governed by different physical conditions. 
It is assumed here that stress-strengths of all the components in the system are 
independent and obtained the stress-strength parameter  PrR X Y  , when X and 
Y are independent. Note that the stress-strength parameter plays an important role 
in the reliability analysis. For example if X is the strength of a system which is 
subjected to stress Y , then the parameter R measures the system performance and 
it is very common in the context of mechanical reliability of a system. Moreover, 
R provides the probability of a system failure, if the system fails whenever the 
applied stress is greater than its strength. 

Model 

Consider an n-standby system in which, initially, there are n components, out of 
which only one is working under impact of stresses and the remaining (n−1) are 
standby. Whenever the working component fails, one from the standby takes its 
place and is subjected to impact of stresses and the system works. The system fails 
when the entire component fails. 
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Let 1 2, ,..., nX X X  be a set of n independent random variables, representing 
the strengths of n components arranged in order of activation in the system and let 

1 2, ,..., nY Y Y , be another set of independent random variables representing the 
stresses on the n components respectively, then the system reliability Rn of the 
system is given by 

 
      1 2 .nR R R R n    (1) 
 
where the marginal reliability ( )R r  is the contribution to the reliability of the 
system by the rth component and is defined as 
 
   1 1, 2 2 1 1Pr , , r r rR r X Y X Y X Y Y 

         
 
and if ( )if x and ( )ih y are the probability density functions of iX and 

, 1,2,3,...,iY i n  respectively then 
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where  iF y  is the commutative distribution function of iX  and   
 
    1iF y F x   (3) 

 
Assume that strength and stress follow different distributions, the following 

cases are considered. 
 

(I) One parameter exponential strength and three parameter exponential 
stress. 

(II) Two parameter Lindley strength and one parameter gamma stress. 
(III) Two parameter Lindley strength and two parameter gamma stress. 
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One parameter exponential strength and three parameter exponential 
stress 

Let  if x  be the one parameter exponential strength with parameter i  and  ih x   
be the three parameter exponential stress with parameters , and ; 1, , 2,i i i i n     , 
then 
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Then from equation (2) 
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In general,  
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.(6) 

Particular Case 
When in (4) i 1  , the three parameter exponential distribution becomes two 

parameter exponential distribution. Then the expression  R r  for one parameter 
exponential strength and two parameter exponential stress is obtained from (6) by 
putting 1; 1,2, ,i i r      and is given by 
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The result in (7) is obtained by Gogoi and Borah (2012) 

Two parameter Lindley strength and one parameter gamma stress 

Let  if x  be the two parameter Lindley strength with parameters i and i  and 

 ih x  be the one parameter gamma stress with parameter , 1,2, ,im i n  , the 
 
  

 
2

, ,
1 ; 0, 0,

0;  otherwise

i i

i
xi

i i i i i i
i i

f x
x e x

 


   
 



 
     
 



 (8) 

and 
  

 

,
1 ; 0, 1

0;  otherwise

i i

i
y m

i i i
i

h y m
e y y m

m


 
  




 (9) 

  



ESTIMATION OF MULTI COMPONENT SYSTEMS RELIABILITY  

394 

Then from equation (2) 
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In general 
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Particular case 

1) When i 1   in (8) two parameter Lindley distribution becomes one 
parameter Lindley distribution. Then the expression  R r  for one parameter 
Lindley strength and one parameter gamma stress is obtained from (10) by putting

1; 1,2, ,i i r      and is given by 
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(The result in (11) is obtained by Gogoi and Borah (2012)) 
 
2) When 0i   in (8) two parameter Lindley distribution becomes one 
parameter exponential distribution. Then the expression  R r  for one parameter 
exponential strength and one parameter gamma stress is obtained from (10) by 
putting 1; 1,2, ,i i r     and is given by 
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Two parameter Lindley strength and two parameter gamma stress 

Let  if x  be the two parameter Lindley strength with parameters i and i  and

 ih x  be the two parameter gamma stress with parameter and , 1 ,2, ,i im i n   , 
then 
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Then from equation (2) 
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In general, 
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 (15) 

Particular Case 

1) When i 1   in (13) two parameter Lindley distribution becomes one 
parameter Lindley distribution. Then the expression  R r  for one parameter 
Lindley strength and two parameter gamma stress is obtained from (15) by putting

1; 1,2, ,i i r     and is given by 
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2) When 0i   in (13) two parameter Lindley distribution becomes one 
parameter exponential distribution. Then the expression  R r  for one parameter 
exponential strength and two parameter gamma stress is obtained from (15) by 
putting 1; 1,2, ,i i r      and is given by 
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The results in (16) and (17) were obtained by Gogoi and Borah (2012) 
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Traditional inferential procedures often fail with censored and truncated data, especially 
when sample sizes are small. In this paper we evaluate the performances of the double and 
single bootstrap interval estimates by comparing the double percentile (DB-p), double 
percentile-t (DB-t), single percentile (B-p), and percentile-t (B-t) bootstrap interval 
estimation methods via a coverage probability study when the data is censored using the 
log logistic model. We then apply the double bootstrap intervals to real right censored 
lifetime data on 32 women with breast cancer and failure data on 98 brake pads where all 
the observations were left truncated. 
 
Keywords: Double bootstrap, censored, simulation, truncated, survival 
 

Introduction 

Modeling and data analysis is never complete without reliable statistical inferential 
procedures such as the confidence intervals or hypothesis testing. These are 
powerful tools that help us make certain conclusions regarding the population and 
its parameters based on sample data. The confidence interval can also be used to 
indicate the reliability of our estimates. However, it is not easy to obtain the exact 
solutions for some of these inferential procedures especially in cases involving 
more complex data structures such as incomplete, censored or truncated data. Thus, 
many have resorted to the much simplified techniques based on the asymptotic 
normality of the maximum likelihood estimates. In recent years, the bootstrapping 
techniques have taken over some of these existing methods because they relieve us 
from certain assumptions based on the asymptotic statistical theory. Thus, the 

mailto:jayanthi@upm.edu.my
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bootstrap is widely preferred when sample sizes are low or data is censored or 
truncated since the Wald is known to be highly asymmetrical in these cases with 
actual coverage probability significantly different from the nominal specification 
as discussed by Jeng and Meeker (2000), Doganaksoy and Schmee (1993a; 1993b) 
and Arasan and Lunn (2009). 

The bootstrap method as described by Efron and Tibshirani (1993) is a direct 
application of the plug-in principle which is a way of understanding the population 
based on estimates from random samples drawn from the population. The standard 
bootstrap confidence interval is constructed from information obtained directly 
from the data without any theoretical assumptions. In recent years the double 
bootstrap has gained a lot of popularity because it typically has a higher order of 
accuracy. According to McCullough and Vinod (1998), and Letson and 
McCullough (1998), the double bootstrap enhances the accuracy of the ordinary 
bootstrap by estimating an error and then using this error to adjust the ordinary 
bootstrap in order to reduce its error. 

Efron (1993) introduced the bootstrap percentile (B-p), percentile-t (B-t), and 
the bias-corrected percentile (BCa) intervals, see also Efron (1981b; 1981a). Efron 
(1985) claims that the bootstrap confidence interval reduces most of the error in 
standard approximation. He also describes some of these intervals as invariant 
under transformation, thus producing accurate results without involving knowledge 
of the normalizing transformations. An extensive survey of different bootstrap 
methods for producing good confidence interval estimates is given in DiCiccio and 
Efron (1996). Singh (1981) established the second order accuracy of the bootstrap 
confidence interval by applying Edgeworth theory to the B-t interval. Hall (1986; 
1988a; 1988b) examined several different bootstrap interval estimation methods 
that can be used in both parametric and nonparametric settings and concluded that 
B-t and BCa methods were superior to other methods. More applied works on 
bootstrap confidence intervals were done by Arasan and Lunn (2008), Robinson 
(1983), Schenker (1985), and Jeng and Meeker (2000). 

The Model 

The log-logistic distribution is very popular in survival studies because it has a 
hazard rate that increases in the beginning and slowly starts to decrease after a finite 
time. These types of non-monotonic hazard rates are very popular in medical 
studies especially those involving lung cancer, breast cancer and kidney or heart 
transplant patients. This distribution has been studied by various authors such as 
Bennet (1983) who explored and provided the linear model for the log odds on 



ARASAN & ADAM 

401 

survival. Gupta et al. (1999) proved analytically that unique maximum likelihood 
estimates exist for the parameters of this model and analyzed a lung cancer data. 
Mazucheli et al. (2005) compared the accuracy of Wald confidence interval with 
the B-p and B-t intervals for the mode of the hazard function of the log logistic 
distribution. Other authors who have done significant work using this model are 
[Cox and Lewis (1966)], [Cox, Oakes, O’Quigley and Struthers (1982)]. The model 
can also easily be extended to accommodate covariates, truncated data and all types 
of censored observations such as left, right and interval. More discussions on 
truncated data can be found in Lawless (1982). 

Lifetime data are sometimes truncated due to some of the conditions in the 
study design. When the lifetime ti for the ith subject is forced to lie between the 
interval [ui, vi], where ui and vi are left and right truncation times respectively, then 
ti is said to be either left or right truncated. Subjects who do not experience the 
event within this window will not be included in the study. So, subjects are left 
truncated only if they were already at risk before entering the study. So the current 
lifetime of subject i at selection is ti ≥ ui  where ui > 0 and. Similarly right truncated 
data are data where ti ≤ vi. Thus, right truncation occurs when all the subjects have 
already experienced the event of interest when they enter the study. On the other 
hand right censoring occurs when a subject’s event time is unknown due to reasons 
such as study has ended or subject has left the study. Left censoring occurs when 
the event of interest has already occurred before the study started. In both cases 
subjects are still included in the study but it is acknowledged that their event time 
is above or below a certain point. 

There are several different parameterizations for the log logistic distribution. 
If -  < δ <   is the scale parameter and β > 0 is the shape parameter the density 
(pdf) and survivor function of the log logistic are 
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Suppose we have both right censored and uncensored lifetimes for i = 1, 2, …, n 
observations. Let ci be the indicator variable assuming the value of 1 if data is 
uncensored or 0 otherwise. The log-likelihood function for the full sample is  
given by 
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Suppose there is left truncated data for i = 1, 2, …, n observations. Let ui be the left 
truncation time for the ith subject. The log-likelihood function for the full sample is 
given by 
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Confidence interval estimates 

A bootstrap procedure depends on how the bootstrap sampling is done, namely 
parametric or nonparametric sampling procedures. In the parametric bootstrap 
sampling procedure, B bootstrap samples each of size n are generated from the 
assumed parametric distribution. Then, the bootstrap estimates, *

b̂ , b = 1, 2, …, B 
are estimates calculated from each of these bootstrap samples of size n. The 
nonparametric procedure requires the sampling of a large number of B bootstrap 
samples with replacement from the original data set with each observation having 
equal probability of being chosen. This technique of resampling clearly requires the 
assumption that the data are independent. Following that, the bootstrap estimates 
are calculated in the same way as described before. In this research we employ the 
nonparametric bootstrap sampling procedure since we wish to incorporate censored 
and truncated observations in our dataset. 

Single bootstrap without pivot (Percentile interval or B-p) 

A clear and thorough understanding of the single bootstrap interval estimation 
procedures is essential before moving on to any of the double bootstrap methods. 
If θ is our parameter of interest and ̂  its estimate using sample data, then *

b̂  is the 
estimate of θ using the bth bootstrap sample. The B-p method is rather simple and 
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constructs confidence intervals directly from the percentiles of the bootstrap 
distribution of the estimated parameters. In this procedure B bootstrap samples, yb, 
b = 1, 2, …, B will be generated using the nonparametric bootstrap sampling 
method. Following that, estimate the bootstrap version of the parameter estimates, 

*
b̂  for each of the bootstrap sample, yb. The 100(1−α)% percentile interval for θ is 

 * *
[ ] [ ]
ˆ ˆ,l u  , where, 

2
l B 
   , 1

2
u B  
   

 
 and *

[ ]
ˆ
 , 1,2, , B    is the 

ordered list of the B values of *̂ . For ease of computation and accuracy large 
values of B that give integer values of l and u should preferably be chosen. 

The B-p method is said to be transformation-respecting and has the ability to 
automatically produce accurate results without any normalizing transformations as 
described in Efron and Tibshirani (1993). Thus it becomes especially useful when 
the distribution of ̂  is not approximately normally distributed, since in this case 
the Wald interval would not perform well unless an appropriate transformation is 
used. 

Single bootstrap with pivot (Percentile-t interval or B-t) 

The B-t method involves a bit more work than the B-p interval since it requires the 
standard error of an estimate. In this method, a bootstrap table consisting the 
percentiles of the bootstrap version of the standardized values of the parameter 
estimates (approximate pivot) is constructed using the available data. The property 
of the approximate pivot whose distribution is approximately the same for all 
parameter allows the formation of this bootstrap distribution. Following that, this 
bootstrap table is used to construct the B-t confidence intervals. The main highlight 
of this method is that it is only dependent on the data in hand and does not require 
any normal theory assumptions. However, depending on the data available, the 
bootstrap distribution produced (B-t percentiles) can be asymmetric about 0, which 
may produce more asymmetrical intervals although at a much better coverage 
probability. 

In this procedure, compute *
b̂  for b = 1, 2, …, B bootstrap samples and 

obtain 
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Here, *ˆ( )bse   is the estimated standard error of *
b̂  for the bootstrap sample, yb. In 

B-t confidence interval the 
2
  quantile are based on B-t percentiles which can be 

obtained using the data. In order to do this obtain *
[ ]R  , 1, 2, ,B    which is the 

ordered list of the B values of R*. The 
2
  percentile of R* is then the value 

2

*
BR   

. 

Then, the 100(1−α)% confidence interval for θ is  * *
[ ] [ ]

ˆ ˆ ˆ ˆ. ( ) , . ( )l uR se R se      

where, (1 )
2

l B 
    and 

2
u B 
  . 

Double bootstrap procedures 

The double bootstrap procedure requires resampling from bootstrap samples in 
order to further reduce the bias and correct the errors in the bootstrap procedures, 
see Martin (1992). Similarly a double bootstrap confidence interval procedure is a 
further iteration to the ordinary bootstrap confidence interval procedure which 
would further reduce the order of magnitude of coverage error. Both B-p and B-t, 
has under mild regularity conditions, a 2 sided coverage error equals O(n−1), at 
nominal level α. It follows that a further iteration of the ordinary bootstrap 
confidence interval would further reduce the order of magnitude of coverage error 
to O(n−2). 

Double bootstrap without pivot (Double B-p) 

The double bootstrap without a pivot or double B-p is given by Shi (1992) and also 
discussed by Letson and Mccullough (1998) and is constructed as follows. First, 
draw B single bootstrap samples, denoted y1, y2, …, yb, b = 1, 2, …, B. Then, for 
each b draw another c = 1, 2, …, C bootstrap resamples. Following that calculate 

**
b̂c  for each double bootstrap samples. In the next step we have to calculate the 

number of **
b̂c  that is lesser or equal to ̂  for each c and divide this number by C 

 

  **ˆ ˆ# bc
bQ

C

 
  (4) 

 
Following that if the ordered values of Qb are Q[1], Q[2], …, Q[B] then the 

(1−α) % double percentile bootstrap confidence interval for θ is  * *
[ ] [ ]
ˆ ˆ,l u    where 
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  and *
[ ]
ˆ
 , 1,2, , B    is the ordered list of the B 

values of *̂ . In cases where l and u are not integers, they should be rounded to the 
nearest integer lesser than or equal to their values. 

Double bootstrap with pivot (Double B-t) 

The double bootstrap with pivot or double B-t was discussed Mccullough and 
Vinod (1998) and also Letson and Mccullough (1998). In order to construct the 
double B-t confidence interval for the parameter, θ, recall that for the B-t interval 
we need to compute *

bR  as given by (3). Following that we now have to resample 
C double bootstrap samples from each of the single bootstrap samples and obtain 
 

 
 

** *
**

**

ˆ ˆ
.

ˆ
bc b

bc
bc

R
se
 




  

 
In the next step we have to calculate the number of times the second stage 

root **
bcR  is lesser or equal to the first stage root *

bR  for each c and divide this 
number by C 
 

 
 ** *# bc b

b

R R
Z

C


  . (5) 

 
Then, if the ordered values of Zb are Z[1], Z[2], …, Z[B], the (1−α)% double B-t 
confidence interval for θ is  * *

[ ] [ ]
ˆ ˆ ˆ ˆ. ( ) , . ( )l uR se R se      where 

1
2

.
B

l B Z
  

   
  

  , 

2

.
B

u B Z
 
 

 

   and *
[ ]R  , 1, 2, ,B    is the ordered list of the B values of R*. 

Simulation study 

A simulation study was conducted using N = 1000 samples of size n = 25, 30, 40 
and 50 to compare the performance of the confidence interval estimates discussed 
in the previous section for the parameters of the log logistic model with censored 
data. We used α = 0.05 and α = 0.10 where α is the nominal error probability and 
censoring proportion (cp) of 10% and 15%. We compared a total of 4 methods 
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namely the B-p, B-t, DB-p and DB-t. Following that, we calculated the estimated 
coverage probability error by adding the number of times in which an interval did 
not contain the true parameter value divided by the total number of samples. 

The estimated left (right) error probability was calculated by adding the 
number of times the left (right) endpoint was more (less) than the true parameter 
value divided by the total number of samples. Following Doganaksoy and Schmee 
(1993a) if the total error probability is greater than  ˆ2.58 .s e  , then the method 

is termed anticonservative, and if it is lower than  ˆ2.58 .s e  , the method is 
termed conservative. The estimated error probabilities are called symmetric when 
the larger error probability is less than 1.5 times the smaller one. 

The value of δ = −18 and β = 4 were chosen as the parameters of the model 
to simulate failure times that mimic those seen in automobile brake pad failures. 
Suppose there are i = 1, 2, …, n observations. Random numbers from the uniform 
distribution on the interval (0,1), ui, was generated to produce ti for the ith 
observation 
 

 
 1/

1 1 1 .i
i

t
e u





  
   

  
 

 
To obtain censored observation in our data, the censoring time for the ith 

observation, ci were simulated from the exponential distribution with parameter μ 
where the value of μ could be adjusted to obtain the desired approximate censoring 
proportion in our data. Following that ti will be censored at ci if ti > ci and 
uncensored otherwise. The simulation study was carried out via the FORTRAN 
programming language. 

Simulation results 

Depicted in Table 1 are the summary of the estimated left, right and total error 
probabilities for the different methods discussed in the previous section. The results 
using the B-p method were omitted from the discussion due to the method’s poor 
performance when compared to the other methods. The B-p interval uses the 
empirical distribution and tends to fail when the distribution of *̂  is highly skewed 
which is rather common when bootstrapping censored and truncated observations. 
Inclusion of the B-p results would require a substantial increase in the graphical 
scale. Thus, we decided only to compare and display the results for the remaining 
3 methods in all discussions that follow. More comprehensive results are given in 
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Tables 2−5. The left and right estimated error probabilities should preferably be 
equal or close to α/2. The overall performances of the different methods were 
judged based on the total number of anticonservative (AC), conservative (C) and 
asymmetrical (AS) intervals. We are also interested in methods that behave well at 
different nominal levels and censoring proportions. Figures 1−8 compare the results 
of the coverage probability study using different methods graphically. 

The alternative computer intensive methods are usually employed to relieve 
us from tedious calculations and asymptotic normality assumptions. Thus, we wish 
to see them perform well especially at smaller sample sizes where the intervals 
based on asymptotic normality usually fail. Based on the results of the simulation 
study, we see that the DB-t intervals are more reliable than the DB-p and B-t 
methods. The DB-t method does not produce any conservative or anticonservative 
intervals for both parameters δ and β, even when censoring proportion in the data 
in high (cp = 15%). 

The DB-t method produced very few asymmetrical intervals, especially for 
the parameter β at α = 0.05 (see Table 1). The estimated error probabilities for the 
DB-t is also always closer to the nominal compared to the other methods even when 
the censoring proportion is high and sample size is low (n = 25, see Figures 1−8 
and Tables 2−3). All methods seem to produce fewer conservative, anticonservative 
and asymmetrical intervals when α = 0.10. So overall we can conclude that the DB-
t interval is the best method to employ when dealing with censored data especially 
at very low sample sizes (n = 25). The DB-p tends to work slightly better than the 
B-t method but both these methods do not perform as well as the DB-t when 
samples sizes are low (n = 25). 
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Table 1. Summary of the interval estimates at α = 0.05 and 0.10, cp = 10% and 15% 
 

      Parameters 
   δ β 
    Methods C AC AS C AC AS 

α = 0.05 

cp = 10% 

Double B-p 0 1 2 0 0 4 

Single B-t 0 1 3 0 2 3 

Double B-t 0 0 1 0 0 3 

cp = 15% 

Double B-p 0 1 4 0 0 4 

Single B-t 0 2 4 0 2 4 

Double B-t 0 0 1 0 0 1 

α = 0.10 

cp = 10% 

Double B-p 0 0 1 0 0 2 

Single B-t 0 0 2 0 0 2 

Double B-t 0 0 0 0 0 1 

cp = 15% 

Double B-p 0 0 2 0 0 3 

Single B-t 0 1 3 0 1 2 

Double B-t 0 0 1 0 0 1 

 
 
Table 2. Coverage probability of interval estimates for δ at α = 0.05 
 

  cp = 10% cp = 15% 
Methods n Left Right Total Left Right Total 

Double B-p 

25 0.045 0.028 0.073 0.049 0.024 0.073 
30 0.036 0.026 0.062 0.043 0.020 0.063 
40 0.030 0.022 0.052 0.033 0.020 0.053 
50 0.029 0.017 0.046 0.032 0.015 0.047 

Single B-t 

25 0.056 0.020 0.076 0.060 0.021 0.081 
30 0.043 0.022 0.065 0.049 0.022 0.071 
40 0.038 0.024 0.062 0.040 0.018 0.058 
50 0.037 0.025 0.062 0.040 0.022 0.062 

Double B-t 

25 0.029 0.028 0.057 0.033 0.024 0.057 
30 0.022 0.030 0.052 0.019 0.022 0.041 
40 0.016 0.023 0.039 0.014 0.023 0.037 
50 0.014 0.022 0.036 0.018 0.022 0.040 
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Table 3. Coverage probability of interval estimates for β at α = 0.05 
 

  cp = 10% cp = 15% 
Methods n Left Right Total Left Right Total 

Double B-p 

25 0.006 0.039 0.045 0.002 0.048 0.050 
30 0.008 0.033 0.041 0.004 0.038 0.042 
40 0.010 0.030 0.040 0.013 0.032 0.045 
50 0.014 0.031 0.045 0.012 0.035 0.047 

Single B-t 

25 0.021 0.055 0.076 0.022 0.058 0.080 
30 0.025 0.045 0.070 0.025 0.045 0.070 
40 0.022 0.035 0.057 0.023 0.043 0.066 
50 0.025 0.033 0.058 0.019 0.037 0.056 

Double B-t 

25 0.028 0.024 0.052 0.023 0.025 0.048 
30 0.031 0.021 0.055 0.021 0.021 0.042 
40 0.028 0.013 0.041 0.027 0.010 0.037 
50 0.027 0.015 0.042 0.022 0.015 0.037 

 
 
Table 4. Coverage probability of interval estimates for δ at α = 0.10 
 

  cp = 10% cp = 15% 
Methods n Left Right Total Left Right Total 

Double B-p 

25 0.068 0.043 0.111 0.070 0.042 0.112 
30 0.057 0.041 0.098 0.064 0.041 0.105 
40 0.052 0.045 0.097 0.054 0.043 0.097 
50 0.059 0.047 0.106 0.060 0.040 0.100 

Single B-t 

25 0.071 0.043 0.114 0.085 0.045 0.130 
30 0.062 0.045 0.107 0.077 0.038 0.115 
40 0.063 0.044 0.107 0.070 0.045 0.115 
50 0.068 0.043 0.111 0.069 0.047 0.116 

Double B-t 

25 0.043 0.053 0.096 0.049 0.043 0.092 
30 0.037 0.053 0.090 0.033 0.045 0.078 
40 0.040 0.047 0.087 0.030 0.050 0.080 
50 0.041 0.046 0.087 0.050 0.046 0.096 
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Table 5. Coverage probability of interval estimates for β at α = 0.10 
 

  cp = 10% cp = 15% 
Methods n Left Right Total Left Right Total 

Double B-p 

25 0.036 0.064 0.100 0.029 0.071 0.100 
30 0.037 0.059 0.096 0.035 0.068 0.103 
40 0.040 0.052 0.092 0.038 0.054 0.092 
50 0.040 0.056 0.096 0.036 0.055 0.091 

Single B-t 

25 0.046 0.077 0.123 0.046 0.086 0.132 
30 0.046 0.065 0.111 0.040 0.078 0.118 
40 0.040 0.069 0.109 0.047 0.066 0.113 
50 0.046 0.065 0.111 0.049 0.066 0.115 

Double B-t 

25 0.054 0.040 0.094 0.051 0.042 0.093 
30 0.055 0.035 0.090 0.047 0.032 0.079 
40 0.048 0.032 0.080 0.050 0.027 0.077 
50 0.048 0.039 0.087 0.046 0.039 0.085 

 
 

 
 
Figure 1. Interval estimates at α = 0.05, cp = 10% for parameter δ 
 

 
 

 
 
Figure 2. Interval estimates at α = 0.05, cp = 10% for parameter β 
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Figure 3. Interval estimates at α = 0.05, cp = 15% for parameter δ 
 

 
 

 
 
Figure 4. Interval estimates at α = 0.05, cp = 15% for parameter β 
 

 
 

 
 
Figure 5. Interval estimates at α = 0.10, cp = 10% for parameter δ 
 

 
 

 
 
Figure 6. Interval estimates at α = 0.10, cp = 10% for parameter β 
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Figure 7. Interval estimates at α = 0.10, cp = 15% for parameter δ 
 

 
 

 
 

Figure 8. Interval estimates at α = 0.10, cp = 15% for parameter β 
 

 

Real data analysis 

To illustrate the application of the double bootstrap confidence interval procedures, 
we will consider two data sets dealing with censored and truncated observations 
respectively. First is the data on breast cancer by Leathem and Brooks (1987) on 
the lifetimes of 32 women whose tumor has potential to metastasize thus classified 
as positive staining. 11 of the observations were censored which make the censoring 
proportion almost 34%. 

Considering the sample size and the censoring proportion in the data, any use 
of inferential procedures based on the asymptotic normality of the maximum 
likelihood estimates is not advisable. The second is 98 left truncated data on the 
lifetimes of the brake pads of automobiles. The left truncated lifetimes ui is the 
current odometer reading for each car. Only cars that had initial pads were selected 
and the remaining, and initial pad thickness, were used to estimate ti. Although the 
simulation study did not extend to include any truncated data, we believe we may 
generalize the results obtained using censored data to truncated data since in both 
cases the distribution of the bootstrap estimates will be skewed and far from normal, 
see Figures 10 and 12. 
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Right censored data 

The log logistic distribution fits the breast cancer data well as shown by the 
probability plot in Figure 9. Table 6 shows the parameter estimates when the log 
logistic distribution is fit to the data and the 95% confidence intervals using the 
Wald, DB-t, DB-p and B-t interval estimation procedures. 
 
 

 
 
Figure 9. Log logistic probability plot for the breast cancer data 
 
 
 
Table 6. MLE of breast cancer data and 95% confidence intervals 
 

   ̂    SE Wald B-t DB-p DB-t 

δ -5.187 0.953 (-7.054,-3.3189 (-7.154,-3.549) (-6.824,-3.744) (-8.231,-3.824) 

β 1.200 0.220 (0.769,1.633) (0.811,1.666) (0.826,1.611) (0.824,1.677) 

 
 

Figure 10 shows the histogram of 1000 bootstrap replications of ̂  and ̂ . 
We can clearly see that both the histogram are not very close to normal shape and 
appear to be skewed especially the distribution of *̂ . Goodness of fit test based on 
the Anderson-Darling and Kolmogorov-Smirnov had also rejected the assumption 
of normality at α = 0.05. In this case we can expect a disagreement between the 
standard normal interval and intervals based on the bootstrap methods as 
highlighted by Efron and Tibshirani (1993). 
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Figure 10. Bootstrap replication of ̂  and ̂  for breast cancer data 
 
 
 

Based on the coverage probability study, we could see the DB-t intervals 
produces the most reliable intervals when sample sizes are small and data is highly 
censored. From Figure 10, we can see that the distribution of *̂  is more skewed 

than *̂ . Thus, as expected the DB-t interval for the parameter δ tends to disagree 
more with the Wald interval, than the parameter β. The DB-t interval for the 
parameter δ is also wider than other intervals because it tries to accommodate the 
skewness in the distribution of the bootstrap estimates, which eventually increases 
the probability of the true parameter value lying within this interval as verified by 
the results of the coverage probability study. Other intervals, though narrower may 
fail to include the true parameter value. Observe that for the parameter β the Wald 
interval is wider than the DB-t intervals. So the DB-t interval has the ability to 
adjust itself according to the distribution of the bootstrap estimates which is directly 
linked to the data in hand and not dependent on any theoretical assumptions, which 
may fail when the normal approximation is simply not true. So it would actually be 
more practical to employ the DB-t interval in this case. 

