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1

Chapter 1: Background and Introduction

1.1 Central Dogma of Molecular Biology

The central dogma of molecular biology describes the transfer of genetic se-

quence information within a living cell [20]. Accordingly, cell information usually is

transcribed from deoxyribonucleic acid (DNA) to ribonucleic acid (RNA). It is then

translated from RNA to protein as shown in Figure 1.1. It involves two major pro-

cesses: transcription and translation. In a cell nucleus, the transferring of a section

of DNA sequence information to a pre-messenger RNA (mRNA) molecule is called

transcription. The pre-mRNA is then further alternatively spliced to produce ma-

ture mRNA. Eventually, it is transported from the nucleus into the cytoplasm and

translated by ribosomes to produce proteins. The process from mRNA to protein is

called translation. This dissertation research is primarily focused on two novel algo-

rithms/tools and a computational workflow for the analysis of human transcriptomes.

1.2 Genome and Transcriptome

The genome of an organism is its entire biological hereditary information that

is essential for cell growth, replication and apoptosis [2]. Biological information is

sequentially represented by four nucleotides: Adenine(A), Guanine(G), Cytosine(C)

and Thymine(T). This information is stored in a double-stranded DNA sequence. In

human cells, there are 23 pairs of chromosomes including 22 pairs of autosomes and

a pair of sex chromosomes (XX for females and XY for males). Each chromosome

contains a long DNA sequence that stores a proportion of hereditary information.

Furthermore, each DNA molecule contains many genes represented by individual
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Figure 1.1: Central dogma of molecular biology [2].

segments of DNA. Genes encode genetic information that is necessary to produce RNA

or protein molecules. More than 20,000 protein-coding human genes are considered

in this dissertation.

An organism‘s transcriptome consists of an entire set of all transcripts, such

as mRNAs, small RNAs and long intervening non-coding RNAs (lincRNAs) , in one

or a population of cells under a particular development stage or physical condition

[121]. In eukaryotic cells, one gene can produce more than one mRNA transcript

by alternative splicing, which greatly increases the diversity and complexity of the

transcriptome. Transcriptomes are known to vary corresponding to normal cellular
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development and differentiation or a certain condition caused by environmental fac-

tors or diseases. Thus, studying transcriptomes may lead to a better understanding

of cellular processes and progression of human diseases [17, 45, 70, 87, 117, 118].

1.3 Alternative Splicing

Genes consist of exons and introns. Exons are transcribed and spliced into

mature mRNA for protein synthesis. Introns are non-coding DNA sequences between

exons that do not code for proteins, and they are typically removed by splicing.

Alternative splicing is a gene regulation mechanism in which different exons can

be combined together [2]. As shown in Figure 1.2, a pre-mRNA can be processed

to produce several mature mRNAs by removing introns and concatenating different

exons via alternative splicing [52, 118]. The mature mRNAs are further translated

into protein isoforms with different structures and functionalities [52, 118].

Figure 1.2: Alternative splicing (From Wikipedia).

Alternative splicing plays important roles in many biological processes includ-

ing diseases [52, 119]. It markedly increases the diversity of transcriptome and pro-

teome by producing multiple mRNAs and proteins from the same gene with inclusion

http://en.wikipedia.org/wiki/File:Splicing_overview.jpg
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Figure 1.3: Five types of alternative splicing events [28].

and exclusion of specific exons. More than 90% of multiexonic human genes are al-

ternatively spliced [87]. As a result, the total number of transcripts or proteins are

much more than the number of protein-coding genes. Several types of alternative

splicing events have been observed in biological experiments [28, 118], and Figure

1.3 demonstrates the five well-known types of alternative splicing events, including

skipped exon (SE), alternative 5’ splice site (A5SS), alternative 3’ splice site (A5SS),

retained intron (RI) and mutually exclusive exons (MXE).

Due to the limitations of earlier sequencing technologies, such as DNA mi-

croarray, the human transcriptomes in different tissues or biological conditions can

not be fully explored and compared. However, examining the differences between hu-

man transcriptomes may help lead to a better understanding of biological processes

and yield new insights into diseased cell development and differentiation as well as

new hypotheses on potential biomarkers for human diseases [17, 118, 119].

The emergence of the next-generation sequencing technologies, in particular,

RNA-Seq, has provided unprecedented opportunities to interrogate the entire tran-
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scriptome, including detecting differences of pre-mRNA alternative splicing between

human transcriptomes [87, 121]. As studies increasingly shift from DNA microar-

ray to RNA-Seq, it holds the promise for a better characterization and biological

understanding of transcriptomes [23, 87, 121].

1.4 Next-generation Sequencing

Over the past decade, first-generation sequencing such as Sanger sequencing

and microarray technologies have dominated in the areas of genome and transcrip-

tome analyses, respectively. Although these technologies have proved useful, there is

still an urgent need for new technologies to sequence large amounts of human genomes

and transcriptomes [76]. Recent sequencing techniques are termed as next-generation

sequencing (NGS) or high-throughput sequencing technologies. Comparing with the

low-throughput and long sequencing of the Sanger technique, the massively paral-

lel and short read sequencing provided by NGS technologies can complete genome

projects in weeks while taking several years using the higher cost Sanger technology

[76]. Since 2005, the advent of NGS technologies has not only expanded our horizons,

but also changed our ways of thinking and conducting biomedical research [76]. One

major advantage of NGS is the capability of producing enormous amount of sequenc-

ing data at lower costs. Millions of short reads can be directly sequenced from DNA

or RNA molecules at nucleotide base-pair resolution. This feature provides more op-

portunities to interrogate whole genomes or transcriptomes but not limited to just

determining the order of ATCG sequences or the expression abundance of annotated

genes. The ability of NGS to sequence whole human genomes and transcriptomes to

a great depth makes it possible to enhance our understanding of how genomic and

transcriptomic differences affect our health. Also, large-scale comparative and evolu-
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tionary studies can be performed among many homologous organisms, which was not

possible before the emergence of NGS sequencing technologies [76].

Due to the variety of NGS applications, different types of NGS data are gener-

ated, such as DNA-Seq, RNA-Seq, ChIP-Seq, microRNA-Seq and so on. Several NGS

platforms coexist to support genome and/or transcriptome analyses with differences

in read length, cost and run time. For instance, the Illumina/Solexa Genome Analyzer

II and HiSeq platforms have been used to analyze mouse and human transcriptomes

[22, 23, 78]. Applied Biosystems’ Solid Sequencing (ABI SOLiD) has been applied

to profile transcriptome of mouse embryonic stem cells and whole-genome mutation

of yeast [16, 104]. Research on detection of SNPs from the maize transcriptome and

determination of microbal diversity has been conducted using Roche/Life Sciences’

454 Sequencing [6, 88]. Single-molecule sequencing technologies, including Helicos

BioSciences, Pacific Biosciences and Oxford Nanopore Technologies, have recently

entered the market and may in the near future impact genomics research [42]. This

dissertation is mainly focused on transcriptome analysis using RNA-Seq data.

