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CHAPTER 1. Introduction 

1.1 Motivation 

MEMS (Micro Electro Mechanical System) devices and CMOS (Complementary 

Metal Oxide Semiconductor) circuits [1, 2] are traditionally fabricated on rigid substrates with 

inorganic semiconductor material such as silicon. However, it is highly desirable for 

functional elements like sensors, actuators or micro fluidic components to be fabricated on 

flexible substrates for a wide variety of applications. A number of approaches to make 

flexible sensors or electronics have been developed over the past two decades. The most 

straightforward approach is the direct fabrication of functional components on a flexible 

substrate, such as the widely used flexible printed circuitry technology [3] and the thin film 

transistor (TFT) technology [4-6] on flexible substrates. Various flexible sensors and 

electronics have been developed as wearable health monitoring devices and medical 

implants[5]. This direct fabrication of functional elements on flexible substrate has the 

advantages of simple fabrication process and low cost. Large area flexible sensors or 

electronics can be fabricated economically using this method. However, due to the flexible 

substrate, the process temperature is limited and the material properties are not optimized. 

This temperature limit makes it almost impossible to monolithically integrate CMOS circuits 

and many MEMS transducers to the flexible substrate. 

A flexible skin technology based on silicon island structure has also been 

demonstrated. The basic structure of the flexible skin is arrays of silicon islands sandwiched 
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by two layers of polymer. The advantage of this technology is its compatibility with MEMS 

and CMOS since MEMS devices and CMOS circuits can be fabricated on the silicon wafer 

before the formation of the flexible skin. The minimum bending radius is determined by the 

size the of the silicon islands. Based on this technology, flexible shear stress sensor skins [7], 

the integration of CMOS with the flexible skin [8], and intelligent textiles [9], have been 

demonstrated. 

Recently an innovative “transfer printing” method to make flexible electronics has 

also been demonstrated [10-13]. More specifically, transistors and other devices are fabricated 

first on SOI (Silicon-on-Insulator) wafers and then released by sacrificial etching and 

transferred to flexible substrates by a method similar to “printing.” Many exciting applications 

have been demonstrated [14-16]. On the other hand, this transfer printing step is a yield-

limiting step, especially when the device density increases. In addition, the releasing step is 

generally incompatible with commercial CMOS processes. Therefore, this method cannot 

fully take advantage of the mainstream CMOS technology. 

In order to address the above mentioned drawbacks of existing technologies, 

alternative methods have been developed in our lab over the last a few years. We proposed a 

novel technology based on XeF2 (xenon difluoride) isotropic silicon etching and parylene C 

conformal coating, which is able to monolithically incorporate high temperature materials and 

fluidic channels. This technology has been applied to a variety of applications which are 

discussed in the following chapters. 
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1.2  Review of flexible electronics 

A common method to make flexible devices is the direct fabrication of components 

on flexible substrates, such as the widely used flexible printed circuit board (PCB) 

technology and the thin film transistor (TFT) technology on flexible substrates. Various 

electronics devices has been developed utilizing the aforementioned technology.  

Another popular method to make electronics flexible is direct mounting of ICs 

(integrated Circuits) on a flexible printed circuit as demonstrated in Figure 1.1. Polyimide, 

PEEK or transparent conductive plastic films are a few of the materials commonly used as 

the flexible substrate in electronic industry. Only simple metal traces to interconnect IC 

components are required to be fabricated on the flexible substrate, leading to very simple 

fabrication process. This flexible PCB technology significantly reduced the development 

cost since the technology used to make rigid PCB can be directly applied to make flexible 

PCB such as metal etching and silver screen printing. Flexible PCB can be found 

everywhere in our daily lives. For example, it has been widely used in laptop computers as 

interconnects between motherboard and display. Unlike the conventional rigid PCB, flexible 

PCB allow the designer to bent and flex the PCB to a certain degree which gives us much 

needed freedom to integrate electronics into 3D spaces.  As consumer electronic devices are 

getting smaller, flexible PCB becomes a necessity to establish interconnects between 

modules.  
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Figure 1.1.  Flexible PCB inside an Olympus Stylus camera. From: Steve Jurvetson 

http://flickr.com/photos/44124348109@N01/2265519. 

One drawback of the flexible PCB technology is that the bulky packaged IC 

significantly reduces the overall flexibility of the device. The design of the electronics is 

limited by the availability and form factor of the IC used. To overcome this drawback, the 

thin film transistor (TFT) technology has been implemented on flexible substrates. 

Transistors, the most fundamental elements in building ICs, are traditionally fabricated on 

rigid substrate like silicon wafers. In order to make transistor on flexible substrate, low 

temperature semiconductor material has to be developed. For example, in references [17, 18], 

a flexible organic transistor with extreme bending stability has been developed as 

demonstrated in Figure 1.2. A flexible polyimide sheet was used as the substrate for the 

fabrication of transistors in this case. Low process temperature material such as organic self-

assembled monolayer (SAM) was chosen to be the gate dielectric layer. Note that only low 
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temperature material and processes are compatible with this technology. Thanks to the 

organic material used here, the maximum process temperature is limited to be less than 

100oC 

 

Figure 1.2 (a) Photographs of a 12.5 µm thick polyimide substrate with functional organic 
TFTs and organic complementary circuits[17] . The array has an area of 75x75mm2. (b), 
Schematic cross-section of the TFTs. 

Without the bulky ICs used in flexible PCB technology, thin film transistor (TFT) 

technology on flexible substrates makes the device highly flexible. As seen in Figure 1.2, 

successfully fabricated low-voltage organic transistors, which were placed at the neutral 

strain position, were folded into a bending radius as small as 100 µm without damage to the 

device. This technology opens a wide range of opportunities for electronic applications that 

require a high degree of mechanical flexibility. A lot of efforts have been dedicated in the 

research community to directly integrate low temperature organic materials onto flexible 

substrate with an intention to reduce the cost and simplify the manufacturing processes.  
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 One drawback is that organic and low temperature materials used in TFT technology 

normally are not very stable and lack the performance compared with high temperature 

materials like silicon. Conventional silicon semiconductor devices still perform much better 

and are required by many applications.  

There are technologies developed specifically to integrate silicon devices on flexible 

substrate. In reference [9], a novel intelligent textile technology based on the integration of 

silicon flexible skins has been reported.  

             

Figure 1.3. (a) Picture of a folded skin; (b) Simplified process flow of the flexible skin with 
integrated strain gauges [9]. 

As demonstrated in Figure 1.3 (b), simple strain gauges (can be replaced by MEMS 

devices or ICs) have already been fabricated on the silicon substrate, the first step of the skin 

development is the fabrication of functional electronic components on a silicon wafer. High 

a b 
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temperature processes are allowed since there are no polymer materials introduced at this 

stage. Then a polymer layer is coated on the front-side of the wafer. Afterwards, the polymer 

layer is patterned to expose metal pads. Then, the silicon wafer is thinned down and etched 

through from the back to form the arrays of silicon islands by deep reactive ion etching 

(DRIE). Finally, another layer of polymer is coated on the backside to encapsulate silicon 

islands. The basic structure of the flexible skin is arrays of rigid silicon islands sandwiched 

by two layers of polymer. A great advantage of this technology is the compatibility with 

MEMS and IC fabrications. However, due to the large silicon island used here, the minimum 

bending radius is limited by the size the of the silicon island. In addition, stress 

concentration between the flexible polymer and rigid silicon has to be addressed to make the 

whole system more robust.  

In addition, other approaches to make flexible electronics without the compromise of 

high temperature materials have also been developed over the past few years. For instance, 

functional electronic components are first fabricated on a SOI wafer and then transferred 

onto a flexible substrate via a stamping method. Additional low temperature processes like 

the metallization of components are performed directly on the flexible substrate.  
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Figure 1.4. (a) Optical images of the selective transfer of µs-Si onto a PU/PET sheet; 
(b)Schematic illustration of selective transfer of us-Si onto PET plastic substrate using 
patterned hard PDMS  [13]. 

In reference [13], a printing-based approach to make high-performance single-crystal 

silicon transistors on flexible substrates was reported. As demonstrated in Figure 1.4, a SOI 

wafer consisting of silicon device layer, buried oxide layer and handling silicon layer were 

used in the process. The silicon devices (µs-Si) were first fabricated on a SOI wafer by 

patterning the silicon device layer. A controlled oxide etch was performed to remove the 

majority of the underling oxide layer. Only a small portion of the oxide layer was left to 

temporarily hold the µs-Si in position. A specifically designed and patterned PDMS stamp 

was used to contact the selected µs-Si. Due to the strong adhesion between PDMS and µs-Si, 

µs-Si can be easily peeled off and transferred to another PET substrate.  

b) 
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Due to the fact that the remaining oxide layer was removed by physical forces, it will 

destroy part of the µs-Si. Therefore, this risky transfer printing step is a yield-limiting step, 

especially when the device density increases. In addition, the oxide etching solution 

(hydrofluoric acid) used in the releasing step makes the process incompatible with 

commercial CMOS processes. Therefore, this method cannot fully take advantage of the 

mainstream CMOS technology. 

The technology developed in our lab does not suffer from the aforementioned 

limitations. Both transfer printing method and our method are able to integrate single crystal 

silicon devices. However, unlike transfer printing method, our method does not need a 

transfer step and thus has a higher yield. We are able to release the device layer off the 

handling silicon wafer by an innovative method which will be discussed and presented in the 

following chapters. Furthermore, our method is post SOI-CMOS compatible, which allows us 

to utilize commercial foundry and saves a lot of development time and cost.   
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 1.3  Review of the key material and processes  

1.3.1 Parylene C chemical vapor deposition 

 Parylene also known as poly(p-xylylene) is a polymer commonly used as structure 

material, moisture and dielectric barriers in MEMS and electronic devices[19-21]. There are 

many more benefits associated with the the parylene. For example, parylene film exhibits 

strong chemical resistance and thus is considered as a good barrier for organic and inorganic 

media, acids and caustic solutions and gases. In addition, parylene’s biocompatibility has also 

been proven and been utilized in many biomedical applications [22-24].  

 There are three major parylene polymers referred as payrlene C, parylene N and 

parylene D. Parylene N provides higher dielectric strength and more stable dielectric constant. 

parylene D will maintain its physical strength and electrical properties at slightly higher 

temperatures compared with parylene C the most predominant type of parylene. Parylene C is 

used for almost all types of applications, including our process as well.  

Table 1.1 Lists of selected properties of parylene C and polyimide 

 Density 
(g/cm) 

Young's modulus 
         (Gpa) 

Tensile strength 
         (Mpa) 

Dielectric constant 
         (at 1MHz) 

Parylene C 1.289 2.8 68.9 2.95 

Polyimide 1.42 3.2 70-90 3.5 
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 To better understand the physical properties of parylene C, a comparison between 

polyimide and parylene C used in our process is presented in Table 1.1. Both polyimide and 

parylene exhibit very similar mechanical properties. In many applications parylene can just 

simply replace polyimide. One major difference between those two materials is the coating 

process. Polyimide is normally dissolved in solvent and then applied to the substrate via spin 

coating. Thickness of the coated film is determined by the spin speed and the viscosity of the 

dissolved solutions. On the other hand, a process called Chemical Vapor Deposition (CVD) 

[25] is used to deposit parylene film on the substrate. A simplified block diagram of parylene 

deposition system is demonstrated in Figure 1.5 

 

Figure 1.5. A common setup flow of chemical vapor deposition of parylene   
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Parylene coating is a room temperature CVD process. The parylene dimer is first 

loaded inside the vaporization chamber. The vacuum pump will bring the entire system under 

vacuum condition. Under the vacuum condition The Dimer begins to vaporize once this 

vaporization chamber reaches the temperature of 175 oC. The vapor passes through the 

pyrolysis chamber to undergo a thermal decomposition process and breaks down into a 

monomer at 690 oC.  When the monomer reaches the sample in the deposition chamber at 

room temperature, it will conformally coat the entire exposed surface and cross-linke to form 

a parylene film. Excessive monomer will then be trapped by the cold trap to prevent damage 

to the vacuum pump.  