Based on the results of the coverage probability study we can see that the DB-
p and B-t intervals do not perform as well as the DB-t when sample sizes are small. 
Their performance tends to improve gradually when n > 30. However we have 
included the interval estimates based on these methods merely to do some 
comparison study. As we can see the B-t interval is the narrowest among the 4 
intervals and there is much doubt as to whether the true parameter value will 
actually be included within this interval. The DB-p interval is much closer to the 
Wald interval than the DB-t, especially for parameter δ. This only makes it clearer 
that the DB-t interval will be more reliable since DB-p did not perform as well as 
DB-t in the coverage probability study. 
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Left truncated data 

Table 7: MLE of brake pad data and 95% confidence intervals 

   ̂    SE  Wald B-t DB-p DB-t 

δ -17.062 1.619  (-20.235,-13.889) (-20.381,-13.810) (-20.246,-13.765) (-20.686,-14.005) 

β 4.137 0.383  (3.387,4.888) (3.397,4.892) (3.379,4.831) (3.427,4.974) 

 
Table 7 shows the parameter estimates when the log logistic distribution is fit to the 
brake pad data and the 95% confidence intervals using the Wald, DB-t, DB-p and 

B-t interval estimation procedures. It is known that 
 
 

ˆ;
ˆ;

i
i

i

S t
e
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  is U(0,1) given ui. 

Thus, can plot the uniform residual, ei against the uniform quantile to see if the log 
logistic distribution fits data as given in Figure 11. As we can see the model fits the 
data quite well. 
 
 

 
 
Figure 11. Log logistic probability plot for break pad data 
 
 
 

Figure 12 shows the histogram of 1000 bootstrap replications of ̂  and ̂ . We 
can also observe that for the left truncated data both the histogram appear to be 
skewed. The goodness of fit test based on the Anderson-Darling and Kolmogorov-
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Smirnov had again rejected the assumption of normality at α = 0.05. As with the 
breast cancer data we can expect a disagreement between the standard normal 
interval and intervals based on the bootstrap methods. 
 
 

 
 

Figure 12. Bootstrap replication of ̂  and ̂  for break pad data 
 
 
 
The DB-t interval for both the parameters tends to disagree with the Wald interval 
due to the skewness in the distribution of the bootstrap estimates. The DB-p gives 
the narrowest interval followed by the Wald. However as we discussed earlier we 
should be cautious since these intervals may fail to include the true parameter value. 
Similar pattern is displayed for parameter β where the DB-t interval is the widest 
but now the DB-p interval is the narrowest. For both parameters the B-t interval 
and DB-p interval seem to be rather close to the Wald interval which again makes 
it clearer that the DB-t interval will be more reliable as the B-t and DB-p interval 
did not perform as well as the DB-t in the coverage probability study. 

Discussion 

It may appear as if the Wald would suffice as a confidence interval estimate due to 
its simplicity but this may not be true with smaller data sets that are censored or 
truncated. So while the Wald can still be employed especially when samples sizes 
are large and censoring proportions in the data is low, alternative bootstrap methods 
such as the DB-t should be employed otherwise. Although the DB-t method is 
slightly more computational compared to the Wald, with the existence of fast 
computers and parallel computing techniques, these results can be obtained very 
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quickly especially for small data sets. The performances of the B-t and DB-p 
method do not seem to be significantly better than the DB-t methods. Thus, we 
would not recommend employing them for the construction of confidence intervals 
for the parameters of this model. 

Keep in mind that the bootstrap confidence interval methods was initially 
introduced by Efron and Tibshirani (1993) mostly for use with location statistics 
such as the mean, median and trimmed mean. However, recently it is being used 
for more complicated statistics, especially those with standard errors that are 
attainable. Through simulation studies, we are able to assess if the bootstrap 
methods can be extended to other general problems, such as constructing 
confidence interval estimates for model parameters with censored and truncated 
data. They offer an alternative rather than depending solely on interval estimates 
that are based on asymptotic normality theory. 

Although many are still skeptical about these methods, we can’t deny that 
they provide us with an opportunity to perform comparison study which in some 
cases may lead to estimates that are better than those produced by traditional 
methods. The computation time for the double bootstrap is 2 times longer than the 
ordinary or single bootstrap procedures and negligible for the Wald procedure. For 
analyzing the breast cancer data, the computation time using the FORTRAN 
programming language only took 0.015 seconds for the single bootstrap procedures 
and 0.031 seconds for double bootstrap procedures. The single bootstrap procedure 
for the brake pad data took 0.03 seconds and the double bootstrap procedures took 
0.06 seconds. So, the results can be obtained extremely quickly in only matter of 
seconds. Thus, the argument of bootstrap methods being heavily computational is 
not applicable anymore due to the availability of very fast computers. 

The methods discussed here can be applied to the parameters of other survival 
models involving censored or truncated data. The log logistic model discussed here 
was chosen mainly due to its popularity in most cancer studies and its ability to 
accommodate both fixed and time dependent covariates easily. When the data in 
hand has more complicated structures such as double or interval censored the 
construction of the confidence intervals using solely methods based on asymptotic 
normality becomes unreliable. Thus, it’s important and also interesting to see if 
these alternative methods provide us with more appealing solutions. 
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Sample size determination is a prerequisite for statistical surveys. A comprehensive 
overview of the Bayesian approach for computation of the sample size, and a comparison 
with classical approaches, is presented. Two surveys are taken as example to illustrate the 
accuracy and efficiency of each approach, and to make recommendations about which 
method is preferred. The Bayesian approach of sample size determination may require 
fewer subjects if proper prior information is available. 
 
Keywords: Sample size determination, Bayesian methods, mean 
 

Introduction 

A good statistical study is one that is well designed and leads to a valid conclusion. 
The main aim of the sample size determination (SSD) is to find an adequate number 
of observations to be made to estimate the population prevalence with a good 
precision. That means an optimal sample size is required to give a desired level of 
validity of the results. Prior determination of a good sample size reduces expenses 
and time by allowing researchers to estimate information about a whole population 
without having to survey each member of the population (Cochran, 1977). A 
considerable number of criteria for SSD are available depending on the two types 
of inferential approaches-Frequentist and Bayesian. 

Frequentist sample size determination methods depend directly on the 
unknown parameter of interest which in practice is often very hard to get whereas 
Bayesian way does not depend on the guessed value of the true parameter rather it 
depends on a prior distribution of the parameter (M’lan et al., 2008). Bayesian 
methods often results in providing a posterior distribution which combines the pre-
experimental information of the parameter (prior distribution) with the 

mailto:fsadia@isrt.ac.bd
mailto:shahadat@isrt.ac.bd


SADIA & HOSSAIN 

421 

experimental data by utilizing the likelihood of the parameter (Pham-Gia, 1995). In 
case of Bayesian sample size determination, the marginal or prior-predictive 
distribution is used which is the mixture of the sampling distribution of the data and 
the prior distribution of the unknown parameters (M'lan et al., 2008). In this context, 
the minimal sample size determination using three different Bayesian approaches 
based on highest posterior density (HPD) intervals which are average coverage 
criterion (ACC), average length criterion (ALC) and worst outcome criterion 
(WOC) (Joseph et al., 1995) are examined herein. Sample sizes for two real life 
surveys were calculated using these criteria and were compared with the sample 
size determined by classical method as well as with the actual sample size utilized 
in these surveys. 

Methodology 

Bayesian Methods Used in Sample Size Determination 

Let θ be an unknown parameter vector that is derived to be estimated and Θ be the 
parameter space for θ. Suppose it is desired to determine the sample size n where a 
random sample X = (X1, X2, …, Xn) is to be used for the estimation of θ. According 
to the Bayesian approach, if f (θ) is the prior distribution for the parameter and the 
likelihood function given the data x = (x1, x2, …, xn) is  ; ( | )L x f x  . The 
preposterior marginal distribution of x is thus given by 
 
      |f x f x f d  


  . (1) 

 
Now, the posterior distribution of θ given data x with sample size n is 
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. (2) 

 
Using HPD interval approach, a sample size n most appropriate for estimating 

θ can be obtained by finding the n that gives the highest coverage of the equation 
(2) for a given fixed interval. The following three criteria are used in this paper. For 
details of these criteria, see (M'lan et al., 2008; Joseph et al., 1995; Joseph et al., 
1997; Sahu et al., 2006). The average coverage criterion seeks the smallest n 
satisfying the following condition 
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where, f (x) and f (θ | x, n) are given in equation (1) and (2) and a (x, n) is the lower 
limit of the HPD credible set of length l for the posterior density f (θ | x, n). In 
general, a (x, n) will depend both on the data x and the sample size n. ACC finds 
the minimum sample size n such that the expected coverage probability is at least 
(1 − α) for a given fixed HPD interval length l. The average length criterion seeks 
the smallest n satisfying the condition 
 
    ,l x n f x dx l


  ,  (4) 

 
where l is the desired pre-specified average length. This average length criterion is 
used to find a sample size n that would fix the coverage probability (1 − α) of the 
HPD credible set for θ. The worst outcome criterion finds the smallest n satisfying 
the following condition 
 

  
 

  ,

,
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a x n l

x a x n
f x n d   



   ,  (5) 

 
where both l and α are fixed in advance. 

Bayesian Sample Sizes for Normal Mean 
Let the data vector x = (x1, x2, …, xn) consist of exchangeable components from a 
normal distribution with the unknown normal mean μ and variance σ2. The 
precision of the data is then λ = σ2. In this case, the prior distribution is a conjugate 
prior distribution. The prior distribution for μ and λ are λ~gamma(v, β) and 
μ | λ~N (μ0, n0 λ). That means, the conjugate prior distribution for (μ, λ) is the 
normal-gamma conjugate prior distribution. 

Sample Sizes for Single Normal Mean with Known Precision 

If the precision λ is known, then the posterior distribution will be a normal 
distribution, i.e. 
 
  | ~ ,n nx N   ,  (6) 
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In this case, the three Bayesian sample size criteria give the same solution 

because the posterior precision depends only on n and does not vary with the 
particular observed data vector x. This is also equivalent to that given by Adcock 
(1988) as 
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If a non-informative prior is used such that n0 = 0, then inequality (7) reduces 

to the classical formulation. 

Sample Sizes for Single Normal Mean with Unknown Precision 

If the precision λ is unknown, then marginal posterior distribution of λ is given by 
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and t2υ+n represents a t-distribution with 2υ + n degrees of freedom. In this case, 
different Bayesian sample size criteria will give different sample size if the posterior 
precision varies with the data. 

The ACC sample size for unknown precision is similar to that for known 
precision because υ | β is the prior mean for precision λ, thus it is only necessary to 
substitute the prior mean precision for λ in inequality (7) and exchange the normal 
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quantile Z with a quantile from a t2υ distribution. If the degrees of freedom of t 
distribution do not increase with the sample size, equation (7) can give different 
sample size which is substantially different from those from inequality (8) and 
classical method of sample size. 

The average length criterion seeks the minimum n satisfying the following 
condition 
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When estimating a single normal mean with unknown precision λ with a 

gamma (v, β) prior distribution on λ, the ALC (4) is satisfied for large n. Although 
it does not appear feasible to solve inequality (9) explicitly for n, the left-hand side 
is straight forward to calculate given υ, β, α and n. Therefore, the exact smallest n 
can be found by a bi-sectional search algorithm (Chen et al., 1998). 

For a single normal mean with unknown precision λ with a gamma (ν, β) prior 
distribution on λ, the WOC is satisfied when n is sufficiently large so that 
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where Fn,2v,1−w denotes the 100(1 − w) percentile of an F distribution with n and 2v 
degrees of freedom and   1f x dx w


  . Therefore, the exact smallest n 

satisfying inequality (10) can be found by a bi-sectional search algorithm. If X = χ, 
the sample size is not defined, because Fn,2v,1−w →∞ as w→0, hence inequality (10) 
cannot be satisfied for any n. 

Results 

Classical and Bayesian Sample Size for mean with Simple Random 
Sampling 

For simple random sampling, computation of classical sample size for mean is 
made using the conventional formula (Cochran, 1977) 
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where, CV is the coefficient of variation and r the relative margin of error. Also 
note that with the population mean denoted by μ, d = rμ where d is absolute the 
margin of error and α is the level of significance. Pre-assigned values of α, r, CV 
can give an appropriate sample size n. 

Bayesian sample sizes are computed using the three types of criteria given in 
earlier section and these criteria find the minimum sample size n satisfying the 
respective condition of the criteria. Table 1 gives the classical and Bayesian sample 
size for mean with α = 0.05 considering simple random sampling assuming 
different prior distributions of mean. Also note that different length of the posterior 
credible interval for the mean are computed and given in Table 1. To make sense 
of Bayesian sample size in Table 1, gamma prior distributions for the precision are 
used with different types of parameters. 

In Table 1 the coefficient of variation used in the classical method is CV=2. 
Table 1 shows that the three Bayesian criteria provides different sample sizes. It is 
also observed from Table 1 that Bayesian criteria ACC and WOC seem to lead 
similar sample sizes whereas ALC criteria provides the smallest sample sizes. For 
example, in case of l = 0.1 and a prior about mean, u = v = 2, ACC and WOC yield 
the sample size of n = 3074 and n = 3638 which are somewhat similar but ALC 
yields a sample size of n = 2405 which is smaller than that using ACC and WOC. 
However, from Table 1 the theoretical knowledge that nALC ≤ nACC ≤ nWOC is 
observed to be satisfied. It is important to note that, as long as non-informative prior 
approaches to informative prior, the sample size gradually reduces. For example, 
Bayesian sample sizes are larger than classical sample size for non-informative 
prior (1, 1) but they are smaller than the classical sample size when using the more 
informative prior. That means, if more informative prior information is in hand, 
Bayesian method could supply more parsimonious sample size than classical 
method would. 
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Table 1. Classical and Bayesian Sample Size for SRS (α = 0.05) 
 

Length (l) Classical 
sample size Different prior   

Bayesian sample size 

ACC ALC WOC 

0.1 
  

6147 
  

Gamma (1,1) 7396 4819 7948 
Gamma (2,2) 3074 2405 3638 
Gamma (3,3) 2385 2028 2627 
Gamma (4,4) 2118 1877 2488 
Gamma (2,3) 4526 3612 4962 

0.2 
  

1537 
  

Gamma (1,1) 1842 1198 2010 
Gamma (2,2) 761 595 823 
Gamma (3,3) 589 501 675 
Gamma (4,4) 522 463 614 
Gamma (2,3) 1147 463 1250 

0.3 
  

683 
  

Gamma (1,1) 813 528 890 
Gamma (2,2) 333 260 392 
Gamma (3,3) 257 218 310 
Gamma (4,4) 227 201 255 
Gamma (2,3) 504 394 560 

0.5 
  

246 
  

Gamma (1,1) 287 185 311 
Gamma (2,2) 114 88 136 
Gamma (3,3) 86 73 105 
Gamma (4,4) 76 67 89 
Gamma (2,3) 176 136 190 

 
 

 
 
Figure 1. Classical and Bayesian sample size for different length with prior gamma (1,1) 
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Figure 1 gives the the comparison among classical sample sizes and Bayesian 
sample sizes for mean with respect to different length of the highest posterior 
density interval using the non-informative prior (1,1). Figure 1 shows that the 
Bayesian WOC criteria provides the largest sample size whereas Bayesian ALC 
criteria provides the smallest sample size and classical sample size and Bayesian 
ACC criteria give almost similar sample size. Figure 1 also elucidates that as length 
increases, sample size gradually decreases and this fact is true for both classical and 
Bayesian method of sample size determination. 

Applicability of the Bayesian SSD in Real Life 

The sample size determination (SSD) approaches from Bayesian perspective are 
grounded in theory and are eventually candidates for utilization in some real 
surveys. However, positive utilization of these methods in large-scale survey 
research in Bangladesh would depend on the computational features of the methods 
with respect to those usually used in such surveys. This study considered two 
recently conducted surveys as examples by comparing the sample sizes in these 
surveys with the hypothetical appropriate sample size computed using Bayesian 
criteria. The choice of the surveys was arbitrary; samples were selected mainly by 
considering availability in published format. 

Household Income and Expenditure Survey 2010 

Household Income and Expenditure Survey (HIES) is conducted by Bangladesh 
Bureau of Statistics (BBS), and is the main data source for estimation of poverty in 
Bangladesh. This survey provides valuable data on household income, expenditure, 
consumption, savings, housing condition, education, employment, health and 
sanitation, water supply and electricity, etc. (HIES, 2005). In the 2010 survey, a 
two-stage stratified random sampling technique was followed in drawing samples. 
The sample size of HIES 2010 was reported as 12,240 households, where 7,840 
were from rural areas and 4,400 from urban areas. For making theoretically 
comparable, the required sample size was also calculated using the usual classical 
formula in equation (11) and multiplying it by design effect (deff) for adjustment 
of cluster sampling. Note that the choice of design effect = 1.6 is made on the basis 
of conventional practice in Bangladesh surveys where design effect is assumed to 
vary from 1.5 to 2.0. 

In this computation CV(x), the pre-assumed value of the population 
coefficient of variation is computed from the HIES 2005 considering “Household 
Income” as the main interesting variable, 

2

2 1.64z    and the maximum allowable 
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relative margin of error r = 10%. The sample sizes actually used in HIES 2010 
along with sample sizes computed using classical and Bayesian methods are given 
in Table 2. For the Bayesian approach the prior    1, ,

CV
std    is considered 

and the CV and standard deviation of “Household Income” computed from the 
HIES 2005 are used. The CV for rural and urban populations as 3.01 and 4.71 
respectively are used in both approaches of sample size determination. 
 
 
Table 2. Classical and Bayesian Sample Size for HIES 2010 (α = 0.1) 
 

Region Sample size 
actually used 

Classical 
method 

Hypothetically computed sample size 

ACC ALC WOC 

Rural  7840 3922 3621 8542 7096 
Urban 4400 9604 9200 4908 5021 

Total 12240 13526 12821 13450 12117 
 
 

From Table 2, it can be observed that the total sample size used in the actual 
survey is almost same as that determined by the classical method as well as by the 
three Bayesian criteria. However, the urban-rural split of the sample sizes seems be 
of reverse order in the hypothetically determined methods. This could be due to the 
reason that the actual study allocated the size proportionally to the 70%-30% rural-
urban population of Bangladesh whereas the classical and Bayesian SSD used in 
the hypothetical computation considered separate sample sizes for urban and rural 
domains, and because CV of household income in urban area is much higher than 
that in rural area, the urban sample sizes is obtained to be larger. It is obvious that 
the choice of higher sample size in urban area according to the computed sample 
size could have provided better precision than that possibly been attained in the 
actual survey. 

The comparison between the classical and Bayesian SSD for the said survey 
reveals not much of difference except that the WOC criteria produced smallest 
sample size in comparison to the other methods. The ACC criteria and the classical 
method give almost a same sample size, which implies that with similar level of 
prior information even the most conservative Bayesian criteria gives as good 
sample size as the classical method. This result has been revealed in an extensive 
simulation with different level of significance and different level of precision. 
However, it can be expected that if higher level of prior information is in hand, 
Bayesian approach may possibly utilize them and reduce the required number of 



SADIA & HOSSAIN 

429 

samples whereas the classical method do not have any option to utilize them. That 
means that, if a Bayesian approach is applied, as opposed to a classical approach 
for sample size determination, then it could have optimized the opportunity.  

Bangladesh Demographic and Health Survey (BDHS) 2007 

The Bangladesh Demographic and Health Survey (BDHS) is a periodic survey 
conducted in Bangladesh to serve as a source of population and health data for 
policymakers, program managers, and the research community. The sample size 
for BDHS 2007 was determined according to six divisions and two regions using 
BDHS 2004 with the help of the usual SSD formula (see the previous section) and 
the three Bayesian criteria (as described in the Methodology).  
 
 
Table 3. Classical and Bayesian Sample size for six divisions and two regions of BDHS 
2007 (α = 0.05) 
 

Region Sample size 
actually used 

Classical 
method 

Hypothetically computed sample size 

ACC ALC WOC 

Dhaka 2726 376 394 213 398 
Chittagong  2423 448 468 259 456 

Khulna 1935 683 1124 677 1010 

Barisal 1674 1071 1490 912 1256 
Rajshahi 2403 707 1064 637 955 

Sylhet 1949 267 166 69 187 

Total (for division) 11485 3552 4706 2767 4262 

Urban 5218 690 1111 669 998 
Rural 7981 513 605 346 576 

Total (for region) 11485 1203 1716 1015 1574 
 
 

Considering the variable “children ever born” as the variable of interest, 
computations similar to those in the previous section were done. The actual sample 
sizes used in the survey along with the computed required sample sizes using 
Bayesian and classical methods are given in Table 3. The sample sizes are 
computed with two different perspectives about domains. Often only the 
rural/urban segregation of the estimates is needed from surveys; in such cases 
sample size may be calculated for only those two domains. BDHS 2007 makes 
separate estimates for the six administrative divisions of Bangladesh and hence 
these six domains were considered in the computation. 
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Table 3 shows that the hypothetically determined sample size (classical and 
Bayesian approach) is very much smaller than actually used sample size of BDHS 
2007 for division and regions which indicates oversampling for reporting more 
reliable estimates of the rarer characteristics of that division or region. However, 
classical and Bayesian sample sizes are determined using the usual SSD formula 
due to unavailability of the used sample size formula of BDHS 2007. Because the 
coefficient of variation of “children ever born” is very low, so that a very much 
smaller sample size was obtained from classical and Bayesian approach than the 
used sample size of BDHS 2007. This may be explained because the Bayesian 
sample size using ACC and WOC criteria is larger than the classical sample size 
for all division and two regions. This table concludes that the Sylhet division has 
smallest sample size among all divisions for both approach and actually used 
sample size of BDHS 2007. Also note that Barisal division has the largest sample 
size among the other divisions of Bangladesh for classical and Bayesian approach 
but BDHS 2007 showed that the Dhaka division has the largest sample size among 
all divisions. This table also shows that the urban-rural sample size is present in 
reverse order in the hypothetically determined methods like the previous survey 
(HIES 2010). This statement indicates that the sample size allocation among the 
urban-rural strata and among the divisions could have possibly been done 
proportionally.  

Conclusion 

Results suggest that the classical sample size is larger than Bayesian sample size in 
the applications examined, although the estimated sample sizes in both methods 
(classical and Bayesian) are decreased when a larger margin of error is considered. 
Prior information can reasonably be utilized to improve Bayesian sample size 
estimation. In Bayesian approach of sample size determination, different prior are 
used in place of classical estimator. The estimated sample sizes decreased when 
moving towards informative prior from a non-informative prior. Results from this 
study show that the proper use of prior information may enhance the strength the 
of the Bayesian method of sample size determination. Thus, an optimized 
parsimony could be achieved by use of Bayesian sample size determination with 
substantially informative priors. 
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Consider the MLEs (maximum likelihood estimators) of the parameters of the Gumbel 
distribution using SRS (simple random sample) and RSS (ranked set sample) and the 
MOMEs (method of moment estimators) and REGs (regression estimators) based on SRS. 
A comparison between these estimators using bias and MSE (mean square error) was 
performed using simulation. It appears that the MLE based on RSS can be a robust 
competitor to the MLE based on SRS. 
 
Keywords: Ranked set sampling; simple random sampling, parameters, Gumbel 
distribution, maximum likelihood estimator, bias, mean square error, regression 
estimator, method of moment estimator. 
 

Introduction 

There are many areas of application of the Gumbel distribution including 
environmental sciences, system reliability, and hydrology. In hydrology, for 
example, the Gumbel distribution may be used to represent the distribution of the 
minimum level of a river in a particular year based on minimum values for the past 
few years. It is useful for predicting the occurrence of extreme earthquakes, floods, 
and other natural disasters. The potential applicability of the Gumbel distribution 
to represent the distribution of minima relates to extreme value theory, which 
indicates that it is likely to be useful if the distribution of the underlying sample 
data is of the normal or exponential type. 

The problem of estimation of the unknown parameters of the Gumbel 
distribution is considered by many authors under simple random sampling. 
Maciunas et al. (1979) considered the estimates of the parameters of the Gumbel 
distribution by the methods of probability weighted moments, moments, and 

mailto:abuyazan_jo@yahoo.com
mailto:salsubh@yahoo.com
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maximum likelihood. They used both independent and serially correlated Gumbel 
numbers to derive the results from Monte Carlo experiments. They found the 
method of probability weighted moments estimator is more efficient than the 
estimators. Leese (1973), derived the MLE (maximum likelihood estimator) of 
Gumbel distribution parameters in case of censored samples and he gave 
expressions for their large-sample standard errors. Fiorentino and Gabriele (1984), 
given some modifications of the MLE the Gumbel distribution parameters to reduce 
the bias of the estimators. Phien (1987) estimated the parameters of the Gumbel 
distribution by moments, MLE, maximum entropy and probability weighted 
moments. He derived the asymptotic variance-covariance matrix of the MLEs and 
used simulation to compare between the various estimators. He found that the MLE 
is best in terms of the root MSE (mean square error). Corsini et al. (1995), discussed 
the MLE and Cramer-Rao (CR) bounds for the location and scale parameters of the 
Gumbel distribution. Mousa et al. (2002), found the Bayesian estimation for the 
two parameters of the Gumbel distribution based on record values. 

RSS as introduced by McIntyre (1952) is an ingenious sampling technique for 
selecting a sample which is more informative than a SRS to estimate the population 
mean. He used of RSS technique to estimate the mean pasture and forage yields. 
RSS technique is very useful when visual ranking of population units is less 
expensive than their actual quantifications. Therefore, selecting a sample based on 
RSS can reduce the cost and increase the efficiency of estimation. 

The basic idea behind selecting a sample under RSS can be described as 
follows: Select m random samples each of size m, using a visual inspection or any 
cheap method to rank the units within each sample with respect to the variable of 
interest. Then select, for actual measurement, the ith smallest unit from the ith sample, 
i = 1, …, m. In this way, a total of m measured units are obtained, one from each 
sample. The procedure could be repeated r times until a sample of n = mr 
measurements are obtained. These mr measurements form RSS. Takahasi and 
Wakimoto (1968) gave the theoretical background for RSS. They showed that the 
mean of an RSS is an unbiased estimator of the population mean with variance 
smaller than that of the mean of a SRS. Dell and Clutter (1972) showed that the 
RSS mean remains unbiased and more efficient than the SRS mean for estimating 
the population even if ranking is not perfect. A comprehensive survey about 
developments in RSS can be found in Chen (2000) and Muttlak and Al-Saleh 
(2000). 

Because there are many attractive applications of Gumbel distribution, it is of 
interest to conduct a statistical inference for the Gumbel distribution. The statistical 
inference includes the study of some properties of Gumbel distribution, 
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emphasizing on estimation of Gumbel parameters. The estimation of the location 
and scale parameters, denoted as α and β respectively, of the Gumbel distribution 
under SRS and RSS is studied. The Gumbel parameters were estimated by using 
several methods of estimation in both cases of SRS and RSS such as maximum 
likelihood, moments and regression. Furthermore, the performance of these 
estimators is investigated and compared through simulation. Bias, mean square 
error (MSE) and efficiency of these estimators were used for comparison. 

Parameter Estimation Using SRS 

The cdf and pdf of the random variable X which has a Gumbel distribution with 
parameters α and β are given respectively by 
 

 ( ; , ) exp exp ,xF x 
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where α is the location parameter and β is the scale parameter, β > 0, x and 
α  (−∞, ∞). 

Let X1, X2, …, Xn be a random sample from X. The MLEs, MOMEs (method 
of moment estimators) and REGs (regression estimators) will be examined in case 
of both parameters are unknown based on X1, X2, …, Xn. 

MLEs 

Let X1, X2, …, Xn be a random sample from (2). The log-likelihood function is given 
by 
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After taking the derivatives with respect to α and β equating to 0, the MLEs are 
obtained as 
 

  , , ,
1

ˆ ˆˆand log .
n

MLE S i i MLE S MLE S
i

x x w z  


      (4) 

 

where 
1,

1exp ,   and .ˆ
n

i i
i i i

imle S

x zz z z w
n nz 

 
    

 
 

   

MOMEs 

The mean and variance for Gumbel distribution are given by 
 

 
2

2 2and .
6


         (5) 

 
The moment estimators of the two parameters are 
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where s, x  are the sample standard deviation and mean, respectively, and 
γ = 0.57721566 is Euler’s constant. 
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The regression estimators of the two parameters are 
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Parameter Estimation Under RSS 

MLEs 

Let X(i:m)j, i = 1, …, m and j = 1, …, r denote the ith order statistics from the ith set 
of size m of the jth cycle be the RSS data for X with sample size n = mr. 

