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CHAPTER 1: INTRODUCTION 

Magnetic fabrics in volcanic and shallow intrusive igneous rocks can be a result of 

various geological processes that may depend on magma flow and deformation 

subsequent to emplacement (Ellwood, 1978; Hrouda, 1982; Tarling and Hrouda 1993; 

Canon-Tapia, 2004; Zhang et al 2011).  Anisotropy of magnetic susceptibility (AMS) has 

been used as a tool to study the emplacement mode and deformation history of 

intrusive igneous rocks. The Beaver River Diabase (BRD) is a series of intrusive dikes 

and sills in northeastern Minnesota that represent some of the youngest rocks of the 

Midcontinent Rift System that are exposed. In this study, AMS and other magnetic 

properties of rocks from the BRD are investigated in an attempt to understand the 

emplacement and deformation history in the context of the Midcontinent Rift, and to 

characterize the dominant magnetic carriers of the Beaver River Diabase (BRD).   

1.1 Geologic Background 

The Midcontinent Rift is a rift system that extends from central Kansas to Lake 

Superior, and then turns southward into central Michigan. Rocks associated with this 

system are exposed along the North shore of Lake Superior in Minnesota, and consist 

of associations of bimodal (felsic and mafic) volcanic, plutonic, and clastic sedimentary 

units from the 1.0–1.2 Ga old Keweenawan sequence (Morey & Green 1982). The 

Midcontinent Rift System (MRS) is composed of a lower sequence of predominantly 

flood basalts and related intrusions, and an upper red bed sequence of largely fluvial 

sediment, which together have been broadly folded into asymmetric basins due to 

syndepositional downwarping and late contractional deformation (Van Schmus & Hinze, 

1985). Seismic surveys reveal basalt flow thicknesses as great as 20 km in some axial 
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portions of the rift (Cannon et al 1989). The source of these lava flows is suggested to 

be melting from an impinging mantle plume that fed the entire rift system during its 

formation (Hutchinson et al., 1990).  The ~1.1 Ga MRS consists of mostly intrusive 

igneous rocks that were emplaced into co-magmatic volcanic rocks of the North Shore 

Volcanic Group (Van Schmus & Hinze 1985). The predominance of intrusive igneous 

rocks in northeastern Minnesota provides a unique look into the late-stage evolution of 

the MRS. The geochronology of this area suggests that rift development was episodic 

with magmatism concentrated in short episodes lasting between one and three million 

years, followed by long periods of inactivity lasting between two to eight million years 

(Paces and Miller 1993).  

The two main intrusive complexes in northeastern Minnesota are the Duluth 

Complex and the Beaver Bay Complex, which are exposed around the north shore of 

Lake Superior. The Duluth Complex was emplaced near the unconformity between the 

earliest basalt flows and the pre-rift basement (Miller and Chandler 1997). Thus, the 

intrusions in this complex are more deeply seated in the rift system than many other 

Keweenawan age intrusives, and they display evidence of igneous layering, cumulate 

textures and mineral foliation (Van Schmus, 1985). The Beaver Bay complex (BBC) 

covers an area of greater than 600 km2, and includes intrusions along the Lake Superior 

shoreline from as far south as Split Rock Point up to Grand Marais at its northern most 

extension. Furthermore, the BBC extends around 20 km inland, west of the Lake 

Superior shoreline (Miller & Chandler 1997). Studies from the U.S Geological Survey’s 

COGEOMAP program describe the BBC as being composed of at least 13 major 

intrusive units that demonstrate various styles of emplacement, a broad range of 
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parental magma compositions, and unique crystallization histories. Miller and Chandler 

(1997) suggest that the creation of the BBC is closely related to Graben formation and 

active volcanism related to the main phase of rifting of the MRS. High precision U-Pb 

dating of zircons from intrusive rocks in the Duluth complex and BBC suggest periodic 

intrusive activity in this area between 1.107 and 1.096 Ga (Paces and Miller 1993), 

which is roughly half the duration of magmatic activity in the MRS, which occurred from 

1.109 and 1.086 Ga (Miller and Chandler, 1997). The onset of magmatic activity of the 

BBC in relation to the Duluth Complex is unknown because attempts to date the oldest 

intrusive phases of the BBC were unsuccessful (Paces and Miller, 1993).  

The Beaver Bay Complex postdates the Duluth complex, and occurs as a cluster 

of small to medium sized sheet and dike-like intrusions. Most of these thin mafic-to-

felsic intrusions formed at medial to shallow levels within the rift succession (Miller and 

Green, 2002). Magnetic and gravity anomalies associated with this rift system are first-

order geophysical features of North America and delineate the extensive nature of rift-

related rocks even under thick Paleozoic sedimentary cover (Chase and Gillmer, 1973; 

Cannon, 1994; Hause, 1996; Hinze, 1997; Stein et al., 2011).  

In this study the focus is on the Beaver River Diabase intrusion, and a suite of 

rock magnetic measurements will be used, including anisotropy of magnetic 

susceptibility (AMS), high-temperature susceptibility, and hysteresis properties, to better 

understand the emplacement mechanisms and rifting history preserved within the 

Beaver Bay Complex (BBC). 

The BRD dikes and sills were emplaced into the medial levels of the 6-10 

kilometer-thick North Shore Volcanic Group and occur over an arcuate area extending 
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120 km in length and 20 km in width (Figure 1). The BRD is primarily composed of fine 

to medium-grained ophitic olivine gabbro rocks. The BBC includes rocks extending from 

the shoreline at Split Rock Point to Little Marais. The BRD is one intrusion of eleven 

BBC units. Parental composition of the BRD from Miller and Chandler (1997) show a 

dominant composition of 48% SiO2 with up to 10.5% FeO, which is important for rock 

magnetic studies. The BRD is the most widespread unit of the BBC that is in contact 

with all the other BBC units as mentioned by Miller and Chandler (1997). In this study, 

some samples were collected from the southern portion of the BRD as shown in Figure 

1. In this region, the outcrops are a part of an originally continuous, nearly horizontal 

sheet that has locally been eroded. Other samples were collected from the 

southwestern margin. These outcrops contain continuous dike / dike-like features that 

dip slightly to the southeast. Samples collected from the Silver Bay region are from the 

youngest recognized intrusions of the BBC. The outcrops in this region are intermediate 

in composition. Studies and mapping by Miller (198l), Shank (1989), and Chalokwu and 

Miller (1992), found that this unit has an in situ differentiation trend that is rich in iron. 

Within some of the BRD units, there are large inclusions of pure anorthosite that display 

brecciation and recrystallization textures (Morrison et al., 1983; Miller and Chandler, 

1997). Lastly, the wide-ranging intermediate compositions found in several outcrops in 

the southern region of the BBC suggest derivation from the fractionation of a magma 

chamber at various stages of differentiation during the formation of the BBC (Miller, 

1988; Miller and Chandler 1997).  
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1.2 Previous Studies 

Several petrological and tectonic studies of the BBC have been conducted. 

However, few studies have investigated magnetic fabrics in certain units of the BBC. 

The study conducted by Maes et al. (2007) of the Sonju Lake Intrusion used AMS to 

assess whether magnetic fabric formed as a result of gravitational settling in a 

fractionating magma chamber, compaction in a dynamic environment after 

unidirectional flow, or a combination of the two. In a dynamic 

 
Figure 1. Geologic map showing the Beaver Bay Complex in northeastern Minnesota. The Beaver River 

Diabase is highlighted in orange. The map also includes a zoomed in view of the area sampled, and sites are 
marked with green boxes. 
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environment, such as a crystal laden density flow, a clear lineation is expected to 

develop (Benn and Allard 1989), while compaction is more likely to generate oblate 

fabrics, suggesting that both processes took place to some extent. Using AMS and 

other magnetic properties, such as hysteresis measurements, to investigate the 

emplacement and flow patterns within the Sonju Lake intrusion, Maes et al (2007) 

reported the primary source of the magnetic carrier to be a pseudo-single domain (PSD) 

magnetite or titanomagnetite. In addition, well-aligned magnetic lineations that are 

consistently plunging shallowly toward the southwest indicate that the source of the 

magma producing the intrusion is a horizontal sill-like feeder.  

The BRD borders parts of the Sonju Lake intrusion, so it is expected that some 

results, especially those pertaining to prominent magnetic carriers and to a certain 

extent the source of magma should be similar. 

1.3 Objectives & Hypotheses 

 Based on previous studies, field and geological map observations, a couple 

hypotheses can be made regarding rocks from the Beaver River Diabase.  

1. The magnetic mineralogy in the BRD should be due to magnetite or some variant 

composition.  

2. If the BRD was emplaced through a main feeder dike arc oriented NE-SW, then 

flow directions in subsequent sills and dikes should be away from the feeder 

dike, or in SE-NW orientations. In addition, the directions of maximum 

susceptibility (Kmax) will be used to infer the flow directions.  
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The goals of this study are two-fold:  

1. Characterize the magnetic mineralogy of rocks from the BRD, including their 

magnetic domain state distribution, using experiments such as magnetic 

susceptibility as a function of high temperature, and hysteresis parameters.  

2. Quantify the magnetic fabric, and attempt to interpret the emplacement and 

deformation history of the BRD using AMS.  
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CHAPTER 2: FIELD WORK, SAMPLING, AND SAMPLE PREPERATION  

Samples were collected from 20 sites with outcrops belonging to the Beaver River 

Diabase. The samples were labeled with the prefix BRD, followed by a number indicating which 

site they were collected from, and another number indicating location within a site when multiple 

sampling locations were chosen (i.e. BRD_1_1). Four to eight specimens were then drilled from 

each location at each site. Individual cores were labeled with uppercase letters (i.e. 

