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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

New sources of energy, especially inexpensive renewable sources, has received a 

great deal of research emphasis in the twentieth century to obtain the cheapest source of 

energy1. According to the International Energy Agency (IEA), the world energy demand 

is expected to increase by more than 55% between 2005 and 2030.2 The total energy 

consumption in the United States of America for residential, commercial, industrial, and 

transportation in 2012 was 95 quadrillion Btu which is more than the domestic energy 

production (79 quadrillion Btu).3 About 82% of the energy was derived from fossil fuels.4 

However, only 9% of the energy was produced from renewable sources.  

Recently, many researches focus on finding sources of energy that are sustainable and 

renewable to replace the fossil-derived petroleum products. Triglycerides from plant oils 

and animal fats may be a suitable source for production of liquid biofuels and useful 

chemicals.5 Many processes for producing liquid biofuels from renewable sources 

(triglycerides) have been discovered; however, the transesterification process has been 

considered one of the most successful processes to produce liquid biofuels (biodiesel). 

Although biodiesel shows potential for partially replacing petroleum fuels, it displays 

some disadvantages that would make it an undesirable product compared to petroleum 

fuels, such as low oxidation stability and poor cold flow properties.6 Catalytic 

hydrocracking processes have been studied for converting triglycerides into biofuels 

(green diesel) that overcomes the disadvantages of biodiesel.7 Biofuels that are produced 

from hydrocracking of triglycerides are quite similar to petroleum fuels;8 therefore, no 
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modifications are required to existing infrastructures.8 During the catalytic hydrocracking 

process, the triglycerides can be converted to green diesel as a result of hydrogenation, 

hydrodecarboxylation, hydrodecarbonylation, hydrodeoxygenation, hydroisomerization, 

and hydrocracking reactions.9,10  

The hydrocracking process requires a dual function catalyst that is composed of 

metallic sites and acidic sites. The metallic sites are for hydrogenation and oxygen 

removal reactions (hydrodecarboxylation, hydrodecarbonylation, and 

hydrodeoxygenation), while acidic sites are for hydroisomerization, and hydrocracking 

activities. Supported noble metal catalysts11 and metal sulfide catalysts12,13 have been 

investigated for the hydrocracking of vegetable oils to produce green diesel. The noble 

metal catalysts are not viable for large-scale processes because of their limited 

availability, high cost, and sensitivity to contaminants (such as oxygenated compounds) 

in the feedstock.14 Although metal sulfide catalysts overcome the issues with noble metal 

catalysts, the addition of sulfur-containing compounds such as H2S is required to 

maintain the catalysts in the active form.15 Recently, supported metal carbide and nitride 

catalysts have been receiving considerable attention as catalysts for the hydrocracking of 

vegetable oils.16 The existence of carbon atoms or nitrogen atoms in the lattice of 

transition metals extends the lattice parameter, which leads to increases in the d-band 

electron density of the metals.17,18 Bimetallic carbide and nitride catalysts have shown 

higher activities and stabilities than the monometallic ones.19 It has been claimed that the 

carbide form of the NiMo/ZSM-5 catalyst produced a lower amount of CO and CO2 from 

soybean oil feedstock than the nitride form; therefore, more hydrodeoxygenation took 

place on the carbide catalyst compared to the nitride catalyst.20 A few studies evaluated 
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the effect of the support on the catalyst performance for the hydrocracking reaction. The 

support plays a significant role in the cracking and isomerization activity.21 Wang et al.22 

investigated the effect of several supports on the activity of NiMo carbide catalyst for the 

hydrocracking of soybean oil. The conversion of soybean oil reached 100% and the 

selectivity to green diesel was 97% for the NiMo carbide catalyst over Al-SBA-15 during 

7 days of reaction at 400 oC and 650 psi (4.48 MPa).  

1.2 Significance of this study 

First, the environmental concerns that are associated with using fossil-based fuels, 

such as Green House Gases (GHG) emissions, would make fossil fuels undesirable from 

the ecological and sustainability points of view. These emissions are the main reason for 

global warming and climate change. Therefore, using friendlier fuels (biofuel produced in 

this study) could help to maintain the carbon balance on the earth and reduce the GHG 

emissions. One study shows that using the jet fuel produced from camelina seeds could 

reduce the carbon emissions by 84% compared to the conventional petroleum jet fuel.23   

Second, expanding and diversifying the energy production from sources other than 

petroleum oils, especially from renewable sources, is desirable. The biofuels feedstock 

used in this study is renewable biomass (plant oil). The U.S. Strategic Petroleum Reserve 

has been used under the event of an energy emergency three times, most recently in June 

2011 when the President directed a sale of 30 million barrels of crude oil to offset 

disruptions in supply due to Middle East unrest.24 Therefore, biomass derived fuels could 

help to avoid using the Strategic Petroleum Reserve.  

Finally, there is a need to fill in the gaps in the literature by investigating inexpensive 

catalysts that have great potential for the hydrocracking of triglycerides and lowering the 
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cost of the process. Bimetallic carbide catalysts (relatively inexpensive catalysts) can 

exhibit high activity similar to the noble metal catalysts (expensive catalysts). Waste 

vegetable oils will be used as feedstocks and milder operating conditions will be applied 

in order to minimize the process cost.    

1.3 Objectives of this study 

The primary objective of this study is to develop catalysts for converting triglycerides 

and fatty acids to biofuels (particularly, green diesel) with high conversion of 

triglyceride, high selectivity to diesel, and long lifetime. There are three specific 

objectives that should be followed in order to achieve the main objective as follow:    

1. To understand the effect of Ni-W ratio and preparation method on the activity and 

selectivity of the bimetallic carbide catalysts supported on Al-SBA-15 for the 

hydrocracking of distiller dried grains with solubles (DDGS) corn oil. The Ni-W 

ratios are 1:9, 1:1, 2:1, and 9:1. The preparation methods are co-impregnation 

method and dendrimer-encapsulated nanoparticle (DENP) method.  

2. To investigate the effect of the fractional sums of the electronegativities of the 

transition metal carbide catalysts on the activity and selectivity for the 

hydrocracking of DDGS corn oil. Also, to test a hypothesis that the closer the 

fractional sum of the transition metal electronegativities is to the electronegativity 

range of the noble catalysts (2.0–2.2), the better the catalyst performance will be. 

The catalysts are nickel-based carbide catalysts combined with four different 

metals (Mo, Nb, W, and Zr) and supported on Al-SBA-15. 

3. To study the efficiency of the transition metal carbide catalysts for producing 

biofuels from the hydrothermal decarboxylation of oleic acid and soybean oil in 
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the absence of hydrogen. The effect of super-critical water and glycerol on the 

catalyst activity and selectivity will be studied.    

!
!
!
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!
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction to feedstock 

In general, biomass feedstock is the main renewable source for producing biofuels. 

There are three basic categories of biomass feedstock: lignocellulosics, amorphous 

sugars, and triglycerides as it is shown in Figure 1.4 Amorphous sugar feedstocks such as 

starches and simple sugars are an undesired one because of the arguments of food versus 

fuel debate. First generation biofuels were produced from food crops and the loss of 

crops to fuel productions can inflate the food price.25 Lignocellulose which is a composite 

material of rigid cellulose fibers, lignin, and hemicelluloses is a less desired feedstock 

since it is considered as a low-energy-density feedstock.4 Corn stover, forage grasses, 

paper mill residue, wood chips, and switchgrass are examples of lignocellulosic biomass. 

However, triglycerides, a glycerol group attached to three fatty acids as shown in Figure 

2,4 seem to be the most ideal candidate for biofuel production because of the higher 

energy density content and uncompromising of valuable food when non-edible sources 

are used. Triglycerides are commonly found in vegetable oils, animal fat, and waste oils. 

The three fatty acids in a triglyceride molecule can be all the same, or vary in their carbon 

chain length and the number of double bonds. Table 1 shows the most common structures 

of the fatty acids, and indicates that vegetable oils mainly consist of palmitic, oleic, 

linoleic, and linolenic fatty acids.26 Selecting a feedstock for the biofuel productions 

depends on financial manageability and local availability of the feedstock. For instance, 

rapeseed and sunflower oils are used in the European Union, palm oil is used in Asian 

countries, and soybean oil is used in the United States.27,28 On the other hand, using fresh 



!

!

7!

oils as feedstock will compromise food, land, and water resources. Therefore, using the 

second or third generation feedstock such as Jatropha and algal oils is highly desirable. 

                

 

 

 

 

  

 

 

 

   

!
Figure 1. Biomass feedstock classification for biofuel production.4 

!

Jatropha is a non-edible source and an easily grown crop. Jatropha is mainly grown in 

Mexico and Central America; however, tropical and subtropical areas such as India, 

Africa, and North America are also suitable for planting Jatropha. Jatropha seeds 

normally contain of 27-40% oil, which can be used for biofuel production. Algal oils are 

extracted from algae and considered to be a third generation feedstock. Algae can double 

their weight several times a day, and some species contain up to 80% oil based on dry 

weight. It is believed that algae would need only 3% of the crop land in the United States 

to supply the domestic fuels needs, while 61% of the land would be required in the case 

of using the first generation feedstock.29 Algal oils are long-chain polyunsaturated fatty 
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acids and differ from those of animal and vegetable sources. There are some modest 

attempts that use algal oils to produce biofuel and commercialize it. For example, 

AlgaeLink and KLM claim that they will be able to develop the next generation 

alternative jet fuel to be used in the Air France/KLM aircraft.30 However, there are some 

challenges against implementing this process such as infrastructure requirements, which 

makes the process very costly. The first attempt to commercialize the process of 

converting algal oils to biofuels was in 1985 and it was unsuccessful.31 Animal fats such 

as tallow, lard, and fish oils have been used as feedstock to produce biodiesel.32 Tyson 

Food Inc. produces about 300 million gallons of animal fat, which could be the main 

feedstock to produce biofuel.33 Nevertheless, using animal fats as feedstock to produce 

biofuel has some disadvantages such as high cloud point of the biofuel produced from 

animal fats. Therefore, the biofuel would not be appropriate to be used in cold weather.33 

Waste oils such as used frying oils and brown grease would be one of the most promising 

resources to be used as feedstock because of low cost.34 However, the variations in free 

fatty acid (FFA) composition, triglycerides, water content, and impurities would make the 

treatment of waste oils hard to be accomplished. Therefore, the conversion methods have 

to be adaptable for each case or pretreatment stages have to be added to the process, 

which increases the operation cost.     

 

 

 

 

 
Figure 2. Structure of a triglyceride molecule.4 
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The main reason of holding back biofuels to replace petroleum-based fuels is the 

relatively high cost of the triglycerides feedstock. Choice of the feedstock as a source of 

biofuel production is an important consideration since the 70-85% of the total production 

expense is related to the feedstock cost.6  

 

Table 1. The most common structures of the fatty acids.26 

 

 

 

 

 

 
*C10:1 n-1 means a molecule with 10 carbon atoms and 1 unsaturated bond that is located at the first 
carbon atom. 
 

*C10:1 n-1 means a molecule with 10 carbon atoms and 1 unsaturated bond that is located at the first 
carbon atom. 
 

2.2  Mechanism of hydrocracking of triglycerides 

Although the overall reaction of the hydrocracking of vegetable oils was carried out 

as early as the 1980s, the process mechanism and kinetics are still under investigations 

because of its complexity.7,8 Since most vegetable oils usually contain 80-90% of 

triglyceride, the reaction mechanism focuses on the hydrocracking of triglyceride 

molecules only. During the hydrocracking process, the richness of hydrogen in the 

reactor saturates the side chains of the triglycerides, so double bonds will be converted to 

single bonds. This is then followed by scission of C-O bonds to produce free fatty acids. 

The free fatty acids will be subjected to three main reactions: hydrodeoxygenation, 
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decarbonylation and decarboxylation in order to remove oxygen as shown in Figure 3.35 

Oxygen must be removed to obtain a liquid fuel with a high-energy content and high 

thermal stability similar to fossil fuels.  

  

 

 

 

 

 

 

 

 
Figure 3. Mechanism of hydrocracking reaction of triglyceride. 35 

 

The produced straight chain alkanes will undergo isomerization and cracking reactions as 

shown in Figure 4.35 The isomerization reaction is responsible for converting straight 

chain alkanes to branched chains to enhance the energy content and prevent engine 

knocking. The cracking reactions will convert long chain hydrocarbons to shorter chains 

in order to improve the selectivity to diesel, jet fuel, and gasoline.  

a. Hydroisomerization 
 

 

b. Hydrocracking  
 

 

Figure 4. Hydroisomerization and hydrocracking reactions of produced alkanes.35 
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Donnis et al.36 describe how the three carboxylic acids are stepwise liberated and 

hydrogenated into linear alkanes. The reaction pathways were studied both in model 

compound tests and in real feed tests with mixtures of straight-run gas oil and rapeseed 

oil. Studying the hydroprocessing of methyl laurate into n-dodecane describes the 

detailed pathway of the HDO route. It shows that the aldehyde formed is enolized before 

further hydrogenation. Another important study investigated the mechanism of the 

hydroprocessing of triglyceride, as shown in Figure 5, using a liquid phase batch reactor 

at atmospheric pressure with the presence of hydrogen over NiMo/zeolite catalyst.37 The 

study claimed that the diameter and chain length of the triglyceride molecule are (5.3-7.4 

Å) and (30-45 Å), respectively. Therefore, the triglyceride molecule was able to penetrate 

the pores of zeolite catalyst (pore diameter is about 5.6 Å). The triglyceride molecule was 

cracked first, and then the metallic sites of the catalyst saturated the double bonds in the 

nonene to form nonane.    

2.3 Hydrocracking process (catalysts & process parameters) 

Theories and fundamental phenomena established for catalytic processes in the more-

studied petroleum industry can be used as a starting point for catalysis in vegetable oils 

conversion since the catalysts and processes used are quite similar. In general, the 

catalysts that are used in the hydrocracking of vegetable oils should consist of two sites: 

metallic sites and acidic sites. The metallic sites are required for hydrogenation, 

decarboxylation, decarbonylation, and hydrodeoxygenation reactions. On the other hand, 

the acidic sites are required for isomerization and cracking reactions. Therefore, 

balancing between metal and acid is very important factor in catalyst design in order to 

modify selectivity, activity, and durability of the catalysts.38-40 



!

!

12!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Proposed mechanism of hydroprocessing of triglyceride.37 

 

A batch reactor has been used earlier to carry out the hydrocracking of soybean and 

palm oil over NiMo/γ-Al2O3 at temperature of 350-400 oC and hydrogen partial pressure 

of 10-200 bar.8 The results showed that soybean and palm oil were completely converted 

to n-alkanes, cycloalkanes, aromatics, and carboxylic acids due to decarboxylation, 

decarbonylation, and reduction reactions. The influences of the reactions, temperature, 

and pressure on the product compositions were studied and it was concluded that the 

higher hydrogen pressure used, the less aromatic compounds obtained.41 Also, a study 
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investigated alumina and mesoporous (MCM-41) catalysts for the hydrocracking of palm 

oil by using a batch reactor and showed that the yield was 43 vol.% of gasoline.42 Fuel 

obtained from rapeseed oil has been studied at various reaction conditions in the presence 

of Ni-Mo/alumina.43 A fixed bed reactor was used in this experiment in addition to a salt 

bath heating system. The reactor had dimensions of 900 mm length and 40 mm inner 

diameter. The reactor was loaded with 100 g of Ni-Mo/alumina catalyst and the flow 

rates of feedstock and hydrogen were 100 g hr-1 and 0.1 Nm3 hr-1, respectively. Two 

different temperatures, 310 and 360 oC, and two different pressures, 7 and 15 MPa, were 

investigated to obtain fuels from rapeseed oil. The conversion of the rapeseed oil reached 

100% at 360 oC while it was 99% at 310 oC. The product contains water, gaseous 

hydrocarbons and organic liquid product (OLP) with yields of 11 wt%, 6 wt% and 83 

wt%, respectively.43 The n-haptadecane and n-octadecane dominated the composition of 

OLP by almost 75 wt%. Also, no oxygenated compounds were detected at 360 oC. The 

range of boiling point of the OLP was calculated and it was found that the narrow range 

of the boiling point was due to the narrow range of the carbon atom numbers of the 

OLP.43 Most of the compositions of the OLP fall into the boiling point range of diesel 

fuel, which is about 300-310 oC. The properties of the OLP such as density, kinematic 

viscosity, and cetane index show similar values to diesel fuel; however, the OLP shows 

poor low-temperature properties such as cloud point. Although the density of the OLP is 

a little lower than the density of diesel fuel, blending the OLP with a suitable heavier 

fraction would help to overcome this issue.  