Using (1) and (2), the pdf of X(i:m)j is given by (Arnold et al.,1992) 
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The log-likelihood function is given by 
 

 
( : )

1 1

( : ) ( : )
1 1 1 1

( ,  ) log  ( 1) log ( )

                ( ) log(1 ( )) log ( ).

r m

i m j
j i

r m r m

i m j i m j
j i j i

L mr c i F X

m i F X f X

 
 

   

  

   



 
  (8) 

 
Taking the derivatives of (8) with respect to α and β respectively, and equating the 
resulting quantities to zero. Because there is no explicit solution for (8), the 
equations need to be solved numerically to find , ,

ˆˆ  and MLE R MLE R  . 

Ad-hoc Estimators 

These are the same as the estimators in (6) and (7) with SRS replaced by RSS 

Estimator Comparison 

A comparison between all above estimators for both parameters of the Gumbel 
distribution was carried out under SRS and RSS using simulation. The package R 
has been used to conduct the simulation. The following values of the parameters 
and sample sizes have been considered: α = 0.5, β = 1; α = 1, β = 0.5; α = 1, β = 1; 
α = 1, β = 2; α = 2, β = 1, n = 12 and n = 24. 

For each n, a set (m;r) is decided such that n = mr. The bias and the MSE are 
computed for all the estimators under consideration. The efficiency between all 
estimators with respect to the MLE based on SRS are calculated where the 
efficiency of the estimator is defined as 
 

 1
2 1

2

ˆ( )ˆ ˆ( , ) ˆ( )
MSEeff
MSE


 


   

where 

   
210,000

2 2
1

1ˆ ˆ
10,000 t

t
MSE   



  . 

 

If  2 1
ˆ ˆ, 1eff     then 2̂  is better than 1̂  . 

The bias of the estimators is reported in Tables 1 and 3 and the efficiencies of the 
estimators is reported in Tables 2 and 4.  
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Table 1. The bias and MSE of estimators of α 
 

   Bias MSE 

(α, b) n n=mr ̂mle,S   ̂moe,S  ̂reg,S  ̂mle,R  ̂moe,R  ̂mle,S   ̂moe,S  ̂reg,S  ̂mle,R  ̂moe,R  

(1,1) 

12 
m=2, r=6 

-1.183 -1.130 
0.121 -1.156 -1.141 1.647 1.499 0.058 1.522 1.486 

m=3, r=4 -1.153  -1.146    1.480 1.469 
m=4, r=3 -1.140  -1.146    1.427 1.444 

24 
m=2, r=12 

-1.213 0.103 
-1.187 1.601 -1.149 1.601 1.424 0.033 1.515 1.415 

m=3, r=8 -1.179  -1.152    1.473 1.405 
m=4, r=6 -1.167  -1.152    1.430 1.393 

(1,2) 

12 
m=2, r=6 

-1.728 -1.471 
2.268 5.841 -2.285 5.841 5.907 2.205 4.212 5.943 

m=3, r=4 2.174  -2.283    4.211 5.799 
m=4, r=3 2.092  -2.292    4.211 5.793 

24 
m=2, r=12 

2.321 -1.508 
-2.047 4.211 -2.298 4.211 5.666 2.296 5.810 5.636 

m=3, r=8 2.135  -2.306    4.211 5.628 
m=4, r=6 2.174  -2.302    4.211 5.567 

(2,1) 

12 
m=2, r=6 

-1.728 1.901 
-1.167 1.666 -1.144 1.666 1.519 3.793 1.549 1.486 

m=3, r=4 -1.160  -1.141    1.499 1.446 
m=4, r=3 -1.153  -1.151    1.456 1.457 

24 
m=2, r=12 

-1.229 1.921 
-1.203 1.640 -1.140 1.640 1.432 3.793 1.549 1.389 

m=3, r=8 -1.182  -1.148    1.480 1.395 
m=4, r=6 -1.176  -1.152    1.453 1.394 

(0.5,1) 

12 
m=2, r=6 

-1.143 -0.576 
-1.139 1.558 -1.144 1.558 1.516 0.362 1.485 1.490 

m=3, r=4 -1.131  -1.141    1.427 1.457 
m=4, r=3 -1.129  -1.148    1.410 1.448 

24 

m=2, r=12 

-1.185 -0.612 
-1.168 1.557 -1.140 1.557 1.432 0.389 1.469 1.392 

m=3, r=8 -1.159  -1.142    1.436 1.381 
m=4, r=6 -1.137  -1.149    1.371 1.388 

(1,0.5) 

12 

m=2, r=6 

-0.598 0.375 
-0.589 0.419 -0.571 0.419 0.376 0.205 0.393 0.371 

m=3, r=4 -0.575  -0.569    0.368 0.361 
m=4, r=3 -0.577  -0.572    0.364 0.360 

24 
m=2, r=12 

-0.619 0.344 
-0.602 0.419 -0.576 0.419 0.353 0.157 0.387 0.356 

m=3, r=8 -0.597  -0.573    0.378 0.347 
m=4, r=6 -0.585  -0.575    0.359 0.347 
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Table 2. The efficiency of estimators of α 
 

(α, b) n n=mr ̂mle,S   ̂moe,S  ̂reg,S  ̂mle,R  ̂moe,R  

(1,1) 

12 
m=2, r=6 

1 1.099 28.397 
1.082 1.108 

m=3, r=4 1.113 1.121 
m=4, r=3 1.154 1.141 

24 

m=2, r=12 

1 1.124 48.515 
1.057 1.131 

m=3, r=8 1.087 1.140 
m=4, r=6 1.120 1.149 

(1,2) 

12 

m=2, r=6 

1 0.989 2.649 
1.387 0.983 

m=3, r=4 1.387 1.007 
m=4, r=3 1.387 1.008 

24 
m=2, r=12 

1 0.743 1.834 
0.725 0.747 

m=3, r=8 1.000 0.748 
m=4, r=6 1.000 0.756 

(2,1) 

12 
m=2, r=6 

1 1.097 0.439 
1.076 1.121 

m=3, r=4 1.111 1.152 
m=4, r=3 1.144 1.143 

24 
m=2, r=12 

1 1.145 0.432 
1.059 1.181 

m=3, r=8 1.108 1.176 
m=4, r=6 1.129 1.176 

(0.5,1) 

12 
m=2, r=6 

1 1.028 4.304 
1.049 1.046 

m=3, r=4 1.092 1.069 
m=4, r=3 1.105 1.076 

24 
m=2, r=12 

1 1.087 4.003 
1.060 1.119 

m=3, r=8 1.084 1.127 
m=4, r=6 1.136 1.122 

(1,0.5) 

12 
m=2, r=6 

1 1.114 2.044 
1.066 1.129 

m=3, r=4 1.139 1.161 
m=4, r=3 1.151 1.164 

24 
m=2, r=12 

1 1.187 2.669 
1.083 1.177 

m=3, r=8 1.108 1.207 
m=4, r=6 1.167 1.207 
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Table 3. The bias and MSE of estimators of β 
 

   Bias MSE 

(α, b) n n=mr ̂mle,S   ̂moe,S  ̂reg,S  ̂mle,R  ̂moe,R  ̂mle,S   ̂moe,S  ̂reg,S  ̂mle,R  ̂moe,R  

(1,1) 

12 
m=2, r=6 

0.273 -0.042 
0.889 0.296 -0.023 0.327 0.077 0.963 0.337 0.079 

m=3, r=4  0.303 -0.013    0.301 0.074 
m=4, r=3  0.308 -0.011    0.302 0.069 

24 
m=2, r=12 

0.412 -0.021 
0.919 0.415 -0.012 0.359 0.042 0.949 0.353 0.043 

m=3, r=8  0.425 -0.006    0.348 0.039 
m=4, r=6  0.416 0.006    0.322 0.036 

(1,2) 

12 
m=2, r=6 

1.772 0.918 
4.368 1.737 0.959 5.293 1.154 19.696 4.759 1.234 

m=3, r=4  1.734 0.959    4.508 1.196 
m=4, r=3  1.714 0.986    4.128 1.253 

24 
m=2, r=12 

2.328 0.955 
4.445 2.018 0.974 5.461 1.081 20.192 5.127 1.106 

m=3, r=8  1.928 0.981    4.656 1.119 
m=4, r=6  1.734 0.984    4.509 1.113 

(2,1) 

12 
m=2, r=6 

-0.740 -1.039 
0.799 -0.707 -1.022 0.773 1.155 0.877 0.728 1.122 

m=3, r=4  -0.693 -1.020    0.695 1.111 
m=4, r=3  -0.688 -1.010    0.674 1.091 

24 
m=2, r=12 

-0.599 -1.019 
0.850 -0.584 -1.016 0.533 1.082 0.862 0.514 1.072 

m=3, r=8  -0.589 -1.011    0.490 1.061 
m=4, r=6  -0.587 -1.007    0.483 1.051 

(0.5,1) 

12 
m=2, r=6 

0.790 0.455 
0.979 0.803 0.478 0.923 0.286 1.102 0.896 0.304 

m=3, r=4  0.811 0.485    0.891 0.311 
m=4, r=3  0.808 0.488    0.875 0.306 

24 

m=2, r=12 

0.913 0.482 
1.001 0.927 0.481 1.045 0.274 1.089 1.040 0.272 

m=3, r=8  0.927 0.489    1.035 0.276 
m=4, r=6  0.908 0.492    0.974 0.277 

(1,0.5) 

12 

m=2, r=6 

-0.369 -0.522 
-0.257 -0.356 -0.512 0.193 0.291 0.119 0.181 0.282 

m=3, r=4  -0.358 -0.512    0.179 0.280 
m=4, r=3  -0.347 -0.506    0.169 0.272 

24 
m=2, r=12 

-0.292 -0.512 
-0.265 -0.291 -0.504 0.129 0.272 0.105 0.126 0.266 

m=3, r=8  -0.289 -0.506    0.123 0.265 
m=4, r=6  -0.295 -0.505    0.122 0.264 
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Table 4. The efficiency of estimators of β 
 

(α, b) n n=mr ̂mle,S   ̂moe,S  ̂reg,S  ̂mle,R  ̂moe,R  

(1,1) 

12 
m=2, r=6 

1 4.247 0.340 
0.973 4.139 

m=3, r=4 1.086 4.419 
m=4, r=3 1.083 4.739 

24 

m=2, r=12 

1 8.548 0.378 
1.017 8.349 

m=3, r=8 1.032 9.205 
m=4, r=6 1.115 9.972 

(1,2) 

12 

m=2, r=6 

1 4.587 0.269 
1.112 4.289 

m=3, r=4 1.174 4.426 
m=4, r=3 1.282 4.224 

24 
m=2, r=12 

1 5.052 0.270 
1.065 4.938 

m=3, r=8 1.173 4.880 
m=4, r=6 1.211 4.907 

(2,1) 

12 
m=2, r=6 

1 0.669 0.881 
1.062 0.689 

m=3, r=4 1.112 0.696 
m=4, r=3 1.147 0.709 

24 
m=2, r=12 

1 0.493 0.618 
1.037 0.494 

m=3, r=8 1.088 0.500 
m=4, r=6 1.104 0.504 

(0.5,1) 

12 
m=2, r=6 

1 3.227 0.838 
1.030 3.036 

m=3, r=4 1.036 2.968 
m=4, r=3 1.055 3.016 

24 
m=2, r=12 

1 3.814 0.960 
1.005 3.842 

m=3, r=8 1.010 3.786 
m=4, r=6 1.073 3.773 

(1,0.5) 

12 
m=2, r=6 

1 0.663 1.622 
1.066 0.684 

m=3, r=4 1.078 0.689 
m=4, r=3 1.142 0.710 

24 
m=2, r=12 

1 0.474 1.229 
1.024 0.485 

m=3, r=8 1.049 0.487 
m=4, r=6 1.057 0.489 

 
 
From Tables 1 to 4, the following conclusions are put forth 
 

i) In general, the bias is large for all estimators. Therefore, all the 
estimators are considered as biased estimators for α.  

ii) From Table 1, it can be noticed that the REG under SRS has the 
smallest bias as compared to the other estimators considered in most 
cases. In general, for all estimators of α under RSS, the bias is less 
than the case under SRS. 

iii) For fixed α, the MSE of ̂  decreases as the sample size increases. 
iv) It is noticed that from Table 2 that MLE under RSS is the most 

efficient than the MLE based on SRS.  
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v) The efficiency of the other estimators (MOMEs and REGs based on 
SRS and RSS) are not consistent, sometimes less one and other times 
greater than 1. 

 
Similar remarks can be noticed for the case of β. 

Conclusion 

Based on this study, it may be concluded that all estimators are biased. Because the 
MLEs under RSS are more efficient than the MLE under SRS, RSS is 
recommended in case ordering can be done visually or by an inexpensive method. 
The other estimators are not recommended because they are not consistent. 
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The Akaike information criterion, AIC, is widely used for model selection. Using the AIC 
as the estimator of asymptotic unbias for the second term Kullbake-Leibler risk considers 
the divergence between the true model and offered models. However, it is an inconsistent 
estimator. A proposed approach the problem is the use of A'IC, a consistently offered 
information criterion. Model selection of classic and linear models are considered by a 
Monte Carlo simulation. 
 
Keywords: Consistency, AIC, information criterion, Kullbake-Leibler risk, model 
selection  
 

Introduction 

Statistical modeling is used for investigating a random phenomenon that isn’t 
completely predictable. One of the criteria frequently used in model selection is the 
Kullbake-Leibler (KL) information criterion (Kullback and Leibler, 1951). This 
information criterion was introduced as one risk in model selection. Akaike (1973) 
introduced information criterion, AIC, as an estimator of asymptotic unbias for the 
second term KL risk and to form a penalty likelihood function. Akaike stated 
modeling isn’t only finding a model which describes the behavior of the observed 
data, but its main aim is predicated as a possible good, and the future of the process 
is under investigation. Hall (1987) used the Kullbake-Leibler risk considered bias 
and variance in the approximate density function. Bozdogan (2000), with the error 
distinction in the model selection, considered two errors from bias and variance in 
the estimation of model selection. Choi and Kiffer (2006), and Cawley and Talbot 
(2010) have considered the over fitting in model selection, and they showed over 
fitting results from the bias when modeling phenomena have been considered. Over 
the years, corrections have been made on penalty term, and criteria such as AIC 
(Akaike, 1973), TIC (Takeuchi, 1976), and KIC (Cavanaugh, 1994) have been 

mailto:estimatormgh@gmail.com
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introduced. In section 2, we state the Kullbake-Liebler risk, and the necessity of 
definitions. In section 3, a consistent information criterion is proposed instead of 
the AIC. In section 4, we present the results of our simulation studies. 

Kullbake-Leibler Risk 

Let 1, 2,( ..., )nX X X X  be a (i.i.d) random sample from true model and unknown, 

(.)h , and the family { (.; ) ; }
k k

k
k kF f f R       from offered models has 

been considered for approximate true model. 
 
Definition 1 
The family 

k
F  is well specified if there is a 0   such that h(.) = f(.;θ0); otherwise 

it is misspecified. 
 
Definition 2 
The KL risk defines for generate model and unknown (.)h , and offered  
model 

k
f as 

 

 
(.)( , ) log( [log  (.)] [log  (.; )]

(.; )k h h h k
k

hKL h f E E h E f
f 



 
   

 
  (1) 

 
where the expectation is taken with respect to the unknown model (.)h . The first 
term in the right hand side of (1) is called irrelevant part, because it doesn’t depend 
on k , and the second term is called relevant part. Based on the properties of the 
KL risk, the smaller value showed the closeness of the offered model to the 
unknown and true model. Therefore the problem is reduced to obtain a good 
estimate of the expected log-likelihood. Since the expectation is with respect to the 
model with unknown parameters, one estimator is 
 

 1
1ˆ ˆ{log  (.; )} log  (  ; ).n

h n i i nE f f x
n

    

 
Thus, n̂  is the maximum likelihood estimator of k  and ˆ(.; )nf   is the maximum 
likelihood function. The bias of maximum log-likelihood is as  
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Bias estimator = ˆ ˆ{log  (.; ) {log  (  ;  )}h n h nE f nE f Z    
 
where Z is a random variable (i.i.d) with iX s .The general form of the information 
criterion that has been shown by IC, as 
 
 1

ˆ ˆ2 log (  ; ) 2{bias estimator} 2 ( ) 2{bias estimator}.n
i i n f nIC f X l          

 
Akaike, when offered family is well specified, size of bias is estimated with 

dimensional parameter n̂ , means k, and the Akaike information criterion is  
stated as 
 
 ˆ2 ( ) 2 .f nAIC l k     
 

With attention to form the AIC by increasing the number of parameters in the 
offered model the penalty term, 2k will be increased and the term 

1
ˆ2 log (  ; )n

i i nf X    will be decrease. Penalty term is constant to chance of size 
sample in the information criterion AIC, and by increasing the size sample, AIC 
cannot distinguish the true model with the probability one. Therefore this problem 
is the same concept of inconsistency for an information criterion. Following the 
inconsistency of information criterion AIC, based on the definition similar to the 
definition of AIC, a consistent of information criterion, which called A'IC has 
presented. Akaike information criterion, by Akaike for model selection is 
introduced, but this useful criterion is inconsistent (Akaike, 1973). 

The information criterion is obtained as follows. The basis of the log-
likelihood function is 
 
 ˆ ˆ {log (.;  ) log (  ; )}h n h nb E f nE f Z     
 
where in the second term of the right hand side the inner expectation is calculated 
with respect to h(z) and the outer expectation is calculated with respect to h(x). By 
evaluating the bias it is decomposed as follows: 
 
 0 0 0

ˆ { (.;  ) log (.;  )} {log (.;  ) {log (  ; )}}h n h hb E gf f E f nE f Z         

  0 1 2 3
ˆ{ {log (  ; ) {log ; }} .h h h nnE E f Z E f Z b b b         
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The three expectations are calculated separately b1, b2, and b3. 
 
a) For calculation of b1 by writing 0 0( ) log (.; )fl f   and by applying a Taylor 

series expansion around the maximum likelihood estimator n̂ , results in 
 

 
2

0 0 0 0ˆ ˆ

( ) ( )1ˆ ˆ ˆ ˆ( ) ( ) ( ) | ( ) | ( ) (1),
2n n

f fT T
f f n n n n p

l l
l l o

   

 
       

  

 
      

 
 (1) 

 
(1)pO  is an expression of quantity that in the probability tends to zero. 

With attention, the 
( ) ˆ| 0f

n

l 
 







  and 

2

ˆ

( )1
|

n

f
T

l

n  



  



 
 is converged to 

0( )J  . (Akaike, 1973).Thus, 
 

 
0

2

0

( )
( ) [ ] |f

h T

l
J E  




 



 

 
  

 
Thus, the relation above can be approximated, as 
 

 0 0 0 0
ˆ ˆ ˆ( ) ( ) ( ) ( )( ) (1),

2
T

f n f n n p
nl l J o             

 
This based on the b1 can be written as 
 

 1 0 0 0 0
ˆ ˆ ˆ{ ( ) ( )} { ( ) ( )( )}

2
T

h f n f h n n
nb E l l E J             (2) 

 
b) The b2 doesn’t contain an estimator and it can easily be written as 
 
 2 0 0{ (.; ) {log ( ; )}} 0h hb E gf nE f Z      (3) 
 
c) For calculation of value the b3, first, the phrase 0{log ( ; )}hE f Z   be defined 

equally of ˆ( )n  . By using from Taylor expectation ˆ( )n   around 0 , 
 

 
0 0

2

0 0 0 0
( ) 1 ( )ˆ ˆ ˆ ˆ( ) ( ) ( ) | ( ) | ( ) (1)

2
T T

n n n n pT o   
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with attention to the 
0

( ) | 0 

 








. Thus when n tends to infinity, the relation 

above can be approximated as 
 

 0 0 0 0
1ˆ ˆ ˆ( ) ( ) ( ) ( )( ) (1).
2

T
n n n pJ o               

 
Thus the b3 can be written as 
 

 
 3 0

0 0 0

ˆ{ {log (  ; )} {log  ; }}

ˆ ˆ{( ) ( )( )}
2

h h h n

T
h n n

b nE E f Z E f Z

n E J

 

    

 

  
  (4) 

 
If the family of 

k
F  is well specified, with attention to quadratic forms in 

relations (2) and (4), that converge to centrally distributed chi-square with k degrees 
of freedom, then b1 and b3 can be written as 
 

 1 3 2
nb b k    (5) 

 
By combining of b1 and b3, in relation (5) and b2, in relation (3), bias the b is 

1 2 3b b b b nk    . 
By replacing the value of b in the general form of the information criterion, the 
offered information criterion called, A'IC is obtained as 
 
 1

ˆ' 2 log (  ; ) 2n
i i nA IC f X nk      (6) 

 
In the offered information criterion A'IC, penalty term 2nk changes will change 
with sample size. So, if sample size will be very large, information criterion A'IC, 
with the probability of one, find the true model data. In other words, information 
criterion A'IC is the only consistent information criterion that has been obtained 
based on the Kullback-Leibler risk. To show consistency of information criterion 
A'IC, let the maximum likelihood function estimator for the offered model 
( (.; ) ( ))k kf f   and optimal model 

0 0
( (.; ) ( ))k kf f   with respectively 
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( )
ˆ( )f k nl   and 

0 ( )
ˆ( )f k nl  . With regard to relation (6) information criterion A'IC, for 

the model ( )kf   and 
0

( )kf  , we have 
 
 ( )

ˆ' ( ( )) 2 ( ) 2 ,k f k nA IC f l nk      
 
 

0 0 ( ) 0
ˆ' ( ( )) 2 ( ) 2k f k nA IC f l nk      

 
If there is 0k k  , consistency for information criterion A'IC is given by 
 

 
0

( ' ( ) ' ( ) 0)k kP A ICf A ICf     
 

0( ) ( ) 0
ˆ( 2 ( ) 2 ( 2 ( ) 2 ) 0)f k n f k nP l nk l nk          

 

0( ) ( ) 0
ˆ(2 ( ) 2 ( ) 2 2 )f k n f k nP l l nk nk       

 
0 0( 2 ( )) (2 ( )) ( ) 1p

nP U n k k F n k k F          (7) 
 
In relation (7), nU  is 

0( ) ( )
ˆ ˆ2 ( ) 2 ( )f k n f k nl l   and the distribution function of chi-

square has been shown by F. Therefore it tends in of the probability to one. Thus 
A'IC is a consistent information criterion. (For further study about the consistency 
of an information criterion, see Hu and Shao 2008). 

Simulation 

A simulation was conducted for usage and comparison of the offered information 
criterion, A'IC, with the information criterion AIC, by using Monte-Carlo 
simulation, for linear regression and classic models. This simulation of linear 
regression model is supposed that well specified family 

{ (.; ) ; }
k k

k
k kF f f R      , and misspecified family 

{ (.; ) ; }
d d

d
d dG g g B R       are given for estimating the true model. Let 

1 2 3 1: 0.3 0.5 0.7 1,...,i i i i if y x x x i n       as the true model so that 1i , has 
been generated as random from distribution N(0,2). Models 

1 0 1 1 2 2 3 3
ˆ ˆ ˆ ˆ:  i 1,...,i i i if y x x x n         and, 
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2 0 1 1 2 2 3 3 4 4
ˆ ˆ ˆ ˆ ˆ:  i 1,...,i i i i if y x x x x n           offered models, which have been 

generated from 
k

F . Also we have 1 2 3 2: 0.3 0.5 3 1.1 1,...,i i i i ig y z z z i n       
 
 
Table 1. Comparison of AIC with A'IC by using from Monte-Carlo simulation for linear 
regression models 1f , 2f , 1g , and 2g . 
 

Size Model AIC A'IC  AIC  A'IC 

n=50 
1f  -2990 -2598 - - 

2f  -2700 -2210 290 388 

1g  200 592 3190 2006 

2g  248 738 3238 1860 

n=100 
1f  -3500 -2708 - - 

2f  -3200 -2210 300 498 

1g  430 1222 3930 3930 

2g  455 1445 3955 4153 

n=200 
1f  -5400 -3808 - - 

2f  -4360 -2370 1040 1438 

1g  210 1802 5610 5610 

2g  240 2230 5640 6038 

n=350 
1f  -7230 -4438 - - 

2f  -6400 -2910 30 1528 

1g  325 3117 7555 7555 

2g  360 3850 7590 8288 

 n-500 
1f  -9730 -5738 - - 

2f  -9300 -4310 430 1428 

1g  400 4392 10130 10130 

2g  425 5415 10155 11153 
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Thus, 
2i

 , has been generated as random from distribution N(0,1), and 

Models 1 0 1 1 2 2 3 3
ˆ ˆ ˆ ˆ:  1,...,i i i ig y z z z i n         and 

2 0 1 1 2 2 3 3 4 4
ˆ ˆ ˆ ˆ ˆ:  1,...,i i i i ig y z z z z i n          . The models are generated from 

d
G . This simulation is achieved by using from software R, and the number of 
repetitions are 103, and samples n = 50, 100, 200, 350, 600, have been considered. 
The results of simulation are presented in the Table 1. 

In the third and fourth columns of Table 1, the value of AIC and A'IC are 
presented in order to various values of n and for offered models 1f , 2f , 1g , and 2g . 
Therefore the relation between values AIC for offering models is obvious as 

1 2 1 2( ) ( ) ( ) ( )AIC f AIC f AIC g AIC g   . 
The family 

k
F  is well specified, but the family 

d
G  is misspecified. Thus, 

this relation is logical. With attention to the fourth column of Table 1 recent relation 
also is confirmed for A'IC. In other words 

1 2 1 2' ( ) ' ( ) ' ( ) ' ( ).A IC f A IC f A IC g A IC g    
With increasing n, the value of A'IC has been increased for the offered models, 

but the direction is confirmed unequally. The absolute magnitude difference of the 
value AIC and A’IC between the model of 1f  and other models is presented in the 
fifth and sixth columns of table. The absolute magnitude differences have been 
shown by the symbols of ∆AIC and ∆ A'IC. If there are symbols, as 
 
 

1 2 1| | 1 2 | | 1( ) ( ) |  and ( ) ( ) |,   j 1, 2
jf f f g jAIC AIC f AIC f AIC AIC f AIC g

 
         

 
 

1 2 1| | 1 2 | | 1' ' ( ) ' ( ) |  and ' ' ( ) ' ( ) |,   j 1, 2
jf f f g jA IC A IC f A IC f A IC A IC f A IC g

 
         

 
For n=50, 100, 150, 200, 350, 500, and models 1f , 2f , 1g , and 2g  will be 
confirmed the relation as 
 
 

1 2 1 1 1 2 1 2 1 1 1 2| | | | | | | | | | | | and ' ' ' .f f f g f g f f f g f gAIC AIC AIC A IC A IC A IC
                  

 
With attention to these relations the direction of similarity the model selection for 
information criteria AIC and A'IC for various n have been shown with this the 
quality that the criterion A'IC is a consistent information criterion. 
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Table 2. Comparison of AIC with A'IC by using Monte-Carlo simulation, for the state that 
generates model data is Normal standard and offered models are from a Laplace family 
with different parameters. 

Size Model AIC A'IC  AIC  A'IC 

n=50 
1 (0,1.3)f lap  -90 106 - - 

2 (0,1)f lap  -70 126 20 20 

3 (2,1)f lap  -56 140 34 34 

4 ( 2,0.9)f lap   -50 146 40 40 

n=100 
1 (0,1.3)f lap  -200 196 - - 

2 (0,1)f lap  -160 236 40 40 

3 (2,1)f lap  -143 253 57 57 

4 ( 2,0.9)f lap   -130 266 70 70 

n=200 
1 (0,1.3)f lap  -345 451 - - 

2 (0,1)f lap  -295 501 50 50 

3 (2,1)f lap  -255 541 90 90 

4 ( 2,0.9)f lap   -240 556 105 105 

n=350 
1 (0,1.3)f lap  -610 786 - - 

2 (0,1)f lap  -525 871 85 85 

3 (2,1)f lap  -487 909 123 123 

4 ( 2,0.9)f lap   -441 955 169 169 

n=500 
1 (0,1.3)f lap  -986 1010 - - 

2 (0,1)f lap  -865 1131 121 121 

3 (2,1)f lap  -777 1219 209 209 

4 ( 2,0.9)f lap   -670 11326 316 316 

 
 

In the third and fourth column Table 2 values of AIC and A'IC for n=50, 100, 
200, 350 and 500, have been respectively considered Laplace offered models 1f ,

2f , 3f , and 4f . Therefore the relation between values AIC for offered models of 
Laplace family is obvious as 1 2 3 4' ( ) ' ( ) ' ( ) ' ( ).A IC f A IC f A IC f A IC f    
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With attention to the fourth column in the Table 2, the recent relationis also 
confirmed for A'IC. In other words, 1 2 3 4' ( ) ' ( ) ' ( ) ' ( )A IC f A IC f A IC f A IC f   . 
In the fifth and sixth columns the absolute magnitude difference have been 
presented respectively for the value AIC and A'IC between the model of 1f  and any 
which from other models to confirm with any n, symbols of ∆AIC and ∆A'IC has 
been shown. With attention to these two columns for n’s different have ∆AIC = 
∆A'IC. If we have these symbols as 
 
 | | | |( ) ( ) |  i j and ' | ' ( ) ' ( ) |  j

i j i jf f i j f f i jAIC AIC f AIC f A IC A IC f A IC f i
 

          

 
for any n= 50,100, 200, 350, 500, models 1f , 2f , 3f , and 4f , confirms the  
relation as 
 
 

1 21 2 1 3 1 4 1 3 1 4| || | | | | | | | | | and ' ' ' .
f f f f f f f f f ff fAIC AIC AIC A IC A IC A IC
    

           

 
With attention to these relations, the direction of similarity model selection for 
information criteria AIC and A'IC for various n has been shown. But the 
information criterion A’IC is the consistent information criterion. 