A great benefit of CVD is that the deposition is highly conformal. As schematically 

illustrated in Figure 1.6, the coating material will get inside a feature with steps and undercut 

cavities to encapsulate the entire surface. This feature is not feasible using the conventional 

spin coating process.    
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Figure 1.6.  Schematic illustration of  conformal CVD coating. 

1.3.2 XeF2 isotropic silicon etching 

Another important etching procedure called XeF2 (Xenon difluoride) [26] isotropic 

silicon etching has been utilized in our process. This isotropic gaseous etchant for silicon, has 

been widely used in the semiconductor industry, particularly in the production of MEMS 

devices [27, 28]. 

The etching mechanism is actually very simple and easy to implement. First, the XeF2 

molecule dissociates to xenon and fluorine when the gas reaches the surface of silicon. 

Fluorine then reacts with silicon and forms another gas-phase byproduct. The reaction 

describing the reaction process is listed below: 

2 XeF2 + Si → 2 Xe + SiF4 

     

     

 

    

 After Deposition 

Flat Surface Step Coverage Feature with Undercut 



14 

 

 

Unlike other plasma etching process, XeF2 has a relatively high etch rate and does not 

require ion bombardment or external energy sources to etch silicon. A simple illustration of 

etching apparatus is shown in Figure 1.7. 

Figure 1.7. Schematic of XeF2 isotropic silicon etching apparatus.   
First, highly concentrated XeF2 etching gas is contained in a pressurized container. A 

needle valve is placed between the gas cylinder and mixing chamber which functions as a 

buffer to prevent gas from coming out too fast. The sample to be etched is then placed inside a 

vacuum chamber and pumped down to 50 millitorr. N2 gas is used here to purge the chamber 

to eliminate any residual moisture. XeF2 is highly reactive and will react with moisture and 

produce highly corrosive and dangerous HF as indicated by the formula presented below. 

2XeF2 + 2H2O → 4HF + O2 +2 Xe 

After the removal of the moisture, the vacuum pump is stopped and leakage is checked 

before opening the valve after mixing chamber. Due to the nature of the reaction, pressure 

inside the vacuum chamber will rise up to around 700 millitorr in our particular setup before 

closure of the valve from the mixing chamber. This practice gives us better control over the 
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amount of the XeF2 that gets inside the etching chamber. Vacuum chamber pressure will keep 

rising up to around 800 millitor before all of the XeF2 gas is consumed. A complete etching 

loop is complete at this point. Additional loops are repeated to control the amount of the 

etching.  

          

XeF2 silicon etching process is highly selective. A variety of material can be used as 

masking layer which include but are not limited to photoresist, parylene, metals and silicon 

dioxide. Another key characteristic of this gas phased etching process is that the process is 

highly isotropic. As demonstrated in Figure 1.8, huge undercut can be observed after just a 

few loops of XeF2 silicon etching. 
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Figure 1.8. Under cut observed after few loops of XeF2 silicon etching. A circular hole is 
opened in parylene C layer which functioned as a masking layer. 

The amount of the XeF2 gas that gets inside the etching chamber is fixed between 

etching loops.  The etch rate of XeF2 is a function of the exposed silicon area. A good way to 

control the etching process is to unload the sample after a few loops and observe the etching 

rate under microscope, and then adjust the processing time accordingly. 

 

 

 

1.3.3 Deep reactive-ion etching 

Another important MEMS fabrication process used in our technology is deep 

reactive-ion etching (DRIE) [29, 30]. Unlike XeF2 silicon etching process, DRIE is a highly 

anisotropic plasma etching process primarily used to sculpture silicon devices. The process 

can create deep and steep side walled features, typically with very high aspect ratios. This 

technology has been heavily utilized to develop MEMS devices. 

The most common method of DRIE is referred as Bosch process which is a patented 

process developed by Bosch Inc. Fluorine based chemistries are normally used to etch 

silicon. However, they all exhibit some degree of isotropy. In order to achieve anisotropic 

effect and etch nearly vertical walls for high aspect ratio structures, two separate steps are 

used in Bosch process as demonstrated in Figure 1.9. 
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First of all, SF6 plasma etching is performed to isotropically etch exposed the silicon 

for a short period of time normally less than 10 seconds to prevent the undercut. Then SF6 

gas is replaced with C4F8 which will form a Teflon-like substance in plasma and coat the 

entire chamber and surface. Note that The SF6 does not etch the polymer on the side walls 

but will attack the coating on the bottom and top surface. The previous etched sidewall is 

protected from the SF6 isotropic etching. The combination of both the etching step and 

passivation step makes a very deep vertical structure.  

 

 

Figure 1.9. A simple demonstration of deep reactive ion etched trench using Bosch process 
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The figure bellow illustrates that the process will causes ripples or scallops in the side 

walls due to the nature of the isotropic silicon etching steps utilized. 



19 

 

 

 
Figure 1.10. Scallops of a silicon structure created using the Bosch process. Source: Wikimedia 

 

           
      (a)                                                          (b) 

 
Figure 1.11. Different DRIE recipes to create different slope angles[31]. (a) Trench with a 

positive slope. (b) Trench with a negative slope 
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Another important parameter of the DRIE etching is the ratio between etching and 

passivation steps. By modifying the ratio between those two steps, different side wall angles 

can be achieved. As demonstrated in Figure 1.11, both positive and negative slopes can be 

created in the DRIE process. This technique is utilized in the process of developing our out-

of-plane parylene microneedle device which is discussed in detail in Chapter 2.  
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1.4  Dissertation Organization 

In Chapter 2, the technology we developed over the past few years is first 

implemented in the creation of flexible out-of-plane parylene microneedle arrays [32] that 

can be individually addressed by integrated flexible micro-channels. These devices enable 

the delivery of chemicals with controlled temporal and spatial patterns and allow us to study 

neurotransmitter-based retinal prosthesis.  

In addition to the fabrication of micro-fluidic components, other great functionalities 

can be achieved by integrating otherwise sacrificial silicon wafers to be a part of the device. 

A hybrid silicon-polymer platform for self-locking and self-deploying origami [33] is 

demonstrated in Chapter 3. 

 The ability to incorporate high-temperature materials into flexible substrate is also 

highly desirable. The technology is further explored in Chapter 4 by adopting the 

conventional SOI-CMOS processes[34]. High performance and high density CMOS circuits 

can be first fabricated on SOI wafers, and then can be integrated into flexible substrate. 

Currently, the best electronics are still made by silicon based CMOS technology. Therefore, 

it is highly desirable to have a flexible skin technology that is compatible with both MEMS 

and CMOS processes.  Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-

Effect-Transistors) and high performance silicon strain gauges were successfully fabricated 

and tested. 
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In Chapter 5, the development of a smart tube[35] with integrated pressure and flow 

sensor is presented. The ability to monolithically incorporate electronic components and 

micro-fluidic structure is highly desirable. This integration is able to bring additional 

functionality, higher performance, simplified packaging, reduced size/weight and cost to the 

flexible sensors.  

Finally in Chapter 6, some of the additional examples like the smart yarn device and 

micro pH sensor developed by this technology are presented. A few important future 

applications are also discussed. 
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CHAPTER 2. Parylene microtube arrays 

2.1 Introduction 

The technology discussed in this thesis is first implemented in making flexible 

parylene microneedle arrays with integrated micro channels for retinal prosthesis study. 

Many groups have been working toward the development of retinal prosthesis systems that 

can provide artificial vision to the blind [36-38]. An effective retinal prosthesis would 

improve the lives of hundreds of thousands of patients with Retinitis Pigmentosa (RP) or 

millions of blind patients with advanced Age-Related Macular Degeneration (ARMD), 

depending on its effectiveness. Designs for these prosthetic devices have been based upon 

the success of electrical stimulation in the cochlear implant. Prostheses based on electrical 

stimulation of the retina have been under development over the past two-decades as well. In 

fact, vision is our greatest bandwidth sensory input which requires prostheses to have a 

neural interface with high spatial and temporal resolution. Testing in acute human studies 

has demonstrated limited success in providing useful vision. Retinal implant based on 

electrical stimulation has limitations such as electrode corrosion, water hydrolysis, and 

generation of toxic radicals due to the large stimulation current.  The more naturalistic 

chemical stimulation is able to effectively address these limitations. This chapter describes 

the development of parylene microneedle arrays that can be individually addressed by 

integrated microchannels for neurotransmitter-based retinal prosthesis.   
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Microneedles can be classified as in-plane or out-of-plane, and solid or hollow. For 

retinal prosthesis, out-of-plane hollow microneedles are required. A variety of out-of-plane 

hollow microneedle arrays have already been developed for drug/chemical delivery and 

other applications. Chun et al. developed SiO2 microcapillary arrays for the injection of 

DNA into cells by growing thermal oxide in deep holes etched by DRIE [39]. Hollow 

silicon microneedles were also developed by Stoeber and Liepmann using a combination of 

DRIE and isotropic etching [40]. Gardenier et al. developed hollow silicon microneedles 

with sharp beveled tips using a process combining DRIE, conformal thin film deposition and 

anisotropic wet etching [41]. In order to address the potential problem of being clogged 

during the insertion of needles, Griss and Stemme developed hollow out-of-plane silicon 

microneedles with openings in the shaft instead of at the tip [42]. Kim et al. reported hollow 

metal microneedle arrays based on backside exposure of SU-8 and electroplating [43]. 

Hollow metal microneedles have been developed using laser-micromachined polymer mold 

[44]. Zhu et al. reported another method of fabricating hollow metal microneedles using 

PMMA molds formed by silica needle template [45]. Hollow microneedles with sharp 

beveled tips have also been developed using the LIGA technique by taking advantage of its 

capability of fabricating high-aspect ratio structures [46, 47]. Fluid access to the out-of-

plane microneedles is usually made from the back of the wafer by forming a drug reservoir 

using a wafer bonding method. Consequently, these microneedles are not individually 

addressable. For retinal prosthesis, however, the microneedles have to be individually 

addressed due to the requirement of spatial resolution. 
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Individually addressable out-of -plane microneedle has been developed in our lab as 

described in the following section. DRIE high aspect ratio silicon etching process is used 

here to form the molds of the needle arrays. XeF2 isotropic silicon etching process is 

employed here to form the accessing microfluidic channels to the needles. Another key 

process used here is conformal parylene C coating. Parylene C polymer will conformally 

deposit on the walls of the holes and trenches etched by DRIE and XeF2 forming hollow 

needles and fluidic channels.  

2.2 Design and fabrication 

The fabrication was carried out on double-side polished 350µm thick silicon wafers. 

The thickness of the wafer will determine the overall height of the microneedles. First, a 4 µm 

parylene C layer was deposited on the front side of wafer using SCS PDS2010 coating system. 

Due to the nature of parylene C coating, both side of the wafer were coated with parylene C.  

