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CHAPTER 1:  Introduction and Hypothesis 

Cancer Statistics 

Prostate and breast cancers are the most commonly diagnosed cancers among 

men and women in the United States, respectively, and are ranked second for the 

highest death rates.1 Lung cancer is the second most commonly diagnosed cancer but 

has the highest death rate compared to all other cancers.1 When broadened globally, 

breast cancer is remains the most commonly diagnosed cancer in women, but 

increases in rank as the leading cause of cancer deaths.2 This trend is mimicked in both 

developed and developing countries. Worldwide, prostate cancer falls to the second 

most commonly diagnosed cancer among men and is the sixth cause of cancer deaths.2 

Prostate cancer incidence further drops to the sixth most commonly diagnosed in 

developing countries, and it remains the sixth cause of cancer death. In contrast, 

prostate cancer is the most commonly diagnosed cancer in developed countries but is 

the third cause of cancer deaths among men. Globally, lung cancer remains the leading 

cause of cancer deaths in men but is the second leading cause of cancer deaths among 

women.2 In incidence, lung cancer is the most commonly diagnosed in developing 

countries and is the second most commonly diagnosed in developed countries among 

men. For women, lung cancer ranks third in diagnosis for both developed and 

developing countries. Of note, these statistics exclude basal and squamous cell skin 

cancers. 

Clinicians evaluate cancers using the TNM (tumor, node, and metastasis) staging 

system established by The American Joint Committee on Cancer (AJCC). Under the 

TNM system, the degree of local invasion is assessed in the primary tumor (T), the 
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presence or absence of local metastasis is assessed in the lymph nodes (N), and the 

presence or absence of distant metastasis is evaluated in the organs (M).3 The 

combination of T, N and M is used to assign the tumor a stage (0 – 4). In prostate 

cancer, clinicians also use the Gleason grading system to establish a tumor grade to 

determine the aggressiveness of the tumor.4 The Gleason grade is determined from the 

histology of prostate cancer tissue samples. The prognostic value of stage and grade 

are helpful, but has its limitations.  

 
The Tumor Microenvironment: An Unhealable Wound 

 Cancer is a general term for a heterogeneous disease, in which the malignancy 

predominantly stems from metastasis.5 Metastasis is characterized by the migration of 

aggressive tumor cells from one organ to another. In the continuum of metastasis, the 

vascular and lymph networks provide the means for tumor cells to escape their original 

microenvironment and colonize distant organs. Interestingly, metastasis does not seem 

to be a random process. Metastatic tumors undergo organ-specific metastasis, creating 

a pattern for metastasis.6,7 For example, negative breast cancer cells often metastasize 

to the liver, bone, and brain. 

Aggressive tumor cells often infiltrate nearby areas by disrupting the homeostasis 

of the microenvironment through the degradation of the extracellular matrix (ECM).8,9 

Extracellular matrix homeostasis is tightly maintained in the normal microenvironment 

during development and other physiological or non-malignant pathological processes. 

During wound healing in the normal microenvironment, platelets aggregate to form a 

plug and a fibrin clot is formed. Macrophages infiltrate the local area and secrete growth 

factors, which activate stromal cells such as fibroblasts. Fibroblasts secrete matrix 
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metalloproteases (MMPs), which degrade the ECM, and differentiate into myofibroblasts 

to facilitate wound contraction.  Vascular endothelial cells are stimulated to undergo 

angiogenesis. Finally, epithelial cells increase cell motility in order to reform tissue. In 

contrast, homeostasis is disrupted in the tumor microenvironment with increased 

degradation of the ECM. Continuous degradation of the ECM promotes tumor invasion 

and metastasis. This phenomenon is analogous to an unhealable wound.10  Similar to 

wound healing, tumor cells secrete growth factors that activate the stromal cells in the 

tumor microenvironment. Fibroblasts differentiate into myofibroblasts and vascular 

endothelial cells are induced to undergo angiogenesis. Tumor-associated reactive 

stromal cells are induced to constitutively secrete pro-collagen. Fibroblasts and 

macrophages secrete proteases, such as MMPs, which degrade the ECM. Excessive 

production of proteases at the invasive front prevents the collagen deposit from 

mounting to a physical barrier and forming scar tissue.9,10 The imbalance between ECM 

deposition and ECM degradation gives the tumor microenvironment the characteristics 

of an unhealable wound. 

 

Maspin: A Serine Protease Inhibitor  

The discovery of maspin, through subtractive hybridization in nonmalignant and 

malignant breast cell lines, initiated the research of maspin as a tumor suppressor.11 

Maspin, a 42 kDa protein, is a clade B member of the serine protease inhibitor (serpin) 

superfamily. Hence, maspin (mammary serine protease inhibitor) is alternatively named 

SERPINB5. Maspin maps to chromosome 18q21.3 and shares high sequence 

homology with other serpins, such as equine neutrophil-monocyte elastase inhibitor 
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(43%), human neutrophil-monocyte elastase inhibitor (39%), human squamous cell 

carcinoma antigen (34%), human plasminogen activator inhibitor 2 (PAI-2; 31%), and 

chicken ovalbumin (31%).11  

The tertiary structure of maspin consists of three anti-parallel β-pleated sheets 

and nine α-helices.12 The reactive site loop (RSL), a common serpin structural feature, 

is located between the A and C β-pleated sheets. The RSL of maspin contains an 

arginine residue at its p1 site, suggesting it is an arginine-specific protease inhibitor.13 

However, maspin’s RSL does not undergo the stressed to relaxed transition, which is 

important for classic serpin inhibition. Unlike classical inhibitory serpins, the RSL of 

maspin does not have a conserved hinge region.11 Typically, the RSL of an inhibitory 

serpin is cleaved and inserted into the center of the β-pleated sheet after the serpin has 

docked to its target, which creates an additional β-strand. Although maspin’s RSL does 

not act like an inhibitory serpin, the RSL is necessary for maspin’s tumor suppressive 

activity.11,13 Immediately preceding the putative p1p1´ site of maspin is a KDEL (lysine-

aspartate-glutamate-leucine) sequence, which seems to be necessary in determining 

the subcellular localization and tumor suppressive function of maspin.14 Out of the nine 

helices, the G-helix of maspin is able to undergo a novel and unprecedented 

conformational change, in which the G-helix switches between an open and a closed 

conformation.12 Ravenhill et al (2010) showed that maspin modulates cell adhesion and 

migration via its G-helix.15  

Maspin’s expression is regulated by methylation for epithelial-specific expression 

in normal tissues. In non-epithelial tissues, the maspin gene is silenced through 

methylation.16 Of note, maspin expression has been detected in vitro in human umbilical 
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vein endothelial cells (HUVEC) and prostate smooth muscle cells.17,18 Therefore, 

maspin expression in non-epithelial cells may be due to in vitro cell culture conditions. 

 

The Tumor-Suppressive Role of Maspin 

Maspin is a class II (epigenetically-silenced) tumor suppressor gene. Clinical 

samples of normal epithelium tissues show that maspin is mainly expressed in the 

nucleus.11 Maspin knockout was demonstrated to be embryonically lethal in an in vivo 

mouse model.19 However, a recently published study reported viable embryos from 

maspin conditional knockout mouse models.20 Teoh et al (2014) asserted that the neo 

selection cassette that was left in the maspin gene of the maspin knockdown mouse 

model of Gao et al (2004) may have resulted in the embryonic lethality. Furthermore, 

Teoh et al (2014) asserted that their data supports their hypothesis that maspin is not a 

tumor suppressor since they could not reproduce the results previously published by 

others. Recent evidence in the Sheng Laboratory may confirm that maspin is not 

embryonically lethal (unpublished observation). The Sheng laboratory will continue to 

investigate the embryonic lethality of maspin. Additionally, there is a wide array of data 

in the literature that supports the notion that maspin is a tumor suppressor. The Sheng 

laboratory and others have independently verified that maspin acts as a tumor 

suppressor.  

In tumor cells, maspin was shown to be epigenetically silenced by aberrant 

(hyper)-methylation.21,22 At the transcriptional level, maspin expression was shown to be 

positively regulated by the Ets element, which is active in normal epithelial cells, but 

inactive in tumor cells, of both breast and prostate.23,24 In normal mammary epithelial 
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cells, the AP-1 element cooperates with the Ets to positively regulate maspin 

expression.23 In normal prostate and prostate cancer cells, maspin expression was 

negatively regulated by the hormone response element (HRE), which was targeted by 

the androgen receptor but no other steroid receptor.24 Of note, androgen ablation was 

shown to induce maspin promoter activity in prostate cancer cells.25 The transcription 

factor, E2F1, was shown to mediate the up-regulation of the maspin gene in 

osteosarcoma cells.26 Furthermore, re-expression of wild-type p53 was shown to 

activate maspin expression by binding directly to the p53 consensus-binding site 

present in the maspin promoter in both breast and prostate cancer cells.27,28 

The loss of maspin has been associated with increased malignancy, with a less 

differentiated phenotype, and with increased angiogenesis. 11,25,29-31 Re-expression of 

maspin in breast and prostate cancer cells has been shown to push the cancer cells 

toward a more epithelial-like state in vitro and in vivo.32-35 The better-differentiated 

phenotype was concurrent with decreased tumorigenicity, organized cell-cell 

interactions and concerted extracellular matrix remodeling. Maspin transfected prostate 

and breast carcinoma cells showed decreased tumor invasion and motility in vitro.11 In 

in vivo mouse models of breast, prostate and lung cancers, tumors derived from maspin 

transfected cancer cells show decreased tumor growth and metastasis.11,33,36 

Additionally, maspin-expressing tumors showed a decrease in in vivo angiogenesis.33,36 

Re-expression or up-regulation of maspin has been shown to increase sensitivity to 

drug-induced apoptosis in breast and prostate cancer cells.37-40  

Evidence suggests that secreted maspin acts as a tumor suppressor. Using 

recombinant maspin (rMas) to mimic secreted maspin, the Sheng laboratory has shown 
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that purified exogenous maspin  inhibits prostate tumor cell invasion and motility in 

vitro.41,42 Furthermore, rMas acts at the cell surface to retard cell detachment by altering 

the cellular distribution of phospho-FAK, and inhibit prostate tumor cell invasion and 

motility 32. Treatment of breast cancer cells with rMas decreased in vitro invasion 

through basement membrane, which could be negated with anti-maspin antibody.43 It 

was shown that subsequent internalization of rMas by breast cancer cells inhibits cell 

motility through inhibition of Rac signaling and promote cell adhesion through 

phosphoinositide 3-kinase (PI3K) signaling.44 Additionally, rMas has been shown to 

exert an inhibitory effect on human umbilical vein endothelial cell (HUVEC) migration, 

strengthen HUVEC adhesion, and inhibit neovascularization.17,36 The data generated 

using rMas provides a basis for a tumor suppressive role of secreted maspin. 

Consistent with the observation that maspin localizes to the nucleus, cytoplasm 

and cell surface, maspin has been shown to interact with proteins in these subcellular 

compartments. In the nucleus, maspin has been shown to inhibit histone deacetylase 1 

(HDAC1) in the nucleus.34 In the cytoplasm, maspin has been shown to interact with 

several proteins, such as interferon gamma 6 (IRF6), heat shock protein 90 (hsp90) and 

glutathione-S-transferase  (GST).45,46 At the cell surface, extracellular maspin blocks 

the pericellular proteolysis mediated by urokinase plasminogen activator (uPA) at the 

cell surface of prostate cancer cells.41,42 Interestingly, maspin partitions to those 

subcellular compartments despite the absence of any specific signal sequence. 

