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Chapter 1:Introduction

Contemporary large-scale websites have to store and process very large amounts of

data. To provide timely service to their users, many Internet products have adopted

a simple but effective caching infrastructure atop the conventional databases that

store these data, called key-value (KV) stores. Examples include Voldermort [57]

at LinkedIn, Cassandra [27] at Apache, and Memcached [1, 52] at Facebook. A

common use case for these systems is that they store and supply information that

is cheaper or faster to cache than to re-obtain, such as commonly accessed results

of database queries or the results of complex computations that require temporary

storage and distribution [52]. In a KV cache system, data are organized in ordered

(key, value) pairs, in which value is the data that are stored by user and key is the

unique identification for user to operate data correspondingly. The KV cache interface

usually provides primitives similar to those for a regular hash table, such as insertion

(SET), retrieval (GET), and deletion (DEL). Clients use consistent hashing [19] on a

key to locate the server that owns the requested data.

As an essential component in a datacenter’s infrastructure, the KV cache is care-

fully designed for low response times, high hit rate, and low power consumption. To

be effective, these efforts require a detailed understanding of realistic KV workloads

on which the performance of KV caches are highly dependent. This dissertation first

presents a workload study of a large-scale KV cache that runs at Facebook, revealing

access patterns from various perspectives in detail. Our study also shows that current

KV cache implementations grow increasingly CPU-bound, leading to under-utlization
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of network bandwidth and poor energy efficiency. Based on this study, we propose a

high-throughput, low-latency, and energy-efficient KV cache implementation, which

moves the KV cache into the operating system’s kernel and thus removes most of the

overhead associated with network stack and system calls.

In this chapter, we describe the motivation of this dissertation and present its

contributions.

1.1 Motivation

Key-value (KV) stores play a critical role of caching in the improvement of service

quality and user experience in many large-scale websites [1, 52, 27]. Be a high-

throughput distributed cache layer, KV caches have received significant research and

industry attention recently [52, 65]. In a KV cache, the data is usually cached in the

DRAM memory of a server and is retrieved in response to network requests for it.

Often, there are a large number of servers deployed to form a single memory pool,

allowing a cache for a large data set with high request rate. One example is Facebook,

which uses a very large number of Memcached servers supplying many terabytes of

memory to the clients over the network [10, 52].

1.1.1 Demand on Study of Workloads’ Characteristics

Because many data requests exhibit some form of locality, allowing a popular

subset of data to be identified and predicted, a substantial amount of database oper-

ations can be replaced by quick in-memory lookups, for significantly reduced response

time. To provide this performance boost, KV caches are carefully tuned to minimize

response times and maximize the probability of caching request data (or hit rate).

But like all caching heuristics, a KV-cache’s performance is highly dependent on its
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workload. It is therefore essential to understand the workload’s characteristics in

order to understand and improve the cache’s design.

In addition, analyzing such workloads can: offer insights into the role and effec-

tiveness of memory-based caching in distributed website infrastructure; expose the

underlying patterns of user behavior; and provide difficult-to-obtain data for future

studies. But many such workloads are proprietary and hard to access, especially those

of very large-scale. Such analyses are therefore rare and the workload characteristics

are usually assumed in academic research and system design without substantial sup-

port from empirical evidence. This dissertation work aims to provide this support.

To this end, we have collected detailed traces from Facebook’s Memcached [1] deploy-

ment, arguably the world’s largest. The analysis details many characteristics of the

caching workload, it also reveals a number of surprises: a GET/SET ratio of 30:1

that is higher than assumed in the literature; some applications behave more like

persistent storage than a cache; and strong locality metrics, such as keys accessed

many millions of times a day.

1.1.2 KV Cache: A CPU-demanding Application

KV caches are designed to trade off DRAM capacity for reduced computation time,

and are used as a distributed hash table to store (key, value) pairs. Intuitively, only

minimal computation, or a minimum number of CPU cycles, should be required to

look up and possibly modify a hash table datum. In that case, a low-power processor

with a few cores, combined with large DRAM memory, could suffice to service a heavy

request load with low latency. As such, the acquisition and energy costs of the CPU

in a KV-cache server in a cluster specialized for in-memory data caching could be

significantly lower than that of a general-purpose cluster [14].
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To investigate whether the KV cache is indeed bottlenecked by its CPU, we chose

Memcached as an experimental representative, as its variants are used in major web-

sites, including Facebook, Twitter, Youtube, and Wikipedia. We used a request

pattern similar to what we observed at Facebook, one of the world’s largest Mem-

cached deployments [10]. As reported in Chapter 2, the ratio of GET to SET requests

can be very high, sometimes exceeding 30:1. The key size is typically smaller than

30 Bytes, and more than half of the value sizes can be smaller than 20 Bytes in some

traces. Additionally, Our examination of the Facebook traces indicates that GET re-

quests use the faster UDP protocol instead of TCP, consistent with what is reported

on optimization efforts on Memcached at Facebook [52]. To evaluate CPU usage, we

set up eight hosts, each running four Memcached clients that continually sent asyn-

chronous UDP GET requests to one Memcached server, using 64-Byte request packets

on the 1Gbps network. All machines used an Intel 8-core Xeon processor (more sys-

tem details in Section 3.3). As in the rest of the dissertation, peak throughput is

reported as the highest throughput observed while the corresponding mean request

latency is kept under 1ms, where a request’s latency is measured by the client as total

round-trip time.

We use the latest open-source Memcached version [1], which is referred to as Stock

Memcached hereafter, to investigate whether Memcached is CPU demanding and how

the CPU cycles are spent. We also made efforts within the application to minimize the

chance for Memcached to be a CPU-demanding one. We disabled the lock on the hash

table ∗ and replaced the LRU algorithm with the lock-free CLOCK replacement policy.

As it is well known that having multiple threads to access one UDP socket can cause

∗Because we send only GET requests in this experiment, removal of the lock does not compromise
hash table’s consistency.
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serious socket lock contention [52], possibly rendering the application CPU-bound, we

modified Memcached so that each of its threads listens exclusively on its own UDP

port to alleviate this contention, much like the optimization done at Facebook [52].

This improved Memcached is referred to as Multiport Memcached, which shares the

same benefits as of running multiple Memcached instances, each on a separate core

and on its exclusive network port [15].
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Figure 1.1: Peak throughput of Memcacheds in terms of requests per second with
different number of enabled cores. In the figure, Stock Memcached refers to the open-
source Memcached running as an application on Linux; Multiport Memcached refers
to the optimized Memcached with multiport support. Hippos refers to the proposed
in-kernel KV-cache implementation.

Figure 1.1 shows measured peak throughput, in terms of number of requests per

second, with various number of cores. When the core count increases from one to

three, both Stock Memcached and Multiport Memcached increase their throughput.

This suggests that Memcached’s performance is probably constrained by the CPU; in
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other words, Memcached requires more CPU cores to unlock its performance potential.

When the CPU core count increases beyond three, Stock Memcached’s throughput

begins to plateau and even drops off due to lock contention within the kernel network

stack. In contrast, with multiple sockets Multiport Memcached sees its throughput

still climbing, albeit at a slower rate. This observation may lead to the conclusion

that Multiport Memcached is scalable on multicore CPUs without major changes to

the kernel [15]. However, this may also demonstrate that the demand on CPU cores

does not saturate 1Gbps network card even with all eight cores enabled.
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Figure 1.2: CPU time distribution on user-level code, kernel (system) code and being
idle when one of three Memcached ’ implementations runs with various number of
cores at their respective peak throughout.

Figure 1.2 shows percentages of the CPU cycles that are spent in user-level or



7

kernel-level (system) functions, or when the CPU is idle. We can see that most of CPU

time is spent in the kernel for both Stock Memcached and Multiport Memcached. This

is expected as the computation within the application is indeed minimal. With the

increase in core count, the user-time percentage for Stock Memcached is reduced more

significantly than that for Multiport Memcached. This is consistent with Multiport

Memcached’s higher peak throughput at higher core count. Accompanied with the

reduction of user time is the increase of idle time. In the experiments for obtaining

peak throughput, we did not push the throughput to its limit and allow idle CPU

time so that the latency is maintained below the 1ms threshold. Figure 1.2 shows

that system time accounts for significant percentage of CPU time, from 55% to 85%,

depending on core count. This time is mostly spent on the Linux network stack. In

Linux, a spinlock is used for exclusive access of the socket buffer queue(s). With only

one queue, Stock Memcached contends heavily for the lock, resulting in wasted CPU

cycles. By having multiple socket queues, fewer CPU cycles are used for spinning,

leading to more productive packet processing and higher peak throughput in Multiport

Memcached.