1.5 RNA-Seq Technology

RNA-Seq is a revolutionary tool for profiling transcriptomes by sequencing

mRNAs of a sample using high-throughput sequencing technologies [121]. It has

rapidly become a promising approach to study eukaryotic transcriptomes. Prior to

RNA-Seq, hybridization-based (e.g., DNA microarrays [97]), sequence-based (e.g.,

Sanger sequencing [35] and expressed sequence tags (ESTs) [1]) or tag-based (e.g., se-

rial analysis of gene expression (SAGE) [116], cap analysis of gene expression (CAGE)

[55] and massively parallel signature sequencing (MPSS) [11]) approaches have been

used for years to quantify and decipher transcriptomes. However, These methods have
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different technical limitations [121]. Microarrays are limited by existing knowledge of

genome sequences, cross-hybridization and saturation signals. Sequence-based meth-

ods are expensive and the sequencing throughputs are not high. Tag-based methods

are not ideal because of a large portion of very short tags from the technology. These

traditional sequencing technologies have prevented researchers from better interro-

gating transcriptomes [121].

Recently, the advent of RNA-Seq has dramatically changed the way we study

transcriptomes and has been applied to different organisms [16, 77, 78, 80, 122]. By

sequencing at nucleotide resolution of millions of short reads directly from mRNA

molecules, RNA-Seq has a number of applications beyond those of existing array

techniques. These include genome annotation [26], quantification of relative tran-

script abundances, identification of differentially expressed transcripts [113], dis-

covery of novel transcript isoforms of genes [109], comprehensive identification of

gene/transcript fusion in cancer [73], and transcriptome assembly [38]. For many

biological applications, microarrays have been replaced [121] by RNA-Seq as it con-

tinually becomes cheaper. RNA-Seq is capable of identifying and quantifying both

annotated and novel transcripts with providing the information of both exonic and

exon-exon junction reads. Thus, it allows researchers to detect and quantify differ-

ences of transcriptomes more precisely regarding alternative splicing [76, 121]. In

addition, DNA microarrays provide a relatively small dynamic range of gene expres-

sion because its sensitivity is inherently limited by signal saturation, non-specific

hybridization and probe design while RNA-Seq does not have this limitation [121].

Also, RNA-Seq has low background signal since most of the reads can be uniquely

mapped to the reference genome [121].

Figure 1.4 shows a typical RNA-Seq sequencing procedure followed by read

alignment [121]. A population of mRNA molecules with poly(A) tails is first converted
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Figure 1.4: A typical RNA-Seq sequencing procedure, alignment and read coverage
profile [121].

into a library of cDNA fragments via either RNA or DNA fragmentation. Second,

sequencing adaptors are attached to each cDNA fragment on both ends. Depending on

sequencing platforms, amplification procedure is optional. Finally, cDNA fragments

are sequenced by a high-throughput sequencer to generate short reads from either

one end (single-end reads) or both ends (paired-end reads). To analyze RNA-Seq

data, these short reads are usually aligned to a reference genome and followed by the

downstream analysis. If the reference genome is not available or is of low quality,

transcriptome de novo assembly may be applied.
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1.6 Short Read Alignment

Once high-quality RNA-Seq reads have been generated, the first step of a typ-

ical data analysis is to map these short reads back to a reference genome. Since

mRNAs concatenate exons by removing introns, the RNA-Seq reads may be origi-

nated from either exonic regions or exon-exon junction regions as shown in Figure

1.5a. In the reference genome, exons are separated by introns, thus exonic reads can

be fully mapped to the regions where they originated. On the other hand, junction

reads would be aligned in two parts spanning the ends of two concatenated exons

(Figure 1.5b). There are several short read aligners. Bowtie [60] and Bowtie2 [59]

use algorithms based on the Burrows-Wheeler transform [12] and FM-index [33].

Novoalign (http://www.novocraft.com/) is based on the Needleman-Wunsch algo-

rithm [81]. Burrows-Wheeler Aligner (BWA) is based on the Burrows-Wheeler trans-

form and Smith-Waterman [105] genome alignment methods. There are also other

existing methods for sequence alignment, such as [66, 68, 103]. For junction reads,

Tophat [112] and Tophat2 [53] are commonly used splice junction mappers.

Figure 1.5: The illustration of exonic reads and junction reads [128]. (a) Short reads
originating either from exons or from exon-exon junctions. (b) The illustration of the
aligned exon reads and junction reads.
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1.7 Common Format of Alignment Files

The read alignment result, including both single-end and paired-end reads, is

typically stored in Sequence Alignment/Map (SAM) files [65], in which the original

coordinates of the aligned reads are recorded. SAM is a Tab-delimited text format. It

is easy to read and understand; however, the size of a SAM file is often up to several

gigabytes, which may lead to storage challenges. Therefore, the binary SAM (BAM)

format [65] is commonly used to store compressed alignment result and is then parsed

by NGS-related software. Besides SAM/BAM alignment files, BED files of junction

reads mapped using Tophat [112] or Tophat2 [53] are commonly used to discover novel

transcripts and to explore splicing patterns. Also, WIG and BEDGRAPH files are

used to store the information of numbers of covered reads at each base (nucleotide)

location and are therefore useful for visualization and utilization of read coverage

signals.

1.8 Review of Transcriptome Quantification Method using

RNA-Seq

As RNA-Seq is quantitative, quantifying expression abundance at either gene-

level or isoform-level via measurement of mRNA expression level is considered more

accurate than microarrays [121]. Transcriptome quantification is a fundamental and

important process for many bioinformatics applications. As studies increasingly shift

from DNA microarrays to RNA-Seq, the latter approach holds great promise for tran-

scriptome quantification. Instead of absolute transcript abundances, RNA-Seq allows

estimating relative transcript abundances since mRNA molecules are proportionally

sampled from experiments [86].
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1.8.1 Estimation of Gene-level Expression Abundance

One of the first methods for RNA-Seq transcriptome quantification uses read

counts information from alignment results [78]. The model takes uniquely mapped

single-end reads to a gene as input and outputs the gene expression abundance. This

approach calculates gene-level expression abundance under two assumptions: 1) reads

are uniformly sampled among all positions from each transcript, and 2) the number

of reads from a given region follows a Possion distribution. According to [78], gene

expression abundance can be measured by the number of mapped Reads Per Kilobase

of exon model per Million mapped reads (RPKM). RPKM is calculated as the number

of reads that fall into exonic regions of a gene normalized by the total length of exons

and the total number of uniquely mapped reads in the RNA-Seq experiment as shown

in the following equation:

RPKM = 109 × C

L×N
, (1)

where C is the total number of reads mapped in the exonic regions of a gene,

L is the total length of exons and N is the total number of uniquely mapped reads

in the sequencing run. The value of RPKM is a normalized number of read counts

and can thus be used to detect differential expression during cell development and

between two conditions.