Back side of the wafer went through O2 plasma to remove the deposited parylene and expose 

the silicon layer. Next, through-silicon vias of 35 µm in diameter were formed by DRIE from 

the backside of wafer as shown in Figure 2.1(a). Note that the recipe of DRIE has been 

modified to create a slightly slanted side wall to give the vias pointy shape. Those vias will 

function as a shape mold to make hollow needles.  After the backside etching, 200 nm Al 

layer was evaporated on the frontside after treating the parylene C layer with a mild O2 

plasma to improve the adhesion.  This Al layer was then patterned and subsequently used as 

an O2 plasma mask to open 8-µm wide windows on the parylene layer as shown in Figure 

2.1(b). In the next step, XeF2, an isotropic gas phase silicon etchant, was used to form 
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trenches in the silicon substrate through the windows opened in the parylene layer. The 

trenches created have an undercut of approximate 25 µm from the parylene openings.  Note 

that the trenches were connected with the through-silicon vias as seen in step (c).  Then the 

parylene microchannels were formed and sealed by depositing another 10 µm thick parylene 

C layer.   

 

Figure 2.1. The fabrication process of the microneedles with integrated microchannels(a) 
deposit a parylene C layer; etch through-silicon vias from the backside of the wafer using 
DRIE; (b) pattern the parylene layer; (c) etch the silicon substrate using XeF2; (d) coat a thick 
parylene layer to seal the channel; (e) pattern the frontside parylene; (f) DRIE from the 
backside of the wafer using Al mask; (g) remove Al mask and continue DRIE to release 
Parylene cable. Out-of-plane microneedles also emerged. 
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The parylene deposition is a very conformal process. Therefore, parylene layer was 

able to deposit on the inside surfaces of the trenches, forming sealed parylene channels [48]. 

The cross-sectional view of the sealed parylene channel is demonstrated in step (d).  

Simultaneously, hollow microneedles were formed by the parylene film deposited inside the 

through-silicon vias (step (c)).  The frontside parylene layer is then patterned with a thick 

photoresist (AZ4620) mask and the parylene is etched via O2 plasma as shown in step (e).  

Next, as shown in step (f), DRIE was carried out on the backside using an aluminum mask to 

selectively thin down the wafer.  When the remaining wafer thickness reached about 100 µm, 

the aluminum mask was stripped away. Then DRIE continued on the backside until the 

parylene channels were exposed.  Simultaneously, because the etch rate of payrlene in DRIE 

is much slower compared with that of silicon, parylene microneedles embedded in silicon 

emerged and protruded above the silicon surface.  Note that the height of needles protruding 

above the silicon surface can be increased by additional DRIE etching.        
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2.3 Results and discussion 

2.3.1 Fabricated device 

Figure 2.2 (a) shows a fabricated mcironeedle device with flexible parylene cable.  

The overall length of this device is about 20 mm. It consists of two silicon islands connected 

by a flexible parylene cable embedded with microchannels.  The left silicon island carries 4 

slender beams which facilitate the coupling of external tubings to on-chip microchannels.  

Figure 2.2 (b) shows the SEM image of a microchannel inlet on the tip of the coupling beam.  

As shown in Figure 2.2(c), the right small silicon island hosts a 2x2 microneedle array.  These 

parylene microneedles are about 80 µm high, and with an outer diameter of 35 µm and an 

inner diameter of 15 µm.  It is worth noting that the height of microneedles can be adjusted by 

controlling the DRIE loops in step (f) and (g).  The in-plane parylene microchannels are also 

visible in Figure 2.2(c). These channels connect to the out-of-plane microneedles at the 

bottom surface of the silicon island.  Each microneedle can be individually addressed by the 

inlet ports on the left silicon island.  
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                                                                   (a) 

               

                                                      (b)                                                          (c)  

                 

                                                                 (d)                                                           (e) 

Figure 2.2. (a) A Polyimide Tubing coupled microneedle device with 1.5 cm long flexible 
parylene cable. Epoxy is used to seal the coupling interface; (b) SEM image of the 
microchannel inlet port on one coupling beam; (c) SEM image of the small silicon island on 
the tip of the parylene cable; (d) cross-sectional view of a micrchannel embedded in the 
parylene cable; (e) magnified view of the 2x2 microneedle array on the small silicon island.  
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The cross-sectional SEM image of a parylene channel embedded in the parylene cable 

is shown in Figure 2.2(d).  Note that this channel was formed using two columns of openings. 

The groves resulting from the sealing of the two columns of openings can be clearly observed. 

The marks due to the isotropic XeF2 etching from adjacent openings can also be seen from 

the parylene channel walls.  This device enables in-vivo animal study.  Namely, the small 

silicon island containing the microneedle array can be implanted into the eye of an animal 

(e.g., cat or monkey).  Neurotransmitters such as glutamate can be ejected to retina through 

the flexible parylene channels.  

Rigid needle arrays have also been developed for in-vitro retinal stimulation study as 

seen in Figure 2.3. In order to improve the robustness of our device, rigid devices integrated 

with 4×4 microneedle arrays have been fabricated. The 4×4 microneedle array locates in the 

center of the device and covers an area of 500 µm × 500 µm. The dimensions of these needles 

are same as those on flexible devices.  The 4×4 microneedles can be individually addressed 

by 16 microchannels whose inlets are distributed along the 4 edges of the 1.2 cm × 1.2 cm 

square silicon chip.   
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(a)                                                                                    (b) 

Figure 2.3. (a) Photograph of a rigid microneedle device.  The device carries 16 slender 
beams, each of which contains one microchannel inlet.  (b) SEM image of the 4x4 
microneedle array located in the center of the chip, which can be addressable by 16 
microchannels.  

To investigate the connection between the needles and channels, silicon of the rigid device 

was completely dissolved by TMAH (Tetramethylammonium hydroxide).  It has been 

demonstrated previously that parylene C is not attacked by TMAH [49].  Figure 2.4 (a) shows 

the SEM image of the resulting pure parylene device. The tapered shape of microneedles was 

formed by adjusting the parameter of DRIE during the etching of through-silicon vias. The 

parylene microchannels previously embedded in the silicon substrate now can be clearly 

observed.  It can also be observed how the out-of-plane parylene microneedles are connected 

to in-plane parylene microchannels in the magnified view shown in Figure 2.4 (b).  Note that 

XeF2 at step (c) also attacked through-silicon vias. However, XeF2 only enlarged the bottom 

part of the vias as evidenced by the donut structures at the bottom of microneedles shown in 

Figure 2.4. (b).  
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(a)                                                      (b) 
Figure 2.4. (a) SEM image of the pure parylene device by dissolving away silicon. (b) 
Magnified SEM image of the connection between out-of-plane microneedles and in-plane 
channels 

 

2.3.2. Fluidic injection test 

In order to test the connection between the microneedle and microchannel, fluorescent 

dyes were injected to one microchannel under a pressure up to 8 psi. The resulting fluorescent 

image is shown in the inset of Figure 2.5(b). The connection between the circular area, which 

is the bottom of the microneedle, and the in-plane microchannel can be clearly observed. The 

flow rate of a microchannel was measured using DI (deionized) water. Polyimide tubing (with 

an inner diameter of 620 microns) was coupled to the microchannel and then sealed using 

epoxy as demonstrated in Figure 2.2 (a). A programmable syringe pump and a pressure sensor 

were used for dispensing liquid and measuring pressure. The flow rate as a function of 

pressure applied was measured and plotted in Figure 2.5(b). Figure 2.5(a) shows the 

micrograph of a water droplet emerged from one of the microneedles. 



33 

 

 

 

         

(a)                                                           

 

               (b) 

Figure 2.5. (a) Optical micrograph showing a water droplet emerging from one microneedle.  
(b) The measured relationship between the applied pressure and flow rate. The inset is a 
fluorescent image of the microchannel and donut structure at the bottom of the microneedle 
(the channel was filled with fluorescent solution). 

 

Droplet 
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2.3.3. Preliminary in-vitro retina test 

In addition to the fluidic tests done in our lab, the fabricated device was sent to our 

collaborator Dr. Paul Finlayson for a preliminary in-vitro retina test. A retina tissue was 

removed from a rat and cultured in a small container for testing. Then our microneedle device 

was placed in close contact with the retinal tissue along with a small electrode placed next to 

the needle outlet for neural activity monitoring. As shown in Figure 2.6., chemical based 

neurotransmitter was delivered to the retinal tissue via a 10 PSI pressure pulse. Retinal 

tissue’s prompt neural response can be clearly observed in the form of electrical spikes.  

 

Figure 2.6. Neurotransmitter ejection pressure pulse and the resulting neural spikes. Source: 
Dr. Finlayson.  

Electrical Spikes 

Injection pressure pulse 
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2.4 Summary  

We demonstrated a novel microfabrication technology of out-of-plane individually 

addressable microneedle arrays with integrated parylene microchannels.   Two different types 

of devices, rigid devices for in-vitro retina stimulation study and flexible devices integrated 

with parylene cables for in-vivo study have been developed.  The fabrication takes advantage 

of the conformal coating of parylene. The molds of parylene, including the trenches and 

through-silicon vias, are formed by XeF2 etching and DRIE, respectively. Microneedles and 

microchannels are formed by coating parylene conformally inside the vias and trenches.  The 

functionality of the device has been demonstrated by ejecting water through microneedles. A 

simple perfusion chamber is being built on the top of the rigid chip for the in-vitro retinal 

stimulation study.  The flexible device allows in-vivo study by implanting the small silicon 

island containing the microneedle array into the eye of animal (cat or monkey) and injecting 

neurotransmitters such as glutamate through the flexible parylene channels. Our device 

enables the delivery of drugs to the desired sites with high spatial resolution. 
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CHAPTER 3. Hybrid silicon-polymer platform for self-locking 

and self-deploying origami 

3.1Introduction 

Origami, traditionally the art of paper folding, has been applied to a variety of 

engineering applications based on its principle of creating three-dimensional (3D) structures 

from two-dimensional (2D) sheets through a high degree of folding along the creases.  The 

applications of origami ranges from space exploration (e.g., a foldable telescope lens[50]), to 

automotive safety (e.g., airbags), and biomedical devices (e.g., heart stent[51]). Materials like 

shape memory alloy [52] in forms of coil and thick flat plates has been developed to achieve 

effective bending motion for origami structure. Those origami devices are fabricated by 

precision machining or laser micromachining [53].  More traditional microfabrication 

methods such as photolithography have also been used as well [54-56].  The employment of 

microfabrication will potentially allow the monolithic integration of electronics and MEMS 

sensors with origami.  We developed an origami platform based on microfabricated silicon 

island arrays. This Silicon-polymer hybrid platform takes the advantages of the excellent 

rigidity of silicon substrate and combines the flexibility of polymer technology to make 

flexible devices. Not only it renders the whole device reasonably flexible, it also can be 

employed to achieve functions like actuation[57]. The technology presented in the previous 

chapter has been adopted to develop our origami platform.  CMOS electronics and MEMS 

devices can be first fabricated on the silicon wafers [7, 8, 58].  Then low-temperature 
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processes are carried out to form silicon island arrays and the parylene balloon creases.  Such 

an origami platform, with its capability to integrate CMOS circuits and MEMS sensors, self-

lock and self-deploy, will be of great interest to the fabrication of some 3D devices.  

The proposed origami device and operation principle of self-locking and self-

deployment is schematically illustrated in Figure 3.1.  The discrete silicon islands are 

connected by a parylene balloon at the creases integrated with a metal heater and filled with 

paraffin wax. Of cause, other materials exhibits phase change at low temperature can be used 

as well.  Paraffin wax was chosen in this experiment. The paraffin wax can be melted by 

applying electric current to the heater and return to the solid state by turning off the heater.  