Conclusion 

In this article investigating the inconsistent information criterion AIC, and by 
eliminating the inconsistency problem, a method for achieving an information 
criterion has been presented based on Kullback-Leibler risk and the consistent 
information criterion A'IC has been obtained. Therefore this information criterion 
is the only consistent information criterion and asymptotically unbiased. It is 
obtained based on Kullback-Leibler risk. Via simulation for linear regression and 
classic model, the quality of model selection was shown throughout the two 
information criterion, AIC and A'IC. According to the consistent information 
criterion of A'IC, it is possible for further discussion and to refine the other 
information criteria, which are based on Kullback-Leibler risk (as AICc and KICc) 
and add the consistency feature to the criteria. 
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The optimal choice of sites to make spatial prediction is critical for a better understanding 
of really spatio-temporal data. It is important to obtain the essential spatio-temporal 
variability of the process in determining optimal design, because these data tend to exhibit 
both spatial and temporal variability. Two new methods of prediction for spatially 
correlated functional data are considered. The first method models spatial dependency by 
fitting variogram to empirical variogram, similar to ordinary kriging (univariate approach). 
The second method models spatial dependency by linear model co-regionalization 
(multivariate approach). The variance of prediction method was chosen as the optimization 
design criterion. An application to CO concentration forecasting was conducted to examine 
possible differences between the design and the optimal design without considering 
temporal structure. 
 
Keywords: Spatio-temporal process, functional data, optimal design, ordinary 
kriging, total model, GenSA optimization 
 

Introduction 

A method for optimum choice of location to obtain better spatial prediction is 
needed. Ordinary geo-spatial prediction methods deal with scalar value for random 
variables in each coordinate (Cressie, 1993). Recently, Giraldo et al. (2011a, 
2011b) have extended geo-spatial prediction methods for one-dimensional 
functional data (curves) based on the statistic proposed by Delicado et al. (2010). 
Delicado et al. constructed a statistic for spatial correlated functional data and 
proposed a new experimental variogram based on L2 functional distance to function 
value spatial data. Giraldo et al. extended the ordinary kriging model. They also 
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mailto:F-rivaz@sbu.ac.ir
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used the total linear functional model for creating a new prediction method. In the 
next section, these models are introduced briefly.  

Many researchers have investigated the problem of spatial sampling design 
e.g. Zhu & Stein (1999), Wikle & Royle (1999), Diggle & Lophaven (2006), 
Fuentes et al. (2007), etc. Here, variance of spatial prediction in extended ordinary 
kriging and Total model spatial prediction of function value data are chosen as 
criteria for obtained optimization. This is done by application of Xiang et al.’s 
(2012) optimization procedure, “Generalized Simulated Annealing for Efficient 
Global Optimization” or “GenSA,” described in the section titled ‘Optimization 
Procedure.’ Following that, CO concentration data in Tehran weather pollution 
stations is introduced as spatial correlated functional data in seventeen stations. The 
proposed approach is illustrated in the section titled ‘Application,’ and for the 
possible differences between this design and the optimal design without 
considering temporal structure, the air monitoring network is redesigned based on 
the average data over time. 

Prediction Procedures 

Consider a functional spatial process X = {Xs(t) : s   D   Rd, t   [a,b]}, where 
functional variable Xs belongs to the separable Hilbert space H of square integrable 
functions defined on T for any s   D. We assume second-order stationarity and 
isotropicity for each t   T in random process. Let s1, ..., sn be the sites in D that we 
observe a realization 

1
,...,

ns sX X  of the functional random process Xs.  

Ordinary kriging for function value spatial data 

Ordinary kriging to function value spatial data is extended by Giraldo e.al (2011a) 
as following model 
 

    
0 1

1

ˆ ; ,..., ,
i

n

s i s n
i

X t X t R t T  


    (1) 

 
where  

0
ˆ

sX t  is predicted function in location 0s . Modeling based on this 
prediction method needs some assumptions such as functional version of intrinsic 
stationarity and isotropicity (see Delicado et al., 2010). Emprical variogram for 
modeling spatial dependency is obtained founded on the following minimization 
variance considering unbiasedness condition 
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     0 0
1 , , 1

ˆmin . . 1
n

n

s s iT
i

V X t X t dt s t
 




   (2) 

 
where moment estimation method leads to 
 

  
 

     

2

,

1ˆ
2 i js si j N h T

h t t dt
N h

  


    (3) 

 
Therefore, ordinary variogram, including exponential, spherical and so on, is fit to 
(3) by least square method and scale value coefficients are obtained. 

Total model prediction of function value spatial data  

Giraldo et al. (2011b) create new predictor for function value spatial data based on 
functional total model (Ramsay & Silverman, 2005) 
 
          0 ,i i iT

Y t t X t d t         (4) 

 
and multivariate spatial predictor (Ver Hoef & Cressi, 1993; Ver Hoef and Bari, 
1998) 
 
 

1 1 1 1
1 111 1 11 0
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 (5) 

 
as follows 
 

      
0

1

ˆ , ,
i

n

s i sT
i

X v t v X t dt v T


   (6) 
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where λn(t,ν), ..., λ1(t,ν) are functions T×T→R. Modeling based on this prediction 
need some assumption such as functional version of second-order stationarity and 
isotropicity that is proposed by Delicado et al. (2010). Coefficients of this model 
are found through following minimization variance with unbiasedness condition 
 
 

   
          0 0 0 0

1 .,. , , .,.
ˆ ˆmin .

n
s s s sT

V v v dv s t E v E v
 

      (7) 

 
To solve equation (7), spatial dependency must be modeled with linear model co-
regionalization (Wackernagel, 2003). 

Optimization Procedure 

Optimization is the process which one finds that value of a vector x, say, that 
maximizes or minimizes a given function f. The idea of optimization goes to the 
heart of statistical methodology, as it is involved in solving statistical problems 
based on least squares, maximum likelihood, posterior mode, and so on. Xiang et 
al. (2012) created global optimization procedure “GenSA” which is applicable for 
geo-statistical process. GenSA gives the lower and upper bound of geographical 
coordinates and finds optimum coordinates based on specific criteria. GenSA uses 
a distorted Cauchy-Lorentz visiting distribution, with its shape controlled by the 
parameter qv 
 

   
  

 
  

  

3

1 1
1 22

2
3

1 1

v
v

v

v

v
v

D
q

q
q D

q

v
q

q

T t
g x t

x t
q

T t












 

 
 

  
 
 

 (8) 

 
Here t is the artificial time. This visiting distribution is used to generated a trial 
jump distance Δx(t) of variable x(t) under artificial temperature  

vqT t . The trial 
jump is accepted if it is downhill (in terms of the objective function). If the jump is 
uphill it might be accepted according to an acceptance probability. A generalized 
Metropolis algorithm is used for the acceptance probability 
 

   
1

1min 1, 1
v

qa
q ap q E     (9) 
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where qa is a parameter.  
The minimax of prediction model of variance was used as optimization 

criterion. Variance of mentioned predictions is calculated as follows 
 
     0 0 0

2 ˆs s sT
V t t dt     (10) 

 
Giraldo et al. (2011a) calculate variance of ordinary kriging, resulting in 
 

    
0 0

2
,

1 1
i

n n

s i s s i iT
i i

t dt h    
 

       (11) 

 
where functional variogram Γ(t) is defined by Delicado et al. (2010) and γ(.) is the 
classical variogram fitted to empirical variogram. Giraldo et al. (2011b) calculate 
variance of Total model, resulting in 
 

         0 0 0

2

1

ˆ ˆ ˆ ˆˆ 2
n

T T
s s s i ii i i ij ji jT

i
V v v dv Tr C Q CW Tr C Q C W  




      (12) 

 
More detail of this variance is provided in Giraldo et al. (2011a, 2011b). To 
calculate the predictions variance in any location s0, a smoothing process is applied 
to the curves, which expands the curves and the functional parameters in terms of 
a set of Fourier basis functions. The number of Fourier basis is found by a 
Functional Cross-Validation procedure similar to the leave-one-out procedure 
(Cressie, 1993) introduced by Giraldo et al. (2011a). 

Data 

Transportation-related air pollution is one of Tehran’s most important problems. 
One of the most hazardous air polluting agents is carbon monoxide (CO), often 
exceeding two or three times the average levels recommended by the World Health 
Organization (WHO). This gas is colorless, odorless, and tasteless, and its 
predilection to bind hemoglobin is 200-220 times more than that of oxygen. Thus, 
it can prevent oxygen transfer to tissues and cause tissue hypoxia. For these reasons, 
the demand for reliable data to assess progress in air quality has grown rapidly over 
the past decade. In fact, motivated by increasing air monitoring stations in Tehran, 
three newly designed sites are proposed for monitoring CO. The data set used here 
describes daily averages of carbon monoxide (in ppm) at 17 monitoring sites, 
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geographically distributed across Tehran. Following the air quality standards 
(NAAQS, http://www.epa.gov/air/criteria.html), daily CO concentration is 
measured as the daily 1-hour average concentration. The current analysis considers 
data collected in 2011. 

Application 

Positioning of Tehran air quality stations and curves of seventeen stations created 
by smoothing procedure (Ramsay & Silverman, 2005) with 31 Fourier basis is 
illustrated in Figure 1. 
 
 

 
 
Figure 1. Position and CO concentration curves of seventeen air quality monitoring 
stations in Tehran 
 
 
 
Considering variance of the mentioned prediction method in GenSA algorithm, 
three locations in Tehran map can be identified that minimize maximum predictions 
variance simultaneously. The possible differences between this design and the 
optimal design, without considering temporal structure, are surveyed, and the air 
monitoring network is redesigned based on averaged data over time. Figure 2 shows 
the optimal location based on Ordinary method for functional data vs. ordinary 
kriging on averaged time data (spatial data). It is worth mentioning that spherical 

http://www.epa.gov/air/criteria.html
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variogram (13) is chosen for modeling dependency structure, then parameters are 
estimated based on empirical variogram by applying least square method. 
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Figure 2. Optimal location for three monitoring sites based on kriging model for spatial 
data (left) and ordinary model for spatial functional data (right) 
 
 
 
Figure 3 shows optimal location founded on Total prediction model for functional 
data vs. ordinary kriging on averaged time data (spatial data). Dependency structure 
is modeled with a linear model co-regionalization with exponential variogram (14) 
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Figure 3. Optimal location for three monitoring sites based on kriging model for spatial 
data (left) and Total model for spatial functional data (right) 
 
 

Results 

Figures 2 and 3 show the optimal design based on ordinary model and Total model 
for the spatially correlated functional data. 

Conclusion 

Although the modeling of spatial dependency based on the two proposed functional 
models is different, both tend to locate new monitoring stations nearer from existing 
stations than in the non-functional version of ordinary kriging. Thus, considering 
time on spatial data affects location sampling. In other words, maximum variance 
of functional predictions of the three locations is global minimized closer to other 
stations, but optimal design based on averaged data over time (spatial data) tends 
to fill the space (Figures 2 and 3). 
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Missing data is a pervasive problem in social science research. Many techniques have been 
developed to handle the problem. Different ways of handling missing data were shown to 
lead to different results in statistical models. A demonstration was given based on statistical 
modeling of the likelihood of a woman reporting having had an adolescent pregnancy by 
handling missing data with several different approaches. Results indicate that many of the 
independent variables in the model vary in whether they are, or are not, statistically 
significant in predicting the log odds of a woman having a teen pregnancy, and in the 
ranking of the magnitude of their relative effects on the outcome. 
 
Keywords: Missing data, listwise deletion, mean substitution, multiple imputation, 
proxy variables, adolescent pregnancy, race/ethnicity, logistic regression, logit 
coefficients, semi-standardized logit coefficients, demography 
 

Introduction 

Missing data is a pervasive problem in social science research. “Sooner or later, 
usually sooner, anyone who does statistical analysis runs into problems with 
missing data” (Allison, 2001: 1). Many techniques have been developed to handle 
missing data; often, the results of a statistical model will differ depending on the 
technique used. 

Missing Data Mechanisms  

According to Rubin (1976; 1987), there are three missing data mechanisms; the 
data are either “missing completely at random” (MCAR), “missing at random” 
(MAR) or “missing not at random” (MNAR). Missing data are said to be missing 
completely at random (MCAR) when the probability of the missing data for a 
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variable does not depend on the variable itself or on any of the other independent 
variables in the model. MCAR refers to the “condition in which missing responses 
to a particular variable are independent of the values of any other variable in the 
explanatory model and of the true value of the variable in question” Treiman (2009, 
p. 182). If all the missing data are MCAR, this is usually not a serious problem 
because the remaining data are considered to be a subsample of the original sample. 

Missing data are considered to be missing at random (MAR) if the probability 
of the missing data does not depend on the values of variables with the missing data, 
after controlling for other variables in the model. That is, MAR refers to “the 
condition in which missingness is independent of the true value of the variable in 
question but not of at least some of the other variables in the explanatory model” 
(Treiman, 2009, p. 182). 

Missing data are considered to be missing not at random (MNAR) when the 
MAR assumption is violated. The data are MNAR if the probability that the values 
were missing depends on the variable itself. 

Methods for Handling Missing Data 

There are many methods for handling missing data. We discuss several of the more 
popular approaches and then use each separately in an analysis of adolescent 
pregnancy. 
 
1. Listwise Deletion  The method that is the default method in most 
statistical packages is listwise deletion, also known as case deletion. It drops the 
missing values from the data set, and the analysis is then conducted using the 
reduced sample. If the data are MCAR, the resulting smaller sample is considered 
to be an unbiased subsample of the original dataset (Allison, 2001), and the use of 
listwise deletion should result in models with unbiased estimates. However, the 
standard errors will be slightly larger because the sample size is now, obviously, 
smaller. Statistical power will be reduced and the probability of finding significant 
results decreased; thus the listwise deletion method is often viewed as conservative 
provided that the MCAR assumption has been met (Acock, 2005). But if the 
missing data are MAR and listwise deletion is used, then the estimates will likely 
be biased (Allison, 2001). 

 
2. Mean Substitution   Mean substitution is a very simple approach. The 
missing values for a variable are replaced with the mean value for that variable. 
Mean substitution is especially problematic when the percentage of missing values 
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is large because this greatly reduces the variance and hence underestimates the 
correlation between the variable with missing values and any of the other variables 
in the model (Acock, 2005; Allison, 2001). Mean substitution “is possibly the worst 
missing data handling method available” Enders (2010, p. 43). 

 
3. Mean Substitution for Subgroups  A modification of mean substitution 
assigns the mean values for subgroups of the analysis. For example, a researcher 
might handle missing data on a variable such as income for the males and females 
in the sample by assigning to the males the average value of income for males, and 
to the females the average value of income for females. Although this modification 
reduces the variance, it is considered to be only slightly better than substituting with 
the overall mean (Acock, 2005).  

 
4. Proxy Method   When confronted with an excessive amount of 
missing data on an independent variable, some have used the proxy method as a 
solution. That is, they have substituted for the variable with the missing data another 
variable with little or no missing data that is related substantively and statistically 
to the variable with the missing data. For example, to address the situation of an 
excessive amount of missing data on a variable such as income, one could use 
educational attainment as a proxy for income.  

 
5. Dropping the Variable(s) with Missing Data This approach simply drops 
from the analysis the variable (or variables) with excessive amounts of missing. It 
should be avoided without question because of the obvious problem of model 
misspecification. 

The above are five of the “traditional” methods used for handling missing 
data. With the exception of listwise deletion when the data are MCAR, all five are 
problematic. For one thing, they will often produce biased estimates and inefficient 
standard errors. And when listwise deletion is used with MAR data, the estimates 
will be biased and the standard errors inefficient. 

(Other traditional methods not used in this paper include dummy variable 
adjustment and hot and cold deck imputation. Dummy variable adjustment uses all 
the cases and adjusts for those that have missing values by adding a dummy variable 
scored 1 if the value for the variable is missing, and 0 if not missing. Hot deck 
imputation also uses all the cases but replaces the missing values with random 
values found in the observed data. Cold deck imputation is similar but replaces the 
missing values with those from another data set. These methods may seem to be 
appealing because they use all the cases, but they have been shown to produce 
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biased estimates irrespective of whether or not the data are MCAR, MAR or MNAR 
(Acock, 2005; Allison, 2001). 

 

6-8. Multiple Imputation (MI) - three versions  The most popular of the non-
traditional methods is multiple imputation (MI), a method first introduced by Rubin 
in 1987. There are several variations of MI.  

It has been argued that MI is the preferred method for handle missing data 
because “when used correctly, it produces estimates that are consistent, 
asymptotically efficient and asymptotically normal when the data are MAR” (e.g., 
Allison, 2001, p. 27). MI has become the gold-standard approach for dealing with 
missing data (Treiman, 2009, p. 186-186). 

Multiple imputation is not concerned with recovering the missing data like 
the traditional methods mentioned above. Instead, it is concerned with estimating 
the population variances so as to produce generalizable estimates (Acock, 2005; 
Allison, 2001; Enders, 2010; Rubin, 1987). Unique about this method is that it does 
not treat the data as if “they were real” (Allison, 2001). Instead MI estimates the 
values by taking into account the uncertainty of the missing values. MI recognizes 
that even if the missing values are imputed, there is still uncertainty in those values, 
so it adjusts the variances to take this into account. 

MI has three steps: imputation, analysis, and the combination of datasets. The 
imputation stage creates several data sets; the analysis stage runs the desired 
analysis in each data set; and the combination stage combines the results from the 
imputations using rules developed by its creator, Donald Rubin. 

In the imputation stage, auxiliary variables may or may not be used to impute 
the missing values. Auxiliary variables are used that are statistically related to the 
variables with missing values, so to enhance the effectiveness of the imputation 
stage. The auxiliary variables are not used as independent variables in the 
regression equation per se, but are used to provide more information about the 
variances of the independent variables with the missing data. A preferred MI 
equation is usually one that uses auxiliary variables (Allison, 2001; Treiman, 2009). 

The two main MI iterative methods for handling missing data are the fully 
conditional specification (FCS) method, and the Markov chain Monte Carlo 
(MCMC) method. The fully conditional specification (FCS) method is sometimes 
known as imputation by chain equation (ICE); it imputes continuous and 
categorical variables without assuming a multivariate normal distribution. 
Simulation studies have shown that it works reasonably well, and the results are 
comparable to the MCMC method (Lee & Carlin, 2010). 
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The Markov chain Monte Carlo (MCMC) method is an iterative procedure 
that assumes a multivariate normal distribution of all the variables in the model. It 
works best when imputing continuous variables (Schafer, 1997), but it can also be 
used to impute categorical variables (Allison, 2001; Lee and Carlin, 2010). 

Following the above discussion, we will use three MI methods in our analysis 
of adolescent pregnancy, as follows: 6. MI using the fully conditional specification 
(FCS) method; 7. MI using the Markov chain Monte Carlo (MCMC) method with 
auxiliary variables; and 8. MI using the Markov chain Monte Carlo (MCMC) 
method but only imputing education and income.  

Thus, eight models of adolescent pregnancy will be estimated, with missing 
data handled differently in each of the eight models. 

Data and Method 

Data were taken from the National Longitudinal Study of Adolescent Health (Add 
Health) (Harris, 2008), a nationally representative stratified sample of adolescents 
in the 7th through the 12th grades who were followed across four waves between 
1994 and 2008. The sample was collected from 80 high schools and 52 middle 
schools and junior high schools across the United States. The first wave of data was 
collected in 1994-1995, the second in 1996, the third in 2001-2002, and the fourth 
in 2007-2008. Data on the parents of the school children were collected in the first 
wave. We use data from wave I and wave III for the female students and their 
parents. 

Logistic regression is used to estimate the log odds of females who had a 
pregnancy when they were between the ages of 15-19. Seven theoretically relevant 
independent variables were selected, as follows: (1) a dummy variable from wave 
1 regarding whether or not the adolescent ever made a pledge to remain a virgin 
until marriage, scored 1 if yes and 0 if no; (2) the adolescent’s race/ethnicity 
measured with a series of dummy variables (African American, non-Hispanic white, 
Mexican-origin, other Latina; other race; and non-Hispanic white, which was used 
as the reference); (3) the adolescent’s religion measured with six dummy variables 
(no religion, Protestant, Evangelical Protestant, Black Protestant, other religion, 
and Catholic; the Catholic dummy was used as the reference group); (4) household 
income as reported by the parent in wave 1 (measured in thousands) with $100,000 
as the ceiling; (5) parental education as reported by the parent in wave 1 and 
measured as number of years of school completed; (6) the importance of religion 
to the adolescent (“How important is religion to you?”), ranging from a value of 1 
if the woman reported no religious affiliation or responded “not important at all” to 
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a value of 4 if she reported “very important”; and (7) the adolescent’s perceived 
likelihood to attend college, with 1 as the lowest category and 5 as the highest. All 
these independent variables have been previously shown to be influential in models 
predicting whether or not a woman had a teen pregnancy (see, e.g., Bean and 
Swicegood 1985; Klepinger et al., 1995; Rosenbaum, 2006). 

Results 
Table 1. Descriptive Data: 6,719 Females, The National Longitudinal Study of Adolescent 
Health, Waves 1 and 3 
 
Variable Cases Percent missing Mean SD 

Dependent Variable     

Teen pregnancy 6,710 0.24 0.18 0.38 
     
Seven Independent Variables     

1. Virginity pledge 6,644 1.22 0.15 0.36 
     
2. Race / Ethnicity 6,719 0.10   
   White 3,568  0.67 0.47 
   African American 1,510  0.17 0.37 
   Mexican 539  0.06 0.24 
   Other Latina 538  0.05 0.23 
   Other 564  0.05 0.21 
     
3. Religion 6,620 1.60   
   Catholic 1,757  0.24 0.43 
   None 744  0.12 0.32 
   Protestant 1,447  0.22 0.42 
   Evangelical 1,056  0.20 0.40 
   Black Protestant 884  0.11 0.31 
   Other 682  0.11 0.31 
   Jewish 50  0.01 0.09 
     
4. Household Income (in thousands) 4,983 26.00 42.70 27.00 
     
5. Parental Education (in years) 5,708 15.14 13.27 2.45 
     
6. Religious importance 6,717 0.13 3.12 0.93 
     
7. Likelihood of college 6,681 0.67 4.25 1.13 
 
Table 1 presents descriptive data on the dependent variable and the independent 
variables for the 6,719 females of age 20 years or higher in our sample. We show 
in the first data column the number of women for whom we have data for each 
variable. The maximum number of cases is 6,719. In column 2 we show the 
percentage of the cases with data missing for each variable. Of the nine variables 
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we use in the logit regression equations (the dependent variable and eight 
independent variables), only three have missing data percentages of more than one 
percent: household income, 26.0 percent; parental education, 15.1 percent; and 
religion 1.6 percent. With more than one quarter of the cases having missing data 
on income, this means we would lose at least this percentage of respondents from 
the analysis were we to rely on listwise deletion as the method for handling missing 
data. 

In the third data column of Table 1, note that 18 percent of the women in the 
sample reported having had a teen pregnancy, 15 percent reported having made a 
pledge while a teenager to remain a virgin until marriage. Almost 67 percent of the 
respondents were white, and their mean household income was over $42.7 thousand. 
Religion was fairly to very important for most of the respondents, and most of them 
believed it is very likely that they will attend college.  

These data were analyzed using the eight different approaches discussed 
above for handling missing data: 

 
1. Listwise deletion 

 
2. Overall mean substitution 

 
3. Mean substitution where the mean values were substituted on the basis of 

the race and ethnic groups of the women 
 

4. The proxy method where mother’s education was used as a proxy for 
income 

 
5. Dropping the variables with excessive amounts of missing data; parental 

education and household income, the two variables with the most missing 
data, were excluded from the equation 

 
6. Multiple imputation in which we imputed all the variables with missing data 

using the fully conditional specification iterative method 
 

7. Multiple imputation using the Markov chain Monte Carlo iterative method 
with four auxiliary variables (via four auxiliary variables: Two questions 
were asked of the parents, namely, “How important is religion to you?” and 
“Do you have enough money to pay your bills.” And two questions were 
asked of the students, namely, “Since school started this year, how often do 
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you have trouble getting along with your teachers?” and  “How much do 
you want to go to college?” All four auxiliary questions were answered on 
a 1-4 or a 1-5 point scale from low to high) 

 
8. Multiple imputation using the Markov chain Monte Carlo iterative method 

to impute only the two variables with the most missing data, namely 
household income and parent education. In each of these three MI 
applications, a total of 100 imputations were undertaken. The 16 cases (only 
0.2 percent of all the respondents) that were missing in the teen pregnancy 
dependent variable were imputed in the imputation stage, but they were 
dropped from the analysis (von Hippel, 2007). 

 
Because the Add Health Survey is based on multistage probability sampling, 

one cannot make inferences with these data to the larger population of U.S. women 
from which the sample was drawn without first taking into account the sampling 
design. Thus, the “svy” suite of statistical sample adjustment methods available in 
the Stata 12 statistical package (StataCorp, 2011) was used to introduce survey 
adjustment estimators. 

The results from eight logistic regressions modelling the log likelihood of a 
woman becoming pregnant while a teenager are compiled in Table 2. Each 
regression equation handles missing data in a different way, as discussed earlier. 
The preferred method for handling missing data is multiple imputation using 
auxiliary variables, shown as model 7 (M7) in the table. 

The values in the first line for each variable in Table 2 are the logistic 
regression coefficients predicting the log odds of a woman having an adolescent 
pregnancy; if the coefficient is statistically significant, it is asterisked (see legend 
at the bottom of the table). Immediately below the logit coefficient is its semi-
standardized coefficient; this is the logit coefficient that has been standardized in 
terms of the variance of the independent variable, that is, the logit coefficient has 
been multiplied by its standard deviation (Long & Freese, 2006, p. 96-98). 
Alongside each of the semi-standardized coefficients that is statistically significant, 
in parentheses, is shown the ranking in that equation of its relative effect on the 
outcome of teen pregnancy. 
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Table 2. Eight Logistic Regression Models of Teen Pregnancy According to the Method Used to 
Handle Missing Data: Females Surveyed in The National Longitudinal Study of Adolescent Health, 
Waves 1 and 3 
  

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
1. Virg-Pledge .455** -.323* -.322* -.420** -.307* -.331* -.328* -.327* 

 -.164(4) -.117(8) -.117(7) .152(5) -.112(8) -.119(5) -.118(5) -.118(7) 
         

2. Race/ethnicity         
White Ref ref ref ref ref ref ref Ref 

Ref African American .351† .369* .340* .507*** .485*** .232 .249 .343* 
 .125(6) .137(6) 

 
.126(6) .184(3) .180(3) .082 .088 .122(6) 

         Mexican-origin .602* .535* .493† .591* .691** .394 .401 .482† 
 .135(5) .127(7) 

 
.116(8) .137(7) .163(5) .088 .090 .108(8) 

         Other Latina .245 .325† .296 .360* .462** .247 .253 .295 
 .056 .073(9) 

 
.066 .083(9) .104(6) .057 .058 .068 

         Other -.035 -.145 -.141 .072 -.081 -.174 -.170 -.157 
 -.007 -.031 

 
-.030 .015 -.017 -.035 -.034 -.031 

         
3. Religion         

Catholic Ref ref ref ref ref ref ref Ref 
         None .148 .038 .038 .176 .089 -.008 .035 .026 
 .048 .012 

 
.012 .057 .029 -.003 .011 .008 

         Protestant .254 .183 .183 .228 .175 .189 .191 .185 
 .108 .076 .076 .095 .073 .080 .081 .079 
         Evangelical .306 .365* 368* .449** .459** .344* .343* .351* 
 .121 .145(4) .146(4) .178(4) .182(4) .136(4) .135(4) .138(5) 
         Black Protestant .757*** .726*** .722*** .763*** .766*** .748*** .711*** .699*** 
 .220(2) .224(1) .223(1) .230(1) .236(2) .217(2) .206(3) .203(2) 
         Other .162 .148 .149 .262 .190 .133 .133 .143 
 .050 .046 .046 .081 .059 .042 .042 .045 
         Jewish -.258 -.831 -828 -.771 -1.021 -.761 -.745 -.757 
 -.023 -.079 -.078 -.076 -.097 -.069 -.068 -.069 
         

4. Hh Income -.010*** -.009*** -.009***   -.010*** -.009*** -.009*** 
 -.281(1) -.217(2) -.220(2)   -.259(1) -.253(1) -.254(1) 
         

5. Par-Educ -.016 -.023 -.021 -.057**  -.024 -.023 -.021 
 -.039 -.052 -.048 -.139(6)  -.059 -.056 -.050 
         

6. Relig-imp -.127† -.158* -.158* -.119† -.157* -.130* -.115† -.162* 
 -.113(7) -.143(5) -.144(5) -.106(8) -.142(7) -.116(6) -.102(6) -.144(4) 
         

7. College Lik -.172*** -.190*** -.190*** -.200*** -.229*** -.191*** -.191*** -.175*** 
 -.188(3) -.211(3) -.211(3) -.218(2) -.254(1) -.208(3) -.209(2) -.191(3) 
         

Intercept -.129 .142 .129 .021 -.449 .119 .044 .075 
F 6.82 8.06 7.84 8.01 8.55 8.59 8.06 9.27 
N 4,822 6,530 6,530 5,557 6,530 6,710 6,710 6,530 

 
†p<0.05 (one tail);*p<0.05 (two tail); **p<0.01 (two tail);***p<.001 (two tail) 
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Table 2 (contd.) 
 