1.8.2 Estimation of Isoform-level Expression Abundance

With the development of transcriptome quantification methods, other models

have been developed for genes with multiple transcripts. In this case, reads sequenced
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from one transcript may be mapped to more than one transcript, because the exon

where the reads are mapped to may be shared by multiple transcripts within a gene.

Due to the ambiguity of read mapping and the complexity of transcript structures,

different types of models have been developed for estimating relative abundances of

multiple transcripts. Most of these models can be categorized into statistical models

or mathematical models.

Statistical models

In [50], a Poisson distribution is used to model the number of reads mapped

to a given region. It formulates the transcript quantification as an optimization

problem by maximizing a likelihood function. In [92] (software: Solas), Poisson and

multinomial distributions are employed to model the number of reads mapped to each

transcript and the number of reads mapped to each exon of a transcript, respectively.

It uses an EM algorithm to estimate the proportion of each isoform. In [31] (software:

IsoInfer), the authors employ a normal distribution to approximately model the read

counts in each exon. Transcript quantification is then formulated as an optimization

problem solved by quadratic programming.

In contrast to modeling the read counts in a given genomic region, [64] (soft-

ware: RSEM), [114] (software: Cufflinks) and [22] (software: SAMMate(RAEM))

directly use the information of read originating positions to build a mixture model.

This is then followed by an EM algorithm to find the maximum likelihood estimation

of the mixture proportions of isoforms.

Mathematical models

Besides statistical models, mathematical methods using a constrained least

square attempt to minimize the differences between the observed and the expected
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read coverage signals in terms of estimated parameters corresponding to relative

transcript abundances [9] (software: rQuant.web) and [82, 83] (software: SAMMate

(SASeq)).

1.8.3 Fragment Length Distribution for Paired-end Reads

In addition to developing transcriptome quantification methods for single-end

reads, methods have been developed to accommodate paired-end reads sequenced

from the ends of the cDNA fragments. For paired-end reads, relative transcript

abundances can be measured using Fragment Per Kilobase of transcript per Million

mapped reads (FPKM), which is an extension of RPKM. These methods assign each

fragment to its compatible transcripts according to the probability of the calculated

effective fragment length based on the fragment length distribution. The first batch

of paired-end transcript quantification methods include [114] (software: Cufflinks),

[51] (software: MISO), [84] (software: IsoEM), [95], [63] (software: RSEM) and [32]

(software: IsoInfer).

1.8.4 Bias Correction

Most of the aforementioned methods assume that reads or fragments are uni-

formly sequenced from each position of each transcript. However, positional [9] and

sequencing [44, 106] biases have been discovered by some recent studies, and the bi-

ases can cause over- or under-estimation of expression levels. In [67], it was suggested

to use variable rates for different positions to model read counts along each tran-

script. Two bias models were provided to predict the sequencing preference for each

base location according to its surrounding bases. Other methods have modified the

existing methods by adding bias correction. For example, in [124] the authors correct
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positional bias on the model of [50], and [93] modifies the model of [114] by correcting

both positional and sequencing biases. It also estimates simultaneously the bias and

abundance parameters by maximizing the likelihood function. The modified methods

have shown improved accuracy in estimating relative transcript abundances.

1.9 Review of Differential Splicing Detection using RNA-Seq

Estimation of transcript abundance has enabled the detection of differential

splicing at the genome scale. In general, differential splicing refers to the differ-

ence in the relative abundances of isoform transcripts in a gene across samples from

two conditions [46], such as healthy or diseased human transcriptomes, stages in cell

development and differentiation, and different tissue types, e.g., brain and liver. In-

tuitively, differentially spliced genes can be detected by quantifying the discrepancy

of estimated relative proportions of transcripts within a gene between two conditions.

This type of methods estimates relative transcript abundances or proportions followed

by a statistical test of relative proportions between two conditions to quantify the dif-

ference or discrepancy of isoform proportions. For example, Cufflinks/Cuffdiff [113]

uses Jensen-Shannon divergence, the authors of [23] employ Pearson’s Chi-square test

of independence between conditions and isoforms using pseudo counts, and Hellinger

distance is used by [37]. These approaches are powerful in directly detecting the

change of isoform proportions. However, they rely on accurate estimation of tran-

script abundances, which is a challenging problem itself because of unknown posi-

tional and sequence-specific biases [9, 44, 106], unknown transcripts, the number of

expressed transcripts, and the structures of transcripts among others.

The second type of methods detects differentially spliced genes by comparing

read counts either on all exons within a gene, such as SplicingCompass [5], FDM [102]
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and MMD [107], or differential usage of a single exon, e.g., DEXSeq [4]. This type of

approaches can potentially detect differentially spliced genes but may not be able to

specify the spliced regions and/or the associated types of alternative splicing.

The third type is event-based methods. Instead of detecting differences of indi-

vidual transcripts or exon(s), this type of methods identifies differences in utilization

of a skipped exon by isoform transcripts, such as ALEXA-seq [40], MISO [51], Splice-

Trap [123] and MATS [100]. These methods focus on the detection of differentially

skipped exon splicing event but are not designed for other types of alternative splic-

ing events. A recently published method, DiffSplice [46], detects differential splicing

events on read-alignment-based “alternative splicing modules”. This approach does

not rely on annotation databases. However, this method needs to estimate relative

abundances of “alternative splicing module” paths [46] based on the assumption that

reads are sequenced independently and uniformly from expressed transcripts [50].

Even though DiffSplice [46] and the updated version of MATS [100] are able to de-

tect multiple types of splicing events, the computational cost of these two methods is

relatively high.

1.10 Motivation

The high-throughput RNA-Seq technology provides unprecedented opportuni-

ties to study transcriptomes for a better understanding of transcriptional regulation

and gene functionality in both normal cell development and progression of various

human diseases. With millions of short reads, one of the most powerful advantages of

RNA-Seq is its capability of capturing transcriptome dynamics across different tissues

or conditions at the transcript isoform level [121]. However, due to the size and com-

plexity of RNA-Seq data, typical problems faced by biomedical researchers are how



16

to extract information and gain biological insights from tremendous amounts of data.

To aid biomedical researchers in studying and understanding transcriptomes, effi-

cient computational tools for analyzing RNA-Seq data to detect differences in human

transcriptomes, in particular the dynamics in terms of splicing patterns of transcript

isoforms from all genes between healthy and diseased conditions, are urgently needed.

We have developed two algorithms and tools and a computational workflow

using RNA-Seq to analysis human transcriptomes between healthy and diseased con-

ditions. The first algorithm and tool is based on read count. It estimates relative

transcript abundances using an EM algorithm. The second is based on read coverage

signals. It utilizes sequential dependency of normalized base-wise read coverage sig-

nals and a change-point analysis followed by a parametric statistical hypothesis test

using Schwarz Information Criterion (SIC) to detect significant differential splicing

events in the form of five well-known types, including skipped exon (SE), retained

intron (RI), alternative 3’ or 5’ splice sites (A3SS or A5SS), and mutually exclusive

exons (MXE). Finally, a novel computational workflow is developed to jointly study

human genes with differential expression and differential splicing.

