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CHAPTER |

INTRODUCTION

In the context of its application in experimental design, the Student t-test (Student,
1908a) for two independent samples assumes independence, equal variances and population
normality. By extension, these assumptions are required also for the Analysis of Variance
(ANOVA), or F-test (Fisher, 1918). These classical statistics were formulated by William S.
Gosset (1876-1937) in 1908 (Student, 1908a; Mankiewicz, 2000) and Ronald A. Fisher (1890-
1962) during the 1920’s (Fisher, 1918; Lomax & Has-Vaughn, 2012) respectively. Traditionally
researchers have turned to these classical tests in order to assess the probability of a treatment

effect in experimental design.

However, problems arise for researchers when these statistical assumptions are violated
by the experimental data. If the variances between experimental samples are not equal, then these
groups do not share common scales and it becomes difficult to determine an appropriate standard
error for use in the t and F statistics. If data sets are not normal, then the normal probability
functions fundamental to classical statistics may not be valid for detecting treatment effects.

The literature is vast on how poorly the t and F tests perform for unequal variances, the
condition known as heteroscedasticity. “Heteroscedasticity refers to situations where two or
more of the variances are unequal” (Wilcox, 1996, p. 174). For instance, it has been
demonstrated that small sample sizes, unequal sample sizes and one-tailed tests can be

problematic for the t-test with respect to heteroscedasticity and non-normal data. Wilcox (1996)



discussed some of the issues for violation of the equal variance assumption in relationship to the
robustness of the t test:
When distributions are normal and there are equal sample sizes, but the equal variance
assumption is violated, Student’s t-test provides fairly good control over the probability
of Type I error if the sample sizes are not too small... However, when the sample sizes

are unequal Student’s-t can be unsatisfactory, even when sampling from a normal
distribution... ... The situation is worse when the distributions are nonnormal. ..

With respect to the F test, the problem is even worse. Wilcox (1996) stated that “our hope
is that any problem associated with unequal variances might diminish when there are more than
two groups, but the reverse seems to be true” (p. 180). Keppel & Wickens (2004) noted the
problem:

The conclusion we drew from the Monte Carlo experiments in Table 7.1 was that the

actual significance level could appreciably exceed the nominal a level when the group

variances were unequal. Under these circumstances, we need a way to adjust or modify

our analysis (p. 152).

Keppel & Wickens (2004) mentioned four possible remedies for unequal variances, such
as adopting more stringent significance levels, transforming the data, using alternative tests, or
emphasizing single-df tests. However, they (Keppel & Wickens, 2004) noted of these remedies,
“although none of them is universally effective, most problems can be solved (or ameliorated) by
one of the four” (p. 156). Other authorities take exception with some of these methods. Wilcox
(1996) stated many would disagree with Keppel & Wickens’ (2004) Suggestion to adjust
significance levels (i.e., accepting a Type I error rate of .09 when o= .05). With respect to
principled experimental design theory, it would indeed appear improper to extend a selected o
level unless a is bounded by certain predetermined limits (e.g. Bradley, 1978). Wilcox (1996),

and Sawilowsky & Fahoome (2003) took exception with the Keppel & Wickens’ (2004)

suggestion of data transformation (e.g., transforming data to logarithms) which tends to make the



data distribution more symmetrical, more normal looking, and brings the sample variances closer
together. In terms of transforming data with respect to the Student’s-t test, which can be
extended to the F-test, Wilcox (1996) stated data transformation “does not necessarily eliminate
low power due to heavy-tailed distributions or outliers” (p. 155), and more importantly “that by
transforming data and applying Student’s t-test or Welch’s method, you are no longer comparing
the means corresponding to the original observations” (p. 155). When discussing an ANOVA
example, Sawilowsky & Fahoome (2003) agreed with Wilcox’s (1996) concern about
meaningless results after data transformation:
Interactions can be made to apparently vanish with other types of well-known
transformations, such as logarithmic, hyperbolic, sine or squaring the above mentioned
inverse, but how frequently in social and behavioral sciences would anyone be interested
in the resulting metric and therefore the meaning of such transformed scores? And of

course_more importantly, in which of these cases is the meaning of the construct
unchanged by taking the reciprocal (p. 280)?

Wilcox (1996) mentioned some of the poor results of the F-test under conditions of
unequal variances in the literature (Brown and Forsythe, 1974; Rogan and Keselman, 1977;
Tomarken and Serlin, 1986). At first, with respect to the F test, it was assumed there was no
impact with unequal variances. For instance Box (1954a) analyzed results of violating the equal
variance assumption under normality and reported that the probability of a Type I error is not
overly affected by unequal variances if R <3 (R =01/a2).R is defined as the ratio of the
largest to the smallest standard deviation. No results were given for large ratios and according to
Wilcox (1996), the prevailing opinion for the next twenty years was that the F test was relatively
immune to violations of the equal variance assumption. However, Wilcox, Charlin and
Thompson (1986), found if the null hypothesis of equal means is true the actual probability of a
Type I error rate can be as high as .3 when R = 4 and o= .05. Wilcox (1996) encountered

estimates of R as high as 11 and noted:



Brown and Forsythe (1974) reported results for R = 3 and found that the probability of a

Type I error was unacceptably high. No reason for limiting the results to R < 3 was

given. Wilcox (1989), in a survey of educational studies, found that estimates of R are

often higher than 4. If the null hypothesis of equal means is true, the actual probability of

a Type I error can be as high as .3 when R = 4 and a = .05 (Wilcox, Charlin, and

Thompson, 1986) (p. 180).

The problem, of course, with an inflated Type I error rate in the context of experimental
design is that nonsense treatment effects will be concluded more often. Wilcox (1996) noted that
a possible counter argument to the problem of Type I error discrepancies as described here is that
according to some authorities (e.g., Sawilowsky, 2002), having equal means with unequal
variances is unrealistic. “That is, this situation will never arise in practice because if the
variances are unequal surely the means are unequal, in which case a Type I error is not an issue
(Wilcox, 1996)” (p. 180).

However, despite this objection from some authorities, Wilcox (1996) mentioned that
“there is evidence that problems with Type I errors with unequal variances reflect undesirable
power properties even under normality (Wilcox, Charlin, and Thompson, 1986; Wilcox 1994a)”
(p. 180). For instance, Wilcox (1996) mentioned there are situations where the null hypothesis is
false, yet the probability of rejecting the null hypothesis is less than a. Thus, in this case,
important treatment effects may be missed. Wilcox (1996, p. 181) noted that “the power curve
might be unusually flat in a regions near the null hypothesis (Wilcox, 1994a)” especially when
the data is skewed. Therefore, despite the objections of many who claim that means will not stay
the same (eliminating Type I error concerns) if the scales/variances change, the Type II error rate
could inflate should there be a treatment effect indicated by a shift in means around the null
region. Wilcox (1996) noted other inconsistencies with power results under conditions of

heteroscedasticity and warned “although an optimal solution has not been derived, it seems fair

to say that you should not assume that the F test is always best” (p. 181).



This insidious violation of equal variances is common in experimental design. For
instance, it is not unusual for a treatment group to have a change in scale or variance after
treatment causing unequal variances between groups (Wilcox, 1996). According to Sawilowsky
and Fahoome (2003), a common outcome for psychological and educational data after treatment
is that the treatment group becomes more homogeneous or more heterogeneous. When this
happens, it often causes non-robust test results for the t and F statistic, as the difference in scale
or variance surface between control group and treatment group. Additionally, these tests often
lack comparative statistical power as the differences in scale/variances surface between control
and treatment groups. As the variability of the treatment group become more and more different
from the control group, the underlying assumptions of equal variances become more and more
violated. This condition of unequal variances (nonhomogeneous variances) or heteroscedasticity
between sample groups in research settings gives rise to what statisticians have come to know as
the Behrens-Fisher problem.

Sawilowsky (2002) noted that the Behrens-Fisher problem was named after W.V.
Behrens (1902-1962), (1929) and Ronald A. Fisher (1935) who developed the first expression
and solution for the problem. It

arises in testing the difference between two means with a t test when the ratio of

variances of the two populations from which the data were sampled is not equal to one.

This condition is known as heteroscedasticity, which is a violation of one of the

underlying assumptions of the t test. The resulting statistic is not distributed as t, and

therefore the associated p values based on the entries found in standard t tables are
incorrect. Use of tabulated critical values may lead to increased false positives, which are
known as Type I errors, or a conservative test that lacks statistical power to detect

significant treatment effects (p.461).

Additionally, these concerns apply to the ANOVA F-test. Sawilowsky (2002) noted that

the Behrens-Fisher problem generalized to more than the two sample case; it applied to many

layouts.



The Behrens-Fisher problem has a long history of research attention over the last century
as statisticians attempted to provide solutions to work around this particular assumption
violation. It continues to be actively studied according to Sawilowsky (2002):

Despite the many approximate solutions published to date, the Behrens-Fisher problem

remains actively studied. In the past 35 years, there were 37 doctoral dissertations

completed pertaining to some aspect of the Behrens-Fisher problem, including newly
proposed approximate solutions (Dissertation Abstracts Online, 2000). There was one

dissertation completed in the 1960’s, six in the 1970’s, 16 in the 1980’s and 14 in the
1990’s (p. 463).

Background
Parametric Testing
For most of the 20" century, the equal variance violation was considered of little
consequences according to Sawilowsky and Fahoome (2003). This perspective has been shown
to be incorrect particularly in light of Monte Carlo research methods. Sawilowsky and Fahoome
(2003) noted that for the ANOV A, F-test similar to the Students-t test:
the literature on the behavior of the ANOVA F in the presence of violations of these three
underlying assumptions is amazingly vast, considerable controversial, and only recently
conclusive. Most of what is known regarding the operating characteristics of the Anova F
test parallels work on the robustness of the t test. Most of the work is based on Monte
Carlo studies.
The violation of independence is a recipe for disaster in terms of Type I errors. There is
no statistic that can overcome a true lack of independence, either within or between
scores. Heteroscedasticity, or heterogeneous variances within or between groups, can also
be quite debilitating in terms of type I errors (e.g., Randolph & Barcikowsky, 1989). This
is especially so in no particular order, when (a) sample sizes are unequal, (b) cells with
the smaller n’s have the larger variances (c¢) accompanied by other violations of
assumptions and (d) the degree of nonhomogeneity increases (p. 292).
Nonparametric Testing
Sawilowsky and Fahoome (2003) noted that non-homogeneity or heteroscedasticity

causes nonparametric tests to be ineffective as well and that even the Wilcoxon Rank Sum test

(1945), an alternative to the t test, which is three to four times more powerful than the t-test



under conditions of non-normality, is also not a good test when the treatment primarily impacts
scale. Additionally, Sawilowsky (2002, p. 463) noted with the ANOVA F-test, “for the case of K
> 2, Feir-Walsh and Toothaker (1974) and Keselman, Rogan, and Feir-Walsh (1977) found the
Kruskal-Wallis test (Kruskal & Wallis, 1952) and expected normal scores test (McSweeney &
Penfield, 1969) to be ‘substantially affected by inhomogeneity of variance’ (p.220).”
Experimental Design

In experimental design, a version of the Behrens-Fisher problem has been particularly
vexing for researchers: how to determine the probability of a treatment effect (within the limits
of Type I errors) when the post-test reveals a possible variance change/difference concurrent
with the means of the two groups remaining the same (Sawilowsky, 2002, Young & Smith,
2005). This problem has prompted much of the research efforts attempting to develop solutions.
Yet, until today, many suggestions have been put forth for adjustments to the classical statistics
when heteroscedasticity arises but there are no ultimate solutions; they are satisfactory only
under limited circumstances.
Detecting Change in Scale

In addition to the absence of full-proof Behrens-Fisher solutions, there were no statistical
tests designed for the purpose of detecting scale or variance changes between sample groups with
regard to the level of heteroscedasticity necessary to invoke the Behrens-Fisher problem.
According to Neave and Worthington (1988), there were no satisfactory nonparametric tests that
could determine the potential of unequal variances irrespective of whether there was a location
shift. They noted that the Mood-Westenberg dispersion test (1948) determined differences in

variances under the assumption that the means of two samples are equal. Likewise, they noted



that the Siegel-Tukey test (1960) assumes roughly equal means/medians for detecting variance
differences between groups.

Neave & Worthington (1988) apologetically bemoaned their inability to offer a robust
nonparametric test with power for determining when two samples reflected shifts in location and
concurrently a possible change in scale. It is important to determine possible scale changes after
treatment in order that the researcher can select the appropriate statistical test. If scales do not
change, the classical t and F tests can be applied. Otherwise, if scales change, as Wilcox (1996)
noted, it might be best to select another alternative and the researcher should not assume that the
F (or t-test) is best. Neave and Worthington (1988) noted:

Although the Kolmogorov-Smirnov and Rosenbaum tests in Chapter 7 deal with
situations where there may be differences in both location and dispersion, there is one
particular kind of problem that in fact does not seem to have any good distribution-free
solutions. This is the problem of detecting a dispersion difference irrespective of whether
there is a location difference. In classical statistics, this problem is solved very neatly by
the F-test since the F-statistic remains completely unchanged if either or both samples
have constants added or subtracted from them (representing change in location).
Frustratingly, there is, as yet, no such neat equivalent distribution-free method. Several
attempts have been made to solve the problem, but all resulting tests suffer from being
rather un-powerful or not truly distribution-free or both....It is particularly unfortunate
that there appears to be no good distribution-free solution to this problem since several
researchers have shown that non-normality can upset the behavior of the F-statistic to a
very considerable extent. The best attempt at such a distribution-free method appears to
be Moses rank-like tests (p.135).



Purpose of Study

If, as Neave and Worthington (1988) noted, there are no testing procedures which can
detect the occurrence of different variances irrespective of means, then how does the researcher
even know if a Behrens-Fisher problem arises so as to subsequently apply any of the
approximate solutions? The primary focus of this study will be to determine if there is a
particular statistical method, for example, the Mood-Westenberg test (1948) that could detect the
Behrens-Fisher problem for variance changes/differences if its assumption of equal means is
violated. How far do the means have to differ before the test becomes non-robust (no longer able
to maintain Type I and Type II error rates in light of violating the assumption of equal means)?