Considering the percentages of CPU times used in both user and system levels,

Memcached turns out to be a CPU-demanding application. As such, a KV cache

can have increased request latency and limited peak throughput if the CPU is not

sufficiently powerful. It is also prone to creating bottlenecks on the request processing

path, such as contention on various queue locks in the network stack. Yet another

consequence is high power consumption, which can be a critical issue in data centers.
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1.2 Thesis Contributions

1.2.1 Characterizing Facebook’s Memcached Workload

This dissertation discusses five workloads from Facebook’s Memcached deploy-

ment. Aside from the sheer scale of the site and data (over 284 billion requests over

a period of 7 sample days), this case study also provides a description of several

different usage scenarios for KV caches. This variability serves to explore the rela-

tionship between the cache and various data domains: where overall site patterns are

adequately handled by a generalized caching infrastructure, and where specialization

would help. In addition, this work offers the following key contributions and findings:

1. A workload decomposition of the traces that shows how different applications

of Memcached can have extreme variations in terms of read/write mix, request

sizes and rates, and usage patterns.

2. An analysis of the caching characteristics of the traces and the factors that

determine hit rates. We found that different Memcached pools can vary signifi-

antly in their locality metrics, but surprisingly, the best predictor of hit rates

is actually the pool’s size.

3. An examination of various performance metricsre over time, showing diurnal

and weekly patterns and their correlation to social networking. For example,

we found that some load spikes (up to 10% hit rate change) can improve key

locality and hit rate if the requested content is limited and static, thus helping

to absorb the higher request rate. On the other hand, load spikes on varied

keys or keys that are invalidated frequently actually hurt cache performance.
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4. An exposition of a Memcached deployment that can shed light on real-world,

large-scale production usage of KV-stores.

1.2.2 Hippos: A Light-weight and Energy-efficient Appliance

A KV cache uses dedicated servers, each configured with large memory and often

a low-power processor, to form a large memory pool. It typically runs in a controlled

environment (e.g., data centers) and its sole purpose is to provide caching service to

other application servers. The objective of this dissertation is to build the KV cache

as a data-center appliance with high performance and high energy efficiency. The

method is to move it into the kernel in a position close to the NIC, so that it can

directly take IP packets for the KV cache and process them in situ. Without concern

of impacting other applications or any components in the network stack, this approach

can remove most time-consuming network operations out of the KV-cache’s critical

processing path, including acquisition of exclusive access to UDP socket queues, data

copies, scheduling and context switching associated with event notification.

We describe Hippos, a KV cache that uses a hook provided in the Netfilter frame-

work [2] to directly unpack a complete Memcached UDP request before it is inserted

into its corresponding socket’s receive buffer queue. Subsequently, the request is im-

mediately processed and the response is sent back to the device driver. Thus, Hippos

can provide clients with a single UDP port without even setting up a UDP socket.

Accordingly, the overhead for system calls, event notifications (via libevent), socket

locks, and most of the overheads in the UDP and IP layers are eliminated.

In summary we make the following contributions in this dissertation:

1. We show that a KV cache running at the user level is CPU-demanding, spending

significant portion of its processing time in the kernel.
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2. We propose Hippos to bypass most of the operations for a UDP-based request

on its path from the NIC to the user-level Memcached and for the correspond-

ing reply request to reach the NIC. With this bypassing, the bottleneck on the

network stack is removed. Such removal exposes another bottleneck, namely

the one caused by the lock contention within Memcached. Accordingly, we ap-

plied the Read-Copy-Update (RCU) lock [67] and the lock-free CLOCK cache

replacement algorithm in Hippos to substantially alleviate the performance im-

pact of this lock contention.

3. We have implemented Hippos as a loadable Linux kernel module and extensively

evaluated it on a recent Linux Kernel with micro-benchmarks and request traces

taken from production systems at Facebook. The results show that Hippos can

achieve 20–200% throughput improvements on a 1Gbps network (up to 590%

improvements on a 10Gbps network) and 5–20% energy saving.

4. This work demonstrates that in the context of improving the performance and

energy efficiency of data-center infrastructure, migrating network-intensive ap-

plications to the right positions in the kernel and running them as appliances

is a viable and promising approach. Many prior projects on migrating applica-

tions into the kernel (see Section 3.4) faced challenges such as system security,

reliability, and engineering efforts. Nevertheless, our experience shows that in

the era of cloud computing, this approach can meet these challenges and gain

significant advantages by turning a KV service into an appliance on the network.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows.
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In Chapter 2, we begin with describing Memcached’s software architecture and its

deployment at Facebook. Then we present the workload characteristics in terms of

request rates, request size, and request composition. We also discuss cache effective-

ness from the perspectives of sources of misses and temporal locality measures. We

summarize the related work of workload analysis in the last section.

In Chapter 3, we first overview existing approaches that could improve the per-

formance of Memcached. Then we give an extensive examination on CPU cycles

consumption of Memcached under Facebook’s workloads, and expose the appropri-

ate positon in the kernel where we can build a high-performance KV cache system

without involving additional modifications to the existing system. We demonstrate

design details of Hippos, and evaluate it against Memcached by using various micro-

benchmarks and workloads from Facebook’s production system.

In Chapter 4, we give our conclusion and future research directions.
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Chapter 2:Characterizing Facebook’s Mem-
cached Workload

2.1 Introduction

Many Web services such as social networks, email, maps, and retailers must store

large amounts of data and retrieve specific items on demand very quickly. Facebook,

for example, stores basic profile information for each of its users, as well as content

they post, individual privacy settings, etc. When a user logs in to Facebook’s main

page and is presented with a newsfeed of their connections and interests, hundreds

or thousands of such data items must be retrieved, aggregated, filtered, ranked, and

presented in a very short time. The total amount of potential data to retrieve for

all users is so large that it is impractical to store an entire copy locally on each web

server that takes user requests. Instead, we must rely on a distributed storage scheme,

wherein multiple storage servers are shared among all Web servers

The persistent storage itself takes place in the form of multiple shards and copies of

a relational database, such as MySQL. MySQL has been carefully tuned to maximize

throughput and lower latency for high loads, but its performance can be limited by

the underlying storage layer, typically hard drives or flash. The solution is caching—

the selective and temporary storage of a subset of data on faster RAM. Caching

works when some items are much more likely to be requested than others. By provi-

sioning enough RAM to cache the desired amount of popular items, we can create a

customizable blend of performance and resource tradeoffs.

This Chapter analyzes the workload of Memcached at Facebook, one of the world’s
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largest KV deployments. We look at server-side performance, request composition,

caching efficacy, and key locality. These observations lead to several design insights

and new research directions for KV caches, such as the relative inadequacy of the

least-recently-used replacement policy. But first, we describe how a KV cache such

as Memcached is used in practice.

2.1.1 Software Architecture

Memcached is an open-source software package that exposes data in RAM to

clients over the network. As data size grows in the application, more RAM can be

added to a server, or more servers can be added to the network. Additional servers

generally only communicate with clients. Clients use consistent hashing [19] to select

a unique server per key, requiring only the knowledge of the total number of servers

and their IP addresses. This technique presents the entire aggregate data in the

servers as a unified distributed hash table, keeps servers completely independent, and

facilitates scaling as data size grows.

Memcached’s interface provides the basic primitives that hash tables provide, as

well as more complex operations built atop them. The two basic operations are GET,

to fetch the value of a given key, and SET to cache a value for a given key (typically

after a previous GET failure, since Memcached is used as a look-aside, demand-

filled cache). Another common operation for data backed by persistent storage is to

DELETE a KV pair as a way to invalidate the key if it was modified in persistent

storage. To make room for new items after the cache fills up, older items are evicted

using the least-recently-used (LRU) algorithm [13].
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Pool Size GET/s Hit Rate Description

USR few 100, 500 98.2% user-account status information
APP dozens 65, 800 92.9% object metadata of one application
ETC hundreds 57, 800 81.4% nonspecific, general-purpose
VAR dozens 73, 700 93.7% server-side browser information
SYS few 7, 200 98.7% system data on service location

Table 2.1: Memcached pools sampled (in one cluster), including their typical deploy-
ment sizes, read request rates, and average hit rates. The pool names do not match
their UNIX namesakes, but are used for illustrative purposes here instead of their
internal names.

2.1.2 Deployment

Physically, Facebook deploys front-end servers in multiple datacenters, each con-

taining one or more clusters of varying sizes. Front-end clusters consist of both Web

servers and caching servers, including Memcached. These servers are further sub-

divided based on the concept of pools. A pool defines a class of Memcached keys.

Pools are used to separate the total possible key space into buckets, allowing better

efficiency by grouping keys of a single application, with similar access patterns and

data requirements. Any given key will be uniquely mapped to a single pool by the

key’s prefix, which identifies an application.

We analyzed one trace each from five separate pools. These pools represent a

varied spectrum of application domains and cache usage characteristics (Table 2.1).

We traced all Memcached packets on these servers using a custom kernel module [10]

and collected between 3TB to 7TB of trace data from each server, representing at

least a week’s worth of consecutive samples. All five Memcached instances ran on

identical hardware.
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2.2 Request Rates and Composition

2.2.1 Request Rates

Many companies rely on Memcached to serve terabytes of data in aggregate ev-

ery day, over many millions of requests. Average sustained request rates can reach

100, 000+ requests per second, as shown in Table 2.1. These request rates repre-

sent relatively modest network bandwidth. But Memcached’s performance capacity

must accommodate significantly more headroom than mean sustained rates. Fig-

ure 2.1(a) shows that in extreme cases for USR, the transient request rate can more

than triple the sustained rate. These outliers stem from a variety of sources, including

high transient interest in specific events, highly popular keys on individual servers,

and operational issues. Consequently, when analyzing Memcached’s performance, we

focus on sustained end-to-end latency and maximum sustained request rate (while

meeting latency constraints), and not on network bandwidth [13].