1.11 Overview

This dissertation is organized into 5 chapters. Chapter 1 consists of a brief

introduction of background information and motivation behind this work. Chapter 2

describes an EM-based algorithm and tool, Read Assignment Expectation Maximiza-

tion (RAEM), for estimating relative transcript isoform proportion/abundance using

RNA-Seq data. An application of this algorithm and tool to predict isoform-level

microRNA-155 targets is also presented in this chapter. Chapter 3 presents a novel

algorithm and tool, detection via Splicing Type (dSpliceType), to detect differential
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splicing events between two conditions based on five well-known types of alternative

splicing. The computational tool includes a univariate algorithm for comparing with-

out replicates and a multivariate algorithm for comparing with replicates. Chapter

4 presents a joint RNA-Seq computational workflow of combining differential expres-

sion and differential splicing to dissect human diseases. We employed the workflow

to detect differentially spliced genes without differential expression from a human

lung disease, idiopathic pulmonary fibrosis (IPF). Finally, Chapter 5 concludes the

research of this dissertation and gives several possible directions for future work. It

should be noted that the work presented throughout this dissertation is largely based

on and derived from original author contributions in [22, 23, 24, 25].
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Chapter 2: RAEM : An Expectation-Maximization

Algorithm and Tool to Estimate Relative Transcript

Abundances using RNA-Seq 1

Recently, more and more studies have switched from Microarray to RNA-Seq

technologies making RNA-Seq the better choice for transcriptome analysis. In addi-

tion to gene expression, RNA-Seq also provides an opportunity to estimate relative

transcript abundances more accurately [86]. Since mRNA molecules are sampled

proportionally to absolute transcript abundances, accurate quantification of relative

transcript abundances from the sequenced short reads is typically the first step for

multiple RNA-Seq applications. Nevertheless, computational challenges remain in the

problem of transcript quantification. As shown in Figure 2.1, spliced transcripts from

a multiexonic gene are highly overlapped, and RNA-Seq reads are only sequenced

from a small region of the entire set of protein-coding transcripts. After aligning

short reads back to the reference genome, it is usually difficult to determine which

transcript they originated from.

To overcome this challenge, we developed an EM-based algorithm and tool,

Read Assignment via Expectation Maximization (RAEM), to solve the transcript

quantification problem. RAEM estimates maximum likelihood proportions of tran-

scripts within a gene. The details of the algorithm are described in Subsection 2.1.2.

We also applied RAEM to a real RNA-Seq data set to predict isoform-level microRNA-

155 targets.

1The content in this chapter is largely derived from original author text and contributions found
in [22].
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Figure 2.1: An illustration of short read pileup of transcript quantification.

2.1 Transcript Quantification

2.1.1 Expectation-maximization (EM) Algorithm

Expectation-maximization (EM) algorithm [21] is an iterative procedure to

find maximum likelihood estimates (MLE) of parameters in statistical models of in-

complete data problems. Typically, these models depend on unobserved latent vari-

ables. Finding a maximum likelihood solution of these models can not be solved in a

closed-form, thus, the EM algorithm alternates between an expectation (E) step and

a maximization (M) step until it converges.

Given a model consisting of a set of observed (or incomplete) data Y, a set of

unobserved data Z and a vector of unknown parameters Ψ, along with a likelihood

function L(Ψ; Y,Z) = p(Y,Z|Ψ), the MLE of the unknown parameters is determined

by the marginal likelihood of the observed data

L(Ψ; Y) = p(Y|Ψ) =
∑

Z

p(Y,Z|Ψ).
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The EM algorithm seeks to find the MLE of the marginal likelihood by itera-

tively applying the following E and M steps:

E step:

Q(Ψ|Ψ(t)) = EZ|Y,Ψ(t) [logL(Ψ; Y,Z)],

where the algorithm calculates the expectation of the log likelihood function over the

conditional distribution of unobserved latent data Z given the observed data Y under

the current estimates of the parameters Ψ(t).

M step:

Ψ(t+1) = arg max
Ψ

Q(Ψ|Ψ(t)),

where the algorithm updates the parameters by maximizing the Q function.

2.1.2 Transcript Quantification using EM Algorithm

In our study, suppose for each gene there are J annotated isoforms (denoted as

I1, I2, .., Ij). For each short read we observed, pj is used to denote the probability that

this short read is generated from isoform Ij, where j = 1, ..., J and p1+p2+...+pj = 1.

Suppose for one gene, we have N short reads (denoted as R1, R2, ..., RN ) and

we know the correspondence between short reads and isoforms. Then we can use an

N × J indicator matrix Z = (zij), where i = 1, ..., N, j = 1, ..., J) to represent the

correspondence between short reads and isoforms (the matrix Z in Figure 2.2). If

the ith read is generated from isoform Ij, then zij = 1; zij = 0 otherwise. So, for

the matrix Z, each row indicates one short read, and only one isoform (column) for

this row with value equal to 1. If the matrix Z is our observed matrix, it is easy

to calculate the isoform proportions. The probabilities (pj, j = 1, ..., J) can be used

for isoform proportion estimation. Intuitively, the number of short reads which are
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Figure 2.2: The illustration of RAEM algorithm [22].

generated from isoform Ij can be calculated by sum of jth column, correspondingly

nj =
N∑
i=1

zij , then the estimated isoform proportion pj =
nj

N
.

The read ambiguity issue in our study is that most of short reads are compat-

ible with more than one isoform, shown as the matrix Y in Figure 2.2. Therefore, the

indicator matrix Z is not fully observed. What we actually observed in a RNA-seq

experiment is the indicator matrix Y = (yij) with i = 1, ..., N, j = 1, ..., J . Compare

with the matrix Z, which has one and only one non-zero value in each row, the matrix

Y has one or more than one non-zero value in each row. If yij = 0, then zij must be

0, but if yij 6= 0, then zij may or may not be 1. We define the indicator matrix Y as

the observed cDNA fragment-compatible matrix, and the matrix Z as the unobserved

cDNA fragment-originating matrix. We need to infer the matrix Z from the matrix

Y .

Let’s denote P = (p1, p2, ..., pj), where pj is the mixture proportion for the

isoform j. Given the observed cDNA fragment-compatible matrix Y , we estimate

isoform proportions by finding the values of P that maximize the likelihood of the

observed data:

L(P |Y ) =
N∏
i=1

J∑
j=1

pjP (yi|I = j).
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The log-likelihood function is

logL(P |Y ) =
N∑
i=1

log
J∑

j=1

pjP (yi|I = j).