In this study, it is postulated that if the Mood-Westenberg test (1948) could remain robust
with respect to Type I errors and Type II error properties under violations of the equal means
assumption, then the Mood-Westenberg test (1948) might indeed alert a condition of the famous
and classical Behrens-Fisher problem of heteroscedasticity so that a researcher could apply one
of the approximate solutions. Sawilowsky (2013, personal communications) agreed “if the
Mood-Westenberg test (1948) is robust with respect to departure from equal means, it would be
useful as a precursor to employing classical solutions, such as, for example, Yuen’s procedure
(Yuen, 1974).”

The purpose of the study, then, is to research and explicate under what conditions, if any,
the Mood-Westenberg dispersion test (1948), a nonparametric ordinal test based on position
within quartiles, is robust with respect to Type I errors and Type II error properties and maintains
power for detecting heteroscedasticity (changes/differences in scale) when its equal means
assumption is violated (means becoming more and more different) in small increasing

increments. The interest in performing this study is to determine when heteroscedasticity or scale
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changes, (not location shifts) becomes detectable for experimental data drawn from real data sets
and mathematical distributions.

Because the Siegel-Tukey test (1960), another ordinal test based upon rankings and an
assumption of equal means/medians, has also been proposed for the purpose of determining
variance/spread differences between two samples, it will be invoked as the primary competitor to
the Mood-Westenberg test (1948). In the second phase of this study, which assumes the Mood-
Westenberg test (1948) is robust, will be a comparative power study between the Mood-
Westenberg (1948) and the Siegel-Tukey (1960) tests.

Statement of Problem

This problem under investigation is the following: How does a researcher become aware
of the Behrens-Fisher problem (heteroscedasticity) in order to apply an approximate solution?
Would a researcher even know if the Behrens-Fisher problem surfaced in experimental design?
Under what conditions would the non-parametric Mood-Westenberg dispersion test (1948) detect
the Behrens-Fisher problem when potential treatment effects (means become different) arise?
The questions will be repeated for the Siegel-Tukey test (1960). Then, given that the Mood-
Westenberg (1948) and Siegel Tukey (1960) tests are robust, a comparative power study will be
performed for these two tests. The expectation is that both the Mood-Westenberg (1948) and the
Siegel-Tukey (1960) tests will be robust with respect to Type I and Type II errors for variance
change hypothesis testing when their assumption of equal means are violated. Secondly, it is
expected that the Mood-Westenberg test (1948) will be slightly more powerful than the Siegel-
Tukey test (1960) because “the power of Siegel-Tukey test is a little less than that of Mood’s

test” (Neave and Worthington, 1988, p. 134).
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Significance of Study/Impact on Literature

There are several possibilities for advancing the literature. If the Mood-Westenberg
dispersion test (1948) is found to be robust and/or powerful in light of violation of the equal
means assumption, then it could be utilized in experimental research as a testing procedure that
could detect variance changes irrespective of mean/location shifts, a test that would be a
palliative for the Neave and Worthington (1988) concern that there is no method for detecting
variance changes irrespective of location shifts. Therefore it would be useful for the
identification of the Behrens-Fisher problem. And because of the ability to identify the Behrens-
Fisher problem, it would ultimately assist in identifying potential treatment effects around the
null region, a concern surfaced by Wilcox (1996). Additionally, the outcomes will explicate the
exact conditions under which the test statistic would be robust and powerful for this purpose.

If the test is found to be non-robust and/or not powerful and therefore yet another
procedure that is ineffective for detecting the Behrens-Fisher problem, a decision must be made
if it is worthwhile to continue devoting attention to developing solutions when there are no
methods for detecting the Behrens-Fisher problem in research design. Unless there is a robust
and powerful test for detecting heteroscedasticity after treatment when the occurrence of a
treatment effect is unknown, (i.e., irrespective of location shifts), then continuing research efforts
to find a Behrens-Fisher solution for this version of the problem would be a waste of resources
and research efforts because the problem would be undetectable. It would be especially deemed
wasted effort in developing additional solutions for the statisticians who believed “the situation
will never arise in practice because if the variances are unequal surely the means are unequal, in
which case a Type I error is not an issue (Wilcox, 1996, p. 180).” Negative outcome results

would lend additional support to Sawilowsky (2002) who strongly opined that “sufficient journal
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space has been given to this problem in comparison with the frequency with which it occurs” (p.
468).
Limitations

The limitations will be related to the input parameters including various alpha levels,
theoretical distributions and real data sets, small/medium equal and non-equal sample sizes and
various magnitudes of shifts in location and changes in scale.

Definition of Terms

Alpha (Significance Level): Alpha is the probability criteria of incorrectly rejecting the
null hypothesis (incorrectly finding in favor of a treatment effect) when in fact there is no
treatment effect. For a hypothesis test, it is the probability that the test will lead to a Type I error.
In this study it concerns the probability that the interested nonparametric tests, Mood-
Westenberg (1948)/ Siegel-Tukey test (1960) will incorrectly reject the null hypothesis of equal
variances for two experimental samples when in fact the variances are equal.

Assumption: A statistical test requirement necessary to maintain specified Type I error
rates (e.g., p=.05).

Beta: Beta is the probability of incorrectly accepting the null hypothesis (incorrectly
assessing no treatment effect) when there is in fact a treatment effect. For a hypothesis test, it is
the probability that the test will lead to a Type II error. In this study it concerns the probability
that the interested nonparametric tests, Mood-Westenberg (1948)/ Siegel-Tukey test (1960), will
incorrectly accept the null hypothesis of equal variances for two experimental samples when in
fact the variances are not equal.

Behrens-Fisher Problem: The Behrens-Fisher problem arises in testing the difference

between two means with a t test when the ratio of variances of the two populations from which
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the data were sampled is not equal to one. This condition is known as heteroscedasticity, which
is a violation of one of the underlying assumptions of the t test. It applies to many layouts with K
> 2 (Sawilowsky, 2002).

Bradley Proposed Limits: According to Bradley’s (1978) proposed limits, robustness can
be defined liberally as when Type I error falls within plus or minus .5 of the nominal alpha level,
and defined stringently when Type I error falls within plus or minus .1 of the nominal alpha
level.

Conservative: When a test does not reject the null hypothesis as much as it should for a
given Type I error rate.

Critical Value: A selected probability limit used to determine if the results of a statistical
procedure are significant.

Distribution: A probability frequency for a given variable. According to Sawilowsky and
Fahoome (2003): “In many areas of physical and mathematical science the uniform curve is the
best first guess but in modern times variables are known to be distributed according to other
distributions such as exponential and normal curve.” Sawilowsky and Fahoome (2003) noted that
Micceri (1989) found less than 3% of all educational and psychological data sets are symmetric
with light tails, such as the bell curve and therefore for the past quarter of a century, many other
mathematical curves other than the Gaussian distributions were suggested as models of the
distribution properties of important variables. Also, Micceri (1989) found real world data sets
often differ from mathematical models.

Effect Size: A measure of the absolute magnitude of a treatment effect that is independent
of the sample size being used. It is the difference in means between samples divided by the

standard deviation. The interest concerning simulated effect size in the context of this study is to
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explicate its impact upon the Mood-Westenberg (1948) and the Siegel-Tukey test (1960)
capabilities to detect spread/variance ratios not equal to 1.

External Validity: Concerns the inferences about the extent to which a causal relationship
holds over variations in persons, settings, treatment, and outcomes (Shadish, Cook & Campbell,
2002).

F-Test/ANOVA: A hypothesis test known as Analysis of Variance that is designed to
evaluate the results from research studies producing two or more mean differences. In general
terms, it is the ratio of variances/differences between sample means over variance/differences
expected with no treatment effect. The analysis divides the total variability into two basic
components: between-treatment variance and within-treatment variance (Gravatter and Wallnau,
2009).

Fisher exact-test: A method of analyzing 2x2 contingency tables which may be carried
out even when the sample size is too small for the chi-squared approximation to be valid. It is
called an ‘exact’ test because probability solutions are based on exact computations rather than
chi-squared approximations (Neave & Worthington, 1988).

FORTRAN: A computer programming language that is used to carry out Monte Carlo
Simulations. There are other ways to accomplish this task, but it has been found that FORTRAN
is the shortest path to obtaining successful and useful results (Sawilowsky and Fahoome, 2003).

Heterogeneous: The variability of a group becomes more and more different.

Heteroscedasticity: When the ratio of variances of two populations from which the data
were sampled is not equal to one. It can occur when the variability of the treatment group
becomes more and more different from the control group and causes the underlying assumptions

of equal variances to become more and more violated (Sawilowsky, 2002).
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Homogeneous: The variability of a group becomes more and more the same.

Internal Validity: Ensures a causal relationship (co-variation reflects a causal
relationship) between input and outputs in experimental design.

Liberal (1): When a test rejects the null hypothesis more than it should for a given Type I
error rate.

Liberal (2): According to Bradley’s proposed limits (1978), when Type I error falls
within plus or minus half of the nominal alpha level.

Lower Tail: The lower set of values in a distribution.

Monte Carlo Methods: Repeated sampling from a population distribution, to determine
the long-run average of some parameter or characteristic. Sampling is usually done with
replacement, meaning that a subset of scores is obtained, they are analyzed, the results are
recorded, and the scores are returned to the reservoir of data values. On the next iteration, the
values just examined have the same probability of being selected as values not yet examined
(Sawilowsky and Fahoome, 2003).

Monte Carlo Simulations: The use of a computer program to simulate some aspect of
reality to make determinations of the nature of reality or change in reality through the repeated
sampling via Monte Carlo methods (Sawilowsky and Fahoome, 2003).

Mood Westenberg Test (1948): A nonparametric ordinal test for detecting changes in
spread (i.e. dispersion or variability) relying on the assumptions that two populations from which
the samples are drawn have at least roughly equal means (Neave and Worthington, 1988, p.344).
It is similar to the Siegel-Tukey test (1960) in these aspects. However, unlike the Siegel-Tukey
test (1960), the Mood-Westenberg test (1948) does not involve ranking procedures and is

somewhat quicker to perform (Neave and Worthington, 1988, p. 344). It is a test based on
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differences in the number of individuals from each group found in upper and lower quartiles and
assesses the critical values from Fisher’s exact tables.

Non-Parametric test. Any statistical test that does not make assumptions about the shape
of the population distribution or about other population parameters (e.g. an assumption for the t-
test is that the data distribution parameter must be from a normal distribution). A technique used
for hypothesis testing which provides an alternative to classical parametric tests such as the t-test
and F-test when some of their assumptions are violated.

Normality: A state of data distribution which fits the normal or Gaussian curve. It is a
parameter assumed for the t and F tests.

Power: Power is the probability that a test will correctly reject a false null hypothesis and
thus correctly identify a treatment effect between data sets. Power is a function primarily
dependent upon sample size, alpha levels, and effect size. It is the probability that a test will
identify a treatment effect if one exists and is known as the inverse of Type II () error or 1-f. In
the context of this study it is the probability that the Mood-Westenberg test (1948)/the Siegel-
Tukey (1960) tests will correctly reject the null hypothesis of equal variances for two
experimental samples when the variances are in fact different.

Random Selection/Assignment: Any procedure that assigns units to conditions based only
on chance, in which each unit has a non-zero probability of being assigned to a condition. A
well-known random assignment procedure is a coin toss (50% probability of coming up heads).
(Shadish, Cook, & Campbell, 2002).

Robustness: The degree to which a statistical test maintains Types I and II error rates in

light of assumption violations.



17

Robust Test: A statistical test that maintains Type I error rates in light of assumption
violations.

Robust Methods: A statistical method that is resilient to outliers. It is invoked in order to
refine central tendency and variability of a group of scores or variables, thereby increasing power
to detect treatment effects. For instance, one robust method is the Yuen (1974) statistic. There
are literally an infinite number of modern robust measures. (Sawilowsky & Fahoome, 2003).

Siegel-Tukey Test (1960): A nonparametric ordinal test for detecting changes in spread
(i.e. dispersion or variability) relying on the assumptions that two populations from which the
samples are drawn have at least roughly equal medians. It involves ranking the data with higher
values given for the values at the extremes. It follows a similar method to that of the Wilcoxon
rank-version of the Mann-Whitney test (Neave and Worthington, 1988, p. 131) and assesses
results with the Mann-Whitney tables of critical values.

Skewed Distribution: A distribution with extremely high or low scores that pulls the
distribution to one side or the other.

Statistical Conclusion Validity: Concerns the conclusions about the co-variation
(correlation) component of causal inference: Do the inputs and outputs of the experiment co-vary
and how much do they co-vary.

Stringent: According to Bradley’s proposed limits (1978), when Type I error falls within
plus or minus one-tenth of the nominal alpha level.

T-Statistic (Student’s-t): The t statistic is used to test hypothesis about an unknown
population mean when the value of the standard deviation is unknown. The formula for the t
statistic has the same structure as the z-score formula, except that t statistic uses the estimated

standard error in the denominator (Gravetter and Wallnau, 2009).
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Type I Error: Also known as a. It is the experimental probability error of rejecting the
Null hypothesis when it is true; that is incorrectly rejecting the Null when there is in fact no
treatment effect.

Type II Error: Also known as f3. It is the experimental probability error of accepting the
Null hypothesis when it is false; that is incorrectly accepting the Null hypothesis when there is in
fact a treatment effect (it is the inverse of power known as 1-£3).

Upper Tail: The upper set of values in a distribution.

Wilcoxon-Rank Sum Test (1945): A version of the Mann-Whitney (1947) test computed
by adding together certain ranks. The ranks of the observations in the two samples are obtained
simply numbering the letters in the letter sequence (A and B for two groups) from 1 to N where
N is the total number of observations (Neave & Worthington, 1988).

Yuen Statistic (1974): A robust statistic used to increase power by increasing measures of
location with standard errors that are relatively unaffected by heavy tails and outliers (Wilcox,

1996). It provides a solution based on trimmed means and matching sample variances.
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CHAPTER 1

LITERATURE REVIEW

Necessity of Addressing the Behrens Fisher Problem?

