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CHAPTER I: CREBH, a Liver Transcription Factor and More 

Introduction 

Circadian rhythms are biological processes that exhibit endogenous oscillations 

over a 24-hour light-dark cycle and are entrainable by internal and external stimuli. 

Circadian rhythms are generated at the level of gene transcription by a network of clock-

controlled genes (CCGs) that form an autoregulatory feedback loop. Genes that are 

directly regulated by the CLOCK/BMAL1 core circadian transcription complex are referred 

as first-order CCGs (Hughes, DiTacchio et al. 2009). The CLOCK/BMAL1 heterodimer 

drives circadian expression of many other transcription factors, thereby extending and 

enhancing other circadian regulatory functions. Local rhythms in peripheral organs, such 

as the liver, are synchronized by master clock oscillators located in the suprachiasmatic 

nuclei (SCN) of the anterior hypothalamus (Reppert and Weaver 2001). Circadian 

oscillators in peripheral organs respond differently to entraining signals and control 

different physiological outputs. 

Dysregulation of circadian rhythm is closely associated with the development of 

human metabolic disease, such as obesity and type-2 diabetes. The intimate and 

reciprocal interaction between the circadian clock system and fundamental metabolic 

pathways  has demonstrated by many studies (Green, Takahashi et al. 2008; Bass and 

Takahashi 2010; Feng and Lazar 2012; Hatori, Vollmers et al. 2012). Survey of nuclear 

receptor mRNA profiles in metabolic tissues suggested that approximately half of the 

known nuclear receptors or transcriptional regulators exhibit rhythmic expression (Yang, 

Downes et al. 2006). BMAL1-binding sites are associated with carbohydrate and lipid 
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metabolism (Rey, Cesbron et al. 2011) has been revealed by genome-wide and phase-

specific DNA-binding rhythms for the core circadian transcriptional oscillators. In the liver, 

nuclear receptors or transcription factors are inducible by metabolites or hormones, and 

therefore, may serve as direct links between metabolic pathways and the circadian control 

of gene expression. For example, the nuclear receptor PPARα, which binds fatty acid 

ligands, and the core clock regulator BMAL1 reciprocally regulate each other to provide 

a feedback loop that integrates lipid metabolic processes to circadian oscillations (Inoue, 

Shinoda et al. 2005; Oishi, Shirai et al. 2005; Canaple, Rambaud et al. 2006). The clock-

controlled nuclear receptors REV-ERBs are key regulators of circadian lipid biosynthesis 

in the liver, and ablation of REV-ERBs causes hepatic steatosis through de-repression of 

lipogenesis (Feng, Liu et al. 2011; Bugge, Feng et al. 2012). PPARγ coactivator-1α (PGC-

1α) also serves a link between the clock and energy metabolism, as PGC-1α varies 

rhythmically and has been shown to stimulate expression of Bmal1 and nuclear receptors 

of the ROR family (Liu, Li et al. 2007). Furthermore, recent publications implicate that the 

circadian clock synchronizes distinct signaling pathways, which play important roles in 

circadian metabolism at the translational or post-transcriptional level (Cretenet, Le Clech 

et al. 2010; Mauvoisin, Wang et al. 2014). For example, the circadian clock synchronizes 

the rhythmic activation of the primary endoplasmic reticulum (ER) stress sensor IRE1α 

(Cretenet, Le Clech et al. 2010).  The disruption of rhythmic activation of the IRE1α 

pathway which leads to impaired lipid metabolism through aberrant activation of the 

sterol-regulated SREBP transcription factors is related to circadian clock malfunction. 

We recently reported that an ER-tethered, liver-enriched transcription factor, 

named CREBH, regulates energy homeostasis under metabolic stress. The expression 
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and activation of CREBH in the liver are influenced by a variety of inflammatory and 

metabolic signals, such as the pro-inflammatory cytokine TNFα, saturated fatty acids, 

insulin, fasting stress, and atherogenic high-fat diets (Zhang, Shen et al. 2006; Zhang, 

Wang et al. 2012). Activated CREBH serves as a multifaceted activator of transcription 

that induces expression of the genes involved in hepatic acute-phase response, fatty acid 

(FA) oxidation, lipolysis, lipogenesis, and gluconeogenesis (Lee, Chanda et al. 2010; Lee, 

Giannikopoulos et al. 2011; Zhang, Wang et al. 2012; Kim, Mendez et al. 2014). Non-

alcoholic steatohepatitis (NASH) and hypertriglyceridemia when fed an atherogenic high-

fat diet are profoundly developed in CREBH-null mice (Zhang, Wang et al. 2012). In 

humans, patients with hypertriglyceridemia exhibit a high-rate of functional mutations of 

the CREBH gene (Lee, Giannikopoulos et al. 2011). More recently, we demonstrated that 

CREBH and PPARα function as binary transcriptional activators to regulate production of 

fibroblast growth factor 21 (FGF21), a hepatic hormone that regulates whole body energy 

homeostasis under metabolic stress (Kim, Mendez et al. 2014). 

In this study, we demonstrate that CREBH is an organ-specific, diurnal regulator 

of energy metabolism (Figure 1). CREBH plays an indispensable role in maintaining 

glucose and lipid homeostasis under circadian control by regulating expression of the 

genes involved in bi-directional metabolic pathways of both energy storage and utilization. 

Loss-of-function of CREBH in mice leads to impaired rhythmic profiles of lipid and glucose, 

hyper-locomotion, and time-shifted feeding behavior. Our finding that CREBH functions 

as a liver metabolic circadian oscillator therefore has important implications in the 

understanding of the molecular basis of circadian metabolism and the prevention and 

treatment of metabolic disorders. 
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Figure 1. Major conclusions of this dissertation.  
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CREBH Gene Structure and Functions 

The human CREBH gene is located at19p13.3 and spans 19,420 bp of genomic 

DNA. It has 10 constitutive exons encoding a 2586 bp mRNA transcript, with a 1385 bp 

open reading frame. The mouse CrebH gene is located at chromosome 10qC1 and spans 

14540 bp of genomic DNA. It has 12 constitutive exons encoding a 2283 bp mRNA 

transcript, with a 1439 bp open reading frame (Figure 2).  

 

Figure 2. Domain scheme of human and mouse CREBH.  
TA, transcriptional activation domain; bZIP, basic leucine zipper domain; Tm, 
transmembrane domain; bp, nucleotide base pair number of the mRNA. 
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CREBH is a b-ZIP transcription factor conserved from Caenorhabditis elegans (C. 

elegans) to human, and it is primarily expressed in hepatocytes, the parenchymal cell in 

liver, as well as in small intestine and stomach tissues at lower expression levels (Omori, 

Imai et al. 2001; Zhang, Shen et al. 2006; Fabbrini, Sullivan et al. 2010). In response to 

regulated intramembrane proteolysis (RIP) induced by ER stress, acute inflammation, 

and hepatic metabolic stress, CREBH can be translocated from ER membrane to Golgi, 

cleaved by site-1 protease (S1P) and site-2 protease (S2P), and then trafficked into the 

nucleus (Brown, Ye et al. 2000; Stirling and O'Hare 2006; Zhang, Shen et al. 2006; Zhang, 

Wang et al. 2012). Under normal conditions, CREBH protein is regulated by the ER-

associated degradation (ERAD) pathway, and both full-length and cleaved CREBH have 

half-lives of less than 1 or 2 hours (Bailey, Barreca et al. 2007). The full-length CREBH 

protein molecular weight is ~75kDa. The cleaved 50 kDa CREBH fragment is gradually 

increased in the nuclear fraction (Zhang, Shen et al. 2006) after ER stress challenge. 

Several domains have been characterized, including transcriptional activation (TA) 

domain, basic leucine zipper (bZIP) domain, transmembrane (Tm) domain, and ER 

luminal domain (Chan, Kok et al. 2011). The interactions between CREBH and other bZIP 

domain-containing transcription factors have been reported by previous studies. CREBH 

forms a homodimer, or a heterodimer with activating transcription factor 6 (ATF6) through 

the bZIP dimerization domain to activate the expression of acute phase response (APR) 

genes, serum amyloid P-component (SAP), and C-reactive protein (CRP) upon ER stress 

(Zhang, Shen et al. 2006). CREB-Zhangfei (CREBZF), as known as SMILE, repressively 

heterodimerizes with CREBH through the bZIP domain and inhibits CREBH-mediated, 

but not ATF6-mediated, transcriptional activity. This inhibitory effect is achieved by 
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competing with the CREBH binding ability to peroxisome proliferator activated receptor 

gamma coactivator 1 alpha (PGC1α) (Misra, Chanda et al. 2011). Unlike ATF6, the ER 

luminal tail of CREBH is not required for Golgi translocation, and it does not bind to BiP 

(Llarena, Bailey et al. 2010). However, the N-linked glycosylation at the C-terminus of 

CREBH ER luminal domain is required for the stress-induced cleavage and nuclear 

transport (Chan, Mak et al. 2010).  

In rodent models, the expression of CREBH can be greatly induced after 16 hours 

fasting in the wild-type (WT) mouse liver (Lee, Chanda et al. 2010; Lee, Giannikopoulos 

et al. 2011; Zhang, Wang et al. 2012), and in the liver tissue from db/db mice with insulin 

resistance (Lee, Chanda et al. 2010). Interestingly, enhanced CREBH activation by 

proteolysis without changing the CrebH mRNA level has been reported in the wild-type 

mice fed an AHF diet for 6 months, which developed significant insulin resistance and 

non-alcoholic steatohepatitis (NASH) (Zhang, Wang et al. 2012). This indicated a possible 

adaption stage for CREBH expression after chronic high-fat dietary stress. 

Many hepatocyte-enriched genes are transcriptionally regulated by CREBH. 

Hepcidin, as well as the APR genes, SAP and CRP, are transcriptionally up-regulated by 

CREBH upon ER stress (Zhang, Shen et al. 2006) (Figure 3). CREBH is also required to 

activate the expression of the genes encoding functions involved in de novo lipogenesis, 

fatty acid (FA) elongation and oxidation, triglyceride (TG) and cholesterol biosynthesis, 

lipolysis, and lipid transport in liver. In hepatocytes, CREBH binds to the promoter of Fgf21, 

apolipoprotein A-IV (Apoa4), apolipoprotein A-II (ApoC2), phosphoenolpyruvate 

carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc) and activates their 

transcriptions in response to fasting-induced TG lipolysis and gluconeogenesis (Lee, 
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Chanda et al. 2010; Lee, Giannikopoulos et al. 2011; Zhang, Wang et al. 2012). CREBH 

also activates transcriptions of other TG lipolysis regulators Apoa5, Apof, Lcat, Scp2, 

Acot4, and G0s2, lipid droplet formation regulator Cidec, FA elongation enzymes Elovl2, 

Elovl5, Elovl6, and Pecr, FA oxidation or cholesterol synthesis enzymes Cpt1a, Cyp4a10, 

Cyp4a14, Cyp2b9, Cyp2b13, Fads1, Fads2, Acox1, Pparα, Dhcr24, and Acs1, and TG 

synthesis enzymes Fasn, Acc1, Acc2, Scd1, and Dgat2 (Lee, Giannikopoulos et al. 2011; 

Zhang, Wang et al. 2012).  