Model 1: Listwise deletion 
Model 2: Full Mean substitution 
Model 3: Mean substitution by race and ethnicity 
Model 4: Education as a proxy for income 
Model 5: Income and education variables dropped 
Model 6: Multiple imputation using the fully conditional specification method 
Model 7: Multiple imputation using Markov chain Monte Carlo method with auxiliary variables 
Model 8: Multiple imputation using Markov chain Monte Carlo method (imputed only education and 
income) 
 
 
 

The regression results in Table 2 indicate that for some independent variables, 
whether they are or are not statistically significant does not depend at all on which 
missing data method is used. The virginity pledge variable is statistically significant 
in predicting the likelihood of a woman having an adolescent pregnancy in all eight 
equations, as are the Black Protestant variable, the household income variable, the 
importance of religion variable, and the likelihood to attend college variable. Five 
variables are not statistically significant in any of the eight equations, namely, Other 
race/ethnicity, No religion, Protestant religion, Other religion, and Jewish religion. 

However, the statistical significance of all the other variables depends on 
which missing data method is used in the equation. In the preferred equation, Model 
7 (see above), being an African American has no significant effect on the likelihood 
of having an adolescent pregnancy; but is does have an effect on adolescent 
pregnancy in six of the other equations. The same pattern holds for the Mexican 
origin variable and for the Other Latina variable. 

A woman being an Evangelical does not have a statistically significant effect 
on the likelihood of her having an adolescent pregnancy if listwise deletion (M1) is 
used as the method for handling missing data. But being an Evangelical does have 
a significant effect on the outcome in all seven of the other equations. Similarly 
parental education has a significant effect on the outcome in the equation where it 
is used as a proxy for income (M4), but it does not have a significant effect in any 
of the other equations. 

Clearly, for many of the variables, the method used to handle missing data 
has an important influence on whether or not the independent variables have 
significant effects in models of adolescent pregnancy. The statistical significance 
of most of the race/ethnicity variables (African American, Mexican-origin, Other 
Latina) depends on the method used for handling missing data; if certain methods 
are used, e.g., mean imputation, these variables are significant in predicting the 
outcome; if other methods are used, e.g., two of the three multiple imputation 
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methods, including the preferred method (M7), these variables are not significant. 
A similar statement may be made regarding one of the religion variables 
(Evangelical) and the parental education variable.  

Another way to evaluate the logit regression results in Table 2 is via the 
rankings of the statistically significant semi-standardized coefficients. As noted 
above, these are the logit coefficients that have been standardized in terms of the 
variances of their independent variables, that is, the logit coefficients are multiplied 
by their standard deviations (Long & Freese, 2006, p. 96-98). Although there is a 
problem in the interpretation of the meaning of a semi-standardized coefficient 
when the independent variable is a dummy variable (there are many dummy 
variables in the equations, Long, 1997; Poston, 2002, p. 342), their values 
nonetheless indicate the relative effects of each of the independent variables on the 
log odds of the woman having a teen pregnancy. In the second row for each variable 
in each of the eight columns of Table 2 we show the rankings of the magnitude of 
the semi-standardized coefficient in predicting the outcome. In four of the equations, 
household income is ranked first, that is, in four equations it has the greatest relative 
effect on the outcome of adolescent pregnancy; but in two of the equations, those 
using mean substitution (M2 and M3), it has the second greatest relative effect. 

The degree the virginity pledge is influential in predicting the outcome varies 
according to the method used to handle missing data. If listwise deletion (M1) is 
used, this variable has the 4th most influential effect, but if mean substitution (M2) 
is used it has the 8th most influential effect on the outcome. The importance of the 
effect on the outcome of a woman being an African American varies from the 3rd 
most important effect in two of the equations (M4 and M5) to the 6th most important 
effect in four of the equations (M1, M2, M3 and M8). The relative effect on the 
outcome of the importance of religion variable varies from the 4th most important 
effect in one equation (M8) to the 8th most important effect in another equation 
(M4). Clearly the importance of the relative effects of the independent variables on 
the likelihood of a woman having an adolescent pregnancy vary considerably 
depending on how missing data are handled in the regression equation.  

Discussion 

The results show that the levels of significance of the effects, the size of the effects, 
and their relative importance vary considerably depending on the method used to 
handle the missing data. Understanding differences between minority group 
members and whites, and the differential influences of minority membership on an 
outcome such as adolescent pregnancy is a very important sociological question 
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with substantial political and social implications. But the issue of how a researcher 
chooses to handle the missing data can have an impact on how this social issue is 
understood. If a researcher used listwise deletion or mean substitution to handle the 
problem of missing data in equations modelling whether or not a woman had an 
adolescent pregnancy, the conclusion would be after controlling for all the other 
variables in the model, Mexican origin women and African American women were 
more likely than White women to have had an adolescent pregnancy. But if multiple 
imputation with auxiliary variables as the method to handle the missing data, the 
results would indicate no statistically significant difference between Mexican 
origin women and African American women compared to White women with 
regard to the odds of having had a teen pregnancy. In other words, listwise deletion, 
the default method in most statistical packages, and multiple imputation with 
auxiliary variables, the so-called “gold standard,” gave the opposite results 
regarding the odds of a minority woman as compared with a White woman having 
an adolescent pregnancy. 

After controlling for other relevant variables, are minority women more likely 
than white women to have had an adolescent pregnancy? If listwise deletion or 
mean substitution was used to handle missing data, the answer is yes. If multiple 
imputation with auxiliary variables to handle the problem of missing data, the 
answer is no. 

Missing data can also be handled using proxy variables. The use of proxies 
also has important implications for scientific research. It was showed that when 
parental education is used as a proxy for household income, it has a statistically 
significant effect in modelling teen pregnancy, but when household income was 
used in the equation the effect of parental education disappears. 

This finding is very important for two reasons. First from a social policy 
perspective, the mechanisms and policies that can have an impact on income versus 
those that can have an effect on education are very different. Thus, knowing that 
the two variables have different effects on predicting the likelihood of an adolescent 
pregnancy depending on how one handles the problem of missing data is critical 
for conducting sociological research. Second, from a theoretical perspective, the 
use of proxies can have important implications because they might be measuring 
completely different constructs. For example, the health literature has shown that 
the effect of education on health is not the same as the effect of income on health 
(Mirowsky and Ross, 2003). Education taps human capital while income is 
restricted to financial resources (Sen, 1999). Therefore the effect of education 
versus that of income can potentially have very different effects on other models 
related to health outcomes. 
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This analysis has shown that missing data is indeed a critical component of 
scientific research, and that different techniques will often lead to different 
statistical and theoretical conclusions. The next logical question is, how are missing 
data to be handled when there are potential problems, even with the gold standard 
of multiple imputation. One of the best and most interesting responses to this 
question is: “The only good solution to missing data is not to have any” (Allison, 
2001, p. 2).  Becaise this is an unrealistic option, we propose that it is reasonable to 
ask researchers who are conducting analyses with missing data to report the results 
of both listwise deletion and multiple imputation. In addition, the researcher should 
try different methods of multiple imputation, i.e., with auxiliary variable and 
without them, to determine the level of consistency of the findings. Analyses with 
strong theories and consistent results across different methods of handling missing 
data should not be problematic. But when the findings are inconsistent, that is, they 
vary depending on how missing data is handled, and also when there is no strong 
theory, then the results should be rendered as inconclusive. 

Finally, an important recommendation of our paper is that the effect of 
missing data on scientific research requires more scrutiny. The editors of peer 
reviewed journals should require the authors to report precisely the amount of data 
that is missing in their variables, as well as to specify and justify the method they 
used to handle missing data (Sterne et al., 2009). We specifically recommend that 
researchers should estimate their models with both listwise deletion and with 
multiple imputation and report if there are any differences that would lead to 
different theoretical or empirical conclusions. Research conducted with large 
amounts of missing data should be scrutinized with great deliberation and 
forethought, and the findings if inconsistent across method, should be interpreted 
with caution. 
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The effect of misspecification of correct sampling probability distribution of Generalized 
Autoregressive Conditionally Heteroscedastic (GARCH) processes is considered. The 
three assumed distributions are the normal, Student t, and generalized error distributions. 
The GARCH process is sampled using one of the distributions and the model is estimated 
based on the three distributions in each sample. Parameter estimates and forecast 
performance are used to judge the estimated model for performance. The AR-GARCH-
GED performed better on the three assumed distributions; even, when Student t distribution 
is assumed, AR-GARCH-Student t does not perform as the best model. 
 
Keywords: Generalized Error Distribution, forecasts, GARCH, misspecification, 
specification 
 

Introduction 

Since the introduction of Generalized Autoregressive Conditional Heteroscedastic 
(GARCH) model of Bollerslev (1986), thousands of articles have been published 
applying the model on financial series. The model captures volatility in the market, 
and its distributional specification makes it special among other nonlinear time 
series models. The GARCH process exists on the assumption of Normal, Student t, 
and Generalized Error Distributions (GED). The Normal distribution is the usual 
assumption in any time series estimation, but due to the fact that the distribution of 
GARCH process is leptokurtic, Normal distribution was found to be in appropriate 
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in capturing the tail behavior of the series. Bollerslev (1987) therefore proposed 
Student t distribution to capture the long tail behavior of the process. Nelson (1991) 
proposed the GED distribution. 

Apart from the real applications of GARCH models on financial series, there 
is need to study the effect of misspecifying the GARCH distributional assumptions 
during estimation. Articles are very scarce along this line of thought. Wang (2002) 
affirms that spurious and inefficient inference is expected when pure GARCH 
models are misspecified. This as well may affect the Quasi Maximum Likelihood 
Estimates (QMLEs) of the misspecified model.  The QMLE of pure GARCH(1,1) 
models indicates that the ARCH parameter is small, GARCH parameter is close to 
unity and the sum of both parameters approaches unity as the sampling frequency 
increases (Engle and Bollerslev, 1986; Bollerslev and Engle, 1993; Baillie, 
Bollerslev and Mikkelsen, 1996; Ding and Granger, 1996; Andersen and Bollerslev, 
1997, and Engle and Patton, 2001.) This fact is reflected in the Integrated GARCH 
(IGARCH) of Engle and Bollerslev (1986). A more recent paper by Jensen and 
Lange (2010) shows that in a GARCH (1,1) model, the estimates of 1̂  and 1̂  tend 
to zero and unity respectively as the sampling frequency increased, which is an 
IGARCH effect. This IGARCH effect is known for pure-GARCH processes. In a 
linear AR-GARCH or nonlinear AR-GARCH processes, IGARCH effect is not 
plausible. The present work considers AR-GARCH process, and therefore 
IGARCH effect may not be expected. 

As tail distribution of the GARCH model is captured using the three 
distributions, and parameters estimated adjust accordingly, forecasts performances 
of the model are affected. Extensive Monte Carlo simulation was performed on the 
GARCH model using the three distributions. 

The GARCH (1,1) model 

The GARCH (1,1) model proposed in Bollerslev (1986) is 
 
 2 2 2

1 1 1 1t t tw         (1) 
 
where εt are the returns series of the financial asset; σt is the volatility at time t and 
zt gives the assumed distribution. The parameters, α1 and β1 are conditioned as 
w > 0, α1 ≥ 0, β1 ≥ 0, and α1 + β1 < 1 in order to ensure stationarity of the whole 
process (Bollerslev, 1986). This condition is establish by defining 
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 2 2 2 21t t t t tk z       where zt ≈ N(0,1). Using this in (1) results in the 

Autoregressive Moving Average (ARMA) representation 
 
  2 2

1 1 1 1 1t t t tw k k            (2) 
 
where kt is serially uncorrelated with mean zero. Stationarity of the process is then 
ensured when the roots of 1 – α(1) – β(1) = 1 – (α1 + β1) = 0 lie outside the unit 
circle and this is not conditioned on time t as it is measured directly from the 
parameters of the model. Hence it is expected that 
 
  1 1 1    (3) 
 
for existence of covariance stationary process. For the stationary process, the finite 
unconditional variance of εt is given by 
 

 2

1 11
w


 


 

 (4) 

Kurtosis of GARCH (1,1) model 

For any GARCH (p,q) process, E(zt) = 0 and Var(zt) = 1.  3
tE z  is the skewness 

and  4
tE z  gives the measure of skewness. Because the emphasis is on tail 

behaviour of GARCH residuals, the expression for the unconditional kurtosis is 
next derived. 

Assuming that  2
tE   and  4

tE   exist, then it suffices to write 

 
 4 3;t zE z k   

 
because   0;tE    

 
     4 4 4

t t tE E E z   because t t tz   and t  and tz  are independent 
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Then, squaring GARCH (1,1) model, 
 

2 2 2
1 1 1 1,t t tw        

 
gives 
 

2 2 2 4 2 4 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 12 2 2t t t t t t tw w w                     . 

 
Taking expectation of the resulting expansion, as well as applying the properties 
outlined above 
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Using the relation      4 43t z tE k E    where kz is the excess kurtosis of zt, then 
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Using the formula 
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 for excess kurtosis and with the fact that 
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 from the properties above, 
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with normally distributed innovations zt, kz = 0 and 
 

 
 

2
1

22
1 1 1

6

1 2
k



  


  
 (6) 

 
with non-normally distributed innovations zt, as in Student t and GED, 

   2 1t tVar z E z   and 
 

 
 

4
4

22
0t

z t

t

E z
k E z

E z
  
 
 

, then 

 

  

   

2 2 2
1 1 1 1

22 2
1 1 1 1

6 2

1 2
z z z
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k k k
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 (7) 

 
In these two cases, it is observed that 2

1  is important in determining the tail 

behavior of t , because once 2
1 0  , 0k  . Hence, zk k   for the non-normally 

distributed case and it implies the similarity of the tail behaviors of both t  and tz  

Distributional Assumptions and Estimation 

For GARCH models, the unconditional distributions are always non normal, and 
this gives fatter tails than the normal distribution. In practice, zt is assumed to follow 
the normal distribution or non-normal distributions. These non-normal distributions 
have been proved to perform well in modeling the fatter tails (leptokurticity) 
observed in GARCH residuals. The non-normal distributions are the Student t 
distribution proposed in Bollerslev (1987) and Generalized Error Distribution 
(GED) by Nelson (1991) 

The standardized Normal distribution is 
 

   21 1exp ,
22t t tf z z z



 
      

 
 (8) 

 
with the log likelihood function 
 

     2

1

1 log 2
2

N

t t
t

L z N z


 
   

 
  (9) 
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where N is the sample size. The standardized Student t distribution proposed in 
Bollerslev (1987) is given as 
 

         
 1 22

1 1/2
, 1 / 2 / 2 1 ,

v

t
t t

z
f z v v v v z

v


 

   
               

 
 (10) 

 
This distribution is symmetric around zero as it is observed in its specification 

with v > 2. At v = 1, the Student t reduces to Cauchy distribution. At 2 < v ≤ 4, its 
conditional kurtosis is less than 3, which means that the resulting tail effect is 
normal. For v > 4, the kurtosis becomes 3(v – 1)(v – 4)−1, which is greater than 3, 
hence the tail effect becomes non-normal distribution. As v → ∞, the distribution 
converges to normal distribution. The log likelihood function of Student t 
distribution is then simplified as 
 

  
   

  
 

 

2 2

2
1

2 / 21, log 1 log 1
2 11 / 2

N
t

t
t

v v zL z v N v
vv





                       

  (11) 

 
The standardized GED proposed in Nelson (1991) is given as 

 

  

/21 11/2 3/2
1 3 1 3 1, 2 exp

v

v
t tf z v v z

v v v v

 



                                              

 (12) 

 
where −∞ < zt < ∞ and v > 0. The GED reduces to the standard normal distribution 
at v = 4. At 0 < v < 2, the distribution has thicker tail than the normal distribution, 
for example, at v = 1 the distribution becomes a double exponential (Laplace) 
distribution. At v > 2, the distribution of zt has thinner tails than the normal 
distribution, for example, as v tends to infinity, zt reduces to a uniform distribution 
on the interval  3, 3 . The log likelihood of this distribution is then  

expanded as 
 

  

/21 11/2 3/2
1 3 1 3 1, 2 exp

v

v
t tf z v v z

v v v v

 



                                              

 (13) 
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These likelihood functions are then estimated using the numerical derivatives 
based on the fact that GARCH models lack closed form estimation. Berndt, Hall, 
Hall and Hausman (BHHH) algorithm of Berndt, et al (1974) is then used. This 
algorithm is termed Gauss-Newton in general Nonlinear Least Squares (NLS) and 
BHHH in MLE estimation. Unlike some other derivatives, it uses only first 
derivatives of the likelihood function and computes a set of parameter values as 
 

      
 

 
 

 
 

1

1
'

1

,. ,. ,.
.

i i iN
t t ti i t t N

t

L z L z L z
 

  







   
  
   
 

   (14) 

 
where L(zt,.) is the likelihood function.  The initial parameter set is given as ψ(0) and 
the parameter set which maximize the likelihood function is denoted as ψ(i+1). The 
estimation of GARCH (1, 1) model with Student t distribution and GED follow the 
usual Quasi Maximum Likelihood Estimation (QMLE) because normality 
assumption is violated in these cases. 

Misspecification of distribution of GARCH model could lead to stationarity 
and explosion of the series in some points. Though standard errors will be 
consistent; the QML estimators  1i


  are generally closed to the exact ML 

estimator  1ˆ i


  for symmetric GARCH distribution. For non-symmetric 
conditional distributions, both the asymptotic and finite sample loss in efficiency 
are quite large and parametric estimation approach are not applicable in this regard 
(Mills and Markellos, 2008). 

Forecasts Evaluation 

Forecast evaluation criteria considered are the Root Mean Squares Forecast Error 
(RMSFE), Mean Absolute Error (MAE), Mean Absolute Percentage Forecast Error 
(MAPFE) and Theil Inequality of Theil (1961;1966). The MSFE is defined as 
 

  
22 2

1

1 ˆ
m

t t
t

MSFE
m

 


   (15) 

 
where 2ˆ t  is the predicted in-sample conditional variances, and this depends on the 
scale of the variance series, 2

t . The square root of MSFE is the RMSFE 
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22 2

1

1 ˆ
m

t t
t

RMSFE
m

 


   (16) 

 
The MAFE and MAPFE are obtained by taking the absolute differences of the 
predicted conditional volatilities and the observed volatilities as 
 

 2 2

1

1 ˆ
m

t t
t

MAFE
m

 


   (17) 

 

 
2 2

2
1

ˆ
100

m
t t

t t

MAPFE  




   (18) 

 
The Theil inequality is given as 
 

 
 

22 2

1

2 2

1 1

1 ˆ

1 1ˆ

m

t t
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t t
t t

mTI

m m

 

 



 









 

 (19) 

 
The inequality coefficient is time invariant and always lies between 0 and unity. 
The smaller these forecast evaluation criteria, the better the candidate model 
represent well the data. 

Monte Carlo Simulations 

The Monte Carlo experiment is set up using the AR(1)−GARCH(1,1) DGP 
 
 2 2 2

1 1 10.02 0.250.15 0.5 , 0.60tt t t t ty y          , (20) 
 
with the error distribution εt = σtzt where zt is assumed to follow Normal, Student t 
and GED distributions. The parameters of the AR(1) and GARCH(1,1) models are 
set within the stationary region in order to avoid problems data explosion. The 
sample sizes N are varied as 2000, 4000 and 6000 with in-sample forecasts 
generated as 25% of the data length. The results are then presented as Scenarios 1 
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to 3 in Tables 1−6 below. Each Scenario gives results for parameter estimation, 
volatility, excess kurtosis and forecasts evaluations criteria. 

Scenario 1: When the true Distribution is Normal 

Tables 1 and 2 present the results when the GARCH processes are simulated based 
on Normal distribution assumption, and these processes are used to estimate the 
GARCH process based on Student t, GED and the same Normal distribution. The 
results in Table 1 show that the AR-GARCH parameter estimates, measures of 
volatility and kurtosis are not consistent with sample sizes. Both the AR and 
GARCH parameter estimates computed for Student t distribution have larger biases 
in compared with that of Normal and GED distributions, even though excess 
kurtosis of the AR-GARCH-Student t model is the smallest. Volatility of the AR-
GARCH-Student t model is also observed to be higher than that of the Normal and 
GED distributions. The excess kurtosis of the AR-GARCH-Normal model was 
expected to be the smallest because the series is sampled from Normal distribution 
but this was not the case. 

Looking at the results of the in-sample forecasts realized from the AR-
GARCH models as given in Table 2, the AR-GARCH-Normal and AR-GARCH-
GED model perform better than AR-GARCH-Student t model on forecasts as given 
by the minimum values of the RMSPE and Theil inequality coefficients. The AR-
GARCH-GED is expected to realize better forecasts than AR-GARCH-Normal 
model. 
 
 
Table 1. Model Parameter, Volatility and Kurtosis when GARCH processes are simulated 
based on Normal distribution assumption 
 

Assumed 
Distribution Sample 0̂  

(0.1500) 
1̂  

(0.5000) 

ŵ  
(0.0200) 

1̂  

(0.2500) 
1̂  

(0.6000) 

Persistence 
(0.8500) Volatility Exc. 

Kurtosis 

Normal 

2000 0.1480 0.4839 0.0169 0.2110 0.6596 0.8706 0.1306 1.6427 

4000 0.1518 0.4724 0.0173 0.2049 0.6590 0.8639 0.1271 1.8430 

6000 0.1475 0.4750 0.0180 0.2052 0.6503 0.8555 0.1246 1.3275 

Student t 

2000 0.1462 0.4868 0.0820 0.1500 0.6000 0.7500 0.3280 0.2895 

4000 0.1471 0.4794 0.0794 0.1500 0.6000 0.7500 0.3176 1.8408 

6000 0.1576 0.4916 0.0849 0.1500 0.6000 0.7500 0.3396 0.4501 

GED 

2000 0.1499 0.4811 0.0160 0.2125 0.6831 0.8956 0.1533 2.3761 

4000 0.1547 0.4662 0.0172 0.2106 0.6743 0.8849 0.1494 2.1683 

6000 0.1495 0.4723 0.0185 0.2118 0.6612 0.8730 0.1457 1.7707 
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Table 2. Forecast evaluation estimates when GARCH processes are simulated based on 
Normal distribution assumption 
 

Assumed 
Distribution Sample RMSPE MAFE MAPFE Theil  

Normal 

2000 0.0003 0.0112 48.0967 0.0289 

4000 0.0002 0.0104 44.8820 0.0257 

6000 0.0001 0.0101 49.5855 0.0287 

Student t 

2000 0.0011 0.0464 500.3362 0.1270 

4000 0.0007 0.0437 529.5600 0.1242 

6000 0.0008 0.0602 503.3612 0.1363 

GED 

2000 0.0003 0.0110 50.1820 0.0276 

4000 0.0002 0.0102 47.7504 0.0246 

6000 0.0001 0.0099 53.1115 0.0276 

 

Scenario 2: When the true Distribution is Student t 

Tables 3 and 4 present the results when the true GARCH distribution follows 
Student t. Here, the distinctions in the GARCH estimates can only be made using 
the persistence and unconditional volatility measures. The AR-GARCH-Student t 
model still presents smallest persistence and highest volatility. The excess kurtosis 
of the AR-GARCH-Student t model is the smallest followed by that of AR-
GARCH-Normal model. 
 
 
Table 3. Model Parameter, Volatility and Kurtosis when the true GARCH distribution 
follows Student t 
 

Assumed 
Distribution Sample 0̂  

(0.1500) 
1̂  

(0.5000) 

ŵ  
(0.0200) 

1̂  

(0.2500) 
1̂  

(0.6000) 

Persistence 
(0.8500) Volatility Exc. 

Kurtosis 

Normal 

2000 0.1408 0.5096 0.0232 0.2295 0.6105 0.8400 0.1450 2.5966 

4000 0.1478 0.4830 0.0237 0.2576 0.5762 0.8338 0.1426 4.0384 

6000 0.1497 0.4878 0.0219 0.2483 0.6032 0.8515 0.1475 3.7926 

Student t 

2000 0.1510 0.5165 0.0938 0.1500 0.6000 0.7500 0.3752 0.7336 

4000 0.1472 0.4829 0.0911 0.1500 0.6000 0.7500 0.3644 0.8526 

6000 0.1408 0.5114 0.0961 0.1500 0.6000 0.7500 0.3844 1.1013 

GED 

2000 0.1416 0.4967 0.0261 0.2476 0.5979 0.8455 0.1689 3.5293 

4000 0.1473 0.4792 0.0243 0.2620 0.5937 0.8557 0.1684 5.7359 

6000 0.1491 0.4890 0.0230 0.2585 0.6093 0.8678 0.1740 5.9655 
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Table 4. Forecast evaluation estimates when the true GARCH distribution follows 
Student t 
 

Assumed 
Distribution Sample RMSPE MAFE MAPFE Theil  

Normal 

2000 0.0004 0.0145 63.7385 0.0332 

4000 0.0002 0.0131 62.2680 0.0324 

6000 0.0003 0.0247 63.1032 0.0392 

Student t 

2000 0.0015 0.0627 635.1114 0.1552 

4000 0.0010 0.0574 611.0665 0.1471 

6000 0.0009 0.0678 645.0181 0.1582 

GED 

2000 0.0004 0.0156 76.3588 0.0355 

4000 0.0002 0.0132 68.0163 0.0321 

6000 0.0004 0.0253 70.6578 0.0396 

 
 

In terms of forecasts, the AR-GARCH-Student t model is the worst, even 
though the DGP is realized from the same probability distribution. The forecast 
performances of AR-GARCH-Normal and AR-GARCH-GED seem not different 
from each other as indicated by the forecast evaluation estimates. 

Scenario 3: When the true Distribution is GED 

Table 5 and 6 present the results when the true GARCH distribution is GED. 
In Table 5, in the AR(1) estimates, the estimates for the constant 0̂  are all 
consistent with sample sizes when the three probability distributions are assumed. 
The autoregressive parameters 1̂  are not consistent with sample sizes. The 
GARCH parameter estimates computed for Student t distribution are the same to 
that of Table 1 and 3 while the AR(1) parameter are different in the two results. The 
Student t distribution assumption of GARCH model still presents model estimates 
with highest volatility but with lowest persistence of this volatility. Misspecifying 
GED for Student t distribution here also caused the excess kurtosis to be negative 
in AR-GARCH-Student t model and this is a very spurious case. 

The forecast evaluation results of the model estimates follow in In Table 6. 
Starting with the AR(1)−GARCH(1,1)−Student t model, the model is the worst in 
terms of forecasts because it presents the highest RMSPE, MAPE, MAPFE and 
Theil inequality coefficient. The best model is AR(1)−GARCH(1,1)−GED model, 
and this is expected because the DGP assumed GED initially. The performance of 
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AR(1)−GARCH(1,1)−Normal in terms of forecast is very close to that of 
AR(1)−GARCH(1,1)−GED model. 
 
 
Table 5. Model Parameter, Volatility and Kurtosis when the true GARCH distribution is 
GED 
 

Assumed 
Distribution Sample 0̂  

(0.1500) 
1̂  

(0.5000) 

ŵ  
(0.0200) 

1̂  

(0.2500) 
1̂  

(0.6000) 

Persistence 
(0.8500) Volatility Exc. 