 

 



!

!

14!

Although several types of continuous reactors have been tested for the hydrocracking 

process, fixed bed reactors have been used the most due to their simplicity on controlling 

the operation conditions and placing the catalyst bed. On the other hand, it is necessary to 

consider the effect of pressure drop across the reactor and the effectiveness of heat and 

mass transfer. Diluting the bed by using quartz sand can eliminate the effect of pressure 

drop and enhance the transfer of heat and mass. Saskatchewan Research Council (SRC), 

Natural Resources Canada, and Agriculture and Agri-Food Canada studied the 

conversion of vegetable oil to diesel fuel by using conventional refinery technology. The 

results, as reported in the U.S. Patent No. 4992605, which compares the conversion of a 

wide range of vegetable oils such as canola and sunflower to diesel fuel. The diesel yield 

was about 80% of feedstock by applying medium severity conditions of temperature and 

pressure, and using conventional hydrotreating catalysts.44 The characterization of the 

product showed that the product properties resemble diesel fuel properties. In addition, 

the cetane number of the product is between 55 and 90 compared 40 for diesel fuel.44  

The U.S. Patent No. 4992605 described a process that converts different types of 

vegetable oils to liquid hydrocarbons that have the boiling range of the diesel fuel by 

using a 30 mL fixed bed reactor. Various grades of canola oil, rapeseed oils, and 

sunflower oils have been tested as feedstocks. The temperature was in the range of 350-

450 oC, the pressure was between 4.8 to 15.2 MPa, and the liquid hourly space velocity 

(LHSV) was from 0.5 to 5.0 hr-1. It has been explored by the patent that hydrotreating of 

vegetable oil could lead to a significant yield of diesel. Different experiment conditions 

were applied for each type of feedstock and the yield of the diesel (the fraction of 210-
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343 oC) was about (70-77%). The GC-MS analysis showed that the composition of the 

product is mainly composed of 15 to 18 carbon atoms.  

A conventional hydrotreating catalyst, NiMo/Al2O3, was used in a fixed bed reactor 

to study the hydrocracking of used cooking oil that was collected from restaurants.45 The 

properties of the products show a good agreement to the properties of diesel fuel; 

however, the deactivation of the catalyst was a crucial parameter that influences the 

process efficiency.  The catalyst deactivation was due to the high content of sulfur, 

nitrogen, and oxygen in the used cooking oil in comparison to a new vegetable oil.45 

2.3.1 Metal carbides and nitrides 

In the last decade, novel multi-functional catalysts have shown favorable results as 

hydrocracking catalysts comparison to conventional catalysts. Nevertheless, the cost and 

limitation of noble metals such as platinum hindered the utility of this type of catalyst for 

wide use in the hydrocracking processes. Recently, metal carbides and nitrides have been 

receiving most of the attention and some studies extensively studied the preparation, 

characterization, chemical and physical properties of this kind of catalysts.46-48 Figure 6 

illustrates the structures of Mo carbides and nitrides in comparison to MoS2. It shows that 

the structure of Mo nitrides and carbides are body-centered cubic and hexagonal close-

packed crystal structure, respectively.49 Introducing carbon or nitrogen into the Mo metal 

lattice increases the lattice parameter ɑo, which leads to an increase in the d-electron 

density.50 Therefore, carburization or nitridation of metals could act as efficient as the 

noble metal catalysts. There are two types of metals as follow  

• Interstitial carbides and nitrides (Mo, Nb, Zr, Re, W, Hf and Ta) 

• Intermediate carbides and nitrides (Ti, V, Cr, Mn, Fe, Ni and Co) 
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Figure 6. Crystal structures of Mo carbides and nitrides in comparison to MoS2.49 

The electronegativity of Mo carbides and nitrides are 0.7 and 1.2, respectively. 

According to that, the bonding is partly covalent and ionic but resembles metals due to 

the high ratio of Mo/carbon or nitrogen.51 The similarity of Mo carbides and nitrides to 

metals increases their electrical conductivity, thermal conductivity, melting point, and 

hardness. The activity of metal carbides and nitrides catalysts has been investigated 

extensively.46-48 It has been found that the surface structure and chemical composition 

determines the activity of the catalysts. Also, the preparation conditions are important 

factors in determining the activity. For instance, different categories of Mo carbides such 

as α-Mo2C, β-Mo2C, and η-Mo3C2 can be prepared by changing the preparation 

temperature that leads to variations in the density of active sites on the surface.52 

Similarly, changing the nitriding temperature can produce different sorts of Mo nitrides 

such as γ-Mo2N and β-Mo2N0.78.53 Metals, which are usually in the form of oxides, can be 

carburized by using H2/methane, H2/ethane and H2/hydrocarbon at temperature between 

773 and 1173 K.54 While metal nitrides can be produced by using either a mixture of 

NH3/He or pure NH3.53 Because of the probability of carbon to be deposited on the 

2 E. Furimsky / Applied Catalysis A: General 240 (2003) 1–28

An ideal situation, which would require minimal mod-
ifications involves the use of a novel multi-functional
catalyst, which could replace conventional catalysts in
the currently used reactors. In last decade, efforts have
been made to develop such catalysts for hydroprocess-
ing. Metal carbides and nitrides have been identified
as the potential catalysts for such applications. In this
regard, the Mo based solids have been receiving most
of the attention. In the case of Mo nitrides, the vol-
ume of information is much more extensive than that
on Mo carbides, although there is little experimental
evidence which would indicate the advantages of the
former.
It is noted that this is not a comprehensive re-

view on metal carbides and nitrides. Thus, a limited
attention will only be paid to the preparation and
characterization as well as the chemical and phys-
ical properties of these materials. These aspects of
metal carbides and nitrides have already been ex-
tensively reviewed [11–16]. Primary focus of this
review is the database on metal carbides and nitrides,
which is essential for their performance during hy-
droprocessing. This includes their ability to adsorb
and activate hydrogen and transfer it to the reactant
molecules. Potential for the commercial utilization
depends on the long term activity and stability of the
catalysts. The studies which address this issue will
be thoroughly examined. In this regard, the studies
which directly compare the metal carbide and ni-
tride based catalysts with the conventional catalysts
are of particular interest. Thus, to be commercially
attractive, advantage of the former over the widely
used Co(Ni)Mo(W)/Al2O3 catalysts has to be clearly
demonstrated.

Fig. 1. Crystallographic structure of Mo2C, Mo2N and MoS2 [17].

2. Structure and properties

Most of the information on the structure and prop-
erties is available for Mo carbides and nitrides. Fig. 1
illustrates fundamental difference between the struc-
tures of Mo nitride and carbide compared with that
of MoS2 [17]. Molybdenum carbides and nitrides
are characterized by the hexagonal close-packed and
body-centered cubic crystal structure, respectively.
The carbon and nitrogen deficiency in such crys-
tals can be supplemented by oxygen, which yields
oxycarbides and oxynitrides, respectively, as well as
oxycarbonitrides [18]. The elementary theory of these
compounds suggests that the introduction of carbon
or nitrogen into the lattice of the early transition met-
als results in an increase of the lattice parameter a0.
This leads to an increase in the d-electron density
providing that the same number of levels is retained
[19]. Then, after carburization or nitridation, the early
transition metals exhibit the noble metals-like be-
havior. Because of their small atomic radius, carbon
and nitrogen can nest in the interstices of the lattice.
Therefore, some row 2 metals (Mo, Nb and Ze) and
row 3 metals (Re, W, Hf and Ta) are called the in-
terstitial carbides and nitrides, whereas row 1 metals
(Ti, V, Cr, Mn, Fe, Ni and Co) are called the interme-
diate carbides and nitrides. Apparently, the stability
of the row 1 metal carbides and nitrides is limited.
The electronegativity of Mo and W on one hand and
that of carbon and nitrogen on the other suggests that
the bonding is partly covalent and ionic but mostly
metallic. Thus, the ∧EN values obtained by subtract-
ing the electronegativity of Mo from either C or N are
0.7 and 1.2, respectively compared with 0.8 and 1.3
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surface when using inappropriate temperature and carburization composition, the 

preparation of metal carbides is more difficult than the preparation of metal nitrides.  

As it has been mentioned before, hydrocracking catalysts have to be able to adsorb 

H2, activate the adsorbed H2 and transfer the activated H2 to the reactants. Therefore, the 

hydrogen adsorption-activation has a crucial impact on the activity of metal carbides and 

nitrides. Many studies have focused on this issue in order to obtain the optimal catalyst; 

however, an additional investigation is needed for metal carbides because most of these 

studies concentrated on metal nitrides. Many studies claimed that the hydrogen is 

strongly adsorbed on the surface, and the activity of hydrocracking catalysts is increased 

as the hydrogen adsorption increased.55,56 The existence of planes {111} on the catalyst 

surface can elevate the catalyst activity.57 For example, adding cobalt to Mo2N would 

increase the activity because of the increasing in the concentration of {111} planes.58 Ni-

Mo carbides/alumina catalyst shows higher rate of hydrodesulphurization and 

hydrogenation than some industrial catalysts such as NiMo/Al2O3.59 Several attempts 

tried to postulate a mechanism of hydrogen adsorption/activation process in order to 

modify the performance of the catalysts.60,61 

Wang et al.20 claimed that the carbide form of NiMo/ZSM-5 catalyst produced an 

amount of CO and CO2 from hydrocracking of soybean oil lower than that of the nitride 

form catalyst. Also, complete conversion of soybean oil and 50 wt% yield of 

hydrocarbons were obtained over the carbide form of NiMo/ZSM-5 catalyst. Most 

recently, the effect of several supports on the activity of NiMo carbide catalyst for the 

hydrotreating of soybean oil has been investigated.22 The conversion of soybean oil 
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reached 100% and the selectivity to green diesel was 97% for the NiMo carbide catalyst 

over Al-SBA-15 during 6 days of reaction at 400 oC and 650 psi.       

2.3.2 NExBTL renewable synthetic diesel 

NExBTL, Next generation Biomass To Liquid diesel technology, was commercially 

established by Neste oil in 2005 to produce synthetic diesel from vegetable oils and 

animal fats as shown in Figure 7.62 The technology produces a superior green diesel 

because of its favorable properties such as 

• Cetane value close to 100  

• Cloud point lower than (-30 oC) 

• Free of aromatics and sulfur 

• Compatible with the existing infrastructure  

• Good storage stability 

• Can be operated by existing vehicles  

 

 

 

 

 

 

 

 
 
 
 

Figure 7. Schematic diagram of NExBTL process.62 
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NExBTL can provide 170,000 metric tons per year, which is sufficient for supplying 

100,000 vehicles. The diesel product from NExBTL has been compared to European 

sulfur-free EN-590 diesel. It shows significant improvements such as reduction in 

greenhouse emissions, NOx, particulate matter, and carbon monoxide by over than 60%, 

15%, 25%, and 5%, respectively. However, the high moisture content of biomass 

feedstock can be problematic for processing operations, which requires pretreatment and 

separation steps.   

2.4 Catalytic hydrothermal decarboxylation of fatty acids 

The cost of producing green diesel from hydrocracking of triglycerides is largely 

determined by the cost of the feedstock. Low-cost feedstocks such as waste cooking oils 

and waste greases are difficult to process in a conventional fuel production facility 

because of the large amount of free-fatty acids and water impurities. Furthermore, the 

hydrocracking process requires a large amount of hydrogen that makes the process not 

likely to be competitive with the petroleum-based diesel process. The large hydrogen 

demand negatively impacts the process sustainability since hydrogen is primarily derived 

from fossil fuels.63,64 A way to reduce the cost of the green diesel production is to use 

lower cost feedstocks and eliminate the additional hydrogen. Catalytic hydrothermal 

decarboxylation of fatty acids can provide the potential solution to minimize the 

economic gap between the production of green diesel and the petroleum-based diesel. 

The carboxylic acids, fatty acids, can be decarboxylated by suspending the acid in an 

immiscible and high boiling-point liquid as shown in (Rxn 1).65      

 

                                                                                                                                   (Rxn 1)                                                 
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A sequence of elementary reactions for the decarboxylation of fatty acid on Pd/C 

catalyst has been proposed by Immer as shown in Figure 8.66 

 

 

 

 

 
 
 

Figure 8. Elementary reactions of decarboxylation of fatty acid, where * is a catalytic 
site.66 

 

There is a modest body of literature on catalytic hydrothermal decarboxylation.67-70 

Water at subcritical condition (200-374 oC and 5-20 MPa) becomes a unique reaction 

medium. Under these conditions, the dielectric constant of water decreases, which makes 

water similar to non-polar solvents.70 Therefore, the solubility of lipids in water 

increases, since most of the lipids are non-polar materials. Watanabe et al.71 investigated 

the effect of alkali hydroxide (NaOH and KOH) and metal oxides (CeO2, Y2O3, and 

ZrO2) on the decarboxylation of steric acid in supercritical water at 400 oC for 30 min. 

Both of alkali hydroxide and metal oxides enhanced the decarboxylation reaction with the 

main product of C17 alkane and C16 alkene, respectively. However, the selectivity to 

deoxygenated products was low (<15%). The catalytic effect of Pd/C and Pt/C on the 

hydrothermal decarboxylation of palmitic acid in sub- and super-critical water has been 

studied.72 5% Pt/C is a more active catalyst than 5% Pd/C for the hydrothermal 

decarboxylation of palmitic acid, with the pentadecane selectivity greater than 90%. Only 
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a partial hydrogenation reaction was observed when oleic acid was used, with stearic acid 

being the primary product.73 A complete conversion of unsaturated fatty acid to fuel 

hydrocarbons is not achieved, suggesting that hydrogenation step is necessary prior to 

decarboxylation step. Fu et al.74 reported that activated carbons (as an inexpensive 

catalytic material) can convert saturated and unsaturated fatty acids to fuel-range 

hydrocarbons in sub- and super-critical water. It has been claimed that either water 

molecules (reactive at sub- and super-critical conditions) or fatty acid molecules served 

as the hydrogen donor.   

Triglycerides, a type of neutral lipids, can be rapidly hydrolyzed in hydrothermal 

media to produce saturated and unsaturated free fatty acids, as well as glycerol.75 Some 

studies examined hydrothermal catalytic reforming of glycerol, commonly referred to as 

aqueous phase reforming (APR), to generate hydrogen.76-81 Utilizing glycerol APR for in 

situ hydrogen production can promote the hydrogenation of unsaturated fatty acids. The 

addition of Re to Pt/C catalyst can motivate the glycerol APR due to the reduction of the 

affinity for CO,79,82 A complete deoxygenation of oleic acid was achieved over Pt-Re/C 

catalyst when a 1:3 glycerol-to-oleic acid molar ratio was applied within 2 h reaction. 

The catalyst was experienced moderate sintering, suggesting additional work is needed to 

investigate its hydrothermal stability with time on stream. Figure 9 proposed an 

integrated catalytic hydrothermal reaction for the conversion of triglycerides to 

hydrocarbon fuels with in situ hydrogen production from glycerol.75 A continuous 

hydrogen supply can be obtained by the APR of glycerol released from triglyceride 

hydrolysis. 
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Figure 9. Proposed reaction scheme for catalytic hydrothermal reaction of the triglyceride 
molecule into hydrocarbons with in situ hydrogen production.75 
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CHAPTER 3 

Effect of Metal Ratio and Preparation Method on Nickel−Tungsten Carbide 
Catalyst for Hydrocracking of Distillers Dried Grains with Solubles Corn Oil* 

3.1 Introduction  

Economic, ecological, and environmental issues associated with the energy derived 

from fossil sources has spurred research into developing alternative sources of energy 

that are sustainable and renewable.83,84 Triglycerides from vegetable oils may be a 

suitable sources for liquid biofuel production (green diesel) via catalytic hydrocracking 

process. Because of the need to avoid a high-cost process and food competition, low-

quality vegetable oils such as distillers dried grains with solubles (DDGS) corn oil could 

be an appropriate alternative to using fresh vegetable oils as feedstock. Biofuels that are 

produced from hydrocracking of renewable oils are quite similar to petroleum fuels; 

therefore, no modifications are required to existing infrastructures.8 

During catalytic hydrocracking of vegetable oils, the triglycerides can be subjected to 

several reactions (Figure 10). Several types of catalysts, such as supported noble metal 

catalysts and sulfided bimetallic catalysts, have been investigated for the hydrocracking 

of vegetable oils to produce biofuels. Incorporated metal properties along with the 

catalyst support properties play a significant role for the deoxygenation and cracking 

activities of the catalysts. The noble metal catalysts are not viable economically because 

of the limited availability, high cost, and sensitivity to contaminants (such as oxygenated 

compounds) in the feedstock.14 Although platinum supported on zeolite (H-ZSM-5 and 

HY) showed a great resistance to catalyst de- activation, the diesel yield was low (20 and 

40 wt %, respectively).85 Moreover, the support with higher acidity (H-ZSM-5) led to 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*!This chapter has been published in Industrial & Engineering Chemistry Research, 53 (2014) 6923-6933.!
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lower diesel yield because of high cracking activity that favors gasoline production. On 

the other hand, sulfided bimetallic catalysts need to be maintained in the sulfided form in 

order to be active; therefore, a sulfurization cofeed needs to be added to the feedstock.20 

Koivusalmi et al.86 reported that sulfided MoNi catalyst supported on γ-Al2O3 showed a 

high diesel yield ranging between 70 and 80 wt %. However, the low acidity of γ-Al2O3 

did not contribute to the production of isoparaffins, which leads to a product with poor 

cold flow properties. In addition, the catalyst experienced a severe deactivation due to 

coke formation, which leads to lowering the diesel yield and building up pressure in the 

reactor.87 
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Figure 10. Hydrotreating reactions of triglycerides. 