The maximum likelihood estimates (MLE) of P can be written as arg max
P

L(P |Y ),

and we employed the EM algorithm to calculate the MLE of the isoform proportions

P = (p1, p2, ..., pj) from our observed cDNA fragment-compatible matrix Y . The

EM algorithm works in an iterative way, and it will be converged after numbers

of iterations. Let’s use P (k) to denote the isoform proportions computed after kth

iteration. We initialized P (0) = (p
(0)
j , j = 1, ..., J) as p

(0)
j =

1

J
. Each iteration updates

P (k) to P (k+1) through accomplishing the following E and M steps:

E-step:

z
(k+1)
i,j = E[zij|Yi, P (k)] = Pr(zij = 1|Yi, P (k))

=
yi,jp

(k)
j∑J

j=1 yi,jp
(k)
j

,∀i, j,

where yij =
1

lj
if the ith short read is compatible with isoform Ij, and yij = 0

otherwise. lj is the length of isoform Ij.
1

lj
measures the probability of, given isoform

Ij, the ith short read originated from any base location of isoform Ij, assuming that

reads are uniformly sampled from each transcript.

M-step:

n
(k+1)
j =

N∑
i=1

z
(k+1)
i,j , ∀j,

p
(k+1)
j =

n
(k+1)
j

N
,∀j,
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The E-step updates the probabilities z
(k+1)
ij that each short read generated from

isoform Ij based on the current estimated isoform proportion set P (k), and M-step

updates isoform proportion set from P (k) to P (k+1) based on z
(k+1)
ij . The EM algorithm

iterates between E and M steps until convergence, i.e.
J∑

j=1

∣∣∣p(k+1)
j − p(k)j

∣∣∣ < ε, where ε

is an arbitrarily small positive number, i.e. 0.00001. To this end, we get the converged

isoform proportion as P (k+1) = (p
(k+1),j=1,...,J
j ). The transcript isoform expression

abundance RPKM (for single-ended reads) or FPKM (paired-ended reads) can be

calculated by the following equation :

RPKMj/FPKMj = 109 ×
p
(k+1)
j × C
lj ×N

,

where lj is the sum of total exon length of isoform j in the gene, C is the total

number of reads or fragments in exonic regions of the gene, and N is the total number

of uniquely mapped reads or fragments in the sequencing run.

We named our EM-based transcript quantification method as Read Assign-

ment Expectation Maximization (RAEM) and make note that the EM type algo-

rithms have been used to solve multiple problems in bioinformatics. In particular,

similar algorithms have been designed and applied to infer full-length isoforms using

expressing sequence tags (ESTs) data [127] and RNA-seq data [64, 92]. We expect

that the RNA-seq data works better with the EM type algorithm due to a much

larger sample size and a much reduced number of compatible splicing isoforms.

Proof the concavity of the log-likelihood function

To guarantee that the EM algorithm is to reach a global maximum, we need

to prove the concavity of the log-likelihood function of our model. The log-likelihood
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function is:

logL(P |Y ) =
N∑
i=1

log
J∑

j=1

pjP (yi|I = j).

Since the sum of concave functions is still a concave function, we only need to prove

that

f(P ) = log
J∑

j=1

pjP (yi|I = j)

is concave. We denote H(P ) as the Hessian matrix of f(P ), and consider the (a,b)-th

element of Hessian matrix H(P ) is:

Hab(P ) =
∂2 log

∑J
j=1 pjP (yi|I = j)

∂pa∂pb

= −P (yi|I = a)P (yi|I = b)

(
∑J

j=1 pjP (yi|I = j))2
.

We can write H(P ) as −d(P )x′x, where x = [P (yi|I = 1), ..., P (yi|I = J)] is a vector

and −d(P ) =
1

(
∑J

j=1 pjP (yi|I = j))2
is a scalar. Because −d(P ) > 0, and for any

vector y = [y1, y2, ..., yJ ], we have

yH(P )y′ = y(−d(P )x′x)y′)

= −d(P )(yx′)(yx′)′

= −d(P )(yx′)2

<= 0.

Therefore, H(P ) is proved to be negative semidefinite, and both f(P ) and the log-

likelihood function are concave. Given the concavity of the log-likelihood function,

the local maximum of the EM algorithm is also the global maximum. Similar proof

is given in [64, 50].
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2.1.3 Simulation Studies

To assess the accuracy of RAEM in transcript quantification, we simulated

RNA-seq experiments using FluxSimulator [39], a freely available software pack-

age that simulates whole transcriptome sequencing experiments with the Illumina

Genome Analyzer. The software works by first randomly generating integer copies

of each splicing transcript according to the annotation file provided by the user, fol-

lowed by constructing an amplified, size-selected library and sequencing it in silico.

The resulting cDNA fragments are then sampled uniformly at random for simulated

sequencing, where the initial and terminal 25, 50 and 75 bp of each selected frag-

ment are reported as reads. In our simulation studies, the human Ensembl ASTD

database (version 57) was supplied to the software, along with the hg19 version of

the human reference genome. In the ASTD annotation file, there are 100,297 protein

coding transcripts, corresponding to 21,271 protein-coding genes. FluxSimulator then

randomly assigned expression to 19,992 transcripts, corresponding to 10,343 genes.

About 15-million single-end and 30-million paired-end RNA-seq 50-mer short reads

were generated by size selection of fragments between 175 and 225 bases.

We applied RAEM to estimate the abundance of transcripts in each gene

(Figure 2.3a for single-ended short reads, and Figure 2.3b for paired-end short reads).

By using simulation data, both figures show that RAEM can estimate transcript

abundance very accurately since the estimated abundances are highly correlated with

the true abundances for the vast majority of the transcripts with high robust R2.

The very small portion of purple dots moving further away from the regression line

(red line) correspond to those transcripts for which RAEM fails to estimate their

abundance accurately in some situations, such as too many annotated transcripts
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Figure 2.3: Simulation studies of RAEM algorithm [22].
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within one gene, the length of the unique exon is shorter than the read length, and

so on.

We investigated the transcripts whose abundances were not accurately esti-

mated by RAEM. The transcripts are considered as outliers if that meet

|log10(trueRPKM) − log10(predictedRPKM)| ≥ 1. There are about 10% of tran-

scripts falling into this category. We further examined these outliers. We found that

nearly 74% of outlier transcripts belong to genes with more than 5 annotated tran-

scripts and about 41% of outlier transcripts have at least one exon whose length is

less than 50 bases. This analysis clearly demonstrates a limitation of RAEM in esti-

mating transcript abundance; however, it is predominantly accurate and effective for

around 90% of transcript isoforms in the transcriptome.

2.2 RNA-Seq Analysis of Isoform-level microRNA-155 Tar-

get Prediction

2.2.1 Introduction

The regulation of gene expression by microRNAs is a fundamental mechanism

for controlling many biological processes. Thus far, more than 1000 microRNA’s

have been discovered in human cells using either computational or experimental ap-

proaches (miRBase [41], release 16, Sept. 2010). The gene encoding the microRNA,

microRNA-155, was classified as an oncogene many years before it was identified as

a microRNA and is now among the most highly implicated microRNAs in cancer.