Figure 2.1 also reveals how Memcached’s load varies normally over time. USR’s

13-day trace shows a recurring daily pattern, as well as a weekly pattern that exhibits

a somewhat lower load approaching the weekend. All other traces exhibit similar

daily patterns, but with different values and amplitudes. If we zoom in on one day

for ETC for example (righthand figure), we notice that request rates bottom out

around 08:00 UTC and have two peaks around 17:00 and 03:00. Although different

traces (and sometimes even different days in the same trace) differ in which of the two

peaks is higher, the entire period between them, representing the Western Hemisphere

daytime, exhibits the highest traffic volume.
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Figure 2.1: (a) Request rates at different days (USR) and (b) times of day (ETC,
Coordinated Universal Time—UTC). Each data point counts the total number of
requests in the preceding second.

2.2.2 Request Size

Next, we turn our attention to the sizes of keys and values in each pool ( Figure 2.2)

for SET requests (GET requests have identical sizes for hits, and zero data size for

misses). All distributions show strong modalities. For example, over 90% of APP’s

keys are 31 bytes long, and values sizes around 270B show up in more than 30% of

SET requests. USR is the most extreme: it only has two key size values (16B and

21B) and virtually just one value size (2B). Even in ETC, the most heterogeneous of

the pools, requests with 2-, 3-, or 11-byte values add up to 40% of the total requests.

On the other hand, it also has a few very large values (around 1MB) that skew

the weight distribution (rightmost plot in Figure 2.2), leaving less caching space for

smaller values. Small values dominate all workloads, not just in count, but especially

in overall weight. Except for ETC, 90% of all Memcached’s data space is allocated to
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values of less than 500B.

2.2.3 Request Composition

Last, we look at the composition of basic request types that comprise the workload

( Figure 2.3) and make the following observations:

USR handles significantly more GET requests than any of the other pools (at an

approximately 30 : 1 ratio). GET operations comprise over 99.8% of this pool’s

workload. One reason for this is that the pool is sized large enough to maximize

hit rates, so refreshing values is rarely necessary. These values are also updated

at a slower rate than some of the other pools. The overall effect is that USR is

used more like RAM-based persistent storage than a cache.

APP has high absolute and relative GET rates too—owing to the popularity of

this application. But also has a large number of DELETE operations, which

occur when a cached database entry is modified (but not required to be set

again in the cache). SET operations occur when the Web servers add a value

to the cache. The relatively high number of DELETE operations show that

this pool represents database-backed values that are affected by frequent user

modifications.

ETC has similar characteristics to APP, but with a higher fraction of DELETE

requests (of which not all are currently cached, and therefore miss). ETC is

the largest and least specific of the pools, so its workloads might be the most

representative to emulate.

VAR is the only pool of the five that is write-dominated. It stores short-term val-

ues such as browser-window size for opportunistic latency reduction. As such,
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these values are not backed by a database (hence, no invalidating DELETEs

are required). But they change frequently, accounting for the high number of

UPDATEs.

SYS is used to locate servers and services, not user data. As such, the number of

requests scales with the number of servers, not the number of user requests,

which is much larger. This explains why the total number of SYS requests is

much smaller than the other pools’.

2.2.4 Discussion

We found that Memcached requests exhibit clear modality in request sizes, with

a strong bias for small values. We also observed temporal patterns in request rates

that are mostly predictable and require low bandwidth, but can still experience very

significant outliers of transient high load. There are several implications for cache

design and system optimizations from these data:

1. Network overhead in the processing of multiple small packets can be substantial

relative to payload, which explains why Facebook coalesces as many requests

as possible in as few packets as possible [13].

2. Memcached allocates memory for KV values in slabs of fixed size units. The

strong modality of each workload implies that different Memcached pools can

optimize memory allocation by modifying the slab size constants to fit each

distribution. In practice, this is an unmanageable and unscalable solution, so

instead Memcached uses 44 different slab classes with exponentially growing

sizes to reduce allocation waste, especially for small sizes. This does, however,

result in some memory fragmentation.
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3. The ratio of GETs to UPDATEs in ETC can be very high—significantly higher

in fact than most synthetic workloads typically assume. For demand-filled

caches where each miss is followed by an UPDATE, the ratios of GET to UP-

DATE operations mentioned above are related to hit rate in general and the

relative size of the cache to the data in particular. So in theory, one could jus-

tify any synthetic GET to UPDATE mix by controlling the cache size. But in

practice, not all caches or keys are demand-filled, and these caches are already

sized to fit a real-world workload in a way that successfully trades off hit rates

to cost.

These observations on the nature of the cache lead naturally to the next question

(and section): how effective is Memcached at servicing its GET workload—its raison

d’être.

2.3 Cache Effectiveness

Understanding cache effectiveness can be broken down to the following questions:

how well does Memcached service GET requests for the various workloads? What

factors affect good cache performance? What characterizes poor cache performance,

and what can we do to improve it?

The main metric used in evaluating cache efficacy is hit rate: the percentage of

GET requests that return a value. Hit rate is determined by three factors: available

storage (which is fixed, in our discussion); the patterns of the underlying workload

and their predictability; and how well the cache policies utilize the available space and

match these patterns to store items with a high probability of recall. Understanding

the sources of misses will then offer insights into why and when the cache wasn’t able
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to predict a future item. We then look deeper into the workload’s statistical properties

to understand how amenable it is to this prediction in the first place. The overall

hit rate of each server, as derived from the traces and verified with Memcached’s own

statistics, are shown in Table 2.1.

SYS and USR exhibit very high hit rates. Recall from that same table that these

are also the smallest pools, so the entire keyspace can be stored with relatively few

resources, thus eliminating all space constraints from hit rates. Next down in hit-rate

ranking are APP and VAR, which are larger pools, and finally, ETC, the largest pool,

also exhibits the lowest hit rate. So can pool size completely explain hit rates? Is

there anything we could do to increase hit rates except buy more memory? To answer

these questions, we take a deeper dive into workload patterns and composition.

2.3.1 Sources of Misses

To understand hit rate, it is instructive to analyze its complement, miss rate, and

specifically to try to understand the sources for cache misses. These sources can tell

us if there are any latent hits that can still be exploited, and possibly even how.

We distinguish three types of misses:

• Compulsory misses are caused by keys that have never been requested before (or

at least not in a very long time). In a demand-filled cache with no prefetching

like Memcached, no keys populate the cache until they have been requested at

least once, so as long as the workload introduce new keys, there is not much we

can do about these misses.

• Invalidation misses occur when a requested value had been in the cache before,

but was removed by a subsequent DELETE request.
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• Eviction (capacity) misses represent keys that had been in the cache, but were

evicted by the replacement policy before the next access. If most misses are of

this kind, then indeed the combination of pool size and storage size can explain

hit rates.

Several interesting observations can be made. The first is that VAR and SYS

have virtually 100% compulsory misses. Invalidation misses are absent because these

pools are not database-backed, and eviction misses are nearly non-existent because of

ample space provisioning. Therefore, keys are invariably missed only upon the first

request, or when new keys are added.

On the opposite end, about 87% of USR’s misses are caused by evictions. This is

puzzling, since USR is the smallest of pools, enabling sufficient RAM provisioning to

cover the entire key space. This larger percentage of eviction misses originates from

service jobs that request sections of the key space with little discernible locality, such
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as data validation or migration to a new format. So the cache replacement policy

has little effect in predicting future key accesses to these keys and preventing eviction

misses.

At last we come to ETC and APP, the two largest pools, with 22% and 72%

eviction misses, respectively. One straightforward measure to improve hit rates in

these two pools would be to increase the total amount of memory in their server pool,

permitting fewer keys to be evicted. But this solution obviously costs more money

and will help little if the replacement policy continues to accumulate rarely used keys.

A better solution would be to improve the replacement policy to keep valuable items

longer, and quickly evict items that are less likely to be recalled soon. To understand

whether alternative replacement policies would better serve the workload patterns,

we next examine these patterns in terms of their key reuse over time, also known as

temporal locality.

2.3.2 Temporal Locality Measures

We start by looking at how skewed is the key popularity distribution, measured

as a ratio of each key’s GET requests from the total ( Figure 2.5). All workloads

exhibit long-tailed popularity distributions. For example, 50% of ETC’s keys (and

40% of APP’s) occur in no more than 1% of all requests, meaning they do not repeat

many times, while a few popular keys repeat in millions of requests per day. This

high concentration of repeating keys is what makes caching economical in the first

place. SYS is the exception to the rule, as its values are cached locally by clients,

which could explain why some 65% of its keys hardly repeat at all.