To fold the origami, the wax is melted first, making the balloon flexible. Then the device is 

folded by external forces.  While the device is kept in the folded state, the heater is turned off.  

The wax solidifies and the origami is locked in the folded state.  For the deployment, the 

heater is turned on to melt the wax to the liquid state.  Thus the folded origami can return to 

its original flat state when the heater is on due to the elastic restoring force of the parylene 

balloon.    

  

Figure 3.1. Schematic of the silicon island origami with a parylene balloon crease for self-
locking and self-deploying functions.  
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3.2 Design and fabrication 

The simplified fabrication is illustrated in Figure 3.2. A 500 µm thick silicon wafer 

was used for the fabrication. First the wafer was thoroughly cleaned and deposited with 3 µm 

thick parylene C layer as shown in Figure 3.2(a). Then as show in Figure 3.2(b), a layer of 

25/200 nm Ti/Au layer was deposited and patterned to form the micro heaters, bonding pads 

and corresponding connection traces. Ti was used here to improve the adhesion between 

parylene C and Au.  Next, an array of 8 µm × 20 µm parylene openings was etched via O2 

plasma.  In the next step, through the parylene C windows, the silicon substrate was 

selectively etched by isotropic gas-phase etchant XeF2 as illustrated in Figure 3.2(c). The 

depth of the undercut was measured to be 50 µm in this case. Larger depth can be achieved by 

increasing the exposure time to XeF2 or using DRIE to deepen the openings before XeF2 

etching. These cavities define the shape of parylene balloons.  Another thicker layer of 

parylene C film was conformally deposited on the bottom and side walls of the cavities as 

shown in Figure 3.2(d).  This parylene C layer simultaneously sealed the perforated top 

parylene C film and encapsulated the metal heaters.  Oxygen plasma was then used to pattern 

the parylene layer to define individual devices and expose the contact pads as shown in Figure 

3.2(e). Finally the backside of the wafer were patterned and etched via DRIE to form the 

silicon islands and release the flexible parylene balloon creases as demonstrated in Figure 

3.2(f).   Note that the balloons extend into the silicon islands.  This actually provides cushions 

between the metal traces and the rigid edge of silicon islands, significantly reducing stress 

concentration as demonstrated in our previous work [59].   



39 

 

 

 

 

Figure 3.2. Simplified fabrication process of the Origami device. 

 

Figure 3.3(a) is a micrograph of a fabricated device. Since the present work is to 

demonstrate the self-locking and self-deploying features, the testing device only contains two 

silicon islands that are connected by 3 parallel parylene balloons.  The integrated heaters can 

be accessed by the bonding pads placed on the left side.  Polyimide tubes were glued for the 

injection of melted wax.  The detail of the integrated heater can be observed in Figure 3.3(b).   

More details of the parylene balloon can be found in the front side and back side SEM images 

shown in Figure 3.4.  Note that the parylene balloon was cut in the middle using a razor blade 

in order to observe the cross section.   

Additional Reservoir 

Contact Pads 

Parylene Baloon 



 

Figure 3.3. (a) Front side micrograph of an actual fabricated micro 
individual Paraffin wax filled 
integrated on the parylene balloon. 
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(a)  

 

(b) 

(a) Front side micrograph of an actual fabricated micro hinge structure with three 
individual Paraffin wax filled parylene balloon hinge; (b) micrograph of the 

arylene balloon.  

1mm 

200µm 

inge structure with three 
arylene balloon hinge; (b) micrograph of the metal heater 
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(a) 

 

(b) 

Figure 3.4. (a) Front side and (b) backside SEM images of a parylene balloon cut to show its 
cross section. The inset shows the enlarged view of the balloon.  

 

 

Balloon Cavity 
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3.3 Device testing and characterization 

The balloons need to be filled with paraffin wax for the self-locking and self-

deploying functions.  This was achieved by placing the whole device on a hotplate with the 

temperature set at 60 °C, above the melting point of the paraffin wax (327212, Sigma-

Aldrich). The melted wax was then simply injected via a syringe.  The filling was stopped 

once excessive wax was observed on the outlet of the channel.   

The stiffness of the parylene balloon with melted and solidified wax was measured. 

The test was carried out by using a needle to push against one silicon island while the other 

island was clamped. The distance between needle tip and the center of the balloon was about 

4.3 mm. A load cell (GS0-10 from Transducer Techniques) was used here to measure the 

force. The displacement was controlled by a linear actuator with resolution of 5 µm in step 

size.   In order to characterize the effect of a single parylene balloon, the other two balloons 

place outside were removed during the experiment. Two measurements were carried out when 

the heater was turned on and off, respectively.  The results are plotted in Figure 3.5.  It can be 

observed that the stiffness of the parylene balloon with solid wax is more than four times of 

the one with melted wax. In order to verify our experimental result, COMSOL Multiphysics 

4.3b was used for a finite element simulation.  Note that the Young’s modulus of the paraffin 

wax can range from 1 to 4 GPa depending on its composition.  In the simulation, in order to 

have 4 times increase in stiffness, a value of 1.8 GPa was used, which falls within the 

expected range of Young’s modulus of paraffin wax.  To have a large stiffness increase, a 

thicker parylene balloon can be used.   
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Figure 3.5. Stiffness measurements of the parylene balloon with solid and melted wax.  

 

In order to estimate the temperature when the heater is on, the temperature coefficient 

of resistance (TCR) of the gold heater was characterized and found to be 0.00321(1/oC).  

When the heater was turned on by applying a constant voltage, the resistance of the heater 

was simultaneously monitored.  Then the temperature of the heater can be derived based on 

TCR.  

The self-locking and self-deploying tests were carried out under a stereo microscope 

and recorded by a video camera.  First, the heater was turned on and a micromanipulator was 

used to push the device into the folded state.  Then the heater was turned off while the device 

was kept in the folded state by the micromanipulator.   After about 30 seconds, which is 

longer than the thermal time constant of the system (about 10 seconds), the micromanipulator 

was removed.  Since the wax was solidified, the folding state was locked as shown in the 0 

second snap shot of Figure 3.6.  Then the heater was turned on, melting the paraffin wax filled 
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inside the parylene balloon.  The device returned to its original position due to the restoring 

force of the parylene balloon.  Figure 3.6 shows a series of snap shots of the device when the 

heater was turned on at 0 second.      

 

 

 

Figure 3.6. Snap shots of the device during a self-deploying process after the heater was 
turned on at 0 second. 

 

For the present device, the metal heater failed when the bending angle is greater than 

45°.  This angle can be easily increased by using longer balloons or serpentine shape balloons.  

The silicon island and parylene balloon structure has another advantage of self-folding by 

utilizing the volume expansion of wax inside the balloon. In fact, in Fig. 1 there are additional 

wax reservoirs on the silicon islands.  The reservoir (with heater) on the right island is used to 

provide additional volume expansion during actuating.  The small reservoir (with heater) on 

the left island is actually a venting valve to control the pressure of the crease balloon.  This 

1s 0s 2s 3s 4s 5s 6s 7s 8s 16s Original position 



45 

 

 

paper, however, focuses on the self-locking and self-deploying, and the self-folding feature 

will be implemented in our future work.  

3.4 Summery 

In conclusion, the self-locking and self-deploying features of an origami platform 

based on silicon island arrays and parylene balloon have been demonstrated.  These features 

are made possible by wax filled parylene balloon creases. For proof of concept, only metal 

heaters are integrated to control the solid/liquid phases of the wax. Of cause, high temperature 

silicon devices like CMOS circuits and advanced MEMS devices can also be directly 

integrated as well [60] . For example, silicon strain gauge and CMOS control circuits can be 

directly integrated to provide feedback signal for precision control of the bending angle.  The 

microfabrication process is post-CMOS and post-MEMS compatible, enabling the monolithic 

integration of electronics and sensors on the origami substrate (i.e., silicon islands).  Such an 

origami platform will be desirable for the fabrication of 3D devices.  There are still more 

work needs to be done in the future. For future development, the design will be optimized to 

achieve larger bending angles and higher structure rigidity. The self-folding mechanism will 

also be explored.   
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CHAPTER 4. SOI-CMOS compatible technology to make         

flexible electronics 

4.1 Introduction  

Flexible sensors or electronics are believed to have significant impacts on wearable 

health monitoring, medical implants and many other applications. In reference [4], a flexible 

large area position sensitive detector was developed by depositing amorphous silicon on 

Kapton polyimide substrate. In reference [5], a flexible multichannel sieve electrode for 

interfacing regenerating peripheral nerves was fabricated on polyimide film by using a silicon 

wafer as a support for a much better dimension control. Simple MEMS structures on plastic 

substrates, such as amorphous silicon air-gap resonators, have been demonstrated as well [6]. 

Simple process flow and low cost are two main advantages of direct fabrication on flexible 

substrate. Large area flexible sensors or electronics can be fabricated in this way 

economically.  However, since the process temperature is limited due to the flexible substrate, 

high temperature processes are ruled out and the material properties are not optimized. 

Moreover, due to this temperature limit, it will be almost impossible to integrate CMOS 

circuits and many MEMS transducers to the flexible substrate monolithically.      

The chapter discusses a simple SOI-CMOS compatible technology which can be used 

to fabricate flexible electronics without the limitations of the conventional techniques. The 

most unique part of our technology is the releasing step. All the electronic components of our 

device, including metal interconnects and discrete silicon islands can be fabricated right 
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before the final releasing step. The releasing step includes two parylene C film depositions. 

The first parylene layer is used as a mask to release the devices and a supporting layer for 

released devices. The second parylene layer functions as an encapsulation layer for the 

devices. XeF2 isotropic gas phase silicon etchant is used here in the releasing step to etch 

away the bulk silicon in the handle wafer. Parylene C is selected as the flexible substrate 

because parylene C deposition is a stress-free conformal process, and parylene C possesses 

excellent properties such as chemical inertness, biocompatibility, as well as small leakage 

current and low gas permeability. We have previously utilized XeF2 isotropic etching and 

parylene conformal deposition to fabricate microchannels and individually-addressable 

microtubes [32, 61].  In order to demonstrate the concept of the new flexible electronics 

technology, silicon strain gauges and MOSFETs were first fabricated. 

4.2 Design and fabrication 

The fabrication process started with a SOI wafer with a 2 µm n-type device layer and a 

buried oxide (BOX) layer of 0.5 µm. As shown in Figure 4.1 (a), the Si device layer was 

selectively doped at source and drain regions by boron diffusion (1100 oC, 15 min). Thermal 

oxide was used as a diffusion mask here. The resulting boron oxide layer from the diffusion 

was subsequently etched away by HF (Hydrofluoric Acid). The oxide diffusion mask was 

removed simultaneously. Next, a 0.5 µm PECVD oxide layer was deposited and patterned as 

the gate oxide. Then as shown in Figure 4.1(b), Si islands were patterned and the exposed 

BOX layer were removed sequentially. Aluminum traces and contact pads were then sputtered 

and patterned as shown in Figure 4.1(c). A sintering step at 450 oC was carried out to form the 
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ohmic contact between Al and the silicon (source and drain). It is worth noting that at this step 

the aluminum traces and pads were in direct contact with the handle silicon substrate, leading 

to short circuits. However, these short circuits were temporary since the handle silicon layer 

would be undercut later. It can be observed that the electronic components can be fabricated 

via standard CMOS process up to this point since there is no temperature limit of fabrication 

process. 