Recent studies indicated association between CREBH and liver-related disorders 

in human. The increased CrebH mRNA levels were found in liver biopsy samples of 

chronic infection of hepatitis C virus (HCV) which can either directly induce hepatic 

steatosis, or promote existing steatosis with fibrosis (Yoon and Hu 2006; Asselah, Bieche 

et al. 2010). The association between multiple non-synonymous single nucleotide 

polymorphism (SNP) mutations in CREBH N-terminal region with hypertriglyceridemia 

was recently reported (Lee, Giannikopoulos et al. 2011; Johansen and Hegele 2012).  

Taken together, CREBH is an important regulator of hepatic acute-phase 

inflammation, fatty acid oxidation, lipogenesis, lipolysis, and gluconeogenesis under 

metabolic stress conditions, and the dysfunction of CREBH is associated with the 

pathogenesis of NASH, hypertriglyceridemia, and insulin resistance. Despite of this 

progress, the general mechanism by which CREBH regulates the different metabolic 

pathways remains unclear. 
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Figure 3. CREBH-mediated signaling pathways. 

  



10 
 

   

Transcriptional Regulation of CREBH 

Transcription of CREBH is regulated by c-Jun in response to the activation of 

cannabinoid 1 receptor (CB1R) (Chanda, Kim et al. 2011), as well as hepatocyte nuclear 

factor 4α (HNF4α), which is a nuclear hormone receptor involved in the determination of 

hepatocyte differentiation (Fabbrini, Sullivan et al. 2010) (Figure 3). The peroxisome 

proliferator-activated receptor alpha (PPARα) agonist up-regulates CREBH expression in 

both mouse and human hepatocytes (Rakhshandehroo, Hooiveld et al. 2009). PGC1α, 

the transcriptional co-activator of PPARγ for the lipid metabolism, also enhances CREBH 

expression in primary hepatocytes (Lee, Chanda et al. 2010). Increased FA uptake 

activates CREBH expression in hepatocytes in vitro (Gentile, Wang et al. 2010; Zhang, 

Wang et al. 2012), and this increased transcription can be blocked by insulin signals 

(Gentile, Wang et al. 2010). Interestingly, the chronic AHF diet significantly promoted 

CREBH activation without affecting the transcription levels (Zhang, Wang et al. 2012). 

This suggests an adaptation of the transcription of CREBH, but an accumulation of 

cleaved CREBH protein level after chronic metabolic stress. After chronic AHF diet, 

CREBH-null mice display hypertriglyceridemia and massive accumulation of hepatic TG 

compared to the WT mice (Lee, Giannikopoulos et al. 2011; Zhang, Wang et al. 2012). 

On the other hand, fasting, which can lead to acute hepatic steatosis, FA oxidation, 

lipolysis and gluconeogenesis, can significantly induce both mRNA transcription and 

protein activation of CREBH (Lee, Chanda et al. 2010; Zhang, Wang et al. 2012). All 

these observations suggest that CREBH is an important hepatic metabolic regulator. 
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CHAPTER II: Identification of CREBH as a clock-regulated 
regulator in liver 

Summary 

Circadian rhythm is the biological oscillation on the scale of 24 hours observed in 

most living creatures on earth. The peripheral organs, such as liver and kidney, are known 

to have local rhythms synchronized by the master clock oscillators located in the 

suprachiasmatic nuclei (SCN) of the anterior hypothalamus to orchestrate rhythmic 

physiology and behavior (Reppert and Weaver 2001). Approximately 2%-10% of all 

genes exhibit circadian oscillations according to several microarray analyses for gene 

expression in Drosophila, honey bees and mouse (Akhtar, Reddy et al. 2002; Lin, Han et 

al. 2002; Duffield 2003; Keegan, Pradhan et al. 2007; Hughes, DiTacchio et al. 2009; 

Doherty and Kay 2010; Rodriguez-Zas, Southey et al. 2012). Those genes are 

categorized as clock-controlled genes (CCGs). The genes that are directly regulated by 

the core circadian transcription factors CLOCK/BMAL1 heterodimer are referring to as 

first-order CCGs. The second-order CCGs are defined as rhythmic genes regulated by 

the first-order CCGs which are also transcription factors (Hughes, DiTacchio et al. 2009; 

Lee and Sancar 2011). The hepatic metabolic homeostasis is regulated by rest-activity 

cycle and feeding behavior, and it is coordinated by neural, hormonal and behavioral 

signals (Stokkan, Yamazaki et al. 2001). Till now, several ER membrane-localized hepatic 

metabolic regulators were found to be regulated by circadian clock, such as the activation 

of IRE1α–XBP1 and SREBP-Insig2 pathways (Le Martelot, Claudel et al. 2009; Cretenet, 

Le Clech et al. 2010). The role of circadian clock in liver metabolism is critical and 

fundamental in controlling nutrient and energy homeostasis (Li and Lin 2009; Maury, 
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Ramsey et al. 2010). However, the communication between liver local clock and the 

central clock for the synchronization of molecular oscillation still remain unclear. 

In this dissertation, I first answered the questions of whether circadian clock 

regulates the expression of CREBH in liver, and its proteolytic activation process. We 

established animal models for circadian study by using CREBH-null and WT control mice, 

and we found both CREBH expression and its proteolytic activation exhibit significant, but 

distinct, circadian rhythmic patterns. Interestingly, although BMAL1 directly regulates 

CREBH transcription in liver under normal physiological condition, other regulatory 

mechanisms may be also involved in CREBH expression and activation under stresses, 

such as prolonged fasting. 

The transcriptional activation of CREBH mediated by circadian rhythm represents 

an elegant signal transduction network. Delineation of this regulatory network increased 

our understanding of the fundamental process and the synchronization of the liver local 

clock and the hepatic metabolic pathways. CREBH protein requires activation, 

inactivation, and degradation processes in response to the different circadian clock-

controlled physiological events. Identification of the regulatory mechanism of CREBH 

activity and the sensing mechanism for the different circadian physiological events are 

important addition to the knowledge of hepatic circadian metabolic regulation. Based on 

these findings, the CREBH rhythmic gene regulation networks could be exploited as novel 

therapeutic targets that modulate hepatic lipid and glucose homeostasis under circadian 

rhythm disruption and metabolic syndromes.  
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Materials and Methods 

Animal model 

All animal experiments were performed with the approval of the Institutional Animal 

Care and Use Committee (IACUC) of the Wayne State University. Male wild-type and 

CREBH knockout C57BL6 mice of 4-month-old were housed in 12-hour light/12-hour dark 

(LD) cycles with free access to food and water for at least 2 weeks before switching to 

constant darkness (DD) for 24 hours to allow endogenous clocks to free run. Mice were 

euthanized with isoflurane followed by rapid cervical dislocation. Liver samples from 3-5 

mice per time point per genotype group were collected in constant darkness every 4 hours 

for a 24-hour period. Circadian time 0 (CT0) is the onset of light phase. CT is shown in 

hours. 

Quantitative real-time reverse-transcription PCR (qRT-PCR) analysis 

Total RNAs from mouse livers were isolated using TRIzol reagent (Invitrogen) 

according to the manufacturer’s instruction. RNA was reverse-transcribed into cDNA 

using a High-capacity cDNA Reverse Transcription Kit (Invitrogen). For quantitative real-

time PCR analysis, the reaction mixture containing cDNA template, primers, and SYBR 

Green PCR Master Mix (Applied Biosystems) was run in a 7500 Fast Real-time PCR 

System (Applied Biosystems, Carlsbad, CA). The sequences of real-time PCR primers 

used in this study are described in Table 1. Fold changes of mRNA levels were 

determined after normalization to internal control Arbp (acidic ribosomal phosphoprotein 

P0) mRNA levels.  
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Table 1. Primers for gene expression qPCR. 

  

Target region Organism 5'- Sequence -3'
Product 

length

ccgatctgcagacacacact

accctgaagtgctcgacatc

gctgctggaggacggttaca

cacaggtccccaggatgttg

TGTGCGATGATGATTCGTGA

GGTGAAGGTACGTTTGGTTTGC

ctactggctccctcacccagga

gacactcggctgctgtcttcca

ACTCCTGCAGGTTTAGCCGA

GGTCCCGCTCATTTTGGACA

AGATGCGGCTAGTGGCAAAG

CAGTTCCTTGACCCCAGCAT

CTGTCACCTGTGAGACCGGA

AGATGACGTTCAAACACCGGAA

CAGTAACCTGGTGAAGCTGGA

GCCAGACATGCTGGATCTCAT

GTGTCAGAGCCCGTGTCCG

AGGACTCTCTCATCCCCTCGT

GAGCAGAACCACGATAACCCA

AGGACTTCAGCCTCTCATCC

CAGGCACGTGAAAGAAAAGCA

GCCGTCTTCTGTGTGACTGA

GCAACTACAGTGGCCCTTTG

TCCACAGGATTTGACTGGGG

GGGAACTTAGAGGAGAGCCAAG

CCATGTTGGATGGATGTGGC

GCAATCCGGATCAAACGTGG

CCCGGCTGACAGTTACACG

ACTTTTCCTTAACGTGGGCCT

AGCATGTCTTCGATGTCGTTCA

ACGCGACAGTTTTGGTAGAGG

AACTCCGTTGCAGAATCAGGA

Comt Mus 187

E4bp4  

Clock

Lxra  Mus 117

118

Srebf1  Mus 147

Bmal1 Mus

Cebpb Mus 74

Arbp Mus

G6pc Mus 147

Bdh1  Mus 148

Hnf4a Mus 126

70MusPer2

Fgf21

RevERBa Mus 177

90

Mus 95

Acc1 Mus

Mus 118

Ppara  Mus 145

142

Mus 108
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Immunoblotting analyses 

Total cell lysates were prepared from mouse livers or cultured cells using IPA cell 

lysis buffer (1% NP-40; 50mM Tris-HCl, pH 8.0; 150mM NaCl; 5mM NaF; 1mM sodium 

vanadate; 0.5% sodium deoxycholate; 0.1% SDS) supplemented with protease inhibitor 

cocktail (Sigma, P2714). Protein concentration of the whole lysates was determined using 

a Bradford assay (Bio-Rad). Denatured proteins were separated by SDS-PAGE on 8-15% 

Tris-glycine polyacrylamide gels and transferred to a 0.45-mm PVDF membrane (GE 

Healthcare). Membrane-bound antibodies were detected using an enhanced 

chemiluminescence (ECL) detection reagent (GE Healthcare) and Bio-Rad imaging 

system. Levels of β-actin, tubulin, or GAPDH were determined as loading controls. The 

signal intensities were determined by Quantity One 4.6.7 (Bio-Rad). A rabbit polyclonal 

CREBH antibody has been developed in our laboratory and was used to detect the 

endogenous CREBH protein levels from mouse liver tissue (Kim, Mendez et al. 2014). 

The commercially available antibodies were used to detect endogenous protein levels of 

C/EBPβ, E4BP4, G6PC, FADS2, CPT1α, BDH1, ApoA4 (Santa Cruz Biotech), LXRα 

(Invitrogen), HNF4α (Invitrogen), SREBP1c (Thermo Scientific), CLOCK (Cell Signaling), 

BMAL1 (Novus Biologicals), PPARα (Millipore), PCK1 (Sigma), ACC1 (Epitomics), 

FGF21 (R&D Systems), β-actin (Sigma), tubulin (Sigma), and GAPDH (Sigma), 

respectively, in mouse liver lysates. 