Recently, supported metal carbide and nitride catalysts have been receiving 
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considerable attention as catalysts for the hydrocracking of vegetable oils.16 The 

existence of carbon atoms or nitrogen atoms in the lattice of transition metals extends the 

lattice parameter, which leads to increases in the d-band electron density of the 

metals.17,18 Molybdenum carbide catalysts supported on carbon nanotubes (20% 

Mo2C/CNTs) showed a good resistance to leaching; however, only 86% yield of paraffin 

and 46% selectivity of branched paraffin were obtained from rapeseed oil feedstock.88 

Furthermore, the bimetallic carbides and nitrides catalysts have shown activity and 

stability higher than that of the monometallic ones.19 However, it has been claimed that 

the carbide form of NiMo/ZSM-5 catalyst produced an amount of CO and CO2 from 

soybean oil feedstock lower than that of the nitride form catalyst.20 Therefore, more 

hydrodeoxygenation took place on the carbide catalyst compared to the nitride catalyst. It 

has been reported that promoting the catalyst with nickel as a second metal increases the 

ratio of I{111}/I{200}, which leads to an increase in the hydrogenation activity of 

pyridine.18 A few studies evaluated the effect of the support on the catalyst performance 

for the hydrocracking reaction. The support plays a significant role in the cracking and 

isomerization activity.21 Most recently, Wang et al.22 investigated the effect of several 

supports on the activity of NiMo carbide catalyst for the hydrotreating of soybean oil. 

The conversion of soybean oil reached 100% and the selectivity to green diesel was 97% 

for the NiMo carbide catalyst over Al-SBA- 15 during 7 days of reaction at 400 °C and 

650 psi (4.48 MPa). 

In the present work, a new NiWC/Al-SBA-15 catalyst was developed for the 

hydrocracking of DDGS corn oil. The effect of the Ni−W ratio and the catalyst 

preparation method on activity, selectivity, and durability of the catalyst for green diesel 



!

!

26!

production was investigated under relatively mild reaction conditions. The metal 

dispersion on the support and the alloy formation were studied to elucidate their effects 

on the catalyst performance and provide a better understanding of the hydrocracking 

process. The experiments were conducted in a plug flow reactor. 

3.2 Experimental section 

3.2.1 Catalyst Preparation (NiWC/Al-SBA-15) by Impregnation Method 

A neutral support, SBA-15 with a 9 nm pore diameter and Brunauer−Emmett−Teller 

(BET) surface area of 600 m2 g-1, was purchased from ACS (Advanced Chemicals 

Supplier) and was modified by aluminum isoprop- oxide (Sigma-Aldrich) to adjust the 

acidity of the support following the synthesis procedure of Wu et al.89 SBA-15 (20 g) was 

dissolved in 150 mL of hexane, and then 0.067 g of aluminum isopropoxide was added 

with stirring to the aqueous solution for 24 h. The solution was filtered, dried, and 

calcined at 550 °C for 4 h. Appropriate amounts of N2NiO6·6H2O and H42N10O42W12· 

H2O (Sigma-Aldrich) solution were used to provide Ni and W, respectively. Four 

different ratios of Ni−W were prepared (Table 2). For the impregnation, the salts were 

dissolved in sufficient distilled water equal to the total pore volume of the Al-SBA-15 

and immediately added to 20 g of the Al-SBA-15.20 This solution was then gently 

agitated to impregnate the entire pore volume of the catalyst with the metals. The 

resulting solid was dried in a programmable high-temperature oven at 120 °C for 24 h 

and then calcined at 450 °C for 4 h. 

Carburization was conducted using temperature-programmed reduction (TPR), 

according to the method of Claridge et al.90 Each metal oxide precursor was placed in a 

quartz tube, and a flow of 30 cm3 min-1 of a mixture of (20% CH4/80% H2) was used at a 
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heating rate of 10 K min-1 to 250 °C and then at 2.0 K min-1 to 730 °C. The temperature 

was maintained at 730 °C, the optimal temperature for carbide formation, for 30 min to 

complete the reaction. After being cooled, the catalyst was passivated by using a mixture 

of (1% O2/99% Ar) for 1 h to eliminate the pyrophoric properties19 and protect the bulk 

of the catalyst against deep oxidation.91 

Table 2. Reaction quantities used for the synthesis of NiWC/Al-SBA-15 using 
impregnation and DENP methods. 

Ni/W Ratio N2NiO6.6H2O 
(g) 

H42N10O42W12.H2O 
(g) 

weight of G4 
PAMAM (g) 

volume of 
NaBH4 (mL) 

1:9 0.5 1.25 0.362 81.6 

1:1 2.46 0.69 0.2 45 

2:1 3.32 0.46 0.133 30 

9:1 4.5 0.139 0.04 9.0 
 

3.2.2 Catalyst Preparation (NiWC/Al-SBA-15) by Dendrimer-Encapsulated 

Nanoparticles Method 

The protocol for preparing the catalysts by the DENP method was adapted and 

modified from a previous study.92 An amine-terminated fourth generation 

poly(amidoamine) dendrimer (PAMAM G4.0-NH2 10 wt % in methanol) (Sigma-

Aldrich) was used as a template to prepare DENP of W nanoparticles. The W 

nanoparticles were synthesized by complexing W ions to the interior amine groups of the 

dendrimer followed by chemical reduction of the ions using sodium borohydride (NaBH4 

12 wt % in 14 M NaOH) (Sigma-Aldrich) to obtain encapsulated zerovalent W particles 

(Figure 11).93 According to a previous study,94 the optimal molar ratio of W to dendrimer 
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for G4, G5, and G6 are 16, 32, and 64, respectively. These ratios determine the maximum 

capacity of the dendrimers to coordinate with W ions to the tertiary amine groups of the 

dendrimers. Table 2 shows the weights of the G4 dendrimer. An aqueous dendrimer 

solution with a concentration of 10 µM was prepared, then the appropriate weight of W 

salt was added into the aqueous solution to achieve the desired Ni−W ratio. The solution 

was stirred for 20 min to ensure that W ions were anchored with the tertiary amine groups 

of the dendrimer. The W ions were reduced by using excess NaBH4 that is added 

dropwise to produce encapsulated zerovalent W particles (Table 2). Surface 

chemisorption is accomplished through the strong interaction of the Al-SBA-15 surface 

with pendant (−NH2 ) groups on the peripheral surface of PAMAM.95 Consequently, the 

use of dendrimers provides the advantage of decreasing the particle size and enhancing 

the particle dispersion with minimal postagglomeration. The Ni supported by Al-SBA- 15 

was prepared by following the impregnation method as described above using the 

appropriate weights of Ni salt added to the aqueous solution. The nanoparticles supported 

by Al-SBA-15 were collected by using a centrifuge, dried at 100 °C for 2 days, and 

calcined at 500 °C for 3 h. Finally, the carburization and passivation steps were 

conducted as described above. 

 

 

!
!
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Figure 11. Synthesis of dendrimer-encapsulated nanoparticles. 
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3.2.3 Catalyst characterization 

BET surface area and Barrett−Joyner−Halenda (BJH) pore size and pore volume were 

determined using a Micromeritics model ASAP 2010 surface area analyzer with 99.9% 

purity nitrogen gas, and the results were collected on a Tristar 3020 instrument. The 

degassing conditions were at 400 °C with a heating ramp of 10 °C min-1 for 2 h prior to 

analysis. X-ray diffraction (XRD) patterns were collected on SmartLab Guidance and 

MDI Jade 8 instrument using a Rigaku RU2000 rotating anode power diffractometer 

(Rigaku Americas Corporation, TX) at a scan rate of 4° min-1. Scanning electron 

microscopy (SEM, JSM-6510LV) and X-ray energy-dispersive spectrometry (EDS) were 

used for elemental spectra and mapping. Transmission electron microscopy (TEM) 

images were obtained with a JEM 2010 HR TEM instrument, which is equipped with a 

digital camera system enabling the capture of both high-resolution images and electron 

diffraction patterns. Inductively coupled plasma (ICP) spectrometry (Optima TM 2100 

DV ICP-OES system, PerkinElmer) was used to investigate the catalyst leaching. 

3.2.4 Experimental procedure 

The hydrocracking reaction of DDGS corn oil was performed in a system (BTRS-Jr, 

Autoclave Engineers, PA) that consists of a fixed bed reactor with an internal diameter of 

1.31 cm and a length of 61 cm, a heater, a pressure regulator, and a condenser (Figure 

12). The experimental conditions were similar to those from a previous study,20 in which 

biofuels were produced via hydrocracking of soybean oil over transition-metal carbides 

and nitrides supported on ZSM-5. A 2 g sample of the catalyst prepared by the 

impregnation method (20−80 nm particle size) or the catalyst prepared by the DENP 

method (5−20 nm particle size) was mixed with 4.5 g of quartz beads and loaded in the 
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reactor. The catalyst was reduced by using a hydrogen flow of 30 mL min-1 at 450 °C for 

3 h. Quartz beads were used to dilute the catalyst bed to prevent plugging and enhance 

the heat and mass transfer. The reaction was carried out at 400 °C and 650 psi (4.48 

MPa). The hydrogen flow was maintained constant at 30 mL min-1, and the DDGS corn 

oil was fed at liquid hourly space velocity (LHSV) of 1 h-1. The outlet liquid phase was 

separated from the gas phase via a condenser. The liquid samples were collected and 

consisted of two phases: organic liquid product (OLP) and aqueous phase. The OLP 

samples were analyzed qualitatively and quantitatively using gas chromatography−flame 

ionization detection (GC-FID). The green diesel fraction was identified as (C12−C22) 

using GC standards. Fourier transform infrared (FTIR) and gas chromatography−mass 

spectrometry (GC-MS) were employed to qualitatively determine the OLP distribution to 

identify the unknown compounds. 
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Figure 12. Reactor system set up. 
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3.3 Results and discussion 

3.3.1 Catalyst characterization 

Figure 13 presents the XRD patterns of the modified support (Al-SBA-15) and four 

different catalysts prepared by the impregnation method. The XRD pattern of the support 

has no distinct peak, indicating that the support is amorphous. Also, the broad peak 

(between 2θ of 15 and 30°) suggests that the support is mesoporous. The XRD patterns of 

the catalysts show that there are three main peaks at 2θ = 44.2°, 51.9°, and 76.1°, 

corresponding to Ni particles because Ni metal can be reduced easily.96 The intensities of 

the peaks increase as Ni content increases. The peak at 2θ of 48.1° corresponds to Ni−W 

alloys (Ni4W) with a structure of (211). This peak intensity increases with increasing Ni 

content for the all catalyst ratios; interestingly, the peak is not observable for the Ni−W 

ratio of 9:1, indicating that there is little or no alloy formed. The tungsten carbide phase 

was found in every catalyst except for that with a Ni−W ratio of 9:1, which suggested 

that the W carbide phase was very well-dispersed on the support. 

 

 

 

 

 

 

Figure 13. XRD patterns of the support and catalysts prepared by impregnation method: 
(a) Al-SBA-15, (b) Ni-W=1:9, (c) Ni-W=1:1, (d) Ni-W=2:1, and (e) Ni-W=9:1. 
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Figure 14 shows the N2 sorption isotherm of the catalysts prepared by the 

impregnation method. H1 hysteresis by the IUPAC classification is observed, which is 

associated with the presence of a mesoporous matrix (SBA-15). The surface area, pore 

size, and pore volume are summarized in Table 3. The surface area and pore size of the 

catalysts decreased as compared with those of the Al-SBA-15 (surface area of 600 m2 g-1 

and pore size of 9 nm), which could be caused by structural loss and/or pore blockage.97 

No significant differences were seen among the catalysts with different loadings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. N2 sorption isotherms of NiWC/Al-SBA-15 prepared by the impregnation 
method: (a) Ni-W = 1:1, (b) Ni-W = 1:9, (c) Ni-W = 2:1, and (d) Ni-W = 9:1. 
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Table 3. Physical properties of NiWC/Al-SBA-15 for different Ni-W ratios. 

Ni-W Ratio SBET (m2 g-1) pore size (nm) pore volume (cm3 g-1) 

1:9 376 6.91 0.74 

1:1 361 7.30 0.69 

2:1 342 7.32 0.66 

9:1 340 7.13 0.67 

!
!

SEM and EDS were used to characterize the catalysts that were prepared by the 

impregnation method to determine Ni and W distributions on the support (Al-SBA-15). 

Figure 15 shows the distribution of Ni particles on the support which are well- dispersed, 

with no particle agglomeration observed at any area. On the other hand, W particles had 

poor distribution, especially for the catalysts with high W content (Figure 16). It is likely 

that the surface energy of the W particles, which is higher than that of Ni particles, leads 

to W particle aggregation.98,99  

 

 

 

 

 

 

 

 

 

Figure 15. Distribution of Ni particles in the catalysts prepared by impregnation method: 
(a) Ni-W=1:9, (b) Ni-W=1:1, (c) Ni-W=2:1, and (d) Ni-W=9:1. 
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Figure 17 shows the XRD patterns of the catalysts prepared by the DENP method for 

three different ratios of Ni−W (1:9, 1:1, and 2:1). The figure indicates that the three peaks 

that were found at 2θ of 44.2°, 51.9°, and 76.1° correspond to Ni particles. The peaks for 

tungsten carbides did not appear, which indicates that the phase either did not exist or the 

carbide phase was very well-dispersed on the support; therefore, SEM and EDS were 

used to study the existence of WC phase. In addition, the peak of Ni−W alloy was not 

observed. 

 

 

!
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Figure 16. Distribution of W particles in the catalysts prepared by impregnation method: 

(a) Ni-W=1:9, (b) Ni-W=1:1, (c) Ni-W=2:1, and (d) Ni-W=9:1. 

!
SEM and EDS (Figure 18) confirmed that the W particles are present in the catalysts 

prepared by the DENP method and the W particles are very well dispersed on the 

support. Also, the particle size of the catalysts prepared by the DENP method are in the 

range of 5−20 nm (Figure 19a), which is smaller than the particle size of the catalysts 

prepared by the impregnation method (Figure 19b). Thus, the DENP method produces a 

smaller particle size. 
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Figure 17. XRD patterns of the catalysts prepared by DENP method: (a) Ni-W=9:1, (b) 
Ni-W=2:1, and (c) Ni-W=1:1. 
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Figure 18. Distribution of W particles in the catalysts prepared by DENP method: (a) Ni-

W=1:9, (b) Ni-W=1:1, and (c) Ni-W=2:1. 
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Figure 19. TEM image of NiWC/Al-SBA-15 prepared by: (a) the DENP method and (b) 

the impregnation method. 

!
3.3.2 Catalyst performance evaluation 

The performance of the prepared catalysts was evaluated for hydrocracking of DDGS 

corn oil at a reaction temperature of 400 °C, pressure of 650 psi (4.48 MPa), H2 flow rate 

of 30 mL min-1, and DDGS corn oil LHSV of 1 h-1. The OLPs that were obtained from 

the catalysts prepared by the impregnation method were analyzed by using GC-FID to 

determine the conversion of DDGS corn oil and the selectivity of diesel (Table 4). The 

conversion of corn oil for the first day was high for every Ni−W ratio except for the Ni− 

W ratio of 1:9. Also, the catalysts with Ni−W ratios of 1:1 and 2:1 deactivated very fast, 

which can be attributed to the deposition of coke.100 However, the catalyst with Ni−W 

ratio of 9:1 showed the best conversion of corn oil (100% for the first 2 days) and showed 

a significant resistance against deactivation. Table 4 indicates that the selectivity of diesel 

was low for every ratio except for the Ni−W ratio of 9:1 (almost 100% for the first 2 
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days). 