                       

Figure 4.1. Simplified process flow: (a) Boron diffusion; (b) patterning the device layer and 
removing the exposed BOX layer; (c) Al deposition and patterning to form traces and pads; (d) 
1st 3 µm parylene deposition; (e) patterning the parylene openings and etching away 
underneath metal traces; (f) XeF2 etching to release the devices; (g) 2nd 10 µm parylene 
deposition; (h) patterning the parylene layer and releasing the device. 

0.5µm PECVD Oxide 

Cross-sectional view  
 

2µm silicon device layer 

13µm top parylene 

0.5µmThermal Oxide 

3µm bottom parylene 
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Next, a few more steps were performed to transfer devices from Si substrate into 

flexible parylene C substrate. First, a 3 lm thick parylene C layer was deposited as illustrated 

in Figure 4.1(d). Next at step (e), arrays of small windows (8 µm x 25 µm) 60 µm apart were 

opened in this parylene layer using O2 plasma. Note that these openings were also formed on 

all the wide metal traces/pads and silicon islands. Then at step (f), XeF2, an isotropic gas 

phase silicon etchant, was used to completely undercut the silicon underneath through the 

windows formed in the previous step. Note that silicon islands, including MOSFETs and 

strain gauges, were protected by the parylene C on the top and BOX on the bottom. At this 

point both functional silicon device layer and metal traces/pads were supported by a free-

standing perforated parylene C membrane. Next, a second parylene C layer (10 µm) was 

conformally deposited to encapsulate the devices and metal traces/pads and simultaneously 

seal the etching windows as shown in Figure 4.1(g). Oxygen plasma was then used to open 

bonding pads on the front side and cut the outline of the flexible device. Finally the flexible 

device can be simply peeled off from the Si substrate. Note that there are two physically 

separated parylene C layers after step (h). Depending on the application, we can choose to 

either keep or remove the scalloped bottom parylene C layer by simply modifying the final 

parylene etching mask. Because these two parylene C layers formed an enclosed space by 

keeping the bottom parylene layer, we could easily integrate functional microchannels, 

microtubes, or diaphragms in the system. Here for the flexible MOS- FETs and strain gauges, 

the bottom parylene layer was removed. 
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A fabricated flexible device is shown in Figure 4.2 which is handled by a pair of 

tweezers. The flexibility of the device can be clearly observed. In order to facilitate the 

subsequent testing and calibration, contact pads (large square pads seen in the picture) are 

made fairly large about 1mm by 1mm in size.  All the devices and metal traces (except 

contact pads) are encapsulated by con- formally coated transparent parylene C films.  

 

Figure 4.2. A bent flexible device held by a pair of tweezers 
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Figure 4.3. Cross sectional SEM image of the flexible device 

 

Figure 4.3 shows the cross section of the flexible device. The relative position of the 

device layer in the parylene C film can be observed. As described in the process flow, there 

was an initial parylene film (1st parylene C layer) above the device layer. During step (g), the 

2nd parylene C layer was deposited to reseal etching holes. The 2nd parylene layer was 

conformally deposited on the bottom side through etching holes as well and simultaneously 

coating the sides of the 1st parylene layer. 2nd parylene layer will stop coating the bottom 

side once the holes have been sealed. It estimated that around 4 µm thick parylene will be 

deposited on the bottom side and 10 µm parylene will be deposited on top side. Therefore, the 

device layer was below the middle plane of the parylene C layer. The relative position can be 
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easily adjusted by thinning down either top or bottom side of the parylene C film via O2 

plasma after the device has been released from the substrate. 

4.2.1 Fabricated MOSFETs 

 

 

Figure 4.4. Optical micrograph of four MOSFETs with different channel widths. 

Figure 4.4 is the optical micrograph showing details of four MOSFETs with different 

channel widths. The 2-D arrays of re-sealed etching holes can be clearly observed as well 

(which appears to be dotted lines). Note that the etching holes were also formed on the silicon 
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islands and wide metal traces. The location of the etching holes are specifically designed so 

that these holes facilitated the undercutting of silicon underneath without affecting the 

functionality of the devices. 

 

 

Figure 4.5. SEM image of a MOSFET integrated on the flexible substrate. 

Figure 4.5 is a SEM image of a single MOSFET fabricated on the parylene flexible 

substrate. Note that the MOSFET and metal traces are sandwiched between parylene thin 

films. They can be observed in SEM because of the height variation. The sealed etching holes 

can be observed with more details in this SEM image. Note that the original width of the 

etching holes was 8 µm wide. The second 10 µm parylene C deposition was more than 

enough to completely seal these holes to make a complete film and enhanced the mechanical 

strength of the flexible substrate. 
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The fabricated flexible MOSFETs have been preliminarily characterized. Figure 4.6 (a) 

plots the Isd-Vsd curves of one PMOS device with different Vsg. It can be observed that the 

threshold voltage Vth of this PMOS is less than -5 V. Figure 4.6 (b) illustrates the change of 

the Isd-Vsd curves when the de- vice was bent with a fixed Vsg of 15 V. The increased 

current is due to the increase of charge carrier mobility when the MOSFET channel is strained. 

The strain sensitivity is mainly because the MOSFET is not at the neutral plane of the 

substrate. The MOSFET can actually be used as a sensitive flexible strain gauge in this case. 

It will become even more sensitive if we selectively thin down the bottom side of the parylene 

C film and thus move the device layer further away from the neutral plane. For other 

applications, the device layer can be positioned right on the neutral plane to minimize strains 

by reducing the thickness of the top parylene C layer via O2 plasma. 
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Figure 4.6. (a) Isd-Vsd curves of one PMOS device with different Vsg; (b) shift of Isd-Vsd 
curves of one PMOS device when the device was deformed (Vsg is fixed at 15V) 

4.2.2 Fabricated Strain Gauges  

The magnified view of two perpendicular strain gauges can be found in Figure 4.7.  In 

this figure, both narrow metal traces and wide perforated metal traces can be observed. Note 

that metal traces or device narrower than 60 µm (the spacing between rows of etching holes) 

can be designed to be a complete device without etching holes embedded inside the feature. 
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Wide metal traces and devices wider than 60 µm will have etching holes embedded inside the 

feature. Wider metal traces make our device more durable and they are also required for 

contact pads. Note that arrays of small dimples, which are resealed parylene C windows after 

second parylene C deposition, can be observed on the surface as shown in Figure 4.7 

 

 
Figure 4.7. Optical micrograph of two perpendicular strain gauges. 

In order to test the performance of the flexible strain gauge, conductive epoxy was 

used to connect the testing wires to the exposed metal contact pads. A simple experiment was 

carried out by pushing the flexible device in the longitudinal direction (to induce buckling) as 

illustrated in  

Figure 4.8. The displacement was controlled using a precision micro-manipulator.  

The resistance change of the strain gauge as a function of displacement was recorded.  The 

experiments were repeated 10 times and the average data points with standard deviation are 

plotted in Figure 4.9.  If the gauge factor is 10 (for heavily doped n-type silicon), the strain 

experienced by the strain gauge is 0.387% for 1mm displacement in the experiment 

(corresponding to a bending radius of ~3 mm). This is actually a sensitive flexible strain 

50µm 

Strain gauges 

Wide perforated metal trace 

Thin metal trace 



gauge because the silicon device layer is not at the neutral plane.  I

sensitive if we selectively thin down the bottom side of the 

device layer further away from the neutral plane.  For other applications, the device layer can 

be positioned right on the neutral plane 

top parylene C layer via O2 plasma.  

 

 

Figure 4.8. Testing setup with two moving stages to control the displacement.  

 

Micromanipulator moving direction

  

Conductive Epoxy
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device layer is not at the neutral plane.  It will become even more 

in down the bottom side of the parylene C film and thus move the 

device layer further away from the neutral plane.  For other applications, the device layer can 

be positioned right on the neutral plane to minimize strains by reducing the thickness of the 

arylene C layer via O2 plasma.   

 
 

 

Testing setup with two moving stages to control the displacement.  

Strain gauge position 

Micromanipulator moving direction 

Conductive Epoxy 

Fixed Stage

  

t will become even more 

arylene C film and thus move the 

device layer further away from the neutral plane.  For other applications, the device layer can 

ucing the thickness of the 

 

Testing setup with two moving stages to control the displacement.   

Fixed Stage 
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Figure 4.9. A simple experiment records the resistance change while the device bends when 
we applied the displacement in the longitudinal direction.    
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4.3 Summary 

In conclusion, a simple SOI-CMOS compatible flexible electronics technology has 

been demonstrated. This technology has advantages of being simple and compatible with 

commercial SOI-CMOS processes. High-density and high-performance CMOS circuits can be 

first fabricated using SOI foundry (by slight modifying the layout rules) and readily 

transferred to flexible substrates. The post-CMOS process only requires two masks, one is 

used to form etching holes and the other to open the metal pads and shape the outline. In 

addition, the lamination of the electronics between parylene films offers protection against 

moistures from the environment. By eliminating the transfer printing process, the device 

density and yield can be increased significantly. Moreover, the electronics or sensors can be 

positioned at either neutral plane or any other selected planes by simply modifying the 

thickness of the top or bottom parylene C via O2 plasma, and therefore allowing more design 

flexibility. It is also worth noting that this technology is post-MEMS compatible in some 

sense and thus allows the integration of various MEMS sensors and microfluidic components 

on the flexible substrate.  
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CHAPTER 5. A parylene smart tube technology compatible with   

high-temperature solid-state materials 

5.1 Introduction 

The ability of our technology to make fluidic devices and integrate CMOS elements 

has been demonstrated in the previous chapters. The ability to monolithically incorporate 

electronic components and micro-fluidic structure is highly desirable. This chapter will 

discuss a smart tube device enabled by our technology. 

Smart tube devices could be used in various biological and medical applications.  Li et 

al. developed a lab-on-a-tube device targeting neuromonitoring of patients with traumatic 

brain injury [62]. Smart catheter flow sensor for real-time continuous cerebral blood flow 

monitoring has been developed as well [63]. Their devices were developed by spirally rolling 

a flat cable integrated with multiple sensors.   Smart tube or cannula devices can be used for 

intraocular pressure measurement or ocular drug delivery [64, 65]. Smart tube device can also 

be used for 3D cell culture or tissue engineering, to measure the local parameters such as 

pressure, flow, pH, O2 concentration, voltage and so on [66, 67]. Neural prosthesis can be 

benefited from smart tubes as well, for the capability of measuring local physicochemical, 

mechanical and biological microenvironments [68-70]. In this chapter, we present the 

development of a parylene smart tube technology compatible with high-temperature solid-

state materials.  Namely, circuits and sensors can be first fabricated on silicon wafers using 



mainstream CMOS and MEMS processes without the temperature limitation. For the purpose 

of proof of concept, a pressure sensor and a flow sensor are integrated. 

5.2 Design and fabrication

Figure 5.1. Simplified process flow: (a) Boron diffusion; (b) patterning the Si island on 
device layer and removing the exposed BOX layer; (c) Al deposition and patterning to for
traces and pads;(d) 1st 3 µm p
etching away underneath metal traces; (f) XeF
parylene deposition; (h) patterning the 

The fabrication was carried out on a SOI wafer with 2 µm n

resistance around 1-10 ohm-cm. First, the Si device layer was selectively doped with a 
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mainstream CMOS and MEMS processes without the temperature limitation. For the purpose 

of proof of concept, a pressure sensor and a flow sensor are integrated.  

fabrication 

Simplified process flow: (a) Boron diffusion; (b) patterning the Si island on 
device layer and removing the exposed BOX layer; (c) Al deposition and patterning to for

parylene deposition; (e) patterning the parylene openings and 
etching away underneath metal traces; (f) XeF2 etching to release the devices; (g) 2nd 10 µm 

deposition; (h) patterning the parylene layer and releasing the device. 