Soon after developing the t-test, William Gosset (Student, 1908a) was concerned about
its effectiveness under conditions of unequal sample variances. However Gosset’s friend, Karl
Pearson (1857-1936), convinced Gosset that heteroscedasticity would not diminish the generality
of the test (Sawilowsky, 2013, personal communications). Initially, Ronald Fisher was also
unconcerned with the problem with respect to the F-test. Subsequently, the work of W. V.
Behrens (1929) convinced Fisher to address this problem. Dr. Behrens worked as a scientific
assistant at the Institute for Agriculture and Plant Breeding of the University of Koenigsberg
from 1927 to 1931 and was appointed in 1932 as scientific chief assistant at the Institute of
Agricultural Chemistry and Bacteriology of the Agricultural Academy (Heinisch, 1962).
According to Sawilowsky (2002), Fisher and Behrens together developed the first expression and
solution to what is now known as the Behrens-Fisher problem (Behrens, 1929, Fisher, 1935).
According to Yao, (1965, p. 139), “the univariate problem was first studied by Behrens (1929)
and the solution was presented by Fisher (1935) in terms of the fiducial theory. Sawilowsky
(2002) described their initial solution as a modification of the t statistic, which weighted a

group’s variance according to sample size. It was expressed as:
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where S; and S, are fixed and o0, and o, have fiducial distributions. Sawilowsky (2002)
mentioned the historical support from the Fisherian perspective but also noted that Bartlett
(1936) challenged the solution based “on the principle of inverse probability from a Bayesian
perspective” (p. 462).

According to Yao (1965, p. 139.) “Welch studied it in the confidence theory framework
and provided an ‘approximate degrees of freedom’ solution as well as an asymptotic series
solution (1936, 1947).” It is known as Welch-Aspin t test (Welch, 1937, 1949a, 1949b;
Satterthwaite, 1941, 1946; Aspin 1948, 1949), wherein the degrees of freedom were modified.
Welch (1947) also provided a solution for the K > 2 generalized problem. Sawilowsky (2002)

and Gravetter and Wallnau (2009, p. 329) noted the formula for this modification:
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Sawilowsky (2002) stated this solution remains an approximate solution and is not robust
with respect to departures from normality. However, according to Wilcox (1996) and
Sawilowsky (2013, personal communications), this solution was untenable because after the
statistician modified the degrees of freedom and then looked up the probabilities within the
Student- t distribution, this statistic was no longer valid because the statistician had changed the
degrees of freedom and therefore the adjustment would no longer map to the t distribution’s

modeled probabilities.
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Historically, many others offered solutions to the Behrens-Fisher problem but often they
were unsatisfactory. These solutions first met with a concern about robustness with respect to
Type I errors for unequal sample sizes for instance in the cases where k> 2 (e.g. Kohr, 1970;
Mehta & Srinivasa, 1970; Kohr & Games 1974; Tomarkin & Serlin, 1986). Later, they met with
concerns of robustness with respect to Type I errors for departures from the population
normality. Sawilowsky (2002) mentioned that “the Monte Carlo studies showed that the
Behrens-Fisher, Bartlett, and Welch Aspin/Satterthwaite approximate solutions were not robust
to departures from normality (e.g. James, 1959; Yuen, 1974)” (p.463).

Among solutions, Yao (1965) offered “an approximate degrees of freedom solution to the
multivariate Behrens-Fisher problem” and mentioned others who offered solutions before:

Many others have investigated this topic and various methods of approach were also

suggested by Jeffreys (1940), Scheffé¢ (1943), McCullough, Gurland & Rosenberg

(1960), Banerjee (1961) and Savage (1961). In the multivariate extension of the Behrens-

Fisher problem, Bennett (1951) has extended the Scheffé solution, and James (1954) the

Welch series solution. (p.139)

The following are only a few of the other many perspectives found in the literature which
claims to solve some version of the problem.

e Chapman (1950)

e  Wald (1955)

e Banerjee(1960)

e Pagurova (1968)

e Brown and Forsythe (1974)

e Prokof’yev and Shishkin(1974)

e C(Clinch & Kesselman (1982)

e Wilcox (1990a)
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e Dudewicz and Ahmed in (1998, 1999)

Sawilowsky (2002) mentioned that some solutions based on nonparametric or
nonparametric-like procedures were unsuccessful but believed that a robust approximate
solution, the Yuen’s Procedure (1974), based on trimmed means and matching sample variances,
effectively addressed this Behrens-Fisher problem even though it too remained an adjustment
and not a solution. However, after the long historical search for solutions found in the literature,
Sawilowsky (2002) also put forth a novel and perhaps shocking suggestion: namely, that more
research dedicated to finding Behrens-Fisher solutions was a waste of valuable time and
resources and that this line of investigation should be abandoned. Sawilowsky (2002)
acknowledged the theoretical dilemma within experimental research of not knowing the probable
likelihood of a treatment effect if the treatment should possibly cause a change in scale, but
believed that was is an entirely impractical issue because it had no real life applications for
educational and psychological research. Sawilowsky’s (2002) reasoning was simple: no
experimental data sets were known to exist where a treatment simultaneously changed the
variance while at the same time the means remained unchanged.

This Behrens-Fisher problem (variance changed but means stayed the same) was
irrelevant from an application standpoint because Sawilowsky (2002) couldn’t imagine how this
treatment outcome would ever arise and, furthermore, during 30 years of statistical research,
found no such data sets in the literature where the means stayed the same concurrent with scale
changes after treatment. Sawilowsky (2002) contended it was irrelevant when Howell and
Games (1974) suggested that “educational and psychological researchers often deal with groups
that tend to be heterogeneous in variability” (p.72). According to Sawilowsky (2002), this

Howell and Games (1974) observation was:
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mitigated by the fact, “We have spent many years examining large data sets but have
never encountered a treatment or other naturally occurring condition that produces
heterogeneous variances while leaving population means exactly equal. While the impact
of some treatments may be seen primarily in measure of scale, they always (in our
experience) impact location as well (Sawilowsky & Blair, 1992, p.358).” (p.466)

Additionally, Sawilowsky (2002) mentioned that:
none of Micceri’s (1989) 440 real psychology and education data sets reflected this
condition, nor have I seen an example in literature. Thus the issue of heterogeneous

variance and their impact on type I errors is moot (p. 466).

In other words, according to Sawilowsky (2013 personal communications), “come on

folks, how many resources should be expended to solve a potential experimental outcome that

has not

found,

surface in the last 100 years?” Sawilowsky (2002) asserted that “even if examples can be

the question remains if the Behrens-Fisher problem surfaces with such frequency that

merits the journal space it has been given” (p. 466).

Thus, Sawilowsky believed the unlikely treatment outcome (the Behrens-Fisher problem

concerning its impact on Type I errors) of equal means concurrent with unequal variances,

although of theoretical interest, should not be the focus of continued on-going research. Rather

educational and psychological research should be focused on the prevalent outcome conditions

such as shifts in means while the variance remains constant or the more prevalent condition of

when there is a concurrent shift in both means and variance.

known:

According to Sawilowsky (2002),

The importance of the Behrens-Fisher problem from a theoretical perspective is
acknowledged, but it is concluded that this problem is irrelevant for applied research in
psychology, education, and related disciplines. The focus is better placed on the “shift in
location” and more importantly, “a shift in location and change in scale treatment
alternatives” (p.461).

Sawilowsky (2002) stated the most prevalent treatment outcome for applied studies is
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It is where a change in scale is concomitant with a shift in means. As an intervention is

implemented, the means increase or decrease according to the context. Simultaneously,

the treatment group may become more homogeneous on the outcome variable due to
sharing the same intervention method, conditions, etc. Alternatively, the group may
become more heterogeneous as some respond to the treatment while others do not

respond, or even regress (p.466).

With respect to these two prevalent scenarios, Sawilowsky (2002) mentioned that there
were already very good tests available for determining treatment effect. With respect to robust
tests for shifts in location (change in means where variances are assumed to be equal)
Sawilowsky says of the t test:

Although no test can survive violations of independence of observations, under certain

commonly occurring conditions (i.e., sample sizes are equal or nearly so and are at least

25 to 30 and tests are two-tailed rather than one-tailed), the t test is remarkably robust

with respect to both type I and II errors for departures from normality...the

nonparametric Wilcoxon Rank Sum test can be three to four times more powerful in
detecting differences in location parameters when the normality assumption was violated

(p. 464).

With respect to robust tests involving concurrent general shifts in location (means) and
scale (variance), these generalized nonparametric tests and corrections are suggested by the
literature (Neave & Worthington, 1988; Wilcox, 1996):

e Rosenbaum’s test (1965): Tests for change in variance and means

e The Kolmogorov-Smirnov tests (1933): Tests for change in variance and means

e Yuen’s adjustment (1974): Adjusts for a change in variance and means.

Sawilowsky (2002) believed that the Behrens-Fisher problem was important only from
two standpoints. First because it was a classic and many prestigious mathematical statisticians
have addressed this problem: “the Behrens-Fisher problem has as much mystique and has
received as much fanfare in its discipline as other classical problems that remain unsolved or

unfinished in their disciplines” (Sawilowsky, 2002, p.465). Second, the Behrens-Fisher problem

was important “due to the byproducts that have been developed in the course of creating
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approximate solutions” (Sawilowsky, 2002, p.465). Sawilowsky (2002) mentioned for instance
that Bartlett’s (1937) study of heteroscedasticity culminated in a well- known Chi-Squared test
on variances, which is useful for testing the underlying assumption of homoscedasticity.

Sawilowsky (2002) concluded:

The Behrens-Fisher problem is a classic, but its many and continuing solutions are

perhaps better housed in journals catering to theoretical developments. Sufficient journal

space has been given to this problem in comparison with the frequency with which it
occurs. Instead, applied researchers should focus on more practical treatment outcomes
such as naturally occurring conditions that bring about a shift in location and a change in
scale. This is the most realistic treatment outcome in applied psychology and education
research. It presents an exciting area in which considerable additional research is

warranted (468).

The regret expressed by Neave and Worthington (1988) that there were no testing
procedure for determining potential changes in scale/variance irrespective of location/means
shifts perhaps adds support to Sawilowsky’s position.

The question remains as to what extent heteroscedasticity must be present in the Mood-
Westenberg test (1948) to invoke the Behrens-Fisher problem. If neither the Mood-Westenberg
(1948) nor the Siegel-Tukey (1960) tests could powerfully detect variance changes when the
means of two samples differ slightly, then this findings could lend additional support to
Sawilowsky’s (2002) suggestion that any more time investigating the Behrens-Fisher issue of
treatment outcomes yielding approximately equal means concurrent with differences in
variances, is a waste of resources that could be better devoted to the prevalent outcomes. There
apparently would be no method available to discover the Behrens-Fisher condition. If the
nonparametric tests such as the Mood-Westenberg (1948) and Siegel-Tukey (1960) are not
powerful with respect to small shifts in means, why continue to worry about the apparently non-

existent Behrens-Fisher variant issue of determining a treatment effect when there is a potential

change in variance concurrent with constant means? If there were no procedures capable of
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detecting the Behrens-Fisher problem, then additional Behrens-Fisher research to yield solutions
indeed would be quite irrelevant from a practical standpoint: there would be no known method to
determine when the problem surfaced after treatment. On the other hand, if there were a test such
as the Mood-Westenberg (1948) that could detect variance changes when the means have shifted,
then this could be a precursor to other adjustment solutions such as the Yuen Procedure (1974).

Selection of the M ood-Westenberg Test (1948) and Siegel-Tukey (1960) Test for Study

In this study, the nonparametric Mood-Westenberg test (1948) will be the primary
contender as a robust statistic for variance change detection. It was chosen due to its minimum
assumption requirements, potentially making it a most forgiving (i.e., robust) test, and for its
support in the literature for having power (Neave & Worthington, 1988, p.134). Also mentioned
in literature (Neave & Worthington, 1988), the Siegel-Tukey test (1960) serves to detect variance
spread hypothesis and will be invoked as a primary competitor to Mood-Westenberg (1948).
These tests were chosen for their comparable testing characteristics, such as their measurements
made on an ordinal scale involving ranking procedures and their assumptions of equal or nearly
equal means/medians.

In general, the Mood-Westenberg test for dispersion (1948) combines two samples,
orders the scores from high to low and then divides this ordered group into quartiles. If the null
hypothesis is true, that is there is no difference in spread or variance between the groups (the
ratio of the two variances approach one), then it would be expected within the quartiles that the
upper (quartile four) and lower (quartile one) would have equal number of observations from
each sample and the second and third quartiles would also have equal number of observations
between the two sample groups. Proportional probabilities are matched against the Fisher exact-

test statistic. It is called the exact-test because unlike the analysis of many proportional
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distributions based on Chi-Squared approximations, the Fisher exact test is based upon exact
probability calculations and is helpful for smaller data sets. The Fisher exact test works well for
within a Mood-Westenberg (1948) two-by-two contingency table format.

In general, the Siegel-Tukey test (1960) is similar to Mood-Westenberg (1948) in that it
also begins with ordering the combined sample groups. However here, in place of quartiles, the
scores are ranked by a procedure that gives the higher scores to the extremes of the group. The
scores are added up for each group and the resulting numerical scores can be compared to the
probabilities found in the Mann-Whitney (1947)/Wilcoxon (1945) critical values table.

In addition to their similarities in assumptions and procedures, these tests have been
given attention in the literature and are worth further investigation. The related Mood-
Westenberg median test (1950) which shares similarities to the Mood-Westenberg dispersion test
(1948) (the concern of this study) was invoked by Rahman & Pearson, (2009) when they
compared two medians for location shifts in two independent populations using nonparametric
testing. Ferraro, Rondeau, & Poe, (2003) invoked the Mood-Westenberg test (1948) in their
psychological study observing cooperative and rational self-interest behaviors. Once again, their
interest was primarily in the location shift variation of Mood’s two-sample median test and not
the test for dispersion. Yet, these observations are relevant to this study in terms of highlighting
the importance of this statistic for typical educational and psychological data sets. According to
Ferraro, et al., (2003):

We included the non-parametric tests (Mood, 1950; Westenberg, 1948; Flinger and

Policello, 1981) because of the highly irregular, skewed sample distributions generated

by the experiments tests lead to a rejection of the normality hypothesis. Given such

poorly-behaved distributions, we believe the Mood-Westenberg test, a non-parametric
test with few assumptions, is the most appropriate test (p. 105).
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Ferraro, et al., (2003) chose the Mood-Westenberg (1948) test over the Mann-Whitney
test (e.g., Siegel-Tukey) and another competitor, the Fligner and Policello (1981) procedure
because of minimum assumptions:

Unlike the Mann-Whitney test, which assumes that the underlying population have the

same general shape and dispersion and are symmetric about the population median, and

the Flingner-Policello test which requires symmetry about the population medians, the

Mood-Westenberg test assumes only that the data are from two independent random

samples, the measurement scale is ordinal, the variable of interest is continuous, and if,

the two populations have the same median, the probability is the same that an observed

value will exceed the grand median of the two samples combined (p. 105).