BRD_1_1A). Furthermore, the specimens were cut into several specimens, and a lower case 

letter was added to the label that indicates what type of measurement the specimen was going 

to be used for (i.e. BRD-1-1Aa). Table 1 lists the location, number of cores collected, and the 

rock type of the samples from each site. 

Table 1. General site and sample information. 

Site 
Name 

Latitude Longitude 
# of 

Cores 
Rock Type 

BRD_1_1 47.19998514 -91.38013085 7 Olivine Bearing Gabbro 

BRD_1_2 47.19939987 -91.3812707 5 Olivine Bearing Gabbro 

BRD_1_3 47.19873304 -91.38247925 5 Olivine Bearing Gabbro 

BRD_2 47.21938922 -91.35246309 6 Olivine Bearing Gabbro 

BRD_3_1 47.26748075 -91.30089353 5 Olivine Bearing Gabbro 

BRD_3_2 47.26745977 -91.29947966 3 Olivine Bearing Gabbro 

BRD_4 47.28906234 -91.26327689 5 Olivine Bearing Gabbro 

BRD_5 47.31299141 -91.25391889 1 Anorthosite 

BRD_6 47.26342813 -91.35367458 1 Olivine Bearing Gabbro 

BRD_7 47.31686957 -91.22404466 6 Olivine Bearing Gabbro 

BRD_8 47.352945 -91.18386477 6 Olivine Bearing Gabbro 

BRD_9 47.36913596 -91.16706986 4 Olivine Bearing Gabbro 

BRD_10 47.3741306 -91.16428713 6 Olivine Bearing Gabbro 

BRD_11 47.41197534 -91.24215154 7 Olivine Bearing Gabbro 

BRD_12_1 47.40866026 -91.19045975 5 Olivine Bearing Gabbro 

BRD_12_2 47.4094067 -91.18815421 8 Olivine Bearing Gabbro 

BRD_13 47.29828646 -91.26806746 6 Olivine Bearing Gabbro 

BRD_14_1 47.52075703 -91.06771836 6 Rhyolite? 

BRD_14_2 47.52290121 -91.06947283 8 Olivine Bearing Gabbro 

BRD_16 47.58420605 -91.0806785 6 Olivine Bearing Gabbro 

BRD_17 47.48460595 -91.19324182 6 Olivine Bearing Gabbro 
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BRD_18 47.36806441 -91.27423433 6 Olivine Bearing Gabbro 

BRD_19 47.33951177 -91.31900957 7 Olivine Bearing Gabbro 

BRD_20 47.33244214 -91.3253756 7 Olivine Bearing Gabbro 

 

2.1 Sampling Locations  

Fieldwork was conducted the week of May 2nd, 2013. Financial and time 

constraints did not allow for a complete sampling of the entire extent of the BRD, and 

thus the area studied was the southern half of the BBC as shown in Figure 1. The area 

studied is located in the southern portion of Lake County and part of the southwestern 

portion of Cook County in Minnesota, and spans along the shoreline from the city of 

Two Harbors in the southwest near Split Rock Lighthouse State Park, to near 

Temperance River State Park in the northeast, and inland to the cities of Silver Bay and 

Finland. (Figure 1)   

Samples were collected from BRD outcrop locations determined using geologic 

maps provided by James D. Miller, from the University of Minnesota in Duluth, and from 

digital maps provided by Dean Peterson from Duluth Metals. In addition, several road 

maps and a GPS device were used in order to determine the locations of many of these 

outcrops.  

A total of 20 sites were sampled. Ten sites were at or near the Lake Superior 

shoreline on the eastern boundary of the BRD, five were on the western boundary of the 

BRD, and the remaining five were scattered in-between. Most of the sites along the 

shoreline were exposed from road cuts along Minnesota State Highway 61 and were 

easy access on the side of the road, while others were more difficult to get to and had to 

be accessed by foot.   
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2.2 Sampling Methods 

Major field equipment, including a drill and core orienter, was borrowed from the 

Institute for Rock Magnetism at the University of Minnesota in Minneapolis. Oriented 

cylindrical core samples were collected using a water-cooled drill (Pomeroy EZ Core 

Drill Model D261-C) with a 1-inch diameter diamond drill bit (Pomeroy BSS-1E). Cores 

were drilled to between 2 and 4 inches long. Cores were oriented using a standard 

paleomagnetic core orienting apparatus (Pomeroy Orienting Fixture) as shown in Figure 

2. The orienting fixture was used to measure the trend and plunge of the 1-inch in-place 

drilled cores. It uses a Brunton compass and an attached vertical protractor for angle 

measurement. When possible, trend azimuth was additionally measured using a sun 

compass attached to the apparatus to account for inaccuracies caused by local 

magnetic fields. After drilling, the core sample usually remains attached at the base, and 

must be removed using a special, non-magnetic, brass chisel. Before detaching the 

core, we place the orienting apparatus into the hole, and level the Brunton compass by 

rotating and adjusting the angle. A copper wire was used to mark the top of the core by 

placing it through a slot in the tube and dragging it along the top of the core. For cases 

when the core broke during drilling, we oriented the empty drill hole. Before drilling the 

actual core sample, a shallow mark was made by the drill bit so that broken cores can 

be re-oriented after the hole has been oriented (Figure 3). To avoid miss-orientation of 

the core after removal, an arrow is drawn on the side of the core pointing out of the hole 

to indicate the surface of the outcrop (Figure 4). The core is then labeled and packed in 

a sample bag along with other cores from the same site. We sampled 20 sites, with 4 to 

7 cores per site. 
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Figure 2. Student Lauren Schraeder orienting a drilled sample using the Pomeroy Orienting Fixture 

with a Brunton Compass installed. 

 

 
Figure 3. Red Arrow: Drill mark used to allow for proper orientation if drill core breaks. 

Green arrow: Actual drill core. 

 
Figure 4. Illustration of a one inch diameter and length cylindrical core sample. Black arrows point toward the 

surface of the outcrop, red arrow points up 
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2.3 Sample Preparation 

Measurements of all magnetic parameters, including AMS, hysteresis properties, 

and high temperature susceptibility were conducted at the Institute for Rock Magnetism 

(IRM) at the University of Minnesota in Minneapolis, and were made possible through a 

Visiting Fellowship awarded to Samer Hariri for this study. Samples were prepared 

accordingly for each type of measurement and will be discussed in the subsections 

below. The samples were cut and prepared at the IRM. Detailed information pertaining 

to the magnetic properties measured and details regarding the instruments used will be 

discussed in later chapters of this document. The following subsections only describe 

how samples, for each magnetic property and the specified instruments, were prepared.  

2.3.1 Anisotropy of Magnetic Susceptibility (AMS) Sample Preparation 

 For AMS measurements conducted using the Geofyzika KLY-2-KappaBridge and 

the Roly-Poly Bridge, the one-inch core samples were cut into one inch length 

cylindrical cores (Figure 4). Effort was made to have the deepest end of the cores be 

cut rather than those closer to the surface of the outcrop to avoid near surface 

weathering, but some samples were not as long as others and had to include portions 

that were closer to the surface. The mass of all samples was then measured.  

 Another arrow (red in Figure 4) was marked on the top surface of the specimen 

such that it is perpendicular to the field arrow and pointing toward the direction of that 

arrow (where the core was scribed in the field), essentially, this arrow points up on this 

surface. The red arrow is used in determining the position of the sample when placed in 

the holder of both instruments.   
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2.3.2 Vibrating Sample Magnetometer (VSM) Sample Preparation 

 For VSM measurements using the Princeton Measurements micro-VSM (hot) 

instrument, the core samples were cut into thin disks roughly 1 cm in length. The 

samples were then properly labeled with the specimen name. Effort was made to use a 

deeper part of the original core for this measurement, again to avoid near-surface 

weathering. For these measurements, only one specimen from each site was chosen as 

representative of the entire site, and not all core specimens from the site were used.  

2.3.3 High Temperature Susceptibility Sample Preparation  

 For high temperature susceptibility measurements using the Geofyzika KLY-2-

KappaBridge (in Curie temperature mode), one representative specimen from each site 

was used. A small chip of the specimen, anywhere between 1 and 5 grams was 

crushed into smaller chips, and powdered so that it could be inserted into a small test 

tube which would be inserted into the furnace attachment of the instrument. The test 

tubes were marked with the name of each specimen.  

 

Figure 5. Left: High Temperature specimens in test tubes. Right: High pressure crushing apparatus. 
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CHAPTER 3: MAGNETISM & ANISOTROPY OF MAGNETIC 

SUSCEPTIBILITY  

3.1 Introduction 

It is known that magnetic properties are a result of moving charges. On the 

atomic level, electrons orbiting a nucleus of an atom are similar to a current (I) flowing 

through a conducting loop. The current will induce a magnetic field, H, specific to the 

loop. This magnetic field is mathematically described as the ratio of the current divided 

by the diameter (d) of the loop.  

H = I/d      (3.1) 

This gives the loop an intrinsic magnetic strength that is called the magnetic moment, 

m, over the area (A) of the loop.  

m = IA      (3.2) 

The intensity of this magnetization (M) is thus equivalent to the magnetic moment per 

unit volume (V).  

M = m/V     (3.3) 

3.2 Classes of magnetic materials 

When magnetic fields are applied to materials, such as rocks, the electron spins 

produce a magnetization that opposes the original field that created it. Following this 

premise, it can be said that all materials are magnetic or can exhibit some form of 

magnetism. However, some materials will be more magnetic than others. The level at 

which materials become magnetized depends on the overall magnetic moments 
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produced at the atomic level. The variation in magnetization levels and of magnetic 

behavior divides materials into the following five groups: 

1. Diamagnetic 

Diamagnetic materials exhibit weak magnetic behavior. The atoms in 

diamagnetic materials have no net magnetic moments because all of their 

electrons are paired. When immersed in an external magnetic field, the magnetic 

moments of these materials will align antiparallel, or opposite to the external field, 

thus they have a negative magnetization.  