Preparation of membrane and nuclear protein fractions 

Cellular membrane and nuclear protein fractions were prepared from mouse liver 

tissues utilizing a Subcellular Protein Fractionation Kit (Thermo Scientific) according to 

the manufacturer’s instruction. Male wild-type C57BL6 mice of 4-month-old were housed 

in 12-hour light/12-hour dark (LD) cycles with free access to food and water for at least 2 
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weeks before switching to constant darkness (DD) for 24 hours to allow endogenous 

clocks to free run. Liver tissues were collected from the mice every 4 hours over a 24-

hour circadian cycle. Equal amounts (weight) of liver tissues from the mice at each time 

point (3 mice per time point) were pooled for the extraction of subcellular protein fractions. 

The protein concentration of each fraction was determined by using the Bradford Protein 

Assay (Bio-Rad). 

Mouse liver nuclei preparation for ChIP assays 

Mouse liver tissues were homogenized using a Teflon pestle in 1:10 (w:v) of ice-

cold NP-40 Lysis Buffer supplemented with protease inhibitor cocktail. The liberation of 

nuclei was monitored by DAPI staining and fluorescence microscopy. To purify the intact 

nuclei, lysates were then layered over 1M (bottom) and 0.68M (top) of sucrose, and spun 

at 4620 g for 30 minutes at 4°C. Following a washing step, nuclear pellets were cross-

linked with 1% fresh formaldehyde in PBS for 10 minutes at room temperature. Cross-

linking was terminated by addition of 200mM Tris-HCl (pH 9.4) and 1mM DTT for 10 

minutes and centrifuged at 1160 g for 15 minutes at 4°C. Nuclear pellets were suspended 

in SDS lysis buffer containing protease inhibitors, incubated for 10 minutes on ice, and 

sonicated in a cold-water bath using chiller circulator-equipped Bioruptor Sonication 

Device (Diagenode) (Kapatos, Vunnava et al. 2007; Kfoury and Kapatos 2009). 

ChIP assays with mouse liver chromatin 

Mouse liver chromatin was fragmented to an average size of 500 bp by sonication 

(see above), and then cleared of debris by centrifugation at 20000 g for 30 minutes at 

8°C. The supernatant was harvested and diluted 10-fold with ChIP Dilution Buffer (0.01% 

SDS; 1.1% Triton X-100; 1.2 mM EDTA; 167 mM NaCl; 16.7 mM Tris-HCl, pH8.0). 

Approximate 10 μg of fragmented chromatin was pre-cleared by incubating with 2μg/mL 
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of rabbit IgG (Santa Cruz) for 1 hour at 4°C, followed by 1 hour of incubation with 50 μL 

protein G agarose (Invitrogen) at 4°C with rotation. BMAL1- or CREBH-binding 

complexes were pulled down by using 2 μg/mL of a rabbit anti-BMAL1 antibody (Novus 

Biologicals, NB100-2288) or the rabbit anti-CREBH antibody developed in our laboratory 

(Kim, Mendez et al. 2014). As controls, the pre-cleared chromatin samples were pulled 

down using a rabbit anti-HA antibody (2μg/mL). Immunoprecipitated chromatin fragments 

were reverse cross-linked, digested by proteinase K, and purified using QIAquick PCR 

Purification Kit (Qiagen, Germantown, MD). Presence of BMAL1 or CREBH in gene 

promoters under different circadian phases were quantified by qRT-PCR and expressed 

relative to the input genomic DNA as previously described (Kapatos, Vunnava et al. 2007; 

Kfoury and Kapatos 2009; Shimomura, Kumar et al. 2013). The sequences of the primers 

used for the ChIP-PCR assay are described in Table 2.  
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Table 2. Primers for ChIP-qPCR. 

  

Target region Organism 5'- Sequence -3'
Product 

length

CCTAATGCAGGTGCAAAGGC

TGTAGGAGCAAAGCAGGAGC

ATGAGGCCAAGGGTGAACTG

AGCAGCGATAAAGGCTCTGG

CTGGGTGTGGTGGTCAGC

CCCTGCTCCAGGTGTTACAG

CTTCTCCCTCCCTCACCCC

CTTCTTGGCCCTCAGCAGTG

CGC CCT GGC CAC GGT GGA AT

CTC CGG TGC CCA GCA GGG AT

CACCTAGTGAGGTAACACAC

TCATATGTTGCTGGCTGCAC

ATTCATCAGCCCAGGGACTG

CTTGTGAAGGCAGCAGCTGT

TACGTAAATCACCCTGAACATG 

CAAGGCACAGACTGATAGCA   

CTC ACC ACA ATC CAG CTT GTA C

CCT TTA GAC CAA ACT CCT ACA C

CACACTGTTTAGGAAAGGAGGCA

CTGCTGTACTCCACTCTTTCAC

CCAGCAGGGCTTAACTCCAT

AGGATCTTTCGAAGGCCAGC

TGCTTGCCAGAGGGTCAAAT

CGTGTTTGTCATCGAACGGG

GTTGGATGTGAAGGGAGCCA

GAGGTAGTGGGCAAGCTCAG

CAGAGAAGTTTACGGGCGGA

TAAGTCCCGAGCTTGCCAAC

CAAAGAGCCTCCAGGGTGAG

CCCTGTCCCCTACCCTCTAC

AATGGGCAAAAGGGTCCTGG

CAGTCCGCGTCCTTCTCTG

ATGTCTGGGCTGGGTCTAGT

GGGCCTTGGCTTCTTCTGTA

CAATGACGCGCACCGAC

AGCGGGAGGTTTATAAGGCG

GCAGTCCCTTCACCTAACCC

CTGGACGGCAGTGTCTGATT

Mus 151

Gys2 promoter Mus 207

158

117

Apoc2 promoter Mus 154

Mus 160E-boxes on Crebh promoter

Mus 137

Mus

Fads2 promoter Mus 89

E4BP4 promoter Mus 144

Pck1 promotor

LXRa promoter Mus

Rplp0 promoter Mus 179

E-box unrelated region on 

Crebh promoter

E-box on Crebh promoter Mus

Bdh1 promoter Mus

G6P promotor

120

227

Mus

Fgf21 promotor Mus

SREBF1 promoter 75

143

88

Lipasin promoter Mus

172

Acc1 promotor Mus

Cpt1a promoter Mus

Cebpb promoter Mus 92

PPARa promoter Mus 140

96
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Statistics 

The results of experiments were analyzed by several statistical methods. Unpaired 

Mann-Whitney U test was used for non-parametric comparisons. One-way ANOVA test 

was used for parametric comparisons. Two-way ANOVA was used to distinguish the 

effects of genotypes from the effects of circadian time on gene expression, levels of 

mouse blood lipid and blood metabolites, and quantification of food intake. In all cases, p 

value less than 0.05 was used to attribute statistical significance. When multiple testing 

procedures were implemented (i.e. multiple t tests), the Bonferroni correction was used.  
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Results 

CREBH is a clock-controlled gene (CCG) in mouse liver 

Previously, we demonstrated that inflammatory metabolic stimuli induce 

expression and/or activation of CREBH in the liver (Zhang, Wang et al. 2012). To test 

whether circadian rhythm for CREBH is present in mouse liver, we examined the 24-hour 

expression profile of CREBH. Expression levels of the CrebH mRNA in the liver peaked 

at circadian time (CT) 44 and reached a trough at CT56 (Figure 4A). Expression of the 

CrebH mRNA in mouse liver exhibited a trend to increase during the late phase of daytime 

and decrease during the late phase of nighttime. We next examined levels of precursor 

and activated forms of CREBH proteins in mouse liver across the day-night cycle. 

Production of the activated CREBH protein involves translocation of CREBH precursor 

from the ER to the Golgi where it is cleaved by S1P and S2P protease (Zhang, Shen et 

al. 2006), and therefore, levels of the activated form of CREBH can be evaluated by 

examining cleaved CREBH proteins. Western blot analysis with total liver protein lysates 

from animals under the circadian cycle demonstrated that levels of CREBH precursor 

protein during the “daytime” phases were higher than those of the “nighttime” phases 

(Figure 4B). In contrast, levels of cleaved CREBH protein during the “daytime” phases 

were lower than those of the “nighttime” phases. To further delineate circadian rhythmic 

levels of CREBH precursor and activated proteins, we performed Western blot analyses 

with the membrane and nuclear protein fractions collected from pooled liver tissues of the 

mice under the circadian circle. Levels of the membrane-bound CREBH precursor protein 

peaked at CT44 and reached a trough at CT56 (Figure 4A, C-D), which is consistent with 

the rhythmic mRNA expression profile. In an opposite manner, levels of the activated, 
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nuclear CREBH protein reached a bottom at CT44 and peaked at CT56, 12 hours after 

the peak production of the CREBH precursor protein (Figure 4C-D). These data indicates 

that the expression and proteolytic activation of CREBH in the liver are both rhythmically 

regulated during the day-night cycle although they exhibit distinct circadian rhythmic 

patterns. 
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Figure 4. CREBH is a clock-controlled gene (CCG) in mouse liver 
(A-B) Circadian oscillations of the CrebH mRNA expression (A) and protein levels (B) in 
male WT mouse liver tissues collected every 4 hours over a 24-hour period in constant 
darkness (DD), determined by qRT-PCR and Western blot analyses, respectively. Fold 
changes of mRNA levels are shown by comparing to the nadir mRNA levels at CT56. 
Each point denotes the mean ± SEM (n=3). Circadian time (CT) is shown in hours. (C) 
Western blot analysis of levels of membrane-bound CREBH precursor and nuclear 
proteins in mouse livers over the circadian circle. Cellular membrane and nuclear protein 
fractions were prepared from pooled liver tissues of WT mice collected every 4 hours over 
a 24-hour circadian cycle (n=3 mice per time point). (D) Quantification of the CREBH 
precursor and nuclear protein signals in the mouse livers under the circadian clock. 
CREBH protein signals in the pooled liver membrane and nuclear protein fractions were 
determined by Western blot densitometry. Fold changes of the protein levels are shown 
by comparing the protein signals to that at CT36 (defined as 1). Three mouse liver tissue 
samples per time point were pooled for the Western blot analysis, as described in panel 
C. 
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The expression of CREBH is rhythmically regulated by BMAL1 in liver 

One of the key identifying features of clock-controlled genes (CCGs) is the 

presence within the proximal promoter of one or more canonical E-box elements that bind 

the core circadian CLOCK/BMAL1 heterodimer (Kumaki, Ukai-Tadenuma et al. 2008; 

Ukai and Ueda 2010). There are several E-box binding elements found in the mouse 

CrebH gene promoter regions (Figure 5).  

 

Figure 5. Illustration of E-boxes in mouse CrebH gene promoter region.  
Non-canonical E-boxes E1 (CACATG) and E2 (CACTGC) locate in the promoter region 
of mouse CrebH gene.  