Despite its link to hematologic and other cancers, there is currently little information

regarding direct isoform targets or pathways through which microRNA-155 signals to

promote the tumor phenotype.
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Over the years, an array of computational approaches have been developed

to predict microRNA target sites and these methods have been useful for guiding

investigations towards the function of microRNAs [90]. These approaches are roughly

divided into rule-based and data-driven approaches [132]. Earlier methods are largely

rule-based, predicting microRNA targets as a function of simple discriminative rules

derived from features of experimentally validated targets. For example, miRanda [30],

DIANA-microT [74], TargetScan [62] and PicTar [56] are mainly based on scanning

for conserved 7-mer/8-mer seeds combined with free energy calculations of the RNA-

RNA duplex. Latter methods were developed which are more data-driven, such as

miTarget [54] and NBmiRTar [131], where machine learning-based approaches were

applied to train a classifier that is able to discriminate true microRNA targets from

false targets using sequence features.

An alternative data-driven approach is to use 3’-expression microarrays to

quantify transcriptomes. In this approach, microRNA targets are predicted by call-

ing significantly down-regulated genes between microRNA over-expressing cell lines

and the respective isogenic wild type cell lines [19, 69, 120]. Gene expression based

target prediction approaches, (e.g., GenMiR++ [47]), were found to outperform many

rule-based approaches, such as [62]. More importantly, the gene expression based ap-

proach allows for the discovery of context specific (cell type specific) microRNA target

repertoires and this context specific targetome can be related back to the biological

processes implicated by the global analysis of the respective microarray experiments.

Despite this advantage over purely computational approaches, the intrinsic limitations

of the 3’-expression microarrays (such as non-specific hybridization, signal saturation

and excessive noise) significantly compromise the performance of microarray based

microRNA target prediction.
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The advent of Next-Generation Sequencing (NGS) technologies provides new

opportunities to profile transcriptomes and microRNA targetomes at base-wise reso-

lution. In our recent work [129], we sequenced the transcriptome of microRNA-155

expressing cells using an Illumina Genome Analyzer II. Our RNA-seq data contains

more than one hundred million single-ended 50-mer short reads generated from both

wild type Mutu I cells (control) and Mutu I cells expressing microRNA-155 (case).

We then developed a computational pipeline to analyze microRNA-155 transcriptome

and targetome regulation by performing gene-level down-regulation analysis combined

with 7-mer/8-mer seed evidence in 3’-UTR regions. Our analysis yielded a much

larger targetome than was previously described using microarray experiments; many

predicted microRNA-155 targets were verified by in vitro 3’-UTR reporter assays. Al-

though this analysis was among the first to use RNA-Seq data for microRNA target

prediction, this approach did not sufficiently exploit the full value that RNA-Seq data

has to offer - that is, using gene structure information derived from the RNA-Seq data

to assess isoform specific microRNA regulation. Based on the isoform-level analysis

described here, we propose that microRNA targets are more appropriately predicted

and characterized at the isoform-level.

On a more general level, we believe that the term, “isoform” or “transcript”

may be a more appropriate concept than “gene” in transcriptome studies since the

isoform is the ultimate effecter of microRNA responses (as well as many other bio-

logical processes). Further, recent studies have shown that microRNA targeting is

not limited to the 3’-UTR [61], further emphasizing the need for microRNA target

prediction based on the isoform-level.

Genome-wide analysis of transcriptomes and targetomes at the isoform-level

is needed, not only for microRNA target prediction but also for many other genomics

research areas, such as biomarker discovery, cancer classification, biological pathway
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analysis and network reconstruction. The problem itself can be quite challenging since

the base-wise gene expression signal from RNA-seq data is often accumulated from a

mixture of coexisting isoforms in the living cell. The development of computational

algorithms to deconvolve the gene expression signal emitted from each splicing isoform

is not a trivial task.

A number of computational approaches have recently been developed to char-

acterize and quantify transcriptomes at the isoform-level (e.g. [9, 43, 64, 50, 92, 114]).

These approaches quantify isoform levels of transcripts either annotated in the alter-

native splicing databases such as those from the UCSC (University of California,

Santa Cruz) and Alternative Splicing and Transcript Discovery (ASTD) resources or

predicted by short read assembly. However, Our computational approach is among

the first batch to predict microRNA targets at the isoform-level. Figure 2.4 shows

the workflow of the microRNA target prediction analysis pipeline. We describe each

step in details in the following sections.

Figure 2.4: The workflow of the microRNA target prediction analysis pipeline [22].
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2.2.2 RNA-Seq Data set and Preprocessing

The Burkitt’s lymphoma cell line, Mutu I, was retrovirally transduced in du-

plicate with either a control or a microRNA-155 expressing retrovirus. microRNA-

155 real time RT-PCR analysis showed at least 100,000 fold higher expression in

microRNA-155 transduced pools relative to control transduced pools [129]. De-

spite these elevated levels, microRNA-155 expression in transduced Mutu I cells was

slightly less than that observed in several activated B-cell lines that naturally express

microRNA-155 [129]; arguing against supra-physiological expression of microRNA-

155 in transduced Mutu I cells. The transcriptomes of the wild-type Mutu I cell line

(6 replicates) and the microRNA-155 expressing Mutu I cell line (6 replicates) were

deep sequenced using Illumina Genome Analyzer II with a read length of 50 (NCBI

Short Read Archive, Accession Number SRA011001)[129]. For each biological or

technical replicate, around 10 million single-ended short reads were generated. Short

reads were initially aligned to the reference genome (hg19/GRCh37) using Novoalign

(http://www.novocraft.com). We used standard parameter settings to build an index

(novoindex) and to run Novoalign. The alignment results were saved in the SAM for-

mat and parsed using SAMMate (http://sammate.sourceforge.net/) [128] to calculate

gene-level abundance.

2.2.3 Detection of Significantly Down-regulated Gene and

Transcript

For isoform-level, we applied RAEM on the RNA-Seq data sets to estimate rel-

ative abundance of each transcript. Since the gene-level and isoform-level abundance

results we obtained are in the format of continuous numbers, we used a shrinkage t-test
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[115] to perform differential expression analysis and call significantly down-regulated

genes or transcripts.

2.2.4 Genome-wide Seed Enrichment Analysis

Although there are exceptions, microRNA targeting is primarily guided by

7-mer or 8-mer seeds in a gene region, (usually within the 3’-UTR but sometimes

within the 5’-UTR, or an exon). For our analysis, we consider seed enrichment as

a necessary condition for target prediction. A single 7-mer or 8-mer seed in a long

genome region tends to be less likely to be a microRNA target than many seeds in a

short genome region.

We used Pearson’s chi-square test to quantify the seed enrichment for each

genome region. Basically, we calculate a chi-square test statistic, which quantifies

how much the observed seed counts deviate from the expected seed counts in a given

genome region. Larger values of the chi-square test statistic (small p-values) will

reject the null hypothesis of non-enrichment. The raw p-values of the chi-square test

will then be adjusted using the stringent Bonferroni’s procedure.