The fabrication was carried out on a SOI wafer with 2 µm n-type device layer of 

cm. First, the Si device layer was selectively doped with a 

mainstream CMOS and MEMS processes without the temperature limitation. For the purpose 

 

Simplified process flow: (a) Boron diffusion; (b) patterning the Si island on 
device layer and removing the exposed BOX layer; (c) Al deposition and patterning to form 

ene openings and 
ase the devices; (g) 2nd 10 µm 

 

type device layer of 

cm. First, the Si device layer was selectively doped with a 
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diffusion mask grown and patterned prior to the doping as seen in Figure 5.1 (a). Next, Si 

device layer was patterned and the exposed BOX layer was also removed subsequently.  Note 

that two silicon devices were placed perpendicular to each for better illustration of our process 

even though the actual fabricated devices were placed in the same direction. Then as shown in 

Figure 5.1 (b), a 0.5 µm PECVD oxide layer was deposited and patterned to cover both top 

and side wall of the Si devices except the doped regions.  Aluminum (Al) traces was then 

sputtered and patterned to make electrical contact to the doped Si regions as shown in Figure 

5.1(c). It can be observed that the electronic components and sensors can be fabricated via 

standard CMOS and MEMS processes up to this point since there is no temperature limit of 

fabrication process. Next, parylene C layer was deposited and then patterned with arrays of 

small windows (8 µm x 25 µm) 60 µm apart as demonstrated in step (d) and (e). Note that 

these openings were also formed on metal traces wider than 60 µm such as contact pads. The 

exposed Al traces were also etched away in this step. Then at step (f), XeF2, an isotropic gas 

phased silicon etchant, was used to undercut the silicon to form continuous trenches. Note that 

the silicon devices were not attacked since they were protected by both parylene C on the top 

and BOX on the bottom. At this point the devices were supported by a free-standing 

perforated parylene membrane. Then a second parylene C layer (10 µm) was conformally 

deposited to encapsulate the silicon island and metal traces/pads as shown in step (g). The 

parylene windows patterned previously were also sealed at this point and formed a complete 

parylene membrane. Finally the outline of the smart tubing device can be defined and all the 

devices can be simply peeled off from the substrate. 



5.3 Results and discussion

 

Figure 5.2 (a) and (b) are optical images and SEM picture of a fabricated smart tube 

device. The whole device is made out of conformal coated 

device highly transparent. The pressure sensor is located on the 

composed of four silicon piezoresistors.

and is made of a silicon heater 

The 2D arrays of white dots a

traces were used to access both sensors.  The backside 

device is illustrated in Figure 5.

 

Figure 5.2. (a) Optical image of the fabricated device including both pressure sensor and flow 
sensor; (b) back side and SEM images of the device
device where the front side sensors 

 

Pressure

Flow Sencor

(a) 
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.3 Results and discussion 

(a) and (b) are optical images and SEM picture of a fabricated smart tube 

s made out of conformal coated parylene C which makes the 

device highly transparent. The pressure sensor is located on the larger square diaphragm, 

iezoresistors. The flow sensor, which is based on thermal principle 

heater [71, 72], is placed further down to the neck region

The 2D arrays of white dots are the sealed etching holes on parylene. Total of three metal 

traces were used to access both sensors.  The backside and cross-sectional SEM image of the 

.3. The scallop-shape is the result of isotropic etching of XeF2.

  

Optical image of the fabricated device including both pressure sensor and flow 
sensor; (b) back side and SEM images of the device; the inset is the optical image of the same 

sensors can be observed through transparent parylene bottom layer.

Pressure Sensor 

Flow Sencor 

(b) 

(a) and (b) are optical images and SEM picture of a fabricated smart tube 

arylene C which makes the 

square diaphragm, 

The flow sensor, which is based on thermal principle 

, is placed further down to the neck region of the tube.  

arylene. Total of three metal 

SEM image of the 

shape is the result of isotropic etching of XeF2. 

 

Optical image of the fabricated device including both pressure sensor and flow 
the inset is the optical image of the same 

through transparent parylene bottom layer. 
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Figure 5.3. Cross-section SEM images of the tail section of the device 

To better understand the operation of our pressure sensor, a white-light interferometror 

(ContourGT InMotion 3D Optical Microscope, Bruker Nano Inc) was used to measure the 

deformation of the square diaphragm under pressure as shown in Figure 5.4. The deformation 

of the diaphragm can be clearly observed as the tube undergoes 55kPa air pressure generated 

by a syringe pump.  The maximum deflection of the diaphragm as a function of the 

differential pressure is plotted in Figure 5.5. The data shows that the deformation of the 

diaphragm becomes nonlinear when the pressure is large. 
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Figure 5.4. Surface profile of the diaphragm without (left) and with (right) differential 
pressure applied. 

 
Figure 5.5. Cross-sectional surface profiles of the pressure sensor diaphragm under different 
pressures. 

 

0Kpa 55Kpa 



In order to calibrate the pressure sensor and flow sensor, a

constructed to perform the testing of 

tube in liquid environment.  As schematically illustrated in 

was sealed into a chamber made 

gauge polyimide tubings.  Note that the tip of our smart tube where sensors are located was 

placed inside the inlet polyimide tubing and the tail section of our smart tube was placed 

outside of the chamber for electrical access. Three probe

contact pads located on the tail section of the smart tube.  In addition, the accessing port 

tail end of the smart tube was not sealed which makes the bottom side of the pressure sensor 

diaphragm exposed to atmosphere.

Figure 5.6. Schematics of our testing setup.
placed inside the inlet polyimide tubing which enables us to characterize the flow sensor.
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In order to calibrate the pressure sensor and flow sensor, a testing 

the testing of the integrated pressure and flow sensors on the 

tube in liquid environment.  As schematically illustrated in Figure 5.6, the smart tube device 

was sealed into a chamber made out of glass slides.  This chamber is accessed by two 22 

gauge polyimide tubings.  Note that the tip of our smart tube where sensors are located was 

placed inside the inlet polyimide tubing and the tail section of our smart tube was placed 

outside of the chamber for electrical access. Three probes were used to access the electrical 

contact pads located on the tail section of the smart tube.  In addition, the accessing port 

of the smart tube was not sealed which makes the bottom side of the pressure sensor 

phere. 

 

Schematics of our testing setup. The sensing tip of the smart tube device was 
placed inside the inlet polyimide tubing which enables us to characterize the flow sensor.

Polyimide tubing 

Electric probe 

testing apparatus was 

essure and flow sensors on the parylene 

, the smart tube device 

essed by two 22 

gauge polyimide tubings.  Note that the tip of our smart tube where sensors are located was 

placed inside the inlet polyimide tubing and the tail section of our smart tube was placed 

s were used to access the electrical 

contact pads located on the tail section of the smart tube.  In addition, the accessing port at the 

of the smart tube was not sealed which makes the bottom side of the pressure sensor 

The sensing tip of the smart tube device was 
placed inside the inlet polyimide tubing which enables us to characterize the flow sensor. 
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Both piezoresistors and heaters are made of silicon and are sensitive to temperature.  

The resistance of the sensing resistor as a function of temperature was measured. Based on the 

data, the temperature coefficient of resistance (TCR) was calculated to be 0.0028 (oC-1).  

 The pressure characterization was carried out by filling the chamber with liquid 

solution, IPA in this case, into the chamber via a syringe pump.  A pressure sensor was also 

coupled in the system to measure the chamber pressure. Instead of pressurizing the smart tube 

device, negative chamber pressure was generated by withdrawing liquid inside the sealed 

testing chamber using a syringe pump from the outlet polyimide tubing.  A differential 

pressure was generated across the diaphragm.  The resistance change of the piezoresistors was 

measured when the differential pressure increased from zero and returned to zero, as shown in 

Figure 5.7. Some hysteresis was observed due to the fact that our sensor was made out of 

polymer material. It can be observed that the hysteresis was smaller at lower operation 

pressure range. When the pressure range is 0-15 KPa, the hysteresis is less than 3.8% of the 

full range. Nonlinearity was also observed, which is consistent with the surface displacement 

data measured by white light interferometer.  The pressure sensitivity of the integrated flow 

sensor was also measured.  It is observed that flow sensor exhibits a very low sensitivity to 

the pressure change.  Therefore the pressure variation will have minimum impact on the 

operation of the flow sensor.  

 



68 

 

 

 

Figure 5.7. Measured relationship between differential pressure applied and resistance change 
at room temperature. Colored lines are measured from pressure sensor at different pressure 
settings which shows the hysteresis of the system. Data in black indicates the resistance 
change of the flow sensor under pressure. 

The flow sensor was first characterized by I-V curves, from which temperature 

changes versus power consumption relationship was obtained. A temperature sensitivity of 

0.58 oC /mW was observed.  Our sensor was encapsulated by parylene C which has a melting 

temperature of around 290 oC.  A fixed bias voltage (2.5V in this case) was applied to the 

sensor and current passing through the resistor was recorded when different flow rate was 

generated by syringe pump.  Based on the TCR value, the working temperature of the thermal 

resistor was estimated to be around 60 oC which is a safe value for both parylene and liquid 

content we were measuring.  The measured power consumption of the flow sensor as a 
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function of flow rate is shown in Figure 5.8. Note that the thermal convection around the 

sensor is a function of the flow rate.  More heat will be dissipated at higher flow rate which in 

turn reduce the temperature of the thermal resistor. Consequently the resistance decreases and 

the power consumption increases with constant voltage mode.  It is observed that the flow 

sensor exhibited relative large fluctuation. This is mainly because the device was suspended 

in the liquid and became instable when flow rate is not zero. 