Kurtosis 

Normal 

2000 0.1409 0.5120 0.0219 0.2260 0.6112 0.8372 0.1345 0.1984 

4000 0.1478 0.4848 0.0236 0.2576 0.5639 0.8215 0.1322 0.4768 

6000 0.1497 0.4880 0.0218 0.2465 0.5932 0.8397 0.1360 0.3859 

Student t 

2000 0.1373 0.5192 0.0877 0.1500 0.6000 0.7500 0.3508 -0.3883 

4000 0.1469 0.4863 0.0854 0.1500 0.6000 0.7500 0.3416 -0.3554 

6000 0.1500 0.4860 0.0875 0.1500 0.6000 0.7500 0.3500 -0.4099 

GED 

2000 0.1424 0.5024 0.0225 0.2284 0.6031 0.8315 0.1335 0.1874 

4000 0.1481 0.4834 0.0228 0.2493 0.5763 0.8256 0.1307 0.4139 

6000 0.1498 0.4900 0.0214 0.2430 0.5973 0.8403 0.1340 0.3518 

 
 
Table 6. Forecast evaluation estimates when the true GARCH distribution is GED 
 

Assumed 
Distribution Sample RMSPE MAFE MAPFE Theil  

Normal 

2000 0.0002 0.0099 48.9918 0.0280 

4000 0.0002 0.0100 50.8079 0.0292 

6000 0.0002 0.0142 50.9182 0.0325 

Student t 

2000 0.0013 0.0529 521.4746 0.1396 

4000 0.0008 0.0496 499.5437 0.1329 

6000 0.0008 0.0547 494.8839 0.1379 

GED 

2000 0.0002 0.0100 49.5704 0.0284 

4000 0.0002 0.0097 48.9723 0.0284 

6000 0.0002 0.0140 49.9722 0.0322 
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Conclusion 

The misspecification of GARCH probability distribution functions were considered. 
These are the Normal, Student t and Generalized Error Distributions (GED). The 
estimation convergence time varied based on the distribution and the set sample 
sizes. When a Normal distribution was assumed, the AR−GARCH−GED seemed 
to perform marginally better than AR−GARCH−Normal model in terms of 
forecasts as revealed in the estimates of the Theil inequality. Though, the 
AR−GARCH−Normal was the best model here in terms of parameter estimates, 
and this was expected because the DGP assumed Normal distribution initially. With 
the assumption of Student t distribution in the DGP, the forecast performance of 
the models computed with Normal distribution and GED reduced and these still 
presented better models than the corresponding AR−GARCH−Student t model. 
Similar results were obtained when the DGP assumed GED. 

It was also observed that all the results obtained, particularly the parameter 
estimates were not consistent with sample sizes. These are expected because 
volatility came into play. In empirical modeling research like this, interest should 
either lie in the behavior of the volatility–assuming a probability distribution which 
will give us the best volatility measurement–or in the forecasts. The best GARCH 
model may not actually produce the best forecast estimates and probability 
distributions have effect on the tail distribution of the innovations. This work can 
be replicated using higher order of the model, and in that case, more sophisticated 
software is recommended for the simulation in order to avoid convergence 
problems. 
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Lognormal distribution is widely used in the analysis of failure time data and stock prices. 
Maximum likelihood and Bayes estimator of the coefficient of variation of lognormal 
distribution along with confidence/credible intervals are developed. The utility of Bayes 
procedure is illustrated by analyzing prices of selected stocks. 
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Introduction 

The study on coefficient of variation (CV) of the normal distribution dates back to 
McKay (1932); since then various articles have appeared concerning improved 
estimation of CV of a normal distribution and tests for equality of CV’s of two or 
more normal distributions. Some of the recent references regarding the estimation 
of CV of the normal distribution are Ahmed (1995), Breunig (2001), Liu, et al. 
(2006), Mohmoudvand & Hassani (2009) and Panichkitkosolkul (2009). The 
papers dealing with tests for equality of CV’s of independent normal distributions 
are Bennett (1976), Doornabos & Dijkstra (1983), Shafer & Sullivan (1986), Gupta 
& Ma (1996), Nairy & Rao (2003) and Verril & Johnson (2007). In addition to 
these papers, the papers on CV relating to finance and economics are Brief & Owen 
(1969), Jobson & Korkie (1981), De, et al. (1996) and Memmel (2003). These 
papers are developed on the assumption of normality of the observations.  

mailto:arunaraomu@gmail.com
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Generally stock prices do not follow normal distribution and the data is 
analyzed using logarithm of prices. This amounts to the assumption that stock price 
is lognormally distributed. CV is not invariant under distributional transformation, 
and thus estimators are to be derived for the CV of the lognormal distribution.  

Maximum likelihood estimator (M.L.E) and confidence interval for the CV 
of the lognormal distribution are derived, as well as the Bayes estimator of CV of 
the lognormal distribution using a) Right invariant prior b) Left invariant Jeffrey’s 
prior. 

Bayesian inference has several advantages over the likelihood based inference 
(Ghosh, et al., 2006; Berger, 1985). Simulation study carried out in this paper 
suggests that Bayesian credible intervals have smaller average length compared to 
the confidence interval obtained by M.L.E. Financial analysts are generally not well 
exposed to Bayesian analysis and this paper introduces this idea by analyzing the 
stock prices of 3 Indian stocks. 

The maximum likelihood estimator and Bayes estimator of the CV of the 
lognormal distribution and the associated confidence/credible intervals are initially 
derived. A simulation study is conducted to compare the coverage probability and 
average length of the confidence/credible intervals. The procedures developed in 
this paper are illustrated by analyzing stock prices of 3 scripts belonging to large 
cap sector of the Indian stock market. For this purpose daily data from August 19 
to November 6 for the year 2013 is used. By using part of the data as training set 
and remaining data as the validation set, the paper demonstrates that Bayesian 
inference can be used to predict stock market volatility. 

Bayes Estimator of CV of the Lognormal Distribution   

Let x1, x2, …, xn be a random sample from lognormal distribution with density 
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Denoting log Xi as Zi, the minimal sufficient statistic for μ and σ2 are 
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mean, variance and coefficient of variation of the lognormal distribution are 
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respectively. Using the invariance property of maximum likelihood estimators, the 
maximum likelihood estimator of the CV of lognormal distribution is given by 
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 ) (7) 

 
The Bayes estimator of the CV of the lognormal distribution depends on the 

specification of the prior distribution for μ and σ2. In objective Bayesian analysis, 
the commonly used priors are the following 
 

 Right invariant prior: For the location scale family with location 
parameter μ and scale parameter σ, the right invariant prior is 
π(μ,σ) = 1/σ. 

 Jeffrey’s prior: Jeffrey’s prior for μ and σ is given by π(μ,σ) = 1/σ2. 
Jeffrey’s prior is left invariant but not right invariant. 

 
Because the lognormal distribution belongs to log location scale family, the above 
priors were used in this study. Although right invariant prior is recommended 
(Ghosh, et al., 2006; Berger, 1985), the use of Jeffrey’s prior aids in studying the 
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Bayesian robustness with respect to specification of the prior distribution. Because 
the distribution of Z   and 2

zS  are independent, denoting η = 1/σ2, after some 

simplification the posterior density of η is obtained as Gamma   22 1, 1
2 2 z

n n S 
 

 
 

is obtained under right invariant prior and Gamma   23 1, 1
2 2 z

n n S 
 

 
 under 

Jeffrey’s prior. 
Under squared error loss function, the Bayes estimator of CV is 
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where the expectation is taken with respect to the posterior density of π(η|z). This 
expectation must be evaluated numerically, thus the importance sampling approach 
was used to evaluate the integral. In this approach observations are generated from 
the posterior density and the numerical value of the expectation is given by 
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where 2 , 1i i   to M refers to the value of 1/ηi generated from the posterior density 
and M denotes the number of sample values generated. 10,000 observations are 
generated from the posterior density and using this, the Bayes estimator and equi-
tailed credible intervals are obtained. For the likelihood based confidence interval, 
the equi-tailed confidence interval for η = 1/σ2 is constructed using the Chi-square 

distribution for 
  2
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. This confidence interval is then inverted to give a 

confidence interval for CV of the lognormal distribution. The confidence interval 
based on maximum likelihood estimator is given by 
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where 
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Finite Sample Comparison of Credible and Confidence 
Intervals 

The advantage of Bayes inference over likelihood-based inference is that it gives 
straightforward interpretation of the credible interval. Nevertheless, the superiority 
of the Bayes inference follows by comparing the coverage probability and length 
of the credible interval compared to the confidence interval based on maximum 
likelihood estimator. For this purpose a simulation study is conducted. For a 
random sample of size n (n = 10, 20, 40, 60, 80, 100, 150, 200, observations are 
generated from lognormal distribution or equivalently from normal distribution) 
with parameter μ and σ2. The value of μ and σ2 are adjusted to yield a CV of 0.1, 
0.3, 0.5, 0.7, 1, 1.5, 2, 2.5. The value of μ is fixed at 3. For the sample size and the 
value of CV, maximum likelihood estimator and the associated confidence intervals 
are computed using the expressions given in the previous section. For this sample 
size and value of CV, Bayes estimator, equi-tailed and HPD credible intervals are 

obtained using 10,000 simulated values of η, and thereby  
1

1 2

1e   from the 

posterior gamma density of η. This constitutes a single run in the simulation 
experiment. In each run the length of the confidence/credible interval is recorded. 
In addition, it is also recorded that whether the true value lies inside the confidence/ 
credible interval. To estimate the coverage probability and average length of the 
confidence interval, the simulation experiment is repeated using 1000 runs. The 
coverage probability refers to the proportion of times the true value lies inside the 
interval. The credible/confidence level is fixed at 0.95. Tables 1 and 2 summarize 
the results of the simulation study. 
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Table 1. Coverage probability of the credible and confidence interval for the CV across 
sample sizes for 8 combinations of specified values of CV 
 

Sample Size 

Bayes Procedure (Equi-tailed)  Maximum Likelihood (Equi-tailed) 
# of times Coverage 

probability Is maintained Average length  # of times Coverage 
probability Is maintained 

  

Average length 
  Right 

invariant prior 
Jeffrey’s 

prior 
Right 

invariant prior 
Jeffrey’s 

prior  

10 0 0 * *   8 19.0641 

20 0 0 * *  8 2.4722 

40 0 0 * *  8 1.1390 

60 1 0 1.4965 *  8 0.8264 

80 4 0 0.1812 *  8 0.6888 

100 8 0 0.5513 *  8 0.5976 

150 8 7 0.4472 0.5010  8 0.4715 

200 7 5 0.4363 0.4342  7 0.4477 

Overall 28 12 0.6225 0.4676   63 3.2134 
 

* Whenever coverage probability is not maintained average length has not been calculated 
 
 

It may be said that the coverage probability is maintained if the estimated 
coverage probability lies between 0.940 to 0.960. That is (1−α) ± 0.01. From the 
table it is clear that the confidence interval based on maximum likelihood estimator 
maintains coverage probability for all sample sizes. On the other hand the equi-
tailed credible interval maintains coverage probability when the sample size is 
greater than or equal to 100. However the average length of the credible interval is 
much shorter compared to the confidence interval. For example when n = 150 using 
right invariant prior, the average length of the credible interval is 0.4472 and using 
Jeffrey’s prior it is 0.5010 while for the confidence interval it is 0.4715. The average 
length of the interval is computed using those intervals for which the coverage 
probability is maintained. The length of the confidence interval for Jeffrey’s prior 
is marginally higher than right invariant prior. Table 2 presents the coverage 
probability and length of the HPD credible interval. 

Table 2 shows that HPD credible interval maintains coverage probability 
when the sample size is greater than or equal to 40. The average length of the HPD 
credible intervals for both right and left invariant priors is marginally larger than 
the equi-tailed credible intervals. Theoretically the length of the HPD credible 
interval should be shorter than equi-tailed credible interval. To explore the reason 
for this phenomenon the posterior density for sample size n = 60 and 100 were 
plotted and the histogram and frequency curve of the simulated distribution of 

 
1

1 2

1e   was also plotted. 
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Table 2. Coverage probability of the HPD credible interval for the CV across sample 
sizes for 8 combinations of specified values of CV 
 

 Highest Posterior Density (HPD) 

 # of times Coverage probability Is maintained Average length 

Sample Size Right invariant prior Jeffrey’s prior Right invariant prior Jeffrey’s prior 

10 0 0 * * 

20 0 0 * * 

40 7 0 0.8344 * 

60 7 2 0.7933 0.8164 

80 6 6 0.3071 0.3009 

100 8 8 0.5684 0.5563 

150 8 7 0.4562 0.5109 

200 8 7 0.3899 0.4382 

Overall 44 30 0.5582 0.5244 
 

* Whenever coverage probability is not maintained average length has not been calculated 
 

The posterior density of η is gamma and thus the plot of the density function 
is smooth. From the histogram and frequency curve it becomes clear that the 
frequency curve needs to be smoothened at the tail areas. This type of smoothing 
does not affect the length of the HPD credible interval, but increases the length of 
the equi-tailed credible interval. This is the reason why the equi-tailed credible 
intervals are marginally shorter than the HPD credible interval. To incorporate any 
type of smoothing of a frequency curve in a simulation study is computationally 
prohibitive and is not attempted here. Figures 1 to 4 represent the posterior density 
of η and the histogram obtained from 10,000 simulated values of the distribution of 

 
1

2 21e  , corresponding to n = 60 and 100, for left and right invariant priors and 

the value of 2
zS  is fixed at 0.0862 for CV=0.3. 

An attempt is also made to study the effect of specified value of CV on the 
length of credible/confidence interval. Table 3 presents the average length of the 
interval for various values of CV. From the table it becomes clear that the average 
length increases as the CV increases for the credible/confidence intervals. The 
length of the credible interval for the sample size n=100, a large value of CV=2.5, 
for HPD credible interval using right invariant prior is 1.7358 and using Jeffrey’s 
prior is 1.6924 and for confidence interval it is 1.8445. For equi-tailed tailed 
credible interval for right invariant and Jeffrey’s prior it is 1.6747 and 1.6338. The 
difference in the average length of the confidence interval when CV=0.1 and 2.5, 
is minimum for equi-tailed credible interval using Jeffrey’s prior and is maximum 
for confidence interval based on M.L.E. The difference in average length for the 
HPD credible 
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a.) using right invariant prior  b.) using left invariant prior 

 
Figure 1. Posterior density of η when n = 60 
 
 
 

 
a.) using right invariant prior  b.) using left invariant prior 

 
Figure 2. Histogram for (e(1/η)−1)½ for n = 60 
 
 
 

 
a.) using right invariant prior  b.) using left invariant prior 

 
Figure 3. Posterior density of η when n = 100 
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a.) using right invariant prior  b.) using left invariant prior 

 
Figure 4. Histogram for (e(1/η)−1)½ for n = 100 
 
 
interval based on right invariant and left invariant priors are 1.7080 and 1.6649. 
The same pattern can be observed for other sample sizes. The average length of 
HPD credible interval for Jeffrey’s prior is marginally higher compared to right 
invariant prior for all sample sizes and all values of CV under consideration. The 
coverage probability for these two priors indicates that the coverage probabilities 
are nearly the same. From the objective Bayesian analysis it amounts to the fact 
that Bayes procedure is robust against the specification of right and left invariant 
priors. 
 
Table 3. Average length of the credible and confidence intervals for various values of CV 
when the sample size is n = 100. 
 

Type of interval 
Average length when CV equal to 

Range 
0.1 0.3 0.5 0.7 1 1.5 2 2.5 

Equi-tailed credible 
interval with right 

invariant prior 
0.0274 0.0858 0.1527 0.2322 0.3848 0.7153 1.1378 1.6747 1.6473 

Equi-tailed credible 
interval with left 
invariant prior 

0.0271 0.0848 0.1508 0.2337 0.3876 0.7205 1.1138 1.6338 1.6067 

Confidence interval 
based on M.L.E 0.0284 0.0891 0.1593 0.2438 0.4077 0.7689 1.2393 1.8445 1.8161 

HPD credible 
interval with right 

invariant prior 
0.0278 0.0872 0.1554 0.2368 0.3937 0.7354 1.1748 1.7358 1.7080 

HPD credible 
interval with left 
invariant prior 

0.0275 0.0862 0.1534 0.2337 0.3876 0.7205 1.1489 1.6924 1.6649 
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Analysis of Stock Prices 

The advantage of Bayesian analysis is that one can constantly upgrade their 
knowledge regarding the parameter. This is helpful for making future prediction. 
In this example the Bayes estimation of the index volatility per mean return is 
discussed with respect to the stock prices of 3 scripts belonging to large cap 
category, namely RELIANCE, ACC and TATASTEEL, of the Indian stock market. 
The daily data from August 19 to November 6, 2013 is used in this analysis. Starting 
with one week daily data as the training set, Bayes credible interval is obtained for 
the volatility per mean return. Subsequently the Bayes estimator for successive 
weeks is computed and the process is continued till the week for which the Bayes 
estimator lies outside the credible interval. The exercise is repeated with various 
starting weeks. Table 4 summarizes these results. 
 
 
Table 4. Bayes credible interval for the index volatility per mean return based on 1 week 
data and the Bayes estimator for the successive weeks for different starting values. 
 

Stock Starting Value  95% 
credible interval 

Bayes Estimator  

2nd week 3rd week 4th week 

RELIANCE 
Sept 17th  -Sept 23rd 

  

[0.0877,0.2714] 0.1507 0.1486 0.1460 

ACC [0.0396,0.1226] 0.0987 0.1219 0.1425 

TATASTEEL [0.0124,0.0384] 0.0265 0.0821 0.0820 

RELIANCE 
Oct 1st  - Oct 8th 

  

[0.0865,0.2745] 0.1460 0.1421 0.1103 

ACC [0.0713,0.2265] 0.1425 0.1570 0.1704 

TATASTEEL [0.0482,0.1486] 0.0820 0.1381 0.0164 

 
 

Table 4 shows that based on one week data, the index for the subsequent week 
for all the three stocks can be accurately predicted. This is true regardless of the 
starting date namely August 19, September 17, October 1, etc. The duration of the 
data for making future predictions was also examined. For this purpose credible 
intervals were constructed using the first 2 through 10 weeks of data. To save space 
the results are not reported here. From these results it follows that by increasing the 
length of the data one do not get much accurate prediction for the successive week. 
Therefore it may be concluded that minimum data of one week be used for making 
prediction regarding volatility of the stock prices. If the duration increases, then the 
volatility increases thereby decreasing the decision of the future forecast. 
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Subjective Bayesian Analysis 

As pointed out previously the advantage of Bayesian analysis is that the decision 
maker can use his belief for making future prediction. In the present scenario this 
can be achieved using conjugate prior. In the case of lognormal distribution, the 
conjugate prior is gamma for the scale parameter η=1/σ2 where μ is fixed. Thus 
using Uniform prior for μ, the posterior distribution turns out to be gamma and one 
can use the program developed in this paper for carrying out subjective Bayesian 
analysis. The mean and variance of the posterior gamma density is given by αβ and 
αβ2 where α = (n+2)/2 and β = ½(n−1)Sz2 under right invariant prior. The 
parameters α and β can be determined by using past information as well as the 
subjective belief of the decision maker. The posterior density of the previous week 
can be used as the prior density for the week under consideration. In addition, the 
investigator can use his belief to modify the parameters of the posterior density of 
the previous week. Using past data, this type of subjective Bayesian analysis cannot 
be carried out and is not attempted in this paper. 

Conclusion 

This paper concentrates on the Bayesian estimation of the index, namely volatility 
per mean return. This is a frequently used indicator in the analysis of stock market 
data. The investigation indicates that Bayes credible intervals have smaller width 
compared to the confidence interval based on maximum likelihood estimator. 
Frequentist comparison of the credible interval and confidence interval in terms of 
coverage probability is not well accepted among the Bayesians. The results of this 
study support the view that accurate prediction can be made based on a small 
sample size of n = 5 for the volatility per mean return of stock prices. Caution has 
to be exercised for interpreting the width of the credible/confidence interval. For 
example if the width increases or decreases by 0.05, this amounts to a percentage 
change of 25% when CV = 0.2. Therefore one should not conclude that the 
difference in the average length of the credible interval and confidence interval is 
only marginal. The purpose of this paper is to demonstrate the utility of Bayesian 
inference for forecasting the stock prices. 

This paper derives Bayes estimator and the associated credible intervals for 
the CV of the lognormal distribution. Lognormal distribution has applications in 
many areas like reliability studies and survival analysis where the focus is the 
duration of the lifetime. Although emphasis is given to the estimation of mean and 
median lifetime, the effectiveness of any treatment regime lies in the control of 
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variability in duration of lifetime. The results developed in this paper can also be 
used by researchers in these areas. Lognormal distribution is also used in the 
analysis of rainfall data (Ananthakrishnan & Soman, 1989) and the primary concern 
is the variability in rainfall, which is commonly measured using coefficient of 
variation. In these areas the data can be analyzed using objective Bayesian analysis 
of CV developed in this paper. Numerical analysis is carried out by writing 
programs using MATLAB software version 7.0 and can be obtained from the first 
author. 
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Model-Robust Regression 2 (MRR2) method is a semi-parametric regression approach that 
combines parametric and nonparametric fits. The bandwidth controls the smoothness of 
the nonparametric portion. We present a methodology for deriving data-driven local 
bandwidth that enhances the performance of MRR2 method for fitting curves to data 
generated from designed experiments. 
 
Keywords: Semi-parametric methods, Model-Robust Regression, response surface 
methodology, local bandwidths 
 

Introduction 

The understanding of any system or process is enhanced by the availability of fairly 
accurate mathematical relations connecting the explanatory variables and the 
dependent variables (responses) of the system. The desire to obtain such 
mathematical relations led to the development of response surface methodology 
(RSM) which is a collection of mathematical and statistical techniques employed 
for modeling and analysis of problems in which a response of interest is influenced 
by several explanatory variables (Montgomery, 1999; Wu & Hamada, 2000; Raissi 
& Farsani, 2009). The objective of RSM is to optimize one or more responses, 
which are influenced by several explanatory variables. 

RSM consists of three main phases, namely the experimental design phase, 
the modeling phase, and the optimization phase (Del Castillo, 2007). However, the 
efficiency and reliability of the optimal solutions achieved at the optimization phase 
depends on the results obtained in the modeling phase. Better results obtained in 

mailto:trustnelson24@yahoo.com
mailto:julian.mbegbu@yahoo.com
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the modeling phase ensure better optimal solution in the optimization phase  
(Pickle, 2006). 

The modeling phase involves the use of regression techniques to fit a curve 
to the data generated from the experiment. Regression techniques employed in 
RSM include parametric regression, nonparametric regression and semi-parametric 
regression (Pickle, 2006; Wan, 2007). 

In Parametric regression, a low-order polynomial such as the k-factor second-
order model of the form 
 
 2

0 1 1
k k

i i i i i ii i ij i j ii j
y x x x x      
        (1) 

 
is assumed for fitting the data, where βi, βii and βij are the model parameters, xi and 
xj are the explanatory (Del Castillo, 2007). For n-sample observations, (1) can be 
expressed in matrix form as 
 
   Y X  (2) 
 

where Y is an n by 1 vector of responses, X is an n by 1 2
2
k

k
  
   

  
 model matrix, 

β is a 1 2
2
k

k
  
   

  
 by 1 vector of unknown model parameters, and ε is an n by 1 

vector of random errors. The Ordinary Least Squares (OLS) method gives the 
vector of estimated responses is given as 
 
      1ˆˆ OLS 

   
OLS

OLSy X X X X X y H y  (3) 
 
A disadvantage of the parametric regression method is that if the assumed model is 
misspecified, the fitted curve is affected by high bias (Einsporn & Birch, 1993; 
Mays, 2001b; Pickle, 2006). 

In nonparametric regression, the user approaches the problem without 
assuming a model and attempts to fit a curve to the data points by employing a 
weighting scheme (Uysal & Guvenir, 1999; DiNardo & Tobias, 2001). Most often, 
nonparametric regression (for example, the kernel regression, local linear 
regression) is employed when a theoretical reference curve is unavailable for a 
process and the data size is large (Hens, 2005; Hernández-Lobato, 2010). The local 
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linear regression (LLR) utilizes kernel weights for smoothing. For instance, the 
LLR estimate of observation 0y  obtained at the location 0x  is given as 
 
      1

0 0 0ˆ LLR LLRy x


   0 0X W X X W y h y   (4) 

 

 

1

2

n

 
 
 
 
 
 

x
x

X

x

  (5) 

 
where  11 , ,i ikx x 1x , the n by n diagonal matrix W0, known as the local weight 
matrix for location x0, is given by 
 
       01 02 04

KER KER KERdiag h h h0W  (6) 

 
 
0

KER
ih  represents a kernel weight assigned to yi in the estimation of y0 at location x0 

and is given as 
 

  

0

0
0

1

i

KER
i

n i
i

x xK
bh
x xK

b

 
 
 

 
 
 


  (7) 

 
K is a univariate kernel function, b is referred to as the bandwidth (Härdle, 1994). 
A commonly used kernel function is the simplified Gaussian kernel function  
given as 
 

 
2

0

0
ix x

bix xK e
b

 
 
 

 
 

 
  (8) 

 
  



EDIONWE & MBEGBU 

509 

For the multivariate case with k explanatory variables, a common form of the 
Gaussian kernel function used is the product kernel given as 
 

   0
0 1 1, j ijk

j

x x
K x x K

b

 
  

 
   (9) 

 
 0 01 02 0, , , kx x xx  is the prediction point, K is the univariate kernel function 

(Wan, 2007).  In general, using matrix notation, LLR estimated response can be 
written as 
 
    ˆ LLR LLR

y H y   (10) 
 
where H(LLR) is the LLR “HAT” or smoother matrix defined as 
 

  

 

 

 

1

2

LLR

LLR
LLR

LLR
n

H

 
 
 

  
 
 


 

h

h

h

 (11) 

 
    

1LLR
i


     i i ih x X W X X W   (12) 

 
A disadvantage of nonparametric methods is that large amounts of data are 

required. Moreover, the capacity of nonparametric methods to describe complex 
patterns makes them more prone to overfitting (Mays, 2001b; Wan, 2007; Starnes, 
Birch & Robinson, 2008). 

Semiparametric regression methods involve fitting the data both 
parametrically and nonparametrically, and then combining the results to form a 
curve that is based on suitable theoretical form, yet still being able to adapt to 
aberrations or misspecifications from that form. Hence semi-parametric regression 
techniques are robust to model misspecifications (Starnes, 1999; Mays, 2001a; 
Hens, 2005). 

Starnes (1999) and Pickle (2006) reported that MRR2 is the best overall semi-
parametric regression procedure for fitting small-sample data in situation of small 
to moderate model misspecification. 
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MRR2 technique combines a parametric fit like  ˆ OLSy  to the raw data and a 
nonparametric fit to the vector of residuals, r, from the parametric fit. The MRR2 
fit at location x0 is given by 
 

         
11 12

0ˆ MRRy
 

         0 0 r rx X X X y x X W X X W I - X X X X y   (13) 

 
where 
 

         
11 12

0
MRR            0 0 r rh x X X X x X W X X W I - X X X X ,  

 
r is the vector of residuals from the parametric fits, I is an n by n identity matrix, 
Wr is the n by n diagonal matrix containing the kernel weights for fitting the 
parametric residuals and is obtained using the same procedure as in (6), the matrices 
X and X  are as defined in (2) and (5) respectively. MRR2 fits is expressed in 
matrix form as 
 

                  2ˆ MRRy           
 

OLS LLR OLSH H I H y   (14) 

 
  


MRR2H y   (15) 

 
where H(MMR2) is the MRR2 “HAT” matrix defined as 
 

  

 

 

 

2
1

2
2

2

MRR

MRR

MRR
n

 
 
 

  
 
 


 

MRR2

h

hH

h

 (16) 
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Wan (2007) reported two expressions for the mixing parameter, λ. One is the 
estimated asymptotically optimal mixing parameter given by 
 

 *
2

ˆ,ˆ
ˆ

r r
r

    (17) 

 
the notation < > represents the inner product and || || is the standard L2 (Euclidean) 
norm. A second data-driven method chooses *̂  such that PRESS**(λ) defined for 
a given optimal bandwidth, b*, as 
 

  
  

      
*

2*
1 , 1**

max2 *

max

ˆ ,

, 1

n
i i i

MRR b

y y b
PRESS SSE SSE

n tr H b n k
SSE






 



   

   (18) 

 
is minimized. n is the sample size, b* is the optimal bandwidth, k is the number 
explanatory variables, SSEmax is the maximum sum of squared errors obtained as b 
tends to infinity, SSEb* is the sum of squared errors for the optimal bandwidth, 
tr (H(MRR2)(b*,λ)) is the trace of the MRR2 “HAT” matrix for a given b* and λ, and 

,ˆi iy   is the fit at xi with the ith observation left out. 
The bandwidth is an important parameter in that it determines performance of 

the model in terms of criteria such as variance, mean squared error (Huang & Fan, 
1996). A bandwidth is said to be fixed or global if its value is constant for the full 
range of the data or if does not change with locations or runs in a given regression 
procedure otherwise it is referred to as local, variable or adaptive bandwidth. For a 
given location, local bandwidths are chosen according to factors involving the 
values of the explanatory variables, xi, or of the response, yi, or both (Starnes, 1999). 
This dependence allows different degree of smoothing for different locations in the 
data thereby giving the data more privilege to determine the functional form of the 
model fitted and to incorporate the information provided by the density of the data. 