2. Paramagnetic 

Paramagnetic materials have unpaired electrons in partially filled orbitals, and 

thus can have some net magnetic moment. When immersed in an external field, 

partial alignment of magnetic moments will occur parallel to the field, but the 

magnitude of such alignments is small and thus will still be considered to be 

weak and the materials to be nonmagnetic. Both diamagnetic and paramagnetic 

materials will lose their magnetizations when the external field is turned off. 

3. Ferromagnetic 

Ferromagnetic materials exhibit electric force interactions that produce parallel 

alignment of magnetic moments that are strong and very prominent. The 

magnetic moments can align even in the absence of an external magnetic field. 

This is known as spontaneous magnetization. When immersed in a high field, 

ferromagnetic materials reach a maximum magnetization known as saturation 

magnetization. The magnetization does not increase beyond the maximum no 

matter how large the external field gets. 
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4. Antiferromagnetic 

Antiferromagnetic materials will exhibit magnetic moments in their crystal lattices 

that are equal but opposite to one another, resulting in a net moment of zero. 

Some moments, however, might be slanted or tilted and thus result in a small net 

magnetization of the material. Such materials are called canted 

antiferromagnetic, and hematite is a classic example of a canted 

antiferromagnetic material. 

1. Ferrimagnetic 

Ferrimagnetic materials have complex crystal structures and molecular ordering 

that results in multiple magnetic sublatices. This is common in ionic compounds 

such as oxides. The electric force interactions are negated by oxygen ions in 

between the magnetic lattices. These interactions result in variation in the 

magnitude of the magnetic moments, resulting in a net magnetic moment. 

Ferrimagnetic materials behave exactly like ferromagnetic ones, except that in 

ferrimagnetic materials, while the moments are antiparallel to one another, they 

have different magnitudes, resulting in a net magnetic moment.  

Ferrimagnetic materials have small regions between 10-6 and 10-4 m (larger than 

atomic scale of ~10-10 m) called magnetic domains. The magnetization in each domain 

may not be parallel to its neighboring domain, which is why ferrimagnetic materials have 

varying magnetic moments.  

 The domain state of materials depends on the grain size of that material. If the 

grain size is very small, then the magnetic moment of that grain will be uniform and 

point in one direction. However, as the grain size increases, energies associated with 
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the charge distribution will affect the electric forces, and thus create multiple sources of 

magnetic fields, creating two or more moments in one grain. This effect is referred to as 

the magnetostatic energy. However, to maintain the separations of magnetic moments 

within one grain, domain walls are created, and they require energy as well, which is 

referred to as wall energy. As a result of the balance between magnetostatic and wall 

energy, grains will not be infinitely divided into multiple domains. The size of the grain 

determines the number of domains that will be created (Dunlop, 1981; Tarling and 

Hrouda, 1993; Dunlop and Ozdemir, 1997).  

There are four magnetic domain states: 

1. Superparamagnetic (SPM) refers to grains of magnetic materials that are too 

small to form a true and stable magnetic domain, and thus behave as 

paramagnetic. 

2. Single Domain (SD) refers to grains of magnetic material that are small enough 

to include only one magnetic domain, but large enough to have a stable domain. 

3. Psuedo-Single Domain (PSD) refers to grain sizes that are slightly larger than 

single domain, but one domain is dominant, so the behavior is similar to single 

domain. 

4. Multidomain (MD) refers to large grain sizes that include many magnetic 

domains. Because domain walls, once created, are relatively easy to move, 

magnetism held in multi-domain materials is constantly changing by realigning 

with the external field. 
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Domain states can be determined using hysteresis properties, which will be 

discussed in Chapter 4. In addition to domain state, magnetic behavior is also 

dependent on temperature. Effects of temperature will be discussed in Chapter 5. 

3.3. Magnetic susceptibility  

 Before AMS is introduced in this chapter, it is important to describe the concept 

of magnetic susceptibility. The magnetic susceptibility (often known as the bulk 

magnetic susceptibility, χb) is a parameter used to describe how materials behave 

magnetically when immersed into a uniform, usually low frequency magnetic field. 

Mathematically, magnetic susceptibility is the ratio of the induced magnetization (Mi) 

and the external magnetic field (H). This makes χb a unitless parameter when volume 

normalized, or have units of m3/kg when mass normalized.  

Mi = χb H     (3.4) 

Magnetic susceptibility can be used as a tool to extract information regarding the 

composition of a rock sample, since all minerals within a rock contribute to the bulk 

magnetic susceptibility. It is a relatively quick method to investigate magnetic fabric, 

grain size, domain states, and mineralogy of rocks (Tauxe 2008). At the atomic level, 

magnetic susceptibility is a result of the response of electronic orbits and/or unpaired 

electron spins to an applied magnetic field. The diamagnetic component is usually weak 

when measuring magnetic susceptibility, whereas the paramagnetic component is 

strong. If there are trace amounts of ferrimagnetic minerals in a rock, then the 

ferrimagnetic component will dominate the magnetic susceptibility. In highly magnetic 

minerals, such as magnetite, the susceptibility is dominated by shape anisotropy, where 

the shape of the grain determines the direction of easy magnetization. A sphere has no 
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shape anisotropy, where a needle would have high shape anisotropy, with preferred 

magnetization direction parallel to the long axis of the needle. Shape anisotropy 

produces a maximum susceptibility parallel to the long axis, because that’s where all the 

magnetic moments align at saturation (Tauxe 2008). 

3.4 Anisotropy of Magnetic Susceptibility 

The anisotropy of magnetic susceptibility (AMS) is a measure of the directional 

dependence of a rock’s response to an external magnetic field, and is frequently used 

as a measure of the shape preferred orientation of the magnetic minerals within a rock, 

because AMS is usually dominated by shape anisotropy (Tarling and Hrouda, 1993). 

The variation of susceptibility based on orientation can be mathematically described as 

a second-order tensor that can be presented as a three-dimensional ellipsoid. 

AMS is a useful tool for measuring intrinsic properties of petrofabrics, and can 

provide more detailed interpretations than bulk susceptibility on its own. The 

interpretation of AMS results proves troublesome when used alone because of the 

variation of magnetic properties with mineralogy and grain size. It is therefore important 

to combine AMS with information on composition, grain size, and other geologically 

relevant information to make reasonable geological interpretation of magnetic fabric.  

There are three types of AMS, magnetocrystaline, stress, and shape. 

Magnetocrystaline anisotropy depends on the preferred direction of the electron spins in 

the crystal lattice of magnetic minerals. Strain anisotropy is related to spin-orbit coupling 

which arises from the strain dependence of anisotropy constants. Shape anisotropy 

depends on the shape of the magnetic mineral grains. The magnitude of AMS depends 

on the anisotropy of the minerals and their alignment within a rock. Unfortunately, AMS 
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is not able to distinguish one from the other. One reason why the interpretation of AMS 

is difficult is because the shape anisotropy of magnetic grains can differ depending on 

the domain state. Thus, other magnetic properties such as hysteresis and high 

temperature susceptibility aid in the interpretation of AMS results.  

3.5 Calculation of AMS  

The susceptibility tensor in AMS is calculated using a least squares technique 

(Girdler 1961, Janak 1965, Jelinek 1977, Hanna 1977). When a low external magnetic 

field (<1mT) is applied to a magnetically anisotropic sample, the magnetization, M, is 

not parallel to the applied field, H, and its three perpendicular parts can be written as:  

M1 = χ11H1 + χ12H2 + χ13H3     

M2 = χ21H1 + χ22H2 + χ23H3    (3.5) 

M3 = χ31H1 + χ32H2 + χ33H3 

The coefficients χij are the elements of the second order tensor that is the AMS 

tensor. Thus using subscript notation we get: 

Mi = χij Hj     (3.6) 

This is also expressed as a matrix: 

χ𝑖𝑗 =  (

χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

)   (3.7) 

where χ12 = χ 21, χ 23 = χ 32, and χ 31 = χ 13 
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3.6 AMS Methods 

Different methods can be used to measure AMS. In this study, the 15-position 

scheme was adopted from Jelinek, 1977 (Figure 6). The measurements were 

conducted at the Institute for Rock Magnetism, at the University of Minnesota, in 

Minneapolis. The susceptometer used was the Geofyzika KLY-2 KappaBridge AC 

Susceptibility Bridge. In addition, some samples were measured using the “Roly-Poly” 

Magnetic Anisotropy Bridge, an in-house designed AMS bridge that uses stepper 

motors that rotate the sample at 1.8 degree increments in three orthogonal planes, and 

provides a total of 600 directional susceptibility measurements from which the best-fit 

AMS tensor is obtained by least squares fitting. This device was only used for samples 

that had higher magnetizations because those with low values of magnetization showed 

considerably large error ellipses.  
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Figure 6. The 15 position AMS measuring sequence taken from Jelinek 1987. Image source: AGICO MFK1 
User Guide. 

 The AMS tensor can be represented by a three-dimensional ellipsoid that has 

maximum (κmax), intermediate (κint) and minimum (κmin) directions, each orthogonal to 

one another. The mean value of the susceptibility is given by κmean, where κmean = (κmax 

+ κmin + κint) / 3.  

Characterization of the magnetic fabric uses ratios of pairs of the principle axes. 