 

Figure 5.8.  Measured power consumption with various flow speed 
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5.4 Summary 

Smart tube devices with integrated pressure sensors and flow sensors have been 

demonstrated. Our new technology has the advantage of being compatible with CMOS and 

MEMS processes.  High-temperature solid-state materials can be integrated, significantly 

increasing the performance and functionality of smart tube devices. By eliminating any post-

fabrication bonding and packaging processes, high throughput and more reliable devices can 

be fabricated.  The chemical resistance and biocompatibility of the parylene C makes our 

device suitable for a variety of biomedical applications.  It is worth noting that other types of 

sensors and microfluidic components can be readily integrated.      
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CHAPTER 6. Additional applications and future work 

6.1 Smart yarn devices 

6.1.1 Introduction 

Intelligent textiles, variously known as smart fabrics, electronic textiles, or e-textiles, 

have attracted considerable attentions worldwide due to their potential to bring revolutionary 

impacts on human life [9, 73]. Various functional yarns based on optical fibers, conductive 

polymer, metal filaments, or even carbon nanotubes have been developed for intelligent 

textile applications [74-77]. However, the aforementioned smart yarns do not have 

sophisticated electronics or sensors and require hybrid assembly of external circuits/sensors 

which render the system less flexible, and also less functionality in many cases. The ability to 

incorporate electronics and sensors into yarns monolithically and invisibly is highly desirable 

in order to reduce the complexity and increase the flexibility/functionality of the system.  In 

addition, due to the temperature limitations, silicon-based sensors and CMOS circuits cannot 

be integrated. Our SOI-CMOS compatible technology to fabricate flexible electronics 

introduced in the previous chapters enables us to develop intelligent textiles. This 

compatibility allows the integration of high performance CMOS circuits by taking advantage 

of SOI-CMOS foundries. To prove the concept, we have demonstrated the integration of 

silicon strain gauges and MOSFETs.   
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6.1.2 Fabrication 

The fabrication process our smart yarn device is compatible with the processes 

described in the previous chapters. CMOS compatible high temperature processes including 

thermal oxidation and Boron doping are performed prior to any parylene C deposition as 

demonstrated in Figure 6.1. All of the functional electronic components are made at this stage 

followed by the metallization of the interconnect traces. After the first layer of payrlene C 

deposition, arrays of O2 plasma etched parylene C openings are specifically placed to avoid 

silicon devices and metal traces to expose the underneath silicon handling silicon layer. XeF2 

gas is then used to etch away the underneath silicon which forms the cavity at the same time 

based on our design. Second layer of parylene C layer is conformaly deposited to encapsulate 

the cavity and seals the parylene C openings at the same time to form a complete channel. As 

indicated in step (h), the smart yarns with integrated strain gauges and MOSFTEs were 

outlined and patterned along the parylene tubes via O2 plasma. Then the whole string of 

devices can be simply peeled off from the silicon substrate. The device at this stage was 

flexible and subject to kinks as it only consists of hollow parylene tube. PDMS, a silicon-

based organic polymer, were simple injected from one end of the smart yarn as described in 

step (j). When the PDMS cures the device transforms into a solid fiber structure.  
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Figure 6.1. Simplified fabrication  process: (a) Thermal oxide mask was used here for Boron 
diffusion; (b) Si island on device layer was patterned  and the exposed BOX layer was 
removed; (c) Al  deposition and patterning to form traces and pads; (d) 1st 3 µm parylene 
deposition; (e) patterning the parylene openings and exposed  metal traces; (f) XeF2 etching to 
completely undercut the handling wafer, making device free standing; (g) 2nd 10 µm parylene 
deposition to seal the previously opened parylene windows; (h) patterning the parylene layer, 
open the contact pads and releasing the device; (i) PDMS was injected as a supporting core. 

  



6.1.3 Results and discussion

Figure 6.2 shows a fabricated 

and around 100 µm in diameter. The diameter of our smart yarn is comparable to that of 

human hairs which vary from 17 to

device by simply modifying the number o

spacing between parylene columns. In addition, overall diameter of our device can be 

controlled by modifying the depth of XeF

Excellent flexibility can also be observed and the device can be easily handled 

fingers thanks to its reinforcing PDMS core. 

bellow is the result of metal interconnects. 

Figure 6.2. A parylene smart yarn held between fingers and bent to show its flexibility.
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shows a fabricated parylene smart yarn which measures 7.5 cm in length 

and around 100 µm in diameter. The diameter of our smart yarn is comparable to that of 

human hairs which vary from 17 to 180 µm. Note that we are able to control the 

device by simply modifying the number of columns of parylene etching windows 

arylene columns. In addition, overall diameter of our device can be 

depth of XeF2 etching based on the number of etching loops

Excellent flexibility can also be observed and the device can be easily handled 

fingers thanks to its reinforcing PDMS core. The bright reflection observed

sult of metal interconnects.  

arylene smart yarn held between fingers and bent to show its flexibility.

arylene smart yarn which measures 7.5 cm in length 

and around 100 µm in diameter. The diameter of our smart yarn is comparable to that of 

180 µm. Note that we are able to control the width of our 

arylene etching windows and the 

arylene columns. In addition, overall diameter of our device can be 

based on the number of etching loops. 

Excellent flexibility can also be observed and the device can be easily handled between 

observed in the picture 

 

arylene smart yarn held between fingers and bent to show its flexibility. 
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Figure 6.3. Cross-sectional SEM images of our parylene fibers. (a) Fiber filled with PDMS; 
(b) Hollow fiber without PDMS core. 

(a) 

(b) 
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To better understand the benefits of the reinforcing PDMS core, two devices with and 

without PDMS core were prepared for comparison.  Cross-sectional SEM images of these two 

samples were shown in Figure 6.3. 

It can be observed that the device on the left has more rounded profile compared with 

the device without PDMS. The parylene C tube remains pressurized during PDMS injection 

and curing process. Moreover, we have put those two samples under extreme bending test to 

better understand the benefit of having a reinforcing core. As shown in Figure 6.4 (a), the 

results clearly demonstrate that our device with PDMS core is almost kink-free under extreme 

deformation.  A bending radius of 0.5mm has been achieved.  In comparison, Figure 6.4 (b) 

shows the kinked device without PDMS core. Any integrated electronics/sensors will be 

prone to damages as extreme strain and stress will be generated at kinked regions. The PDMS 

core not only functions as a reinforcing layer but also helps to reduce the strain on electronic 

components when the smart yarn is under deformation.  

 

 

 

 

 



Figure 6.4. (a) SEM image of a kink
an optical image of the actual 
parylene fiber without PDMS core. 

(a) 

(b) 
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(a) SEM image of a kink-free knot made by PDMS filled yarn; the inset picture 
an optical image of the actual PDMS filled yarn; (b) SEM image of a kinked knot made by 
arylene fiber without PDMS core.  

Contact Pad

 

 

; the inset picture is 
image of a kinked knot made by 

Contact Pad 



To prove the concept, simple 

as seen in Figure 6.5. The whole device is highly transparent even when filled wi

allows us to visually inspect any damages caused by excessive force. In order to electrically 

access those devices, conductive epoxy was used to connect the exposed cont

 

Figure 6.5. Optical images of a strain gauge 

6.1.3.1 Bending test of the integrated strain gauge

Silicon strain gauge of 30 µm by 1mm was embedded in the longitudinal direction 

the yarn. A simple bending test was carried out to evaluate integrated strain gauge as 

demonstrated in Figure 6.6. The testing was performed under an enclosed chamber to 

eliminate ambient air flow which will cause unstable reading from the gauge. The total length 

of the clamped smart yarn was 21mm with the strain gauge positioned in the middle. A 

moving stage with a step resolution of 5 µm was used to displace one end of the smart yarn. 

Total displacement of 3mm was achieved during test. Note that the smart yarn in the 
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To prove the concept, simple silicon strain gauges and MOSFETs were first integrated 

. The whole device is highly transparent even when filled wi

allows us to visually inspect any damages caused by excessive force. In order to electrically 

access those devices, conductive epoxy was used to connect the exposed contact pad.

Optical images of a strain gauge and a MOSFET integrated in the p

Bending test of the integrated strain gauge 

strain gauge of 30 µm by 1mm was embedded in the longitudinal direction 

. A simple bending test was carried out to evaluate integrated strain gauge as 

. The testing was performed under an enclosed chamber to 

eliminate ambient air flow which will cause unstable reading from the gauge. The total length 

clamped smart yarn was 21mm with the strain gauge positioned in the middle. A 

step resolution of 5 µm was used to displace one end of the smart yarn. 

Total displacement of 3mm was achieved during test. Note that the smart yarn in the 

Strain Gauge 

MOSFET 

strain gauges and MOSFETs were first integrated 

. The whole device is highly transparent even when filled with PDMS. It 

allows us to visually inspect any damages caused by excessive force. In order to electrically 

act pad. 

 

 

parylene yarn. 

strain gauge of 30 µm by 1mm was embedded in the longitudinal direction of 

. A simple bending test was carried out to evaluate integrated strain gauge as 

. The testing was performed under an enclosed chamber to 

eliminate ambient air flow which will cause unstable reading from the gauge. The total length 

clamped smart yarn was 21mm with the strain gauge positioned in the middle. A 

step resolution of 5 µm was used to displace one end of the smart yarn. 

Total displacement of 3mm was achieved during test. Note that the smart yarn in the 



schematic was the actual device bent at maximum displacement. The resistance change of the 

strain gauge as a function of displacement was plotted in 

forward to its max displacement and 

observed due to the plasticity of

 

 

Figure 6.6. Experiment setup: the 
positioned at the center. The parylene fiber was flat at initial position. Then the stage moved 
to the right to a maximum displacement of 3mm.

Moving stage
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schematic was the actual device bent at maximum displacement. The resistance change of the 

uge as a function of displacement was plotted in Figure 6.7 as we moved the stage 

forward to its max displacement and then backward to its original position. Hysteresi

plasticity of the PDMS core and outside parylene shell during the test

 

Experiment setup: the parylene fiber was secured at two stages with strain gauge
arylene fiber was flat at initial position. Then the stage moved 

to the right to a maximum displacement of 3mm.  

Fixed stage Moving stage 

Strain Gauge 

schematic was the actual device bent at maximum displacement. The resistance change of the 

as we moved the stage 

to its original position. Hysteresis was 

during the test.   

fiber was secured at two stages with strain gauge 
arylene fiber was flat at initial position. Then the stage moved 
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Figure 6.7. The resistance change of the strain gauge   

6.1.3.2 Electrical characteristics of MOSFET 

MOSFETs are building blocks for electronics which are used for amplifying or 

switching electronics signals. A simple p-channel MOSFET has been built into our smart yarn 

and also been preliminarily characterized. The Isd-Vsd curves of the p-channel MOSFET 

device with different Vsg are plotted as seen in Figure 6.8. It can be observed that the 

threshold voltage Vth of this p-channel MOSFET is less than -10V. The fabrication process of 

our MOSFETs was not optimized for the performance in our prototype development. The 

purpose of this work was to demonstrate the ability of our technology to incorporate 

MOSFETs. 
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Figure 6.8. Isd-Vsd curves of one pMOSFET device with different Vsg.  

6.1.3.3 Implementation of the smart yard device to blood pulse measurement 

The smart yard device with integrated sensors enabled by our technology will bring 

significantly improvements to a variety of wearable applications. For proof-of-concept 

purpose, we utilized the integrated strain gauge on our flexible yarn for wearable blood pulse 

monitoring application. The implementation of such a wearable device is very straight-

forward. Our smart yarn with strain gauge was wrapped around the wrist with a slight 

pressure. The blood pulse correspondingly creates stress pulse on the strain gauge. As 

demonstrated in Figure 6.9., the stress pulse can be clearly observed in the form of measured 

voltage. This preliminary data proves that our method is valid and our device is capable for 

wearable blood pulse measurement.    



Figure 6.9.  Blood pulse measurement data.

6.1.4 Conclusion 

In conclusion, a SOI-CMOS compatible technology to fabricate smart yarns has been 

successfully demonstrated. MOSFETs and strain

commercial SOI-CMOS processes and readily integrated into smart yarns. Based on the 

amount of the undercut from XeF

thickness. Note that the reinforcing PDMS 

the yarn and prevent kinks when under deformation. Depending on the applications other 

types of reinforcing cores are also under investigation. It is also worth noting that our 

technology is post-MEMS comp

circuits can be integrated with slight modification of our fabrication process which will 

further expands the functionality of the smart yarn device. 

incorporated into fabrics, leading

monitoring systems based on smart yarns are highly desirable due to their convenience and 

non-invasive nature.    
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Blood pulse measurement data. 