Table 4. Conversion and liquid product selectivity of hydrocracking of DDGS corn oil 
over NiWC/Al-SBA-15 catalysts prepared by the impregnation method. 

Ni-W ratio 
Conversion (%) Selectivity of diesel (%) 

First day Second day First day Second day 

1:9 29.6 31.2 47.7 34.1 

1:1 99.8 23.4 83.7 73.5 

2:1 95.1 17.5 62.9 55.4 

9:1 100 100 100 98.5 

 

The stability of the catalyst was studied by comparing the XRD pattern of the fresh 

catalyst versus that of the used catalyst (Figure 20). The catalysts with Ni−W ratios of 1:1 

and 2:1 experienced changes in their structures after 2 days of reaction. There is a peak 

shift in each pattern of Ni−W ratios of 1:1 and 2:1 at 2θ of 43.8° and 31.4°, respectively. 

On the other hand, the most stable catalyst was the catalyst with Ni−W ratio of 9:1, with 

the pattern of new and used catalyst remaining unchanged. Characterization results show 

the impregnation catalyst with Ni−W of 9:1 has the highest dispersion of W particles and 

no Ni−W alloy formed. Thus, having well-dispersed W particles and minimizing Ni−W 

alloys could lead to higher conversion of DDGS corn oil, higher selectivity of diesel, and 

greater stability. Although the acid properties and hydrocracking activity of the catalysts 

are enhanced by increasing the load of the active component (W), the promoter (Ni) is 

important for enhancing metal dispersion and catalyst selectivity.101 The observation that 

higher particle dispersion leads to higher catalyst activity is in a good agreement with 

results obtained by Halachev et al.102 Upon alloying, the lattice constant of W adopts the 
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lattice constant of Ni, resulting in an increase in W−W bond length; therefore, the center 

of the W d-band shifts away from the Fermi level, which weakens the interaction 

between the reactants and the surface of W atoms.103-105  

 

 

 

 

 

 

 

 

 

 

 

Figure 20. XRD patterns of new and used catalysts prepared by the impregnation 
method: (a) Ni-W=1:9, (b) Ni-W=1:1, (c) Ni-W=2:1, and (d) Ni-W=9:1. 

Dramatic effects on the catalytic activity have been observed as a result of the 

modification of the catalysts prepared by the DENP method in metal dispersion and 

minimizing alloy formation. A very high conversion of corn oil (almost 100%) was 

observed for every catalyst prepared by the DENP method (Figure 21). The catalysts 

prepared by the DENP method showed activity higher than that of the catalysts that were 

prepared by the impregnation method, which can be attributed to the absence of Ni−W 

alloy. Even though the catalyst characterization showed high metal dispersion and no 

alloy formation, these catalysts exhibited different diesel selectivity (Figure 21). The 
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catalyst with a Ni−W ratio of 2:1 showed the highest selectivity to diesel in comparison 

to that of other Ni−W ratios. The selectivity of diesel was high (100%) for the first 2 

days, then decreased. The catalyst with Ni−W ratio of 1:1 was steadier than the others; 

however, the selectivity of diesel was less than 80%. The differences in selectivity could 

be attributed to the changing Ni−W ratio. Changing the metal ratio results in varying the 

strength of Lewis sites and the number of Brønsted sites, which significantly influences 

the catalytic activity, coke formation, and thermal stability.101,106 Also, Figure 21 

indicates that the selectivity of diesel is proportional to the Ni content in the catalyst 

because nickel has the ability to adsorb and activate hydrogen.107 Although dendrimer-

based catalysts are relatively more expensive than catalysts prepared by the impregnation 

method and some other commercial catalysts, they can still be used as model systems to 

investigate structure−function relationships.95 It may be possible to recover and recycle 

the dendrimers, perhaps making it applicable for some industrial applications.93 

Regardless, the cost of the preparation methods was not a focus of this study. 

The FTIR spectra of the OLP was obtained for NiWC/Al- SBA-15 prepared by the 

DENP method with Ni−W ratio of 1:9 (Figure 22a), Ni−W ratio of 1:1 (Figure 22b), and 

Ni−W ratio of 2:1 (Figure 22c). All showed a similar trend, which indicates that the 

conversion of triglycerides was 100% for all catalysts prepared by the DENP method. 

They show that the peak at 722.34 cm-1, which corresponds to C=C, for the products was 

smaller than the one for the corn oil. Therefore, most of the double bonds were saturated 

to form single bonds. Also, it could be noticed from the FTIR spectra that most of the 

triglycerides in corn oil were converted because the peak at 1743.89 cm-1 was 

diminished. However, the increase in the peak at 1712.89 cm-1 indicates that a larger 
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amount of esters was produced along with a longer reaction time. This result is in 

agreement with Albuquerque et al.108 This fact indicates that the deoxygenating activity 

of the catalysts decreased as the time increased.109 On the other hand, the FTIR spectra of 

day 2 in Figure 22c showed no ester group absorption, which is consistent with the result 

from GC-FID that the diesel selectivity was 100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Conversion of DDGS corn oil and the diesel selectivity over NiWC/Al-
SBA-15 prepared by the DENP method. 

Figure 23 shows the GC-MS qualitative analysis of the products obtained from the 

catalyst prepared by the DENP method with Ni−W ratio of 1:9, 1:1, and 2:1. The spectra 

in Figure 23c corresponds to a Ni−W ratio of 2:1 and confirmed that the OLP was in the 

diesel hydrocarbon range for the first two products, which led to 100% selectivity of 
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diesel. However, other compounds were produced along with a longer reaction time, 

indicating a decrease in diesel selectivity. Figure 23a,b shows that not only alkanes but 

also other compounds were observed for every sample. Thus, it is clear that the diesel 

selectivity of the catalyst with Ni−W ratio of 1:9 or 1:1 was lower than that of the catalyst 

with Ni−W ratio of 2:1. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. FTIR spectra of the products over NiWC/Al-SBA-15 prepared by the DENP 
method with Ni-W ratio of (a) 1:9, (b) 1:1, and (c) 2:1. 
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Figure 23. GC-MS analysis of the products over NiWC/Al-SBA-15 prepared by the 
DENP method with Ni-W ratio of (a) 1:9, (b) 1:1, and (c) 2:1. 

 
 

In addition, the peaks that are shown in Figure 23 were identified in order to propose 

a possible mechanism of how these compounds were formed. Most of the other 

compounds produced are alcohols or esters as a result of high temperature, high pressure, 

and existence of water.110 One of the possible mechanisms of forming alcohols consists 



!

!

43!

of two reactions: cracking and hydration.110 The long saturated hydrocarbon chains are 

cracked in the presence of catalyst and high temperature to form saturated and 

unsaturated hydrocarbon chains. Then, the unsaturated hydrocarbons are hydrated in the 

presence of water to produce alcohols. A free radical mechanism is another mechanism 

that could be a responsible for converting hydrocarbons to alcohols.111,112 In that 

mechanism, the alkane produces a radical at the surface of metal active sites which then 

reacts with the dissolved oxygen to make a peroxo radical species that leads to alcohol.113 

Inductively coupled plasma spectrometry was used to determine the Ni and Si 

concentration in the OLP (Table 5). The concentration of Ni was less than 1.0 ppm in 

every sample, which could be deemed negligible. Although the concentration of Si in the 

second day was very small, the concentration of Si increased over time. This suggests 

that Si may have leached out of the catalyst, leading to a collapse of the Al-SBA-15 

structure, a reduction in pore diameter, and resultant drop in diesel selectivity.114 

Table 5. ICP results for the liquid products obtained from NiWC/Al-SBA-15 catalysts 
prepared by DENP method. 

NiWC/Al-SBA-15 (Ni/W=2:1) NiWC/Al-SBA-15 (Ni/W=1:1) 

Product 
(OLP) 

Concentration 
of Ni (ppm) 

Concentration 
of Si (ppm) 

Product 
(OLP) 

Concentration 
of Ni (ppm) 

Concentration 
of Si (ppm) 

Day 2 0.836 1.11 Day 2 0.59 2.479 

Day 6 0.611 4.25 Day 4 0.712 16.31 

Day 10 0.583 12.62 Day 6 0.853 10.55 

Day 14 0.272 13.03 Day 8 0.435 12.182 

 

The NiWC/Al-SBA-15 catalyst with a Ni−W ratio of 2:1 prepared by the DENP 

method maintained a high hydrocracking conversion of DDGS corn oil up to 16 days on 
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stream. However, Gong et al.115 reported that NiMoP/Al2O3 catalyst started deactivation 

after a reaction time of 120 h for the hydrocracking of jatropha oil at LHSV = 2 h-1, 3 

MPa H2, and 350 °C. Lower diesel selectivities were obtained from NiMoC catalyst over 

different supports for the hydrocracking of soybean oil at LHSV = 1 h-1, 4.48 MPa H2, 

and 400 °C.22 For example, NiMoC/USY catalyst showed low diesel selectivity (about 

55−60%) up to 7 days. As mentioned previously, the composition of the green diesel 

produced by this method was purely hydrocarbons of (C12−C22). The properties of the 

hydrocarbons in the range of (C12−C22) are quite similar to those for petroleum diesel; 

thus, this method produced a high-quality green diesel.116  

3.4 Conclusions 

A 10% NiWC/Al-SBA-15 catalyst is highly active for the hydrocracking of DDGS 

corn oil. Metal dispersion, alloy formation, and Ni content are important factors for 

improving the behavior of the catalysts. Both metal ratio and preparation method control 

the degree of metal dispersion and alloy formation. Enhancing the degree of metal 

dispersion and suppressing the formation of metal alloys results in essentially 100% 

conversion and green diesel selectivity. A proper Ni content is essential for providing 

sufficient activated hydrogen for the hydrocracking reactions and enhancing the metal 

dispersion. The decrease in green diesel selectivity can be attributed to the secondary 

reactions that convert the green diesel to alcohols. Thus, NiWC supported on Al-SBA-15 

could be a prospective catalyst for the hydrocracking of waste oil under relatively mild 

operation conditions, which leads to lower operating costs. 

!
!
!
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CHAPTER 4 

Hydrocracking of DDGS corn oil over transition metal carbides supported on Al-
SBA-15: Effect of fractional sum of metal electronegativities† 

4.1 Introduction  

The search for alternative energy sources that are sustainable and renewable has been 

motivated by increasing petroleum prices, diminishing fossil fuel reserves, and 

environmental issues associated with greenhouse gas emissions. Biofuels (in particular, 

green diesel) produced from the hydroprocessing of vegetable oils typically display 

properties that are similar to petroleum diesel and can be directly used in existing 

infrastructures with no modifications.8,85 Low quality vegetable oils such as distillers 

dried grains with solubles (DDGS) corn oil could be appropriate alternatives to fresh 

vegetable oils as feedstocks because they are inexpensive and non-food-competitive. 

During the catalytic hydrocracking of vegetable oils, the triglycerides can be 

converted to hydrocarbons in the boiling range of diesel as a result of the following 

reactions:9,10  

 

 

 
 
 
 
 
 
 
 

The hydrogenation reaction dominates initially by converting triglyceride molecules 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
†!This chapter has been published in Applied Catalysis A: General, 485 (2014) 58-66.!
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to free fatty acids (FFA), followed by hydrodeoxygenation, hydrodecarboxylation, and 

hydrodecarbonylation of FFA to green diesel. Supported noble metal catalysts11 and 

metal sulfide catalysts12,13 have been investigated in the hydrocracking of vegetable oils 

to produce green diesel. The noble metal catalysts are not viable for the large-scale 

processes because of their limited availability, high cost, and sensitivity to contaminants 

(such as oxygenated compounds) in the feedstock.14 Although metal sulfide catalysts 

overcome the issues with noble metal catalysts, the addition of sulfur-containing 

compounds such as H2 S is required to maintain the catalysts in the active form.15 

Recently, supported metal carbide and nitride catalysts have received considerable 

attention as mediators for the hydrocracking of vegetable oils.16 The presence of carbon 

or nitrogen atoms in the transition metal lattice extends the lattice parameter and 

increases the d-band electron density of the metals.17,18 However, only 86% yield of 

paraffin and 46% selectivity for branched paraffins were obtained from rapeseed oil 

feedstock when a molybdenum carbide catalyst supported on carbon nanotubes (20% 

Mo2C/CNTs) was used.88 Bimetallic carbide and nitride catalysts have shown higher 

activities and stabilities than the monometallic ones.19 It has been claimed that the carbide 

form of the NiMo/ZSM-5 catalyst produced a lower amount of CO and CO2 from 

soybean oil feedstock than the nitride form; there- fore, more hydrodeoxygenation took 

place on the carbide catalyst compared to the nitride catalyst.20 Most recently, Wang et 

al.22 investigated the effect of several supports on the activity of a NiMo carbide catalyst 

for the hydrocracking of soybean oil. The conversion of soybean oil reached 100% and 

the selectivity for green diesel was 97% for the NiMo carbide catalyst over Al-SBA-15 

during 7 days at 400 ◦ C and 4.48 MPa. Our earlier study investigated the effect of 
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catalyst preparation method and Ni-W ratio on the carbide form of the NiW/Al-SBA-15 

catalyst activity and selectivity.117 The catalyst prepared by Dendrimer-Encapsulated-

Nanoparticles (DENP) method with a Ni-W ratio of 2:1 led to a complete conversion of 

DDGS corn oil for 16 days and 100% diesel selectivity for 4 days at 400 ◦ C and 4.48 

MPa. 

Electronegativity is defined as the tendency of an atom to attract an electron to itself. 

The ability of the tetrachloroaluminate catalyst to attract and retain hydrocarbon 

feedstock at the reaction sites then simultaneously release formed products can be 

attributed to the electronegativity of the catalyst.118 According to Sabatier’s principle, the 

maximum rate of catalytic activity is obtained when the rate of reactant adsorption on the 

catalyst is equal to the rate of product desorption from the catalyst.119 Nwosu119 claims 

that all the noble metals are considered to be good catalysts based on their performance 

on the Sabatier’s volcano scale, and they have almost the same electronegativity. The 

electronegativity of noble metals is neutral, between the electropositive and 

electronegative elements; therefore, their ability to adsorb reactants and desorb products 

is almost equal. Also, this study shows that the closer the electronegativity of transition 

metals to the range of noble metals (2.0–2.2), the better performance on the Sabatier’s 

volcano scale. However, this study indicates that other factors like particle sizes and 

synergy pattern hindered the performance of the catalysts. In this respect, noble metal 

catalysts have shown excellent performance in the hydrocracking of vegetable oils. Since 

chemical reactions depend on the ability of the reactants to donate, receive, or share 

electrons; the electronegativity of the material would appear to have a role in this process. 

For bimetallic catalysts, the ensemble and ligand (electronegativity) effects have the main 
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roles of enhancing the catalyst performance in comparison to monometallic types.104 The 

dibenzothiophene conversion for the hydrodesulfurization (HDS) reaction over a Pd-Au 

bimetallic catalyst was higher than over either Pd or Au alone (84, 16, and 22%, 

respectively).120 Due to the difference in electronegativities between Pd and Au, the 

sulfur is selectively adsorbed on the Au sites, leaving the Pd sites available for activating 

hydrogen and accomplishing the HDS reaction. 

In the present work, a wet co-impregnation method was used to prepare various 

catalysts on an Al-SBA-15 support by combining metals with both lower and higher 

electronegativities, to achieve catalysts with fractional sums of their components’ 

electronegativity values lying in the electronegativity range of the noble metals. We 

hypothesized that by mimicking the electronegativity of noble metals, the performance of 

bimetallic carbide catalysts for the hydrocracking of vegetable oils might improve. The 

empirical formula used for calculating the fractional sum of the electronegativities of the 

metals is presented in (Eq. (1)): 

!! = !
!! ∗ !!!!

!
!!!

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(!". 1) 

where ϑT is the electronegativity of the catalyst, ϑi is the electronegativity of the 

individual metal, and φi (mol%) is the quantity of the corresponding metal in the 

catalyst.119 The effect of the fractional sum of the metals’ electronegativities on the 

activity and selectivity of the catalyst for green diesel production via the hydrocracking 

of DDGS corn oil was investigated under relatively mild reaction conditions. 

4.2 Experimental  

4.2.1 Materials 
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Ammonium (para)tungstate hydrate ((NH4)10(H2W12O42)·4H2O, 99.99%, Aldrich), 

ammonium niobate(V) oxalate hydrate (C4H4NNbO9. xH2O, 99.99%, Aldrich), 

ammonium molybdate ((NH4)6Mo7O24. 4H2, Sigma-Aldrich), zirconium(IV) oxynitrate 

hydrate (ZrO(NO3)2· xH2O, 99%, Aldrich), nickel(II) nitrate hexahydrate (Ni(NO3)2. 