Of these, Balsey and Buddington (1960) proposed the lineation ratio: 

L = κmax/κint     (3.8) 

Stacey (1960) used the foliation ratio: 
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F = κint/κmin     (3.9) 

In this study, the parameters devised by Woodcock (1977) were used to 

calculate the lineation and foliation axial ratios. Here, the natural log of the ratios L and 

F are taken: 

L’ = ln (L)     (3.10) 

F’ = ln (F)     (3.11) 

This adaptation allows for slightly easier interpretation of the AMS data. 

Nagata (1961) proposed the Anisotropy Degree, P where: 

P = κmax/κmin     (3.12) 

Owens (1974) suggested the use of a “Total” anisotropy parameter, A, where: 

A = (κmax – κmin )/ κmean   (3.13) 

Today, the most studies use the corrected Anisotropy parameter, Pj, by Jelinek 1981 

where: 

𝑃𝑗 = 𝑒√2[(η1 − η̅̅̅)
2

+ (η2 − η̅̅̅)
2

+ (η3 − η̅̅̅)
2

]  (3.14) 

where η 1 = ln κmax; η 2 = ln κint, η 3 = ln κmin, and η̅̅̅ = (η 1+ η 2+ η 3)/3.  

The corrected degree of anisotropy incorporates the intermediate and mean 

susceptibility rather than just the maximum and minimum values, making it a more 

informative parameter than P or A. In addition, it expresses the magnetic properties 

using logarithmic values of susceptibility.  
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The shape factor parameter, T (Jelinek, 1981), can be used to determine the 

shape of the ellipsoid, and it combines lineation and foliation parameters, thus including 

all three principal susceptibilities in its calculations.  

T = (2η2 − η1 − η3) / (η1 − η3)    (3.15) 

These parameters provide useful relationships that can be used to analyze AMS 

results. Various plotting conventions are used in the literature; most common are the 

Flinn, Ramsay, and Jelinek diagrams (Figure 7). The Flinn diagram plots the lineation 

and foliation ratios, F vs L after Flinn (1962). The Ramsay diagram (Ramsay, 1976) is 

similar except that it has the advantage of having a minimum value of zero on both axes 

as opposed to 1 on the Flinn diagram. The Jelenik diagram plots the corrected 

anisotropy (Pj) vs. the shape factor (T) after Jelinek (1981).  

The Flinn and Ramsey diagrams are polar plots, where the radial trajectory from 

the origin indicates increasing anisotropy, and the shape is reflected in the angle above 

or below the radial trajectory such that the shape is oblate if below the line, and prolate 

above it. However, only points that lie along the plot axes (F or L) are ever truly oblate 

or prolate, and the rest of the plot is in the “triaxial” region, meaning all three principal 

axes are different from one another.  

The Jelenik diagram is Cartesian, where the corrected anisotropy increases 

along the x-axis, and the shape factor along the y-axis. Points that lie above the x-axis 

(positive T values) are considered oblate, whereas those that lie beneath the x-axis 

(negative T values) are prolate. Again, it is often practiced that only those points that 

have values of T=1 or T=-1 can be considered truly oblate or prolate, with anything 

falling in between considered triaxial.  
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Figure 7. Examples of graphs used in analysis of AMS data. a) Flinn Diagram b) Ramsey Diagram c) Jelenik 
Diagram. Source: Adopted from Tauxe, 1998. 

In addition to the above plots, Tauxe et al, (1998) used a ternary projection plot 

that uses three axes as shown in figure 8. The projection plots the normalized 

eigenvalues τ1, τ2, and τ3 and when τ1 > τ2 > τ3, the projection area is limited to the 

bottom right of the ternary diagram as shown in Figure 8 below. The projection can then 

be plotted as a normal x-y plot using the parameters of Elongation (E’) and Roundness 

(R) , as devised by Tauxe 1998, where: 

E’ = τ1 + 0.5 τ3     (3.16) 

and 

R = sin (60°) τ3    (3.17) 

In addition, the ternary projection provides one more bit of information, and that is 

the percent anisotropy (%h) devised by Tauxe in 1990. The percent anisotropy 

increases on a diagonal slope downward as shown in figure 8.  

%h = 100(τ1 – τ3)     (3.18) 
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Figure 8. Example of Ternary diagram. a) There are three axes with limits of τ1, τ2, τ3. Data falls into the 

shaded triangle.  
b) Zoomed in area showing how diagram can be plotted using elongation, E', and roundness (R). 

3.7 Results 

The Ramsay, Jelinek, and Ternary Projection (Figures 10, 11, and 12) all show 

that most of the data is triaxial, with the exception of sample BRD 11, which shows a 

more oblate shape and also has the highest percent anisotropy. The specimens 

collected from site 1, BRD 1-1, 1-2, and 1-3 have similar degrees of anisotropy and 

percent anisotropy, but differ in shape such that BRD 1-1 is triaxial, BRD 1-2 somewhat 

triaxial, and BRD 1-3 having a significant increase in its shape factor towards oblate. At 

this location, the outcrop was a sill in the center that turned into a dike on the southern 

end as shown by a change in orientation of columnar joints in Figure 9. It can be thus 

speculated that samples collected from sill like structures might be more oblate in shape 

than those from dikes.  
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Figure 9. Site BRD 1-1 outcrop. At southern margin (to the left), columnar joints are tilted due to the 
transition from sill (vertical columns) to dike (horizontal columns) 

AMS results from the BRD are shown in Tables 2, 3, and 4. The mean values of 

the susceptibility ranges from 1881 x 10-6 to 43833 m3/kg. Sites with the highest 

susceptibilities include 14-2, and 16-1, and that with the lowest is 8-1. The percent 

anisotropy values ranged from 0.42% to 13.16%. The highest of these values is from 

site 11-1, and the lowest is from site 14-1. Ten sites had values less than 1%, eight had 

values between 1% and 2%, and the remaining six had values greater than 3%. These 

six sites are 17-1, 16-1, 14-2, 9-1, 15-1, and 11-1 respectively. 
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Table 2. AMS Mean Values and Eigen Values. 

 

Site ĸmax, mean ĸint, mean ĸmin, mean Mean Susceptibility ĸ Ƭ1 Ƭ2 Ƭ3

1-1 26431.28571 26169.74286 25869.82857 26156.97143 0.336829323 0.33349633 0.329674347

1-2 24886.26 24728.3 24505.4 24706.66 0.335756522 0.333625382 0.330618095

1-3 18234.92 18151.98 17869.08 18085.3 0.33609051 0.334561831 0.329347659

2-1 26646.43333 26333.35 25880.73333 26286.85 0.337893213 0.333923123 0.328183664

3-1 16965.722 16680.166 16133.68 16593.19 0.340816979 0.33508057 0.324102451

3-2 9697.97 9570.543333 9248.953333 9505.823333 0.340071231 0.335602859 0.32432591

4-1 10434.416 10210.712 10000.732 10215.28 0.340483706 0.333184058 0.326332235

6-1 18135.2 17895.4 17265 17765.2 0.340275745 0.335776312 0.323947943

7-1 10459.37 10396.24167 10321.70667 10392.42167 0.335480104 0.333455288 0.331064608

8-1 1930.7425 1893.1425 1819.3025 1881.0625 0.342136869 0.335473968 0.322389164

9-1 8908.08 7725.8475 6940.09 7858.015 0.377877042 0.327727232 0.294395726

10-1 8233.408333 8167.256667 8079.485 8160.045 0.336329979 0.333627722 0.3300423

11-1 20374.74286 19355.42857 13384.40571 13384.40571 0.383599832 0.364408974 0.251991194

12-1 8010.708 7914.04 7867.002 7930.584 0.336701083 0.332637994 0.330660922

12-2 7795.355714 7743.257143 7674.28 7737.63 0.335820088 0.333575707 0.330604205

13-1 5710.886 5629.64 5533.932 5624.814 0.338433744 0.333619012 0.327947244

14-1 8009.253333 7962.195 7908.125 7959.858333 0.335401861 0.333431209 0.33116693

14-2 47768.62857 43753.94286 39977.61429 43833.37143 0.36325902 0.332729134 0.304011847

15-1 18345.99 15344.714 13696.97 15795.894 0.387146877 0.323812348 0.289040775

16-1 34144.9 31736.33333 29680.95 31854.08333 0.357305566 0.332101384 0.31059305

17-1 9311.735 8838.325 8362.465 8837.498333 0.351220225 0.333364136 0.315415638

18-1 7617.4725 7500.0725 7335.105 7484.215 0.339268305 0.334039523 0.326692172

19-1 15248.06 14780.88714 14518.29 14849.08857 0.34228969 0.331802556 0.325907754

20-1 9196.25 9126.636 9011.55 9111.48 0.336434598 0.333887848 0.329677554
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Table 3. Fischer mean values for declination and inclination. Also showing the alpha 95% value. 

 

Site Declination Inclination Alpha (95%) n

1-1 164.2 57.5 22 7

1-2 98.7 59.2 30.3 5

1-3 108.1 54.9 46.4 5

2-1 83 74.1 39.5 6

3-1 24.7 36 64.3 6

3-2 341.8 64.3 104.6 4

4-1 338.7 73.1 86.4 5

6-1 339.5 78.8 0 2

7-1 276.1 45 84.1 6

8-1 351.3 58.1 37.5 5

9-1 353.9 76 89.7 4

10-1 53.7 36.7 62 7

11-1 320.6 33 42.1 7

12-1 308.9 51.1 36.9 6

12-2 233.2 66.4 64.2 7

13-1 285.6 58.9 41.9 5

14-1 330.7 81.9 89.7 6

14-2 95.7 51.7 43 7

15-1 355.7 57.1 82.1 5

16-1 98.9 72.7 40.4 6

17-1 43.7 39 72.2 6

18-1 69.2 79.5 102.1 5

19-1 350.7 81 36.5 8

20-1 182.4 82.1 88.6 5
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Table 4. AMS parameters. 