24 
 

   

To reveal whether BMAL1 regulates CREBH expression, we first examined 

expression levels of the CrebH mRNA in liver-specific Bmal1 conditional knockout (Bmal1 

LKO) and control mouse liver samples collected every 6 hours during a 24-hour circadian 

period (Molusky, Ma et al. 2012). Expression levels of CrebH mRNA across the day-night 

period were decreased in the livers of Bmal1 LKO mice, compared to those in the control 

mouse liver (Figure 6A). To determine whether BMAL1 binds to the CrebH gene promoter, 

chromatin immunoprecipitation (ChIP)-qPCR analysis was performed on mouse livers 

from different circadian phases. ChIP-qPCR analysis demonstrated increased 

enrichment of BMAL1 in the CrebH gene E-box-containing promoter region at CT8, a time 

point when levels of the CrebH mRNA reached a nadir and began a sharp increase 

(Figure 4A, 6B-C).   
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Figure 6. CrebH is directly regulated by BMAL1 in mouse liver 
(A) Expression of the CrebH mRNA in the livers of Bmal1 LKO and flox/flox control mice 
during different circadian phases. The liver samples from Bmal1 LKO and flox/flox control 
mice were collected every 6 hours over a 24-hour circadian period. The mean expression 
values were obtained with pooled liver cDNAs from 3-5 mice per time point per genotype 
as previously described (n= 3 experimental repeats) (Molusky, Ma et al. 2012). (B-C) 
ChIP analysis of the enrichment of BMAL1 in the CrebH gene promoter in mouse liver 
under different circadian phases. Presence of the endogenous BMAL1 to the E-boxes 
(E1-E2)-containing promoter region of the CrebH gene was quantified by ChIP-qPCR (F) 
in the WT mouse livers collected from CT8 and CT20 (n=3). A non-specific region of the 
CrebH gene distal from the promoter and a housekeeping gene Rplp0 promoter were 
amplified used as negative controls of ChIP assays. Quantification of BMAL1 enrichment 
in the CrebH gene promoter at different circadian phases was determined by comparing 
ChIP-qPCR signals from the samples pulled down by the anti-BMAL1 antibody to that 
pulled down by a rabbit anti-HA antibody. Each bar donates mean ± SEM (n=3 mice per 
time point). * p< 0.05 (CT8 vs CT20). The enrichment of BMAL1 in the CrebH gene 
promoter was confirmed by ChIP-PCR (C) utilizing the same templates and primers used 
for the ChIP-qPCR analysis. 
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Interestingly, this regulatory pattern is distinct from that of typical BMAL1-regulated 

circadian genes whose expression levels are usually increased in few hours after BMAL1 

enrichment in the promoter regions. One possible explanation is that other metabolic 

trans-activators may also be involved in the transcriptional activation of the CrebH gene 

upon energy fluctuations. This is supported by the observation that the diurnal expression 

profile of the Bmal1 mRNA was distinguished from that of CrebH in the livers of wild-type 

mice (Figure 7). Under metabolic stress, such as fasting, the diurnal expression profile of 

the CrebH mRNA, but not the Bmal1 mRNA, was significantly altered (Figure 7A-B), 

indicating that CREBH is not a typical CCG. Additionally, we examined expression and 

activation of CREBH in livers of Bmal1 LKO and control mice under normal feeding 

conditions or after a 24-hour period of fasting (Molusky, Ma et al. 2012). Levels of the 

CrebH mRNA were significantly reduced in Bmal1 LKO livers under both fasting and 

feeding conditions (Figure 7C). Immunoblotting analysis shown a slight decrease in the 

precursor form of CREBH protein in the Bmal1 LKO liver, compared to the control liver, 

under both feeding and fasting conditions (Figure 7D). The cleaved/activated CREBH 

protein was however diminished in the livers of Bmal1 LKO mice under the feeding, but 

not the fasting condition. These results confirm the regulation of CREBH by BMAL1 under 

the normal physiological conditions and suggest that additional regulatory mechanisms 

are also contributing to CREBH expression and activation. 
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Figure 7. CREBH is not a typical CCG. 
(A-B) Diurnal expression profiles of the Bmal1 and CrebH mRNAs in the wild-type mice 
under feeding or fasting conditions. 3-month old wild-type mice were subjected to fasting 
or feeding for 6, 12, or 24 hours. The experiment was started at 6 pm. The groups of 
animals were euthanized to collect liver samples at 12 am, 6 am, and 6 pm, respectively. 
Expression values of mRNAs were determined by qRT-PCR and normalized to the β-
actin mRNA levels. Fold changes of mRNA levels are determined by comparing the 
expression values to that of one of the liver samples collected at 12 pm under the feeding 
condition (n=3 mice per time point under the fasting condition or 2 mice per time point 
under the feeding condition). (C-D) Levels of the CrebH mRNA (C) and protein (D) in the 
livers of Bmal1 LKO and flox/flox control mice under the feeding condition or after 16-hour 
overnight fasting. The levels of the CrebH mRNA were determined by qRT-PCR analysis, 
and the levels of the CREBH protein were determined by Western blot analysis. In A, 
expression values were normalized to the Arbp mRNA levels. Fold changes of mRNA 
levels are shown by comparing to that of one of the control mice under the feeding 
condition. Each bar donates mean ± SEM (n=4 mice per group). 
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CHAPTER III: CREBH Functions under Circadian Rhythm 

Summary 

The disruption of circadian rhythm is associated with the pathogenesis of hepatic 

and gastrointestinal metabolic syndromes, such as non-alcoholic fatty liver diseases 

(NAFLD) (Hoogerwerf 2009). CREBH transcriptionally regulated many hepatic metabolic 

enzymes involved in lipogenesis, FA oxidation, lipolysis, and gluconeogenesis (Figure 3). 

There are significant rhythmic patterns in the expression and activation of CREBH (Figure 

4). These observations enable us to hypothesize that CREBH may function as an organ-

specific clock-controlled transcription factor that coordinates different pathways under 

circadian rhythm to maintain hepatic metabolic homeostasis. By using circadian animal 

models, we found that CREBH is required to keep circadian profiles of blood triglycerides, 

fatty acids, and glucose as well as hepatic glycogen storage. Intriguingly, the expression 

levels and amplitudes of the key genes regulated by CREBH are involved in bi-directional 

metabolic pathways of both energy utilization and storage. CREBH deficiency leads to 

increased metabolic rates, hyper-locomotion, and phase-shifted feeding behavior in mice.  

These findings are significant and innovative because they indicate that the liver 

local rhythm is critical for the maintenance of hepatic lipid and glucose homeostasis. 

CREBH may sense the liver local clock and mediate the transcription of different 

metabolic pathways, such as lipolysis, lipogenesis, FA oxidation, gluconeogenesis, and 

glycogenesis in the different circadian phases. The new revealed functions of CREBH 

result in a paradigm shift regarding our understanding of the molecular basis of liver 
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circadian rhythm, hepatic lipid/glucose homeostasis, and the pathological progression of 

metabolic syndromes. 
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Materials and Methods 

Rhythmic lipid and glucose profile analyses and food intake measurement 

To profile circulating, approximate 20 μL blood serum per mouse per time point 

was collected every 6 hours for 48 hours in constant darkness from the tail vein using 

20μL K+ EDTA-containing microcapillary tubes. Blood serum TG and FFA were 

measured by colorimetric assays (BioAssay Systems, Hayward, CA). To quantify hepatic 

TG or glycogen, liver tissues from similar lobe regions of CREBH-null and WT control 

mice under the circadian clock were collected and subjected to measurements of TG and 

glycogen using commercial enzymatic kits following the manufacturer’s instructions 

(BioAssay Systems, Hayward, CA). Levels of hepatic TG or glycogen were presented 

after normalization to liver mass. The amount of animal chow left in the individual mouse 

cages was carefully measured at each time point, and serial subtraction was calculated 

for the measurement of food intake. Levels of blood glucose of the mice under constant 

darkness were measured every 6 hours for 36 hours with an OneTouch Ultra Blood 

Glucose Meter (LifeScan, Milpitas, CA). 

Histological staining and quantitative analysis of hepatic glycogen 

Periodic-acid staining of hepatic glycogen was performed according to the 

standard protocol (Zhang, Wang et al. 2012; Zheng, Xu et al. 2013). Briefly, tissue 

samples were collected from similar liver lobe regions of CREBH-null and WT control 

mice under the circadian clock and then fixed in 10% formalin. Formalin-fixed, paraffin-

embedded liver tissue was sectioned on a cryostat, and sections were deparaffinized, re-

hydrated, and oxidized in 0.5% periodic acid solution for 5 minutes. The oxidized tissue 

sections were incubated in Schiff’s reagent (Sigma) for 15 minutes. Biochemical 
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quantification of hepatic glycogen in the liver tissues of CREBH-null and WT control mice 

under the circadian clock was performed using a commercial enzymatic kit (BioAssay 

Systems, Hayward, CA) (Zhang, Wang et al. 2012; Zheng, Xu et al. 2013). Approximately 

40 mg of liver tissue from similar lobe regions of CREBH-null and control mice were 

homogenized in ice-cold citrate buffer (0.1M, pH 4.2). Homogenates were immediately 

subjected to glycogen measurement using the glycogen assay kit following the 

manufacturer’s instruction. Levels of hepatic glycogen were presented after normalization 

to liver mass. 

Locomotor activity 

After 2 weeks on LD cycles, mice were released into DD for an additional 30 days 

as previously described (Liu, Li et al. 2007; Siepka, Yoo et al. 2007). To collect locomotion 

variable during 44 days in total, individual mice were housed in chambers surrounded by 

an infrared photocell array interfaced with a computer running VersaMax/VersaDat 

programs (AccuScan Instruments, Columbus, OH). Measures included distance travelled 

(in centimeters) and stereotypy count (number of beam breaks at the same photocell 

array) every 6 minutes over the 44 days (Bishop and Walker 2004). Activity level in certain 

periods was calculated by averaging the total distance travelled per 6 minutes in 

centimeters or the stereotypic movement counting of each mouse in the specific circadian 

time period, as indicated in Figure 6, over 14 consecutive days during the LD cycles. The 

period of rhythmic activities was calculated by the onset of major activities of each mouse 

from two successive days over 30 days in DD.  

Indirect calorimetry  

Each mouse was monitored individually in the computer-controlled OxyScan open 

circuit indirect calorimetry system (AccuScan Instruments, Columbus, OH) (Bishop and 
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Walker 2004) with free access to food and water. Oxygen consumption (VO2) and carbon 

dioxide production (VCO2) were measured for 48 hours. Gas analyzers were calibrated 

to room air drawn through each chamber at a rate of 0.5 L/minute. 
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Results 

CREBH regulates circadian rhythmic levels of TG and FA by activating the genes 

encoding functions in lipolysis, FA oxidation, and lipogenesis. 

We recently demonstrated that CREBH is a key regulator of energy homeostasis 

under metabolic stress (Zhang, Wang et al. 2012). To elucidate whether CREBH 

regulates energy homeostasis under the day-night cycle, we characterized rhythmic 

profiles of circulating lipids in CREBH-null and WT control mice. Compared to the WT 

control mice, CREBH-null mice exhibited significantly higher levels of serum TG and FA 

over a 48-hour period of constant darkness (Figure 8A-B). Hepatic TG levels in CREBH-

null mice were insignificantly lowered, compared to that in the control mice, at the night 

time (CT40) when mice usually take most of their meals of the day (Figure 9). These 

observations were consistent with the established roles of CREBH in TG lipolysis, FA 

oxidation, and lipogenesis upon fasting or atherogenic high-fat feeding, as we previously 

described (Zhang, Wang et al. 2012; Kim, Mendez et al. 2014).   