Among the categories of methods for selecting bandwidths, the most 
frequently employed procedures include the plug-in methods and the cross-
validation methods (Fan & Gijbels, 1992; Atkeson, Moore & Schaal, 1997; Gerard 
& Schucany, 1999; Racine, 2008; Avery, 2010; Kohler, Schindler and Sperlich, 
2011). However, all the criteria for selecting bandwidths are based on the same 
philosophy, and they are such that the fitted value  ŷ x  is as close to the true value 
y(x) as possible thereby minimizing errors associated with estimation (Härdle, 
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1994; Galdo & Black, 2008). Researches applying MRR2 for fitting curves to RSM 
data employ a penalized version of prediction error sum of squares referred to as 
PRESS** and given by 
 

  
  

      

2
1 , 1**

2 max

max

ˆ

1

n
i i i

MRR b

y y b
PRESS b SSE SSEn tr H b n k

SSE

 



   


  (19) 

 
     

2**
1 , 1ˆ , 1,2,n

i i iPRESS b y y b i n      (20) 

 
where all the parameters retain their previous definitions in (18) (Pickle, 2005; Wan, 
2007). 

The remainder of this paper is organized as follows: A review of methods for 
deriving local bandwidth is presented in the next section. A new methodology for 
deriving data-driven local bandwidths follows. After that, results of application of 
MRR2 and LLR methods utilizing the new data-driven local bandwidths to a 
multiresponse problem are presented. Finally, a discussion on the comparison of 
results from OLS, LLR and MRR2 (both fixed optimal bandwidth and local optimal 
bandwidths) is presented. 

A Review of Methods for Deriving Local Bandwidths 

For kernel density estimation, Fan and Gijbels (1992), using Average Mean 
Integrated Squared Error, gave an expression for optimal variable bandwidths as 
 

  

   

 
 

   

1
52

2

*

,if 0,

, if 0

X

opt

f x m x
b W x

x x

x W x

 



       
  

 
 

  (21) 

 
where b is any arbitrarily positive constant, α*(x)  can take any value greater than 
zero, W(x) is a diagonal matrix of weights, m"(x) is the second-derivative of the 
unknown function, fX(.) and σ2(.) are the marginal density of X and the conditional 
variance of Y given X respectively. The limitation in the use of this variable 
bandwidth is that it requires estimates of fX(.), m"(x), and σ2(.) respectively. Hence, 
the efficiency of (21) depends on how close these estimates are to the true values. 
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Schucany (1995) proposed a variable bandwidth selector for both the kernel 
and local linear regression. An expression for the optimal bandwidth is given by 
 

  
 

 1/ 2 1
2

22

p

SCH
opt

Ah x
pnB x




 
  
 
 

  (22) 

 
where p is the degree of the polynomial, n is the number of observations, A is a 
constant which depends on the kernel, B(x) is an approximation for the bias. Again, 

 SCH
opth x  is calculated using estimates of σ2 and B(x). Hence, the quality of the final 

estimator ˆSCH
opth  depends on the choice of a “pilot bandwidth” from which an 

estimate of the B(x) is obtained. Moreover, (22) is developed for cases where the 
levels of a single explanatory variable are equally-spaced. 

Few of the plug-in methods for obtaining variable bandwidths are used in 
practice due to computational difficulty. Plugs methods seem logically inconsistent 
since they require higher order smoothness of the unknown function (Bickels & Li, 
2007; Galdo & Black., 2008; Avery, 2010). 

A Local cross-validation variable bandwidth which reflects the impact of the 
responses and suitable for a single explanatory is considered in Zheng (2010) and 
is given as 
 
        

min 2**
1 ˆarg l x

i i i ih
h x Y m X 

     (23) 

 
where l(x) denotes the number of covariate values falling in a certain defined 
interval 

   * *,x x h x x h x
I

   
 

 and    , , 1, ,i iX Y i l x    denotes the number observations 

falling in the interval, h*(x) is a sequence of a version of optimal Bayesian 
bandwidths, and  ˆ i im X  is given as 
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and 
 

     
1

1 ,
c

i j i j
ci i j i

x x x x
M X n h K

h h




   
    

  
  for c = 1, 2, 3 (25) 

 
The method in (24) works for a single explanatory variable. Besides, the 

choice of l(x) is dependent on h*(x) which, according to the author, requires 
estimates of some prior parameters. 

A methodology for the derivation of a function for generating local bandwidth 
is presented in the section that follows. The local bandwidth generated by the 
function can be applied to data with more than one explanatory variable. 
Furthermore, typical of cross validation procedures, no estimates of parameters is 
required for the utilization of the proposed function. 

Methodology 

Derivation of a Function for Generating Local Bandwidth 

A new methodology used to derive a function for generating data-driven local 
bandwidth is presented. In deriving the function, the basic objectives to achieve are: 
to allow the values of the bandwidths to be a function of the observations we intend 
to fit; to assume that a real number N, which also acts as a tuning parameter is the 
sum of all the bandwidths that minimize PRESS**. The simplified kernel function, 
which is a decreasing function, is utilized in the paper. Therefore, the function 
generating the local bandwidth is modeled in a manner that locations with relatively 
smaller observations are assigned smaller bandwidths (corresponding to heavier 
weights via the kernel function), and vice versa. For convenience, this function is 
referred to as N-squared function and its derivation is as follows: 

Given that 1
n
i iT y  , (T is the sum of all the observations), n is the number 

of observations or locations, or sample size, bi, i = 1, …, n, is the bandwidth for the 
ith location and N is the sum of the bandwidths that minimize PRESS**. 

First, it is required that for each location, the bandwidth be a function of the 
size of observation at that location, and one of the ways to achieve this is to express 
the bandwidth, bi, as ratio of the ith observation to the sum of the data, T 
 
 i

i
yb
T

 , for i = 1, …, n. (26) 
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Because the simplified Kernel function is a decreasing function, hence to 
ensure heavier kernel weights are assigned to smaller observations and vice versa, 
smaller observations need to have smaller bandwidths and to achieve this, (26) is 
expressed as 
 

 i
i

yb N
T

 
  
 

  (27) 

 
Taking sum of both sides of (27) gives 
 

 1
n n i
i i

yb N
T

 
  

 
    (28) 

 

 1
n n i
i i

NT yb
T
 

  
 

    (29) 

 
Next, proceed to determine a factor that multiplies the right-hand side of (29) to 
ensure the bandwidths sum to a value N. 

By expanding the right side of (29) 
 

      1 2 nn
i i

NT y NT y NT y
b

T
      

  
 

   (30) 

 
On collecting like terms in (30) 
 

 1
n
i in

i i

NTn y
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   (31) 

 
But the sum of the data, 1

n
i iy , is equal to T as previously defined hence (31) 

reduces to 
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i i
NTn Tb
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   (32) 

 
  



IMPROVING PERFORMANCE STATISTICS OF MRR2 

516 

Therefore 
 
  1n

i ib Nn    (33) 
 

which implies  1 1n iNT y Nn
T
 

  
 

 . Hence, to ensure the bandwidths sum to a 

value N, we need to multiply the right hand side of (29) by a factor N ⁄ (Nn − 1), 
giving 
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,  i = 1, 2, …, n, (36) 
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,  i = 1, 2, …, n. (37) 

 
Equation (37) gives the N-squared function for data-driven variable 

bandwidths. The optimal local bandwidth, b is a vector whose elements are the 
bandwidths bi, (for smoothing ith location of the observation), i = 1, 2, …, n, 
obtained at the value of N in (37) where PRESS**(b) given by 
 

         **PRESS b  
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    b

b

b
  (39) 

 
where H(.) is the “HAT” matrix for (LLR) or MRR2 obtained by using local 
bandwidths from N-squared function, SSEmax is the maximum sum of squares of 

errors over all possible bandwidths which is equivalent to   
2

1 ˆ OLSn
i i iy y   for 

LLR or   
2

1 ˆ OLSn
i i ie e   for MRR2 where  ˆ OLSy  and  ˆ OLSe  are the OLS fit of a 

first-order model for  responses and OLS residuals respectively, 
ibSSE   is given by 

    
2

1 ˆ LLRn
i i i iy y b    for LLR or     

22
1 ˆ MMRn

i i i iy y b    for the MRR2 

counterpart. (See Wan, 2007). For MRR2, the mixing parameter, λ, is obtained 
using equations (17) or (18). 
LLR and MRR2 methods are applied using local bandwidth derived from N-
squared function to the Minced Fish Quality problem Wan (2007) and its 
performance is compared with results from parametric, (OLS), LLR, (fixed 
bandwidth), and MRR2, (fixed bandwidth), approaches. The comparison is based 
on some performance criteria including, estimate of the variance, (S2), the 
coefficient of determination, (R2), adjusted coefficient of determination, ( 2

adjR ), 
PRESS given in (20), PRESS* = PRESS/DFerror, where DFerror = DFtotal – DFmodel, 
and PRESS**. 

Application of Local Bandwidths from N-Squared Function 

The data for the Minced Fish Quality problem presented in Wan (2007) is from 
food science and is used here to compare the performance of the modeling 
techniques discussed herein. The problem involves three independent variables x1, 
x2, x3 which represent washing temperatures, washing time, washing ratio of water 
volume to sample weight respectively, and four response variables y1, y2, y3, y4, 
representing springiness, thiobarbituric acid number, (TBA), cooking loss, and 
whiteness index respectively. The observed data were collected through a Central 
Composite Design, (CCD), and is presented in Table 1.  

According to Wan (2007), the final fitted second-order models for OLS for 
responses y1 and y4 include three terms: intercept, x1 and 2

1x . The OLS model for 

response y2 includes five terms: intercept, x1, x2, 2
1x , and x12. The OLS model for 
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response y3 has eight terms: intercept, x1, x2, x3, 2
1x , x12, x13, and 2

3x . Therefore, the 
model spaces for the OLS part of the MRR2 are the same for the final fitted OLS 
models for each of the responses while the LLR and the nonparametric part of 
MRR2 utilize a first-order version of the OLS models since LLR and the 
nonparametric part of MRR2 are based local linear smoothing. Thus, the model 
matrix for the LLR and the nonparametric part of MRR2 for response y3 consists 
of four terms: intercept, x1, x2, and x3, the model matrices for response y1 and y4 
both consist of the intercept and x1, and that for response y2 consists of the intercept, 
x1 and x2. 
 
 
Table 1. A CCD with three factors and four responses on minced fish quality 
 

 Coded Variables  Response values 
 x1 x2 x3  y1 y2 y3 y4 

1 0.203 0.203 0.203  1.83 29.31 29.50 50.36 
2 0.797 0.203 0.203  1.73 39.32 19.40 48.16 
3 0.203 0.797 0.203  1.85 25.16 25.70 50.72 
4 0.797 0.797 0.203  1.67 40.18 27.10 49.69 
5 0.203 0.203 0.797  1.86 29.82 21.40 50.09 
6 0.797 0.203 0.797  1.77 32.20 24.00 50.61 
7 0.203 0.797 0.797  1.88 22.01 19.60 50.36 
8 0.797 0.797 0.797  1.66 40.02 25.10 50.42 
9 0 0.5 0.5  1.81 33.00 24.20 29.31 

10 1 0.5 0.5  1.37 51.59 30.60 50.67 
11 0.5 0 0.5  1.85 20.35 20.90 48.75 
12 0.5 1 0.5  1.92 20.53 18.90 52.70 
13 0.5 0.5 0  1.88 23.85 23.00 50.19 
14 0.5 0.5 1  1.90 20.16 21.20 50.86 
15 0.5 0.5 0.5  1.89 21.72 18.50 50.84 
16 0.5 0.5 0.5  1.88 21.21 18.60 50.93 
17 0.5 0.5 0.5  1.87 21.55 16.80 50.98 
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Table 2. Bandwidths for LLRVB1 for each location and response 
 

Location y1 y2 y3 y4 

1 0.0801 0.4377 0.5355 0.0800 
2 0.0803 0.4365 0.5370 0.0801 
3 0.0800 0.4382 0.5361 0.0799 
4 0.0804 0.4364 0.5358 0.0800 
5 0.0800 0.4376 0.5367 0.0800 
6 0.0802 0.4373 0.5363 0.0800 
7 0.0800 0.4385 0.5370 0.0800 
8 0.0804 0.4364 0.5361 0.0800 
9 0.0801 0.4372 0.5363 0.0815 

10 0.0810 0.4350 0.5353 0.0799 
11 0.0800 0.4387 0.5368 0.0801 
12 0.0799 0.4387 0.5371 0.0798 
13 0.0800 0.4383 0.5365 0.0800 
14 0.0799 0.4388 0.5367 0.0799 
15 0.0799 0.4386 0.5372 0.0799 
16 0.0800 0.4386 0.5371 0.0799 
17 0.0800 0.4386 0.5374 0.0799 

 
 
Table 3. Bandwidths for MMR2VB1 for each location and response 
 

Location y1 y2 y3 y4 

1 0.0792 0.2568 0.3624 0.0791 
2 0.0794 0.2556 0.3640 0.0793 
3 0.0792 0.2573 0.3630 0.0791 
4 0.0796 0.2555 0.3628 0.0792 
5 0.0792 0.2567 0.3637 0.0792 
6 0.0794 0.2564 0.3633 0.0791 
7 0.0791 0.2577 0.3639 0.0791 
8 0.0796 0.2555 0.3631 0.0791 
9 0.0793 0.2563 0.3632 0.0807 

10 0.0802 0.2541 0.3622 0.0791 
11 0.0792 0.2579 0.3637 0.0793 
12 0.0791 0.2578 0.3640 0.0790 
13 0.0791 0.2574 0.3634 0.0792 
14 0.0791 0.2579 0.3637 0.0791 
15 0.0791 0.2577 0.3641 0.0791 
16 0.0791 0.2578 0.3641 0.0791 
17 0.0792 0.2577 0.3644 0.0791 
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Results 

The values of SSEmax for LLR for y1, y2, y3, and y4 are 0.1638, 942.9793, 234.8291, 
and 352.1950 respectively, and those for MRR2 are 0.0231, 90.9033, 41.1338, and 
198.8048, respectively. The optimal Local bandwidths for each response generated 
for a given value of N in N-squared function are given in Table 2, and Table 3 for 
LLRVB1 and MMR2VB1 respectively. 

Tables 4–6 present the results of numerical values of performance statistics 
for comparing OLS, LLR for both fixed bandwidth and local bandwidth generated 
via N-squared function, and MRR2 for both fixed bandwidth and local bandwidth 
generated via N-squared function. For convenience, LLR and MRR2 for fixed 
bandwidth reported in Wan (2007) are referred to as LLRFB and MMR2FB 
respectively while LLR and MRR2 for N-squared variable bandwidths function are 
designated LLRvB1 and MMR2vB1 respectively. The case where the values of the 
mixing parameters for all responses are all 1 is considered for comparison sake. 
This will enable one attribute the performance of the models solely to the type of 
bandwidth used rather than to values of the mixing parameters. Best values for each 
performance statistics and for each response are shown in bold print. 

Table 4 compares the performance statistics of fitted responses from the three 
regression methods discussed here. LLRFB produces best results exclusively in zero 
cell and joint best result in zero cell, MMR2FB produces best result exclusively in 
zero cell and joint best results in zero cell. OLS produces best results exclusively 
in three cells and joint best result in zero cell. LLRVB1 produces best results 
exclusively in six cells and joint best results in six points. MMR2VB1 produces best 
results exclusively in nine cells and joint best results in six cells. MMR2VB1 produces 
the smallest S2, highest R2 and 2

adjR  exclusively across two of the responses and 
joint best results for these statistics in the remaining two responses. For DFerror, 
MMR2VB1 produces either the best or competitive results across all responses. In 
addition, MMR2VB1 produces competitive results in several cells where it fails to 
produce the best results. Table 5 compares the performance statistics of fitted 
responses from the two versions of local linear regression, LLRFB and LLRVB1.  

LLRFB produces best results in just five cells in a total of twenty-four cells and 
LLRVB1 produces best results in nineteen cells which is equivalent to 79.17% of the 
total cells for comparison. Table 6 compares the performance statistics of fitted 
responses from the two versions of model-robust regression, MMR2FB and 
MMR2VB1. MMR2FB produces best results exclusively in just one cell and joint best 
results in zero cell. MMR2VB1 produces best results exclusively in twenty-three cells 
and best results in zero cell which is equivalent to 95.83% of the total cells for 
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comparison. Figures 1 through 4 present the plots of each response against x1 for 
various values of x2 and x3 were applicable. The MMR2(FB) and MMR2 (VB1) overlap 
in virtually all the plots for y1 and y4 reflecting the closeness of several performance 
statistics for the two approaches. However, in y2 and y3 plots, the MMR2 (VB1) plots 
are seen passing through the mean values of the responses for instance plot in the 
top right in Figure 4. 

The results in Tables 4 and 6 clearly show that MMR2VB1 is the overall best 
regression technique outperforming the MMR2FB that produces best results in 
sixteen cells out of twenty-four cells in results presented in wan (2007) where it is 
compared with OLS and LLRFB. However, in situations where the user has no prior 
knowledge of the true underlying model LLRVB1 will certainly come in handy as 
results in Table 4 reveal. 
 
 
Table 4. Results of comparison of performance statistics of OLS, fixed bandwidth LLR 
and MRR2, and Variable bandwidth LLR and MRR2 all for λ = 1, fixed optimal bandwidth, 
b, and N as defined in equation (37) for local bandwidths in Table 2, and Table 3 
 
 METHOD b N DFerror S2 R R2

adj PRESS PRESS* PRESS** 

y1 

OLS - - 14.0000 1.65E-03 0.9211 0.9090 0.0582 0.0042 0.0042 

LLRFB 0.146  12.1381 1.04E-03 0.9570 0.9433 0.0682 0.0056 0.0026 
MRR2FB 0.17  12.2680 1.03E-03 0.9568 0.9436 0.0472 0.0039 0.0025 

LLRVB1  1.362 12.0000 1.00E-03 0.9579 0.9439 0.0216 0.0018 0.0008 
MRR2VB1  1.348 12.0000 1.00E-03 0.9579 0.9439 0.0405 0.0034 0.0021 

y2 

OLS - - 12.0000 7.5417 0.9341 0.9122 234.1166 19.5097 19.5097 
LLRFB 0.436  11.2120 21.8508 0.8217 0.7456 785.7855 70.0873 36.4222 

MRR2FB 0.277  8.9400 4.8253 0.9686 0.9438 319.3332 35.7214 19.6311 

LLRVB1  7.441 11.2260 21.9206 0.8209 0.7448 785.9495 70.0115 36.4328 
MRR2VB1  4.366 8.6923 4.6819 0.9704 0.9455 305.1765 35.1090 18.5803 

y3 

OLS - - 9.0000 4.5641 0.8408 0.7170 182.4468 20.2719 20.2719 

LLRFB 0.537  8.3730 9.7990 0.6821 0.3925 287.0564 34.2849 17.0554 

MRR2FB 0.542  6.5960 2.9031 0.9258 0.8200 177.6750 26.9357 13.1264 
LLRVB1  9.121 8.3672 9.7791 0.6829 0.3937 286.6772 34.2622 17.0261 

MRR2VB1  6.179 3.9265 1.3817 0.9790 0.9143 173.9599 44.3046 11.4358 

y4 

OLS      - - 14.0000 14.2182 0.5407 0.4751 684.7407 48.9101 48.9101 

LLRFB 0.12      12.0310 1.0197 0.9717 0.9624 454.5871 37.7832 17.1484 
MRR2FB 0.119      12.0290 1.0158 0.9718 0.9625 486.8458 40.4725 18.6472 

LLRVB1  1.361 12.0000 1.0116 0.9720 0.9627 407.8131 33.9844 15.3990 
MRR2VB1   1.347 12.0000 1.0116 0.9720 0.9627 451.5303 37.6275 17.3105 
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Table 5. LLRFB versus LLRVB1 for values of b and bi indicated in Table 2 
 
  METHOD DFerror S2 R R2

adj PRESS PRESS* PRESS** 

y1 
LLRFB 12.1380 1.04E-03 0.9570 0.9433 0.0682 0.0056 0.0026 

LLRVB1 12.0000 1.00E-03 0.9579 0.9439 0.0216 0.0018 0.0008 

y2 
LLRFB 11.2120 21.8508 0.8217 0.7456 785.7855 70.0873 36.4222 
LLRVB1 11.2260 21.9206 0.8209 0.7448 785.9495 70.0115 36.4328 

y3 
LLRFB 8.3730 9.7990 0.6821 0.3925 287.0564 34.2849 17.0554 

LLRVB1 8.3672 9.7791 0.6829 0.3937 286.6772 34.2622 17.0261 

y4 
LLRFB 12.0310 1.0197 0.9717 0.9624 454.5871 37.7832 17.1484 

LLRVB1 12.0000 1.0116 0.9720 0.9627 407.8131 33.9844 15.3990 

 
 
Table 6. MMR2FB versus MMR2VB1 for values of b and bi indicated in Table 3. 
 
 METHOD DFerror S2 R R2

adj PRESS PRESS* PRESS** 

y1 
MRR2FB 12.2680 1.03E-03 0.9568 0.9436 0.0472 0.0039 0.0025 
MRR2VB1 12.0000 1.00E-03 0.9579 0.9439 0.0405 0.0034 0.0021 

y2 
MRR2FB 8.9400 4.8253 0.9686 0.9438 319.3332 35.7214 19.6311 

MRR2VB1 8.6923 4.6819 0.9704 0.9455 305.1765 35.1090 18.5803 

y3 
MRR2FB 6.5960 2.9031 0.9258 0.8200 177.6750 26.9357 13.1264 

MRR2VB1 3.9265 1.3817 0.9790 0.9143 173.9599 44.3046 11.4358 

y4 
MRR2FB 12.0290 1.0158 0.9718 0.9625 486.8458 40.4725 18.6472 
MRR2VB1 12.0000 1.0116 0.9720 0.9627 451.5303 37.6275 17.3105 

 

Figures 1 and 2 compare the plots of 1ŷ  versus x1 and 4ŷ  versus x1 
respectively, using OLS, MRR2 via fixed bandwidth MMR2FB, and MRR2 via local 
bandwidths MMR2VB1 from N-squared function. 
 
 

 
Figure 1. Plot of 1ŷ  vs. x1       Figure 2. Plot of 4ŷ  vs. x1 
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Figure 3 compares the plots of 1ŷ  versus x1 for OLS, MRR2(FB), and MRR2(VB), 
when x2 = 0 (left), x2 = 0.5 (center), and x2 = 1 (right). 
 
 

 
Figure 3. Plots of 2ŷ  versus x1 
 
 
 

Figure 4 compares the plots of 2ŷ  versus x1 for OLS, MRR2(FB), and MRR2(VB), 
for all respective values of x2 and x3 specified 
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Figure 4. Plots of 3ŷ  versus x1 
 
 

Conclusion 

One of the shortcomings of parametric regression is that the user has to specify a 
model that perfectly fits the data under consideration and failure to achieve this 
leads to highly biased estimates. Nonparametric regression is usually employed 
when the user is unable to specify a model for the data. However, in studies that 
require small-sample data such as RSM, nonparametric tends to produce fitted 
values that are highly variable. Semi-parametric regression such as MRR2 
technique which combine parametric regression with a nonparametric technique are 
employed in scenarios where there is partial knowledge of the underlying model 
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for small-sample data. Both the nonparametric and semi-parametric methods 
require a parameter referred to as smoothing parameter or bandwidth which 
determines the smoothness of the estimates.  

Regression methods for fitting data suitable for RSM were reviewed. Also 
reviewed are methods for selecting local bandwidth. A new methodology for 
deriving a function was presented. The function, herein referred to as N-squared 
function, was employed for generating data-driven local bandwidths and MRR2 
technique utilizing local bandwidth derived from the N-squared function was 
applied to the multi-response problem of minced fish quality and the results of 
performance statistics of fitted responses was compared with the results for 
performance statistics for MRR2 utilizing fixed bandwidth reported in Wan (2007). 
The comparisons presented in Tables 4−6 show the superiority of fits from local 
bandwidths derived from N-squared function over fits obtained using fixed 
bandwidth. Indeed, these results are confirmation of statements made Wan (2007), 
Mays (2001a), and several other researchers regarding improvement that MRR2 
and other semi-parametric methods stand to gain if performed using suitable local 
bandwidths. 
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The stereotype logistic (SL) model is an alternative to the proportional odds (PO) model 
for ordinal response variables when the proportional odds assumption is violated. This 
model seems to be underutilized. One major reason is the constraint of current statistical 
software packages. Statistical Package for the Social Sciences (SPSS) cannot perform the 
SL regression analysis, and SAS does not have the procedure developed to directly estimate 
the model. The purpose of this article was to illustrate the stereotype logistic (SL) 
regression model, and apply it to estimate mathematics proficiency level of high school 
students using Stata. In addition, it compared the results of fitting the PO model and the 
SL model. Data from the High School Longitudinal Study of 2009 (HSLS: 2009) (Ingels, 
et al., 2011) were used for the ordinal regression analyses. 
 
Keywords: Stereotype logistic models, Proportional Odds models, ordinal logistic 
regression, ordinal response variables, Stata 
 

Introduction 

Three types of logistic regression models are well-known for analyzing the ordinal 
response variable, including the proportional odds (PO) model, the continuation 
ratio (CR) model, and the adjacent categories (AC) logistic regression model. 
Among them, the PO model is the most commonly used (Agresti, 2002, 2007, 2010; 
Armstrong & Sloan, 1989; Clogg, & Shihadeh, 1994; Hilbe, 2009; Liu, 2009; Long, 
1997, Long & Freese, 2006; McCullagh, 1980; McCullagh & Nelder, 1989; 
O’Connell, 2000, 2006; O’Connell & Liu, 2011; Powers & Xie, 2000). 

mailto:liux@easternct.edu
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The PO model assumes that the underlying binary models, which dichotomize 
the ordinal response variable, have the same coefficients. In other words, the logit 
coefficients for each predictor are the same across the ordinal categories. This is 
called the parallel lines or the proportional odds (PO) assumption. However, the 
PO assumption is often violated. To deal with this issue, the partial proportional 
odds (PPO) model or the generalized ordinal logit model (Fu, 1998; Liu & Koirala, 
2012; Peterson & Harrell, 1990; Williams, 2006) can be used. An alternative option 
is the stereotype logistic (SL) model, which was first developed by Anderson 
(1984), and later introduced by Greenland (1994), and Long and Freese (2006). The 
SL model is an extension of both the multinomial logistic regression model and the 
PO model. First, the SL model is like the multinomial logistic model since they 
both estimate the odds of being at a particular category compared to the baseline 
category. Second, similar to the PO model, the SL model estimates the ordinal 
response variable rather than the nominal outcome variable, given a set of 
predictors. However, the SL model does not assume the PO assumption, and allows 
the effect of each predictor to vary across the ordinal categories. 

Although the theory of the SL model has existed, this model seemed to be 
underutilized: the illustration and application of this model were rare. One major 
reason is the restriction of current statistical software packages. SPSS cannot 
perform the SL regression analysis, and SAS does not have the procedure 
developed to directly estimate the SL model. Both Anderson (1984) and Greenland 
(1994) used GAUSS to fit the SL model but no programming information was 
provided. Agresti (2010) recently discussed this model using the results of the two 
examples directly from Anderson (1984). Kuss (2006) pioneered the use the PROC 
NLMIXED procedure in SAS to estimate the SL model although it does not deal 
with any random effects in the example. Researchers need to specify the starting 
values, and the model equations, and the probabilities in the syntax, which is 
complicated and error-prone for novice SAS users. Therefore, it is critical to help 
researchers to familiarize with this model and clarify the confusion so that they are 
able to apply it correctly in practice. 