 

3.8 Discussion  

The magnetic anisotropy will be greatly influenced by the composition of a 

sample. Sites that showed the highest percent anisotropy definitely suggest the 

presence of ferrimagnetic minerals, such as magnetite (and more precisely a variation 

of titanomagnetites as shown in the results section of the high temperature susceptibility 

measurements, Chapter 5). Those with lower anisotropy and susceptibility values 

indicate small amounts of ferrimagnetic components.  

The directions of all the samples maximum and minimum axes are shown in 

Figure 13. The AMS data can be split into three categories based on the orientation of 

their AMS principal axes: a group that is representative of dike or dike like features, a 

Site Ln L (L') Ln F (F') Pj T Percent Anisotropy (h) Elongation (E') Roundness ( R )

1-1 0.009944483 0.011526521 1.018626106 0.073682543 0.715497655 0.501666497 0.285506359

1-2 0.006367507 0.009054835 1.013235328 0.174249024 0.513842695 0.50106557 0.28632367

1-3 0.004558791 0.015707801 1.017310932 0.550117615 0.67428512 0.50076434 0.285223439

2-1 0.011819111 0.017337392 1.025143986 0.189264134 0.970954836 0.501985045 0.284215391

3-1 0.016974607 0.033311336 1.043480263 0.324876673 1.671452834 0.502868205 0.280680956

3-2 0.013226607 0.034179587 1.040880019 0.441988236 1.5745321 0.502234186 0.280874477

4-1 0.021672208 0.020779075 1.037539283 -0.021039015 1.415147103 0.503649824 0.282612006

6-1 0.013311104 0.035862366 1.042440157 0.458606259 1.632780192 0.502249717 0.280547148

7-1 0.006053865 0.007195242 1.011439783 0.086147458 0.441549629 0.501012408 0.286710361

8-1 0.019666497 0.039784961 1.051587816 0.338401517 1.974770464 0.503331451 0.279197206

9-1 0.142387205 0.107256783 1.246199183 -0.140722082 8.348131582 0.525074905 0.254954178

10-1 0.008066993 0.010804938 1.016253901 0.145080288 0.628767934 0.501351129 0.285825016

11-1 0.051323112 0.36888265 1.433723824 0.755723901 13.16086378 0.509595429 0.218230776

12-1 0.012140749 0.005961348 1.016624015 -0.341363857 0.604016098 0.502031545 0.286360759

12-2 0.006705717 0.008947941 1.013465408 0.143239629 0.521588218 0.50112219 0.286311641

13-1 0.014328681 0.017146903 1.027382914 0.089536774 1.048649977 0.502407366 0.284010645

14-1 0.005892824 0.006814004 1.010982865 0.072494831 0.42349305 0.500985326 0.286798975

14-2 0.087787387 0.090262077 1.166445295 0.013898889 5.924717325 0.515264943 0.263281982

15-1 0.178639972 0.113596409 1.298031701 -0.222571749 9.810610244 0.531667264 0.250316654

16-1 0.073151047 0.066956761 1.129711284 -0.04421086 4.671251581 0.512602091 0.268981472

17-1 0.052178054 0.055344139 1.097266726 0.029445878 3.58045867 0.508928044 0.273157956

18-1 0.015531935 0.022240961 1.03272033 0.177614824 1.257613244 0.502614391 0.28292372

19-1 0.031117345 0.017925703 1.045095968 -0.268980873 1.638193627 0.505243567 0.282244394

20-1 0.007598621 0.012690083 1.017369689 0.250950572 0.675704448 0.501273375 0.285509137
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group that is sills, and a group that is dike turning into sill. Plotting the 

declination/inclination of min data onto stereonets provides us with a visual identification 

of dikes/sill features. The grouping is based on the assumption that minimum AMS 

directions are perpendicular to magma flow directions, so min should be perpendicular 

to intrusion walls (i.e. horizontal for dikes and vertical for sills). This assumption may 

break down at the margins of these intrusions, a phenomenon known as inverse 

magnetic fabric (Borradaile and Jackson, 1992). We first plotted the min directions for 

each site, and then based on the mean values of the minimum axes, the sites were 

separated into the three categories mentioned. After the separation, bootstrap statistics 

were performed to “clean” the data and it shows quite nicely the differences between 

sites that are from dike features, than those that are from sill.  

 

Figure 10. Ramsey diagram showing most samples to be triaxial except for one which is oblate. 
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Figure 11. Jelenik diagram showing shape factor and degree of anisotropy. 
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Figure 12. Ternary diagram (top) projected on an Elongation/Roundness plot (bottom). Sample 11-1 is the 

oblate outlier in this figure. Percent anisotropy increases to the bottom. 
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Figure 13. Bootstrap statistic stereonets for BRD samples. Top: maximum AMS inclination and declination 
values. Bottom: Minimum AMS inclination and declination values.  a) Congregation of points in the middle 
(max) and on the edges (min) suggest dike features with a slight SE flow. b) Congregation of points around 

the edges (max) and in the middle (min) suggests sill features. c) Points have no clear congregation, perhaps 
features are somewhere in between dikes and sills. Red triangles are data points from Table A1, black dots 

are bootstrap extrapolation with N=2000. 
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CHAPTER 4 – HYSTERESIS PROPERTIES  

4.1 Introduction  

 Ferromagnetic and ferrimagnetic materials that are immersed in an external 

magnetic field will retain a memory of that field once it is turned off. This is called 

remenance, and results in a property called hysteresis, where the magnetization of a 

sample in an increasing applied field follows a different path when the applied field is 

decreased. The full path of magnetization as the applied field is first increased, then 

decreased, reversed, and increased again is called a hysteresis loop. There are several 

useful parameters that arise from hysteresis measurements that can be used to infer 

sample grain size and domain state. These parameters are shown in Figure 14. The 

saturation magnetization (Ms) is the maximum magnetization value obtained when the 

applied external field reaches 1 T or more. When the applied external field is reduced 

back to zero, there is a remenant magnetization (Mr) left in the material. When the field 

turns negative, the magnetization will reach zero at an applied field value known as the 

coercivity of the material (Hc). Finally, the coercivity of remenance (Hr) is the point 

where the reverse field reduces the remanence magnetization to zero after the field is 

applied and then removed.   

The saturation magnetization and the coercivity can be related to grain size as 

shown in Figures 15 and 16 (Dunlop & Ozdemir 2007). The reduced saturation of 

remanence is the ratio of the remanent magnetization to the saturation magnetization. 

When plotted against the reduced remanent coercivity (the ratio of the coercivity of 

remanence to the coercivity), information pertaining to the domain state can be 

established (Day et al., 1977). This is referred to as the Day plot. The Day plot shows 
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the domain state of a material based on the ratios mentioned above. For grains that are 

single-domain (SD), the Mr/Ms ratio is greater than 0.5 and an Hcr/Hc ratio of 2 or less. 

For pseudo-single domain (PSD), Mr/Ms ranges between 0.1 and 0.5, while Hcr/Hc 

ranges between 2 and 4. For multi-domain (MD), Mr/Ms is less than 01 and Hcr/Hc is 

greater than 4. For SPM (Superparamagnetic state), Mr/Ms is a lot less than 0.01 while 

Hcr/Hc is greater than 10 (Day et al. 1977).  

Values for Hc vary for each domain state. For magnetite, SD grains can be 

anywhere between 10 and greater than 40 mT, PD range between 10 and 15 mT, while 

MD are less than 10 mT.  

From the relationship between grain size and hysteresis parameters, the domain 

state of a grain can be determined by the shape of a hysteresis loop. For example, 

loops that have high Mr and high Hc (typical of SD) will be wider than those for MD. 

Figure 17 shows examples of some of the shapes hysteresis loops can have for SD and 

PSD states. MD assemblages and theoretical behaviors of Mr/Ms and Hcr/Hc ratios are 

seen in Figure 18. 
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Figure 14. Hysteresis Loop Example from Dunlop & Ozdemir 2007. Note: In this document Mr refers to the 
remanent magnetization instead of Mrs.  

  

 
Figure 15. Mr/Ms ratio against grain size. (Dunlop & Ozdemir 2007) 
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Figure 16. Coercivty against grain size. (Dunlop & Ozdimeer 2007). 
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Figure 17. Three examples of shapes hysteresis loops can have. a) Potbelly shape indicative of PSD state. b) 
Wasp-waisted shape indiating two magnetic mineral dominance and PSD. c) Elongated potbelly with high Mr 

indicating SD. d) Day plot for all three examples. (Tauxe et al 2002). 

 

Figure 18. a) MD shape of hysteresis loop. b) Zoomed in on box to show theoretical behaviour of Hc. c) 

Theoretical relationship between Mr/Ms and Hcr/Hc. (Tauxe et al 2014). 
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4.2 Methods 

 Hysteresis properties were measured at the IRM using the Princeton Vibrating 

Sample Magnetometer (Hot) apparatus. The sample was attached to a plastic rod, and 

fixed to the vibrating rod on the top of the instrument. The sample was then calibrated 

such that it would be aligned at its geometric center relative to where the two coils that 

will produce the applied external field were located. After alignment is achieved, the 

instrument will vibrate the sample at a relatively high frequency and apply a changing 

magnetic field to a maximum value of 1 T. The field was then reduced to zero, and then 

increased to -1T, back to zero, and then to 1T, and finally back to zero. Measurements 

of the sample’s magnetization were taken every 20 mT. These measurements are then 

used to construct hysteresis loops for each sample.  