Therefore, the tumor suppressive activity of maspin may depend on maspin’s 

subcellular localization and binding partners.  
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Maspin may function as a tumor suppressor through its inhibition of the activation 

of uPA, whose activation can initiate a proteolytic cascade by activating plasminogen to 

generate plasmin, a serine protease that activates many proteases and degrades non-

fibrillar extracellular matrix (ECM). Urokinase plasminogen activator is secreted as an 

inactive zymogen, pro-uPA, which binds to its cell surface-anchored receptor, urokinase 

plasminogen activator receptor (uPAR), and undergoes specific proteolytic cleavage 

into an active two-chain serine protease. Extracellular uPA may remain bound to uPAR 

or may dissociate to become a soluble protein. Maspin was shown to have an affinity for 

uPAR-bound uPA, but not soluble uPA.41,42 Furthermore, maspin has greater affinity for 

pro-uPA over active uPA.32 Binding between maspin and uPA was shown to occur via 

their exosites.47 Given that pro-uPA has been shown to act as a signaling ligand, 

maspin’s interaction with pro-uPA may result in greater inhibiting capacity than maspin’s 

interaction with uPA. Maspin has been shown to promote internalization of the 

uPA/uPAR complex via low density lipoprotein receptor-related protein-1 (LRP-1), which 

maybe one mechanism by which maspin may prevent ECM degradation and the 

proteolytic cascade as a tumor suppressor.32 

High uPA expression is associated with a low disease-free and overall survival 

rate among breast cancer patients.48 The tumor-promoting activity of uPA seems to 

depend on its ability to activate plasminogen, leading to the generation of plasmin. In 

addition to maspin, plasminogen activator inhibitor type I (PAI-1) is an inhibitor of uPA 

Interestingly, PAI-1 is up-regulated in many types of cancer and is associated with a low 

disease-free and overall survival rate. Maspin however is associated with better overall 

survival in many cancer types. Of note, uPA and its proteolytic target, plasmin, do not 
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directly cleave the fibrillar collagen matrix. However, they may degrade newly 

synthesized pro-collagen prior to its assembly into the fibrillar matrix. Additionally, 

maspin may prevent collagen I degradation by inhibiting uPA-mediated activation of 

plasminogen and, thus, pro-collagen I degradation. 

The tumor suppressive activity of maspin in the nucleus may occur, in part, 

through inhibition of HDAC1, which was identified as an interacting partner of maspin 

through a yeast two-hybrid screen.34 The Sheng laboratory has shown that maspin-

mediated inhibition of HDAC1 leads to epigenetic changes and renewed expression 

signatures for a better-differentiated phenotype.34,35,49,50 Of the genes down regulated, 

many were pro-tumor and of the genes up regulated, many were antitumor. Also, our 

lab has shown that a single point mutation of the aspartate to glutamate in the KDEL 

sequence (amino acid residue 346) resulted in a predominantly nuclear localization and 

stronger HDAC1 inhibition in comparison to the wild-type maspin.14 Consistently, forced 

exclusion of maspin from the nucleus, using a nuclear exclusion signal, diminishes 

maspin-mediated inhibition of growth and metastasis of breast cancer cells.51 Thus far, 

maspin is the only identified endogenous polypeptide inhibitor of HDAC1. Maspin’s 

interaction with HDAC1 may be a mechanism by which nuclear maspin acts as a tumor 

suppressor. 

 
Clinical Studies on Maspin’s Expression 

 Using NCBI GEO microarray database, the Sheng laboratory observed that 

maspin mRNA expression was the highest in prostate hyperplasia and lowest in primary 

prostate cancers during tumor progression (unpublished data). At the protein level, 

maspin expression is up-regulated in pre-neoplastic lesions, which is consistent with the 
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NCBI GEO data.29 Additionally, during tumor progression, the nuclear/cytoplasmic 

balance first shifts to a greater cytoplasmic expression.29,52,53 Eventually, maspin 

expression is down regulated and often lost in invasive and metastatic 

carcinomas.11,29,52 Maspin expression predicts a better prognosis for many cancers. Of 

note, high nuclear expression of maspin in patients showed better prognosis in 

comparison with high cytoplasmic maspin expression.52,54,55 For example, nuclear 

expression of maspin is associated with a lower recurrence rate in squamous cell 

carcinoma of the larynx.56  

Exceptions were reported with ovarian, gastric and thyroid cancers, where 

maspin expression correlates with a poor prognosis. In ovarian cancer, although overall 

survival was worse in patients with maspin expression, survival was greater when 

maspin is localized to the nucleus than when maspin is localized to the cytoplasm.54 

Similarly, in gastric cancers, patients with nuclear maspin showed better response to 

drug treatment with better overall survival than patients with cytoplasmic expression, 

although overall survival was worse in patients with maspin expression.57 Strong 

cytoplasmic and weak nuclear maspin expression has also been noted in pancreatic 

cancer tissue specimens.58,59 In contrast to other cancers, nuclear staining of maspin 

was not associated with better prognosis in pancreatic cancers, yet tissues with nuclear 

maspin staining were better differentiate.59 In thyroid cancer, there are conflicting 

reports correlating maspin expression with prognosis. Bal et al (2008) reported strong 

cytoplasmic expression of maspin and completely negative nuclear expression of 

maspin in immunohistological stains of thyroid tissues.60 The strong cytoplasmic 

expression of maspin was correlated with an adverse prognosis.  
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Interestingly, maspin is weakly expressed or not expressed in the normal tissues 

of the ovaries, pancreas and thyroid, yet maspin expression is high, and mostly 

cytoplasmic, in the tumor tissue.54,58,60-62 Maspin may serve as an adverse prognostic 

indicator for ovarian, pancreatic and thyroid cancers.54,63 The prognostic differences of 

maspin among cancers may reflect the cell origins of the tumor. 

 

The Enigmatic Secretion of Maspin 

Although one report described evidence that maspin is localized exclusively to 

the intracellular compartment 64, the compilation of published data highlights a majority 

consensus that maspin can act extracellularly to exert tumor suppressor activity. Upon 

initial discovery, immunohistochemical analysis revealed maspin protein within the 

luminal ducts of breast tissue, suggesting that maspin is secreted.11 Additionally, 

maspin was reported to partition into secretory vesicles.61 Maspin has been consistently 

detected in the conditioned media (CM) of maspin-expressing cells of normal and tumor 

breast, prostate and lung origin. Furthermore, extracellular maspin has been 

demonstrated to have anti-tumor effects.32,42,65,66 Secreted maspin from maspin 

transfected prostate cancer cells inhibited degradation of collagen I (Col I).33 Secreted 

maspin, derived from the CM of normal myoepithelial cells, was shown to inhibit breast 

carcinoma invasion without an effect on proliferation.65 Secreted maspin was shown to 

exhibit anti-invasive and anti-angiogenic activity.66,67 Either the addition of a maspin 

antibody into the CM or the depletion of maspin from the CM was able to abrogate 

invasion. The Sheng laboratory demonstrated that maspin associates with the 

uPA/uPAR complex at the cell surface, which may inhibit pericellular proteolysis.42 
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Taken together, the previous data suggest that secreted maspin acts in a paracrine 

manner to inhibit invasion and metastasis (regulate the tumor microenvironment). 

The mode of maspin secretion is enigmatic because maspin’s genetic sequence 

does not contain a hydrophobic N-terminal secretory signal peptide (SSP), which is an 

important feature for classical secretion of proteins.11 Classical secretion requires an 

hydrophobic SSP at the N-terminus of the protein and are dependent on the 

endoplasmic reticulum (ER)-Golgi secretory pathway for expulsion from the cell.68 

Proteins with the SSP are trafficked to the ER and through the Golgi apparatus, 

packaged into secretory vesicles and are then secreted when the secretory vesicles 

fuse to the plasma membrane. The SSP is sequence motif that is analogous to an 

address that directs the protein to its destination. Each organelle has a specific 

sequence motif that directs proteins to that organelle. The location of the motif on the 

protein is also unique to that motif. For example, the SSP motif is located at the N-

terminus of ER-Golgi dependent secreted proteins. Proteins without a localization signal 

sequence become cytoplasmic proteins by default. Not all secreted proteins contain the 

SSP and do not depend on ER-Golgi secretion pathway for expulsion from the cell. 

Secreted proteins that lack the SSP rely on non-classical secretory pathways, such as 

microvesicle shedding, exosome secretion, or direct translocation across the plasma 

membrane.  

 

Exosomal Maspin: A New Frontier for the Tumor Suppressor 

Interestingly, maspin has been reported as cargo of the exosomes, which 

highlights one of the secretion mechanisms of maspin. Maspin has been reported in the 
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exosomes of irradiated H460 lung adenocarcinoma cells, and maspin was absent from 

exosomes of the control cells (non-irradiated H460 lung adenocarcinoma cells).69 In 

another publication, maspin was present in the exosomes of undifferentiated 

keratinocytes and absent in differentiated keratinocytes.70 However, the authors 

reported the apparent molecular weight of maspin as 25 kDa in their proteomic analysis, 

instead of 42 kDa, which is the molecular weight of maspin. 

The exosomes are cholesterol-rich and sphingomyelin-rich bilayer vesicles. They 

are packaged with biologically active mRNA, miRNA and proteins.71-73 Additionally, DNA 

has also been identified in exosomes.74,75 The exosomes range from 30 – 120 nm in 

size and are secreted upon the fusion of the endosomes to the plasma membrane.71,73 

The biogenesis of the exosomes starts with the formation of intraluminal vesicles (ILVs) 

from the invagination of the limiting membrane of the endosome.76 The ILVs are termed 

exosomes once they are released into the extracellular space.  

Interestingly, ILVs can fuse back to the endosome membrane, which is termed 

back-fusion. ILV formation, scission and back-fusion occur through endosomal sorting 

complexes required for transport (ESCRT) protein activity.77 The ESCRT proteins also 

participate in the recruitment of cargo to the ILVs. The ESCRT proteins that are 

responsible for recruitment of cargo recognize ubiquitinated proteins.77,78 Once 

encapsulated, proteins are de-ubiquitinated by de-ubiquitinating ESCRT proteins. If 

maspin is a bona fide cargo of the exosome, then the recruitment of maspin may 

depend on a particular set of ESCRT proteins.  

Exosomes have been shown to mediate paracrine signaling. The mechanisms 

are unclear but there are three different hypotheses.79 One hypothesis highlights the 
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receptor mediated interaction at the cell surface. Exosomes contain transmembrane 

proteins, as well as luminal proteins. Some of the transmembrane proteins may act as 

ligands that interact with cell surface proteins to initiate cell signaling. Another 

hypothesis focuses on the endocytosis of exosomes. Endocytosis of the exosomes may 

be initiated when the exosome docks to the cell surface. The exosomes may have 

certain transmembrane proteins for docking to the cell surface. It is also hypothesized 

that the exosomes may fuse to the plasma membrane. The exosome, like the plasma 

membrane, is a lipid bilayer. As a structure formed from the endosome limiting 

membrane, the exosome ultimately has a plasma membrane origin. 

Exosomes are secreted by many cell types, such as immune cells, stem cells, 

endothelial cells and cancer cells.80-83 Initial reports of exosomes claimed exosomes 

expelled unwanted cellular material.84 Now, it is clear that exosomes are involved in 

important cellular physiology. As secreted extracellular vesicles, the exosomes can be 

used in paracrine signaling to regulate various biological processes. The function of the 

exosome depends on the molecular content, which is determined by the cell of origin. 

Under normal physiology, the exosomes have been shown to regulate biological 

processes, such as reticulocyte maturation, modulation of T cell signaling during 

pregnancy, and reprogramming hematopoietic progenitors.85-87 In certain diseased 

states, exosomes have been shown to functions as positive mediators for processes, 

such as cardiac repair.88 Exosomes may have prognostic value in evaluating 

preeclampsia during pregnancy.89 Exosomes have also been shown to induce cytokine 

secretion in macrophages.90 Exosomes may serve as prospective diagnostic markers of 

different diseased states, such as Alzheimer disease and ischemia/reperfusion.91,92 
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Furthermore, the exosomes may target either the local microenvironment or the distant 

microenvironment.79  

 

Exosomes in Cancer 

Tumor-derived exosomes have been shown to function as negative mediators to 

promote tumor activity, such as enhancing endothelial cell migration, promoting immune 

cell evasion, priming the metastatic niche, and increasing angiogenesis.93-99 Melanoma-

derived exosomes were shown to educate bone marrow progenitor cells toward pro-

metastatic phenotype.93 Prostate cancer-derived exosomes were shown to mediate 

CD8+ T-cell apoptosis.94 CD8+ T cells can also be induced to suppress immune 

response by CD4+ T cell-derived exosomes.100 Transport of miR-150 monocyte-derived 

exosomes was shown to enhance endothelial cell migration.95 CD81+ exosomes 

secreted by cancer-associated fibroblasts were shown to stimulate breast cancer cell 

protrusive activity, motility and metastasis.97 Tumor-derived exosomes were shown to 

communicate with immune cells to induce immune suppression.99,101 Tumor cells were 

shown to respond to an acidic environment by increasing the secretion of exosomes.102 

 

Hypothesis 

To understand how different forms of secreted maspin may contribute to tumor 

suppression, it is critical to understand how maspin is regulated at the step of trafficking. 