2.2.5 Results: Validation Studies and A Case Study

Our validation studies were carried out using in-house results from 149 differ-

ent 3’-UTR reporter plasmids containing a spectrum of microRNA-155 seed types,

configurations, and potency [120]. The rationale of selecting these 3’-UTRs for in

vitro assays is based on current microRNA target database. The 149 genes ana-

lyzed in the current study at the 3’-UTR reporter level were selected from a wider

panel of 170 such 3’-UTR reporters based on adherence to the following three criteria:

(1) the expression estimated from RNA-seq experiments is above 0.5 RPKM at the
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gene-level. (2) the expression estimated from our isoform-level approach, RAEM, is

above 0.2 RPKM. (3). the genes exhibit a 7-mer/8-mer seed enrichment (adjusted

p-value ≤ 0.05) in their 3’-UTR region at the isoform-level. Using the corresponding

3’-UTR reporter data from this set of genes, we tested our isoform-level approach

and compared the results to those obtained using the gene-level approach [129]. We

used relative expression cut-offs 0.8 (relative expression meaning expression in Mutu-

microRNA-155 vs. Mutu-control cells) to discriminate true targets from false targets.

We also used a statistical criterion, i.e. q-value [127], as an auxiliary evaluation

parameter.

We compared the microRNA-155 targets predicted by gene-level, isoform-level

approaches and 3’-UTR assay. In Figure 2.5, the set of 149 targets were divided into

eight distinct categories. Because a full list of true microRNA-155 targets is not

available as a gold standard, the eight categories essentially represent all possible

outcomes of comparing three approaches to microRNA target prediction, i.e. gene-

level, isoform-level and 3’-UTR assay.

Targets predicted by both the isoform-level approach and the 3’-UTR reporter

assays but not by the gene-level approach (19 predicted targets). This category best

highlights the importance of performing isoform-based assessment of microRNA tar-

geting. Here, the differential expression ratio of the target isoform calculated from the

isoform-level analysis is more consistent with the 3’-UTR reporter assay results than

it is with the results from the gene-level analysis. A good illustration of where this

could have important biological significance is the case of TAF5L. TAF5L has three

expressed isoforms (ENST00000366676, ENST00000366675 and ENST00000258281).

The 3’-UTR of the isoform ENST00000366675 (abundance proportion 11% - 20%,

non-dominant isoform) was tested in our 3’-UTR reporter assay, and was predicted

by both the isoform-level approach and the 3’-UTR reporter assay as a microRNA-
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Figure 2.5: The Venn Diagram of the microRNA targets predicted by the three
approaches at 0.8 cutoff level of relative expression [22].

155 target (in Figure 2.6). It was not detected by the gene-level approach because

this isoform accounts for only 20% of the total gene-level expression in control cells.

To validate that the predominant, unregulated isoform (ENST00000366676)

is not responsive to microRNA-155 (as negative control of no repression), we cloned

the 3’-UTR of this isoform into a reporter vector and tested it for responsiveness

to microRNA-155. As shown in Figure 2.7, while ENST00000366675 again showed

inhibition by microRNA-155, the ENST00000366676 isoform was not responsive. To

further validate the isoform specific differences in expression at the endogenous RNA

level, real time RT-PCR analysis was carried out on microRNA-155 expressing versus

control cells using isoform specific PCR primers. As shown in Figure 2.7, RT-PCR

demonstrated concordance with the isoform-level analysis of the RNA-seq data. Since

the amino acid composition of the proteins expressed from these two isoforms is

different at the carboxyl terminus, the isoform specific regulation of one of these

isoforms can have a significant regulatory impact on the TAF5L interactome and

consequently, TAF5L function.
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Figure 2.6: An example of isoform target predicted jointly by the isoform-level ap-
proach and the 3’-UTR assay (Gene TAF5L) [22].

2.2.6 Conclusion

Due to its importance, computational prediction of microRNA targets has been

well-studied. However, the existing rule-based, data-driven and expression profiling

approaches to target prediction are mostly approached from the gene-level. Gene is

a unit of heredity in a living cell that is used extensively in genetics but is becoming

a less appropriate concept in transcriptome and targetome research. Here we pro-

pose the use of splicing isoform as a more appropriate concept for microRNA target
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Figure 2.7: Quantitative RT-PCR and 3’UTR reporter assay of the TAF5L isoform
relative expression [22].

prediction and other genomics research, since it is the isoform that is the ultimate

effector of biological outcomes.

Before the emergence of the deep sequencing technology, exon and tiling

microarrays allowed for the analysis of transcriptomes at the isoform-level. The

widespread use of these two microarray platforms were limited, however, by intrinsic

technological limitations such as resolution, coverage, and signal saturation etc. The

advent of deep sequencing technology provides, for the first time, an opportunity to

profile transcriptomes at base-wise resolution, making it possible to develop compu-
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tational approaches to predict microRNA targets at the isoform-level. We believe this

work to be one-of-its-kind, as it allows for the prediction of isoform targets that have

not been possible with the gene-level approach that we developed previously [129].

Our computational work has provided deeper biological insights into the microRNA

targeting mechanisms as evidenced by in vitro 3’-UTR assay validation.
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Chapter 3: dSpliceType : A Novel Algorithm and Tool to

Detect Various Types of Differential Splicing Events using

RNA-Seq 2

As mentioned in the previous chapters, alternative splicing plays a key role

in regulating process during gene expression in higher eukaryotes [52]. More than

90% of human genes are alternative spliced using different types of splicing mecha-

nisms [118], including skipped exon (SE), retained intron (RI), alternative 3’ or 5’

splice sites (A3SS or A5SS), and mutually exclusive exons (MXE) [52]. With var-

ious types of alternative splicing, isoform transcripts concatenating different exons

are transcribed and spliced from a single gene. They are then further translated

to produce functionally diverse proteins. Studies have shown that dysregulation of

alternative splicing events may lead to various human diseases [52, 75, 119], tran-

scriptome changes between healthy and diseased cells and different stages in cellular

development and differentiation [17, 87, 117, 118]. Therefore, efficient and effec-

tive algorithms and computational tools for detecting differentially spliced genes and

more importantly various types of differential splicing events associated with diseased-

specific conditions are urgently needed. New biological insight may be generated to

understand the pathological consequences of diseased cell development and differ-

entiation and to eventually identify potential biomarkers for human life-threatening

diseases [17, 118, 119].