4.3 Results  

The samples were divided into 5 categories (A to E) first based on their 

saturation magnetization values, and second on the coercivity value. Samples had low 

saturation magnetizations (less than 0.3 Am2 /kg), medium (0.4-0.6 Am2 /kg) or they had 

high saturation magnetizations (greater than 0.6 Am2 /kg). In addition, the saturation 

magnetization may be used to infer grain size (Figure 15): lower magnetizations indicate 

small grain size, and higher magnetizations indicate larger grain size. Saturation 

magnetization however may also be related to the amount of magnetic material present 

within a sample. 

The coercivities vary with magnetization, there doesn’t seem to be a relationship 

between the coercivity of a specimen, and its magnetization value (Figure 19).  
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Figure 19. No apparent correlation between Ms and Coercivity. 

All hysteresis loops, for the most part, have a semi-potbellied shape with 

coercivity ranges between 5 and 27 mT (Figure 20). This suggests the presence of a 

PSD magnetite, or some variant of magnetite, as the dominant magnetic carrier in 

samples from the BRD. Categories A and B appear to have a low percentage of 

magnetite, whereas categories D and E have the highest percentages of magnetite 

present in the samples, and category C is somewhere in between. Table 5 shows the 

results of some the parameters. Refer to Appendix B for complete set of hysteresis 

loops done for this study.  

The Day plot (Figure 21) shows that most samples are PSD, while very few are 

MD. This is typical of natural samples and infers that the grain size of the magnetic 

carriers of most of these samples ranges between 0.1 to 20 microns.  

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

S
a
tu

ra
ti

o
n

 M
a
g

n
e
ti

z
a
ti

o
n

 (
M

s
) 

[A
m

/k
g

) 

Coercivity (Hc) [mT] 

Coercivity vs Saturation 
Magnetization 



42 
 

 

Table 5. Hysteresis properties of sites from the BRD. 

Sample Ms [Am/kg] Mr [Am/kg] Bc [mT] Bcr [mT] Bcr/Bc Mr/Ms 

BRD-1-1Fd 0.538557 0.07085 8.53266 28.73 3.367062557 0.131555249 

BRD-1-2Ed 1.1095 0.101719 10.3889 39.92 3.842562735 0.091680036 

BRD-1-3Bd 0.217991 0.0175848 8.39866 36.2 4.310211391 0.08066755 

BRD-2-1Bd 0.830588 0.0761487 10.3889 39.92 3.842562735 0.091680472 

BRD-3-1Ad 0.228214 0.0184094 8.39865 36.2 4.310216523 0.080667268 

BRD-4-1Dd 0.155127 0.0151512 10.0258 39.2 3.909912426 0.097669651 

BRD-6-1Ad 0.613661 0.131523 25.5075 63.49 2.489071842 0.214325173 

BRD-7-1Bd 0.2379 0.0286 12.95 51.1 3.945945946 0.120218579 

BRD-8-1Bd 0.0865746 0.0113225 16.4665 49.94 3.032824219 0.130783163 

BRD-9-1Ad 0.0698306 0.00789565 13.4721 59.44 4.412081264 0.113068626 

BRD-10-
1Ad 

0.0683693 0.00956462 14.7382 49.55 3.362011643 0.139896415 

BRD-11-
1Dd 

0.361943 0.0799615 15.7448 29.47 1.871729079 0.220922908 

BRD-12-
2Ad 

0.154734 0.02695 19.1353 46.49 2.429541214 0.174169866 

BRD-13-
1Dd 

0.136321 0.00720498 5.489 34.65 6.312625251 0.052853045 

BRD-14-1Cd 0.16225 0.020773 12.4438 40.98 3.293206255 0.128030817 

BRD-14-2Fd 0.3686 0.0633 16.25 52.49 3.230153846 0.171730874 

BRD-15-
1Ad 

0.0986957 0.0173797 16.3055 44.09 2.703995584 0.176093791 

BRD-16-
1Ad 

0.877133 0.15969 20.1445 46.65 2.315768572 0.182059049 

BRD-16-
1Dd 

1.29178 0.212978 17.9531 45.48 2.533267235 0.164871727 

BRD-17-1Bd 0.112798 0.0228961 16.1451 32.2 1.994413166 0.202983209 

BRD-18-1Cd 0.141263 0.0147664 10.5625 46.42 4.394792899 0.104531264 

BRD-19-1Cd 0.203612 0.0235103 11.9342 44.85 3.758106953 0.115466181 

BRD-20-1Bd 0.0661529 0.00905699 13.5115 44.4 3.286089627 0.136909947 
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Figure 20. Hysteresis loops normalized to show differences in shape. 
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Figure 21. Day plot showing the domain states of BRD samples. Most fall under the PSD state. 

4.4 Discussion  

The overall shape of the hysteresis loops is mostly uniform across all categories. 

While there are differences in the saturation magnetization and coercivities, they all 

indicate magnetite, or some form of magnetite, as the dominant magnetic mineral. 

Appendix B shows all the plots of these hysteresis loops. Differences in Ms of each 

category are likely related to different proportions of magnetite present at each site, as 

well as the grain size of the magnetic minerals.  
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CHAPTER 5 – HIGH TEMPERATURE SUSCEPTIBILITY 

5.1 Introduction  

 The magnetic susceptibility of a material is temperature dependent, especially in 

ferromagnetic and ferrimagnetic materials. The alignment of magnetic moments ceases 

at certain temperatures when the thermal energy is greater than electromagnetic 

energy. This is defined as the Curie temperature. Below the Curie temperature, the 

magnetic moments are aligned and considered to be ordered. Once the Curie 

temperature is reached, the magnetic moments become randomized, and the material 

loses its magnetic properties. Each material has an intrinsic Curie temperature, thus 

Curie temperature can be used to identify mineralogy of samples. However, various 

minerals may have similar curie temperatures; therefore additional information for 

mineralogical identification would be needed for more accurate magnetic mineral 

identification.   

 In iron oxides such as magnetite, the iron can be substituted by titanium (Nagata, 

1961). The electron spin configuration of titanium is different than in iron, thus magnetite 

with titanium substitution ratios (titanomagnetite) will experience different magnetic 

properties than pure magnetite. Figure 18 (Buttler, 1992; Tauxe et al., 2014) is a ternary 

diagram for iron oxides showing how titanium substitution changes magnetite into 

ulvöspinel.  

 Titanium substitution causes exsolution in magnetite grains. Diffusion of cations 

through magnetite crystals creates bands within a grain that are either titanium rich or 

titanium poor. This creates a change in the grain size of the crystal, which affects the 

magnetization and may alter the domain state of the magnetic grain (Feinberg 2005, 
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Tauxe et al 2014). Figure 19 shows a microscopic image of a magnetite crystal 

undergoing exsolution and having its grain size reduced. As discussed in chapter 4, 

smaller grain sizes allow for magnetization in one direction, while larger grain sizes 

allow for PSD and MD states. From this, it can be assumed that the more titanium rich a 

mineral is, the smaller the effective grain size. However, it should be noted that many 

titanomagnetite do not show exsolution. Furthermore, its domain state would be closer 

to single domain than not.  

 The curie temperature of titanomagnetites depends on the ratio of titanium 

substitution. Data from O’rielly (1984) show the relationship between curie temperatures 

and titanium substitution ratios (Figure 20).  

 

 

Figure 22. Terenary diagram of iron oxides from Buttler (1992) and Tauxe et al. (2014). 

 



47 
 

 

 

 

Figure 23. Microscopic images of a magnetite grain (a and b) showing how titanium substitution and 
subsequent exsolution of ulvöspinel affects magnetization and domain states. (Fienberg et al , 2005) 

 

 

Figure 24. Relationships between Ti-Substitution and a) magnetization per unit cell, b) cell size, c) Curie 
temperature. (Dunlop 1986) 

5.2 Methods 

 The Geofyzika KappaBridge at the IRM was used to collect high temperature 

susceptibility measurements. The appropriate samples were put in a glass test tube 

(Figure 5), and the tube was placed in the furnace apparatus as shown in Figure 18. 

The samples were heated up to 700 ˚C and then brought back to room temperature. 

The measurement increments varied as the temperature was increasing/decreasing.  
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Figure 25. KappaBridge with high temperature setting. 

5.3 Results 

 High temperature susceptibility results show a range of magnetic susceptibility 

from -2.86 to 12.52 m3/kg (x 10-6). Curie temperatures of all heating curves indicate 

some form of titanomagnetite in rocks of the BRD (Figures 26 and 27). The maximum 

titanium substitution (calculated from Curie temperatures using Dunlop et al 1986) was 

a value of 17%, as shown by the curie temperature of 455°C. Not all samples had 

reversible curves during cooling; this is an indication of alteration due to heating. 

Samples that had significant alteration showed evidence for the creation of TM40 with a 

curie point of 300°C during cooling. Most samples with alteration showed an increase in 

Ti-substitution as shown in Table 6 and in Figure 28 (refer to Appendix B for complete 

set of high temperature plots). Alternatively, a curie point of 300°C may indicate the 

presence of some sulfides such as Troilite, but the dominance of curie temperatures 
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between 575°C and 455°C suggests that Ti-poor titanomagnetite is the dominant 

magnetic mineral in BRD rocks.  

 

 

Figure 26. High Temperature susceptibility curves from dike sites. 
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Figure 27. High Temperature Susceptibility Curves from Sill sites. 

 

Figure 28. Alteration due to heating of BRD samples. 
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Table 6. High Temperature Susceptibility Data 

Sample 

Room Temp 
Susc. κ  

(m3/kg x 10-

6 ) 

Reversib
le 

Curves 

Curie 
Temp. 

(Heating
)     Tc 

(˚C) 

Possible 
Magnetic 

Carrier 
(Heating) 

Curie 
Temp. 