The focus of my dissertation is to understand how maspin trafficking is regulated and 

how exosomal maspin affects tumor cell biology. The central hypothesis states that 

exosomal maspin may contribute to the tumor suppressive activity and may be 
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differentially regulated during tumor progression. In order to address the hypothesis, two 

specific aims were developed. Specific Aim 1 is to investigate the differential regulation 

of exosomal maspin in non-malignant cells and tumor cells. Specific Aim 2 is to 

investigate the biological function of exosomal maspin in the microenvironment. The 

results may provide novel insights into how the tumor microenvironment can be 

modulated with maspin-based therapies.  
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Chapter 2: Materials and Methods 

Cell Lines, Cell Culture Media and Antibodies 

 The CRL2221 cell line is a non-malignant prostate cell line. The LNCaP cell line 

is a locally metastasized prostate cancer cell line collected from the lymph node. The 

PC3 cell line is a metastasized prostate cancer cell line collected from the bone. The 

MCF10A cell line is a spontaneously immortalized breast cell line. The SUM149 is a 

triple negative breast cancer cell line lacking the estrogen receptor (ER), progesterone 

receptor (PR) and Her2 receptor. The SUM159 is breast cancer cell line that does not 

express maspin. The BEAS-2B cell line is a non-malignant lung cell line. The NIH 3T3 

mouse fibroblast cells are non-malignant stromal cells and were a gift from Dr. Hyeong-

Reh Kim. CRL2221, PC3, LNCaP and BEAS-2B were purchased from American Type 

Culture Collection (Manassas, VA). The MCF10A cell line was a gift from Dr. Fred 

Miller. The SUM149 and SUM159 breast cancer cell lines were a gift from Dr. Stephen 

Ethier. LNCaP and PC3 cell cultures were maintained in RPMI 1640 medium 

supplemented with 5% v/v fetal bovine serum (FBS), 100 U/mL penicillin, 100 μg/mL 

streptomycin, L-glutamine (L-Glu; 2 mM), Hepes (10 mM), NaHCO3 (1.5 mg/mL) and 

non-essential amino acids (NEAA; 1 mM). CRL2221 cell cultures were maintained in 

keratinocyte serum-free medium (KSFM) supplemented with 100 U/mL penicillin and 

100 μg/mL streptomycin; additional supplements were provided with the KSFM. The 

MCF10A and NIH 3T3 cell cultures were maintained in DMEM/F-12 medium 

supplemented with 5% v/v FBS, L-Glu (2 mM), 100 U/mL penicillin,100 μg/mL 

streptomycin, amphotericin B (0.5 µg/mL), cholera toxin (100 ng/mL), hydrocortisone 

(HC; 1 µg/mL), epithelial growth factor (EGF; 10 ng/mL), and insulin (5 µg/mL). SUM149 
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and SUM159 cell cultures were maintained in Ham’s F-12 medium supplemented with 

10% v/v FBS, 100 U/mL penicillin,100 μg/mL streptomycin, insulin (5 µg/mL), and HC (1 

µg/mL). BEAS-2B cell cultures were maintained in LHC-8 medium supplemented with 

100 U/mL penicillin and 100 μg/mL streptomycin. 

The stable transfected cell lines, Neo and M7, were derived, by our laboratory, 

from the DU145 cell line, which is a metastasized prostate cancer cell line collected 

from the brain. The DU145 cells were purchased from American Type Culture Collection 

(Manassas, VA). Neo was transfected with an empty vector. M7 was transfected with a 

plasmid containing maspin. Neo and M7 cells are maintained in RPMI 1640 

supplemented with 5% v/v fetal bovine serum, NaHCO3 (1.5 mg/mL), G418/geneticin 

(0.3 mg/mL), 100 U/mL penicillin,100 μg/mL streptomycin, L-Glu (2 mM), Hepes (10 

mM), and NEAA (1 mM). 

All cell growth media, L-Glu, penicillin-streptomycin, Hepes, NEAA, and EGF 

were purchased from Life Technologies (Gaithersburg, MD). G418, NaHCO3, insulin, 

hydrocortisone, amphotericin B and cholera toxin were purchased from Sigma-Aldrich 

(St. Louis, MO). All cell cultures were cultured in a humidified incubator at 37 °C with 

5% CO2. 

Maspin mouse monoclonal antibody was purchased from BD Biosciences (San 

Jose, CA). Tsg101 mouse monoclonal antibody, LAMP-2 mouse monoclonal antibody, 

β-tubulin rabbit polyclonal antibody, PARP mouse monoclonal antibody, and GAPDH 

mouse monoclonal antibody were purchased from Abcam (Cambridge, MA). Alix mouse 

monoclonal antibody and Hsp90 rabbit polyclonal antibody were purchased from Santa 

Cruz Biotechnology (Dallas, Texas). Ribosomal L26 mouse monoclonal antibody and 
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Hsp70 rat monoclonal antibody were purchased from Cell Signaling (Danvers, MA). 

Anti-mouse secondary antibody and anti-rabbit polyclonal secondary antibody were 

purchased from GE Healthcare (Buckinghamshire, UK). 

 

Exosome Isolation 

 Cells were cultured in 10 mm cell culture dishes. At seventy percent confluence, 

culture media was removed and cells were washed thrice with PBS. Cells were 

incubated in defined keratinocyte serum-free media (DKSFM) purchased from Life 

Technologies (Gaithersburg, MD) supplemented with 100 U/mL penicillin, 100 μg/mL 

streptomycin; additional supplements were provided with the DKSFM. After 24 h, the 

conditioned media (CM) was collected and centrifuged at 4,000 x g for 10 min, at room 

temperature, to pellet dead cells and cell debris. The supernatant (CM) was 

concentrated with 15 mL Millipore 10 kDa centrifugal filter units (Darmstadt, Germany) 

until the CM reached the desired volume of 1 mL (100X concentrated). The CM was 

collected and centrifuged at 16,000 x g for 30 min at 4 °C to deplete the CM of high 

molecular weight microvesicles. To isolate exosomes, the CM was centrifuged at 4 °C 

and 100,000 x g for 24 h. The supernatant was saved and labeled vesicle-depleted 

conditioned media (VDCM). The protein concentration of the VDCM was measured. The 

pellet (exosomes) was washed twice by re-suspending exosomes in PBS and 

centrifuged at 200,000 x g for two hours at 4 °C. For immunoblot analysis, the exosomal 

proteins were resolved on 10% SDS-PAGE gel. For cell viability and motility assay, 

exosomes were re-suspended in 1 mL of DKSFM supplemented with 100 U/mL 

penicillin, 100 μg/mL streptomycin. 
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Atomic Force Microscopy (AFM) 

Atomic force microscopy imaging was conducted using Multimode IIIa (Digital 

Instrument) and Dimension 3100 (VEECO). Exosomes were re-suspended in 50 µL of 

PBS after isolation. Twenty microliters of exosomes were immobilized on cleaved mica 

for detection. Briefly, 50 µL of 10 mM manganese chloride solution was incubated on 

cleaved mica (1 cm x 1 cm) for 30 s. Excess manganese chloride was removed by 

blowing dry with filtered compressed air. The exosomes were placed on mica and 

incubated for 2 min, followed by rinsing (with ddH2O) and drying with filtered 

compressed air. To image exosomes, tapping mode in air was performed using silicon 

probes (Vistaprobe) with a nominal radius of curvature of 10 nm and cantilever spring 

constant of 48 N/m as provided by the manufacturer. The surface was imaged 

continuously at an average rate of 1−2 Hz on a 1×1−5×5 μm2 area. The ranges of 

frequency, amplitude, integral, and proportional gains used were 7.5-8.5 kHz, 0.5−1 V, 

0.5−2, and 0.75−3 respectively. All AFM images were analyzed using Nanoscope 

software version 5.12b (VEECO). Grade 5 muscovite mica was purchased from Ted 

Pella and hand cleaved just before use. Manganese chloride (99%) was purchased 

from Sigma-Aldrich (St. Louis, MO). 

 

Dynamic Light Scattering (DLS) for Size Distribution and Zeta Potential 

The size of the exosomes was measured by dynamic light scattering in terms of 

hydrodynamic diameter (DH) with the Nanosizer ZS purchased from Malvern 

Instruments (UK). Briefly, exosomes were re-suspended in 50 µL of PBS after isolation 

and transferred to a low-volume, quartz microcuvette (ZEN0040, Malvern instrument). 
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The backscattering angle Θ was fixed at 172° with a laser wavelength λ = 633 nm. The 

size measurement range was from 1 nm to 6 μm. DH is a function of the diffusion 

coefficient (D), temperature (T), and viscosity (η) according to the Stokes-Einstein 

equation: , where k is Boltzmann constant and T is the temperature at 25 °C. 

D is obtained from autocorrelation function via the cumulant fitting. For measuring the 

surface charge, exosomes were re-suspended in 1 mL of PBS. The zeta potential of the 

exosomes was measured with a combination of laser Doppler velocimetry and phase 

analysis light scattering in a disposable capillary cell (DTS1070, Malvern Instrument). 

 

Electron Microscopy 

 MCF10A derived exosomes were isolated and re-suspended in primary fixative 

(4% v/v paraformaldehyde in 0.1 M sodium phosphate buffer). Exosomes were 

incubated for 24 h in primary fixative. Then, 5 µL of exosomes were allowed to adsorb 

onto carbon-coated, 400 mesh, nickel grids purchased from Electron Microscopy 

Sciences (Hatfield, PA). After adsorption, the exosomes were incubated in either 0.3% 

saponin or Tween-20 diluted in PBS for permeabilization. Exosomes were washed once 

with PBS and thrice with glycine. Afterward, the exosomes were incubated in blocking 

buffer (1% w/v cold-water fish gelatin in PBS) for 45 min. For primary antibody labeling, 

exosomes were incubated for 1 h in 1:10 dilution of maspin, Tsg101 or mouse IgG. After 

washing with 0.1% cold-water fish gelatin six times, exosomes were incubated in 1:10 

dilution of conjugated gold mouse secondary antibody for 30 min. Exosomes were 

washed six times in PBS followed by incubation in 1% v/v glutaraldehyde in 0.1M 

phosphate buffer for 30 min. Then, the exosomes were washed in ddH2O. Negative 

3
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staining was conducted in 2% uranyl oxalate (pH 7.0) for five minutes. The exosomes 

were quickly rinsed once in ddH2O and allowed to air dry. Of note, incubations and 

washings were carried out by transferring the grids with adsorbed exosomes onto 

droplets of solutions/buffers. Exosomes were visualized using the JEOL 2010 FasTEM 

instrument at 200 kV. 

 

Immunoblot 

Lysate: Cells were washed with PBS and incubated in 0.25% trypsin purchased 

from Life Technologies (Gaithersburg, MD). Detached cells were re-suspended in the 

appropriate media and pelleted by centrifugation at 2,000 x g for 5 min. Cells were re-

suspended in PBS and pelleted again by centrifugation at 2,000 x g for 5 min. Cells 

were lysed with cold RIPA lysis buffer (20 mM Hepes, 100 mM NaCl, 0.1% SDS, 1% 

NP-40/IGEPAL-CA630, 1 mM deoxycholic acid, 1 mM Na3VO4, 1 mM EGTA, 50 mM 

NaF, 10% Glycerol, 1X Protease Inhibitor Cocktail, 1 mM EDTA). Cell lysates were 

collected, as the supernatant, by centrifugation at 16,000 x g for 30 min at 4 °C. Protein 

concentration was measured using the Pierce/ThermoScientific BCA Protein Assay 

Reagent Kit (Rockford, IL). Proteins were resolved on 10% SDS-PAGE and, then, 

transferred overnight to a PVDF membrane using electrophoresis. The membrane was 

incubated in blocking buffer (5% nonfat dry milk in PBS with 0.1% Tween-20) for one 

hour and incubated in a 1:1000 dilution of primary antibody overnight. The membrane 

was washed and incubated in a 1:5000 dilution of secondary antibody for 1 h followed 

by washing. Membranes were developed on film for visualization  of proteins.  
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Conditioned media (CM) and Vesicle-depleted Conditioned Media (VDCM): 

The conditioned media was isolated and concentrated as described in “Exosome 

Isolation” section. Conditioned media, in which microvesicles were removed, were 

termed “vesicle-depleted CM” (VDCM). Protein concentration was measured. Proteins 

of the CM were processed for immunoblot as described for lysate proteins. 