6H2O, Sigma-Aldrich), and cerium(III) nitrate hexahydrate (Ce(NO3)3. 6H2O, 99.99%, 

Aldrich) were used as W, Nb, Mo, Ni, and Ce sources, respectively. Carbon disulfide 

(HPLC grade ≥99.9%), aluminum isopropoxide (C9H21AlO3, 99.99%), and the 

mesoporous silica SBA-15 were purchased from Sigma-Aldrich, Aldrich, and Advanced 

Chemicals Supplier (ACS), respectively.    

4.2.2 Catalyst preparation 

A neutral support, SBA-15, with a 9 nm pore diameter and Brunauer-Emmett-Teller 

(BET) surface area of 600 m2/g, was modified by aluminum isopropoxide to adjust its 

acidity. SBA-15 (20 g) was suspended in hexane (150 mL); then, aluminum isopropoxide 

(0.067 g) was added to the solution and stirred for 24 h. The mixture was filtered, dried, 

and calcined at 550 °C for 4 h. According to our previous work,117 the catalysts NiNb, 

NiMo, NiW, and NiZr were prepared in the ratio of 6.67 wt% Ni:3.33 wt% M (M = Nb, 

Mo, W, Zr) by the wet co-impregnation of aqueous solutions of (Ni(NO3)2. 6H2O, 

C4H4NNbO9. xH2O), (Ni(NO3)2. 6H2O, (NH4)6Mo7O24. 4H2), (Ni(NO3)2. 6H2O, 

(NH4)10(H2W12O42)·4H2O), and (Ni(NO3)2. 6H2O, ZrO(NO3)2· xH2O) on the modified 

Al-SBA-15 support. The resulting solids were dried and calcined at 450 °C for 4 h. The 

catalysts promoted with Ce were prepared by impregnation of the NiNb/Al-SBA-15, 

NiMo/Al-SBA-15, NiW/Al-SBA-15, and NiZr/Al-SBA-15 catalysts with an approximate 
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amount of 10 wt% (Ce(NO3)3. 6H2O) solution. The impregnated samples were dried and 

calcined at 450 °C for 4 h.      

Carburization was conducted using temperature-programmed reduction (TPR) 

according to the method of Claridge et al.90 Each metal oxide precursor was placed in a 

quartz tube and subjected to a flow of 20% CH4/80% H2 at 30 cm3/min and a heating rate 

of 10 K/min to 250 °C, followed by 2.0 K/min to 730 °C. The temperature was 

maintained at 730 oC, the optimal temperature for carbide formation, for 30 min to 

complete the reaction.90 After cooling, the catalyst was passivated under a mixture of 1% 

O2 in Ar for 1 h to eliminate its pyrophoricity19 and protect the bulk of the catalyst 

against deep oxidation.91   

4.2.3 Material characterization 

The BET surface area, Barrett–Joyner–Halenda (BJH) pore size, and pore volume 

were determined using a Micromeritics model ASAP 2010 surface area analyzer with 

99.9% purity nitrogen gas, and the results were collected on a Tristar 3020 analyzer. The 

samples were degassed at 400 oC at a heating rate of 10 oC/min for 2 h prior to analysis. 

X-Ray diffraction (XRD) patterns were collected using a Rigaku RU2000 rotating anode 

powder diffractometer (Rigaku Americas Corporation, TX) with SmartLab Guidance and 

MDI Jade 8 software at a scan rate of 8o /min. 

4.2.4 Hydrocracking reaction procedures 

4.2.4.1 Batch reactor 

The catalytic hydrocracking conversion of DDGS corn oil was carried out in a 100 

mL Hanwoul stirred batch reactor (Geumjeong- dong, South Korea). To investigate the 

activity of each catalyst, the reactor was loaded with catalyst (2 g) and reduced in situ 
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under a 30mL/min flow of H2 for 3h at 350◦C. The gas flow rate was controlled by a 

metal-sealed mass flow controller (Brooks, Warren, MI). After cooling to room 

temperature, DDGS corn oil (50 mL) was fed into the reactor by a pump (Chrom Tech, 

Series III) at a rate of 5 mL/min for 10 min. The temperature was increased to 350 oC at a 

rate of 10 oC/min, and the H2 pressure in the vessel was increased to 4.48 MPa. The oil is 

mostly liquid at 350 oC and 4.48 MPa. The agitation speed was maintained at 1100 rpm 

throughout the reaction. A liquid sample was collected every 30 min for analysis. The 

sample was allowed to phase separated for 12 h at room temperature and atmospheric 

pressure. 

4.2.4.2 Flow reactor 

This DDGS corn oil hydrocracking reaction was also performed in a BTRS-Jr. system 

(Autoclave Engineers, PA) that consisted of a fixed bed reactor with an internal diameter 

of 1.31 cm and a length of 61 cm, a heater, a pressure regulator, and a condenser. The 

experimental conditions were similar to those from a previous study,20 in which biofuels 

were produced via the hydrocracking of soybean oil over transition metal carbides and 

nitrides supported on ZSM-5. The catalyst (2 g) and quartz beads (4.5 g) were loaded in 

the reactor and reduced under an H2 flow of 30 STP mL/min at 450 oC for 3h. The quartz 

beads were used to dilute the catalyst bed, prevent plugging, and enhance heat and mass 

transfer. The reaction was carried out at 400 oC and 4.48 MPa. The hydrogen flow was 

maintained at a constant 30 mL/min and the DDGS corn oil was fed at a liquid hourly 

space velocity (LHSV) of 1h-1. The outlet liquid phase was separated from the gas phase 

via a condenser maintained at room temperature and 4.48 MPa. The collected liquid 

samples consisted of two phases: organic liquid product (OLP) and aqueous phase. The 
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OLP samples were analyzed qualitatively and quantitatively. The produced jet fuel and 

green diesel fractions were identified as (C8–C16) and (C12–C22), respectively. 

4.2.5 Analysis method 

The samples of OLP were dissolved in carbon disulfide and analyzed using a Perkin 

Elmer Clarus 500 gas chromatograph (GC) equipped with a flame ionization detector 

(FID) and an Elite-Biodiesel 5HT column (Perkin Elmer, N9316690, length: 15 m; 

internal diameter: 0.31 mm; phase film thickness: 0.10 µm). For triglycerides analysis, 

the GC oven temperature was programmed as follows: 1 min hold at 80 °C, 30 °C/min 

ramp to 240 °C, 10 °C/min ramp to 360 °C, and 15 min hold at 360 °C. The detector 

temperature was maintained at 360 °C. Samples (0.5 µL) were injected into the column 

with a 10:1 split ratio. For hydrocarbons analysis, the GC oven temperature was 

programmed as follows: 5 min hold at 35 °C, 10 °C/min ramp to 360 °C, and 15 min hold 

at 360 °C. The detector temperature was maintained at 370 °C. Samples (0.5 µL) were 

injected into the column with a 10:1 split ratio.  

4.3 Results and discussion 

4.3.1 Catalyst characterization 

The XRD patterns of the nickel carbide catalyst and the nickel-based carbide catalysts 

with four different metals supported on Al-SBA-15 are shown in Figure 24. For all the 

catalysts, the broad peak between 2θ = 15–30° corresponds to the mesoporous silica. The 

XRD patterns of the catalysts show three main peaks at 2θ = 44.6o, 52.2o, and 76.3o, 

corresponding to the (111), (200), and (220) diffractions of the Ni particles, 

respectively.121 The carbide phases of Mo, Nb, and W can be observed as shown in 

Figure 24(b), (c), and (d), respectively. Surprisingly, the carbide phase of Zr was not 
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observed in the XRD pattern (Figure 24(e)), which suggests that the phase was very well 

dispersed on the support. SEM-EDAX was used to characterize the catalyst in order to 

determine Zr and C distributions on the support (Al-SBA-15). Figure 25 shows that the 

distributions of Zr and C on the support are well dispersed with no agglomeration 

observed at any area. Also, Figure 26 shows that the atomic weight percentages of the Zr 

(40.01%) and C (59.99%) in the catalyst were close to that in the most stable phase of 

ZrC.122! There is no indication of Ni carbide formation, as shown in Figure 24(a), 

confirming that Ni metal was easily reduced to form Ni particles, in agreement with the 

findings of Gajbhiye et al.96 Figure 24(b) and (d) shows that NiMoC/Al-SBA-15 and 

NiWC/Al-SBA-15 are the only catalysts that form alloys, as indicated by the peaks at 2θ 

= 47.3o and 48.1o, respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 24. XRD patterns of NiC/Al-SBA-15 (a), NiMoC/Al-SBA-15 (b), NiNbC/Al-
SBA-15 (C), NiWC/Al-SBA-15 (d), NiZrC/Al-SBA-15 (e). 
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Figure 27 shows the XRD patterns of the catalysts promoted with Ce. The broadening 

of peaks of the promoted catalysts suggests smaller crystal sizes and higher metal carbide 

dispersions than the non-promoted catalysts. Moreover, there is a decrease in the 

intensities of the diffraction peaks as well as the disappearance of some peaks. Therefore, 

the Ce additive increases the metal dispersion, leading to the formation of more active 

centers and greater hydrogen adsorption.109,123 No peak assignable to a Ce carbide phase 

is seen in Figure 27(b), which indicates that the phase either was not formed or the 

particles were too small to be detected by the XRD technique.124 The peak corresponding 

to the Ni-Mo alloy disappeared and that corresponding to Ni-W alloy decreased, which 

provides another indication of the enhancement in metal dispersion after adding Ce. 

 

 

 

 

 

 

 

 

Figure 25. The distribution of Zr and C in the NiZrC/Al-SBA-15: Zr (a) and C (b). 

 

The effect of the loading of the Ce promoter on the structure of NiNbC/Al-SBA-15 

was also investigated by XRD (Figure 28). The higher the loading of Ce, the weaker were 

the peaks in the XRD pattern of NiNbC/Al-SBA-15, and more peaks disappeared (2θ = 

26.3o, 35.5o, and 40.8o) as the Ce amount increased. The particle sizes were estimated by 
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using the Debye-Scherrer equation in order to show the extent to which the peaks have 

broadened. Table 6 indicates that the increasing in the peak broadening was caused by the 

decreasing in particle size; therefore, the dispersion of NiNbC increases with the increase 

in Ce content.  

 

 

 

 

 

 

 

Figure 26. EDAX spectra of NiZrC/Al-SBA-15 catalyst. 
 

Table 6. Effect of Ce loading on particle size. 

! Particle!size!(nm)!
Mean!crystallite!size!

(nm)!

Ca
ta
ly
st
!

2θ(o)! 22.9! 28.3! 36.4! 44.6! 52.2! 76.3! K!
NiNbC!
0%!Ce!

33! 27! 31! 29! 23! 24! 27!

NiNbC!
5%!Ce!

31! 21! 28! 18! 15! 18! 19!

NiNbC!
10%!Ce!

29! 19! 25! 17! 14! 17! 16!

NiNbC!
20%!Ce!

28! 16! 23! 17! 13! 15! 15!

 

The surface area, pore size, pore volume, and average particle size of the catalysts are 

summarized in Table 7. The surface area and pore size of the catalysts decreased as 

compared to the Al-SBA-15 support (surface area: 600 m2/g; pore size: 9 nm), which 
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could be caused by loss of structure and/or pore blockage.97 All of the catalysts have 

relatively high surface areas and suitable pore sizes that would readily allow the diffusion 

of bulky triglyceride molecules.109 The BET surface area of the Ce-promoted catalysts 

increased compared to the non-promoted catalysts, while the average particle size 

decreased. These results are in accord with the results obtained from the XRD 

characterization. Table 8 shows that the surface area increases after adding Ce; however, 

the surface area decreases as the Ce loading increases further. These decreases in surface 

area as the Ce loading increases suggest that the addition of Ce may block some pores in 

the Al-SBA-15 support.125 Moreover, the average particle size decreases after adding Ce 

can be attributed to the increase in metal dispersion.        

Table 7. Textural properties of non-promoted catalysts and promoted catalysts with 10%. 
Ce. 

 
 Non-promoted 

Catalyst 
SBET       

(m2/g) 

Pore size  

(nm) 

Pore volume 

(cm3/g) 

Avg. particle 

size (nm) 

NiWC/Al-SBA-15 342 7.32 0.66 21.3 

NiMoC/Al-SBA-15 302 5.85 0.43 17.5 

NiNbC/Al-SBA-15 343 5.89 0.48 19.8 

NiZrC/Al-SBA-15 299 5.98 0.48 16.9 

 Promoted with 10% Ce 

Catalyst 
SBET       

(m2/g) 

Pore size  

(nm) 

Pore volume 

(cm3/g) 

Avg. particle 

size (nm) 

NiWC/Al-SBA-15 388 5.36 0.54 15.4 

NiMoC/Al-SBA-15 454 5.84 0.59 13.2 

NiNbC/Al-SBA-15 402 6.07 0.55 14.9 

NiZrC/Al-SBA-15 353 6.10 0.43 15.1 

SBET: BET surface area 
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Table 8. Effect of Ce loadings on textural properties of catalysts. 

NiNbCeC/Al-SBA-15 SBET (m2/g) Pore size (nm) Pore volume 
(cm3/g) 

Avg. particle 
size (nm) 

0% Ce 343 5.89 0.48 19.8 

5% Ce 424 5.4 0.55 14.1 

10% Ce 402 5.44 0.53 14.9 

20% Ce 346 5.38 0.45 17.3 

SBET: BET surface area 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 27. XRD patterns of (10% Ce) NiC/Al-SBA-15 (a), CeC/A-SBA-15 (b), (10% Ce) 
NiMoC/Al-SBA-15 (C), (10% Ce) NiNbC/Al-SBA-15 (d), (10% Ce) NiWC/Al-SBA-15 

(e), (10% Ce) NiZrC/Al-SBA-15 (f). 
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Figure 28. XRD patterns of the promoted NiNbC/Al-SBA-15 catalyst with: 0% Ce (a),  
5% Ce (b), 10% Ce (c), 20% Ce (d). 

 
4.3.2 Hydrocracking of DDGS corn oil 

4.3.2.1 Relationship between nickel-based catalysts, electronegativity, and catalytic 

activity 

The performance of NiMoC/Al-SBA-15, NiZrC/Al-SBA-15, NiNbC/Al-SBA-15, and 

NiWC/Al-SBA-15 was evaluated for the hydrocracking of DDGS corn oil in a batch 

reactor at 350 °C and 4.48 MPa. Table 9 shows the typical fatty acid compositions and 

the elemental analysis of DDGS corn oil. The collected samples were analyzed by GC-

FID to determine the DDGS corn oil conversion and the selectivity for diesel; the results 

are shown in Figure 29 as a function of time. The 30 min data point corresponds to the 
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time at which the temperature reaches 350 °C. However, hydrocracking had started 

before the temperature reached 350 °C because the DDGS corn oil conversion at 30 min 

was more than 30% for all the catalysts. The conversion at time t (Ct) was calculated as: 

!!! % = !100%− !!",!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(!". 2) 

where CTG,t is the concentration of triglycerides (%) in the OLP determined by GC-FID 

analysis at time t. There were no significant differences in the conversion of DDGS corn 

oil for all the catalysts; however, the selectivity for green diesel varied, and the maximum 

green diesel selectivity (100%) was obtained from NiWC/Al-SBA-15 after 180 min, as 

shown in Figure 29 (d). The green diesel selectivity at time t (Sd,t) is defined as: 

!!,!! % = !!!,!!!,!
∗ 100!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(!". 3) 

 
where Cd,t and Cp,t are the concentrations of green diesel and OLP at time t, respectively. 

Although Figure 29 (a) shows that the diesel selectivity obtained from NiMoC/Al-SBA-

15 reached 86% at 150 min, the diesel selectivity dropped to 69% after 3.5 h. The diesel 

selectivities of the NiZrC/Al-SBA-15 and NiNbC/Al-SBA-15 catalysts both increased 

with time; however, NiNbC/Al-SBA-15 reached 90% earlier than NiZrC/Al-SBA-15. 

The differences in selectivity could be related to the fractional sum of the 

electronegativities of the metals. The fractional sum of the electronegativities in a catalyst 

was calculated using (eq. 1), as shown in Table 10. The catalyst producing the highest 

diesel selectivity, NiWC/Al-SBA-15, has a fractional sum of electronegativities within 

the electronegativity range of the noble metal catalysts (2.0–2.2), a result in agreement 

with Nwosu et al.119 On the other hand, the other catalysts did not behave the same way. 

The catalyst with the second highest fractional sum of the electronegativities of metals 

did not lead to the second highest diesel selectivity. This suggests electronegativity is not 
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the determining factor for activity and selectivity, and the differences in metal 

compositions, particle size and surface area may also play a role. 