(Cooling)      
Tc (˚C) 

Possible 
Magnetic 

Carrier 
(Cooling) 

BRD-1-1 4.39 No 455 TM17 300 
TM40 

(Troilite?) 

BRD-1-2 7.33 No 480/540 TM14/TM06 560 TM03 

BRD-1-3 -0.22 No 480 TM14 410 TM24 

BRD-2-1 12.52 Yes 542 TM05 533 TM07 

BRD-3-1 4.30 Yes 515/560 TM09/TM03 488/555 TM13/TM03 

BRD-4-1 -1.59 No 538/570 
TM06/Magneti

te 
560 TM03 

BRD-6-1 na na na na na na 

BRD-7-1 -0.04 No 523 TM08 503/533 TM11/TM07 

BRD-8-1 -2.80 Yes 560 
TM03 

(Magnetite) 
555 TM03 

BRD-9-1 5.73 Yes 540 TM06 530 TM07 

BRD-10-
1 

-1.91 No 570 Magnetite 550 TM04 

BRD-11-
1 

4.05 Yes 577 Magnetite 568 Magnetite 

BRD-12-
1 

0.49 Yes 550 TM04 545 TM05 

BRD-13-
1 

-0.49 Yes 540 TM06 530 TM07 

BRD-14-
1 

-2.86 Yes 555 TM03 545 TM05 

BRD-14-
2 

3.61 No 510 TM10 360 TM31 

BRD-15-
1 

7.00 No 470/523 TM15/TM08 390/513 TM26/TM09 

BRD-16-
1 

8.30 No 550 TM04 460/530 TM17/TM07 

BRD-17-
1 

-1.09 Yes 565 
TM02 

(Magnetite) 
555 TM03 

BRD-18-
1 

na na na na na na 

BRD-19-
1 

-0.47 No 543 TM05 530 TM07 

BRD-20-
1 

na na na na na na 

Note: TMxx represents the percentage of Ti-substitution. Example: TM17 = 17% Ti-substitution. 
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5.4 Discussion 

Alteration due to heating is evident in a few samples as indicated by irreversible 

curves. It is unclear why there is variation in the TM values, but for samples where 

alteration clearly occurred, the TM values increased during alteration as indicated by the 

lower Curie temperatures on cooling curves. Whether or not this observation provides 

any historical implication relating to the thermal conditions that were present during the 

crystallization of rocks from the BRD is unclear at the moment.  

Furthermore, the amount of Ti substitution may be a result of proximity of 

specimens to the surface of the outcrop, as near surface specimens would be more 

subject to weathering and oxidation, and would be expected to have higher TM values 

compared with samples from deeper in the same core.  
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CHAPTER 6: SYNTHESIS OF RESULTS AND DISCUSSION 

6.1 AMS Discussion 

 Some questions that can be asked with regards to the AMS data are as follows. 

Are minimum susceptibility axes perpendicular to flow direction in dikes and sills, and 

thus perpendicular to the plane of dikes and sills? The emplacement of dikes is normally 

vertical, and that of sills is usually horizontal. Does this mean that in dikes, the minimum 

susceptibility axes will be horizontal, and in sill the minimum susceptibility aces be 

vertical? If this is the case, then the samples can be grouped based on their minimum 

susceptibilities as indicators of whether the specimens came from dikes or sills.  

It is known that magnetic fabric in igneous rocks may be formed by several 

geologic processes, including primary magma flow and deformation after emplacement 

(Ellwood, 1978, Hrouda, 1982, Tarling and Hrouda, 1993, Canon-Tapia, 2004, Zhang et 

al 2011). It has been established that the magnetic fabric of some igneous rocks is 

commonly related to their emplacement mechanism and the magmatic flow directions 

can be reconstructed from the orientation of the magnetic ellipsoids. This is what makes 

AMS a useful technique to infer magma flow direction and source. AMS can also 

provide clues concerning the extent of deformation.  

 In rocks where magnetic susceptibility is carried by ferrimagnetic minerals like 

titanomagnetite or magnetite, the origin of the AMS is related to the grain shape (shape 

anisotropy). In this case, k1 is parallel to the long axis of the particle (for multi-domain) 

and pseudo-single domain grains.  

To correctly interpret the direction of the maximum and minimum susceptibility 

axes, the fabrics have to be determined. There are three types of fabrics, “normal”, 
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“intermediate”, and “inverse” (Rochette et al 1991, 1992). These fabrics are defined by 

considering the relationship between the dike plane and the AMS eigenvectors. Normal 

fabric happens when the AMS foliation (K1-K2) plane is nearly parallel to the dike plane 

and magnetic foliation pole (K3) is nearly perpendicular to it. Intermediate fabric 

happens when K1 and K3 cluster close to the dike plane, while K2 is nearly 

perpendicular to this plane. Inverse fabric occurs when K2 and K3 form a plane parallel 

to the dike plane, and K1 is perpendicular to the dike wall. Most of the time however, 

measurements yield a random or disturbed distribution of these three axes, as was the 

case in this study. In general, normal fabrics are expected in the middle of dikes or sills, 

and intermediate and inverse fabrics are expected near the chilled margins.  

Although magnetic lineation K1, is generally assumed to be flow related, it turns 

out that it is not always a reliable flow direction indicator. K1 can be flow perpendicular 

and parallel in lava flows in dikes, and sometimes completely unrelated to flow direction 

(Geoffroy et al 2002, Gil-Imaz et al 2006). For normal fabrics, it is established that k1 

approximates the maximum stretching axis of a finite ellipsoid and k3 parallels to the 

maximum shortening axes (Hrouda 1982).  

Types of fabrics need to be defined in rocks to determine flow. Since there was 

no contact data available in the field, the type of fabric can’t be determined with 

certainty (whether it is normal, or inverse). Thus, making flow direction and fabric 

conclusions from the AMS results obtained in this study are difficult.  

6.2 Hysteresis Loops, High Temperature Susceptibility and Grain Size 

 While the relationship between grain size and hysteresis parameters have been 

shown in several studies, it is difficult to know for certain the reasons behind the 
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saturation magnetization and coercivity values. Is the saturation magnetization a result 

of the percentage of magnetic minerals in a sample, or is it the result of the grain size 

and thus the domain state of the mineral? Is it a combination of both? In the presence of 

exsolution, it has been shown that titanium substitution decreases the grain size 

available for magnetic moments to align within. This in turn changes the domain state of 

a mineral from MD or PSD to SD since the smaller the grain size, the more likely it will 

be SD.  

 The low values of titanium substitution in the BRD then suggests that the grain 

size is such that PSD states are possible, as indicated by the Day plot (Figure 21). 

Specimens with higher titanium substitution can then be considered to have higher 

exsolution levels, which in turn mean they would have higher Mr/Ms ratios, and lower 

Hcr/Hc ratios.  

6.3 Excluded Samples 

 It should be noted that not all samples were included as part of this study. Site 5-

1 was not a BRD outcrop, the sample extracted was anorthosite. Due to time 

constraints, not all specimens were measured across all the experiments performed.  

6.4 Possible Future Work 

Future analysis will investigate the relationship of AMS to rock fabric by 

measuring mineral crystal preferred orientations using electron backscatter diffraction. 

These measurements will supplement the AMS data, and provide links to the role of 

microstructure, texture and mineralogy in AMS.  In addition, petrologic and microscope 

imagine of grains will help in determining grain size and mineralogy and comparing it to 

the results obtained from this study. 
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CHAPTER 7 – CONCLUSION  

The hypotheses of this study were: 

1. The magnetic mineralogy in the BRD should be due to magnetite or some variant 

composition.  

2. If the BRD was emplaced through a main feeder dike arc oriented NE-SW, then 

flow directions in subsequent sills and dikes should be away from the feeder 

dike, or in SE-NW orientations.  

Hysteresis properties and high temperature susceptibility measurements indicate a 

PSD composition of titanomagnetite with a range of Ti-substitution ratios between zero 

and 17%, and with a grain size between 0.1 and 20 microns to be the dominant 

magnetic carrier of rocks from the BRD.  

 No measurements of contacts were made in the field with regards to the outcrops 

sampled in this study, thus conclusions regarding dikes and sills in terms of AMS cannot 

be made with confidence. Given that the magnetic fabrics in both dikes and sills can be 

inverted near the chilled margins, and since we were unable to determine proximity to 

chilled margin in the field due to poor outcrop coverage, we cannot assume that Kmax 

is perpendicular to dike or sill walls. The bootstrap stereonet projections indicate 

support for NW-SE flow directions in dikes and sills away from the feeder dike. The 

AMS results show that most samples are triaxial with relatively low anisotropy values. 

Some samples, however do exhibit high anisotropy and shape factors that are oblate, 

which is consistent with settling or compaction. 

 

 



57 
 

 

APPENDIX A – DATA TABLES 

Table A1. General Properties of Specimens collected from each site. 