 

Isolation of Cytoplasmic Ribosomes (Polysomes)  

CRL2221 cells were cultured in 10 mm cell culture dishes. At seventy percent 

confluence, cells were collected with trypsin. Briefly, cells were incubated in 0.25% 

trypsin for 1 min. Detached cells were pipetted into 1.5 mL collection tubes and 

centrifuged at 2,000 x g for 5 min. Trypsin was removed by aspiration and cells were re-

suspended in PBS. Cells were washed by centrifugation at 2.000 x g for 5 min. Cells 

were re-suspended in cold homogenization buffer (40 mM Tris pH 7.4, 50 mM KCl, 10 

mM MgCl2, 3 mM DTT, and  0.5 mg/ml heparin) and transferred to a 3 mL Dunce 

homogenizer. Cells were lysed using a Dounce homogenizer for 1 min on ice. Lysates 

were centrifuged at 4 °C and 16,000 x g to remove the nuclei and mitochondria from the 

homogenates. Then, the lysates were centrifuged at 4 °C and 100,000 x g to remove 

microsomes (rough endoplasmic reticulum; RER) from the homogenates. 500 µL of the 

supernatant was layered over a discontinuous sucrose gradient containing 1 ml each of 

1.0 M (top), 1.5 M, 2.0 M and 2.5 M (bottom) sucrose in polysome buffer. The 

supernatant was centrifuged at 4 °C for 2 hours at 100,000 x g. After centrifugation, 500 

µL fractions were collected starting at the bottom (2.5 M sucrose). Thirty microliters of 

the fractions were mixed with sample buffer and loaded into the wells of a 10% SDS-
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PAGE gel. Proteins were resolved and transferred by electrophoresis to a PVDF 

membrane for immunoblot analysis.  

 

Immunofluorescence Labeling  

The CRL2221 cells were seeded at a density of 4,000 cells/mL and incubated in 

an 8-well chamber slide purchased from Thermo Fisher Scientific (Hudson, NH). After 

24 h, the media were removed and cells were washed twice with PBS. The cells were 

then incubated in 4% paraformaldehyde for 15 min followed by methanol fixation for 10 

min at -20 °C. Cells were incubated with 1% Triton-X 100 and then with 10% normal 

goat serum in PBS for 1 hr. The cells were incubated in 1:100 maspin primary antibody 

and 1:100  LAMP-2 primary antibody. Cells were washed and incubated for 1 h in 1:500 

dilution of Alexa Fluor 488 and Alexa Fluor 594 fluorescent secondary antibodies. The 

nucleus was stained with 4´,6-diamidino-2-phenylindole (DAPI) for 1 min. Cells were 

visualized under a LSM-510 confocal microscope at 400X magnification. 

 

Secretion-Targeted Drug Treatments 

 The CRL2221 cells were cultured in 10 mm cell culture dishes until seventy 

percent confluence. Cells were washed thrice with PBS. Cells were incubated for 24 h 

in DKSFM with or without brefeldin A (BFA), ionomycin (IONO, methylamine (MA), or 

chloroquine (CQ) at the concentrations indicated in the figure legends. After 24 h, the 

CM was removed and saved for immunoblot analysis. In order to determine whether the 

drug treatments affected trafficking of exosomal maspin, the media were removed and 

processed for the isolation of the exosomes from the CM as described in the “Exosome 
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Isolation” section. The cells were washed and collected after incubation with 0.25% 

trypsin. The cell lysates, exosomes and VDCM were processed for immunoblot analysis 

as described in the “Immunoblot” section. The VDCM was also used for zymography as 

described in the “Zymography” section. Drugs were purchased from Sigma-Aldrich (St. 

Louis, MO). 

  

Zymography 

 CM (containing exosomes) and VDCM (depleted of exosomes) were collected 

from CRL2221 cells treated for 24 h with or without BFA, IONO, MA, or CQ in DKSFM. 

The drug concentrations are indicated in the figure legends. The CM was concentrated 

using 15 mL Millipore 10 kDa centrifugal filter units. Twenty microliters of CM was 

diluted with β-mercaptoethanol free sample buffer and loaded onto a zymogram gel. 

Proteins were resolved by electrophoresis. Recombinant matrix metalloprotease 9 

(MMP9), gifted by Dr. Rafael Fridman, was loaded onto the zymogram gel as a positive 

control. Following electrophoresis, the gel was incubated in re-naturing buffer (2.5% 

Triton X-100 in ddH2O) for 30 min. Then, the gel was washed in ddH2O for 10 min. The 

gel was transferred to developing buffer (50 mM Tris 9, pH 8.0), 5 mM CaCl2, 200 mM 

NaCl, and 0.02% v/v Brij-35) and incubated for 30 min. The developing buffer was 

replaced with new developing buffer and incubated at 37 °C for at least 16 hours. The 

gel was stained in 0.5% w/v Coomasie blue solution (Coomasie blue brilliant R-250 in 

5% v/v acetic acid, and 10% v/v methanol) and incubated at room temperature with 

gentle shaking for 30-60 min. The gel was then incubated in de-staining solution (5% v/v 
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acetic acid and 10% v/v methanol in ddH2O) until bands were visualized. Images of the 

zymogram gel were captured using Bio-Rad Gel Doc XR+ system (Hercules, CA). 

 

Membrane Stripping Assay 

To remove peripheral proteins at the membrane surface, pelleted CRL2221- 

derived exosomes were re-suspended and washed twice with 12.5 mM, 25 mM, 50 mM 

or 100 mM KCl in PBS at 4 °C and 100,000 x g for 2 h. The control (no KCl) was re-

suspended and washed twice in PBS at 4 °C and 100,000 x g for 2 h. The supernatant 

was removed and the exosomes were washed two additional times with PBS at 4 °C 

and 100,000 x g for 2 h to remove residual KCl. For immunoblot analysis, the exosomes 

were re-suspended in 1X sample buffer after the final wash, and the exosomal proteins 

were resolved on 10% SDS-PAGE gel and transferred to PVDF membrane. 

 

Maspin Knockdown and Stable Transfection 

  Stable transfected MCF10A cells lines were established with the pGIPZ shRNA-

mir lentiviral plasmid system (Thermo Scientific, Asheville, NC) according to the 

manufacturer’s instructions. Briefly, MCF10A cells were seeded in 10 mm cell culture 

plates. At fifty percent confluence, cells were  transfected with either a mixture of 

maspin shRNA plasmids (RHS4430-98895314, RHS4430-99297939, RHS4430-

99139485) or the noncoding shRNA plasmid (RHS4346) using the X-treme GENE 9 

DNA transfection reagent (Roche Applied Science, Indianapolis, IN) according to the 

manufacturer’s instructions. Stable transfected clones were selected with 10 μg/mL 

puromycin. The clones were maintained in DMEM/F-12 medium containing 5% FBS. To 
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verify maspin knockdown, cell lysates of maspin knockdown clones and noncoding 

clones were processed for immunoblot analysis as described in the “Immunoblot” 

section. 

 

Exosome Labeling 

Exosomes were isolated as described in the “Exosome Isolation” section. After 

the centrifugation at 100,000 x g, the exosomes were washed once with PBS and 

labeled with the PKH26 Red Fluorescent Cell Linker Kit (Sigma Aldrich) according to the 

manufacturer’s protocol. The exosomes were centrifuged at 100,000 x g to remove 

excess PKH26 and re-suspended in 1 mL of DKSFM. The NIH 3T3 mouse fibroblast 

cells were incubated in a  1:100 dilution of labeled exosomes for 24 h.  Live cell imaging 

of NIH 3T3 cells after exosome treatment was performed using the Leica Fluorescence 

microscope. 

 

Cell Viability Assay 

 Drug Treatment: The CRL2221 cells were seeded into 96-well plates at a 

density of 20,000 cells/mL and allowed to attach to the plate for 24 h. The CRL2221 

cells were treated with or without BFA, IONO, MA or CQ at the concentrations indicated 

in the figure legends (Figures 4 and 9) for 24 h. Cell viability was assessed with the 

WST-1 Reagent (Roche Diagnostics) according to the manufacturer’s instructions. All 

drugs were purchased from Sigma-Aldrich (St. Louis, MO). For statistical analysis, one 

way analysis of variance (ANOVA) was performed using the SigmaPlot software 

(Chicago, IL). 
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Exosome Treatment: Cell viability of the NIH 3T3 cells was assessed after 

treatment with various concentrations of the exosomes as indicated in figure 13. The 

NIH 3T3 cells were seeded at 20,000 cells/mL in 96-well plates. Cells were allowed to 

attach to the plate for 24 h. The exosomes were isolated as described in “Exosome 

Isolation” section. The exosomes were re-suspended in 1 mL of DKSFM and dilutions of 

isolated exosomes were prepared from the suspended exosomes. Then, cells were 

treated for 24 h with or without exosomes derived from the MCF10A stable transfected 

clones. WST-1 Reagent  (Roche Diagnostics) was added according to the 

manufacturer’s instructions.  

 

Cell Lysis (LDH Assay) 

The CRL2221 cells were seeded into 96-well plates at a density of 20,000 

cells/mL and allowed to attach to the plate for 24 h. The CRL2221 cells were treated 

with or without BFA, IONO, MA or CQ at the concentrations indicated in the figure 

legend (Figures 4 and 9) for 24 h. 100 µL of the conditioned media of the CRL2221 cells 

were transferred to a new 96-well plate. Lactate dehydrogenase (LDH) cytotoxicity 

assay was used to assess LDH activity according to the manufacturer’s instructions. 

The LDH cytotoxicity assay was purchased from Cayman Chemical (Ann Arbor, MI). For 

statistical analysis, one way analysis of variance (ANOVA) was performed using the 

SigmaPlot software (Chicago, IL). 
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Motility Assay 

NIH 3T3 cells were seeded into 6 well plates and allowed to attach to the plate 

for 24 h. The exosomes were re-suspended in 1 mL of PBS and administered to the 

NIH 3T3 cells at a dilution of 1:100 dilution. The NIH 3T3 cells were treated with the 

exosomes for 24 h. NIH 3T3 cells were collected and seeded into the chambers of 

Corning transwell plates (Sigma-Aldrich). Motility was assessed after 24 h. For 

statistical analysis, one way analysis of variance (ANOVA) was performed using the 

SigmaPlot software (Chicago, IL). 

 

Quantitative Real Time-PCR (qRT-PCR) 

Total RNA was isolated  using the Qiagen RNeasy Mini kit (Valencia, CA,). The 

RNA was converted to cDNA using  the Bio-Rad iScript cDNA synthesis kit (Irvine, CA). 