Table 9. Fatty acid compositions and elemental analysis of DDGS corn oil. 

Fatty!acid!composition!wt.%! Element!analysis!(ppm)!
C14:0! 0.1! Fe! 0.4!
C16:0! 5.8! Na! 3.9!
C16:1! 0.1! Ca! 0.2!
C18:0! 2.5! P! 1.8!
C18:1! 31.3! S! 27.6!
C18:2! 49.1!
C18:3! 4.8!
C20:0! 3.7!
C22:1! 2.6!

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29. DDGS corn oil conversion and diesel selectivity in batch reaction at 350 oC 
and 650 psi on NiMoC/Al-SBA-15 (a), NiZrC/Al-SBA-15 (b), NiNbC/Al-SBA-15 (C), 

NiWC/Al-SBA-15 (d). 
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Table 10. Values of the fractional sum of transition metal electronegativities in the non-
promoted and Ce-promoted catalysts. 

 
! Fractional!sum!of!electronegativity!values!(ϑT)!

Catalyst NonKpromoted! Promoted!with!10%!Ce!

NiZrC/AlKSBAK15! 1.72! 1.83!

NiNbC/AlKSBAK15! 1.81! 1.92!

NiMoC/AlKSBAK15! 1.99! 2.10!

NiWC/AlKSBAK15! 2.06! 2.17!

Catalyst! 0%!Ce! 5%!Ce! 10%!Ce! 20%!Ce!

NiNbC/AlKSBAK15 1.81! 1.87! 1.92! 2.03!

 

4.3.2.2 Effect of doping 10% Ce on electronegativity and activity of catalysts 

 To understand the effect of Ce doping on the catalyst performance for the 

hydrocracking of DDGS corn oil, the reaction was conducted over a catalyst that 

contained only cerium (CeC/Al-SAB-15). Both the DDGS corn oil conversion and the 

diesel selectivity obtained from this catalyst were low (Figure 30), indicating that adding 

Ce to the catalysts did not significantly contribute to the hydrocracking reaction.   

 The Ce-promoted hydrocracking reaction of DDGS corn oil over the NiMoC/Al-

SBA-15, NiZrC/Al-SBA-15, NiNbC/Al-SBA-15, and NiWC/Al-SBA-15 catalysts was 

investigated in a batch reactor at 350 °C and 4.48 MPa to examine the effect of 10% Ce 

doping. Figure 31 shows that there was a slight increase in the conversion for the 

promoted catalysts compared to the non-promoted catalysts. However, a significant 

improvement in the diesel selectivity was obtained with the promoted catalysts, reaching 

100%. Indeed, the Ce-promoted NiNbC/Al-SBA-15 catalyst reached 100% diesel 

selectivity only after 90 min. The improvement in diesel selectivity for the promoted 

catalysts could be attributed to several factors, including the value of the fractional sum 
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of the electronegativities. This sum increases after catalyst promotion by Ce (Table 10). 

As mentioned previously, the optimal electronegativity should be noble-metal-like (2.0–

2.2) to equalize the rates of reactant adsorption and product desorption,119 and obtain the 

highest catalytic activity. The Ce-promoted NiWC/Al-SBA-15 catalyst exhibited 

approximately similar diesel selectivity to the non-promoted one since the fractional sum 

of the electronegativities in the non-promoted catalyst already approximated that of the 

noble catalysts. Nevertheless, other catalysts showed greater diesel selectivity as their 

fractional sums of electronegativities approached 2.0–2.2. Moreover, based on the XRD 

and BET analysis, metal dispersion and surface area in the promoted catalysts are 

enhanced which may lead to the formation of more active centers and the adsorption of 

more hydrogen.109,123 These factors may additionally contribute to the improved diesel 

selectivity of the promoted catalysts.  

 

 

 

 

 

 

 

 

 

 

 

Figure 30. DDGS corn oil conversion and diesel selectivity in batch reaction at 350 oC 
and 650 psi on CeC/Al-SBA-15. 
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Figure 31. DDGS corn oil conversion and diesel selectivity in batch reaction at 350 oC 
and 650 psi on Ce promoted catalysts with (10% Ce): NiMoC/Al-SBA-15 (a), NiZrC/Al-

SBA-15 (b), NiNbC/Al-SBA-15 (C), NiWC/Al-SBA-15 (d). 

 

4.3.2.3 Effect of Ce loading on electronegativity and catalyst activity 

The NiNbC/Al-SBA-15 catalyst was promoted with four different Ce loadings to 

study the effect of the fractional sum of the electronegativities on the catalytic activity. 

Table 10 shows that this fractional sum increases as the Ce loading increases. The 

catalyst with 20% Ce should have exhibited the best performance since its fractional sum 

of electronegativities fell in the electronegativity range of the noble catalysts; however, 

the catalyst with 10% Ce displayed higher performance, as shown in Figure 32 (c) and 

(d), respectively. The catalyst with 10% Ce reached 88% DDGS corn oil conversion after 
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210 min whereas only 78% conversion was obtained from the 20% loading. In addition, 

the diesel selectivity reached 100% for the catalysts with 10 and 20% Ce after 90 min and 

120 min, respectively. The variation in the catalyst performance could be attributed to the 

opposing effects of the fractional sums of the electronegativities and the textural 

properties of the catalysts such as surface area and particle size. Therefore, the 

enhancement of the catalyst performance due to the electronegativity could be limited by 

the decrease in surface area and increase in particle size, as shown in Table 8. The diesel 

yield of the Ce-promoted and non-promoted catalysts was calculated as shown in Table 

11. The diesel yield was observed to increase with time, with the catalyst (NiNbCeC/Al-

SBA-15 with 10% Ce) achieving the highest diesel yield (88.4%) after 210 min. Based on 

the hydrogenation reaction, the maximum hydrocarbon gas (propane) produced could be 

as high as 13% for complete conversion.  As indicated from Table 11, total liquid product 

(weight %) from each catalyst was about 90%.     

4.3.2.4 Catalyst stability 

The stability of the NiNbC/Al-SBA-15 catalyst promoted with 5% Ce was 

investigated in a continuous flow reactor at 400 °C and 4.48 MPa. The conversion of 

DDGS corn oil over seven days of operation is shown in Figure 33. The catalyst was 

stable over the entire duration. The selectivity for jet fuel was higher than for diesel, 

perhaps due to the higher temperature, which favors higher cracking activity. During the 

first day, the jet fuel selectivity was 85%, with no production of diesel. The jet fuel 

selectivity decreased as the diesel selectivity increased with time. This might be due to 

the retention of deoxygenated and cracked intermediates that are not hydrocracked to 

produce jet fuel (light HC’s); but rather, are retained in the range of diesel because more 
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of the Ni surface is covered by the adsorbed reactants with time.20 Wang et al.20 studied 

the hydrocracking of soybean oil over NiMoC/ZSM-5 at 450 °C and 4.48 MPa and 

obtained only 42% jet fuel selectivity. The NiNbC/Al-SBA-15 catalyst promoted with 

5% Ce shows greater jet fuel selectivity than NiMoC/ZSM-5 under similar reaction 

conditions albeit at lower temperature (400 °C).   

Table 11. Diesel yield and total liquid product weight percentage. 
 

! Diesel!Yield!(%)! !

NonK

promoted!

catalyst!

30!

min!

60!

min!

90!

min!

120!

min!

150!

min!

180!

min!

210!

min!

Liquid!

product!

wt.!(%)!

NiMoC! 35.4! 36.5! 34! 52.7! 59.8! 48.3! 49.7! 86!

NiZrC! 15.5! 25! 25.5! 28.4! 31.9! 41.4! 62.6! 89!

NiNbC! 12.4! 14.8! 24.9! 27.6! 53.7! 55.2! 59.8! 87!

NiWC! 21.8! 24.2! 31.1! 42.8! 48.9! 71.9! 73.2! 89!

Promoted!

catalyst!
!

NiMoCeC!

(10%!Ce)!
21! 26.4! 40.3! 50.7! 58.4! 62.1! 78.3! 93!

NiZrCeC!

(10%!Ce)!
15.9! 21.2! 30.4! 34! 37.7! 50.9! 61.8! 83!

NiNbCeC!

(5%!Ce)!
25.1! 26.1! 36.6! 51.4! 67.3! 70! 71.9! 92!

NiNbCeC!

(10%!Ce)!
18! 19.6! 51.5! 64.3! 68.6! 71.9! 88.4! 95!

NiNbCeC!

(20%!Ce)!
19.2! 20.4! 28.9! 69.3! 75.2! 76.1! 78.6! 93!

NiWCeC!

(10%!Ce)!
22.1! 31.6! 35.4! 37.8! 56.1! 68.3! 78.4! 92!
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Figure 32. DDGS corn oil conversion and diesel selectivity in batch reaction at 350 oC 
and 650 psi on Ce promoted NiNbC/Al-SBA-15 catalyst with: 0% Ce (a),  5% Ce (b), 

10% Ce (c), 20% Ce (d). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33. DDGS corn oil conversion and diesel selectivity in flow reaction with liquid 
hourly space velocity (LHSV) of 1 h-1 at 400 oC and 650 psi on Ce promoted NiNbC/Al-

SBA-15 catalyst with 5% Ce. 
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4.4 Conclusion 

The fractional sum of the electronegativities of the transition metals were correlated 

with the performance of these catalysts because it affects the reactant adsorption and 

product desorption steps. The maximum rate of catalytic activity can be obtained when 

the rates of adsorption and desorption are similar to those observed for the noble metals. 

It is possible to posit that the closer the fractional sum of the transition metal 

electronegativities is to the electronegativity range of the noble catalysts (2.0–2.2), the 

better the catalyst performance will be. However, this is not the only factor that controls 

the catalyst activity. The BET surface area, particle size, pore size, and metal 

composition can also affect the activity and selectivity.  

Several catalysts were investigated to evaluate the effect of the fractional sum of 

electronegativity values on the hydrocracking of DDGS corn oil. The catalyst with the 

fractional sum of electronegativity values in the range 2.0–2.2, NiWC/Al-SBA-15, was 

the most active. Doping different loadings of Ce brought the electronegativity closer to 

the 2.0–2.2 range and improved the catalyst performance. However, not every catalyst 

followed this trend because the improvement obtained from the electronegativity values 

could be inhibited by other factors, such as surface area and particle size. The NiNbC/Al-

SBA-15 catalyst promoted with 5% Ce was studied in a fixed bed reactor over 7 days and 

achieved high conversions of triglycerides and free fatty acids. Thus, this promoted 

catalyst may be regarded as a prospective hydrocracking catalyst for inexpensive 

feedstocks such as brown grease.  

!
!
!
!
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CHAPTER 5 

Biofuels Production from Hydrothermal Decarboxylation of Oleic Acid and 
Soybean Oil Over Ni-based Transition Metal Carbides Supported on  

Al-SBA-15‡ 

5.1 Introduction  

Biofuels production has been attracting considerable attention because of increases in 

petroleum prices and the world’s energy demand, declines in petroleum reserves, and 

concerns about the environmental issues associated with greenhouse gas emissions. 

Triglycerides and fatty acids (from plants, animal fat, and waste oil/grease) can be used 

as renewable fuel feedstocks.126,127 Eliminating oxygen from triglycerides and fatty acids 

in the form of H2O, CO, or CO2 produces renewable liquid biofuels that are similar to 

petroleum fuels and can be directly used in existing infrastructure with no 

modifications.8,85 The cost of biofuels production from new vegetable oils is not likely to 

be competitive with the cost of petroleum fuels. Therefore, using inexpensive and 

inedible feedstocks such as waste oil and brown grease is necessary to produce biofuels 

that are fungible with petroleum fuels. The hydrocracking process is the most developed 

route for removal of oxygen from triglycerides and fatty acids to produce 

biofuels.62,128,129 Our previous study117 has shown that bimetallic carbide catalysts 

(NiWC/Al-SBA-15) prepared by a Dendrimer-Encapsulated-Nanoparticles (DENP) 

method with a Ni-W ratio of 2:1 led to a complete conversion of DDGS corn oil (>95% 

triglycerides) over 16 continuous days with 100% diesel selectivity for 4 days at 400 °C 

and 4.48 MPa. However, this process requires high pressure of H2 and has issues related 

to catalyst deactivation due to the presence of water.130,131 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
‡!This chapter has been submitted to Applied Catalysis A: General.!
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An alternative method for removing oxygen is decarboxylation of fatty acid, a 

method which proceeds under lower H2 pressure.64 Most reports have focused on the use 

of noble metal catalysts, Pd132-134 or Pt.135-137 Also, some early studies focused on the 

decarboxylation of fatty acids in hydrocarbon solvents such as dodecane over Pd-

supported catalysts.138-142 Several studies showed that using water as solvent for the 

decarboxylation of fatty acids is more advantageous than hydrocarbon solvents,143-145 not 

only because water is an environmentally friendlier solvent but also the avoidance of a 

water removal step after triglycerides hydrolysis that generates fatty acids in an aqueous 

stream. Watanabe et al.71 studied the effect of the addition of alkali hydroxide (NaOH and 

KOH) and metal oxides (CeO2, Y2O3, and ZrO2) on the decarboxylation of stearic acid in 

super-critical water at 400 °C. KOH promoted the monomolecular decarboxylation of 

stearic acid to produce C17 alkane and CO2, while ZrO2 was effective for bimolecular 

decarboxylation into C16 alkene and CO2 because long chain ketone was observed. For 

the decarboxylation of palmitic acid in sub-critical water at 370 °C, 63% and 76% 

pentadecane molar yields were obtained over 5% Pd/C and 5% Pt/C, respectively.72 

Although the catalysts experienced a reduction in metal dispersion after the reaction, 

these changes did not seem to reduce their activities. However, the cost and rapid 

deactivation due to catalyst coking139 and lack of H2,146 hindered the use of these 

catalysts commercially.  

Fu et al.74 reported that activated carbons could be an alternative to the expensive 

noble metal catalysts to convert saturated and unsaturated fatty acids to alkanes in sub 

and super-critical water. Although the major products were alkanes that are produced via 
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decarboxylation and hydrogenation of oleic acid after 3 h at 370 °C, only 6% molar yield 

of decarboxylation product was obtained.  

Triglycerides, a type of neutral lipids, can be rapidly hydrolyzed in hydrothermal 

media to produce saturated and unsaturated free fatty acids, as well as glycerol.75 Some 

studies examined hydrothermal catalytic reforming of glycerol, commonly referred to as 

aqueous phase reforming (APR), to generate hydrogen.76-81 Utilizing glycerol APR for in 

situ hydrogen production can promote the hydrogenation of unsaturated fatty acids. The 

addition of Re to Pt/C catalyst can motivate the glycerol APR due to the reduction of the 

affinity for CO.79,82 A complete conversion of oleic acid was achieved over Pt-Re/C 

catalyst when a 1:3 glycerol-to-oleic acid molar ratio was applied in a 2 h reaction. The 

catalyst experienced moderate sintering, suggesting additional work is needed to 

investigate its hydrothermal stability with time on stream. Vardon et al.75 proposed an 

integrated catalytic hydrothermal reaction for the conversion of triglycerides to 

hydrocarbon fuels with in situ hydrogen production from glycerol. A continuous 

hydrogen supply can be obtained by the APR of glycerol released from triglyceride 

hydrolysis. 

To the best of our knowledge, there has been no study of the hydrothermal 

decarboxylation of fatty acids over Ni-based transition metal carbide catalysts supported 

on Al-SBA-15. If sufficiently active, these catalysts could be suitable low cost catalysts 

for the hydrothermal decarboxylation of fatty acids. Also, unlike noble metal catalysts, 

these catalysts are not sensitive to CO that is produced during fatty acid 

decarbonylation.147 In the present work, we investigate the use of Ni-based transition 

metal carbide catalysts on an Al-SBA-15 for the decarboxylation in sub and super-critical 
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water of unsaturated fatty acid (oleic acid) and triglycerides (soybean oil) to produce 

hydrocarbons in the diesel range without adding hydrogen.  

5.2 Experimental 

5.2.1 Materials 

Ammonium (para)tungstate hydrate (H42N10O42W12. xH2O, 99.99%, Aldrich), 

ammonium niobate(V) oxalate hydrate (C4H4NNbO9. xH2O, 99.99%, Aldrich), 

ammonium molybdate (H24Mo7N6O24. 4H2O, Sigma-Aldrich), zirconium(IV) oxynitrate 

hydrate (N2O7Zr. xH2O, 99%, Aldrich), and nickel(II) nitrate hexahydrate (N2NiO6. 