 

CMOS compatible technology to fabricate smart yarns has been 

successfully demonstrated. MOSFETs and strain gauges can be first fabricated using 

CMOS processes and readily integrated into smart yarns. Based on the 

amount of the undercut from XeF2 etching, the size of the yarn is only limited by the wafer 

thickness. Note that the reinforcing PDMS core will significantly increase the robustness of 

the yarn and prevent kinks when under deformation. Depending on the applications other 

types of reinforcing cores are also under investigation. It is also worth noting that our 

MEMS compatible which means various MEMS sensors and CMOS 

circuits can be integrated with slight modification of our fabrication process which will 

further expands the functionality of the smart yarn device. The smart yarns can be 

incorporated into fabrics, leading to wearable sensors or electronics. Wearable health 

monitoring systems based on smart yarns are highly desirable due to their convenience and 
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monitoring systems based on smart yarns are highly desirable due to their convenience and 
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6.2. Micro PH sensors  

6.2.1. Introduction  

The pH sensor has served as an indispensable tool for both biology and chemistry 

industries. The conventional glass tube pH sensor has limitations for a wide variety of 

applications due to its bulky size. With the help of micro-fabrication techniques, various 

micro-scale pH sensors have been developed. Among various materials, IrO2 which can 

provide a rapid and stable response in different conditions, became a superior material for pH 

sensing [78]. However, most of the thin-film  micro pH sensors do not have Ag/AgCl 

reference electrode[79-81] which significantly compromise the sensing performance and long 

term stability.      

To overcome this draw back, we have developed a flexible liquid junction Ag/AgCl 

reference electrode for micro pH sensor based on our previously reported smart tube 

technology [35]. Specifically, the reference electrode is constructed by simply inserting a 50 

µm diameter Ag/AgCl wire into a 100 µm diameter parylene tube and then sealing the open 

end of the tube with porous Gel. To form a complete pH sensor, IrO2 working electrode can 

be directly fabricated onto the parylene tube surface. 
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6.2.2. Working principle of a conventional pH meter 

By definition a pH meter is an electronics device used to measure the pH value of a 

liquid solution. The value of pH in a solution is determined by the concentration of hydrogen 

ion. As indicated in Figure 6., both reference electrode and measurement electrode are used in 

a commercial pH meter. Reference electrode used here is because a stable electrical potential 

is required when measuring different solutions. An Ag/AgCl electrode is commonly used as a 

standard reference electrode which has a relative stable potential in variety of solutions. Glass 

doped with lithium ions will react with hydrogen ions and potential can be measured to 

determine the pH value of the solution.   

 

Figure 6.10. Components of a working pH meter. 
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lithium ions to react 
with hydrogen ions 

Porous 
Junction 

Potassium 
Chloride Buffer 

solution 



85 

 

 

A commercial pH meter which integrates both reference electrode and measuring 

electrode in a single package is shown in Figure 6.9. Obviously they are very bulky and 

require large volume of sample solution. 

 

 

 

 

 

 

Figure 6.9. A commercial glass tube pH meter. Source: Cole-Parmer 

 Doped glass used in commercial pH meters are very bulky and expensive to make. 

Other materials have been explored to selectively measure the concentration of the hydrogen 

ions. IrO2 appears to be a very good candidate to be used in pH sensing application.  Our 

technology enables us to directly integrate the IrO2 electrode onto our miniature reference 

electrode. 

 

Measurement Junction 

Reference Junction 
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6.2.3. Design and fabrication 

Our technology takes advantage of XeF2 isotropic gas phase silicon etching and 

conformal parylene C coating. 

 

Figure 6.10. Simplified fabrication  process: (a) Parylene C coating on a silicon wafer; (b) 
Metal deposition to form sensing and contact pads ; (c) patterning the parylene openings; (d) 
XeF2 etching to completely undercut the handling wafer and forms underlying channels; (e) 
2nd 10 µm parylene deposition to seal the previously opened parylene windows; (f) patterning 
the parylene layer, open the contact pads and exposing the device inlet and outlet; (g) 
Backside DRIE etching to release the device from silicon wafer; (h) Insert the Ag/AgCl wire 
and plug one end with Agar gel. 
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The process starts with depositing a 4 µm thick parylene C layer on the top surface of 

a silicon wafer. Then a Au layer is thermally evaporated with Ti adhesion layer. This metal 

layer is subsequently patterned to form the sensing and contact pads as indicated in step b. 

Two columns of parylene C windows are opened in step c to expose the underneath silicon. 

XeFe2 isotropic silicon etching is used in step d to form the tubular shaped cavity as 

demonstrated in step d. A second layer of 10 µm parylene C is conformably coated on the 

entire wafer. Due to the conformal coating property of parylene C, tubular cavity will be 

uniformly coated and sealed by parylene C. Then O2 plasma is used in step f to expose the 

metal pads and shapes the outline of the device. Backside DRIE is used in step g to etch away 

any unwanted silicon and release the device from the substrate. In order to make the device 

more robust, a portion of the silicon is left un-etched at the base of the sensor. Finally, a 50 

µm Ag/AgCl wire is inserted inside the parylene tube and the tube is then capped by agar gel 

to form a salt bridge.  

Figure 6.11 shows the schematic of the proposed PH sensor. Agar gel is used here to 

function as the salt bridge for our reference electrode. A 50 µm thick Ag wire is electroplated 

with a layer of AgCl on the surface by soaking the Ag wire in 1 Mole KCl solution and 

passing current through the Ag wire. As for the sensing electrode, IrO2 is proven to be a good 

material to be used as pH sensor. The device is under development at the moment and IrO2 

has not been coated on the actual device. In the following section, only the part involving the 

reference electrode will be discussed. 
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Figure 6.11. Schematic diagram of the proposed device 
 

6.2.4. Device testing and characterization 

 A fabricated micro pH sensor is presented in Figure 6.12.  IrO2 has not been plated on 

the sensing tip. Polyimide tubing is used here to couple the silicon inlet in order to inject KCl 

solution. The tip of the device is narrower to prevent the gel from being pushed out of the 

position. This is achieved by converging two lines of parylene windows into a single row for 

XeF2 etching. Figure 6.13 shows the backside SEM picture of a fabricated device.  

  

Sensing Electrode(IrO2) 

Ag/AgCl wire 

Salt bridge(Agar Gel) 
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Figure 6.12. (a) Fabricated micro pH sensor place at the finger tip. (b) SEM picture of the 
exposed Au electrode before IrO2 coating 
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Figure 6.13. SEM picture of the micro pH sensor 

In order to test the performance of our fabricated reference electrode, a commercial 

reference electrode is used during the testing. Both the commercial reference electrode and 

our device were submerged into a saturated KCl solution. The measured voltage of our device 

against the commercial reference electrode is plotted in Figure 6.14. The data were measured 

every 2 seconds. It can be observed that the potential of our electrode against commercial 

reference electrode is held very stable for about 5 hours. After 5 hours, the AgCl layer plated 

on the surface of Ag wire was consumed and subsequently our device lost its reference 

capability.  
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Figure 6.14. Potential measurement against another commercial Ag/AgCl electrode  

6.2.5 Summary 

 The initial testing proves that our device can potentially serve as a stable reference 

electrode. However, there is still more work to be done. First, the AgCl layer electroplated on 

our Ag wire has to be thicker for longer period of operation. Then IrO2 has to be coated on top 

of the Au sensing pad to achieve the pH sensing functionality. It is worth noting that most of 

the existing micro pH sensors require additional bulky reference electrode for measurement. 

Therefore, it is a great advantage that our technology enables the monolithic integration of 

both sensing electrodes and stable reference electrodes.   

 

 

AgCl layer was consumed  

Voltage reading in reference against another commercial 
Ag/AgCl reference electrode 



92 

 

 

6.3 Conclusion and future work 

This innovative technology to make flexible electronics/sensors developed in our lab 

during my Ph. D. research has been adopted to make a variety of useful devices. The 

technology was first implemented in making parylene microtube arrays [32] with integrated 

out-of-plan micro needles. The fact that our needle arrays can be individually addressed 

makes our device useful in many applications. The micro needles device has been used for 

retinal prosthesis study which will help to restore vision to the blind.  

The ability to integrate microfluidic channels is unique to our technology. Various 

medical devices have been made using our technology. For example, we have developed a 

hybrid silicon-parylene neural probe with locally flexible regions [83]. Parylene is a highly 

flexible material, 3D devices are made possible with the help of the simple folding process. A 

multifunctional chronic 3D electrode array has been developed based on this principle.   

The ability to integrate more complex electronics and transducers [34] is another key 

feature in our technology. For example, we demonstrated the integration of MOSFETs with 

flexible substrates and smart yarns [34]. We are able to integrate both pressure sensors and 

flow sensors into a micro parylene tube [35].  

Silicon devices are still considered to be the first choice in the semiconductor industry. 

Our technology also relies on the processes originated to process silicon wafers. It is vital that 

we also make otherwise sacrificial silicon as part of our devices. We have developed a 

silicon-polymer platform which enables us to achieve self-locking and self-deploying 
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origami[33] as well as deformable silicon solar cells[60]. The integration of the silicon 

structures significantly improves the functionality of our flexible devices[84]. 

A lot of efforts have been dedicated to further expand the capability of our technology 

and it has been evolving over the past few years. More features and fabrication processes have 

been integrated into developing a variety of devices.  Among various processes, XeF2 

isotropic silicon etching process, conformal parylene C coating process and deep reactive-ion 

etching (DRIE) are the most important techniques used in our technology. We have developed 

a simple two-mask process to fabricate an in-channel micro check valve[82] by only using  

the aforementioned techniques. Therefore, this type of check valve can be potentially 

integrated. Our technology is very versatile with the possibility to integrate additional MEMS 

fabrication processes and other materials. 

This technology has inspired us to develop numerous interesting and useful devices. 

The potential of our technology is enormous. Many wearable and implantable devices can be 

developed based on this technology. 
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ABSTRACT 

FLEXIBLE MEMS DEVICES: 
A NOVEL TECHNOLOGY TO FABRICATE FLEXIBLE ELECTRONIC S 

by 

HONGEN TU 

December 2014 

Advisor:  Dr. Yong Xu 

Major:  Electrical Engineering 

Degree: Doctor of Philosophy 

 This dissertation presents the design and fabrication techniques used to fabricate 

flexible MEMS (Micro Electro Mechanical Systems) devices. 

 MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are 

traditionally fabricated on rigid substrates with inorganic semiconductor materials such as 

Silicon. However, it is highly desirable that functional elements like sensors, actuators or 

micro fluidic components to be fabricated on flexible substrates for a wide variety of 

applications. Due to the fact that flexible substrate is temperature sensitive, typically only low 

temperature materials, such as polymers, metals, and organic semiconductor materials, can be 

directly fabricated on flexible substrates.  A novel technology based on XeF2(xenon difluoride) 

isotropic silicon etching and parylene conformal coating, which is able to monolithically 



107 

 

 

incorporate high temperature materials and fluidic channels, was developed at Wayne State 

University. 

 The technology was first implemented in the development of out-of-plane parylene 

microneedle arrays that can be individually addressed by integrated flexible micro-channels. 

These devices enable the delivery of chemicals with controlled temporal and spatial patterns 

and allow us to study neurotransmitter-based retinal prosthesis.  

 The technology was further explored by adopting the conventional SOI-CMOS 

processes. High performance and high density CMOS circuits can be first fabricated on SOI 

wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-

Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. 

Integration of pressure sensors and flow sensors based on single crystal silicon has also been 

demonstrated. A novel smart yarn technology that enables the invisible integration of sensors 

and electronics into fabrics has been developed.  

 The most significant advantage of this technology is its post-MEMS and post-CMOS 

compatibility. Various high-performance MEMS devices and electronics can be integrated 

into flexible substrates. The potential of our technology is enormous. Many wearable and 

implantable devices can be developed based on this technology.  
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