The mRNA levels of the following genes were quantified using the indicated forward and 

reverse primer pairs: GAPDH (forward: 5´ - ATC ACC ATC TTC CAG GAG CGA - 3´ 

and reverse: 5´ - GCC AGT GAG CTT CCC GTT CA - 3´); Vimentin (VIM ; forward: 5´ - 

GCT CCT ACG ATT CAC AGC CA- 3´ and reverse: 5´ - CGT GTG GAC GTG CTG 

ACA TA- 3´); uPA forward: 5´ -  CAT CCA TCC AGT CCT TGC GT - 3´ and reverse: 5´ - 

ACG CAT AC ACCT CCG TTC TG - 3´); α-smooth muscle actin (SMA; forward: 5´ - 

GAG CCC AGG CAT TGC TGD CA - 3´ and SMA reverse: 5´ - GAG GCG CTG ATC 

CACA AA AC - 3´); p21 forward: 5´ - CAG GCA CCA TGT CCA ATC CT- 3´ and p21 

reverse: 5´ -  AAT CTG TCA GGC TGG TCT GC - 3´); collagen I (Col I; forward: 5´ - 

TCT CCA CTC TTC TAG TTC CT- 3´ and reverse: 5´ - TTG GGT CAT TTC CAC ATG 
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C - 3´). GAPDH was used as an internal reference for normalization. For statistical 

analysis, ANOVA was performed using the SigmaPlot software (Chicago, IL).  
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Chapter 3: Results 
 

Chapter 3A: Investigating the Differential Regulation of Exosomal Maspin in Non-

Malignant Cells and Tumor Cells 

 

Exosomes have distinct physical properties 

 The exosomes were isolated from a panel of maspin-expressing non-malignant 

cells and tumor cell lines of the breast, prostate and lung. Then, the exosomes were 

analyzed by atomic force microscopy (AFM) and dynamic light scattering (DLS) through 

the collaboration with laboratory of Guangzhao Mao, Ph.D. at Wayne State University. 

The height and amplitude (the first derivative of the height) were measured using AFM. 

The images from AFM confirmed the isolation of the secreted nanoparticles from non-

malignant cells (Figure 1A) and tumor cells (Figure 1B). The nanoparticles were 

spherical in morphology, which is consistent with the description of exosomes reported 

in the literature.71 Additionally, the morphology of the exosome is described as cup-

shaped in some reports.103 In our hands, only a few of the nanoparticles visualized by 

AFM seem to exhibit a cup shape. The original morphological description of the 

exosomes was determined from electron microscopy (EM) images produced. Therefore, 

it is unknown whether the cup shape is due to the EM preparation or if it is the bona fide 

shape of exosomes. The data presented in Figure 1 show a representative visualization 

of the exosomes by AFM. Heterogeneity of the exosomes was observed in the AFM 

images, irrespective of the cell type, as well as some degree of aggregation. The 

degree of aggregation seemed to vary among the cell lines. In addition, various 

amounts of exosomes were observed in the AFM images. The amount of exosomes 
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Figure 1 – The physical characteristics of the exosomes. Images were produced 
using atomic force microscopy. (A) Representative images of exosomes derived from 
non-malignant cell lines. (B) Representative images of exosomes derived from tumor 
cell lines. Scale is 1 μm. 

detected did not appear to differ between non-malignant and tumor cells. However, 

there is not yet a reliable method to quantify exosomes because of their size. FACS 

sorting has been used to try to quantify the number of exosomes, but requires antibody 

linkage of the exosomes to magnetic beads, which may result in multiple beads 

attaching to one exosome.104  

Atomic force microscopy allowed the visualization of the exosomes but does not 

provide quantitative data. In order to quantify the size of the exosomes, DLS was used 

to measure the size distribution. DLS is advantageous in that it measures the size 

distribution of particles that are in the nanometer range. The exosome fraction derived  
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Figure 2 – Size distribution of exosomes measured by DLS. (A) Representative 
graphs of exosomes derived from non-malignant cell lines. (B) Representative graphs 
of exosomes derived from tumor cell lines.  

from the non-malignant cell lines contained two populations of nanoparticles (Table 1 

and Figure 2). The first population identified from the non-malignant cell line 

corresponds to the reported size range of the exosomes. The second population 

Table 1: Average Size Distribution of the Exosomes 

Cell Type Cell Line Size Distribution (± standard deviation) n 

Normal 

CRL2221 53.6 ± 12.8; 367.6 ± 144.8 5 

MCF10A 92.9 ± 42.4; 337.7 ± 60.4 7 

BEAS-2B 41.2 ± 8.8; 305.0 ± 85.6 3 

Tumor 

LNCaP 55.4 ± 5.3 4 

PC3 87.2 ± 10.1 3 

SUM149 91.1 ± 1.8 3 
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identified from the non-malignant cell line is above the reported size range of the 

exosomes. In contrast, the tumor cell lines secreted one population of nanoparticles that 

were in the reported size range of the exosomes (Table I). Of note, the same exosome 

preparations were used for DLS and AFM. Therefore, the more detailed physical 

properties revealed by DLS were not due to variations in exosomal preparation.  

MCF10A-derived exosomes were also visualized by electron microscopy, which 

was conducted through a collaboration with Dr. James Granneman of Wayne State 

University School of Medicine, Department of Psychiatry and Behavioral Neuroscience. 

Consistent with the literature, the MCF10A-derived exosomes were spherical in shape 

(Figure 3). A few exosomes exhibited the “cup” shape that has been described by some 

of the literature (Figure 3A, left image, and 3C, left image). Of note, it is unknown 

whether the “cup” shape is due to the preparation process for EM. The cup shape was 

not observed in the AFM images of the exosomes. The exosomes were immunolabeled 

with either maspin (Figure 3B) or Tsg101 (Figure 3C). Intact exosomes were observed 

with a defined border. Maspin was not labeled in the intact exosomes. However, maspin 

congregated in areas where the exosomes are not well-defined. This data suggest that 

some of the exosomes  may have been sensitive to the permeabilization process and  

ruptured. The ruptured exosomes exposed the luminal proteins and maspin was easily 

accessible. The intact exosomes may have not been permeabilized, which may be why 

maspin was not detected in the intact exosomes. The Tsg101 was detected in intact 

exosomes but also congregated in areas where the exosomes were less defined 

(Figure 3C, middle and left images). There were also exosomes that did not contain 

Tsg101 (Figure 3C, left image). Consistent with the AFM images, single particles and 
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Figure 3 – Electron Microscopy of the exosomes. Representative images of the 
MCF10A-derived exosomes. Exosomes were isolated and permeablized for 
immunolabeling. (A) Exosomes were incubated with IgG control  (B) Exosomes were 
incubated in maspin primary antibody (C) Exosomes were incubated in Tsg101 
primary antibody. 100 nm scale bar. 

aggregated particles were detected in the exosome fraction. The data from the EM  

images further support the speculation that the second peak detected in the normal-

derived exosome fraction is most likely due to a high degree of aggregation.    



36 
 

 

 

The exosomes of non-malignant cells and tumor cells were further analyzed by 

DLS for membrane surface charge by measuring the zeta potential. The zeta potential 

for the exosomes of all of the cell lines was negative (Table 2). Thus,  exosomes across 

various cell lines maintained an average negative membrane surface charge. Of note, 

the zeta potential represents an average of the surface charge, which does not rule out 

the possibility that positively charged exosomes exist. Given that the charge of a bilayer 

membrane depends on the associated proteins, the consistent average negative 

surface charge suggests that the exosomes of the cell lines share common 

transmembrane and/or peripheral proteins.  

Table 2: Average Zeta potential of the Exosomes 

Cell Type Cell Line Zeta Potential n 

Normal 

CRL2221  -13.8 ± 0.666 3 

MCF10A -12.6 ± 1.85 3 

BEAS-2B  -13 ± 0.907 3 

Tumor 

LNCaP  -11.2 ± 0.611 3 

PC3  -11 ± 0.681 3 

SUM149  -11.7 ± 0.473 3 

 

Maspin Trafficking and Secretion is Independent of the ER-Golgi 

The primary sequence of maspin does not reveal an N-terminal secretory signal 

peptide (SSP), which is necessary for ER-Golgi dependent (classical) secretion. 

Therefore, maspin may be secreted by a non-classical mechanism. Software has been 

developed to predict the chance of a non-classical secretion by a protein that lacks the 
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Table 3: Prediction for Non-Classical Secretion of Maspin  
 

 

SSP. Proteins with an NN-score above 0.5 are strongly predicted to be secreted by 

a non-classical mechanism.105 Interestingly, maspin received an NN-score of 0.499 from 

the software, which is 0.001 below the predictive threshold (Table 3). Maspin’s score 

may be below the threshold due to the fact that maspin also functions as an intracellular 

protein, which may not be taken into account by the software.  

The secretion of a protein may depend on where the protein is synthesized and 

what particular pathways are involved. Proteins that are secreted by the classical 

secretory pathway are thought to be translated by the ribosomes on the rough ER 

(RER), where they can be trafficked through the ER and Golgi apparatus for secretion68. 

In contrast, non-classically secreted proteins are thought to be translated by the free 

ribosomes. Maspin sequence lacks the SSP necessary for ER-Golgi dependent 

secretion, which suggests that maspin is most likely translated by free ribosomes. 

Ribosomes have the ability to translate mRNA to proteins when attached to or 
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Figure 4 – Cytoplasmic ribosomes 
translate maspin mRNA. 
Cytoplasmic ribosomes were isolated 
from lysates of the CRL2221 cells by a 
sucrose density gradient. Proteins 
were resolved on  a 10% SDS-PAGE 
for Western blot analysis. 

unattached to the rough ER (RER). Free 

cytoplasmic ribosomes are physically 

identical to ribosomes attached to the RER 

with identical translation efficiency.68 Free 

ribosomes mainly translate cytoplasmic 

proteins and other intracellular proteins that 

do not need the ER or Golgi for post-

translational processing. In concordance, 

many of the non-classically secreted proteins 

are cytoplasmic proteins.68 In order to 

determine whether maspin is translated by 

the free ribosomes, the free ribosomes were 

isolated from the cytoplasm and floated on a 

sucrose density gradient for purification. 

Fractions were collected from the gradient and proteins were detected by immunoblot 

analysis (Figure 4). The free ribosome fraction (fraction 5) was verified with L26, a 

ribosome marker. β tubulin was used as a positive control for cytoplasmic proteins. 

Maspin was also detected in fraction 5, which suggests that maspin is translated in the 

cytoplasm by free ribosomes (Figure 4).  

To further investigate the trafficking of maspin, CRL2221 cells were treated with 

BFA for 24 h. BFA targets retrograde transport from the Golgi to the ER, which causes 

the intracellular accumulation of ER-Golgi dependent secretory proteins, such as matrix 

metalloprotease 9 (MMP9).  Treatment with BFA did not inhibit the secretion of maspin, 
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Figure 5 – Maspin is not secreted through the ER-Golgi secretory pathway. (A) 
Immunoblot analysis of lysates and CM from CRL2221 cells after 24 h treatment 
with 18 µM of BFA. (B) Zymogram of the CM from CRL2221 cells after 24 h 
treatment with 18 µM of BFA. 

which suggests that maspin secretion occurs by an ER-Golgi independent mechanism    

(Figure 5A). When compared to untreated cells, the secretion of maspin increased as a 

result of BFA treatment. There was also a slight increase in intracellular maspin. The 

increase in maspin in both lysates and CM may be due to general cellular stress caused  
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by the treatment. Interestingly, maspin secretion has been shown to increase under 

cellular stress conditions.106 MMP9 is secreted via the ER-Golgi secretory pathway and 

the primary amino acid sequence of MMP9 contains an N-terminal SSP. Thus, MMP9 

was used as a positive control to verify that BFA inhibited classical protein secretion. 

The CM of both the CRL2221 cells and PC3 cells were assessed for MMP9 by 

zymography. The secretion of MMP9, as detected by zymography, was significantly 

inhibited by the treatment of BFA, which indicates that BFA inhibited ER-Golgi 

dependent secretion (Figure 5B). In contrast, secreted MMP9 was detected in untreated 

cells. 

Confocal microscopy of the CRL2221 prostate cells revealed co-localization 

between maspin and lysosome-associated membrane protein 2 (LAMP-2), a late 

endosome and lysosome marker (Figure 6A, white arrows).107,108 Additionally, LAMP-2 

has also been detected in the exosomes.102,108-110 The data suggest that maspin may be 

trafficked to the late endosome, which is consistent with the notion that maspin is 

associated with the exosomes. Of note, the CRL2221 cells are heterogeneous in 

maspin subceullar localization, in which some cells have mostly nuclear maspin while 

some cells have mostly cytoplasmic maspin. Figure 6B shows the subcellular 

fractionation of a heterogeneous poopulation of CRL2221 cells. Unlike the normal tissue 

epithelium, which has high nuclear maspin staining, the CRL2221 cells have more 

cytosolic maspin. Our lab has also shown that maspin can be mostly localized to the 

nucleus in CRL2221 cells.14 The difference in maspin nuclear:cytoplasmic ratio in the 

CRL2221 cells may be due to unidentified variations in cell culture conditions. 