We can conceivably use these skewed distributions to improve the replacement

policy: By evicting unpopular keys sooner, instead of letting them linger in memory
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until expired by LRU, a full cycle of insertions later, we could leave room for more

popular keys, thus increasing hit rate. For example, about a fifth of all of APP’s

and ETC’s keys are only requested at most once in any given hour. The challenge is

telling the two classes of keys apart, when we don’t have a-priori knowledge of their

popularity.

One clue to key popularity can be measured in reuse period—the time between

consecutive accesses to the key. Figure 2.6 counts all key accesses and bins them

according to the time duration from the previous access to each key. Unique keys

(those that do not repeat at all within the trace period) are excluded from this count.

The figure shows that key repeatability is highly localized and bursty, with some daily

patterns (likely corresponding to some users always logging in at the same time of
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day). For the ETC trace, for example, 88.5% of the keys are reused within an hour,

but only 4% more within two, and within six hours 96.4% of all non-unique keys have

already repeated. The main takeaway from this chart is that reuse period decays

at an exponential rate. This implies diminishing returns to a strategy of increasing

memory resources beyond a certain point, because if we can already cache most keys

appearing in a given time windows, and double it with twice the memory capacity,

only a shrinking fraction of the keys that would have otherwise been evicted would

repeat again in the new, larger time window.

As before, the SYS pool stands out. It doesn’t show the same 24-hour periodicity

as the other pools, because its keys relate to servers and services, not users. It also

decays faster than the others. Again, since its data are cached locally by clients, it

is likely that most of SYS’s GET requests represent data that are newly available,

updated, or expired from the client cache; these are then requested by many clients
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concurrently. This would explain why 99.9% of GET requests are repeated within an

hour of the first key access. Later, such keys would be cached locally and accessed

rarely, perhaps when a newly added client needs to fill its own cache.

2.4 Related Work

To the best of our knowledge, this is the first details description of a large-scale

KV-store workload. Nevertheless, there are a number of related studies on traditional

storage system, other caching systems and KV Stores that can shed light on the

relevance of this work and its methodology.

2.4.1 Cache Replacement Policies

A core element of any caching system is its replacement algorithm. By analyzing

the workloads’ locality, source of misses, and request sizes, our original paper [10]

suggested areas where an optimized replacement strategy could help. In fact, some of

these optimizations have since been reportedly implemented [52], including an adap-

tive allocator to periodically rebalance the slab allocator, and the use of expiration

time associated data items for early eviction of some short-lived keys.

Caching as a general research topic has been extensively studied. The LRU al-

gorithm [68], which is adopted in Memcached, has been shown to have several weak-

nesses, and a number of algorithms have been proposed to improve it. The 2Q

algorithm was proposed to evict cold data earlier from the cache so that relatively

warm data can stay longer [34]. The LRFU algorithm introduced access frequency

into the LRU algorithm, to improve its replacement decisions on data with distinct

access frequencies [37]. These weaknesses of LRU also show in this workload study.

To address both weaknesses with an efficient implementation, Jiang and Zhang pro-
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posed the LIRS algorithm to explicitly use reuse distance—in principle equivalent

to the reuse period measured in this dissertation—to quantify locality and choose

eviction victims [33]. The LRU algorithm requires a lock to maintain the integrity of

its data structure, which can lead to a performance bottleneck in a highly contended

environment such as Memcached’s. In contrast, the CLOCK algorithm [56] eliminates

this need while maintaining similar performance to that of LRU. The CLOCK-Pro

algorithm, which also removes this lock, has a performance as good as that LIRS’ [32].

2.4.2 Web Cache

Web caches are another area of active research. In a study of requests received

by Web servers, Arlitt and Williamson found that 80% of requested documents are

smaller than ≈ 10KB. However, requests to these documents generate only 26% of

data bytes retrieved from the server [9]. This finding is consistent with the distribution

we describe in [10].

2.4.3 KV Stores

KV stores are also receiving ample attention in the literature, covering aspects such

as performance, energy efficiency, and cost effectiveness [13, 69, 29, 21, 22, 8, 11, 6,

20, 25]. Absent well-publicized workload traces, in particular large-scale production

traces, many works used hypothetical or synthetic workloads [69]. For example, to

evaluate SILT, a KV-cache design that constructs a three-level store hierarchy for

storage on flash memory with a memory based index, the authors assumed a workload

of 10% SET and 90% GET requests using 20B keys and 100B values, as well as a

workload of 50% SET and 50% GET requests for 64B KV pairs [43]. In the evaluation

of CLAM, a KV-cache design that places both hash table and data items on flash,
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the authors used synthetic workloads that generate keys from a random distribution

and a number of artificial workload mixes [7].
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Chapter 3:Building a Key-value Cache to
be Energy-efficient

3.1 Introduction

In section 1.1.2, we presented that Memcached, which is one of the most common

KV store implementation that has been wildly used in industry, is highly CPU de-

manding. Figure 1.2 shows that Memcached spends most of its time in the kernel,

in particular on the network stack. Due to the relevant role it plays, this suboptimal

implementation leads to the performance bottlenecks on the request processing path,

resulting in high service latency and high power consumption.

To investigate the distribution of CPU consumptions, we examined Multiport

Memcached ∗ with OProfile [5] to see how the CPU cycles are used across the network

stack. Table 3.1 shows distribution of the CPU cycles among eight categories of 289

functions, which span all networking layers of the system. Among the functions, the

highest percentage of cycles consumed by a single function is 3.89% and there are only

20 functions consuming more than 1% of the cycles. The CPU time is distributed

more or less evenly across the user layer, SOCKET layer, UDP layer, IP layer, and

ETH and device driver layers. This flat profile defeats any cost-effective attempts

to pinpoint specific functions or layers to optimize. In addition, among the func-

tion categories, the memory subsystem has the highest CPU percentage, and most

of its functions are related to sk buff, a fundamental data structure for describing

the control information used in packet handling. Since the operations on the data

∗Multiport Memcached is discussed in section 1.1.2
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Description CPU
Receive/transmit, event-handler 8.26%

functions in Memcached and libevent

Memory copy between kernel and user levels, 7.98%
system calls and polling system routines

SOCKET layer: receive/transmit functions 7.66%
UDP layer: receive/transmit functions 7.75%
IP layer: receive/transmit functions, 11.64%

connection tracking, filtering, and routing
ETH and driver layer: RPS [31], e1000e, 15.42%

and receive/transmit functions
Memory subsystem: skb/slab functions 23.32%
Scheduling, softirq, timers, and other 17.21%

routines as well as overheads from OProfile

Table 3.1: Distribution of the CPU cycles in different categories of functions at the
user level (first row) and at the kernel level (other rows) during the execution of
Multiport Memcached.

structure—such as memory allocation/deallocation and modification—are required in

each layer of the network stack, it is challenging to improve its performance at one

layer without negative impact on other layers. Meanwhile, much effort has been spent

on applications’ in-kernel implementations using the kernel TCP/UDP sockets simply

to remove overhead associated with the user-kernel border [3, 44, 51, 65]. However

this approach may not suffice, at least for Memcached. As shown in the table, the

total percentage for the user-level functions, including libevent, is only 8.26%, and

kernel functions directly related to the user level, including memory copy, system

calls, and the polling routines, consume only 7.89% of the total cycles.

Although there exist many studies on the optimization of the network stack

via parallelization on multicore system, such as distributing packets among CPU

cores [50], reducing the number of packets using jumbo frames [18], and mitigat-
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ing interrupts [36, 61], efficient parallelization of the stack remains difficult due to

overhead from synchronization, cache pollution, and scheduling in the layers of the

network stack in a multicore system [55, 62, 72]. To reduce overhead due to unneces-

sary sharing of network control states in a multicore system, IsoStack [62] separates

cores for supporting the network stack from those running applications. However,

Memcached does not consume many CPU cycles for its own, as shown in Table 3.1,

and could hardly benefit from this technique. Recent work (Netmap [60]) provides

applications with line-rate access to raw packets by bypassing kernel network stack

supporting the TCP/UDP protocols. However, it can be hard for a general-purpose

application like Memcached to take advantage of this capability and retain compati-

bility with clients. Other works such as Chronos [35] rely on user level networking [70]

enabled by NICs exposing user-level interface to handle requests without kernel inter-

vention. However, it is still a significant challenge to effectively achieve scalable access

to the user-level NIC because the amount of NIC resources demanded for managing

user-level connection endpoints increases linearly with the number of clients simul-

taneously issuing requests [70, 45]. The number can be substantial in Memcached

service [10].

Having shown that Memcached, as a representative KV cache implementation, is

CPU-bound with the network stack at high loads, we cannot readily leverage exist-

ing network techniques to effectively address the issue. As the KV cache is such a

critical component in today’s data center infrastructure [52], it is time to revisit the

conventional wisdom that this network-intensive class of applications are improved

only through optimization of the network stack.
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3.2 The Design of Hippos

Three principles guided Hippos’s design. First, it should take into account the

characteristics of the KV-cache’s expected workloads. Second, it should remove a

substantial amount of network-related overhead. Last, it should require minimal or

even no changes to the existing kernel network framework. In this section, we describe

the design of Hippos in light of these principles, starting with its expected workloads.