34 
 

   

 

Figure 8. CREBH regulates rhythmic levels of circulating lipids in mice. 
(A-B) Levels of circulating TG (A) and FFA (B) in CREBH-null and WT control mice under 
the circadian clock. Blood samples were collected every 6 hours for 48 hours in constant 
darkness for measuring TG and FFA. Data was presented as mean ± SEM (n=8 mice per 
time point) at each time point. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

Figure 9. Levels of hepatic TG in CREBH-null and WT control mice livers. 
Quantitative enzymatic analysis of hepatic TG in the livers of CREBH-null and WT control 
mice at the circadian time of CT40, 48, and 56, respectively. Each bar donates mean ± 
SEM (n=3 mice per group per time point).  
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To check whether CREBH rhythmically regulates expression of the genes involved 

in lipid metabolism in the liver, we determined rhythmic expression profiles of the genes 

encoding key enzymes or regulators in lipolysis, FA oxidation, and lipogenesis in CREBH-

null and WT control mice under the endogenous circadian clock. Quantitative real-time 

PCR (qRT-PCR) analysis indicated that rhythmic expression levels and amplitudes of the 

following genes were altered in CREBH-null mice (Figure 10): 1) the gene encoding the 

key enzyme in lipolysis, apolipoprotein C-II (ApoC2); 2) the genes encoding the key 

enzymes or regulators in FA oxidation, including carnitine palmitoyltransferase 1A 

(CPT1α), 3-hydroxybutyrate dehydrogenase 1 (BDH1), and FGF21; and 3) the genes 

encoding the key enzymes in lipogenesis, including fatty acid desaturase 2 (FADS2) and 

Acetyl-CoA Carboxylase 1 (ACC1). Consistent with the mRNA expression profiles, 

protein levels of CPT1α, BDH1, FADS2, and ACC1 were decreased in the livers of 

CREBH-null mice (Figure 11). Additionally, rhythmic expression levels of other key 

metabolic genes involved in lipolysis, FA oxidation, and lipogenesis, including Dhcr24, 

Lcat, Acot4, Hmgcl, Dgat2, and Elvol6, only insignificantly altered in the CREBH-null livers 

(Figure 12).  
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Figure 10. CREBH regulates rhythmic expression of the genes involved in lipolysis, FA 
oxidation, and lipogenesis in mice under the circadian clock. 
Rhythmic expression levels of the CREBH-target genes involved in TG lipolysis, FA 
oxidation, and lipogenesis, including ApoC2, Bdh1, Cpt1a, Fgf21, Fads2, and Acc1 in 
CREBH-null and WT control mouse livers. Expression levels of mRNAs were determined 
by qRT-PCR. Fold changes of mRNA levels are shown by comparing to that of one of the 
wild-type control mice at the starting circadian time point. Each bar denotes mean ± SEM 
(n = 3-5 mice per time point). 
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Figure 11. Rhythmic protein levels of the key metabolic enzymes or regulators in the livers 
of CREBH-null and WT control mice. 
Rhythmic protein levels of the CREBH-target genes encoding PCK1, G6PC, FADS2, 
CPT1α, BDH1, and ACC1 in the livers of CREBH-null and WT control mice. The liver 
tissue samples from CREBH-null and WT control mice were collected every 4 hours in a 
24-hour circadian period. Pooled liver protein lysates from 3-5 mice per genotype group 
per time point were used for the Western blot analyses. Levels of GAPDH were 
determined as loading controls. 
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Figure 12. Insignificant alterations of metabolic gene rhythmic expressions in the livers of 
CREBH-null and WT control mice. 
(B) Expression profiles of the genes encoding key enzymes involved in lipolysis, FA 
oxidation, and lipogenesis, including 24-Dehydrocholesterol Reductase (Dhcr24), 
Lecithin-Cholesterol Acyltransferase (Lcat), Acyl-CoA Thioesterase 4 (Acot4), 3-
hydroxymethyl-3-methylglutaryl-CoA lyase (Hmgcl), diacylglycerol O-acyltransferase 2 
(Dgat2), and ELOVL fatty acid elongase 6 (Elovl6), in the livers of CREBH-null and WT 
control mice under circadian clock. The liver samples from CREBH-null and WT control 
mice were collected every 4 hours over a 24-hour period. These RNAs were subjected to 
quantitative real-time RT-PCR analysis. Expression values were normalized to the Arbp 
mRNA levels. Fold changes of mRNA levels are shown by comparing to that of one of the 
WT control mice at the starting circadian time point. Asterisks indicate significant 
differences (* p < 0.05, ** p < 0.01) between WT and CREBH-null mice by post-hoc 
analyses followed by two-way ANOVA. Data represent mean ± SEM (n=3-5 mice per 
group per time point).  
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To determine whether CREBH directly regulates its target genes under the 

circadian cycle, we performed ChIP-qPCR analysis to determine CREBH enrichment in 

the promoter regions of metabolic genes whose rhythmic expression profiles were altered 

in CREBH-null mouse livers. ChIP-qPCR analyses with WT mouse livers collected at 

different circadian phases indicated that CREBH binds in a circadian phase-dependent 

manner to the promoters of ApoC2, Bdh1, Cpt1a, Fgf21, Fads2, or Acc1 genes that 

possess one or multiple CRE-binding elements (Figure 13, Table 3). Increased 

enrichment of CREBH in the ApoC2 gene promoter was detectable at CT40 and peaked 

at CT52, which is consistent with the rhythmic expression profile of the ApoC2 mRNA in 

the liver. Similarly, consistent with the mRNA expression profiles, the enrichments of 

CREBH in the Fads2 and Acc1 gene promoter reached peak levels at CT52, CT56, and 

CT40, respectively (Figure 13). Taken together, these results indicate that CREBH 

activates expression of genes involved in bi-directional metabolic pathways of both 

energy utilization (lipolysis and FA oxidation) and storage (lipogenesis) depending upon 

the circadian cycle. 
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Figure 13. CREBH regulates rhythmic levels of lipids and expression of the genes 
involved in lipolysis, FA oxidation, and lipogenesis in mice under the circadian clock. 
CREBH enrichment in the CREBH-target gene promoters in the WT mouse livers under 
different circadian phases determined by ChIP-qPCR. CREBH-null liver nuclei were used 
as negative control for the endogenous CREBH ChIP assays. Quantification of CREBH 
enrichment in the gene promoters at different circadian phases was determined by 
comparing ChIP-qPCR signals from the samples pulled down by the anti-CREBH 
antibody to that pulled down by a rabbit anti-IgG antibody. Each bar donates mean ± SEM 
(n=3 mice per time point). 
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Table 3. CRE binding motifs in the promoter regions of mouse genes. 

 Promoter sequences Nucleotide (nt) regions 

Apoc2 promoter  TGGCCTCTGACTGTCACTGT nt -117 to nt -113 

Acc1 promoter 

 

CTAACGCTGACCTTCTTTAC 

CTTTCTCATGAACTTTATTT 

nt -315 to nt -310 

nt -271 to nt -265 

Fgf21promoter 

 

CCACTCCTGACGCGTGATAT nt -63 to nt -67 

Bdh1 promoter 

 

GTGAGGTGACCAATCCCCCT nt -452 to nt-434 

Cpt1a promoter TCATTCTCTGATGTTAGACAAGC 

TTCCTTACTGACCTCCTCCCCGCA 

nt -568 to nt -562 

nt -245 to nt -240 

Fads2 promoter 

 

AGGTCAGACACGTCGCCGACCG nt -599 to nt -594 

Gys2 promoter 

 

GTTGTACACTGACAAATACAGA 

CATAATACTTGACATTTAAAAT 

GATAGGGATTGACAATCAACCA 

nt -591 to nt -587 

nt -437 to nt -433 

nt -375 to nt -371 

Ppara promoter 

 

ACAGGGGTGACGGGGGC nt -323 to nt -319 

Cebpβ promoter 

 

GGGCGGGCTGGCGTCACCCGC 

                      ACCGCAGT 

CGGGCAATGACGCGCACCGA 

CCCAGCGTGACGCAGCCCGT 

nt -344 to nt -337 

 

nt -206 to nt -202 

nt -160 to nt -156 

Lxra promoter 

 

GGAACGCTGACTCTGGAGGCT 

GTGGGGGTGACTGAGAAGCAG 

nt -184 to nt -180 

nt -151 to nt -147 

E4bp4 promoter CCGCCGCCCGTCACGGCGGGG 

      GCAGT 

nt -160 to nt -156 

G6pc promoter 

 

CTGGATTGACCTACAGACTG nt -68 to nt -63 

Pck1 promoter 

 

CTTCTCATGACCTTTGGCCG 

TGGGAGTGACACCTCACAGC 

GGTGTTTTGACAACCAGCAG 

nt -450 to nt -445 

nt -431 to nt -427 

nt -407 to nt -403 

The binding motifs are highlighted (red underline). The complementary sequences (blue 
underline) are presented if the binding motifs locate in the negative strand.  
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CREBH regulates rhythmic hepatic glycogen storage and blood glucose levels by 

activating the key genes involved in glycogenesis and gluconeogenesis. 

We next examined whether CREBH regulates glucose homeostasis across the 

day-night cycle. Periodic acid-Schiff (PAS) staining of hepatic glycogen of CREBH-null 

and WT control mice under the endogenous circadian clock indicated that production of 

hepatic glycogen in WT mice exhibited a circadian rhythmic pattern, which was increased 

from CT40 to CT52 and depleted at CT56 (Figure 14A). In contrast, hepatic glycogen 

storage in CREBH-null mice lost its rhythmic pattern, as the distribution and levels of 

glycogen in the livers of CREBH-null mice exhibited marginal changes over the circadian 

period. This observation was confirmed by quantitative enzymatic assay of hepatic 

glycogen levels (Figure 14B). Further, we measured blood glucose levels of CREBH-null 

and WT control mice across the day-night cycle. A phase-shifted rhythmic pattern of 

serum glucose levels is revealed in CREBH-null mice (Figure 14C), and the blood glucose 

levels in CREBH-null mice were lower than those in the control mice during the daytime 

period. These phenotypes suggest that CREBH functions as a key regulator of glucose 

homeostasis under the circadian control.  
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Figure 14. CREBH regulates rhythmic levels of blood glucose and hepatic glycogen 
storage in mice under the circadian clock. 
(A) Periodic-acid Schiff (PAS) staining of hepatic glycogen in the livers of CREBH-null 
and WT control mice at the circadian time of CT40, 44, 52, and 56, respectively 
(magnification: 200×). (B) Quantitative enzymatic analysis of hepatic glycogen in the 
livers of CREBH-null and WT control mice at the circadian time of CT40, 44, 52, and 56, 
respectively. Each bar donates mean ± SEM (n=3 mice per group per time point). (C) 
Levels of blood glucose in CREBH-null and WT control mice under the circadian clock. 
Blood glucose were measured every 6 hours for 36 hours in constant darkness. Data was 
presented as mean ± SEM (n=8 mice per time point) at each time point. 