Additionally, it is unknown whether maspin localization changes during certain cellular 
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Figure 6 – Co-localization of maspin with the endo-lysosomal protein, LAMP-2. (A) 

Representative confocal microscopy images of CRL2221 cells after immunolabeling with 

maspin and LAMP-2 antibodies. Maspin co-localizes with LAMP-2 (white arrows). 400X 

magnification. (B) Subcellular fractionation of CRL2221 cells.  

 

states, such as cell cycle progression, or under certain processes, such as cell stress. 

These unknown factors may contribute to the difference I observed in maspin 

subcellular localization compared to what was previously reported. Of note, the 

CRL2221 cells are an immortalized cell line. Clinical tissue samples consistently show 

evidence of maspin nuclear localization in normal cells as discussed in the introduction.  

 

Exosomal maspin in non-malignant cells and tumor cells 

It is unknown how the level of maspin in the exosomes is regulated in response 

to tumor progression. The exosomal cargo is recruited to the intraluminal vesicles (ILVs)  
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Figure 7 – Exosomal maspin is secreted by non-malignant cells. Immunoblot 
analysis of the lysates, VDCM and exosomes from non-malignant cells (CRL2221, 
MCF10A and BEAS-2B) and tumor cells (LNCaP, PC3 and SUM149). Immunoblot 
membranes were probed for various proteins that have been reported in the 
exosomes. Alix and Tsg101 are markers of the exosome.  
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Figure 8 – Loss of maspin expression 
results in absence of exosomal maspin. 
Immunoblot analysis of the lysates, VDCM 
and exosome fractions of the CSC#2 lung 
cancer cells. Tsg101 and Alix are markers of 
the exosome. 
 

during formation. Since maspin co-

localizes with an endosome marker, 

maspin may be recruited to the 

exosome as a cargo protein. The 

levels of maspin in the exosomes 

isolated from the non-malignant cells 

and tumor cells grown under 

exponential cell culture conditions 

were compared. The PVDF 

membranes were overexposed in 

order to determine the presence of 

maspin. As shown in figure 7, the non-

malignant cells (CRL2221, MCF10A 

and BEAS-2B) contain high levels of 

exosomal maspin. In contrast, the amount of exosomal maspin in the tumor-derived 

exosomes (LNCaP, PC3, and SUM149) is reduced. Judging from the detection of the  

exosomal markers, Alix and Tsg101, the exosomal preparation was highly enriched and 

distinct from the vesicle-depleted conditioned media (VDCM). Interestingly, soluble 

maspin was detected in the VDCM of the non-malignant cells. The absence of the  

exosomal markers, Alix and Tsg101, and cellular (cytoplasmic) markers, GAPDH and 

tubulin, from the VDCM validate that the VDCM was not contaminated with cellular or 

vesicular components. Therefore, maspin’s expression in the VDCM was not due to 

contamination. The level of soluble maspin was most abundant in the VDCM of the non-
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malignant cells. These data demonstrate that the isolation of the exosomal maspin does 

not deplete maspin from the VDCM. In comparison, despite the expression of 

intracellular and VDCM (by the tumor cells), little to no exosomal maspin was detectable 

by the tumor cells. The evidence suggests that maspin is secreted by two mechanisms 

that results in both a soluble protein and exosomal protein. Moreover, the presence of 

both soluble maspin and exosomal maspin in the CM may indicate dual mechanisms of 

secretion. The variation of exosomal maspin between non-malignant cells and tumor 

cells indicate that the recruitment of maspin to the endosome and, subsequently, the 

exosome may be differentially regulated in tumor progression.   

Additionally, CSC#2, a cancer cell line developed from the BEAS-2B cells using 

smoke condensate, was analyzed for exosomal maspin. The lysate, VDCM and 

exosomes were isolated from the CSC#2. The proteins were resolved on the same gel 

as the BEAS-2B fractions from figure 6 for immunoblotting on the same membrane. As 

shown in figure 8, the CSC#2 does not express very much maspin in the lysate and 

maspin is undetectable in the CM and exosome fractions. The data from this study 

suggests that during tumor progression, exosomal maspin is lost even though the tumor 

cells continue to express intracellular maspin and secreted soluble maspin, but not 

exosomal maspin.  

 

Re-expression of maspin in DU145 cells does not induce exosomal maspin  

During tumor progression, maspin expression can be lost. Using the DU145 

prostate cancer cell-derived  M7 (maspin-expressing) and Neo (mock control) cell lines, 

the Sheng laboratory has shown a tumor suppressive role for maspin at the step of 
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tumor invasion, motility, metastasis, and 

overall epithelial de-differentiation. In 

the current study, exosomes were 

isolated from the M7 cells and the Neo 

cells in order to determine whether re-

expression induces secretion of 

exosomal maspin. As expected, maspin 

was detected in the lysate of the M7 

cells, but not in the lysate of the Neo 

cells (Figure 9). Maspin was not 

detected in either the VDCM or 

exosomes of the Neo or M7. The 

detection of Tsg101 and Alix were used in combination to verify the isolation of the 

exosomes. OF note, different cell lines express different levels of the markers, which is 

why the markers were both used. Interestingly, the expression of Tsg101 and Alix are 

stronger in the M7 cells than in the Neo cells, yet maspin is not detected in the 

exosomes of the M7 cells. The level of maspin in the transfected cells may not be 

sufficient to support exosomal maspin. It is possible that cancer cells that still express 

endogenous maspin may have lost the ability to efficiently recruit maspin to the 

exosomes for detection, which further indicates that exosomal maspin is dysregulated in 

the tumor cell. 

 

  

 
 
Figure 9 – Maspin re-expression does 
not induce exosomal maspin secretion. 
Western blot analysis of the lysate, VDCM 
and exosome from the Neo cells and the  
M7 cells. 
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Maspin Secretion Occurs by Dual Mechanisms 

The two forms of secreted maspin, soluble and exosomal proteins, may be 

secreted either dependently, or independently of each other. Various drugs that have 

been shown to target specific pathways of secretion were used to help delineate the 

secretion mechanism of maspin (Table 4). BFA targets the ER-Golgi trafficking pathway 

by inhibiting retrograde transport from the Golgi to the ER.111 IONO is a calcium 

ionophore that inhibits ER-Golgi trafficking by disrupting ER calcium levels.112,113 Since 

many cellular processes are calcium dependent, ionomycin is may have non-specific 

consequences. MA is a weak base that raises the luminal pH of the acidic organelles, 

such as the endosome and lysosome.114-116  

  

The mechanism of methylamine is unclear and may affect other cellular 

processes. CQ, an antimalarial drug, is a weak base that raises the luminal pH of acidic 

organelles.114,117,118 MA and CQ were used to target endosome trafficking and 

subsequently exosome secretion. The CRL2221 cells were treated with or without BFA, 

IONO, MA or CQ for 24 h. The lysates, CM, and exosomes were collected and analyzed 

with a immunoblot (Figure 10A). Consistent with figure 5, maspin secretion into the 

VDCM was not inhibited by BFA. Under BFA treatment, maspin secretion into the 

VDCM increased. Moreover, maspin levels in the exosome also increased. In order to 

Table 4: Inhibitors of Secretion 

Drug Targeting Organelle 

Brefeldin A (BFA) ER/Golgi 

Ionomycin (IONO) ER/Golgi 

Methylamine (MA) Endosome 

Chloroquine (CQ) Endosome 
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Figure 10 – Exosomal maspin and soluble maspin are secreted independently. CRL2221 

cells were treated with or without 5 µM BFA, 0.1 µM IONO, 1 mM MA or 5 µM CQ for 24 

h. (A) Immunoblot analysis of the lysates, VDCM and exosome of the CRL2221 cells. (B) 

Zymogram of the CM of the CRL2221 cells.  (C) LDH activity assay in the CM of the 

CRL2221 cells. Cells treated with BFA and IONO showed significantly different changes in 

LDH activity. (*p = <0.001) (D) Cell viability was assessed with the WST-1 reagent. Cells 

treated with BFA showed a significant decrease in viability.  (*p = <0.001) 
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confirm the effect of drug treatment, zymography was used to analyze the CM of the 

drug-treated cell (Figure 10B). Zymography of the CM revealed  that the BFA was 

effective at inhibiting the ER-Golgi dependent secretion of MMP9. In contrast, targeting 

ER-Golgi secretory pathway with ionomycin was less effective and  did not inhibit MMP9 

secretion. Under IONO treatment, neither the levels of soluble  maspin nor exosomal 

maspin was affected. MA has been shown to inhibit exosome secretion by some but 

was not an effective inhibitor for others.115,116 Under MA treatment, maspin secretion 

was not inhibited. On the contrary, maspin secretion slightly  increased in the VDCM 

and noticeably increased in the exosomes. Under CQ  treatment, secretion of soluble 

maspin was not affected. However, secretion of exosomal maspin decreased. LDH 

activity assay was performed to monitor cell lysis under drug treatment (Figure 10C). 

Cell lysis only increased under BFA treatment. Therefore, the presence of maspin in the 

VDCM or exosomes was not due to cell lysis. Additionally, WST-1 assay was also 

performed in order to monitor cell viability under drug treatment (Figure 10D). BFA 

treatment elicited cell stress as judged from the increase in LDH activity and reduced  

cell viability. However, BFA was effective at inhibiting classical secretion as judged by 

the absence of MMP9 in the CM of BFA treated cells. IONO treatment resulted in a 

decrease in LDH activity, which may have been due to the off-target effects of the 

calcium ionophore. 

It is possible that the soluble maspin may bind to a protein at the surface of the 

exosome. It is also possible that maspin is in the lumen of the exosome. To further 

investigate the two possibilities, exosomes derived from CRL2221 cells were stripped of 

peripheral proteins at the exosome surface with various concentrations of potassium 
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Figure 11 – Maspin is not at the membrane surface of 

the exosome. Immunoblot analysis of the exosomes 

derived from CRL2221 cells after treatment with various 

concentrations of KCl. Alix and Tsg101 are markers of the 

exosome. 

 

 

chloride (KCl).  Low levels of 

KCl were used as not to 

disrupt the exosome 

membrane. The levels of 

maspin slightly decreased 

under KCl treatment (Figure 

11). However, the exosomal 

markers also decreased. 

Treatment with 25 mM KCl 

showed the biggest reduction 

in maspin, Alix and Tsg101. 

This may be due to the 

treatment conditions since a 

new batch of exosomes was 

prepared for each condition. The reduction may be due to the loss of exosomes during 

the isolation process. The data suggests that maspin is not associated with the surface 

of the exosomes but rather the lumen. This is additionally supported by the observation, 

from EM, that maspin was easily detected when the lumen of ruptured exosomes was 

exposed (Figure 3B). In contrast, maspin was not observed at the surface of the 

exosomes visualized by EM. Further confirmation of maspin within the lumen can be 

given with experiments such as a protease protection assay.  
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Chapter 3B: The biological function of exosomal maspin in paracrine 

communication in the microenvironment  

 

Maspin Knockdown in MCF10A Cells 

Previous literature on exosomes has shown that the molecular content 

associated with the exosome is functional molecules.80,83,95 The Sheng laboratory 

showed the impact on tumor expression of maspin on inhibiting stromal reactivity that 

may specifically involve endothelial cells.33 To test whether the secreted exosomal 

maspin contribute to this tumor suppressive effect, isogenic exosomes with and without 

maspin were generated through the knockdown of maspin in the MCF10A 

spontaneously immortalized breast cell line, which secretes an abundance of exosomal 

maspin. Stable transfected cell lines were generated as described in Materials and 

Methods. The level of maspin knockdown in the lysates of the clones was assessed by 

immunoblot analysis. The noncoding clones were generated as controls. MCF10A 

maspin shRNA clones 3, 7, 8, 9 and 11 showed a reduction in maspin levels in the 

lysate (Figure 12A). The levels of maspin in the noncoding clones were comparable to 

the parental cell line. Analysis of the VDCM of noncoding clone 1 and 5 revealed 

secretion of maspin in clone 1 (NC1) only, which was chosen for application in the 

functional assay (Figure 12B). In contrast, secreted maspin was not detected in maspin 

shRNA clones 3, 7, 8, and 11. Analysis of the exosomes revealed that exosomal 

maspin was detected in the noncoding clone 1 (NC1) but not noncoding clone 5 or 

maspin shRNA clones 3, 7, 8, and 11 (Figure 12C). MCF10A maspin shRNA clone 8 

(siMas8) was chosen for application in functional assays. The data demonstrate that 
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Figure 12 – Knockdown of  intracellular maspin affects maspin secretion. 
Maspin was knocked down in the MCF10A cells and the levels were determined by 
immunoblot analysis of the lysates (A),  VDCM (B), and the exosomes (C). The 
amount of exosomal maspin was determined by immunoblot analysis. β-tubulin was 
used as a loading control. Clone number is indicated above each lane. P = parental 
MCF10A cell line 
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Figure 13 – Cell viability of the NIH 3T3 cells after exosome treatment. The 
NIH 3T3 cells were treated with various concentrations of exosomes for 24 h. The 
cell viability was measured with a WST-1 assay. 

  knockdown of the maspin gene leads to loss of exosomal maspin. The data further 

emphasizes that maspin is a bona fide exosomal protein. 