3.2.1 Targeted Workloads

Hippos is motivated by the suboptimal performance of Stock Memcached under

realistic workloads, taken from Facebook’s workload study [10]. These workloads

show a strong bias towards small requests and require that servers be provisioned to

handle large traffic spikes. Below is a summary of relevant characteristics reported in

the Memcached workload study.

• The ratio of the GET requests among all requests can be very high. Among

the five separate caching pools, each dedicated for a different application or

data domain, USR has the highest GET ratio (99.7%). The ratios for the other

pools are 84% (APP), 73% (ETC), 18% (VAR), and 67% (SYS). Furthermore,

all GET requests use UDP, instead of TCP, for higher efficiency.

• Small values and keys dominate GET requests. For the USR pool, there are

only two key sizes (16B and 21B) and virtually only one value size (2B). For

the other four pools, APP, ETC, VAR, and SYS, the 99% percentile key sizes

are 45B, 80B, 30B, and 45B, respectively. Almost all GET requests can be held

in a single UDP packet. Their respective 99% percentile value sizes are 450B,
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512B, 200B, and 640B. Most of the GET requests and their replies can be held

in one UDP packet.

• The request traffic can quickly surge by doubling or tripling the normal peak

request rate. It has been suggested that “one must budget individual node

capacity to allow for these spikes [...] Although such budgeting underutilizes

resources during normal traffic, it is nevertheless imperative” [10].

Based on these workload characteristics, the design of Hippos is focused on improv-

ing the performance and efficiency of processing UDP-based GET requests, especially

small ones. We believe this effort should also benefit other KV stores used in data

centers supporting web-based applications in general.

3.2.2 Locating the Position to Hook Hippos in

While the general idea is to move the KV cache into the kernel and bring it closer

the NIC, we must still identify a position in the network stack for an implementation

that significantly reduces networking cost and is the least intrusive to the existing

network architecture. To this end, we selected four observation positions along the

traversal path of Memcached’s requests to evaluate CPU overhead and latency for the

traffic to reach these positions (see Figure 3.1). To ensure that we only account for

statistics taken before a certain position is reached, we intercepted and then dropped

the packets at this position. Table 3.2 describes these selected positions. Among

them, position 1 is the closest to the NIC and packets are intercepted immediately

before they reach the IP layer. We use Netfilter’s hook (NF INET PRE ROUTING)

to obtain the packets and then drop them. Position 2 is selected immediately before

UDP packets are added into the UDP socket buffer queue. To drop the packets, we

open UDP socket(s) but do not read packets from them. When the socket queue is
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Figure 3.1: The paths for a UDP GET request to travel in the network stack and
Memcached (or respectively Hippos).

filled, the subsequently arriving packets will be automatically discarded. At position

3, we use kernel-level thread(s) to pick up packets from the UDP socket buffer queue

once they are notified that there are new packets inserted into the queue. Position 4

is the location conventionally used for Memcached to receive UDP packets.

In this investigation the workload is the same as that used for the experiments

described in Section 1. Figure 3.3 shows that CPU utilization at various observation

positions with one core. Figure 3.2 shows corresponding latency for the packets to

reach these positions. In the measurement of latency, we may have to correct the

skewed clocks between clients and the server as the packets are dropped on their way

to the Memcached. To avoid possible errors in the correction, we chose to measure the

start time of a packet when it is just received by the server (at the NIC driver). As
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Position Method to intercept packet
1. Reaching IP layer via Netfilter hook

NF INET PRE ROUTING
2. Entering UDP Open the socket w/o
socket queue reading requests
3. Leaving UDP Reading requests w/o sending
socket queue them to Memcached
4. Received by Process in Memcached
Memcached

Table 3.2: The observation positions

shown, at positions 1 and 2 the CPUs are almost all idle and the latency is minimal

even when the arrival rate reaches 800K packets per second. However, at position

3, system time starts to become substantial and even dominating when the arrival

rate reaches 800K packets per second, and the latency skyrockets from 10µs to over

200µs when the rate is beyond 480K packets per second. When the packets reach

the user level at position 4, the system’s packet processing capacity is saturated by

an arrival rate of only 320K packets per second. Note that position 4 is at only

the half way of a round-trip request and reply path in Memcached. If the full path

is considered, the saturation arrival rate would come much earlier, as illustrated in

Figure 1.1. The experiments to run multiport Memcached on multiple cores reveal

similar performance trend at these observation positions, except that higher peak

throughput are observed.

A major reason why receiving packets at positions 3 and 4 is expensive is the

context switch between threads placing packets into the socket buffer queue and re-

trieving them out of it. Position 4 is additionally associated with overhead related to

passing packets between the kernel and the user-level applications. Between positions

1 and 2, Hippos chooses the first position to intercept packets as it can leverage the
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Netfilter framework [2] to obtain packets without any modification of the operating

system. Netfilter provides a number of hooks within the Linux network stack. These

hooks can be used to register kernel modules for manipulating network packets. Hip-

pos uses the NF INET PRE ROUTING hook. Although packets received from the

hook are still at the IP layer, all the information needed for the KV cache is available,

such as operation type, number of keys, key contents, or values. After receiving a

packet, Hippos will first check it to see whether it is a UDP GET packet, and if so,

whether its destination port is the one defined by the KV cache. If a packet does

not satisfy both conditions, Hippos will return NF ACCEPT in its hook function to

allow the packet to resume its journey in the network stack towards the upper layers,
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Figure 3.3: CPU utilization at various observation positions in the network stack with
different request arrival rates when one core is in use.

such as UDP layer†. Otherwise, Hippos retrieves the request from the packet and

feeds it into the in-kernel KV cache for processing similar as that in Memcached.

The query result will be sent in a packet directly from the IP layer (via function

dev queue xmit()). If the key or value cannot be held in one UDP packet, a number

†It is noted that Hippos does not have any UDP sockets at all.
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various GET request arrival rates. The GET requests arrive either in the one-request-
in-a-packet format (GET) or in the multiple-requests-in-a-packet format (MGET).
For MGET, the packet arrival rate is 320K packets per second, and we change the
number of requests in a packet. The lock may be applied (LOCK ) or not (NOLOCK ).

of UDP packets will be created and sequence numbers are placed in them, as what is

done in Memcached.

Note that a GET request is processed in the context of softirq handling, rather than

by another thread. This avoids the context switch between network stack routines and

worker threads for reading and processing requests. The path for the UDP packets

to travel in Hippos is shown in Figure 3.1.

3.2.3 Removal of the Second Bottleneck

In the previous investigation, we assumed that locks in Memcached are disabled

to take out lock-related cost and highlight the cost related to the packet processing in

the network stack. Now we have two questions to answer: (a) Did we overestimate the

performance of Memcached by removing lock contention? (b) If the packet processing
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in the network stack is not the bottleneck, what is the effect of the lock-related

cost on Memcached’s performance? To answer the first question, we ran Multiport

Memcached on eight cores with RPS (Receive Packet Steering) enabled and with the

same workload as before except that GET requests retrieve data that have been in the

KV cache. Because of maintenance of data structures for the Least-Recently-Used

(LRU) replacement policy, lock operations can be required even for GETs. As shown

in the upper graph of Figure 3.4, after we enabled the locks at the increasing packet

arrival rate the system achieves the same throughput as that for its counterpart with

Memcached internal locks disabled. In other words, the lock overhead is overshadowed

by the network cost and thus is not a performance issue unless the network cost is

sufficiently reduced. After the load increases beyond 320K packets per second the

throughput increases little, which indicates that Memcached cannot receive sufficient

GET requests to allow its lock use to become a performance bottleneck (here we

assume one GET request per packet).

To answer the second question, we need to increase the number of GETs without

increasing network cost. To this end, we placed multiple GETs in a UDP packet

and kept packet arrival rate constant at 320K packets per second. Before the work-

load increases to 1280K GETS per second (by placing more GETs in a packet), the

throughput in terms of number of GETs serviced in one second almost linearly in-

creases. But beyond this point the throughput peaks and starts to drop. This is

attributed to intensified contention on the Memcached’s internal locks as we observed

that the cores still have idle time. If we disable the locks in the experiment, the

throughput maintains its linear increase. Ostensibly, this represents the best-case

performance, because the locks cannot be disabled in a real workload that includes
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mutating requests, such as SET and DELETE.

Currently Memcached uses a set of locks for its hash table, each for a number

of buckets in a hash value range, and one lock to maintain consistency of the data

structure for its LRU cache replacement policy. When traffic to Memcached is high,

the request processing can become serialized by these locks. Even worse, a thread

owning a hash table lock cannot release it until it acquires the LRU lock and completes

its operations on the LRU stack to keep the consistency of these two data structures.

To address the issue, we synergistically apply two techniques. First, we replace the

spinlock for the hash table with RCU (Read-Copy Update) lock [47, 48]. RCU allows

readers to access the shared data without any conventional lock. For writes, it creates

new copies to accommodate updates before old copies are freed. In RCU, reads can be

much cheaper than writes. As it has been shown that in the Memcached workloads,

GETs can be much more frequent than update requests, RCU is an ideal fit in the

enforcement of mutual exclusiveness. Second, we adopt the CLOCK policy instead

of LRU to completely remove the use of locking for cache replacement.