6H2O, Sigma-Aldrich) were used as W, Nb, Mo, Zr, and Ni sources, respectively. Oleic 

acid (technical grade 90%), aluminum isopropoxide (C9H21AlO3, 99.99%), heptane 

(UN1206, 99%), the mesoporous silica SBA-15, glycerin (Class IIIB) were purchased 

from Sigma-Aldrich, Aldrich, EMD Chemicals, Advanced Chemicals Supplier (ACS), 

and Fisher-Scientific, respectively.   

5.2.2 Catalyst preparation 

A neutral support, SBA-15, with a 9 nm pore diameter and Brunauer-Emmett-Teller 

(BET) surface area of 600 m2/g, was modified by aluminum isopropoxide to adjust its 

acidity. SBA-15 (20 g) was suspended in hexane (150 mL); then, aluminum isopropoxide 

(0.067 g) was added to the solution and stirred for 24 h. The mixture was filtered, dried, 

and calcined at 550 °C for 4 h. According to our previous work,117 the catalysts NiNb, 

NiMo, NiW, and NiZr were prepared in the ratio of 6.67 wt% Ni:3.33 wt% M (M = Nb, 

Mo, W, Zr) by the wet co-impregnation of aqueous solutions of (Ni(NO3)2. 6H2O, 

C4H4NNbO9. xH2O), (Ni(NO3)2. 6H2O, (NH4)6Mo7O24. 4H2), (Ni(NO3)2. 6H2O, 
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(NH4)10(H2W12O42)·4H2O), and (Ni(NO3)2. 6H2O, ZrO(NO3)2· xH2O) on the modified 

Al-SBA-15 support. The resulting solids were dried and calcined at 450 °C for 4 h.  

Carburization was conducted using temperature-programmed reduction (TPR) 

according to the method of Claridge et al.90 Each metal oxide precursor was placed in a 

quartz tube and subjected to a flow of 20% CH4/80% H2 at 30 cm3/min and a heating rate 

of 10 K/min to 250 °C, followed by 2.0 K/min to 730 °C. The temperature was 

maintained at 730 oC, the optimal temperature for carbide formation, for 30 min to 

complete the reaction.90 After cooling, the catalyst was passivated under a mixture of 1% 

O2 in Ar for 1 h to eliminate its pyrophoricity19 and protect the bulk of the catalyst 

against deep oxidation.91   

5.2.3 Material characterization 

X-Ray diffraction (XRD) patterns were collected using a Rigaku RU2000 rotating 

anode powder diffractometer (Rigaku Americas Corporation, TX) with SmartLab 

Guidance and MDI Jade 8 software at a scan rate of 8 °/min.  

5.2.4 Reaction procedure 

The catalytic hydrothermal decarboxylation of oleic acid was conducted in mini-

reactors assembled from 3/8-inch stainless steel Swagelok parts, sealed with a cap on 

each end to give a reactor volume of 1.52 mL.72 Prior to use in any experiments, the 

reactors were washed with acetone and water to remove any residual materials. In typical 

experiments, 10 mg catalyst, 0.642 mL water, and 0.156 mmol oleic acid were loaded in 

the reactors. The reactors were sealed in a glove box to avoid their exposure to air. The 

loaded reactors were placed in a pre-heated furnace (400 oC) and (350 oC) to achieve 

super-critical and sub-critical conditions, respectively. After the desired reaction time was 
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completed (4 h), the reactors were submerged in a water bath to quench the reaction. The 

products were transferred to volumetric flasks, and the reactors were rinsed with repeated 

heptane washes until the total volume collected was 10 mL.    

Additional experiments were performed with the same catalysts that were reduced in 

H2 before being loaded to the reactors to investigate the effect of a catalyst reduction step. 

During the reduction, the catalysts were placed in a quartz tube reactor and reduced in H2 

(30 mL/min) at 450 oC for 3 h. After cooling to ambient temperature, the ends of the tube 

were quickly sealed and placed in a glove box to minimize the likelihood of re-oxidation 

of the reduced catalysts. 

Another set of experiments was conducted by adding different loadings of glycerol to 

the reactants to determine the impact of glycerol as a hydrogen donor. Three different 

glycerol loading were applied (0.12, 0.24, and 0.48 mmol glycerol). The experiments 

were carried out under super-critical conditions. 

Finally, soybean oil was used as a feedstock to investigate the ability of the catalysts 

to hydrolyze the triglycerides to form fatty acids and glycerol; and then produce 

hydrogen in situ from the generated glycerol. Therefore, no addition glycerol is required 

for the hydrothermal decarboxylation of triglycerides. These experiments were conducted 

under super-critical conditions.  

5.2.5 Analysis method 

The liquid products were analyzed using a Perkin Elmer Clarus 500 gas 

chromatograph (GC) equipped with flame ionization detector (FID) and an Rtx-65 TG 

column (Restek, 17008, length: 30 m, internal diameter: 0.25 mm, phase film thickness: 

0.10 µm). For fatty acid separation, the GC oven temperature was programmed as 
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follows: 1 min hold at 80 oC, 30 oC/min ramp to 240 oC, 0 min hold at 240 oC, 10 oC/min 

ramp to 360 oC, 15 min hold at 360 oC. The detector temperature was maintained at 360 

oC. Samples (1.5 µL) were injected into the column with a 5:1 split ratio. For 

hydrocarbon analysis, the GC oven temperature was programmed as follows: 2 min hold 

at 40 oC, 10 oC/min ramp to 300 oC, 5 min hold at 300 oC.  The injector and detector 

temperatures were 250 oC and 300 oC, respectively, and the split ratio was 5:1. 

Concentrations were determined by the external standard method.  

In order to identify the products, a gas chromatography-mass spectrometer (GC-MS) 

(Clarus 500 GC-MS, Perkin-Elmer) with a capillary wax Rtx-WAX column (length: 60 

m, diameter: 0.25 mm, thickness of stationary phase 0.25 µm) was also used.  

5.3 Results and discussion 

5.3.1 Catalyst characterization  

The XRD patterns of the nickel-based carbide catalysts with four different metals 

(Mo, Nb, W, and Zr) supported on Al-SBA-15 are shown in Figure 34. For all the 

catalysts, the broad peak between 2θ = 15–30° corresponds to the mesoporous silica. The 

XRD patterns of the catalysts show three main peaks at 2θ = 44.6o, 52.2o, and 76.3o, 

corresponding to the (111), (200), and (220) diffractions of the Ni particles, 

respectively.144 There is no indication of Ni carbide formation, confirming that Ni metal 

was easily reduced to form Ni particles, in agreement with the findings of Gajbhiye et 

al.71 The carbide phases of Mo, Nb, and W were observed; however, the carbide phase of 

Zr was not observed, which may suggest that the Zr carbide phase was very well 

dispersed on the support or the particles were too small to be detected by XRD.74  
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Figure 34. XRD patterns of NiMoC/Al-SBA-15, NiWC/Al-SBA-15, NiZrC/Al-SBA-15, 
 and NiNbC/Al-SBA-15. 

 

5.3.2 Effect of sub- and super-critical water on hydrothermal decarboxylation of 

oleic acid 

Four different catalysts for the hydrothermal decarboxylation of oleic acid under sub-

critical conditions (350 oC and 16.5 MPa) and super-critical conditions (400 oC and 32 

MPa) were evaluated. As a control experiment, hydrothermal decarboxylation of oleic 

acid in super-critical water was conducted in the absence of catalyst with only 4.7% 

conversion observed, which is in agreement with Fu et al.74 Also, the influence of the 

support (Al-SBA-15 with no metals) on the hydrothermal decarboxylation of oleic acid 
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was studied under supercritical conditions and showed similar conversion to that 

observed for the control experiment.   

Table 12 summarizes the results for the hydrothermal decarboxylation of oleic acid 

under super-critical conditions after 4 h reaction time for the four catalysts supported on 

Al-SBA-15. All of the catalysts exhibited similar conversion of oleic acid (30-33 %) 

which can be attributed to the absence of rich H2 environment. The major product of the 

reaction from every catalyst was unsaturated C17 arising directly from decarboxylation 

and decarbonylation reactions. The NiWC/Al-SBA-15 produced heptadecane with a 

selectivity of 0.72%; while less than 0.1% heptadecane selectivity was obtained from the 

other catalysts. These results suggest that the NiWC/Al-SBA-15 has slightly higher 

activity for the hydrogenation reaction than others. This may be attributed to the variation 

in the valence shell for tungsten and the other metals (Mo, Nb, and Zr). The electrons in 

tungsten’s valence shell (5d) have higher average energy than the electrons in the other 

metal’s valence shell (4d). Therefore, the hydrogenation activity of tungsten catalyst was 

higher than the other metal catalysts. The GC-FID spectrum of the product obtained from 

the NiWC/Al-SBA-15 catalyst, Figure 35, shows that an oxygenated compound (γ-

Stearolactone) was observed in the product at a level of roughly 21-35% for all of the 

catalysts. The double bond in the oleic acid migrates from the position of (Δ9) to the (Δ4) 

position before ring closure resulted in the γ-Stearolactone.148 The presence of the double 

bond in oleic acid may promote oligomerization paths that produce higher molecular 

weight materials, which do not elute from the GC-FID. Although Fu et al.74 shows that 

the conversion of oleic acid over activated carbon after 3 h at 370 oC was 80%, the 
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selectivity of heptadecane was only 7%. Also, only partial hydrogenation of oleic acid 

(31%) to stearic acid took place over Pt/C after 9 h at 300 oC.72,75   

Table 12. Conversion and product selectivity for the hydrothermal decarboxylation of 
oleic acid after 4 h reaction in super-critical water. 

Catalyst on 
(Al-SBA-15) Conversion 

(%) 

Selectivity (%) 

C17 Unsaturated 
C17 C18 Unsaturated 

C18 
NiMoC 32.8 0.08 62.5 0 3.1 

NiNbC 30.7 0 67.6 0 1.9 

NiWC 30.7 0.72 53.6 0.04 1.8 

NiZrC 30.1 0.09 67.7 0 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. GC-FID spectrum of the product obtained from the hydrothermal 
decarboxylation of oleic acid after 4 h reaction in super-critical water over the NiWC/Al-

SBA-15 catalyst. 
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A proposed mechanism of hydrothermal decarboxylation of oleic acid in super-

critical water based on the previous results is shown in Figure 36. During the 

hydrothermal decarboxylation of oleic acid, the carboxylic acid donates protons by the 

heterolytic cleavage of the O-H bond, generating a carboxylate and hydrogen ions. 

Heptadecenes (unsaturated C17) are produced due to the removal of CO2. The in situ 

generated hydrogen (as a result of heterolytic cleavage of the O-H bond in oleic acid) is 

consumed by the hydrogenation of oleic acid or unsaturated C17 to form stearic acid or 

heptadecane, respectively. The produced stearic acid is then decarboxylated to generate 

more heptadecane. Moreover, hydrogen molecules can also be generated from water-gas 

shift reactions.149 A similar sequential hydrogenation–decarboxylation pathway for oleic 

acid in dodecane solvent was proposed by Immer et al.150 

 

 

 

 

 

 

 

 

 

 

Figure 36. Proposed reaction mechanism for the hydrothermal decarboxylation of oleic 
acid in super-critical water. 
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The catalysts were evaluated for the hydrothermal decarboxylation activities of oleic 

acid in sub-critical water (350 oC) (Table 13). Under sub-critical conditions, all of the 

catalysts exhibited lower conversion and product selectivity for the hydrothermal 

decarboxylation of oleic acid than for super-critical conditions. The major products were 

oxygenated compounds, with no measurable amount of stearic acid. These results suggest 

that higher temperature promotes the hydrogenation-decarboxylation reactions of oleic 

acid. The decarboxylation of oleic acid over Pt/SAPO-11 after 2 h increased from 20% to 

90% as the temperature increased from 200 oC to 325 oC. Also, the heptadecane 

selectivity increased by a factor of 4 when the temperature increased to 325 oC.151 At 

super-critical conditions, water becomes a highly reactive medium due to the reduction in 

dielectric constant and increasing in self-dissociation constant.75  

Table 13. Conversion and product selectivity for the hydrothermal decarboxylation of 
oleic acid after 4 h reaction in sub-critical water. 

Catalyst on 

(Al-SBA-15) 

Conversion 

(%) 

Selectivity (%) 

C17 
Unsaturated 

C17 
C18 

Unsaturated 

C18 

NiMoC 13.1 0 34.6 0 0.96 

NiNbC 15.3 0 31.1 0 0.83 

NiWC 15.6 0.01 35.8 0.03 1.01 

NiZrC 12.9 0 28.5 0 0.77 

 

The pretreatment (pre-reduction) of the catalysts did not significantly affect the 

hydrothermal decarboxylation of oleic acid at super-critical conditions (400 oC) for 4 h 

reaction (Figure 37), which indicates that the pre-reduction step was not necessary 

because there was not much oxide on the catalyst surface. A similar finding by Fu et al.72 

shows that the pre-reduction step of Pt/C and Pd/C catalysts did not alter the catalyst 
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activity for the hydrothermal decarboxylation of palmitic acid. Also, the pre-reduction of 

activated carbon did not show a significant effect on the hydrothermal decarboxylation of 

palmitic acid.74    

 

 

 

 

 

 

 

 

Figure 37. Effect of the catalyst pre-reduction on the hydrothermal decarboxylation of 
oleic acid after 4 h reaction in super-critical water. Conversion of oleic acid and 

selectivity of unsaturated C17 (a), Selectivity of C17, C18, and unsaturated C18 (b). 
 

5.3.3 Effect of adding glycerol on hydrothermal decarboxylation of oleic acid 

The effect of in situ H2 production via glycerol APR (Rxn. 1) on the hydrothermal 

decarboxylation of oleic acid in super-critical water was examined. The need for external 

hydrogen is a basic challenge for conventional lipid hydrotreatment processes;63,64 

however, the production of in situ hydrogen may alleviate this challenge.   

                                                  C3H8O3 + 3 H2O                       7 H2 +3 CO2          (Rxn. 1) 

Three different initial glycerol loadings were investigated for the hydrothermal 

decarboxylation of oleic acid at super-critical condition as shown in Figure 38. 

Theoretically, the 0.156 mmol of oleic acid requires 0.156 mmol of H2 to completely 

hydrogenate the oleic acid into stearic acid as shown in (Rxn. 2).   
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                                                  C18H34O2 + H2                        C18H36O2                 (Rxn. 2) 

Based on Rxn. 1, the three initial glycerol loadings (0.12 mmol, 0.24 mmol, and 0.48 

mmol) can generate H2 of 0.84 mmol, 1.68 mmol, and 3.36 mmol, respectively. The 

NiMoC, NiNbC, and NiZrC supported on Al-SBA-15 performed similarly with the three 

different glycerol loadings as shown in Figure 38. A slight increase in the stearic acid 

selectivity (Figure 38 b) and decrease in the unsaturated C17 selectivity (Figure 38 d) 

were observed when 0.12 mmol of glycerol was added. Also, the NiMoC, NiNbC, and 

NiZrC catalysts required higher glycerol loading (0.48 mmol) in order to obtain higher 

oleic acid conversion (Figure 38 a). However, a significant improvement in the 

conversion of oleic acid (Figure 38 a), selectivity of stearic acid (Figure 38 b), and 

selectivity of heptadecane (Figure 38 c) was observed for the reaction over NiWC 

catalyst with the addition of only 0.12 mmol of glycerol. The conversion of oleic acid and 

selectivity of heptadecane over NiWC catalyst reached 97.3% and 5.2% after adding 0.48 

mmol glycerol. However, the production of unsaturated C17 decreased with the addition 

of glycerol (Figure 38 d), which suggests that the direct decarboxylation of oleic acid 

decreased. These results suggest that hydrogenation of oleic acid dominates the reaction 

in the presence of excess H2 to produce stearic acid. A complete hydrogenation of oleic 

acid into stearic acid and partial decarboxylation of stearic acid to produce heptadecane 

(24%) was observed when the reaction was carried out over Pt/C at 300 oC for 9 h, 

suggesting that the hydrogen concentration greatly affects the catalyst decarboxylation 

performance.75   

The addition of glycerol to the reactants of the hydrothermal decarboxylation of oleic 

acid improved the conversion of oleic acid and the selectivity of heptadecane. Figure 38 
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illustrates a comparison of the catalyst performance before and after adding glycerol, 

indicating that all the catalysts utilized the glycerol for generating hydrogen. However, 

the NiWC/Al-SBA-15 exhibited the greatest potential for utilizing the in situ produced H2 

from glycerol to hydrogenate the oleic acid and then decarboxylate the produced stearic 

acid to produce heptadecane. The higher hydrogenation activity of the NiWC/Al-SBA-15 

catalyst in comparison to others may be attributed to its fractional sum of 

electronegativity that falls in the range of electronegativity of noble metal catalysts.152 

Therefore, the rates of adsorption and desorption are similar to those observed for the 

noble metals. In addition, the high electron energy in the outermost shell of tungsten may 

be another reason for the higher activity of NiWC/Al-SBA-15 in comparison to the other 

catalysts.  