  



44 
 

   

To understand the molecular basis for the altered rhythmic profile of hepatic 

glycogen storage and blood glucose in CREBH-null mice, we examined expression of 

phosphoenolpyruvate carboxykinase 1 (Pck1), glucose-6-phosphatase (G6pc), and 

glycogen synthase 2 (Gys2), the rate limiting enzymes of hepatic gluconeogenesis and 

glycogenesis, respectively (Roach, Depaoli-Roach et al. 2012), in CREBH-null and WT 

control mouse livers. Compared to WT mice, CREBH-null mice exhibited decreased 

rhythmic expression of the Pck1 and G6pc genes in the livers (Figure 15A). Interestingly, 

CREBH-null mice displayed an inverse rhythmic expression pattern of the Gys2 gene in 

the liver (Figure 15A). Expression levels of the Gys2 mRNA in the WT mice peaked at 

CT40 and reached a trough at CT56, whereas Gys2 mRNA expression in the CREBH-

null mice reached its nadir at CT40 and peaked at CT56. These results suggest that 

CREBH is required to maintain the normal rhythmic expression of the Gys2 gene in the 

liver. In the absence of CREBH, however, an alternative transcriptional mechanism likely 

exists to enable expression of the Gys2 gene in a reverse rhythmic pattern. Our results 

indicated that CREBH-null mice do not have sufficient Gys2 for hepatic glycogenesis 

upon feeding in the night, and therefore, they display lower levels of glycogen during the 

night time (Figure 14A-C). During the resting phases, however, CREBH-null mice produce 

higher levels of Gys2 (due to inverse rhythmic expression) but lower levels of blood 

glucose (due to the defect in gluconeogenesis). The combined effects of the altered Gys2 

expression and the repressed gluconeogenesis may explain the loss of rhythm in hepatic 

glycogen storage in CREBH-null mice (Figure 14A-C). 
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Figure 15. CREBH regulates rhythmic expression of the genes involved in 
gluconeogenesis and glycogenesis in mice under the circadian clock. 
(A) Rhythmic expression levels of the CREBH-target genes involved in gluconeogenesis 
and glycogenesis, including Pck1, G6pc, and Gys2 in CREBH-null and WT control mouse 
livers. Expression levels of mRNAs were determined by qRT-PCR. Fold changes of 
mRNA levels are shown by comparing to that of one of the wild-type control mice at the 
starting circadian time point. Each bar denotes mean ± SEM (n = 3-5 mice per time point). 
(B) CREBH enrichment in the Pck1, G6pc, and Gys2 gene promoters in the WT mouse 
livers under different circadian phases determined by ChIP-qPCR. CREBH-null liver 
nuclei were used as negative control for the endogenous CREBH ChIP assays. 
Quantification of CREBH enrichment in the gene promoters at different circadian phases 
was determined by comparing ChIP-qPCR signals from the samples pulled down by the 
anti-CREBH antibody to that pulled down by a rabbit anti-IgG antibody. Each bar donates 
mean ± SEM (n=3 mice per time point). * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Many typical CRE-binding elements present in the promoter regions of the Pck1, 

G6pc, and Gys2 genes (Table 3). To evaluate whether CREBH, as a transcriptional 

activator, can directly target on the Pck1, G6pc, and Gys2 gene promoters under the 

circadian cycles, ChIP-qPCR analysis were performed to quantify enrichment of CREBH 

in the gene promoter regions in mouse liver tissues collected at different circadian phases. 

ChIP-qPCR analyses indicated that enrichment of CREBH at the Pck1 and G6pc gene 

promoters peaked at CT52 and CT44, respectively, consistent with the mRNA expression 

profiles (Figure 15B). In the Gys2 gene promoter, enrichment of CREBH was increased 

during the circadian night period from CT40 to CT44, a time of the day when mice usually 

take their meals (Figure 15B). During the daytime period, enrichment of CREBH in the 

Gys2 gene promoter was decreased at CT52 and not detectable at CT56. These results 

suggest that CREBH maintains Gys2 rhythmic expression levels by directly regulating 

transcription of the Gys2 gene. Additionally, in the absence of CREBH, an alternative 

transcriptional mechanism likely exists to enable expression of the Gys2 gene in a reverse 

rhythmic pattern. What the other transcription regulators of Gys2 expression and whether 

CREBH interacts with these factors are interesting questions to be elucidated in the future. 

Therefore, similar to the regulatory roles of CREBH in lipid metabolism, CREBH regulates 

rhythmic expression of the key genes in bi-directional glucose metabolic pathways of both 

energy utilization (gluconeogenesis) and storage (glycogenesis). 
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CREBH-null mice exhibit hyper-locomotion, increased metabolic rate, and phase-

shifted feeding behavior. 

To further evaluate the physiological role of CREBH in the metabolic of whole 

animal body, we examined locomotor activity, metabolic rate, and feeding behavior of 

CREBH-null and WT control mice across the day-night cycle. We monitored locomotor 

activity for 14 days during the normal light-dark cycle followed by 30 days in constant 

darkness (Bishop and Walker 2004). Analysis of total distance travelled collected during 

the 30 days in constant darkness showed that CREBH-null mice exhibited a 5.17-minute 

shorting of the daily locomotor activity (23.86 hours/period), compared to WT control mice 

(23.94 hours/period) (Figure 16A-B). Interestingly, there was no difference between 

groups in respect to average distance travelled during the 12-hour light period (CT48-60) 

(Figure 16A, C). However, CREBH-null mice exhibited significant hyper-locomotion 

during the 12-hour dark period (CT36-48). We also monitored stereotypic movements, 

which are characterized by small movements without travelling distance, such as 

grooming, body shaking, and feeding. CREBH-null mice consistently exhibited increased 

stereotypic movements during the second 6 hours of the dark period (CT42-48) (Figure 

16A, D).  
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Figure 16. CREBH-null mice display hyper-locomotion and increased stereotypic 
activities during the night time. 
(A) Circadian rhythmic profiles of locomotor activities of CREBH-null and WT control mice 
under the circadian clock. Total distance travelled in centimeter (upper panel) and 
stereotypic movement (lower panel) of CREBH-null and WT control mice were monitored 
every 6 minutes under 12-hour/12-hour LD cycles for 14 days and under DD for 30 days 
(n=6 mice per group). (B) Lengths of circadian periods of CREBH-null and WT control 
mice calculated based on the circadian locomotor activities during 30 days in DD (n=6 
mice per group). (C-D) Average activities of distance travelled (C) and stereotypic 
movement (D) of the CREBH-null and WT control mice over the circadian periods of 
CT36-48, CT48-56, or CT54-60 during the first 14 days in LD. Each bar donates mean ± 
SEM (n=6 mice per time point). ** p < 0.01, *** p < 0.001. 
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To further explore the pathophysiological effects related to the hyper-locomotion 

of CREBH-null mice during the late dark phase, we characterized rhythmic feeding 

behavior and metabolic rates in CREBH-null and WT control mice. A significant time-shift 

in food intake was observed with CREBH-null mice across the 36-hour circadian period 

(Figure 17A). Compared to the control mice, CREBH-null mice exhibited approximately a 

6-hour delay in taking their biggest meal of the day (peak at CT42-48). The metabolic 

rates, as reflected by the rates of oxygen consumption, of CREBH-null mice were 

significantly higher than those of WT control mice across the 12-hour dark period, which 

is consistent with the hyper-locomotion of CREBH-null mice during the 12-hour dark 

period (CT36-48) (Figure 17B, 16C-D). Moreover, a dramatic increase in metabolic rates 

was observed in CREBH-null mice during the second 6 hours of the dark period, concord 

with the increased stereotypic movements and delayed feeding behavior of CREBH-null 

mice during the same phase (Figure 17A-B, 16A, 16D). Additionally, we found that 

compared to that of WT control mice, total food intake of CREBH-null mice over 48-hour 

circadian period was modestly increased (Figure 17C). As CREBH is required for hepatic 

glycogenesis and lipogenesis during the night (Figures 8-15), the impaired energy 

catabolism may entrain CREBH-null mice to consume more dietary energy metabolites. 

Additionally, high levels of blood TG and FFA may stimulate satiety-related signals that 

lead to delayed food intake behavior and hyper-metabolic rates in the CREBH-null mice 

during the late night time, an interesting question to be further elucidated in the future. 

It is also interesting to discuss why Gys2 expression pattern is inversed, but 

glycogen storage is not, in CREBH-null mice liver (Figure 14-15). It's explainable if 

combining glucose and food intake data (Figure14-15, 17). In WT mice, upon feeding, 
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Gys2 increased after feeding to store free glucose from blood stream into glycogen in 

liver. Meanwhile, CREBH null-mice don’t have enough Gys2 to process glycogenesis, 

and therefore, they have lower glycogen during the nighttime. In WT mice, during resting 

phase, glycogenesis slows down (low liver glycogen storage), but glycolysis and 

gluconeogenesis increases to provide glucose as energy for body philological use. 

Meanwhile CREBH null mice exhibited a delay in increasing blood glucose levels (due to 

the defect in gluconeogenesis), and high levels of Gys2 which boost hepatic glycogen 

levels when hepatic glycogen storage was depleted in the WT control mice. 
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Figure 17. CREBH deficiency leads to phase-shifted feeding behavior and increased 
metabolic rates. 
(A) Food intakes of CREBH-null and WT control mice under the circadian clock. Food 
intakes of individual animals were measured every 6 hours over 36-hour period in DD. 
Each point donates mean ± SEM (n=5 mice per group per time point). ** p < 0.01. (B) 
Metabolic rates, represented by oxygen consumption, of CREBH-null and WT control 
mice under the circadian clock. Oxygen consumption (VO2) normalized by body weight 
of individual mice was recorded every 10 minutes over a 36-hour period by a computer-
controlled OxyScan open circuit indirect calorimetry systems. Average VO2 levels of each 
mouse over the phases of CT36-48, CT48-54, or CT54-60 were calculated for the 
statistical analysis (n=4 mice per group). * p < 0.05; ** p < 0.01; ns, non-significant. (C) 
Accumulative food intakes of CREBH-null and WT control mice over the 48-hour period. 
(D) Illustration of CREBH working model as a circadian metabolic oscillator. 
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CHAPTER IV: Crosstalk of CREBH and Other Circadian 
Regulators 

Summary 

The hypothesis in this dissertation is that CREBH may function as, or interact with, 

the local first-order CCG to regulate the synchronization of rhythmic transcription of 

hepatic metabolic enzymes. The transcriptional function of D-element binding protein 

(DBP), a known local first-order CCG, can be repressed by the interleukin 3-regulated 

nuclear factor (NFIL3, also known as E4BP4), a bZIP domain containing rhythmic 

transcription factor regulated by the repressor REV-ERBa (Clayton, Kyriacou et al. 2001; 

Reppert and Weaver 2002; Ueda, Chen et al. 2002).  A recent study showed E4BP4 

negatively regulates the rhythmic transcription of FGF21, a metabolic hormone that 

regulates lipid and glucose metabolism, and this repressive regulation can be inhibited by 

an unknown fasting-inducible factor (Tong, Muchnik et al. 2010). Since CREBH is a 

fasting-inducible factor that promotes FGF21 transcription (Lee, Giannikopoulos et al. 

2011; Zhang, Wang et al. 2012), we hypothesize that CREBH may bind to E4BP4 and 

repress the negative regulation of E4BP4 to up-regulate the gluconeogenesis and TG 

lipolysis pathways during the day time under circadian rhythm. To answer the questions, 

we used both in vivo and in vitro methods to discover that CREBH regulates, and interacts 

with, the circadian transcriptional activators PPARα and C/EBPβ or the repressor E4BP4 

to modulate CREBH transcriptional activities.  
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Materials and Methods 

Immunoprecipitation (IP)-Western blot analyses 

Endogenous protein-protein interactions between CREBH and E4BP4, PPARα, or 

CEBPβ in mouse livers across the day-night cycle were determined by IP-Western blot 

analysis. Approximate 200 μg of liver protein lysates were incubated with 1μg of a rabbit 

anti-mouse CREBH antibody overnight at 4°C, as indicated in Figure 5A. The rabbit 

polyclonal CREBH antibody used for pulling down the endogenous CREBH protein was 

developed in our laboratory (Kim et al. 2014). Protein complexes were 

immunoprecipitated using Dynabeads Protein G (Novex), resolved by SDS-PAGE, and 

then transferred to PVDF membrane. The assay was followed by Western blot analysis 

with primary antibodies directed against E4BP4, PPARα, or CEBPβ. The protein 

interaction signals were visualized by using HRP-conjugated Clean-Blot IP Detection 

Reagents (Thermo Scientific), which can eliminate detection-interference from both 

heavy-chain and light-chain IgG fragments of the antibodies used for the initial IP assay. 