3.2.4 Handling TCP packets

Hippos uses the in-kernel TCP socket to receive SET, REPLACE, DELETE, and

other writing requests. However, it does not optimize its reception and processing

of TCP packets except that it handles them in the kernel. This relieves us from re-

implementing the complex TCP stack. For NICs that have multiple hardware receive

queues, we run one thread on each core to handle TCP connections. For NICs with

only one queue when NAPI [61] is enabled, Hippos needs to spread the load across

cores. It accomplishes this by creating a worker thread listening on the incoming

TCP connections on the core responsible for polling the NIC for incoming packets
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in NAPI. Hippos creates N − 1 worker threads to handle connections on top of the

socket layers, where N is the number of cores, and each of the threads runs on one

of the remaining cores. The threads are woken up via the sk data ready callback

function to serve incoming connections from clients in a round-robin manner. We

chose TCP NODELAY to disable the Nagle algorithm [4] to reduce the response time

to clients. Though Hippos’s TCP packet handling is at a high position in the network

stack, it does avoid memory copy and other overheads associated with the user-level

applications.

3.2.5 Distribution of workload among cores

In a NIC with only one hardware receive queue or one rx ring, NAPI is used to

change the packet reception from the interrupt-driven mode into polling mode when

the flow of incoming packets exceeds a certain threshold. In the polling mode, only

one core polls the device for incoming packets. Hippos may choose to use only this core

to invoke softirq for processing UDP GET requests. The advantages of this approach

include no incurring of the cost for delivering packets to the backlog queue of other

cores and leaving those cores mostly idle to save energy. However, when the workload

on this core is very high, especially when expensive TCP packets are frequent, the

core can be overwhelmed. To address this issue, we enable RPS to spread the load

across the cores when this core’s utilization reaches a threshold, which is set at 70%

by default. Our experience indicates that Hippos’s performance is not sensitive to the

threshold. RPS will be turned off when NAPI is disabled at a lower packet rate.



42

3.2.6 Reuse of sk buff

The data structure sk buff is used to store data and control information for packets.

If a GET is a miss or the value retrieved from the KV cache is smaller than payload

of the original GET packet, Hippos reuses the packet by directly storing the value in

it. Accordingly it switches the source and destination addresses for various layers,

including those in the UDP headers, IP headers, and MAC headers, and sends the

packet back to the client. Considering the potentially large number of cache values

whose sizes are only a few bytes [10], this optimization can effectively reduce the cost

associated with allocations and de-allocations of sk buffs. To enable this reuse, Hippos

returns NF STOLEN, rather than NF DROP, in its Netfilter hook function. So that

it can retain the sk buff for updating and creating a reply packet. If the reply data is

larger than the capacity of the sk buff, it will expand the buffer.

3.3 Effectiveness of Hippos

Hippos was implemented as a separate Linux kernel module that can be easily

loaded without requiring any modifications to the kernel itself. The experiments

for this evaluation were first conducted on the same platform as before: each node

has 8-core Intel 2.33GHz Xeon CPU, 64GB DRAM, and Intel PRO/1000 1Gbps

NIC, running Linux 3.5.0. A server node is connected with another eight client

nodes of identical configuration. The use of a 1Gpbs NIC, which is embedded in the

motherboard, is quite common for clusters in large-scale data centers [28]. It provides

a raw bandwidth larger than what is demanded by Memcached traffic discussed in the

study of Facebook Memcached traces [10], which are also used in our evaluation. For
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a KV-cache workload dominated by small keys and values, whose combined sizes are

less than 1KB, it is the network stack, rather than the hardware’s raw bandwidth, that

is stressed. The client-side software interacting with the Memcached server does not

need to make any changes after Hippos replaces Memcached. On each client machine

there are four processes generating Memcached workloads, each sending asynchronous

requests to the server at a settable rate, either as a micro-benchmark or by replaying

the Facebook traces. In addition, we demonstrate how the benefits of Hippos can be

scaled up with a 10Gbps network by using the dual-port Intel 82599 10Gbit Ethernet

cards with the 3.10.16 IXGBE driver. To saturate the higher bandwidth, we used 24

client machines to issue requests. In the meantime, we used a more powerful machine

as the server, a DELL PowerEdge R410 with two Intel Xeon X5650 processors and

32 GB memory. As each processor has six cores and with hyperthreading each core

has two logical cores, we consider the server to have 24 logical cores.

In this section we also evaluate the open-source Memcached v1.4.15 for comparison.

Considering the apparent weakness of using only one UDP socket in the open-source

Memcached and the adoption of its multiple-UDP-port version in the industry [52],

we use Multiport Memcached in this evaluation to represent Memcached. In addition

to peak throughout and average latency, in the experiments we also measured the

electric power consumed at the server’s socket. Unless otherwise indicated, we pre-

populate the cache before each run and issue requests with random keys from the

cache.

We first used micro-benchmarks to evaluate the performance of Hippos under

a controlled workload and observed how its various design aspects respond to the

changes of workload characteristics. Unless otherwise specified, a packet is sized for
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a 64 B payload.

3.3.1 Identifying Peak Throughput

Generally speaking, increasing request arrival rate in a KV store system would

increase average request latency until peak throughput is reached and latency grows

unacceptably high. To see how the latency grows and when the peak throughput

is reached, we let clients send UDP GET requests to Memcached and Hippos with

increasingly higher rate. In the request packet, the key size is 20B and in the reply

packet the value size is also 20B. Figure 3.5(a) and Figure 3.5(b) show the latencies

with the increasing request rate for 1Gbps and 10Gbps networks, respectively. As a

reference point for the best-case scenario, we also plot the latencies for an undemand-

ing workload, in which only non-existent keys are requested and the lock for the hash

table is disabled as its protection is not necessary for the 100%-miss requests.
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In both systems, the latency does not increase substantially when the request rate

is low, though Hippos produces latencies lower than Memcached’s. However, the la-

tency skyrockets when the request rate reaches its peak rate (corresponding to peak

throughput). Observe the 1Gbps-network scenario for example: in the undemanding

set up Hippos improves Memcached’s peak throughput by 63% (520 Req/s vs. 320

Req/s). In the normal setup both have their peak throughput reduced, but Mem-

cached by a larger amount. This is because Hippos has already eliminated the cost of

lock protection associated with GETs with the use of the RCU lock and the CLOCK

replacement, and its undemanding setup has only the benefit of reduced search cost in

the hash table due to mapping non-existent keys to an empty bucket. Consequently,

Hippos doubles Memcached’s peak throughput (480K Req/s vs. 240K Req/s). The

performance trend for the 10Gbps network is similar except that (1) Hippos has a

larger improvement of peak throughput (more than 4×); (2) the difference of unde-

manding setup and normal setup for either Memcached or Hippos is smaller. The

reason for the larger improvement in the 10Gbps network is that Hippos shifts the

throughput bottleneck from the CPU to the network. Accordingly a 10Gbps network

exposes more of Hippos’s potential. The smaller difference is because that in the

10Gbps network the system time holds a larger percentage in the program’s execu-

tion. This is likely attributed to the aggravated cache line miss due to the fact that

different cores are used for delivery of packets using RSS (Receive Side Scaling) in

the 10Gbps NIC and for running application threads [54].

3.3.2 Reducing Memory Operations

Hippos has attempted to reduce memory allocation and de-allocation operations

by reusing the sk buff data structure. For small values that can be held in the request
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packets’ sk buff, the operations’ cost is proportional to the request arrival rate. So

we increase the rate to see how much performance benefit can be received by using

this optimization in Hippos. In this experiment, we send UDP GETs, each with a

20B key and searching for a 20B value, in the 1Gbps network. Figure 3.6 shows

request latencies under different request rates when the optimization is applied or

not. Although the latency reduction is small with the reuse when the request rate

is low, the technique is effective at high request rates. In particular, it successfully

increases the peak throughput by 20% (from 400K req/s to 480K req/s).

3.3.3 Mixing GETs with SETs

Processing both GETs and SETs in Hippos takes place in the kernel to eliminate

the cost associated with interactions between the kernel and user-level Memcached.

However, Hippos makes more aggressive optimizations for GETs. In this experiment

we show how mixing SETs with GETs would change the performance observations

we have made on the all-GETs workloads. Figure 3.7 shows latencies for workloads

with different mixes of GETs and SETs in the 1Gbps network. With low request

rate (80K reqs/s), having SETs in the workload almost does not increase latency.

However, with the increase of request rate the workloads with higher proportion of

SETs have higher latencies. For example, at 320K reqs/s, the workload with all SETs

sees latencies jump beyond 1ms. This is the result we expect as TCP-based SETs are

more expensive to process. In the meantime, even under mixed workloads, Hippos

outperforms Memcached since it can also improve performance for SETs, albeit at a

smaller scale.
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USR ETC APP VAR SYS
GET 99.7% 73.4% 83.4% 18.0% 67.5%
UPDATE 0.2% 2.3% 5.2% 82.0% 32.5%
DELETE 0.1% 24.0% 11.4% N/A N/A

Table 3.3: Distribution of request types in the Facebook traces: GET, UPDATE, and
DELETE. SET belongs to the UPDATE category, which also includes REPLACE and
other non-DELETE writing operations.