Additional support for the Siegel-Tukey(1960) test might be found with Sawilowsky
(2002) and Sawilowsky and Blair (1992) when they concluded that the Student-t test was not as
powerful under non-normal conditions as the Wilcoxon Rank Sum test (1945), a version of the
Mann-Whitney U test (1947), which turned out to be three to four times more powerful in
detecting differences in location parameters than Student’s-t. Because of this power advantage
under non-normal conditions, the Wilcoxon Rank-Sum (1945) /Mann-Whitney U (1947), the
underlying statistic (basis of probability) for Siegel-Tukey test (1960), was determined to be a
good contender for this study.

Katzenbeisser (1989) also observed power aspects of these two tests with respect to
location shifts for the exponential distribution. Walter Katzenbeisser (1989) first derived the
exact power of two-sample t test with three mathematical distributions: exponential, logistic and
rectangular distributions. In the second part of the study, (Katzenbeisser, 1989) focused on
comparing three nonparametric and distribution free tests for the two-sample Student-t test
location problem on the basis of their respective power for the exponential distribution. The three

nonparametric tests chosen were the Mood-Westenberg test (1948), the Mann-Whitney

(1947)/Wilcoxon (1945) and the Mathisen test (1943). Again, in this study, like Rahman & Poe
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(2009) and Ferraro, et al., (2003), Katzenbeisser also invoked the particular Mood-Westenberg
test for determining location shifts (i.e., the two sample median test). Each of these studies
focused on the shift in location as opposed to the Mood-Westenberg dispersion test (1948) (test
for change in scale), the focus of this study.
Katzenbeisser (1989) described the three tests invoked as follows:
The Mann-Whitney form of the Wilcoxon Rank Sum:
n
W= Z[number of X's <Y;]
i=1
The Mood-Westenberg two sample median test:

number of X's less than or equal to the median
of the combined X — and Y — sample

MW = [
The Mathisen Test:
M = [number of X's less than or equal to the median of the Y's]
The following Table 1, reprinted with permission, displays the results noted by
Katzenbeisser (1989) where it was observed that the “Mathisen test is vastly less powerful

compared with the Mann-Whitney-Wilcoxon, and the Mood-Westenberg tests for shifts in

exponential distribution” (p. 53).
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Table 1:

Power Comparison of Mood-Westenberg, Mann-Whitney/Wilcoxon, and Mathisen Tests

Acknowledgement
The author is indebted to WALTER Boknnm for his very useful help.

Tabla
The exnct power of the MANN-WHITNEY-WILCOXON, the Moop-WESTEN-
BERG, uiul the MaTnisEn-Test against shifts in the exponential distribution

Hyi: Flry=1=0"% =0 Gr) =1 —-e~5=4), x> 4, 4 >0.
N " L, A =0 Ad=0.1 A =05 d=1 A=2 A=3

1H 5 6 0.0317 0.0513 0.2385 0.6101 0.9677 0.95771
12 0.0361 0.0648 0.3043 0.6649 0.9664 0.99522

b 0.0256 0.0341 0.0926 0.2291 0.6803 0.81003

10 7 0.0188 0.0307 0.1932 0.8251 0.9786 0.9994

- 8 0.0200 0.0328 0.1681 0.4945 0.9095 0.9882

10 0.0220 0.0281 0.0703 0.1772 0.5132 0.7804

21 10 8 0.0073 0.0143 0.1183 0.4538 0.9244 0.9946
20 0.0064 0.0168 0.1693 0.5476 0.9416 0.9946
10 0.0085 0.0126 0.0479 0.1551 0.5054 0.7789

1 First row: MooD-WESTEXBERG test
? Becond row: MANN-WHITNEY-WILCONON test
2 Third row: MATHISEN test

Note: Reprinted from “The Exact Power of Two Sample Location Tests Based on Exceedance
Statistics against Shift Alternatives,” by Walter Katzenbeisser, 1989, Statistics: A Journal of the

Original and Applied Statistics Volume 20(1) p. 53. Copyright 1989 Statistics: A Journal of
Theoretical and Applied Statistics

Because Mood-Westenberg (1948) and Mann-Whitney/Wilcoxon (1947/1945) tests were
determined by Katzenbeisser (1989) to be more powerful than the Mathisen (1943) test with
respect to location shifts, this also lent impressive support to the selection of Mood-Westenberg
(1948) and Siegel Tukey (1960) test statistics as potential test statistics that might indeed be able
to detect variance changes with incremental shifts in location/means.

Katzenbeisser (1989) compared the three tests to determine the most powerful with
respect to detection of location shifts and it was restricted to three mathematical distributions. To
expand upon the initial research of Katzenbeisser (1989), in this study Type I and Type II errors
(power) will be considered when heteroscedasticity or scale change (not location as with

Katzenbeisser, 1986 and Ferraro, et al, 2003) becomes detectable. Additionally, unlike



31

Katzenbeisser (1986), real data sets will be the primary focus. Three theoretical/mathematical
distributions, including the normal curve, will be observed for comparison purposes.
Advancing the Resear ch of Walter Katzenbeisser (1989) with Real Data Set Samples

Katzenbeisser (1989) invoked the Mood-Westenberg (1950) median test with data
sampled from theoretical distributions, including exponential, logistic and rectangular. In that
study, as noted above, Katzenbeisser (1989) focused on the exponential distribution when
observing power comparisons for the detection of location shifts under three nonparametric scale
change tests: the Mood-Westenberg (1948), the Mann-Whitney/Wilcoxon (1947/1945), and the
Mathisen (1943), finding in favor of the Mood-Westenberg (1948) and the Mann-Whitney-
Wilcoxon (1947/1945) tests over the Mathisen test (1943).

Historically, many researchers conducted statistical studies with convenient theoretical or
mathematical models much like Katzenbeisser (1989). Bradley (1968, 1977, 1982) objected to
many of these studies believing that distributions encountered “in real research context may be
much more radically nonnormal than the relatively tame population shapes typically used in
robustness studies” (Sawilowsky & Blair, 1992, p. 352). Wilcox (1996) noted that in some cases
light-tailed distributions appear to be common (Micceri 1989, Pearson and & Please, 1975) but it
is unclear when it is safe to assume that this is the case when analyzing data.

In the same year of Katzenbeisser (1989) , Micceri’s (1989) benchmark research on real
data sets was published highlighting the criticality of testing real world data sets along with
theoretical models for robustness of Type I errors, dramatically supporting the position of
Bradley (1968,1977,1978, 1982). Having mentioned the Micceri (1989) study, Sawilowsky &
Blair (1992) believed that it was “one of the most comprehensive studies of its kind to appear in

the social and behavioral science literature” (p. 352). Micceri (1989) collected 440 real world
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data sets from journals, test publishers, school districts, the Florida Department of Education,
and the University of South Florida’s institutional research department. In that study, four
measures were tested separately: general achievement/ability tests, criterion/mastery tests,
psychometric measures, and gain scores (difference between pre and post measures).

Statisticians who have studied robustness properties of statistics have long since known
that real data sets seldom approximate the asymptotic conditions of the Gaussian/ normal curve
and Type I and Type II error rates are often not maintained under these real life conditions.
When speaking of the normal curve, Wilcox (1996) mentioned “that it is convenient probability
model that has been assumed that is only an approximation of reality. A basic concern is
whether this approximation is good enough to control Type I error, achieve reasonable accurate
confidence intervals, and provide good results in terms of power” (p.131). Micceri’s (1989)
research supported Wilcox’s assertion because 96% of the empirical distributions for the given
psychology and education data had longer tails than the normal distribution and none of these
distributions fit the exact criteria of the Gaussian curve. Micceri (1989) advanced research by
having observed that in addition to the scarcity of normal data sets, the convenient theoretical
models are often not found in educational and psychological research. However, in some
disciplines, such as industrial settings, data have been shown to appear relatively more normal
(Pearson & Please, 1975) as reproduced in Figure 9.

Micceri (1989) noted “prior robustness studies have generally limited themselves either
to computational evaluations of asymptotic theory or to Monte Carlo investigations of interesting
mathematical functions” (Micceri, 1989, p.163). Micceri, (1989) concluded that previous studies
of the robustness of the t test (as well as other statistics) failed to consider typical distributions

found in education and psychological research. For instance, Micceri (1989) mentioned the often
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cited study of Boneau (1960) included comparisons of two smooth symmetric distributions
(normal, uniform) and one smooth asymmetric distribution (exponential), but had almost no
comparisons with most real world educational and psychological data. Micceri (1989)
determined from the 440 available data sets that “half of these real world data sets were lumpy
and all were discrete, only 38 (8.6%) exhibited both exponential-level tail weight and
asymmetry... none exhibited symmetric, uniform (rectangular) tail weights, and only 19 (4.3%)
can be considered even reasonable approximations to the Gaussian (normal)” (Micceri, 1989, p.
164). Micceri (1989) stated that the findings did not invalidate Boneau’s research “but does
suggest that almost none of these comparisons occur in real life. The most obvious differences
between Boneau’s data and that of the real world are lumpiness and discreteness.” (p.164).
Micceri (1989) observed that the convenient mathematical/theoretical models seldom
approximate educational and psychological data sets. Sawilowsky & Blair (1992, p. 352) stated
“that the findings of previous researchers who modeled population shapes with convenient
mathematical functions cannot, necessarily, be applied in educational and psychological research
settings” and they (Sawilowsky & Blair, 1992) conducted Monte Carlo studies on the
independent samples t-test for departures from normality using eight real sets identified by
Micceri (1989). Sawilowsky & Blair (1992) found that consistent with the prevailing literature is
the fact that a dominant factor bringing about non-robustness to Type I errors was extreme skew
and kurtosis when combined with skew in some of these data sets (Micceri, 1989). These
findings together illustrate a researcher’s obligation to test statistics, for instance Mood-
Westenberg (1948), with real data in order to obtain accurate conclusions with respect to Type I

and Type II (power) results.
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Sawilowsky (2002) once again emphasized the requirement to investigate real world data
sets when discussing the beneficial by-products of investigating the Behrens-Fisher problem,
mentioning the importance of conducting robustness and comparative power studies relative to
small samples:

Statistics were developed throughout the 20™ century based on asymptotic or large

sample theory. Many were published based on elegant mathematical statistical theory, but

turned out to be invalid for use in applied work. The Behrens-Fisher problem highlighted
the importance of conducting robustness and comparative power studies relative to small

samples (p. 466).

Regarding this suggestion, Sawilowsky (2002), recommended that authors of new
statistics or procedures “publish their work after they have conducted studies on the properties of
the statistics when underlying assumptions are violated” (p. 465). Sawilowsky (2002) noted that
further study is moot if the mathematical distributions produce poor results. However, if the
obtained results are good, verification was still required with real data sets. Additionally,
Sawilowsky and Blair (1992) noted:

With researchers relying more on power analyses and sample size determinations than in

the past (Cohen, 1988), it has become increasingly important that these test

characteristics also be evaluated in more realistic contexts. Treatments often produce
changes in means, as well as variance, skew, tail weight, and other population parameters

(p.353).

Following in the footsteps of others in the literature such as Micceri (1989), Sawilowsky
and Blair (1992), Sawilowsky (2002), and Lance (2011) eight real world data sets (detailed
below) will be reviewed, in addition to three mathematical models (normal, uniform,
exponential). One of the assumptions of the Mood-Westenberg test (1948) is that the data be
continuous. Because Micceri (1989) observed that half of the real world data sets (out of 440

reviewed) were lumpy and discrete it is understood that these common discreet data sets may

have an adverse effect upon robustness properties of the Mood-Westenberg test (1948).
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However, a few of these real discrete data sets will be tested to determine their outcomes. A
description of these data sets, characterized from Micceri (1989), was detailed in Sawilowsky &
Blair (1992) and is reproduced in this section. The work of Walter Katzenbeisser (1989) will be
advanced by investigating these empirical data sets known to exist in educational and
psychological research settings and by determining robustness of the Type I errors and Type 11
error properties with respect to hypothesis testing for heteroscedasticity or shifts in
variance/scale.

The primary purpose of this study, then, is to investigate the robustness properties of the
Mood-Westenberg (1948) and the Siegel-Tukey (1960) tests when sampling from distributions
of the types identified by Micceri (1986). First Type I errors will be investigated. Then the
robustness of the Mood-Westenberg (1948) test and the Siegel-Tukey test (1960) with respect to
Type II error properties will be investigated for each of eight prevalent data sets and three
mathematical distributions. In the second part of the study, provided that these tests prove robust,
a power comparison of the Mood-Westenberg test (1948) and Siegel-Tukey test (1960) will be

examined.
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Table 2

Descriptive Information Pertaining to Eight Real-World Distributions

Distribution Type of measwre pn  Median o Skew Kurtosis
Discrete mass at zero with gap  Psychometric 1.85 0 38 165 398
Mass at zero Achievement  12.92 13 442 -003 331
Extreme asymmetry Psychometric  13.67 11 575 164 452
Extreme asymmetry Achievement 245 27 579 -133 411
Extreme bimodality Psychometric  2.97 4 169 -008 13

Multimodality and lompy Achievement  21.15 18 119 0.19 18
Digit preference Achievement 53695 535 3764 -0.07 276

Smooth symmetric Achievement  13.19 13 491 001 266

Note: Adapted from Sawilowsky & Blair (1992)
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Figure 1. Discrete mass at zero with gap, psychometric measure.
From “A More Realistic Look at the Robustness and Type Il Error
Properties of the t test to departures From Population Normality,” by
Shlomo S. Sawilowsky and R. Clifford Blair, 1992, Psychological
Bulletin, Vol. 111, No. 2, p. 354. Copyright © 1992 by the American

Psychological Association. Reproduced with permission.
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Figure 2. Mass at zero, achievement measure. . From “A More

Realistic Look at the Robustness and Type Il Error Properties of the
t test to departures From Population Normality,” by Shlomo S.
Sawilowsky and R. Clifford Blair, 1992, Psychological Bulletin, Vol.
111, No. 2, p. 354. Copyright © 1992 by the American Psychological

Association. Reproduced with permission.
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Figure 3. Extreme asymmetry, psychometric measure. From “A
More Realistic Look at the Robustness and Type Il Error Properties
of the t test to departures From Population Normality,” by Shlomo S.
Sawilowsky and R. Clifford Blair, 1992, Psychological Bulletin, Vol.
111, No. 2, p. 354. Copyright © 1992 by the American Psychological
Association. Reproduced with permission.
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Figure 4. Extreme Asymmetry, achievement measure. From “A More