Conjugated HRP was then developed using an enhanced chemiluminescence (ECL) 

detection reagent (GE Healthcare). 

Luciferase gene expression reporter analysis 

To construct the Pck1 gene promoter-driven expression reporter plasmid (pGL3-

Pck1), the 5′-flanking region from −385 nt to -36 nt of the mouse Pck1 gene was 

amplified from mouse cDNA by PCR using the forward primer 5 ′ -

ATGGTACCGCAGCCAGCAACATATGAAG-3 ′  and the reverse primer 5 ′ -

ATGAGCTCATAGAAGGGAGGACAGCCCT-3′ . PCR products were digested using 
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KpnI and SacI restriction enzymes and cloned into the same sites of the pGL3-basic 

vector (Promega, USA). The identity of the cloned plasmid was verified by sequence 

analysis. For the luciferase assay, 1μg of pGL3-Pck1 plasmids and 0.1μg of pGL4.7 

plasmids were transiently co-transfected into Hepa1-6 cells using the TransIT-2020 

reagent (Mirus Bio, WI). After 24 hour, co-transfected cells were infected with adenovirus 

expressing GFP (Ade-GFP), activated CREBH (Ade-CREBH), PPARα (Ade-PPARα), 

E4BP4 (Ade-E4BP4), and/or C/EBPβ (Ade-C/EBPβ), as indicated in Figure 5B-C. Cells 

were harvested and lysed at 24 hours after transfection. Luciferase activity was measured 

using the Dual-Luciferase Assay System (Promega) according to the manufacturer's 

instructions. The reporter expression readout was presented by normalizing Firefly 

luciferase activities to Renilla luciferase activities (internal control). Each reporter assay 

was performed in duplicate. 
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Results 

Altered rhythmic expression of core clock genes in CREBH-null mice liver. 

It is known that both the activation and function of circadian regulatory proteins are 

regulated through intimate and reciprocal interactions with other circadian transcriptional 

activators and repressors (Rutter, Reick et al. 2002; Bass and Takahashi 2010). To 

understand whether CREBH, as a liver local circadian oscillator, regulates, and/or 

interacts with, other circadian regulators, we examined expression of core clock genes in 

the livers of CREBH-null and WT control mice. Deletion of CrebH resulted in insignificantly 

altered rhythmic expression amplitudes of the genes encoding the core circadian 

oscillators including Clock, Dbp, and Rev-erbα in mouse livers (Figure 18). Rhythmic 

expression of Hnf4α, a previously identified regulator of CREBH (Luebke-Wheeler, Zhang 

et al. 2008), was reduced in CREBH-null mice. Western blot analysis confirmed that 

rhythmic expression of the circadian regulators BMAL1 and HNF4α were repressed in 

CREBH-null livers (Figure 19). 

 



56 
 

   

 

Figure 18. Rhythmic expression levels and amplitudes of core clock genes in the livers of 
CREBH-null and WT control mice. 
Expression profiles of the clock genes, including Bmal1, Clock, Reverbα, Per2, Dbp, and 
Hnf4α, in the livers of CREBH-null and WT control mice under the circadian clock. The 
liver samples from the CREBH-null and WT control mice were collected every 4 hours 
over a 24-hour period. Expression values of mRNAs were determined by qRT-PCR and 
normalized to the Arbp mRNA levels. Fold changes of mRNA levels are shown by 
comparing to that of one of the wild-type control mice at the starting circadian time (CT) 
point. Asterisks indicate significant differences (* p < 0.05) between WT and CREBH-null 
mice by post-hoc analyses followed by two-way ANOVA. Data represent mean ± SEM 
(n=3 mice per group per time point). 
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Figure 19. Rhythmic regulation of core clock proteins by CREBH in the liver. 
Rhythmic levels of BMAL1, CLOCK, and HNFα proteins in CREBH-null and WT control 
mouse livers collected every 4 hours in a 24-hour period. Levels of proteins were 
determined by Western blot analysis. Pooled liver protein lysates from 3-5 mice per time 
point per genotype group were used. Levels of β-actin or GAPDH were included as 
loading controls. 
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CREBH rhythmically regulates circadian transcriptional activators C/EBPβ and 

PPARα, and the repressor E4BP4. 

To elucidate whether CREBH regulates, and/or interacts with, other circadian 

regulators, we examined expression of core clock genes in the livers of CREBH-null and 

WT control mice. PPARα is a liver-enriched, clock-regulated nuclear receptor that plays 

key roles in regulating lipid metabolism during the starvation phase (Oishi, Shirai et al. 

2005). C/EBPβ is a bZIP-containing transcriptional regulator known to rhythmically 

regulate autophagy in the liver, facilitating degradation of glycogen and lipid droplets for 

body energy (Ma, Panda et al. 2011). Liver X receptor α (LXRα) is a nuclear receptor that 

regulates lipogenesis by forming heterodimers with members of the retinoid X receptor 

(RXR) family (Willy, Umesono et al. 1995). Gene expression analyses showed that 

rhythmic expression levels of the Pparα and Lxrα mRNAs were significantly repressed in 

the CREBH-null livers, while rhythmic levels of the C/ebpβ mRNA in the CREBH-null mice 

were only marginally changed, compared to those in the control mice (Figure 20A-C). The 

mouse Pparα, C/ebpβ, and Lxrα gene promoters possess one or multiple CRE-binding 

motifs (Table 3). ChIP-qPCR analysis indicated that in mouse livers CREBH binds in a 

day-night dependent manner to the Pparα, C/ebpβ, or Lxrα gene promoters (Figure 20A-

C), suggesting that Pparα, C/ebpβ, and Lxrα are circadian-dependent targets of CREBH. 

Moreover, Western blot analysis indicated that rhythmic levels of PPARα, C/EBPβ, and 

LXRα proteins were decreased in the CREBH-null livers (Figure 20E). Note that the 

discrepancy in C/EBPβ protein and mRNA levels in CREBH-null mice implies alternative 

regulation of C/ebpβ gene expression independent of CREBH or potential involvement of 

CREBH in C/EBPβ protein stability. 
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Further, we found that CREBH regulates rhythmic expression of E4BP4, a bZIP 

domain-containing circadian transcriptional repressor (Clayton, Kyriacou et al. 2001; 

Reppert and Weaver 2002; Ueda, Chen et al. 2002). Loss of CREBH resulted in a phase-

inversed expression pattern of hepatic E4bp4 mRNA (Figure 20D). Western blot analysis 

showed that expression levels and the oscillation amplitude of E4BP4 protein were 

repressed in CREBH-null livers (Figure 20E). ChIP-qPCR analysis of mouse liver 

chromatins indicated that CREBH robustly binds to the E4bp4 gene promoter at CT4 

(Figure 20D), suggesting that rhythmic expression of E4BP4 is regulated by CREBH in 

mouse livers. 
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Figure 20. Rhythmic regulation of circadian transcriptional activators and repressor by 
CREBH in the liver. 
(A-C) Rhythmic expression levels and CREBH enrichment in the promoters of the Pparα, 
C/ebpβ, Lxrα and E4bp4 genes in the livers of CREBH-null and WT control mice under 
the circadian clock. Fold changes of the mRNA levels were determined by qRT-PCR 
(upper panel). Each bar denotes mean ± SEM (n = 3 mice per time point). Rhythmic 
enrichment of endogenous CREBH in the target gene promoters in the WT mouse livers 
under different circadian phases were determined by ChIP-qPCR (lower panel). Each bar 
donates mean ± SEM (n=4 mice per time point). * p < 0.05, ** p < 0.01, *** p < 0.001. (D) 
Rhythmic levels of PPARα, C/EBPβ, E4BP4, and LXRα proteins in CREBH-null and WT 
control mouse livers collected every 4 hours in a 24-hour period. Levels of proteins were 
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determined by Western blot analysis. Pooled liver protein lysates from 3-5 mice per time 
point per genotype group were used. Levels of β-actin or GAPDH were included as 
loading controls. 
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CREBH rhythmically interacts with circadian transcriptional activators and 

repressor. 

Next, we were interested about whether CREBH interacts with the circadian 

transcriptional regulators to modulate its transcriptional activity. CREBH interaction with 

PPARα and C/EBPβ were proved by IP-Western blot analyses using mouse livers 

collected across the day-night cycle (Figure 21). The interaction between CREBH and 

C/EBPβ peaked at CT56, a time period when lipolysis, FA oxidation, and 

gluconeogenesis are highly activated upon energy demands. The CREBH-PPARα 

interaction was detected from CT44 to CT52 (Figure 21). We were able to detect a robust 

interaction between CREBH and the transcriptional repressor E4BP4, which began at 

CT36, gradually increased over the night period, and peaked at CT48 (Figure 21). 

Interestingly, the phase and intensity of the CREBH-C/EBPβ interaction roughly opposes 

that of the CREBH-E4BP4 interaction, implying that C/EBPβ and E4BP4 may compete to 

interact with CREBH in a circadian phase-dependent manner.  



63 
 

   

 

Figure 21. Rhythmic interactions between CREBH, the circadian transcriptional activators 
PPARα and C/EBPβ, and the repressor E4BP4 in the liver. 
Interactions between endogenous CREBH and PPARα, C/EBPβ, or E4BP4 in mouse 
livers under different circadian phases were determined by IP-Western blot analysis. Liver 
protein lysates pooled from 3 WT mice were pulled down by a rabbit anti-CREBH antibody 
and then probed with an antibody against PPARα, C/EBPβ, or E4BP4. As a loading 
control, the liver protein lysates pulled down by the anti-CREBH antibody was probed with 
the rabbit anti-IgG. Liver protein lysates pooled from WT or CREBH-null mice under the 
24-hour circadian phases were included as positive and negative controls, respectively.  
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To explore the functional significance of the interactions between CREBH and 

C/EBPβ, PPARα, or E4BP4, we performed reporter analysis with the Pck1 gene promoter, 

a common target of CREBH, C/EBPβ, and PPARα (Nizielski, Arizmendi et al. 1996; Juge-

Aubry, Pernin et al. 1997; Lee, Chanda et al. 2010; Peeters and Baes 2010). Indeed, the 

promoter region of the mouse Pck1 gene possesses multiple binding motifs for CREBH, 

PPARα, C/EBPβ, and E4BP4, respectively (Figure 22). While over-expression of the 

active form of CREBH, C/EBPβ, or PPARα alone can significantly increase Pck1 gene 

promoter activity, co-expression of CREBH with C/EBPβ or PPARα further augmented 

the reporter activity (Figure 23A). In contrast, co-expression of CREBH with E4BP4 

significantly decreased Pck1 promoter activity either when compared to expression of 

CREBH alone or co-expression of CREBH with GFP. These results suggest that C/EBPβ 

and PPARα function as co-activators of CREBH in driving Pck1 gene transcription, while 

E4BP4 acts as a repressor of CREBH-dependent Pck1 gene expression. Moreover, we 

observed that co-expression of E4BP4 with the combination of CREBH and C/EBPβ or 

PPARα repressed expression of the Pck1 gene reporter, compared to co-expression of 

CREBH with C/EBPβ or PPARα (Figure 23B), thus supporting the suppressive effect of 

E4BP4 on CREBH transcriptional activity through competition with the co-activator 

C/EBPβ or PPARα. Given that the rhythmic expression of E4BP4 is decreased in CREBH-

null livers (Figure 21), the repressive effect of E4BP4 on CREBH activity may serve as a 

negative feedback regulation of CREBH under the circadian constrain. 
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Figure 22. Potential CREBH-, PPARα-, C/EBPβ-, and E4BP4- binding sequences in the 
promoter region of mouse Pck1 gene. 
The binding motifs are highlighted. The complementary sequence is presented if the 
binding motif locates in the negative strand. 