3.3.4 Replaying Facebook’s Traces

We replayed Facebook’s production-representative Memcached traces on Hippos

with both 1Gbps and 10Gbps NICs. The five traces (USR, ETC, APP, VAR, and

SYS) have been briefly described in Section 2. An extensive description and analysis

can be found in [10]. Here we summarize the distribution of requests in each trace

in Table 3.3. The requests are categorized into types: GET, DELETE, and all

non-DELETE writing operations such as SET and REPLACE, which are collectively

named UPDATE. Table 3.4 lists the average latencies of the three types of requests

and power consumption for Memcached and respective changes made by Hippos in

percentage for all five traces. For each trace, we use three request arrival rates,

representing low, medium, or high loads on Memcached. Figure 3.8 (a) and (b) show

the peak throughput received by Memcached and Hippos for the 1Gbps and 10Gbps

networks, respectively.

From the experimental results we gathered several interesting observations. First,

for the 1Gbps network Hippos achieves the most impressive improvements for traces

USR and VAR, each for a different reason. According to Table 3.3, USR consists
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Type Rate Multiport Memcached Hippos
K/sec GET(µs) UPDATE(µs) DELETE(µs) POWER(Watt) GET UPDATE DELETE POWER
160 173 206 194 330 -28% +6% -1% -19%

USR 240 235 234 220 343 -45% -6% +3% -16%
320 — 286 273 347 226µs -11% +11% -15%

USR 10Gbps 750 680 640 650 191 -26% -35% -35% -20%
80 327 183 166 302 -41% -17% -14% -7%

ETC 160 916 224 207 324 -72% -20% -17% -9%
240 — 279 263 337 471µs -14% -11% -9%

ETC 10Gbps 845 842 694 670 200 -39% -8% -7% -14%
80 289 185 167 303 -48% -14% -7% -10%

APP 160 547 230 214 324 -53% -18% -15% -10%
200 — 237 361 337 386µs +42% -37% -10%

APP 10Gbps 763 713 665 650 194 -24% -21% -6% -14%
40 163 163 N/A 286 -23% -11% N/A -5%

VAR 80 186 179 N/A 316 -32% -12% N/A -10%
120 — — N/A 326 174µs 163µs N/A -9%

VAR 10Gbps 150 920 965 N/A 178 -35% -36% N/A -13%
80 376 174 N/A 304 -54% -10% N/A -6%

SYS 120 331 201 N/A 319 -52% -19% N/A -5%
160 — — N/A 323 230µs 231µs N/A -6%

SYS 10Gbps 232 992 978 N/A 181 -44% -37% N/A -13%

Table 3.4: Average request latency and power consumption of Memcached, and re-
spective changes made by Hippos in percentage for the five traces with the 1Gbps
and 10Gbps networks (only 10Gbps explicitly indicated). Latency larger than 1ms
is denoted by ”-”. If Memcached ’s latency is denoted as ”-”, Hippos ’s counterpart is
represented by its actual latency value, instead of a change in percentage.

of almost entirely GETs (99.7%). Both request packets (with only 16B and 21B

keys) and reply packets (with virtually only 2B values) are small. This is exactly the

type of workload Hippos excels at. GET latency is reduced significantly, especially

when the request rate is high. The peak throughput is increased by 98% and energy

consumption is reduced by 19%, 16%, or 15%, depending on the request rate. In

contrast, VAR is UPDATE-dominated (82%). We found that Memcached is especially

ineffective in processing SETs or other update requests. With an arrival rate of only

120K reqs/s, the latency increases to a couple of milliseconds. This allows Hippos to

achieve a high increase (2.5×) of peak throughput. However, the power savings (5%,

10%, and 9%) are less significant because TCP-based UPDATEs keep all cores busy

and Hippos can hardly use only one core to serve requests.
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Figure 3.8: Peak throughput received by Memcached and Hippos for each of the five
Facebbok’s traces. The throughput is collected under the condition that the corresponding
average request latency does not exceed 1ms.

Second, ETC, APP, and SYS have relatively moderate improvements in the 1Gbps

network. Both have substantial portion of GETs (73.4%, 83.4%, and 67.5% for ETC,

APP, and SYS, respectively). However, they have relatively large values. For exam-

ple, in more than 30% of APP’s SETs, value sizes are around 270B. ETC also has a

significant portion of large value size, even a few of around 1MB. GET requests for

these large values will produce large reply packets. This can bring packet bandwidth

close to the NIC’s raw bandwidth, which then turns into the bottleneck and limits

the potential improvement by Hippos. Hippos improves the peak throughput of ETC,

APP, and SYS by 41%, 15%, and 33%, respectively. When the 10Gbps NIC is used,

it breaks the limit and gives Hippos a larger room for improvement. As shown in

Figure 3.8(b), the peak throughput of ETC, APP, and SYS is improved by 140%,

100%, and 590%, respectively, in the 10Gbps network.
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Third, the improvement trends with increasing request arrival rates are different

for latency and power. In general, at low request rate the latencies for Memcached

are acceptable and do not leave too much room for Hippos to improve. When the

request rate approaches Memcached’s peak throughput, the latency with Memcached

quickly rises, and accordingly Hippos usually produces a big improvement, especially

for GETs. However, the improvement on power consumption is usually consistent

across different request rates. For example, with 80K reqs/s, 160K reqs/s, and 240K

reqs/s for ETC in the 1Gbps network, the improvements of GET latency are 41%,

72%, and 92%, respectively, while the improvements on power consumption are more

consistent (7%, 9%, and 9%, respectively ). To understand the consistency of power

saving, we used the Linux performance counter profiling tool perf to measure the

number of instructions executed with Memcached and Hippos. For ETC, with the

three request rates Hippos reduces the instruction count by 45%, 53%, and 51%,

respectively. These reductions are less correlated to request rate but correlated to

power saving. So even for KV store users who see relatively low request rate and

might not be interested in latency improvements as long as the latency is not too

high, such as exceeding 1ms, Hippos can be still appealing with its advantage on

power saving across the different request rates.

3.4 Related Work

In this section, we briefly describe the efforts in the literature for optimizing

KV store in general, and Memcached in particular, and the techniques enabling the

optimizations.
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3.4.1 Optimization of Memcached

While Memcached usually runs on multicore processors, it remains a concern

whether operating-system support for multicores can hamper its scalability. It has

been found that running multiple Memcached instances, each on a dedicated core

with a separate worker thread, allows it to scale with increased core count [14, 15].

In contrast, Hippos addresses the performance issue of Memcached from a different

angle. Instead of making increased CPU cycles available to Memcached to meet its

high CPU demand, Hippos reduces its reliance on powerful processors, making Mem-

cached a much lighter KV cache. In doing so, Hippos still provides one port per server

to all clients and the memory is fully shared by all cores, facilitating ease of manage-

ment. In contradistinction, the approach of running multiple Memcached instances

in one server has to partition memory among instances or cores, and can lead to load

imbalance: if some items in one instance are accessed more frequently than others in

a different instance, the demands on different cores can differ significantly. The load

imbalance issue also exists in CPHASH [49], a hash table designed for KV stores, as

it also needs to partition the hash table in advance.

Recently there have been optimized synchronization mechanisms [26, 52, 67] pro-

posed to reduce or eliminate lock contentions within Memcached. However, the lock

contention on the network stack can still dominate Memcached’s performance. Hippos

reduces or removes lock contentions on both the KV cache’s implementation and the

network stack.

Contemporary Linux kernels also provide some mechanisms that help with Mem-

cached’s network efficiency. For example, NAPI [61], RPS [31], and RSS [50] address
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the efficiency issue on selecting incoming packets from the NIC driver under heavy

network loads. Hippos adopts these techniques in its implementation. However, using

the network optimizations alone cannot address network efficiency issues challenging

Memcached as long as it stays on top of network stack as a user-level application.

3.4.2 Moving Applications into the kernel

Many solutions have been proposed for saving energy at the server side [41, 40,

39, 42]. Migration of services that are considered integral to a server’s operation into

the kernel has been in practice for this purpose. kHTTPd [44] and TUX [38] are two

projects that moved web server into the Linux kernel with the aims of elimination of

data copies and reads, reduction of thread scheduling and context switching overhead

due to event notification, and reduction of overall communication overhead in the

network stack. Click is an in-kernel modular router allowing fast access to NIC [23].

SPIN [66] is an operating system that blurs the distinction between kernels and

applications, and has a web server running entirely in its kernel address space to

reduce response times. Hippos is also an in-kernel implementation that maximizes

the performance and energy efficiency. Since a KV caching service is usually provided

on dedicated servers to other internal applications, integrating it within the kernel

and approaching the servers as appliances mean fewer negative implications—such as

security concerns, in the data-center environment—and several positive implications

such as improved performance and energy efficiency.