Realistic Look at the Robustness and Type Il Error Properties of the
t test to departures From Population Normality,” by Shlomo S.
Sawilowsky and R. Clifford Blair, 1992, Psychological Bulletin, Vol.
111, No. 2, p. 354. Copyright © 1992 by the American Psychological

Association. Reproduced with permission.
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Figure 5.Extreme bimodality, psychometric measure. From “A More

Realistic Look at the Robustness and Type Il Error Properties of the
t test to departures From Population Normality,” by Shlomo S.
Sawilowsky and R. Clifford Blair, 1992, Psychological Bulletin, Vol.
111, No. 2, p. 355. Copyright © 1992 by the American Psychological
Association. Reproduced with permission.
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Figure 6. Multimodality and lumpiness, achievement measure. From

“A More Realistic Look at the Robustness and Type Il Error

Properties of the t test to departures From Population Normality,” by

Shlomo S. Sawilowsky and R. Clifford Blair, 1992, Psychological

Bulletin, Vol. 111, No. 2, p. 355. Copyright © 1992 by the American

Psychological Association. Reproduced with permission.
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Figure 7. Digit preference, achievement measure. From “A More

Realistic Look at the Robustness and Type Il Error Properties of the
t test to departures From Population Normality,” by Shlomo S.
Sawilowsky and R. Clifford Blair, 1992, Psychological Bulletin, Vol.
111, No. 2, p. 355. Copyright © 1992 by the American Psychological
Association. Reproduced with permission.
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Figure 8. Smooth symmetric, achievement measure. From “A More
Realistic Look at the Robustness and Type Il Error Properties of the
t test to departures From Population Normality,” by Shlomo S.
Sawilowsky and R. Clifford Blair, 1992, Psychological Bulletin, Vol.
111, No. 2, p. 355. Copyright © 1992 by the American Psychological
Association. Reproduced with permission.
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Figure 9. Histogram distributions of some industrial data. Reprinted from “Relation
between the shape of population distribution and the robustness of four simple test
statistics,” by E. S. Pearson and N.W. Please, 1975, Biometrika, 62, p.225.
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The Yuen’s Statistic (1974) and Application for the Behrens-Fisher Problem

The Yuen’'s Statistic

General Application of Yuen's Statistic

Wilcox (1996) noted, “to simplify technical and mathematical problems, Student’s t-test
assumes both normality and equal variances. That is, a convenient probability model that has
been assumed that is only an approximation of reality” (p. 131). Without these assumptions
under various circumstances, the Student’s-t (1908a) becomes unable to maintain Type I errors
and Type II error properties because it does not approach a standard normal distribution; that is,
it cannot be mapped to the Gaussian curve probabilities.

As discussed above (Bradley, 1978, Micceri, 1989, Sawilowsky & Blair, 1992),
these assumptions of normality and equal variances are often not met with real life data sets.
Wilcox (1996) noted that “outliers and heavy-tailed distributions are common in applied work,
which can reduce the power of any method designed to compare means” (p.136). Wilcox (1996)
stated that very slight departures from normality toward heavier tails can have a tremendous
effect on the variance in each group thereby impacting power (e.g., in the t test). It is known that
a single outlier could eclipse an important difference between groups because power is affected
by variances in the data (i.e., the standard error of measurement). The higher the variance, the
more noise within the data and the less likely the researcher will find in favor of a treatment
effect. In effect, real life data sets are heteroscedastic in their relation to the assumed and
modeled normal curve because the real data sets have different variances as compared to the
normal curve. Additionally, as the variance in one of two experimental groups increases or
becomes more different from the other group, the pooled standard error of the mean increases

and the t statistic, for instance, could become smaller.
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Wilcox (1996) warned not to trust in the Central Limit Theorem as a guaranteed theorem
for all experimental conditions: “Everyone believes in the normal law of errors, the
experimenters because they think it is a mathematical theorem, the mathematicians because they
think it is an experimental fact” (p. 132). Researchers are unable to rely upon the Central Limit
Theorem’s guarantee of normality for the distribution of sampling means for any distribution.
The Theorem has postulated for any population the distribution of the sampling means is a
normal distribution as the population sample sizes approach infinity (large sample sizes).
Sawilowsky (2014, personal communications) expounded upon the inadequacy of the Central
Limit Theorem for small data sets and therefore the need for reviewing long run averages with
Monte Carlo testing for any test statistic when assumptions are violated:

Indeed, under asymptotic conditions (i.e., infinite sample sizes), the distribution of
sample means approaches normality regardless of the shape of the population. However,
as William Sealy Gosset (as in Student's t test) showed in 1908 in Biometrika in his
article "The probable error of the mean", with small samples there are no guarantees from
the Central Limit Theorem. The purpose for Monte Carlo studies is to explicate what
happens when samples are small, both in terms of robustness to Type I and II error, and
comparative statistical power in relation to nonparametric alternatives.

Wilcox (1996) put forth the belief that when these prevalent heavy-tailed conditions
surfaced, one should not abandon the idea of comparing the means but instead increase power by
using robust measures of location along with standard errors that are relatively unaffected by
heavy tails and outliers. Robust measures are methods which are resilient to outliers and
therefore better able to represent central tendency as the methods revise the data to include
scores that are more representative of the true population and less variable. Wilcox (1996, pp.
136-138) mentioned a robust method suggested by Yuen (1974) for comparing the trimmed

means corresponding to the independent groups and computing the Winsorized sum of squared

deviations for each group. The Yuen statistic (1974) was also suggested by Sawilowsky (2002)
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as a robust procedure (i.e., resilient to outliers) which adjusted the Student’s-t statistic (Student,
1908a) based on trimmed means and matching sample variances and useful as an adjustment for
the Behrens-Fisher problem.

The literature discussed situations where it would be beneficial to apply the Yuen’s
statistic (1974). For instance it has been demonstrated that small sample sizes, unequal sample
sizes and one-tailed tests can be problematic for the t-test with respect to heteroscedasticity and
non-normal data. Wilcox (1996) discussed some of problems with violation of the equal variance
assumption (heteroscedasticity) in relationship to the robustness of the t test when sample sizes
are unequal, even when sampling from normal distributions and the even worse results when
data sets are unequal and distributions are non-normal. Wilcox (1996) mentioned:

If the sample sizes are unequal, Cressie and Whitford (1986) describe general

circumstances where Student’s t-test is based on the wrong standard error even with very

large sample sizes. More precisely, if the variances are not equal, the distribution of

Student’s test statistic, T, does not approach a standard normal distribution as the sample

sizes get large, contrary to what is typically assumed. The problem is that the variance of

T does not approach one. With n large enough, perhaps this problem has no practical

importance, but this has not been determined (p.131).

In their observations of long-run averages for the t-test with real data sets (Micceri,
1989), Sawilowsky and Blair (1992) noted similar outcomes to Wilcox (1996) with the
prevailing view on non-Gaussian mathematical distributions (robust properties were observed
with equal and large sample sizes). They included the importance of performing two-tailed tests
to the Wilcox (1996) observations:

These real distributions highlight situations in which the t test was, by any definition,

non-robust to Type I error. The degree of non-robustness seen in these instances was at

times more severe than has been previously reported. Having said this, however, we must
note that the results obtained from these distributions do not change, in any fundamental
fashion, the conclusions reached on the basis of studies that focused on populations

modeled by well-known mathematical functions. That is to say, this study showed the t

test to be reasonably robust under the conditions outlined in the introduction to this
article: when sample sizes are equal or nearly so, sample sizes are fairly large (25,30),
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and tests are two-tailed rather than one-tailed. This study also showed that departures
from nominal values were almost always of a conservative rather than a liberal nature for
two-tailed tests. Also consistent with the prevailing literature is the fact that a dominant
factor bringing about non-robustness to type I error was extreme skew (p. 359).
Wilcox (1996) discussed a more serious concern with heteroscedasticity in relation to
power or Type II errors:
However in terms of power, or Type Il errors, or length of confidence intervals, student’s
t-test can be unsatisfactory, even with equal sample sizes. There are two facets to the
problem. First, experience indicates that distributions can have very heavy tails-in fact
much heavier than normal distributions (e.g., Hampel, 1973; Micceri, 1989; Stigler,
1977; Wilcox, 1990a). In some cases light-tailed distributions appear to be common
(Micceri 1989, Pearson and & Please, 1975) but it is unclear when it is safe to assume
that this is the case when analyzing data. Second, as illustrated in Chapter 5, very slight
departures from normality toward a heavier-tailed distribution can have a tremendous
effect on the variances in each group and this is why the power of Student’s t-test can be
unsatisfactory. In fact, for departures from normality that are difficult to detect, power
can drop from .9 to .1 (pp.131, 132).
Likewise, Sawilowsky (2002) and Sawilowsky and Blair (1992) pointed out that the t-test
was not as powerful under non-normal conditions as the Wilcoxon Rank Sum test (1945), a
version of the Mann-Whitney U test (1947), which turned out to be three to four times more
powerful in detecting differences in location parameters. Scheffé (1959) reminded an apathetic
audience that “the question of whether the F tests (like the t tests) preserve against non-normal
alternatives the power calculated under normal theory should not be confused with their
efficiency against such alternatives relative to other kind of tests” (p. 351). Scheffé (1959) was
remarking that power levels can be many times more powerful under alternative tests once the

data departs from normality. The inadequate power levels in the absence of normality, discussed

throughout literature, points to the utility of the Yuen’s statistic (1974).
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Behrens-Fisher Application

The Yuen statistic (1974) was suggested by Sawilowsky (2002) as a robust procedure
(i.e., resilient to outliers) and useful as an adjustment for the Behrens-Fisher problem.
Sawilowsky (2002) explained the Behrens-Fisher problem might arise because:

The ratio of population variance is different from one, although neither constituent value

is known. The second and more common example...indicates that no information is

available on the population from which the samples were drawn and it cannot be safely
assumed that the ratio of the population variances is equal to one. It is known that
samples were drawn from two different populations but the population parameters are

unknown (p. 464-465).

Also, as previously noted, heteroscedasticity becomes an issue in many experimental
designs because the samples often start out (pre-test) or end up (post-test) with unequal variances
(Micceri, 1989) and are not based upon the convenient mathematical models (Bradley, 1968,
1977, 1978, 1982). Data sets have been shown to be radically non-normal than relatively tame
population shapes typically used in robust studies (Sawilowsky & Blair, 1992). Treatment groups
tend to grow more homogeneous or more heterogeneous (Sawilowsky, 2002) and therefore bring
about herteroscedastic outcomes (i.e., potential for the Behrens-Fisher problem).

Both Wilcox (1996) and Sawilowsky (2002) suggested that the Yuen statistic has a direct
application as an adjustment method for the t-statistic under the conditions of heteroscedasticity.
It follows that it would also have a direct impact on the discovery of the particular Behrens-
Fisher problem for potential differences in variances after treatment irrespective of means
changes. Thus, the Yuen’s statistic (1974) could adjust solutions where the Behrens-Fisher
problem surfaced. If the variances change after treatment, moving away from normality either by

being distributed with heavier tails or in some other non-normal distribution this could cause

unequal variances, a violation of testing assumptions, and thus a loss of Type I and II error
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properties and power. In these cases, the Yuen statistic (1974) would be a good alternative to the
classical Student-t test (1908).
Implications for this Study

Wilcox (1996) noted that some researchers have suggested that before comparing means,
equal variances should be tested. If the equal variance assumption was accepted, then go on to
use the Student’s-t test (Student, 1908a). While this appears to be a reasonable suggestion,
published results do not support this approach (Markowski and Markowski, 1990; Moser,
Stevens, and Watts, 1989; Wilcox, Charlin and Thompson, 1986). Wilcox (1996) noted:

There are at least two problems. First, methods for comparing variances often do not have

enough power to detect unequal variances in situations where the equal variance

assumption needs to be abandoned, even when sampling from normal distributions.

Second, dozens of procedures have been proposed for comparing variances, and nearly

all of them have been found to be unsatisfactory in terms of Type I errors or probability

coverage when sampling from non-normal distributions (Wilcox, 1990b).

According to Sawilowsky (2002), there is an additional and serious problem with this
approach that is universally overlooked. “The sequential nature of testing for homogeneity of
variance as a condition of conducting the independent samples t test leads to an inflation of
experiment-wise Type I errors” (p. 466).

The literature is replete with the observation of inadequate procedures for detecting
variance changes (e.g., Wilcox, 1996, Neave & Worthington, 1988), which is a central issue for
detecting the Behrens-Fisher problem. Neave & Worthington (1988) noted that non-normality
can greatly impact the F-Statistic for determining dispersion (variance) difference. Indeed, this
lack of adequate procedures for the detection of variance differences underlies this proposed
research which prepares to explicate the robustness of Type I errors and Type II error properties

for the Mood-Westenberg test (1948). It is believed that the Mood-Westenberg test (1948), along

with the Siegel-Tukey test (1960), might prove powerful for identifying heteroscedasticity under
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multiple real world scenarios and therefore a potential precursor to the selection of the Yuen
statistic (1974) should the Behrens-Fisher problem arise after treatment.

In deference to Sawilowsky (2002) and Sawilowsky & Blair (1992), when they assessed
the importance of examining small and unequal data sets for the Student’s t-test (1908),
small/medium sample sizes along with unequal sample sizes, typical of educational and
psychological data sets, will be invoked in order to determine robustness to Type I and Type 11
errors for scale (variance) shifts with respect to simulated prevalent treatment conditions. The
simulated treatment conditions include: multiple small shifts in location, multiple changes in
scale and various combinations of the two to determine the impact for detecting changes in scale
by the Mood-Westenberg test (1948) and Siegel-Tukey test (1960). If these tests are robust, then
the second part of the study will examine power comparisons between the Mood-Westenberg
(1948) and the Siegel-Tukey (1960) tests to determine the most powerful tests for detecting
variance changes, tests that were noted as lacking by Wilcox above.
Conclusion

Wilcox (1996) concluded the discussion with a strong recommendation for the Yuen
statistic (1974) as one of the best alternatives for heteroscedasticity:

Confidence intervals based on Welch’s procedure can be unsatisfactory when

distributions have unequal skewness and unequal sample sizes and the sample sizes are

not too large. An interesting feature of the Yuen test is that it maintains good control over

the probability of a Type I error and probability coverage when computing confidence

intervals in situations when the Welch’s method is unsatisfactory (Wilcox 1994f). In fact,

in terms of Type I errors and probability coverage Yuen’s procedure seems to be the best

among all procedures described in this chapter (p.139).