 
Figure 23. Rhythmic interactions between CREBH, the circadian transcriptional activators 
PPARα and C/EBPβ, and the repressor E4BP4 in the liver. 
(B-C) Luciferase reporter analyses of transcriptional activation of the mouse Pck1 gene 
promoter by CREBH alone or in combination with PPARα, C/EBPβ, and/or E4BP4. 
Mouse hepatoma cell line Hepa1-6 was transiently transduced with the Pck1 reporter 
vector or vehicle. After 24 hours, the transfected cells were infected with adenovirus 
expressing GFP (control), PPARα, C/EBPβ, and/or E4BP4, as indicated in the Figure. 
Renilla reporter plasmid was included in the co-transfection for normalization of luciferase 
reporter activities. The same amounts of adenovirus titers were used for individual 
infections. Each bar denotes the mean ± SEM (n=2 experimental repeats). 
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CHAPTER V: Conclusions and Significance 

In this study, we demonstrated that CREBH functions as a circadian regulator of 

lipid and glucose metabolism in the liver (Figure 24). Our major findings include: 1) 

CREBH is a BMAL1-regulated diurnal regulator in the liver, and expression and 

proteolytic activation of CREBH are both rhythmically regulated during the circadian cycle; 

2) CREBH rhythmically regulates expression of the genes encoding key enzymes or 

regulators of energy utilization processes, including lipolysis, FA oxidation, and 

gluconeogenesis, and of energy storage processes, including lipogenesis and 

glycogenesis; 3) CREBH controls rhythmic levels of circulating TG, FFA, and glucose as 

well as hepatic glycogens; 4) CREBH rhythmically interacts with the circadian 

transcriptional activators C/EBPβ and PPARα and the repressor E4BP4 to modulate 

CREBH transcriptional activities; and 5) disruption of CREBH leads to phase-shifted 

feeding behavior, increased metabolic rates, and hyper-locomotion during the dark period. 

These findings demonstrate that CREBH is not only a key metabolic regulator but also a 

liver circadian oscillator, and therefore, plays key roles in integrating energy metabolism 

with circadian rhythm (Figure 24). The functional activity of CREBH as a peripheral 

circadian metabolic regulator has profound impact on the measures of whole body 

physiology, such as feeding, metabolic rate, and locomotor activity. Modulation of CREBH 

activity may therefore have important implications in the prevention and treatment of 

metabolic disorders. 
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Figure 24. Illustration of CREBH working model as a circadian metabolic oscillator. 
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Mutation of Clock or Bmal1 damages lipid and glucose metabolism in animals, as 

evidenced by hyperlipidemia, hepatic steatosis, and defective gluconeogenesis (Rudic, 

McNamara et al. 2004; Turek, Joshu et al. 2005; Lamia, Storch et al. 2008; Shimba, 

Ogawa et al. 2011). However, the mechanism underlying these metabolic phenotypes 

remains unknown. Our data suggested that CREBH is a BMAL1-regulated liver metabolic 

regulator of lipolysis, FA oxidation, lipogenesis, and gluconeogenesis. Circadian profiles 

of circulating TG, FFA, and glucose as well as hepatic TG and glycogens were altered in 

CREBH-null mice. Therefore, CREBH may function as a major metabolic regulator 

through which the core circadian oscillators regulate hepatic energy metabolism. 

Previously, we identified a variety of stress signals, such as ER stress, energy fluctuations, 

and inflammatory challenges, which can activate CREBH (Zhang, Shen et al. 2006; 

Zhang, Wang et al. 2012). CREBH regulates distinct, even functionally opposite metabolic 

pathways, to maintain energy homeostasis under stress conditions. The current finding 

that CREBH is a circadian metabolic regulator brings new insights on the regulation and 

function of CREBH under physiological conditions. Indeed, the rhythmic regulation of 

CREBH activity and its roles in circadian energy homeostasis are consistent with our 

previous observations that CREBH is activated by distinct stress signals (Zhang, Wang 

et al. 2012). The regulation of metabolic pathways by CREBH during the day seems to 

be similar to that observed under short-term fasting conditions (Figure 24). We have 

shown that insulin, saturated fatty acids, and an atherogenic high-fat diet can also activate 

CREBH (Zhang, Wang et al. 2012). These “over-nutrient” signals may mimic feeding 

stimulation that is similar to mouse feeding during the night when they consume most of 

their daily intake. Insulin or high-fat feeding stimulates CREBH activation but have 
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marginal effects on CrebH gene expression (Zhang, Wang et al. 2012). This is consistent 

with the CREBH expression and activation profiles and the regulatory roles of CREBH in 

hepatic lipogenesis and glycogenesis during the night.  

In this study, we provide expression levels and amplitudes for the CREBH-target 

genes across the circadian cycle. Depending on the circadian phase and energy 

demands, CREBH regulates expression of different target genes in lipid or glucose 

metabolism. During the day time, CREBH regulates expression of the genes involved in 

lipolysis, FA oxidation, and gluconeogenesis, including ApoC2, Badh1, Cpt1α, Fgf21, 

Pck1, C/ebpβ, and Pparα (Figures 8-15). During the night, CREBH regulates expression 

of the genes involved in lipogenesis and glycogenesis, including Acc1, Fads2, Lxrα, and 

Gys2. Indeed, the functions of CREBH in mouse circadian metabolism are consistent with 

the rhythmic activation of the CREBH protein, in which the levels of the activated, nuclear 

CREBH protein peaked at the daytime (CT56) but reached a trough at the nighttime 

period (CT44) (Figure 4C-D). Interestingly, the circadian expression pattern of the CrebH 

mRNA was opposite to the rhythmic activation of the CREBH protein in the liver (Figure 

4A-D). This observation was in line with recent rhythmic proteome study showing that 

approximately one-half of rhythmic proteins are under significant translational or 

posttranslational diurnal controls and have no corresponding rhythmic mRNAs 

(Mauvoisin, Wang et al. 2014). 

CREBH has reciprocal interactions with the circadian transcriptional regulators 

PPARα and C/EBPβ as well as the circadian repressor E4BP4 (Figures 18-23). CREBH 

regulates and interacts with PPARα or C/EBPβ to enhance CREBH transcriptional activity, 

which oscillates in-phase with expression of the CREBH-target genes involved in lipolysis, 
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FA oxidation, and gluconeogenesis. On the other hand, CREBH interacts with E4BP4 to 

repress CREBH transcriptional activity during the night-today transition period. 

Interestingly, the phase of CREBH-C/EBPβ interaction is complimentary to that of 

CREBH-E4BP4 interaction, suggesting that C/EBPβ and E4BP4 may compete to interact 

with CREBH and thereby modulate CREBH activities during different circadian phases. 

As a co-activator of CREBH, PPARα interacts with CREBH in the circadian phase that 

partially overlaps with the C/EBPβ-CREBH interaction (Figure 21). It is possible that the 

interaction between PPARα-CREBH may represent an enhancing mechanism that 

facilitates CREBH peak activity during the phases of high-energy demands. 

Peripheral clocks, such as in liver, are synchronized with the central clock located 

in the SCN through a complicated regulatory network of neuronal, hormonal, behavioral, 

and environmental signals (Ueda, Chen et al. 2002). The core circadian oscillators 

regulate CREBH expression and activation through two layers: 1) BMAL1/CLOCK 

regulates transcription of CrebH; and 2) E4BP4 or C/EBPβ interacts with activated form 

of CREBH protein to exert suppressive or synergizing effect on CREBH activity. On the 

other hand, CREBH regulates mRNA and/or protein levels of the core circadian regulators, 

including E4BP4, C/EBPβ, PPARα, BMAL1, CLOCK, and HNF4α (Figure 18-20). The 

reciprocal regulation between CREBH and the key circadian regulators may provide an 

avenue by which local and central circadian regulators are integrated to influence whole 

body physiology. Because expression of CrebH in mouse is highly restricted to liver and 

small intestine (Luebke-Wheeler, Zhang et al. 2008) (Figure 25), the CREBH-null mouse 

is an excellent model to study peripheral clock-originated feedback to the master clock. 

Recent studies have found disturbance of circadian rhythm can lead to depression and 
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anxiety disorders (Salgado-Delgado, Tapia Osorio et al. 2011; Keers, Pedroso et al. 

2012). CREBH-null mice exhibited increased stereotypic movements during the late night 

period (Figure 16), which may partially reflect depressive activities associated with 

metabolic and psychiatric disorders. Whether CREBH, as a liver circadian metabolic 

oscillator, is crucial to maintaining metabolic and thereby psychiatric wellbeing is an 

interesting question to be investigated in the future. 

 

Figure 25. Tissue-specific expression of the mouse CrebH mRNA. 
CrebH mRNA expression profiles in mouse various organs were determined by qPCR. 
Each bar donate mean ± SEM (n=3 mice). Selection of brain regions was based on the 
brain regions described in Allen Brain Altas (http://www.brain-map.org/) (cortex, 
hippocampus, cerebellum, and olfactory bulb) and anterior hypothalamus where 
suprachiasmatic nuclei (SCN) locates. Female WT mice were deeply anesthetized with 
isoflurane followed by rapid decapitation. Brain was rapidly removed and placed on ice, 
and the specific brain regions were dissected under microscopic control. For dissecting 
anterior hypothalamus and motor cortex, section was made on ice-cold mouse brain 
matrix between posterior cut at Bregama-2.92mm and anterior cut at Bregama-0.22mm 
by an experienced neurologist. 
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Circadian rhythms play crucial roles in orchestrating diverse physiological 

processes that are critical for health and disease. Cyclic AMP responsive element 

binding protein 3-like 3 (CREB3L3, also known as CREBH) is a liver-enriched, 

endoplasmic reticulum (ER)-tethered transcription factor known to regulate hepatic 

acute-phase response and energy homeostasis under stress conditions. Here, we 

demonstrate that CREBH is regulated by the circadian clock and functions as a diurnal 

regulator of hepatic lipid and glucose metabolism. CREBH is required to maintain 

circadian profiles of blood triglycerides, fatty acids, and glucose as well as hepatic 

glycogen storage. CREBH rhythmically regulates expression levels and amplitudes of 

the key genes involved in bi-directional metabolic pathways of both energy utilization 

and storage. CREBH regulates, and interacts with, the circadian transcriptional 

activators PPARα and C/EBPβ or the repressor E4BP4 to modulate CREBH 

transcriptional activities. CREBH deficiency leads to hyper-locomotion, increased 
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metabolic rates, and phase-shifted feeding behavior in mice. In summary, our studies 

reveal that CREBH functions as a liver metabolic regulator that integrates energy 

metabolism with circadian rhythm. 
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