Specimen_ID Specimen_azimuth Specimen_plunge Specimen_mass[g] Notes 

BRD-1-1Aa 340 68.5 32.0767   

BRD-1-1Ba 340 58 31.1775   

BRD-1-1Ca 320.5 63 30.1396   

BRD-1-1Da 339 64.5 31.1241   

BRD-1-1Ea 306 71 31.8565   

BRD-1-1Fa 295 73.5 31.7652 B 

BRD-1-1Ga 337.5 64 31.613 B 

BRD-1-2Aa 300 65.5 28.8327   

BRD-1-2Ba 290 44.5 31.5904   

BRD-1-2Ca 286.5 54 30.1841   

BRD-1-2Da 326.5 69 26.5585 Short 

BRD-1-2Ea 290.5 60 30.5953   

BRD-1-3Aa 303 47 31.8359   

BRD-1-3Ba 302 59.5 31.7296   

BRD-1-3Ca 306 52 31.6292   

BRD-1-3Da 320 73.5 29.9551   

BRD-1-3Ea 318 85 28.7742   

BRD-2-1Aa 307 71 31.1954   

BRD-2-1Ba 323 78 31.4046   

BRD-2-1Ca 270 81.5 32.1207   

BRD-2-1Da 311 72 31.4165 B 

BRD-2-1Ea 259.5 91.5 32.6549   

BRD-2-1Fa 293 77.5 28.3894   

BRD-3-1Aa 55 74 26.3711 O 

BRD-3-1Ba 285 85 30.0812 Scr 

BRD-3-1Ca 349.5 99 7.61802 O 

BRD-3-1Da 0 68 31.3956 O 

BRD-3-1Ea 20 75.5 29.3831 O 

BRD-3-2Aa 358 52.5 30.5133   

BRD-3-2Ba 278 87.5 26.2674   

BRD-3-2Ca 350 81.5 27.4338   

BRD-4-1Aa 308.5 54.5 30.755 HdTh 

BRD-4-1Ba 288 97.5 31.264 HdTh 

BRD-4-1Ca 286 11.5 30.5444 HdTh 

BRD-4-1Da 285 42.5 31.2197 B/HdTh 

BRD-4-1Ea 297 80.5 31.5419 B/HdTh 

BRD-5-1Aa 172 89.5 25.7698 Anthrst 
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BRD-6-1Aa 341 70 28.3683   

BRD-7-1Aa 277.5 98 28.4439 Slmp 

BRD-7-1Ba 287 97 28.473 Slmp 

BRD-7-1Ca 5 92 32.2225 Slmp 

BRD-7-1Da 240 75.5 28.9083 Slmp 

BRD-7-1Ea 295 91 26.9211 Slmp 

BRD-7-1Fa 298 95 28.8474 Slmp 

BRD-8-1Aa 282 89 24.9814 B 

BRD-8-1Ba 332 56 27.8302   

BRD-8-1Ca 294 65 30.4849   

BRD-8-1Da 303.5 66 25.7512 B 

BRD-8-1Ea 306 90.5 26.0493 B 

BRD-8-1Fa 285 82.5 26.7155 B/P 

BRD-9-1Aa 292 77 30.7074 B 

BRD-9-1Ba 307.5 87 30.8513 B 

BRD-9-1Ca 310 84 30.2908   

BRD-9-1Da 310 67 31.4745   

BRD-10-1Aa 107 73 31.0093 B 

BRD-10-1Ba 100 74 30.4264   

BRD-10-1Ca 100 93.5 31.2987   

BRD-10-1Da 100 89.5 30.7677   

BRD-10-1Ea 100 89 30.7933   

BRD-10-1Fa 100 79.5 31.0999   

BRD-11-1Aa 138 75.5 26.545   

BRD-11-1Ba 131 84 27.35   

BRD-11-1Ca 109 64 30.0692   

BRD-11-1Da 59 93.5 29.7199 B 

BRD-11-1Ea 17 92 28.4545   

BRD-11-1Fa 345.5 48.5 31.2837   

BRD-11-1Ga 21 36 31.2058 B/P 

BRD-12-1Aa 359 58 32.2499   

BRD-12-1Ba 0 56 32.3646   

BRD-12-1Ca 160 45 32.284 B 

BRD-12-1Da 171 36 32.1814   

BRD-12-1Ea 178 78.5 32.003   

BRD-12-2Aa 124 74 28.3415   

BRD-12-2Ba 164 83.5 32.0488   

BRD-12-2Ca 133 79 29.5394 B 

BRD-12-2Da 134 76 31.5862   

BRD-12-2Ea 90 84.5 31.5366 B 
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BRD-12-2Fa 158 73.5 32.1564   

BRD-12-2Ha 11 80 29.9593   

BRD-13-1Aa 272 82 26.6849   

BRD-13-1Ba 299 72 31.8231   

BRD-13-1Ca 285 83.5 31.2022   

BRD-13-1Da 314 85.5 28.4974   

BRD-13-1Ea 297 66 31.9678   

BRD-13-1Ga 297 65.5 28.9677   

BRD-14-1Aa 241 55 32.3592 O 

BRD-14-1Ba 232 63.5 32.3592 O 

BRD-14-1Ca 254.5 54 28.912 O 

BRD-14-1Da 262 45 32.4276 O 

BRD-14-1Ea 260 85 32.2238 O 

BRD-14-1Fa 266 54 32.2606 O 

BRD-14-2Aa 263.5 83 31.875   

BRD-14-2Ba 173 40.5 31.9695 B 

BRD-14-2Ca 189 47.5 30.7271 B 

BRD-14-2Da 206 81 33.0767   

BRD-14-2Fa 203 82 29.5023   

BRD-14-2Ga 225 70 32.0438   

BRD-14-2Ha 287 49 28.088   

BRD-15-1-Da 341 51.5 27.5262   

BRD-15-1-Ea 345 67 29.3066   

BRD-15-1Aa 229.5 70.5 27.7916   

BRD-15-1Ba 331.5 63 29.1058   

BRD-15-1Ca 339 60.5 28.0529   

BRD-16-1Aa 337 84 27.4736 MA 

BRD-16-1Ba 338 76 30.3596 MA 

BRD-16-1Ca 275 84 31.5184 MA 

BRD-16-1Da 345 92 27.3779 MA 

BRD-16-1Ea 7 87 31.0281 MA 

BRD-16-1Fa 201 90 28.9325 MA 

BRD-17-1Aa 176 79.5 31.8144   

BRD-17-1Ba 195 76 28.5729   

BRD-17-1Ca 62 57.5 29.7183   

BRD-17-1Da 102 47 30.5658   

BRD-17-1Ea 173.5 36 28.8608   

BRD-17-1Fa 271 33 32.2854   

BRD-18-1Ba 305 87 28.5105   

BRD-18-1Ca 355.5 88.5 28.1742   
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BRD-18-1Da 12 39 32.3209   

BRD-18-1Ea 299 55.5 32.4174   

BRD-18-1Fa 308 46 32.7792   

BRD-19-1Aa 275 74 32.2786 W 

BRD-19-1Ba 350 40.5 30.6492 W 

BRD-19-1Ca 2 45 28.4715 W 

BRD-19-1Da 276 78 33.0824 W 

BRD-19-1Ea 14 45.5 32.6548 W 

BRD-19-1Fa 274 78.5 29.9566 W 

BRD-19-1Ga 275 79.5 26.6996 W 

BRD-20-1Aa 279 86 31.1695   

BRD-20-1Ba 315 94.5 30.1963   

BRD-20-1Da 191 19 26.9578   

BRD-20-1Ea 270 90 32.3237   

BRD-20-1Fa 275 46 31.3311 B 

B Broken 

O Outcrop Possibly out of Place 

HdTh Possible Hydrothermal Alteration 

Antrhst Anorthosite  

Slmp Possibly Slumping 

B/P Broken/Poorly Oriented 

Scr Oriented from a Scratch not Copper  

MA Magnetic Anamoly affecting compass  

W Possibly weathered 
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APPENDIX B – ADDITIONAL PLOTS AND FIGURES 

Category A – Low Magnetization, Small Grain Size, Low Coercivity 
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Category B – Low Magnetization, Small Grain Size, Medium Coercivity 
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Category C – Low magnetization, higher coercivity, small grain size 
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Category D – Intermediate Magnetization, Varying Coercivity, Medium Grain Size 
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Category E – High Magnetization, Large Grain Size, varying coercivity 
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 The Beaver River Diabase (BRD) is a series of mafic dikes and sills within the 

Beaver Bay Complex (BBC) of northern Minnesota, which formed during the 

development of the ~1.1 Ga Midcontinent Rift (MCR). The BRD is one of the youngest 

and most extensive intrusive phases of the BBC.  The BRD dikes and sills were 

emplaced into the medial levels of the 6-10 kilometer-thick North Shore Volcanic Group 

and occur over an arcuate area extending 120 by 20 kilometers.  The BRD is composed 

of fine- to medium-grained ophitic olivine gabbro and does not display obvious foliation 

or lineation features and rarely displays modal layering. Without obvious magmatic 

internal structures, it is difficult to determine emplacement properties such as flow 

direction using standard geologic mapping or petrographic techniques. For this reason, 

we measured the anisotropy of magnetic susceptibility (AMS), in conjunction with other 

rock magnetic properties, to better understand the BRD’s emplacement and 

deformation history in the context of the MCR.  
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AMS measures the directional dependence of low-field magnetic susceptibility, 

and is used to infer a shape-preferred orientation of magnetic minerals within a rock, 

which can be related to specific emplacement mechanisms (e.g. directional flow or 

settling). Preliminary analysis of AMS at 20 sites within the southern half of the BRD 

(with 4-7 samples per site) shows maximum susceptibility values between 4.48 x 10-6 

and 2.22 x 10-4 m3/kg (1165 and 65400 μSI). Most specimens display nearly isotropic 

AMS ellipsoids (Pj < 1.15) with minor degrees of prolateness and oblateness. However, 

about 20% of specimens have higher anisotropies (Pj between 1.15 and 1.67) and 

higher degrees of oblateness and prolateness. Variations in AMS properties may reflect 

differences in concentration and composition of magnetic minerals, as well as 

emplacement mechanisms. Measurements of susceptibility as a function of temperature 

yield Curie points between 470 and 570 °C, indicating the presence of low-titanium 

titanomagnetite. Major hysteresis loops show coercivities between 1 and 25 mT, 

consistent with titanomagnetite as the dominant remanence carrier.  
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