In order to investigate the role of exosomal maspin in paracrine communication, 

the cell viability of the NIH 3T3 fibroblasts was analyzed (Figure 13). The concentration 

of exosomes derived from NC1 and siMas8 were optimized as described in the Material 

and Methods. NIH 3T3 mouse fibroblast cells, which do not express maspin, were 

treated with various concentrations of the exosomes. After 24 h of treatment, cell 

viability of the NIH 3T3 cells was assessed with the WST-1 assay.  Cell viability 
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Figure 14 – Exosome uptake by NIH 3T3 fibroblasts. NIH 3T3 cells were treated 
with PKH26 labeled exosomes for 24 h and visualized with fluorescence microscopy. 
The red fluorescent images were overlaid with phase contrast images of the cells.  

decreased as exosome concentration increased (Figure 13). The optimal concentration 

of exosomes chosen was at 1:100.  

 In order for molecular content to exhibit function, the exosomes must be 

received by a cell. Next, the uptake of the NC1-derived exosomes and the siMas8-

derived exosomes were verified. First, the exosomes were labeled with pKH26, a 

membrane dye, as described in the Material and Methods section. Then, the NIH 3T3 
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cells were treated with PKH26 labeled exosomes isolated from either NC1 or siMas8 at 

a 1:100 dilution. Labeling of the exosomes with PKH26 is described in the Material and  

Methods. NIH 3T3 cells were incubated with the labeled exosomes for 24 h. NIH 3T3 

cells accepted the labeled exosomes as judged by the red fluorescence (Figure 14). 

The underlying mechanism of exosome uptake is unknown. As discussed in the 

introduciton, there are multiple potential mechanisms for exosome uptake.  

  The Sheng laboratory has shown that exogenous (rMas) maspin inhibits motility 

and invasion of cancer cells.32,41,42 In order to determine the function of exosomal  

maspin, I evaluated the effect of exosomal maspin on fibroblast motility. NIH 3T3 cells 

were incubated in a 1:100 dilution of exosomes, in DKSFM, that were derived from 

either NC1-derived exosomes (NC1 exo) or siMas8-derived exosomes (siMas8 exo) for 

24 h. Then, the NIH  3T3 cells were seeded into the upper chamber of transwell plates 

and incubated for 24 h. The NIH 3T3 cells that were treated with siMas8-derived 

exosomes (maspin negative exosomes) showed a statistically significant increase in 

motility compared to the control cells and cells pre-treated with exosomes with maspin 

(Figure 15A). Interestingly, motility of NC1 exosome pre-treated cells was comparable 

to the control. Representative images of the cells that migrated through the membrane 

pores ware shown in Figure 15B. Thus, the loss of maspin seems to stimulate the 

motility of the fibroblasts. The data further suggest that the normal epithelial-derived 

exosomes may prevent maspin from directly inhibiting fibroblast motility. In order to 

determine whether the exosome prevents direct inhibition by maspin, the effect of 

soluble maspin on motility is under investigation by the Sheng laboratory. Additionally, 
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Figure 15 – Loss of exosomal maspin results in increased motility for NIH 3T3 
cells. (A) NIH 3T3 cells were pre-treated with or without exosomes derived from the 
noncoding clone or maspin knockdown clones. Motility of the NIH 3T3 cells was 
assessed after 24 h. (B) Representative images of the motility of the NIH 3T3 cells 
after 24 h. 

the Sheng laboratory is also testing a second maspin knockdown clone (siMas11) to 

verify that the loss of maspin stimulates NIH 3T3 fibroblast motility.  

Based on the evidence that the exosomes were internalized by NIH 3T3 cells 

and that maspin is a cargo of the exosome, it is possible that maspin acts inside the 

recipient cell once the exosome is internalized. In particular, exosomal maspin may 

function in an epigenetic capacity. To test the possibility, qRT-PCR measurements of 
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Figure 16 - Messenger RNA levels of various genes in the NIH 3T3 cells after 
treatment with exosomes derived from either noncoding clone or maspin 
knockdown clones. Qualitative RT-PCR was performed to measure the levels of 
mRNA of genes in the NIH 3T3 cells. Analysis of the variance was performed for 
statistical data. *p < 0.05 indicates statistical significance.  

several HDAC1 target genes (p21, uPA, Col I and vimentin), along with genes 

implicated in fibroblast reactivity (Vim and SMA). As shown in figure 16, there was a 

statistically significant  decrease in collagen 1 in cells pre-treated with NC1 exo  (maspin 

positive). This suggests that exosomal maspin may specifically suppress the wound 

healing activity of the fibroblasts at the step of collagen 1 expression. There was not a 

statistical difference in mRNA levels of Col I between NIH 3T3 cells treated with NC1 

exo and siMas8 exo. In parallel, although not statistically significant, there was a 

trending decrease in p21, an HDAC1 target gene. Thus, internalized maspin may 

indeed inhibit HDAC1. Although there was a decrease in uPA in cells treated with NC1 
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exo, the change was not statistically significant. Overall, the exosomal maspin seem to 

have a limited capacity in causing epigenetic changes. This may be due to the amount 

of maspin available via the exosomes.   
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Figure 17 - Hypothetical Model of the Extracellular Activity of Soluble and 
Exosomal Maspin. Soluble maspin acts at the cell surface and has local activity. 
The exosomal maspin, because of encapsulation, cannot act the cell surface. 
However, exosomal maspin can travel to distant locations to communicate with 
target (recipient) cells such as the stromal cells.   

Chapter 4: Discussion 

Hypothetical Model 

 This study suggests that the exosome acts as a barrier between maspin and the 

extracellular microenvironment, which gives exosomal maspin a fate that is distinct from 

the fate of soluble maspin. Different modes of secretion thereby segregate the functions 

of soluble and exosomal maspin. As described in Figure 17, secreted soluble maspin 

can interact locally with cell surface proteins, such as its molecular partner, uPA. Cell 

surface activity of soluble maspin may be immediate and short-lasting, since soluble 

maspin is exposed to the extracellular environment. In contrast, encapsulation of 
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exosomal maspin may serve as a protective barrier from the extracellular environment. 

Exosome encapsulation allows maspin to bypass cell surface activity with uPA. Unlike 

soluble maspin, the exosomal maspin may have delayed activity because the exosome 

has to reach a target cell and be internalized. 

The cell can internalize both soluble maspin and exosomal maspin. 

Internalization may be the limiting step for exosomal maspin to elicit its function inside 

the recipient cell. The actions of soluble maspin may be more immediate after secretion 

since it is not encapsulated by the exosome. Once inside of the cell, exosomal maspin 

may interact with the same target proteins as internalized soluble maspin. For example, 

rMas has been shown to inhibit breast cancer cell motility through inhibition of Rac 

signaling and promote cell adhesion through PI3K signaling.44 Therefore, the effect of 

maspin on Rac and PI3K signaling is a feasible future direction. Through the exosomes, 

maspin is involved in paracrine signaling. It is equally possible that the exosomes can 

be involved in autocrine signaling (not depicted in hypothetical model). The exosomes 

may also be taken up by neighboring cells and the cell that secreted the exosomes. 

 
 
Dual and Independent Mechanisms of Secretion of Maspin 

This study offers new insights into the secretion of maspin. Since the discovery of 

maspin, its secretion has been observed and shown to have tumor suppressive activity. 

Additionally, maspin has been reported as an exosomal protein. Maspin was first 

demonstrated to be in the exosomes of irradiated H460 lung adenocarcinoma cells.69 

The H460 lung adenocarcinoma cells express intracellular maspin but do not secrete 

exosomal maspin unless irradiated. This observation is consistent with my data, which 
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shows that tumor cells secrete little to no exosomal maspin. Secretion of exosomal 

maspin was also shown to differ between undifferentiated and differentiated 

keratinocytes.70 Maspin was detected in the exosomes of the undifferentiated 

keratinocytes and reported as a 25kDa protein, although the molecular weight of maspin 

is 42 kDa. Neither of the previous reports addressed the coexistence of both exosomal 

maspin and soluble maspin.  

This study is the first to show that exosome-secreted maspin is distinct from the 

secreted soluble maspin, since exosomal maspin can be isolated from the conditioned 

media (CM), while soluble maspin remains in the CM. The secretion of maspin as either 

a soluble or exosomal protein is not mutually exclusive, but concurrent. The 

discrimination of exosomal maspin between normal cell lines and tumor cell lines may 

indicate maspin secretion via the exosomes is a naturally occurring, regulated process 

perturbed in tumor cells. This study suggests that the routes of secretion for soluble 

maspin and exosomal maspin are independent and differ mechanistically. Furthermore, 

neither soluble maspin nor exosomal maspin depend on the ER-Golgi secretory 

pathway.  

Exosomal maspin depends on endosome trafficking for secretion. Endosomes 

are organelles formed from endocytosis at the plasma membrane.71 After endocytosis, 

the endosome undergoes maturation, in which the luminal pH becomes increasingly 

acidic as it goes from the early endosome to the late endosome. The endosomes form 

intraluminal vesicles (ILVs) to become multivesicular bodies (MVBs). When the 

endosome fuses to the plasma membrane, the ILVs are released as exosomes. During 

the formation of the ILVs, proteins, such as maspin, are recruited to the endosome 



61 
 

 

 

membrane. The recruitment of proteins may depend on transient ubiquitination of the 

protein, followed by de-ubiquitination of the protein after recruitment.77,78 Previously, our 

laboratory has shown that maspin was degraded by the proteasome, which is 

dependent on ubiquitination.68,119,120 Therefore, it is possible that maspin may be 

ubiquitinated and recruited to the endosome membrane during ILV formation. Inhibition 

of endosome trafficking with chloroquine (CQ), an anti-malarial drug that increases the 

pH of the endosome, subsequently inhibits exosome secretion and exosomal maspin 

levels. However, it is unclear at which point of the endosome trafficking process 

(endosome plasma membrane fusion, ILV formation, exosome secretion, etc.) is 

targeted by CQ to affect exosomal maspin secretion.  

This study demonstrates that inhibiting the secretion of exosomal maspin does 

not affect the secretion of soluble maspin. Currently, the mechanism of secretion of 

soluble maspin is not clear. Efforts to ascertain the mechanism revealed that drugs 

commonly used to inhibit various secretion pathways did not inhibit the secretion of 

soluble maspin. In contrast, secretion of soluble maspin increased under drug 

treatment, as well as general cellular stress. Fusion of the endosome to the plasma 

membrane may release exosomes, as well as soluble proteins. Soluble maspin is most 

likely not secreted by the endosomes since drugs targeting endosome trafficking did not 

inhibit soluble maspin, but by an alternative non-classical pathway. Non-classical 

secretion may occur by different mechanisms, which may be vesicular or non-vesicular. 