Sawilowsky (personal communications, 2014) also believed that the Yuen statistic (1974)

was the best solution available, yet noted that it was still only an approximate solution.
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Additionally, Sawilowsky (2002) mentioned some of the other nonparametric approximate
solutions that met with some success for the Behrens-Fisher problem:

Yuen (1974) provided a robust solution based on trimmed means and matching sample

variances. Tiku and Singh’s (1981) solution was based on modified maximum likelihood

estimators. Tann and Tabatabai (1985) combined the Tiku and Singh procedure with the

Brown-Forsythe test to produce a more powerful procedure than those based only on

Huber’s M estimator (Huber, 1981; Schrader & Hettmansperger, 1980)...

The development of procedures involving the Behrens-Fisher problem is not restricted to

the usual K > 2 independent sample cases. Games and Howel (1976) examined pairwise

multiple comparison solutions. Bozdogan and Rameriz (1986) proposed a likelihood ratio

for situations where only subsets respond to a treatment. Johnson and Weerahandi (1988)

provided a Baysian solution the multivariate problem. Koschat and Weerahandi (1992)

developed a class of tests for the problem of inference for structural parameters common

to several regressions. (p. 463).

Whichever of these approximate solutions might be chosen by a researcher, the question
still remains as to how they will first determine the existence of the Behrens-Fisher problem in
order to apply one of these solutions. It is essential to find a robust test such as the Mood-
Westenberg test (1948) to detect the possibility of a Behrens-Fisher problem, if the researchers
hope to continue their search for Behrens-Fisher solutions or to apply other solutions. Thus, the
focus of this study will be to explicate under what conditions it might be possible to detect the

Behrens-Fisher problem with the Mood-Westenberg (1948) or the Siegel-Tukey (1960) tests and

which of these test might offer the researcher the most power towards that end.

Monte Carlo M ethods Simulation

Determination of Long Run Averages

According to Sawilowsky & Fahoome (2003, p. 46), “Monte Carlo refers to the repeated
sampling from a probability distribution to determine the long run average of some parameter or
characteristic.” They noted that Monte Carlo methods are akin to a gambler throwing dice many

times to practice (probability frequencies) before they went to the casinos of Monte Carlo. By
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observing long-run averages, they hoped to learn something about their betting habits from their
experiences with the tossing of the dice. Sawilowsky & Fahoome (2003) noted:

Monte Carlo refers to repeated sampling usually with replacement from a probability
distribution and computing the long run averages of some property over all the samples.
First, the idea of continuously repeating a process is akin to gamblers who threw dice
many times to practice before visiting the casinos of Monte Carlo. They hoped to learn
something about their betting habits from their experiences with the systematic tossing of
dice, recording the results, and analyzing the outcomes.

Second, the term method was used in the singular form because initially the statistical
distribution considered was limited to only one shape, which was the uniform. In many
areas of mathematics and the physical sciences, the uniform distribution is the best first
guess of sampling properties of a variable. As mentioned above, however, in modern
times many variables are known to be distributed according to other distributions, such as
the normal curve or the exponential curve. Therefore, we now refer to these techniques in

the plural as Monte Carlo methods (pp. 115-116).

Jerzy Neyman (1894-1981) is often credited with the development of the Monte Carlo
methods philosophy with respect to long-run frequencies. Lehmann (1993) stated “in his
discussion of Fisher’s 1935 paper (Neyman, 1935, pp. 74-75) he expressed the thought that it
should be possible ‘to construct a theory of mathematical statistics...based solely upon the
theory of probability,” and went on to suggest that the basis for such a theory can be provided by
‘the conception of frequency of errors in judgment’” (p.1243). Lehmann (1993) went on to say:

For Neyman, the idea of probability is fairly straightforward: It represents an idealization

of long-run frequency in a long sequence of repetitions under constant conditions (see,

for example, Neyman 1952, p. 27; 1957 p. 9). Later (Neyman, 1977) he pointed out that
by the law of large numbers, this idea permits an extension: If a sequence of independent
events is observed, each with probability p of success, then the long-run success
frequency will be approximately p even if the events are not identical. This property adds

greatly to the appeal and applicability of a frequentist probability (p. 1245).

One important benefit of the Monte Carlo methods is that it enables a researcher to
evaluate testing procedures and sampling effects for long-run averages in line with the Neyman

(1935) Frequentist philosophy, and in modern times, with the ease of computer programs. It

efficiently calculates long-run averages after repeating any process such as a statistic or testing
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procedure and tabulates frequency of error in judgments (i.e. Type I & Type II errors). Thus, the
long run averages for Type I error rates and Type II error properties along with power averages
for any procedure such as the Mood-Westenberg test (1948) can be observed.

Sawilowsky & Fahoome (2003) added their opinion concerning the Monte Carlo
beginnings:

Monte Carlo methods based on sampling from a probability distribution began many

years ago. Credit is usually given to Jerzy Neyman, certainly for good reason for

developing the method in reference to the discipline of statistics. However in our opinion,
it goes back to 1907/1908 in the work of “Student”, William Sealy Gosset, (student,

1907, 1908a, 1908b). (There are some references to Monte Carlo techniques being used a

few years earlier in work done in chemistry and physics regarding the Boltzmann

equation.) Gosset (Student, 1908b) studied the probable error of the correlation
coefficient. Although he did not use computers, the process he describes is a Monte Carlo

simulation (pp. 46-47).

Lance (2011) mentioned that the Monte Carlo had "its modern roots in particle physics,
where it was first used by scientists at the Los Alamos Laboratory to detect the location (or
distance traveled) of neutrons (Metropolis, 1987) and was instrumental in research leading up to
the development of the atomic bomb” (p.28). Metropolis & Ulam (1949) believed it was a
technique made possible with the help of modern computers.

Concept in Research Design

Sawilowsky & Fahoome (2003) mentioned another significant benefit to the Monte Carlo
methods was that it offered an important concept in research design. They said that drawing
samples from a distribution function simulated random selection. A familiar randomization
procedure is a fair dice throw where there is a 50% chance of throwing either a head or a tail. In
experimental design, this could be simulated for instance by drawing from the uniform

distribution where if a unit draws a 0-.5 value it is assigned to a treatment group and if it draws a

value of .6-1 it is assigned to a control group. Sawilowsky & Fahoome (2003) described drawing
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from the uniform distribution: “Drawing the uniform random numbers is akin to random
selection, and placing 2 of them in one array and the other 2 in the second array simulates
random assignment. These are important concepts in research design” (p. 119). Random numbers
can be drawn from any distribution function to simulate variables that conform to specified
population parameters.

Randomization assigns units to conditions based solely on chance. The Monte Carlo
methods allows a researcher to draw independent and random values from data distributions and
assign them randomly to a treatment and control group, real or simulated. With randomization,
the researcher is able to rule out other plausible explanations for the relationship between input
and output variables by neutralizing all other potential causes, thus reducing threats to internal
validity, a primary concern with any experiment. The results of an experiment are deemed
plausible because randomization equates groups on expectations of every variable before
treatment, whether observed or not. Shadish, Cook & Campbell (2002) summarized the benefits
of randomization:

e [t ensures that alternative causes are not confounded with a unit’s treatment condition.

e [t reduces the plausibility of threats to validity by distributing them randomly over

conditions.

e [t equates groups on the expected value of all variables at pretest, measured or not.

e It allows the researcher to know and model the selection process correctly.

e [t allows computation of a valid estimate of error variance that is also orthogonal to

treatment (P. 248).

Sawilowsky (2006) disparaged the non-random or quasi-experimental design and stated
that independence and random selection/assignment are necessary for sound experimental design
and believed “there is no substitute for random assignment” (p.214). Sawilowsky (2006) stated

“the insidiousness of bias is that in the absence of randomization, the degree of bias which is

present is essentially unknowable; it can never be known in terms of confounding variables the
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researcher is aware of, or in terms of confounding variables the research is not aware of ”
(p.232). Randomization works for sample sizes as small as n =2 (Sawilowsky, 2004).
Simulation

According to Sawilowsky and Fahoome (2003), simulation is the representation of reality
with a model that can be manipulated. Sawilowsky and Fahoome (2003) noted that the quality of
the simulation increases as the model increases its ability to mimic reality. In this study,
simulation will occur through a computer model of a control and treatment group and various
permutations of input conditions. There will be randomly assigned values for simulated control
and treatment groups through repeated drawing, with replacement, from various real world data
sets and theoretical/mathematical distributions,

Additionally, efforts are made to improve the quality of the results by observing
thousands of different scenario permutations for a wide range of typical educational and
psychological sample groups, including variations in sample sizes, data distributions/data sets,
alpha levels, treatment effects, and variance differences. Care will be given to include all
permutations of these input variables. In this way, a wide range of input conditions will be tested
to explicate long-run averages under a wide universe of conditions and interplay of these
conditions. Through the simulation testing of thousands of potential input variations, each run a
100,000 times to determine long-run averages, the utility of a statistical procedure such as the
Mood-Westenberg test (1948) can be determined. The advantage of using a simulation of this
type in experimental research is, of course, the great reduction in time and expense as compared
to performing actual experimental studies. Understandably, from the cost benefit perspective,

this depth and breadth of analysis is generally not possible with live experimental research.
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The Monte Carlo methods simulation results from putting together the two concepts of
(1) the Monte Carlo methods of long run averages to explicate variance changes detection and
(2) the simulated or modeled reality of randomly selected control and treatment groups to mimic
real life experimental design. Following in the footsteps of many in the literature such as Student
(1907,1908a, 1908b), Jerzy Neyman (1935), Sawilowsky & Blair (1992), Sawilowsky &
Fahoome (2003), and Lance (2011), long-run averages of data set scenarios will be studied to
explicate robustness of the Mood-Westenberg test (1948) and the Siegel-Tukey test (1960). The
Monte Carlo methods simulations will determine long run averages of these tests under multiple
data set scenarios, drawn with replacement from many distributions and data sets, to explicate
the effects of violating the equal means assumption with respect to determining changes in scale.
Afterwards, comparison of power between the two tests will be observed. It is hoped that a

robust statistic can be found to identify the Behrens-Fisher problem.

Robustnessto Typel Errors. Statistical Conclusion Validity

Robustness is the degree to which a statistical test maintains Type I and Type II error
rates in light of testing assumption violations. A robust statistic is critical in experimental design
for the determination of covariance (i.e., correlation) between cause (inputs) and effect (outputs).
This covariance concept was referred to as statistical conclusion validity by Shadish, Cook &
Campbell (2002) when they noted “inferences about covariation may be inaccurate if the
assumptions of a statistical test are violated” (p.48). They (Shadish, Cook, & Campbell, 2002)
remarked:

Statistical conclusion validity concerns two related statistical inferences that affect the

covariation component of causal inferences: (1) whether the presumed cause and effect

covary and (2) how strongly they covary. For the first of these inferences we can

incorrectly conclude that cause and effect covary when they do not (a Type I error) or
incorrectly conclude that they do not covary when they do (a Type II error). For the
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second inference, we can overestimate or underestimate the magnitude of covariation, as
well as the degree of confidence that magnitude estimate warrants (p.42).

Central to this study is determining covariance between thousands of unique input
conditions and the output of error rates. These error rates will be observed to determine the
dependability of the Mood-Westenberg (1948) and Siegel-Tukey (1960) statistics for
maintaining Type I and Type II error rates with respect to change in scale as assumptions are
violated. But what exactly constitutes dependability or robustness for Type I and Type II error
rates? Given the importance of the robustness construct in explicating cause and effect
conclusions in the context of experimental design, it would be wise to define its boundaries.
However this has often not been the case in the literature. Appealing to fellow psychologists,
Bradley (1978) opined that the literature which they had often relied upon alleged robustness
with respect to departures from testing assumptions such as normality and homogeneity of
variance; yet, unfortunately, the researchers offered no solid definition or quantitative standards
for what constitutes robustness (i.e., in tests such as z, t, F tests). Bradley (1978) cited Young and
Veldman (1965) when they concluded that it is better not to violate assumptions but “leave us
with the distinct impression that little harm will come of it if we do” (p. 144). Bradley (1978)
criticized the Young and Veldman (1965) study because:

We are given no quantitative indication of how much distortion may occur, nor under

what conditions. Instead we are assured on the basis of Authority that ‘relatively little’

distortion will ‘probably’ occur for ‘even considerable departures’ (p. 144).

According to Bradley (1978), robustness is a complicated concept because it is a function
of many factors which may combine and produce unique interactive effects, all of which must be
considered within the experiment. The interplay and interaction of many conditions were very

important to Bradley (1978) who stated that the “interdependencies among the various
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influencing factors are often quite strong, requiring elaborate qualifications for an accurate and
meaningful statement about the test violations (Bradley, 1968, pp. 26-28)” (p. 146) :

When the population assumptions are violated, the departures for p from o depend upon a
complex interaction involving many factors: the size of a, the location of the rejection
region, for the smallest sample, the absolute size of the sample and the absolute shape of
the population form which it was drawn; and for each of the other samples, considered
separately, the absolute and relative size of the sample, and the absolute shape, relative
slope or relative variance of the population from which it was drawn (p. 146).

Bradley (1964) determined that typically no one of the input conditions determines
robustness:

Here we have dramatic evidence of the importance of qualifying conditions. The
complexity of the combinations required is suggested by the fact that with one
unimpressive exception, there was no single condition , no alpha value, no rejection
region, no absolute or relative sample size, no absolute or relative shape and no relative
variance for which the liberal criteria was always met by any of the 5 tests investigations
(p. 147).

Bradley (1978) discussed concerns that researchers performed their analysis with
mathematical distributions and not real life data sets (Micceri, 1989), that there was an absence
of a robustness definition and about study bias:

Although the literature on robustness is quite extensive, psychologists appear to have
been influenced primarily by the mainly mathematical treatment of the subject by Box
(1954), Box & Andersen (1955) and Scheffé (1959) and the empirical sampling studies
reported by Lindquist (1953) and Boneau (1960). None of these authors uses a
quantitative definition of robustness. Furthermore, in every case some sort of selective
bias appears to be operating and that bias always seems to favour robustness. The bias
then tends to be overlooked or depreciated in summarizing the actual findings and
drawing generalized conclusions. And the author’s overgeneralization, underqualification
or use of overly exuberant language in proclaiming robustness further tends to convey the
impression that robustness is a highly general phenomenon (p.147).