3.4.3 Making network resources accessible at the user level

To allow packets to be sent or received more quickly by applications, many efforts

have been made to provide them with more direct and efficient interfaces to access
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network resources. Netmap is a framework providing applications with a fast channel

to exchange raw packets with the network adapter to achieve at-line rate for packet

transmission [60]. Though it provides an opportunity for user-level Memcached to

directly access packets, this approach can be difficult to implement. For example,

the handling of TCP needs to be reimplemented at the user level, which can be more

expensive than in the kernel. Netslice is a framework within a kernel module that uses

the Netfilter hooks to pass packets directly to the user level [46]. By using Netfilter

hooks for intercepting packets, Netslice is similar to Hippos. However, by directly

passing packets to the user level, it shares the concern with Netmap had Memcached

been built in its framework.

System call can place a major burden for applications to access network resources.

Soares et al. [64, 63] proposed a system mechanism, named as exception-less system

calls, enabling efficient data access between use- and kernel levels. In addition, the

design and implementation of OS support for asynchronous operations along with

event-based notification interfaces to support event-driven architecture, have been an

active area of both research and development [12, 16, 58, 24, 17, 53, 71, 59]. All these

works aim to reduce the communication overheads between kernel and user level. As

Hippos is implement in the kernel, there overheads have been fully removed.

3.4.4 Netfilter hooks

Hippos highly relies on the convenience and efficiency in packet interception pro-

vided by Netfilter [2]. Netfilter provides a set of hooks inside the Linux kernel that

allows kernel modules to register callback functions with the network stack. A reg-

istered callback function is then called back for every packet that traverses the re-

spective hook within the network stack. A most known application of Netfilter is to
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construct firewall through inspecting packets taken from Netfilter. Similar framework

is also provided in FreeBSD (Netgraph) and Windows (Ndis Miniport drivers).

3.4.5 Reuse of sk buff

It has been found that allocation/de-allocation of sk buff can be a major consumer

of CPU cycles – sk buff-related operations take up 63.1% of the total CPU usage [30].

To address this issue, a new buffer allocation scheme is used for acquiring a large

packet buffer in one allocation for many sk buffs to amortize the cost. The cost of

sk buff can be related to where it is allocated in a NUMA system. It can incur serious

lock contention if many allocators access the same free sk buff list. By allocating from

a local list, the contention can be alleviated and the allocation of sk buff can be more

efficient [15]. Hippos significantly reduces the sk buff-related operations, especially

allocations/de-allocations, using a simple strategy: reuse of the buffer of an incoming

request packet for constructing outgoing reply packet.
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Chapter 4:Conclusions and Future Work

This dissertation presents a detailed workload study on a large-scale KV store

system that runs at Facebook, and proposes a novel way to build a high-throughput,

low-latency, and energy-efficient KV cache system. In this chapter, we summarize the

work that have been done and suggest directions for future work.

4.1 Conclusions

This dissertation exposes five workloads from one of the world’s largest KV-cache

deployments. These five workloads exhibit both common and idiosyncratic properties

that must factor into the design of effective large-scale caching systems. For example,

all user-related caches exhibit diurnal and weekly cycles that correspond to users’ con-

tent consumption; but the amplitude and presence of outliers can vary dramatically

from one workload to the next. We also investigate at depth the properties that make

some workloads easier or harder to cache effectively with Memcached. For example,

all workloads but one (SYS) exhibit very strong temporal and “spatial” locality. But

each workload has a different composition of requests (particularly the missing ones)

that determine and bound the cap for potential hit-rate improvements.

One particular workload, ETC, is interesting and useful to analyze because it

is the closest workload to a general-purpose one, i.e., not tied to any one specific

Facebook application. The description of its performance and locality characteristics

can therefore serve other researchers in constructing more realistic KV-cache models

and synthetic workloads.
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This dissertation also describes the design and implementation of Hippos, an in-

kernel KV cache implementation to support cloud services. We believe that a KV

cache should be memory-intensive and network-intensive, but not CPU intensive, in

accordance to its role as a large on-network caching facility. In this paper, we show

that current user-level Memcached is a highly CPU-demanding application. Together,

packet processing in the kernel and the use of locks within Memcached can dominate

processing time.

Considering that Memcached provides caching services as part of the infrastruc-

ture in a data center, we move it into the kernel to remove most of network-related

costs. In addition, we use the RCU lock and a lock-free CLOCK replacement to

substantially remove lock contention within the KV store. The resulting Hippos is a

high-performance and high-efficiency KV system with three distinct advantages: (1)

It is highly CPU efficient: with a single core its throughput outperforms open-source

Memcached running on eight cores; (2) It is energy efficient: it can reduce power con-

sumed by a Memcached server by up to 20% for production-representative workloads.

(3) Its design is based on observations from real-world workloads and its performance

about replaying the workload traces shows substantial gains.

Exploiting the readily available Netfilter interface in the kernel, Hippos’s imple-

mentation does not require any kernel modifications. Our experience suggests that

in data-centers specialized clusters, providing network-intensive services can be op-

timized with in-kernel implementation. The servers’ dedicated use removes typical

concerns with in-kernel implementations and the use at scale with tens of hundreds of

servers warrants significant performance and energy benefit to justify the engineering

effort. While Hippos is described and evaluated in the context of Memcached, it is
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applicable to any in-memory KV store systems, and its approach can be instrumental

in optimizing other network-intensive applications.

4.2 Future Directions

In this dissertation work, we analyzed the workload of Memcached at Facebook

from various perspectives, but the efficiency of cache replacement policy itself was

not discussed. Looking at hit rates has shown that there is room for improvement,

especially with the largest pools, ETC and APP. By analyzing the types and distri-

bution of misses, we were able to quantify precisely the potential for additional hits.

They are the fraction of GET request that miss because of lack of capacity: 4.1%

in ETC (22% of the 18.4% miss rate) and 5.1% in APP (72% of 7.1% misses). This

potential may sound modest, but it represents over 120 million GET requests per day

per server, with noticeable impact on service latency.

There are two possible approaches to tackle capacity misses: increasing capacity

or improving the logic that controls the composition of the cache. The former is

expensive and yields diminishing returns ( Figure 2.6). Recall that within 6 hours,

96% of GET requests in ETC that would be repeated at all, have already repeated—

far above the 81.2% hit rate. On the other hand, non-repeating keys—or those

who grow cold and stop repeating—still occur in abundance and take up significant

cache space. LRU is not an ideal replacement policy for these keys, which has been

demonstrated in all five pools. And since all pools exhibit strong temporal locality,

even those pools with adequate memory capacity could benefit from better eviction

prediction, for example by reducing the amount of memory (and cost) required by

these machines.
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One of our directions of future investigation is therefore to replace Memcached’s

replacement policy. One approach could be to assume that keys that don’t repeat

within a short time period are likely cold keys, and evict them sooner. Another open

question is whether the bursty access pattern of most repeating keys can be exploited

to identify when keys grow cold, even if initially requested many times, and evict

them sooner.

Though Hippos successfully eliminates performance bottlenecks that are imposed

by system calls and network stack without modifying any kernel components, the

design assumes the DRAM is the only storage media. As flash memory drive, such as

solid state drive (SSD), is becoming main stream storage media, one of the directions

is to rethink the design that takes the usage of SSD into account. For example, Hippos

uses hashtable to locate all the data that are stored in memory. However, as the size

of SSD is magnitude larger than that of memory, to store the data in SSD means that

the size of hashtable would easily reach to tens of Gigabytes, or even larger. So how

to optimally manage the metadata of KV cache system is still an open question.
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Contemporary web sites can store and process very large amounts of data. To

provide timely service to their users, they have adopted key-value (KV) stores, which

is a simple but effective caching infrastructure atop the conventional databases that

store these data, to boost performance. Examples are Facebook, Twitter and Ama-

zon. As yet little is known about the realistic workloads outside of the companies

that operate them, this dissertation work provides a detailed workload study on Face-

book’s Memcached, which is one of the world’s largest KV deployment. We analyze

the Memcached workload from the perspective of server-side performance, request

composition, caching efficacy, and key locality. The observations presented in this

dissertation lead to several design insights and new research direction for KV stores

– Hippos, a high-throughput, low-latency, and energy-efficient KV-store implementa-

tion.

Long considered an application that is memory-bound and network-bound, re-

cent KV-store implementations on multicore servers grow increasingly CPU-bound

instead. This limitation often leads to under-utilization of available bandwidth and
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poor energy efficiency, as well as long response times under heavy load. To address

these issues, Hippos moves the KV-store into the operating system’s kernel and thus

removes most of the overhead associated with the network stack and system calls. It

uses the Netfilter framework to quickly handle UDP packets, removing the overhead

of UDP-based GET requests almost entirely. Combined with lock-free multithreaded

data access, Hippos removes several performance bottlenecks both internal and exter-

nal to the KV-store application.

Hippos is prototyped as a Linux loadable kernel module and evaluated it against

the ubiquitous Memcached using various micro-benchmarks and workloads from Face-

book’s production systems. The experiments show that Hippos provides some 20–

200% throughput improvements on a 1Gbps network (up to 590% improvement on a

10Gbps network) and 5–20% saving of power compared with Memcached.
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