Microvesicles, such as exosomes, membrane blebs, and apoptotic bodies, represent 

vesicular methods of secretion. There are also several non-vesicular routes of non-
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classical secretion, such as direct translocation across the plasma membrane. Further 

investigation into the mechanism of secretion of soluble maspin is warranted. 

 

Exosomal Maspin and Tumor Progression  

This study is the first to demonstrate that fibroblast motility is stimulated by 

exosomes that have loss maspin. Interestingly, although maspin has been shown to 

inhibit cell motility, treatment with NC1 exo, which contain maspin, did not inhibit the 

motility of the NIH 3T3 cells. Our data raised the possibility that normal cell-derived 

exosomes may be naïve but may become tumor promoting when maspin is down 

regulated. The loss of exosomal maspin may result in early gain of function for stromal 

cells in the tumor microenvironment. Alternatively, exosomal maspin may be sufficient 

to block the activation or activity of mesenchymal cells, which is lost when maspin is 

down regulated. It was previously reported that extracellular maspin readily inhibits 

tumor cell motility and invasion in vitro.121 While further studies are underway to dissect 

the differences between soluble maspin and exosomal maspin, internalization of 

exosomal maspin may have tumor-suppressive activity.  

At the molecular level, the Sheng laboratory identified maspin as the first 

polypeptide inhibitor of HDAC1 thus far.49,50 Data from this study suggests that 

exosomal maspin may exert its biological effects without significantly altering the 

expression of many HDAC1 target genes. In order to validate our observations, a wider 

array of HDAC1 target genes needs to be tested. It was noted that the presence of 

exosomal maspin resulted in a decrease in collagen I mRNA in NIH 3T3 cells, while the 

absence of exosomal maspin resulted in an increase in NIH 3T3 cell motility. Thus, the 
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underlying mechanism for the effect of maspin on mesenchymal cells may differ from 

that on epithelial cells. The data are the first to show that the biological functions of 

exosomal maspin may be differentially regulated in the continuum of tumor progression. 

Proteins undergo aberrant trafficking in tumor cells as a response to 

transformation and the challenges of tumor microenvironment. The secretion of maspin 

may be subjected to differential regulation by tumor cells in response to epithelial 

transformation and changes within the tumor microenvironment. The data show that 

soluble maspin is secreted at a lower level in maspin-expressing tumor cell lines than 

normal cell lines. In comparison, exosomal maspin was barely detectable in tumor cell 

lines that express various levels of intracellular maspin. This is the first evidence that 

exosomes produced by normal and tumor cells have distinct features. This data is 

consistent with Yu et. al. (2006) who showed that exosomes derived from H460 lung 

adenocarcinoma cells did not express maspin when cells were grown under exponential 

growth conditions. In contrast, maspin expression was induced in the exosomes through 

irradiation of the H460 cells. While the loss of secreted soluble maspin may be coupled 

with the down-regulation of intracellular maspin, the loss of exosomal maspin may occur 

before the down-regulation of intracellular maspin. This may be due to early 

dysregulation of exosome machinery in tumorigenesis, since the molecular content of 

the normal cell-derived and tumor cell-derived exosomes differ. During biogenesis of the 

exosomes as ILVs, cytoplasmic proteins are recruited to the invaginated endosome 

membrane. Cytoplasmic maspin levels increase during tumor progression at the stage 

of pre-neoplastic lesions.29,52 Therefore, we speculate that an increase in cytoplasmic 

maspin may increase the amount of maspin recruited to the endosome. This study is 
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the first to show that exosomal maspin may also be down regulated during tumor 

progression. Further investigation is needed to determine whether biphasic expression 

of intracellular maspin affects exosomal maspin.  

Equally possible, an increase in cytoplasmic maspin may not affect the amount of 

maspin recruited to the endosome. The ESCRT proteins are responsible for the 

recruitment of proteins, as well as ILV formation, scission, and back-fusion.77,78 In line 

with the function of the ESCRT proteins, recruitment of maspin most likely depends on a 

particular set of ESCRT proteins. Loss of exosomal maspin may occur if those ESCRT 

proteins are down regulated in tumor. Further investigation is necessary to determine 

whether loss of maspin in tumor cell-derived exosomes occurs at the recruitment stage 

of ILV formation.  

The data reported here are the first evidence that the exosomes derived from 

normal cells have a distinct size distribution pattern from the exosomes derived from 

tumor cells. Dynamic light scattering revealed two distinct populations of particles 

enriched from the normal-derived exosome fraction by differential centrifugation. The 

first population is below 100 nm in diameter, with an average size consistent with 

exosome size range, which suggests the first population is the exosomes. In contrast, 

the second population was absent in the exosome fraction isolated from tumor cells. 

Therefore, the second population is a novel population of particulates secreted by the 

normal cells. Despite the presence of the second population, the zeta potential of both 

normal- and tumor-derived exosome fractions was negative. Given these observations, 

further investigation is necessary to evaluate the significance of the second population 

detected in the normal-derived exosome fraction.  
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The quality of our subcellular fractionation and exosomal purification was 

ascertained by multiple approaches. My experiments were performed under exponential 

cell growth condition, without detectable cell lysis or cell death. The tumor cell-derived 

exosomes lost maspin, which was disproportional to the overall changes of maspin 

expression. Considering the earlier report that maspin was detected in exosomes of 

H460 lung adenocarcinoma cells only when the cells were irradiated, it seems 

necessary to caution that irradiation may damage the integrity of cellular structure and 

lead to contamination of the exosomal fraction with other microvesicles and lytic cell 

debris.69  

 

Diagnostic Potential of Exosomal Maspin 

Combined with the previous literature showing that exosomes circulate in bodily 

fluids, my novel observations indicate that exosomal maspin status may be a potential 

diagnostic marker. Our study is the first to demonstrate that maspin is consistently 

expressed in exosomes produced by normal cell lines, but not in tumor-derived 

exosomes. This expression pattern of exosomal maspin is distinct from the expression 

patterns of soluble maspin and intracellular maspin. Exosomal maspin may be lost 

before intracellular maspin  is lost. The loss of exosomal maspin may pinpoint an early 

stage in tumor progression, which would advantageous for the early detection of 

aberrant cells. As a diagnostic marker, the status of maspin in the exosome could 

indicate whether or not a patient has aberrant cells present in the body. More 

specifically, the lack of maspin in the exosomes may indicate the presence of aberrant 
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cells. The presence of maspin in the exosomes may indicate a normal state of the cells 

in the body. 

 In order to establish exosomal maspin as a diagnostic tool, a major limitation 

would have to be addressed. The limitation is that bodily fluids contain a mixture of 

exosomes derived from various cellular origins. Although the exosomes can be isolated 

from the bodily fluids, the presence of many different exosomes may dilute the amount 

of exosomal maspin. The limitation can be addressed by creating diagnostic tools that 

are specific and sensitive to epithelial exosomes and exosomal maspin. Maspin is 

expressed solely in epithelial cells and, as a result, epithelial-derived exosomes. 

Therefore, an assay may be developed to isolate epithelial-derived exosomes with an 

antibody targeting an exosomal transmembrane protein of epithelial origin. Then, the 

epithelial-derived exosomes may be analyzed for exosomal maspin and compared to a 

baseline level of exosomal maspin. Since many solid tumors are of epithelial origin, the 

epithelial-derived exosomes may be a mixture of normal cell-derived exosomes and 

tumor-derived exosomes. In conjunction with isolating the epithelial-derived exosomes, 

the tumor-derived exosomes may be further isolated from the normal-derived exosomes 

with an antibody specific to a transmembrane protein tumor-derived exosomes. Then, 

the status of exosomal maspin may be determined. Of note, the exosome field is 

investigating the molecular content of tumor-derived exosomes in order to establish 

reliable, specific tumor-derived exosome markers. Further investigation is needed to 

determine whether maspin’s status in the exosome may be a beneficial diagnostic 

marker. 
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The diagnostic potential of the exosomes is of interest because the exosomes 

may provide a non-invasive method for cancer diagnosis. The feasibility of using 

exosomes as diagnostic markers is already being explored in the science industry. For 

example, Exosome Diagnostics, Inc. and Exosome Sciences, Inc. are two companies 

that are developing assays to use exosomes as diagnostic tools. These companies 

have a particular interest in exosomal miRNA for diagnostics and therapeutics. My 

research suggests that exosomal maspin may provide a basis for a novel protein-based 

diagnostic tool.  

 

Prognostic Potential of Exosomal Maspin 

Correlation of intracellular maspin expression to patient outcome differs across 

various cancer types differs. Additionally, not all cancer cells lose intracellular maspin 

expression. Of note, strong nuclear expression of maspin was shown to correlate with 

increased overall patient survival in comparison to strong cytoplasmic expression and 

loss of intracellular maspin.52,54,55 However, there are limitations in determining clinical 

outcome based on nuclear maspin expression. Our data indicates maspin positive 

aberrant cells of various origins lose exosomal maspin. In addition, my data show that 

forced re-expression of maspin in maspin negative tumor cells does not automatically 

reinstate exosomal maspin. Yu et al (2006) showed that subjecting cancer cells to 

radiation induced the presence of exosomal maspin. Our data indicate that exosomal 

maspin may have tumor suppressive activity. However, we do not know whether 

induction of exosomal maspin in tumor cells would correlate with a better clinical 

outcome. The prognostic value of exosomal maspin may rely on establishing a 
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correlation between induced exosomal maspin after therapeutic drug treatment and 

better overall survival. If induction of exosomal maspin correlates to a positive 

therapeutic drug response, then exosomal maspin would serve as a novel prognostic 

marker. Further investigation is necessary to determine the prognostic value of 

exosomal maspin after therapeutic drug treatment.  

 

Therapeutic Potential of Exosomal Maspin 

The tumor-suppressive activity of maspin makes it a protein of therapeutic 

interest. Re-expression of maspin in tumor cell lines resulted in sensitivity to drug-

induced apoptosis. In our model, we showed that re-expression of maspin was not 

sufficient to restore exosomal maspin. The exosomes represent a natural mechanism 

for delivering molecular materials. Currently, synthetic liposomes are being developed 

as drug delivery systems. Maspin may have therapeutic use as a tumor suppressor by 

packing maspin into synthetic liposomes. Combined with data that exosomal maspin 

has tumor suppressive activity, delivery of maspin via synthetic liposomes may be 

beneficial for anti-tumor response. 
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ABSTRACT 

A TUMOR-SUPPRESSIVE ROLE OF MASPIN SECRETED VIA THE EXOSOMES 

by 
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Advisor:  Shijie Sheng, Ph.D. 

Major: Cancer Biology 

Degree: Doctor of Philosophy 

 This dissertation highlights several novel findings. Maspin has been consistently 

detected in the conditioned media of maspin-expressing cells of normal and tumor 

breast, prostate and lung origin. Furthermore, extracellular maspin has been 

demonstrated to have anti-tumor effects. Interestingly, maspin has been reported as 

cargo of the exosomes, which highlights one of the secretion mechanisms of maspin. 

Maspin secretion as an exosomal molecule was verified by electron microscopy, atomic 

force microscopy, light scattering dynamic analysis and immunoblot analysis. 

The data showed that exosomes derived from the non-malignant cell lines have 

two distinct populations that do no overlap in their size distributions. Based on the size 

distribution and the electron microscopy analysis, it is likely that exosomes derived from 

the non-malignant cells are aggregated exosomes.. In contrast, tumor cell-derived 

exosomes comprised a population of broader size distribution.  

To understand how secreted maspin may contribute to tumor suppression, it is 

critical to understand how maspin is regulated at the step of protein trafficking. The data 

showed that maspin is secreted by dual mechanisms, as free and exosomal protein, 
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respectively. These two mechanisms seem to be independent. While tumor cells are 

capable of secreting maspin as a free molecule, albeit at a lower level as compared to 

that by normal epithelial cells, they do not secrete exosomal maspin.  

Loss of maspin in exosomes from derived non-malignant cells conferred a 

stimulatory effect on the motility of fibroblasts, suggesting a biological function of 

exosomal maspin in suppressing the stromal reactivity in the tumor microenvironment. 

These novel findings highlight a new role for exosomal maspin as a tumor suppressor.  
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