To fill this gap, the purpose of this study was to illustrate the use of the 
stereotype logistic (SL) regression with Stata, and compare the results of fitting the 
PO model and the SL model. This article is an extension of previous research on 
various ordinal logistic regression models (Liu, 2009; Liu, O’Connell & Koirala, 
2011; Liu & Koirala, 2012; O’Connell & Liu, 2010). For demonstration purposes, 
the empirical data from the High School Longitudinal Study of 2009 (HSLS: 2009) 
(Ingels, et al., 2011) were used to conduct the ordinal regression analyses. 
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Theoretical Framework 

The Proportional Odds Model  

An ordinal logistic regression model is a generalization of a binary logistic 
regression model, when the outcome variable has more than two ordinal levels. It 
estimates the cumulative odds and the probability of an observation being at or 
below a specific outcome level, conditional on a collection of explanatory variables. 
In Stata, the ordinal logistic regression model assumes that the outcome variable is 
a latent variable, which is expressed in logit form as follows 
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where πj(x) = π(Y ≤ j|x1, x2, …, xp), which is the probability of being at or below 
category j, given a set of predictors j = 1, 2, …, J −1. αj are the cut points, and 
β1, β2, …, βp are logit coefficients. This is also known as the proportional odds (PO) 
model because the odds ratio of any predictor is assumed to be constant across all 
categories. Therefore, for each predictor, there is only one logit coefficient across 
all the comparisons, i.e., at or below a certain category versus above that category. 
The Brant test is used to assess the proportional odds assumption (Brant, 1990). To 
estimate the ln (odds) of being at or below the jth category, the PO model can be 
rewritten as 
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Thus, this model predicts cumulative logits across J −1 response categories. By 
transforming the cumulative logits, we can obtain the estimated cumulative odds as 
well as the cumulative probabilities being at or below the jth category. 

Researchers may see different forms of the ordinal logistic regression model 
in literature since different software packages may employ different 
parameterizations when estimating logit coefficients (Liu, 2009). For example, 
SPSS uses the same form as that in Stata. However, SAS uses a different form 
where a positive sign is placed before logit coefficients. 
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The Multinomial Logistic Model 

The multinomial logistic regression model is also an extension of the binary logistic 
regression model when the outcome variable is nominal and has more than two 
categories. It estimates the odds of being at any category compared to being at the 
baseline category, also called the comparison category. It can be treated as a 
combination of a series of binary logistic regression models with a particular 
category = 1, and the base category = 0. When there are J categories, it estimates 
J−1 binary logistic regression models simultaneously. This model can be expressed 
as follows: 
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where j = 1, 2, …, J−1; J is the base category, which can be any category but is 
generally the highest one; αj are the intercepts, and βj1, βj2, …, βjp are logit 
coefficients. Since the model includes J−1 comparisons, it estimates J−1 logit 
coefficients for each predictor. 

The Stereotype Logistic Model 

Anderson’s SL model (1984) can be written in the following form 
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where j = 1, 2, …, J −1; J is the baseline or reference category, which is the last 
category here, but can be the first category or any of the other categories decided 
by the researcher; Y is the ordinal response variable with categories from j to J; αj 
are the intercepts; β1, β2, …, βp are logit coefficients for the predictors, 
X1, X2, …, Xp, respectively, and ϕj are the constraints which are used to ensure the 
outcome variable is ordinal if the following condition is satisfied. 
 
 1 2 3 11 0J J            (5) 
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The first constraint, ϕ1 is set to be 1, and the last one, ϕJ is equal to 0 so that 
the estimated SL model can be identified. If any two pairs of the constraints are the 
same, then these two categories are indistinguishable, thus can be collapsed into 
one. For example, if ϕ3 = ϕ4, these two categories (categories 3 and 4) can be 
grouped together. The ordinality of the constraints can be tested in the model so 
that researchers can decide whether any categories need to be merged or re-ordered. 

To calculate the odds of being in a category j versus a category m, we just 
need to take the exponential of [(αj − αm) − (ϕj − ϕm)β]. When the category m 
becomes the baseline category J, we just need to substitute it into the equation. 
Since ϕJ = 0, we get [(αj − 0) − (ϕj − 0)β] = αj − ϕjβ. By exponentiating (−ϕjβ), we 
get the odds of being in a category j versus the baseline category J for a unit change 
in a predictor. 

The equation (4) is the forms for Anderson’s one-dimension SL model, which 
was generally referred to as the SL model in literature. Anderson (1984) also argued 
that an ordinal response variable could be more than one dimension, and therefore 
proposed the multidimensional SL model. If the ordinal outcome variable has J 
categories, the maximum dimensions would be J−1. The multidimensional SL 
model with J−1 dimensions is actually equal to the multinomial logistic regression 
model. In this article, we only focus on the one-dimension SL model for the 
simplicity of model building and interpretation. 

Lunt (2001) considered the SL model as the constrained multinomial logistic 
model, and developed the Stata soreg program before the official Stata slogit 
program was implemented. Compared with the multinomial logistic regression 
model in the equation (3), the left side of the logit link function for the SL model 
in the equation (4) looks the same, since both the SL model and the multinomial 
model estimates the odds of being in a particular category versus the baseline 
category. Examining the systematic component (linear predictors) in both models, 
it is obvious that the logit coefficients, βj in the multinomial logistic model 
corresponds to (−ϕj(β)) in the SL model. When there are J categories of the outcome 
variable and p predictors, we need to estimate (J−1) + (J−1)×p parameters in the 
multinomial logistic model, which also equals (J−1)×(1+p). In the SL model, we 
estimate [(J−1) + (J−2) + p] = (2J − 3+p) parameters since ϕ1 and ϕJ are 
constrained to be 1 and 0, respectively. Therefore, less parameters are estimated in 
the SL model than in the multinomial logistic model, and the former model is more 
parsimonious. 
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Methodology 

Sample 

Similar to the previous Education Longitudinal Study of 2002 (ELS: 2002), the 
HSLS: 2009 study, conducted by the NCES, was the latest series of longitudinal 
study in secondary schools. This study surveyed high school students, parents, 
teachers, school counselors and administrators, and assessed 9th graders’ algebraic 
skills and reasoning. It was designed to keep track of high school students from 
grade nine to postsecondary school education and their choice of future careers. In 
the 2009 base year data, 21,444 high school students, from a national sample of 944 
schools, participated in the study. Students were asked to provide information 
regarding basic demographics, school and home experience, such as math and 
science activities, coursework, and time spent on different activities, mathematics 
and science attitude, mathematics and science self-efficacy, their feelings about 
math and science teacher, and future educational and life plans after secondary 
schools. The ordinal outcome variable is students’ mathematics proficiency, and 
the predictors are students’ math identity (MTHID), mathematics self-efficacy 
(MTHEFF), school belonging (SCHBEL), and school engagement (SCHENG).  

The outcome variable, students’ mathematics proficiency levels in high 
schools, was ordinal with five levels (1 = students can answer questions in algebraic 
expressions; 2 = students can answer questions and solve problems for 
multiplicative and proportional situations; 3 = students can understand algebraic 
equivalents and solve problems; 4 = students can understand systems of linear 
equations and solve problems; 5 = students can understand linear functions, find 
and use slopes and intercepts of lines, and can use functional notation) (Ingels, et 
al., 2011). In addition, those students who failed to pass through level 1 were 
assigned to level 0. Table 1 provides the frequency of six mathematics proficiency 
levels (from 0 to 5). 
 
 
Table 1. Proficiency categories and frequencies (proportions) for the study sample, 
HSLS: 2009 (Ingels, et al., 2011) base year 
 

Category Description Frequency 
0 Did not pass level 1 2263 (10.6%) 
1 Algebraic expressions 4933 (23%) 
2 Multiplicative and proportional thinking 5495 (25.6%) 
3 Algebraic equivalents 5761 (26.9%) 
4 Systems of equations 2396 (11.2%) 
5 Linear functions. 596 (2.8%) 
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Data Analysis  

First, the PO model was used for the preliminary analysis with the Stata ologit 
command, and the proportional odds assumption was examined using the Brant test. 
Then the SL model with a single explanatory variable was fitted using the Stata 
slogit command. Finally the full-model with all four explanatory variables was 
fitted. Model fit statistics for both the PO model and the SL model were provided 
by the Stata SPost package (Long & Freese, 2006). The results for both models 
were interpreted and compared. Following the suggestion by Hardin and Hilbe 
(2007) and Hilbe (2009), Stata AIC and BIC statistics were used for the comparison 
of model fit. 

Results  

The Proportional Odds Model with Four Explanatory Variables 

A PO model with all four predictor variables was fitted first, since it is the most 
commonly used model for ordinal response variables. The Stata ologit command 
with the logit function was used for model fitting. Figure 1 displays the Stata output 
for the PO model. 
 
 

. ologit Mathprof  MTHID MTHEFF SCHBEL SCHENG 
 
Iteration 0:   log likelihood = -28870.574 
Iteration 1:   log likelihood = -27172.197 
Iteration 2:   log likelihood = -27148.796 
Iteration 3:   log likelihood = -27148.754 
 
Ordered logistic regression                       Number of obs   =      17848 
LR chi2(4)      =    3443.64 
Prob > chi2     =     0.0000 
Log likelihood = -27148.754                       Pseudo R2       =     0.0596 
 
------------------------------------------------------------------------------ 
Mathprof |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
MTHID |   .5951592   .0171736    34.66   0.000     .5614995     .628819 
MTHEFF |   .1884678   .0172434    10.93   0.000     .1546714    .2222643 
SCHBEL |   .0893507    .014859     6.01   0.000     .0602276    .1184738 
SCHENG |    .224087   .0149587    14.98   0.000     .1947684    .2534055 
-------------+---------------------------------------------------------------- 
/cut1 |  -2.560906   .0278366                     -2.615465   -2.506348 
/cut2 |  -.8916257   .0172818                     -.9254974    -.857754 
/cut3 |   .3439423   .0160976                      .3123915     .375493 
/cut4 |   1.967861    .022283                      1.924187    2.011535 
/cut5 |   3.788231   .0440731                      3.701849    3.874612 
------------------------------------------------------------------------------ 

 
Figure 1. Stata Proportional Odds model with four predictor variables 
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The log likelihood ratio Chi-Square test, LR χ2(4) = 3443.64, p < .001, 
indicating that the full model with four predictor provided a better fit than the null 
model with no independent variables. 

The fit statistics for the model were as follows. The likelihood ratio R2L = .060, 
Cox-Snell R2 = .175, Nagelkerke R2 = .183, AIC = 3.043, AIC used by Stata = 
54315.508, and BIC = −120340.00. A summary of more detailed fit statistics is 
provided in Figure 2. Both AIC and AIC used by Stata in the PO model were used 
as the base for future model comparisons. 

The logit effects of all four predictors on the ordinal response variable, 
mathematics proficiency were significant. The estimated logit regression 
coefficient for math identity (mthid), β = .595, z = 34.66, p < .001; the logit 
coefficient for mathematics self-efficacy (mtheff), β = .188, z = 10.93, p < .001; the 
coefficient for school belonging (schbel), β = .089, z = 6.01, p < .001, and finally, 
for school engagement (scheng), β = .224, z = 14.98, p < .001. All four predictors 
were positively associated with the log odds of being beyond a proficiency level. 
In terms of odds ratio (OR), the odds of being beyond a proficiency level were 
1.813 times greater with a one unit increase in higher level of math identity, and 
1.207 times greater with one unit increase in students’ mathematics self-efficacy. 
In addition, students who had higher level of school belong and school engagement 
were more likely to be associated with higher level of mathematics proficiency 
(ORs = 1.093 and 1.251 for schbel and scheng, respectively). 
 
 

. fitstat 
 
Measures of Fit for ologit of Mathprof 
 
Log-Lik Intercept Only:     -28870.574   Log-Lik Full Model:         -27148.754 
D(17839):                    54297.508   LR(4):                        3443.639 
                                         Prob > LR:                       0.000 
McFadden's R2:                   0.060   McFadden's Adj R2:               0.059 
ML (Cox-Snell) R2:               0.175   Cragg-Uhler(Nagelkerke) R2:      0.183 
McKelvey & Zavoina's R2:         0.174                               
Variance of y*:                  3.983   Variance of error:               3.290 
Count R2:                        0.331   Adj Count R2:                    0.068 
AIC:                             3.043   AIC*n:                       54315.508 
BIC:                       -120340.000   BIC':                        -3404.481 
BIC used by Stata:           54385.615   AIC used by Stata:           54315.508 

 
Figure 2. Fit statistics for the PO model 
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Brant Test of the Proportional Odds Assumption 

The Brant test of the PO assumption was examined using the brant command of 
the Stata SPost (Long & Freese, 2006) package. Stata Brant test provided results of 
a series of separate binary logistic regression across different category comparisons, 
univariate brant test result for each predictor, and the omnibus test for the overall 
model. Table 2 provides five (j−1 = 5) associated binary logistic regression models 
for the full PO model, where each split compares Y > cat. j to Y ≤ cat. j, since data 
were dichotomized according to probability comparisons. Among the logit 
coefficient of all four variables across five logistic regression models, only the 
effect of school belonging was similar across these models. The coefficient of math 
identify was similar across the first three models, but it started to increase from the 
model 4 to 5; the logit coefficient in model 5 was almost the double of that in model 
1. Although the coefficients of school engagement looked similar across the models, 
those for the models 1 and 5 were the largest. The coefficients of mathematics self-
efficacy l were stable across the first four logistic regression models, but it  
increased abruptly in model 5. 

To test the PO assumptions, the Brant test provided the results for the overall 
model and each predictor. Table 3 presents χ2 tests and p values for the full PO 
model and separate variables. The omnibus Brant test for the full model, χ216 = 
178.52, p < .001, indicating that the proportional odds assumption for the full 
model was violated. To identify which predictor variables violated the assumption, 
separate Brant tests were examined for each predictor variable. The results revealed 
that the univariate Brant tests for the PO assumption were upheld for using 
computers for fun, and using computers to learn on own. On the other hand, the 
Brant test was violated for using computers for school work. 
 
 
Table 2. A Series (j−1) of Associated Binary Logistic Regression models for the full PO 
model, where each split compares Y > cat. j to Y ≤ cat. j 
 

 Y > 0 Y > 1 Y > 2 Y > 3 Y > 4 Brant Test 
P Value 

Variable Logit (b) Logit (b) Logit (b) Logit (b) Logit (b)   
Constant 2.529 0.859 -0.374 -2.103 -4.310  
mthid 0.528 0.508 0.583 0.804 1.082 .000** 
mtheff 0.150 0.184 0.212 0.179 0.332 .033* 
schbel 0.088 0.095 0.098 0.074 0.015 .577 
scheng 0.286 0.206 0.226 0.235 0.290 .018* 
 

Note: * p < .05; ** p < .01 
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Table 3. Brant tests of the PO assumption for each predictor and the overall model 
 
Variable Test P Value 
mthid χ24 = 101.01 .000** 
mtheff χ24 = 10.48 .033* 
schbel χ24 = 2.88 .577 
scheng χ24 = 11.91 .018* 
All (Full-model) χ216 = 178.52 .000** 
 

Note: * p < .05; ** p < .01 
 

The Stereotype Logistic Regression Model with a Single Explanatory 
Variable 

Stereotype logistic regression models were fitted since they released the PO 
assumption and allowed the logit coefficients to vary across the ordinal categories. 
For comparison purposes, model fitting process included both a single variable 
model and the full model with all four predictor variables. Figure 3 presents the 
Stata output for the single predictor SL model. 

The Wald Chi-Square test with 1 degree of freedom, Wald χ2(1) = 1044.37, 
p < .001, indicating that the logit coefficient of the predictor, math identity was 
statistically different from 0. Since no R2 statistics were calculated, only the AIC 
and BIC statistics were reported. The AIC statistic was 3.072, and the AIC used by 
Stata was 64996.139. BIC was −145654.148, and the corresponding BIC used by 
Stat was 65075.737. 

The estimated logit coefficient, β = 2.116, z = 32.32, p < .001, indicating that 
students’ math identity had a significant relationship with mathematics proficiency.  

The SL model estimates the logit odds of being in a category relative to the 
baseline category. Substituting the value of the coefficient into the formula (4) 
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. slogit Mathprof MTHID, dim(1) 
 
Iteration 0:   log likelihood = -34026.719  (not concave) 
Iteration 1:   log likelihood =  -32684.99  (not concave) 
Iteration 2:   log likelihood = -32551.807   
Iteration 3:   log likelihood = -32499.066   
Iteration 4:   log likelihood =  -32488.31   
Iteration 5:   log likelihood = -32488.069   
Iteration 6:   log likelihood = -32488.069   
 
Stereotype logistic regression                    Number of obs   =      21159 
                                                  Wald chi2(1)    =    1044.37 
Log likelihood = -32488.069                       Prob > chi2     =     0.0000 
 
 ( 1)  [phi1_1]_cons = 1 
------------------------------------------------------------------------------ 
    Mathprof |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       MTHID |   2.115636   .0654657    32.32   0.000     1.987326    2.243947 
-------------+---------------------------------------------------------------- 
     /phi1_1 |          1          .        .       .            .           . 
     /phi1_2 |   .8808938    .012357    71.29   0.000     .8566745     .905113 
     /phi1_3 |    .750083   .0126924    59.10   0.000     .7252063    .7749598 
     /phi1_4 |   .5680588   .0152125    37.34   0.000     .5382429    .5978746 
     /phi1_5 |   .3290306   .0223091    14.75   0.000     .2853056    .3727555 
     /phi1_6 |          0  (base outcome) 
-------------+---------------------------------------------------------------- 
     /theta1 |   2.039036   .0797773    25.56   0.000     1.882676    2.195397 
     /theta2 |   2.951371   .0773612    38.15   0.000     2.799746    3.102997 
     /theta3 |    3.11343   .0771105    40.38   0.000     2.962297    3.264564 
     /theta4 |   3.119226   .0771187    40.45   0.000     2.968076    3.270376 
     /theta5 |   2.001495   .0800912    24.99   0.000     1.844519    2.158471 
     /theta6 |          0  (base outcome) 
------------------------------------------------------------------------------ 
(Mathprof=5 is the base outcome) 
. fitstat 
 
Measures of Fit for slogit of Mathprof 
 
Log-Lik Full Model:         -32488.069   D(21148):                    64976.139 
Wald X2(1):                   1044.369   Prob > X2:                       0.000 
AIC:                             3.072   AIC*n:                       64998.139 
BIC:                       -145654.148                               
BIC used by Stata:           65075.737   AIC used by Stata:           64996.139 

 
Figure 3. The Stereotype Logistic Regression model: Single Predictor, Math Identity 
 
 
 

Recall that ϕj is a list of ordinality constraints with the first constraint = 1 and 
the last one = 0, and it satisfies the condition 1 = ϕ1 > ϕ2 > ϕ3 > … ϕJ−1 > ϕJ = 0. 
The estimated ϕjs in the model were as follows: 1, .881, .750, .568, .329, and 0, 
which were used to ensure the ordering of the mathematics proficiency level.  

The odds ratio of being in a category j versus the baseline category J was 
obtained by taking the exponential of [(αj − αJ)−(ϕj − ϕJ)β]. Since the baseline 
category J was the mathematics proficiency level 5 in the model, the estimated αJ 
and ϕJ were 0, and then the equation could be simplified to be (αj − ϕjβ). By 
exponentiating (−ϕjβ), we got the odds ratio of being a category j versus the baseline 
J for a unit change in a predictor variable. In this model, the odds ratio of being in 
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mathematics proficiency level 0 compared to being in level 5, 
OR(0,5) = e(−1*2.116) = e(−2.116) = .121. This indicated that for a unit increase in math 
identity the odds of being in mathematics proficiency level 0 compared to being the 
baseline category 5 decreased by a factor of .121. In other words, students were 
more likely to be in the highest proficiency level 5 rather than being in level 0 when 
students had higher level of math identity. 

Since ϕ2 = .881, the odds ratio of being in mathematics proficiency level 1 
compared to being in level 5, OR(1,5) = e(−.881*2.116) = e(−1.864) = .155. Since ϕ3, ϕ4, 
and ϕ5 were .750, .568, and .329, respectively, the odds ratio of being in the other 
proficiency levels compared to being in the baseline level were calculated in the 
same way. OR(2,5), OR(3,5) and OR(4,5) were .205, .301, and .498 respectively. 

The odds of being in the baseline category J, relative to a particular category 
j, is the inverse of the odds of being in that category versus the baseline category. 
To estimate the odds of being in the baseline category relative to a particular 
category, we just need to change the signs before the cutpoints and the estimated 
logits in the equation (6). The modified logit equation, 
logit[π(J, j | mthid)] = −αj + ϕj × 2.116(mthid). By exponentiating (ϕjβ), we get the 
odds ratio of being in the baseline category J versus any other category for a one 
unit change in a predictor variable. 

OR(5,0) = e(1*2.116) = 8.295, indicating that the odds of being in the 
proficiency level 5 relative to the level 0 were 8.295 times greater with one unit 
increase in math identity. The odds ratio of being in the baseline level 5 compared 
to being in level 1, OR(5,1) = e(.881*2.116) = e(1.864) = 6.449. The ORs of being the 
baseline category versus the other three categories were computed in the same way, 
and they were 4.889, 3.326, and 2.006, respectively. 

The Full Stereotype Logistic Regression Model with Four Predictor 
Variables 

Next, the full SL model with all four predictor variables was fitted. Figure 4 and 
Table 4 provide the results of the full SL model. The Wald Chi-Square test, Wald 
χ2(4) = 1145.98, p < .001, indicating that the full model provides a better fit than the 
null model. The AIC statistic was 3.034, and the AIC used by Stata was 54156.535. 
BIC was −120458.025, and the corresponding BIC used by Stata was 54257.800.  
 
 
  



STEREOTYPE LOGISTIC REGRESSION MODELS 

540 

. slogit Mathprof  MTHID MTHEFF SCHBEL SCHENG, dim(1) nolog 
 
Stereotype logistic regression                    Number of obs   =      17848 
                                                  Wald chi2(4)    =    1145.98 
Log likelihood = -27065.267                       Prob > chi2     =     0.0000 
 
 ( 1)  [phi1_1]_cons = 1 
------------------------------------------------------------------------------ 
    Mathprof |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       MTHID |   1.654606   .0622347    26.59   0.000     1.532628    1.776584 
      MTHEFF |    .530026   .0485596    10.91   0.000     .4348509    .6252012 
      SCHBEL |   .2235734   .0400664     5.58   0.000     .1450447     .302102 
      SCHENG |   .6247203   .0436208    14.32   0.000     .5392251    .7102154 
-------------+---------------------------------------------------------------- 
     /phi1_1 |          1          .        .       .            .           . 
     /phi1_2 |   .8486203   .0129488    65.54   0.000     .8232411    .8739996 
     /phi1_3 |   .7215881   .0131181    55.01   0.000     .6958772     .747299 
     /phi1_4 |   .5239136   .0154778    33.85   0.000     .4935777    .5542495 
     /phi1_5 |    .298745   .0214996    13.90   0.000     .2566065    .3408835 
     /phi1_6 |          0  (base outcome) 
-------------+---------------------------------------------------------------- 
     /theta1 |   1.778747    .084659    21.01   0.000     1.612819    1.944676 
     /theta2 |   2.858481   .0808379    35.36   0.000     2.700042    3.016921 
     /theta3 |   3.084861   .0804567    38.34   0.000     2.927169    3.242553 
     /theta4 |   3.104532   .0804757    38.58   0.000     2.946803    3.262262 
     /theta5 |   2.000653   .0836264    23.92   0.000     1.836748    2.164558 
     /theta6 |          0  (base outcome) 
------------------------------------------------------------------------------ 
(Mathprof=5 is the base outcome) 
 
. fitstat 
 
Measures of Fit for slogit of Mathprof 
 
Log-Lik Full Model:         -27065.267   D(17834):                    54130.535 
Wald X2(4):                   1145.978   Prob > X2:                       0.000 
AIC:                             3.034   AIC*n:                       54158.535 
BIC:                       -120458.025                               
BIC used by Stata:           54257.800   AIC used by Stata:           54156.535 

 
Figure 4. The Stereotype Logistic Regression model: Full Model 
 
 
 

Compared with the single-variable SL model (see Table 4), both AIC and AIC 
by Stata indicated that the full-model fitted the data better (3.034 and 54156.535, 
respectively for the full-model vs. 3.072 and 64996.139, respectively for the single 
model). This result was also supported by the model comparison using the BIC and 
BIC by Stata. 

Compared with the PO model (AIC = 3.043, and AIC used by Stata = 
54315.508), the full SL model also had a better fit, which indicated that the SL 
model was a better choice when the proportional odds assumption was untenable 
in the PO model. 

The logit effects of all four predictor variables on mathematics proficiency 
were significant. Similar to that in the single variable SL model, the estimated logit 
regression coefficient for math identify (mthid), β = 1.655, z = 26.59, p < .001; the 
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logit coefficient for mathematics self-efficacy (mtheff), β = .530, z = 10.91, 
p < .001; the logit coefficient for school belonging (schbel), β = .224, z = 5.58, 
p < .001; and finally, for school engagement (scheng), β = .625, z = 14.32, p < .001. 
These logit coefficients compared the probabilities of being in the baseline category 
versus the lowest category. The all four predictor variables were positively 
associated with the odds of being in the baseline level 5 compared to the level 0. In 
terms of odds ratio (OR), the odds of being in the baseline proficiency level 5 versus 
the level 0 increased by a factor of 5.231 with a one unit increase in math identity; 
they increased by a factor of 1.699 for a one unit increase in mathematics self-
efficacy; they increased by a factor of 1.251 for school belonging; and finally they 
increased by a factor of 1.868 for school engagement, holding the effects of the 
other variables constant. 
 
 
Table 4. Results of the Single-Variable SL Model and the Full SL Model 
 

 Single-Variable Model  Full Model  
Variable b (se(b)) OR b (se(b)) OR 

α1 2.039 (.080)  1.779 (.085)  
α2 2.951 (.077)  2.858 (.081)  
α3 3.113 (.077)  3.084 (.080)  
α4 3.119 (.077)  3.104 (.080)  
α5 2.001 (.080)  2.000 (.084)  
α6 0 (base)  0 (base)  
ϕ1 1  1  
ϕ2 .881 (.012)  .849 (.013)  
ϕ3 .750 (.013)  .722 (.013)  
ϕ4 .568 (.015)  .524 (.015)  
ϕ5 .329 (.022)  .299 (.022)  
ϕ6 0  0  

MTHID 2.116 (.065)** 8.295 1.655(.062)** 5.231 
MTHEFF   .530 (.049)** 1.699 
SCHBEL   .224 (.040)** 1.251 
SCHENG   .625 (.044)** 1.868 
Model Fit χ21 = 1044.37**  χ24 = 1145.98**  

AIC 3.072  3.034  
AIC by Stata 64996.139   54156.535   
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Just as the single-predictor SL model, by exponentiating (ϕjβ) for each of the 
four predictor variables, we obtain the odds of being in the baseline category J 
versus any other category. Table 5 shows the odds comparing the baseline category 
and the other categories for all four predictor variables.  
 
 
Table 5. Odds ratios for all four predictor variables across five comparisons (Y = J vs. 
Y = j) 
 

Category 
Comparison Y=5 vs. Y=0 Y=5 vs. Y=1 Y=5 vs. Y=2 Y=5 vs. Y=3 Y=5 vs. Y=4 

Variables   OR OR OR OR OR 
mathid 5.231 4.072 3.3 2.379 1.639 
mtheff 1.699 1.568 1.466 1.32 1.172 
schbel 1.251 1.209 1.175 1.124 1.069 
scheng 1.868 1.699 1.57 1.387 1.205 

 

Conclusions 

The use of stereotype logistic models was used to estimate ordinal mathematics 
proficiency using Stata when the proportional odds assumption is not upheld. The 
PO model with Stata was fitted first for the preliminary analysis, and then the 
proportional odds assumption was tested. The results of the Brant test indicated that 
the proportional odds assumption was violated. We then fitted the SL models 
starting from a single-variable model to the full model with four predictor variables. 
Finally, results of the PO model and the SL model were interpreted and compared. 

Compared to the PO model, it is found that the SL model is a better option 
when the proportional odds assumption is untenable. The SL model not only relaxes 
the PO assumption but also ensures the ordinal information of the categorical 
variable by putting an ordinality constraint on the estimated coefficients. 

It should be noted that the interpretations of the odds ratios in the PO model 
and the SL model are different. While the PO models estimate the cumulative odds 
of being at or below a particular category relative to above that category, the SL 
models estimate the odds of being at a category relative to the baseline category. In 
addition, to calculate the odds ratios in the SL model, we need to take both the 
ordinality constraints and the logit coefficients into consideration. In other words, 
we need to take the exponential of the product of the ordinality constraints and the 
coefficients. 
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Alternative to the SL model, another option dealing with the violation of the 
proportional odds assumption is the partial proportional odds (PPO) model or the 
generalized ordinal logit model. Interested researchers may refer to Peterson and 
Harrell (1990) for theories of the PPO model, Fu (1998), Liu and Koirala (2012), 
and Williams (2006) for the illustration of both models using Stata, and O’Connell 
(2006), and Stoke, Davis and Koch (2000) for the illustration of the PPO model 
using SAS. 

Because the SL model is not widely available in other statistical software 
packages, the focus was only on the illustration of the use this model in Stata. Future 
research will be extended to other software packages once they make the SL model 
available. It is our hope that researchers could familiarize with the SL model and 
apply it correctly in their own research. 
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