Additionally, Bradley (1978) clarified that these mathematical models were highly
amenable to robust findings, unlike real data sets. Therefore, test statistics found robust with

mathematical distributions may not in fact be robust in real experimental settings:
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The empirical sampling studies reported by both Lindquist and Boneau were sampled
from artificial populations some of which (e.g. the rectangular, the normal) are highly
conducive to robustness and most of which seem rather tame (p. 148).

Besides the contention with these expert researchers, Bradley (1978) lamented the
absence of clear guidelines for what constituted robustness from a high percentage of elementary
statistical text book authors whom were the shapers of opinions. Bradley (1978) found only a
small number of these authors dealt directly or indirectly with the subject and none of those
authors mentioned all of the factors influencing robustness (advanced text book authors were
slightly less culpable according to Bradley, 1978). Bradley (1978) suggested that the experts
themselves most likely contributed considerably to these shortcomings. However, in light of the
lack of guidelines, Bradley (1978) provided some proposed definitions.

The proposed robustness magnitude limits defined by Bradley (1978) were between .5(a)
and 1.5(a) for liberal limits and between .9(a) and 1.1 (a) for stringent limits. These proposed
limits have been accepted by many in literature and a few are noted below. The Bradley limits
are valid in the opinion of this author who agrees with Bradley’s (1978) proposal that “if the
alpha level has been properly chosen, i.e., if alpha = .01 or .001 has been picked because
protection is truly needed at that level, then there should be no objection to a definition of
robustness that makes the robustness criterion proportional to alpha (p. 146).” Bradley described
the liberal criterion for robustness as when the Type I error falls within plus or minus half of
nominal alpha levels and the stringent criterion for robustness as when the Type I error falls

within plus or minus 1/10 of the nominal alpha level. Table 3 summarizes the proposed liberal

and stringent magnitude limits proposed by Bradley (1978).
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Table 3

Definitions of Robustness to Type I error resulting from Monte Carlo Simulations

Definitions of Robustness Alpha=.05 range Alpha = .01 range
Liberal (within 0.5 * alpha) .025-.075 .005-.015
Stringent (within 0.1*alpha) .045-.055 .009-.011

Note: Adapted from Lance (2011)

The proposed Bradley Limits were applied by Lance (2011) in a study of robustness for
the Winsorized t. In this study, Lance (2011) found:

The need for a study like this to apply Bradley’s definitions of robustness for the

Winsorized t exists as those for the regular t have existed (and continues so for tests

conducted with real data distributions not examined by Micceri, 1989) (pp.12, 13).

Putting together the research of Lance (2011) and Bradley (1978) in terms of direction of
non-robustness, Figure 10 determines the following. If the tests are non-robust from a
conservative direction, then this means that the test will not reject the null hypothesis as much as
the alpha level allows (under-rejecting Hy). If the tests are non-robust from a liberal direction,

this means that the test will reject the null hypothesis more than allowed by the alpha level (over-

rejecting Hy).



59

Definitions (see Bradley, 1978)

Non-Robust Non-Robust
Stringent Robust | Liberal Robust | Stringent Liberal
. Conservative
§ (under-rejecting | (0.9a <p<a) (0.50<p<a) (p <0.90) (p<0.50)
5 | Ho)
2.
A | Liberal(over- (1.1a>p > ) (150>p>a) | (p>1la) (p>1.50)
rejecting Hy)

Note: Adapted from Lance (2011)
Figure 10. Directions and definitions for Type I error ranges

Additionally, the Bradley limits were the choice of robust measurement constructs in
other Type I error studies such as Maxwell (1980) and P. H. Ramsey, and Ramsey and K.
Barrera, (2010). Wilcox (1996) mentioned the importance of considering the Bradley (1978)
limits in relationship to determining the acceptability of Type I error rates lamenting the problem
of unequal variances and the effect on producing poor F- test results:

Using equal sample sizes reduces the problem, but with J =4 groups and sample sizes of

50 for each group, the probability of a Type I error can be as high as .09 when a=.05 and

R =4, even under normality. One might try to salvage the F test by arguing that a Type I

error can be as high as .09 but others would disagree. For example Bradley (1978) argues

that ideally, when testing at the .05 level, the actual probability should not exceed .055

and at worst it should not exceed .075 (p. 180).
Sawilowsky and Blair (1992) considered these limits in their research investigating robustness
for Type I errors and properties of Type II errors of the t test with departures from normality

In light of Bradley’s (1978) conclusions with respect to the criticality of considering
multiple input interactions in the determination of robust characteristics, thousands of
permutations of input variations will be used to explicate the precise conditions for robustness
with respect to Type I and Type II errors when violating the equal means assumptions for the
Mood-Westenberg test (1978) and the Siegel-Tukey test (1960). Typical educational and

psychological sample groups (i.e., the real world data sets) along with mathematical distributions

will be simulated to include variations in sample sizes, alpha levels, and treatment effects of
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location shifts (means shifts) and variance differences (scale changes). The Bradley’s (1978)
proposed liberal and conservative definitions of robustness will be adopted here to test the
hypothesis that the Mood-Westenberg (1948) test and the Siegel-Tukey (1960) test are robust
with respect to Type I and Type II error rates. The Mood-Westenberg (1948) and Siegel-Tukey
(1960) statistics will be considered liberally non-robust from a conservative direction if p < (.5) a
and from a liberal direction if p > (1.5) a. The test will be considered stringently non-robust from
a conservative direction if p < (.9) a and from a liberal direction if p > (1.1) a. Figure 10
illustrates these directional interactions and how they will be used in this study. The liberal non-
robust limits will be the major focus of this study (see Methodology) in order to give both tests

the maximum leeway.



61

CHAPTER I11

METHODOLOGY

Overview of the Research Design

The purpose of this study is to determine whether the Mood-Westenberg (1948)
dispersion test utilized to detect difference in scale, is robust with slight shifts in location. If it is
robust, then it may be useful in determining the presence of a potential Behrens-Fisher problem
of scale changes (heteroscedasticity) concurrent with location shifts. As Sawilowsky (2002)
noted, if robust properties are found with respect to Type I and Type II errors it would be useful
as a precursor to employing classical solutions, such as, for example, Yuen’s procedure (Yuen,
1974, Reed, 2003). Hence, the purpose of the study is to determine if the Mood-Westenberg
(1948) test is robust under violations of its equal means assumption.

Mood-Westenberg (1948) tests the probability hypothesis that two independent groups
have the same variance or spread. It tests for the condition of heteroscedasticity and rejects the
null hypothesis if it is improbable that the two groups have equal variances. According to Neave
and Worthington (1988), it was proposed by Westenberg (1948) as “a simple procedure for
testing whether or not two populations have the same spread. Because the test can be presented
in a form similar to Mood’s two-sample test, we shall refer to it as the Mood-Westenberg test (p.
344)”. It assumes roughly equal averages for the groups. The test is conducted by ordering all
values from high to low for the combined observations of the two groups, designating upper and
lower quartiles, and expecting equal number of observations from both groups within and

between these areas if there are no spread differences. This statistic uses the Fisher exact
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distribution tables to provide the critical values. An alternative probability distribution that can
be used is the asymptotic Chi-Squared distribution. Both distributions will be analyzed.

Because the Siegel-Tukey test (1960) also has been proposed for the purpose of
determining variance/spread differences between two samples, it will also be invoked as the
primary competitor to the Mood-Westenberg (1948) test. It also assumes equal averages between
groups. Neave and Worthington (1988) explained the Siegel-Tukey (1960) test as follows:

What we now need for detecting differences in spread is some alternative ranking or

scoring system which will assign, say, large values at both extremes of the letter sequence

and small values towards the center (or vice versa). Then if any one of the two letters, say

B, does predominate in both extremes, thus indicating a wider spread, the sum of the

scores for the sample will be particularly large. Such a sum can therefore form the basis

of a useful test for the difference in spread (p, 131).

The Siegel-Tukey (1960) test uses the Mann-Whitney distribution tables to provide the
critical value for the test statistic. An alternative probability distribution which can be used is the
asymptotic Z-Score distribution. Both distributions will be reviewed. In the second phase of this
study, which assumes the Mood-Westenberg is robust, will be a comparative power study
between the Mood-Westenberg (1948) and the Siegel-Tukey (1960) tests.

The construct of robustness is defined as the ability to maintain Type I and Type II error
rates in light of assumption violations, within the conservative and liberal definitions proposed
by Bradley (1978) for Type I errors. The output statistic that will be measured against the
Bradley limits is the p value and the P rejection rates. These limits will be applied to the study’s
selected alpha levels of .05, .025, .01 and .005.

Post-test randomized experimental designs are simulated which compare a treatment and
a control group. Monte Carlo simulations will be conducted in order to explicate the effect upon

Type I and II errors for the Mood-Westenberg (1948) and Siegel-Tukey (1960) change in scale

hypothesis after the assumption of equal means are violated in small increments. First, testing
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will be performed with the equal means assumption in place to establish baseline results. Then,
treatment effects of location shifts will be gradually increased in small magnitudes, thus violating
the assumption more and more. Type I and Type II error rates under the violations will be
compared to the counterfactual conditions of equal means. Normal distribution results will be
considered as another counterfactual to be compared with other distributions. The expectation is
that both the Mood-Westenberg (1948) and the Siegel-Tukey (1960) tests will remain robust
with respect to Type I and Type II errors for detecting variance change for several theoretical
distributions and real world data sets.

Following in the footsteps of many in the literature including Sawilowsky and Fahoome
(2003), the Mood-Westenberg (1948) test will be observed for robustness by determining long
run averages through the Monte Carlo methods simulation. The design includes random selection
and assignment for various sample sizes drawing from the classical normal distribution and 10
other theoretical distributions and real world data sets. Multiple distributions and data sets will
be tested besides the normal distribution because, as mentioned by Sawilowsky and Fahoome
(2003),

Micceri (1989), Tan (1982) and Pearson and Please (1975), among many others, found

that less than 3% of variables in education and psychology are symmetric with light tails,

such as the bell curve. Therefore, for the past quarter of a century, many other
mathematical curves other than the Gaussian distribution were suggested as models of the

distribution properties of important variables (p. 129).

Wilcox (1996) reminded us that “outliers and heavy-tailed distributions are common in
applied works, which can reduce the power of any method designed to compare means” (p. 136).
Additionally, Micceri (1989) demonstrated the importance of testing real world data sets which

are much less tame than the mathematical models; hence, the need to test many real world

distributions along with the theoretical models.
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After sample sizes are randomly drawn (with replacement) from the various distributions
and data sets, they will be assigned to a simulated control and experimental group. Next,
thousands of typical research experiments will be simulated whereby the means are shifted
(indicating levels of treatment effect) under numerous scenarios or permutations of variable
conditions, including variations in sample sizes, alpha levels, distributions/data sets, small
location shifts/treatment effect sizes, and variance differences/changes. Long-run average
rejection rates will be calculated after running 100,000 iterations for each of these permutation
scenarios to determine the robustness measures with respect to Type I and Type II errors and
power levels. Indeed, if robust results are found for these rejection rates under various
permutation conditions, then it might be confidently concluded that these statistics detect the
Behrens-Fischer problem and indicate a resolution such as the Yuen (1974) adjustment.

Hypothesis Testing

The general hypothesis tested is whether the Mood-Westenberg test (1948) and/or the
Siegel-Tukey test (1960) will remain robust with respect to Type I and Type II errors (and
associated power levels) after the equal means testing assumption is violated. The means will be
increased in small increments to explicate the conditions under which the statistics remain
robust. Determination of robustness for Type I errors and Type II error properties will be defined
by the liberal limits of Type I errors proposed by Bradley (1978).

The specific hypothesis test defined for Mood-Westenberg test (1948) is:

e Assuming ;=H,, where p; is the mean from sample 1 and p, is the mean from

sample 2.

e Hy=Null= Variances are Equal
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e H,= Variances are Different

The specific hypothesis test defined for the Siegel-Tukey test (1960) is:

e Assuming |4 =l,, where p; is the mean from sample 1 and p, is the mean from

sample 2.

e Hy=Null= Variances are Equal

e H,= Variances are Different

The second phase of the study which assumes that the Mood-Westenberg test (1948) is
robust, will determine the relative power between the Mood-Westenberg (1948) and the Siegel-
Tukey (1960) statistics. The hypothesis is that Mood-Westenberg would be more powerful as
compared to the Siegel Tukey (1960) test because it has the least amount of assumptions
(Ferraro, et al, 2003).

Research Design

The methodology satisfies the critical research design elements of independence and
random selection. Monte Carlo design methods are invoked to generate non-biased computer
generated pseudo random numbers which are drawn (with replacement) from various theoretical
distributions and real world data sets, assigning the variates randomly to either of two groups,
thus simulating an experimental random design for two independent samples (a control and a
treatment group). Monte Carlo methods will also be invoked to run thousands of input scenarios
100,000 times each in order to determine long-run averages and robustness properties of the
Mood-Westenberg (1948) and Siegel Tukey (1960) test statistics under each permutation. The
permutations will include all combinations of various sample sizes, alpha levels,

distributions/data sets, and magnitudes of location shifts and variance changes.
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First, samples will be drawn without modifying the variates to simulate the equal means
assumption (random assignment equates groups on expectation at pretest). In the next phase, the
samples variates will be drawn and then the treatment group variates will be increasingly
modified in small increments to simulate treatment effects. As the treatment effects increase and
the means become more and more unequal, the equal means assumptions is violated also by
slightly increasing magnitudes. Each of the two test statistics under observation, Mood-
Westenberg (1948) and Siegel-Tukey (1960), will be invoked 100,000 times for each scenario
permutation so as to evaluate the long-run average probabilities for detecting variance changes.

The construct for each test statistic is robustness which will be measured by the liberal
limits of Type I errors proposed by Bradley (1978). The output results that will be measured
against the Bradley limits are: the p value rejection rate (Type I) and the B rejection rate (Type
IT). The robustness measures proposed by Bradley (1978) will be the construct measure for all
permutations scenarios for five (X) input variables described below.

If it is found that the long run averages for the p rejection rate, [, rejection rate and
power (1-B) are robust with respect to detecting various magnitudes of variance change after
violation of the equal means assumption, then these outcomes could indicate useful robust test
statistics for identifying the Behrens-Fisher problem and thus robust indicators for selecting
alternative statistics to the more prevalent classical choices (i.e., the t-test). A general overview
of the study’s input and output variables follow and details are noted in the assumption section.
Input: Independent Variables (X):

e various small equal and unequal sample sizes for N; (population number for group 1),

N, (population number for group 2)

e four alpha levels
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random numbers drawn from three theoretical/mathematical models and eight real
data sets.

equal means/medium assumption in place between the two groups

equal means/medium assumption violations, with unequal means between the two
groups determined by small incremental location shifts based upon Cohen’s d (1988).
scale changes based on ranges found in Brown and Forsythe (1974) and the Wilcox

(1989) educational study.