A reaction sequence as shown in Figure 39 is likely wherein the hydrogenation of 

oleic acid initially takes place to produce stearic acid followed by decarboxylation of 

stearic acid to form heptadecane. A similar finding by Vardon et al.75 suggested that the 

hydrogenation of oleic acid to produce stearic acid, and followed by decarboxylation of 

the stearic acid over (Pt/C and Pt-Re/C) increased after adding glycerol. Although Pt/C 

and Pt-Re/C showed higher production of heptadecane than the catalysts in this study, the 

CO produced during fatty acid decarbonylation can inhibit the activity of those noble 

catalysts.147    

The product distributions obtained from the NiWC/Al-SBA-15 catalyst were 

influenced by the glycerol addition (0.48 mmol) as shown in Figure 40. The oxygenated 

products that were produced from the hydrothermal decarboxylation of oleic acid with no 

glycerol addition diminished after adding the glycerol. Also, some shorter hydrocarbons 
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(C10-C16) were apparent in the GC-FID spectrum, suggesting that the NiWC/Al-SBA-15 

catalyst exhibited some cracking activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Conversion and product selectivity for the hydrothermal decarboxylation of 
oleic acid with different initial glycerol loading after 4 h reaction in super-critical water. 

Conversion of oleic acid (a), selectivity of stearic acid (b), selectivity of C17 (c), 
selectivity of unsaturated C17 (d). 

 

 

 

 

 

Figure 39. Reaction sequence for the hydrothermal decarboxylation of oleic acid in the 
presence of glycerol in super-critical water. 
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Figure 40. GC-FID spectrum of the product obtained from the hydrothermal 
decarboxylation of oleic acid with glycerol addition (0.48 mmol) after 4 h reaction in 

super-critical water over the NiWC/Al-SBA-15 catalyst. 
 

5.3.4 Conversion of lipids (soybean oil) to hydrocarbons 

The process that is used to hydrolyze triglycerides to produce free fatty acids and 

glycerol in hydrothermal media is commonly called “fat-splitting”.149,153,154 The previous 

experimental results support the idea of using triglyceride-based biomass such as soybean 

oil as a feedstock to produce hydrocarbons via hydrothermal decarboxylation reaction. 

No additional glycerol is required since glycerol molecules are generated from the 

hydrolysis of triglycerides. Following hydrolysis, liberated glycerol can undergo catalytic 

APR reactions to generate H2.75 Also, glycerol can be catalytically decomposed to 

generate CO that is consumed to produce additional H2 from the water-gas shift reaction.     

A nearly complete conversion of soybean oil (>95% triglycerides) was obtained from 

the hydrothermal decarboxylation reaction to produce heptadecane, unsaturated C17, 

unsaturated C18, stearic acid, oleic acid, and linoleic acid as shown in Table 14. The 
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soybean oil used in this study had a fatty acid profile of 2-5% stearic acid, 20-30% oleic 

acid, 50-60% linoleic acid and 5-11% linolenic acid. All of the catalysts exhibited good 

hydrolysis activities of triglycerides. The soybean oil (triglycerides) is converted to its 

major fatty acids (oleic acid and linoleic acid) in addition to other fatty acids such as 

stearic acid and linolenic acid. Also, the presence of stearic acid suggests that some of the 

oleic acid and linoleic acid were hydrogenated to produce stearic acid. Although several 

studies show that the rate of hydrogenation of linoleic acid is greater than oleic acid,155-157 

the selectivity for hydrogenation of linoleic acid decreases as temperature increases.158 A 

19-31% selectivity to unsaturated C17 was observed for each catalyst, indicating a 

decarboxylation of oleic acid and linoleic acid took place. No oleic acid was observed 

when the reaction was carried out over the NiWC/Al-SBA-15. Also, the highest stearic 

acid selectivity was obtained from the NiWC/Al-SBA-15; therefore, this catalyst has the 

best hydrogenation activity, as observed previously. The results for the NiWC/Al-SBA-

15 suggest that heptadecane was produced from either the decarboxylation of stearic acid 

or from the hydrogenation of unsaturated C17.     

Table 14. Product selectivity for the hydrothermal decarboxylation of soybean oil after 4 
h reaction in super-critical water. 

Catalyst 
Selectivity (%) 

C17 C17* C18 C18* Stearic 
acid 

Oleic 
acid 

Linoleic 
acid 

NiMoC 0.04 31.1 0 2.9 19.3 9.6 20.1 

NiNbC 0.04 31.1 0 2.9 16.2 14.4 19.7 

NiWC 2.1 19.7 0 3.7 39.6 0 15 

NiZrC 0.03 30.5 0 2.6 14.3 18.2 21 

* Unsaturated components  !
 

5.4 Conclusion 
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Catalytic hydrothermal decarboxylation processing is a promising method for 

converting low-quality lipid feedstocks, such as brown grease, which are typically high in 

free fatty acids and triglycerides, into hydrocarbon fuels. Several catalysts, Ni-based 

transition metal carbides supported on Al-SBA-15, were investigated for the 

hydrothermal decarboxylation of oleic acid. The effect of catalyst reduction, sub- and 

super-critical conditions on the catalysts performance was examined. Super-critical water 

promotes the hydrogenation-decarboxylation reactions of oleic acid due to the increase of 

water reactivity at super-critical temperature. Water at super-critical condition becomes a 

more reactive medium with lower dielectric constant and higher self-dissociation 

constant. The utilization of APR of glycerol for in situ hydrogen production motivates the 

hydrogenation of oleic acid to stearic acid and production of heptadecane especially over 

NiWC-Al-SBA-15. The NiWC/Al-SBA-15 showed higher hydrogenation activity than 

other catalysts, which may be attributed to its fractional sum of electronegativity that falls 

in the range of electronegativity of noble metal catalysts and the high electron energy in 

the outermost shell of tungsten. The NiWC/Al-SBA-15 shows a great potential to 

hydrolyze triglycerides, generate in situ H2 from glycerol, hydrogenate oleic acid and 

linoleic acid to form stearic acid, and produce heptadecane. However, further 

hydrothermal decarboxylation of stearic acid is needed to enhance the selectivity to green 

diesel hydrocarbons.   It is envisioned a bifunctional catalyst, or a two-step process can 

be developed for hydrothermal decarboxylation of triglycerides: first step for 

hydrogenation of unsaturated fatty acids over a modified NiWC/Al-SBA-15, and second 

step for decarboxylation of saturated fatty acid to produce alkanes. Thus, modified 

NiWC/Al-SBA-15 catalysts may provide an economically viable process for the 
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hydrothermal decarboxylation of fatty acids and triglycerides derived from low-quality 

sources without the need of additional H2. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Relatively inexpensive bimetallic catalysts, nickel-based carbide catalysts combined 

with other metals (Mo, Nb, W, and Zr) and supported on Al-SBA-15, exhibited great 

performances for producing green diesel from hydrocracking of non-edible vegetable oils 

(DDGS corn oil). Also, these catalysts showed promising results for producing green 

diesel from hydrothermal decarboxylation of oleic acid and soybean oil. However, 

several factors can contribute in determining and improving the activity and selectivity of 

the catalysts for the hydrocracking and hydrothermal decarboxylation reactions. The 

following conclusions can be obtained according to the results from the three 

accomplished projects:    

Effect of Metal Ratio and Preparation Method on Nickel−Tungsten Carbide 

Catalyst for Hydrocracking of Distillers Dried Grains with Solubles Corn Oil 

• The activity and selectivity of NiWC/Al-SBA-15 catalyst for the hydrocracking of 

DDGS corn oil are significantly varied with the metal ratio (Ni-W) and the 

preparation method.  

• The activity and selectivity of NiWC/Al-SBA-15 catalyst for the hydrocracking of 

DDGS corn oil are improved with enhancing the degree of metal dispersion on 

the support and suppressing the formation of metal alloys. 

• Both the metal ratio and preparation method influence the metal dispersion and 

metal alloy formation. 

• Ni content is an important factor in designing NiWC/Al-SBA-15 catalyst for the 
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hydrocracking of DDGS corn oil because it is essential for activating hydrogen 

and increasing the metal dispersion.   

• Not only did the DENP method enhance the metal dispersion and prevented alloy 

formation, it also decreased the particle size of the catalyst.  

Hydrocracking of DDGS corn oil over transition metal carbides supported on Al-

SBA-15: Effect of fractional sum of metal electronegativities 

• The closer the fractional sum of the transition metal electronegativities is to the 

electronegativity range of the noble catalysts (2.0–2.2), the better the catalyst 

performance will be. However, this is not the only factor that controls the catalyst 

activity. The BET surface area, particle size, pore size, and metal composition can 

also affect the activity and selectivity. 

• The catalyst, NiWC/Al-SBA-15, with the fractional sum of the electronegativities 

value within the range of noble metal electronegativity (2.0-2.2) exhibited the 

highest catalytic performance.   

• Doping a promoter (Ce) brought the fractional sum of the electronegativities of 

the transition metals closer to the (2.0-2.2) range, and improved the catalyst 

performance.  

This study shows a promising approach for producing biofuels (green diesel) from 

low quality (non-edible) renewable sources under relatively mild reaction conditions. 

Also, this study shows that the bimetallic carbide catalysts can replace noble catalysts 

(expensive catalysts) and sulfided catalysts. Therefore, this study overcomes some of the 

challenges that are associated with biofuel productions.     
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Biofuels Production from Hydrothermal Decarboxylation of Oleic Acid and 

Soybean Oil Over Ni-based Transition Metal Carbides Supported on Al-SBA-15 

• The activity of transition metal carbide catalyst supported on Al-SBA-15 for the 

hydrogenation-decarboxylation of oleic acid was promoted on super-critical 

water. 

• The catalysts, especially NiWC/Al-SBA-15, showed a great potential for utilizing 

APR of glycerol for in situ hydrogen production. The in situ hydrogen production 

motivates the hydrogenation of oleic acid to stearic acid and production of 

heptadecane. 

• The NiWC/Al-SBA-15 catalyst exhibited higher hydrogenation activity than the 

other catalysts, which may be attributed to its fractional sum of electronegativity 

that falls in the range of electronegativity of noble metal catalysts and the high 

electron energy in the outermost shell of tungsten in comparison to the other 

metals. 

6.2 Recommendations 

For the hydrocracking of DDGS corn oil over NiWC/Al-SBA-15, there are two 

possible reasons for declining the diesel selectivity over the time: the secondary reactions 

that convert the green diesel to alcohols and the Si leaching out of the catalyst that leads 

to a collapse of the Al-SBA-15 structure. The following recommendations are for the 

future study: 

• Minimize the effect of the produced water, from the hydrodeoxygenation reaction, 

on changing the catalyst structure and promoting the secondary reactions that 

convert green diesel to alcohols.   
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• Modify the support by combining Al-SBA-15 and zeolite to improve the 

mechanical and thermal stability of the support.  

• Develop a cost model in order to study the possibility of the process to be 

commercialized. 

After adding glycerol for the hydrothermal decarboxylation of oleic acid, the 

conversion of oleic acid increases toward forming stearic acid (hydrogenation reaction) 

rather than forming decarboxylation products. Moreover, the decarboxylation products 

were produced from the decarboxylation of stearic acid. The following suggestions are to 

help in understanding the mechanism of the hydrothermal decarboxylation reaction:  

• Synthesize a tri-metallic carbide catalyst (NiWPdC) supported on Al-SBA-15. 

Therefore, NiW will be responsible for the hydrogenation of oleic acid to stearic 

acid, while Pd will be responsible for the decarboxylation of stearic acid to 

produce heptadecane.  

• Use a two-step process: first, using NiWC/Al-SBA-15 catalyst to hydrogenate 

oleic acid to produce stearic acid. Second, use Pd/C or NiWC/Al-SBA-15 catalyst 

for the hydrothermal decarboxylation of stearic acid to produce heptadecane. 

!
!
!
!
!
!
!
!
!
!
!
!
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The purpose of this research is to minimize the gap between the production of 

biofuels and the production of petroleum-based fuels by developing catalysts that can 

utilize renewable non-food based feedstocks (waste vegetable oils, algal oil, brown 

grease, etc.) and have great performance under low operation conditions. In particular, 

green diesel has become an attractive biofuel due to its superior properties that are quite 

similar to petroleum diesel. Therefore, no modifications are required to existing 

infrastructures. Three distinct experimental phases have been identified in order to 

achieve the objective of this work as follow:        

First, the hydrocracking of distillers dried grains with solubles (DDGS) corn oil over 

bimetallic carbide catalysts was explored for green diesel production. A catalyst 

composed of nickel−tungsten (Ni−W) carbide supported on Al-SBA-15 was designed 

based on the ability of nickel to adsorb and activate hydrogen and the potential of 

tungsten for hydrogenation reactions. Four different Ni−W ratios (1:9, 1:1, 2:1, and 9:1) 

were prepared by the impregnation method to study the effect of metal ratio on the 
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catalyst structure, activity, and selectivity. Catalyst activity was evaluated in a fixed bed 

reactor at 400 °C and 650 psi (4.48 MPa) with a hydrogen flow rate of 30 mL min-1 and 

DDGS corn oil flow rate of 0.08 mL min-1. The catalysts showed significant differences 

in activity and selectivity, with the catalyst having a Ni−W ratio of 9:1 achieving 100% 

conversion of corn oil and 100% selectivity to diesel for 2 days. Results indicate that by 

minimizing metal alloy formation and enhancement of the metal dispersion leads to 

higher activity, selectivity, and durability of the catalysts. A dendrimer-encapsulated 

nanoparticle (DENP) method was employed to minimize alloy formation and increase the 

metal dispersion on the support. The catalysts prepared by the DENP method showed 

activity greater than that of the catalyst prepared by the impregnation method for the 

hydrocracking of DDGS corn oil. 

Second, Nickel-based carbide catalysts combined with four different metals (Mo, Nb, 

W, and Zr) and supported on Al-SBA-15 were investigated for the hydrocracking of 

DDGS corn oil to produce biofuels under mild reaction conditions. The effects of the 

fractional sums of the electronegativities of the transition metals on the catalyst activities, 

selectivities, and stabilities were investigated. The closer the fractional sum of the 

transition metal electronegativities was to the electronegativity range of the noble 

catalysts (2.0–2.2), the better was the catalyst performance. The highest diesel selectivity 

was obtained from NiWC/Al-SBA-15, with a fractional sum of electronegativity of 2.06. 

The effects of doping a promoter (Ce) on the catalyst electronegativity and activity were 

studied. Adding Ce generally improved the catalyst performance, by adjusting the 

combined electronegativities nearer to 2.0–2.2. However, other parameters affected by Ce 

addition, such as textural properties, or the performance of individual metals could also 



!

!

106!

impact catalyst performance. The NiNbC/Al-SBA-15 catalyst promoted with 5% Ce 

maintained stable activity for 168 h at 400 ◦ C and 4.48 MPa H2 . 

Third, several Ni-based transition metal carbide catalysts supported on Al-SBA-15 

were studied for the hydrothermal decarboxylation of oleic acid and soybean oil to 

produce diesel range hydrocarbons with no added H2. The effect of pre-reduction, sub-

critical and super-critical water conditions on the catalyst activity and selectivity was 

investigated. Both the conversion of oleic acid and selectivity of decarboxylation 

products under super-critical conditions for each catalyst were about 2-times greater than 

at sub-critical conditions. In addition, the potential of these catalysts for utilizing aqueous 

phase reforming (APR) of glycerol for in situ H2 production to meet process demands 

was demonstrated. The performance of the catalysts increases with the addition of 

glycerol, especially for the NiWC/Al-SBA-15 catalyst. With the addition of glycerol, the 

NiWC/Al-SBA-15 catalyst showed greater conversion of oleic acid and selectivity to 

heptadecane; however, most of the oleic acid was hydrogenated to produce stearic acid. 

The highest conversion of oleic acid and selectivity for heptadecane was 97.3% and 

5.2%, respectively. Furthermore, the NiWC/Al-SBA-15 catalyst exhibited good potential 

for hydrolyzing triglycerides (soybean oil) to produce fatty acids and glycerol, and then 

generating H2 in situ from the APR of the glycerol produced. A complete conversion of 

soybean oil and hydrogenation of produced oleic acid were obtained over the NiWC/Al-

SBA-15 at super-critical conditions.              
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