Output: Dependent Variables (Y):

The purpose is to test for robustness of Type I and Type II errors with respect to detection

of difference in variances, not location shifts, between the two groups. Determinations will be

made, for each permutation, as to when the Mood-Westenberg test (1948) and the Siegel-Tukey

test (1960) might break down in light of increasing location shifts (i.e. become non-robust) as

measured by the Bradley’s (1978) proposed liberal limits of Type I errors. A review of the output

(Y) variables for each permutation scenario, for each test statistic, will be observed. For each of

the statistical tests, Mood-Westenberg (1948) and Siegel-Tukey (1960), the reports will be

produced for:

robustness for Type I errors (error rate for finding in favor of a variance change when
none occurred) where p; = L,

robustness for Type II errors (error rate for not finding in favor for a variance change
when the variances are different) where p; = L,

robustness for Type II errors after violating the test assumption of equal means where

Hy # Wy

power analysis between the Mood-Westenberg (1948) and Siegel-Tukey (1960) tests.
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Assumptions

Independence, Random Selection/Random Assignment

Independence and random selection/assignment requirements for sound experimental
design and the basic requirements for the Mood-Westenberg (1948) and the Siegel-Tukey (1960)
tests will be satisfied in this Monte Carlo methods study. Non-biased computer generated pseudo
random numbers will be drawn from theoretical distributions and real data sets, enabling
independent and random selection and assignment for the test samples. Anyone could replicate
this study by obtaining the initial seed number and entering the input parameters.
Settings and Participants

Post-test designs are simulated with one control group and one treatment group, testing
under various permutation scenarios of central tendency (location shifts and/or scale changes) for
a variety of samples sizes that represent typical educational and psychological studies: n; = n, =
5,5; 5,15; 10,10; 10,30; 15,45; 20,20, 30,30; 30,90; 45,45; 65,65; 90,90.
Nominal alpha selected

Robustness properties as defined by Bradley (1978) for the Mood-Westenberg (1948) and
the Siegel-Tukey (1960) statistics will be evaluated by observing long-run averages and
comparing them to the alpha levels of .05, .025, .001, and .005. These alpha levels and were
selected to represent those most selected in applied research and experimental design.
Distributions and Data Sets

Scenarios will be simulated by drawing samples from 11 distributions and data sets
including the classical counterfactual normal/Gaussian distribution and two other theoretical data

sets: the uniform and exponential models (Katzenbeisser, 1989). These distributions are chosen
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along with eight real data sets identified by Micceri (1986): smooth symmetric, extreme
asymmetric (growth), extreme asymmetric (decline), extreme bimodality, multimodality and
lumpy, discrete mass at zero, discrete mass at zero with gap, and digit preference. These data sets
identified by Micceri (1986) are available in a subroutine library (Sawilowsky, Blair, and
Micceri, 1990) and are described in Chapter II.
Statistical Power for Variance (Scale) Changes:

A change in scale/variance with no means shift is the primary indicator of the Behrens-
Fisher problem of heteroscedasticity and it is hypothesized that the Mood-Westenberg (1948)
and Siegel-Tukey (1960) tests will be able to detect changes in scale even under small
incremental violation of the equal means assumption that indicate small treatment effects. These
scale change magnitudes indicate the condition in which the ratio, R, of variance between the
treatment group and the control group is not equal to 1. When this occurs, the alternative
hypothesis (H;) is expected to be true for the Mood-Westenberg (1948) and the Siegel Tukey
(1960) tests. Brown and Forsythe (1974) reported results for R = 3 (in their study, R was a
measure of standard deviation differences: R =01/a2) and found that the probability of a Type |
error was unacceptable high and, as Wilcox (1996) noted, there was no stated reason for limiting
the results to R < 3. Wilcox (1989), in a survey of educational studies, found that estimates of R
(R =01/a?2) are often higher than 4.

In this study, variance change magnitudes of K equal to 1 (no difference) to K equal to
3.5 will be reviewed. K squared is the simulated new variance of the treatment group and also
the simulated ratio difference, R, between the control and treatment group after treatment
(subtracting the means from the variates which centers them around zero causes the standard

deviation of the control group to approach a normal curve having a variance of 1). Ratio
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variance differences, of R, from 1.56 (K=1.25) to 12.25 (K=3.5) will be tested. Acceptance of
the alternative hypotheses is expected after simulating a change in variance when K = 1.25-3.5
(.25). The condition of equal variances, indicating the null hypothesis (H,) should be accepted,
will occur when the ratio of the variances between the treatment and control groups is equal to 1
(K=1). In total, the variance ratios tested will be K=1-3.5 (.25). The Type II error rate, 3, will be
projected at .20 with an expected power probability (1- B) of .80; these Type Il error and power
rate expectations are often the literature standards.

Treatment Effect: Means (Location) Shifts:

Statistical power for detecting variance differences will be addressed by observing their
long-run averages after simulating treatment effects (location shifts and/or scale changes) with
the location shifts modeled after small effect sizes as indicated by Cohen’s d (1988). It will be
determined which small treatment effect sizes (assumption violations), if any, would cause the
Mood-Westenberg (1948) and the Siegel-Tukey (1960) tests to become non-robust with respect
to Type I errors, Type II errors and power levels for detecting variance differences. For location
shifts, Cohen (1988) suggested .2(o) represents a small treatment effect, .5(c) a moderate
treatment effect, and .8(o), a large treatment effect. Only small levels (d less than or equal to
2(0).01) will be tested in the study. Sawilowsky and Fahoome (2003) mentioned the
applicability of Cohen’s (1988) d treatment levels along with an additional level of 1.2 (o) and
stated “in many Monte Carlo Studies we have used 1.2 (o) to represent a very large treatment
effect” (p. 220). However, means shifts that approach these larger levels will not be the focus of
this study because those are beyond the boundaries of Behrens-Fisher problem. Before these
means shift treatment effects (.01c -.120 (.01)) will be simulated in violation of the equal mean

assumption, the assumption of equal means (i.e., adding 0(c) effect size to the variates) will be
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tested in order to observe the null or Type I, ( p) and Type II, ( f) rejection rate averages
following all scale changes with the testing assumptions in place.
Robustness

The primary construct will be robustness. The definition of a robust test is a test that
maintains Type I and Type II error rates in light of assumption violations. The instrument that
will measure and define the construct of robustness for the Mood-Westenberg (1948) and Siegel-
Tukey (1960) statistics, is the Bradley (1978) proposed conservative and liberal limits for Type I
errors. This measurement was chosen as a reliable and valid measurement instrument after
reading Bradley’s (1978) justification and observing its usefulness in the other literature.

The robustness magnitude limits defined by Bradley (1978) are between .5(a) and 1.5(a)
for liberal limits and between .9(a) and 1.1 (a) for stringent limits. Figure 10, in Chapter II
illustrates these directional interactions and how they will be used in this study. The Mood-
Westenberg (1948) and Siegel-Tukey (1960) statistics will be considered liberally non-robust
from a conservative direction if p < (.5) a and from a liberal direction if p > (1.5) a. The test will
be considered stringently non-robust from a conservative direction if p < (.9) a and from a liberal
direction if p > (1.1) a; however these stringent limits are not the focus of this study and only the
liberal limits will emphasized. If the tests are non-robust from a conservative direction, then this
means that the test will not reject the null hypothesis as much as the alpha level allows (under-
rejecting (Hy). If the tests are non-robust from a liberal direction, this means that the test will
reject the null hypothesis more than allowed by the alpha level (over-rejecting Hy).

Table 4, is an example of the use of these limits in another Monte Carlo test, carried out
by the author, to explicate robust characteristics of Student’s-t (Student, 1908a). The results are

shown here only to demonstrate the measurement approach that will be invoked when examining
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long run averages for detecting variance differences between samples with the use of the Mood-
Westenberg (1948) and Siegel-Tukey (1960) statistics (the t-test is not reviewed in this study and
is demonstrated here only as an example of robustness). The Bradley (1978) proposed
measurements will be used as standards for assessing robustness for the p rejection rate, and 3

rejection rate.

Scales of Measurement

The Mood-Westenberg (1948) test and the Siegel-Tukey (1960) test measure outcomes
on an ordinal scale. All other measures in this study conform to a ratio scale because the
measurements have an absolute zero and no negative numbers. For instance, the Bradley (1978)
proposed limits are defined by percentages of alpha. The simulated location shifts and scale
changes are determined with ratio scales. Additionally, the outcome observation variables are
measured for robustness on a ratio scale because the rejection rates for Type I and Type II errors
will be found after analyzing the number of rejections over iterations for each permutation.
When testing for Type I error rates, when the variance of the two groups are equal (K = 1), a
percentage will be calculated for the total number of times the null hypothesis of equal variances
is rejected (e.g., after 100,000 iterations) over the number of iterations. Finally, the ratio scale is
necessary as a measure for detecting the Behrens-Fisher problem noted when the population
variance ratios are not equal to 1.

Procedures

Data Input

Random sample variates will be drawn (with replacement) from each mathematical
distribution and real world data set and randomly assigned to one of the two sample group arrays

dimensioned for the noted sample sizes. Only the treatment group’s array variates will be
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modified for location shifts (no modification initially) by adding a constant (shift level times
standard deviation of the distribution/data set) to the drawn values to simulate location/treatment
effects. In order to simulate group scale/variances changes, a constant (K=1-3.5(.25)) will be
multiplied by the variates in the treatment group, after centering the values on zero by
subtracting the means of the distribution/data set from the random variate. Also, to simulate the
variance differences, the random values in the control group will be centered on zero by
subtracting the distribution/data set mean. No other changes will be made to the control group.
Each set of permutations with unique combinations of sample sizes, distributions/data sets, and
location and scale changes will be tested at alpha levels of .05, .025, .01, and .005 to explicate
which scenarios are robust for Type I and Type II errors and then to determine comparative
power levels for the Mood-Westenberg (1948) and the Siegel-Tukey (1960) tests. Significant
findings will be reported.

The formula that will be used to modify the randomly assigned values to simulate
location/mean shifts and variance changes is detailed in Figure 11. The effect size is the
standardized difference between the treatment and control group: (p;-[,)/c where o is the
pooled standard deviation of the treatment and control group. A treatment will be modeled as a
shift in location, by multiplying a constant C = (.01-.12).1 by the distribution’s . For example,
because the standard deviation of the smooth symmetric data set is 4.91, a treatment effect size
of .10 or .491 is added to the treatment variates.

A treatment will be modeled as a change in scale, by multiplying a constant scale shift of
k=1-3.5 (.25) by the random variates of the treatment group only, after the random variates will

be centered around zero, for both groups, by subtracting the distribution mean from the variates.
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Treatment Group
Centering the mean for scale shift scenarios:
Xi = (X1 - H)

k= (1-3.5).25 is the change in scale and c= (.01-.012).1 is the shift in
location:

X =k(X])+co

Control Group

Centering the mean for scale shift scenarios:

Xé = (Xz _H)

Figure 11 — Modeling Shift in Location and Change in Scale

Each of the input variables (i.e., sample size, distribution/data set model, alpha level,
location shift and scale change) will be assigned with program loops that assign the values of
interest. For example, the location/means shift or effect size loop will run through all values: 0,
.01, .02, .03, .04, 05.......12. From each of the possible combinations of the values in the 5 input
loops, the input data set characteristics and permutation will be built for testing. Thousands of
sample scenarios (one for each permutation) will be input into the Mood-Westenberg (1948) and
the Siegel-Tukey tests (1960) test modules. Each permutation will be tested 100,000 times (i.e.,
the program will select 100,000 random variates from the distribution/data set to set up the
control and treatment groups and then make modifications noted in Figure 11) for both tests to
determine their long-run averages. Following each of the iterations for each of the tests, a
counter will be incremented only for the statistically significant rejection rates, running totals
will be maintained, and, after 100,000 iterations, these counter totals will be reported as rejection
percentages (counter total/100,000). Thus, the long-run averages for the p rejection rate,

rejection rate, and power levels (1-f) will be calculated for each permutation.
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Data Processing Flows

Absoft Pro Fortran 14.0.4 programing and IMSL Fortran Numerical Library 7.0 will be
used to run and evaluate all simulations. The Rangen 2.0 subroutine (Fahoome, 2002), which is a
90/95 update to the Fortran 77 version (Blair, 1987), will be used to generate all random numbers
from the normal and theoretical model distributions. The Realpops subroutine 2.0 (Sawilowsky,
Blair, Micceri, 1990) will be used to generate all random numbers from real populations. These
routines will be used in conjunction with the Mood-Westenberg (1948) and Siegel-Tukey (1960)
tests coded by the author to produce the sample data sets and all output values for the study. For
the Mood-Westenberg (1948) code, duplicates found in the control (A) and treatment groups (B)
are coded to layout the groups as ABABABAB until all duplicates are accounted for; this
method was selected as reasonable because this pattern appears to be unbiased for both groups
(the pattern could favor either A or B in the extreme quarters depending upon the random
variates sampled).

Algorithm AS 62 (Dinneen & Blakesley, 1973) will be used to calculate the Mann-
Whitney exact probabilities for the Siegel-Tukey (1960) test. The Recursive Fortran 95 quicksort
routine which sorts real numbers into ascending numerical order (Rew, 2003, based on algorithm
from Corment et. al., Introduction to Algorithms, 1997) will be used to run all sorting algorithms.

The program routines will compare the test output statistic to the appropriate critical
value or probability based on nominal alpha. For example, when observing the p rejection rate
for the Mood-Westenberg test (1948) null hypothesis (variances are equal), when the test results
are beyond the critical value areas (or the probabilities are less than or equal to nominal alpha) it
will show a rejection to the null hypotheses of equal variances and count this as a rejection with a

counter increase. If the null hypothesis of equal variances is not rejected, it is not counted. For a
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one-tailed test, after 100,000 iterations, the number of counted rejections in the one tail would be
calculated and a percentage of rejections over iterations (100,000) will be output. When testing
Type 1 error rates with no variance change, if the alpha level is .05, then a rejection rate of .05
will be expected for one of the tails; if the alpha level is .01, then a rejection rate of .<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>