Over the last decade, expressed sequence tags (EST) and DNA microarrays

were widely used to detect differential splicing between transcriptomes by comparing

2The content in this chapter is largely derived from original author text and contributions found
in [24, 25].
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the expression abundances on known gene exons or exon-exon junctions [34, 57, 101,

125, 126, 130]. However, due to limitations of the technologies, the accuracy and

precision of detecting differential splicing events were not highly satisfactory [34, 57,

130]. Recently, high-throughput RNA-Seq technologies show promise to interrogate

higher eukaryotic transcriptomes more accurately [121]. With millions of short reads

directly sequenced from mRNAs at nucleotide base-pair resolution, RNA-Seq not

only can be used to estimate relative abundances at both gene and transcript levels

[3, 94, 113], but it is also powerful to accurately detect differential splicing [113].

3.1 Novelty of dSpliceType

In general, differential splicing refers to the difference in the relative abundance

or proportion of the individual transcripts in a gene between different conditions [46].

Currently, several computational methods exist to detect differentially spliced genes

using RNA-Seq. Intuitively, a natural idea is to estimate relative transcript pro-

portions/abundances followed by a statistical test within a gene between conditions

to quantify the differences. This type of methods, such as Cufflinks/Cuffdiff [113],

[37] and the method [23], is powerful. However, they rely on accurate estimation

of transcript abundances, which is a non-trivial problem because of positional and

sequence-specific biases from RNA-Seq platforms and read uncertainty. Other meth-

ods detect differentially spliced genes by comparing read counts either on all exons

within a gene, such as SplicingCompass [5], FDM [102] and MMD [107], or on a single

exon, e.g. DEXSeq [4]. These methods can potentially detect differentially spliced

genes, but can not specify the regions or associated types of differential splicing events.

Another type of methods is event-based, directly detecting differential splicing

events. Certain methods, such as MISO [51] and SpliceTrap [123], focus on the
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detection of SE events. More recently, MATS [100] estimates exon inclusion level

using junction reads and calculates posterior probability for splicing difference using

Markov Chain Monte Carlo (MCMC) method. DiffSplice [46] constructs a splicing

event using a splice graph, in which exons and junctions are represented by nodes

and edges, and a permutation test is applied to detect the significant splicing events.

These two methods are capable of detecting multiple types of events, but may not

be optimal for events with partially overlapped exons, such as A3SS, A5SS and RI

events. Moreover, either MCMC method (MATS) or permutation test (DiffSplice)

makes the detection of differential splicing events time consuming.

When a differential splicing event happens, the discrepancy of read coverage

signals in the spliced exonic region among samples across two conditions can be easily

observed [22, 23]. Therefore, we develop and present a novel and efficient algorithm

and tool, dSpliceType, to detect various types of differential splicing events using

RNA-Seq. Compared with the existing methods, dSpliceType has the following novel

features. First and most importantly, instead of using read counts, dSpliceType is

among the first to detect five types of differential splicing events using read coverage

signals from both exonic and junction reads. It utilizes sequential dependency of

base-wise signals and detect differential splicing events either between two individual

samples using an univariate conditional normal model or among multiple replicates

using a multivariate conditional normal model. Second, since we observed that se-

quencing and alignment biases are likely to affect read coverage signals the same way

at each exonic nucleotide in both conditions, dSpliceType is expected to significantly

reduce biases by taking ratio of normalized RNA-Seq splicing indexes at each nu-

cleotide between two conditions. Third, according to the results of simulation studies

and real-world RNA-Seq data analysis, dSpliceType is demonstrated to be an efficient

and accurate computational tool to detect various types of differential splicing events
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from a large dynamic range of expressed genes, including relatively low abundance

genes.

3.2 A Univariate Algorithm for Detecting Differential Splic-

ing Events without Replicate

3.2.1 Overview

Figure 3.1: The workflow of detecting various types of differential splicing events [24].

dSpliceType is a parametric statistical framework for the detection of differen-

tial splicing events using RNA-Seq data. The pipeline of dSpliceType is demonstrated

in Figure 3.1. In step 1, annotated splicing events are first extracted from a gene anno-

tation database. We then check the junction reads spanning any two exons associated
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with each of annotated splicing events, and keep those supported by junction reads

as candidate splicing events. In step 2, at every nucleotide of each candidate splic-

ing event, the read coverage signal is calculated from read alignment result stored

in .bam/.sam and/or .bedgraph format for two samples. In step 3, based on the

read coverage signals, the normalized logRatio of RNA-Seq splicing indexes at each

nucleotide is calculated between two samples. In step 4, a parametric statistical hy-

pothesis test on a conditional normal distribution, capturing sequential dependency

of base-wise read coverage signals, is employed, followed by a change-point type of

analysis using the Schwarz information criterion on the normalized logRatio of RNA-

Seq splicing indexes on each candidate splicing event to detect differential splicing

event. In step 5, a p-value is calculated for each candidate splicing event, and the

method adjusts the raw p-value using the stringent Bonferroni’s procedure. In the

following sections, we describe the models for detecting differential splicing events

from both two individual samples and multiple replicates between two conditions in

the following sections.

3.2.2 Extracting Candidate Splicing Events

Figure 3.2 demonstrates the strategies that our method extracts splicing events

for the five well-known types of alternative splicing from gene annotation database.

For skipped exon (SE) events, we explore every coding exon of a transcript,

and examine the relationship of two neighbor exons in other transcripts within the

same gene. As shown in Figure 3.2A, if the two neighbor exons (E1 and E3) of the

specific exon (E2) in tran A are consecutive in tran B, E1, E2 and E3 are extracted

and combined as a SE annotated splicing event with recording the starting and ending

locations of three exons.
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Figure 3.2: The illustration of extracting different types of annotated splicing events
[24].

For alternative 5’ splice site (A5SS) events, we compare the closest exons

towards 5’ of a coding exon in two transcripts of a gene. As shown in Figure 3.2B,

if the two closest exons (E1 and E3) of a specific exon (E2) have the same starting

location in both tran A and tran B, and one is shorter than the other, E1, E2 and

E3 are extracted and combined as an A5SS annotated splicing event. Similarly, for

alternative 3’ splice site (A3SS) events, we compare the closest exons towards 3’ of

a coding exon in two transcripts of a gene. If the two closest exons (E1 and E3)

of a specific exon (E2) have the same ending location and one is shorter than the
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other, E1, E2 and E3 are extracted and combined as an A3SS annotated splicing

event (Figure 3.2C).

For retained intron (RI) events, we examine two consecutive exons (E1 and

E2) in a transcript. If in another transcript within the same gene, there exists an

exon (E3) starting at the same location as E1 and ending at the same location as

E2, then E1, E2 and E3 are extracted and combined as a RI annotated splicing event

(Figure 3.2D).

For mutually exclusive exons (MXE) events, we explore every coding exon of

a transcript, and examine the relationship of two neighbor exons in other transcripts

within the same gene. If the two neighbor exons (E1 and E4) of the specific exon

(E2) in tran A are not consecutive in tran B but with another exon (E3) in between,

E1, E2, E3 and E4 are extracted and combined as a MXE annotated splicing event

(Figure 3.2E).

To account for the fact that all exons within an annotated splicing event

participate in a splicing event, for all five types of annotated splicing events, we

keep those supported by junction reads spanning any two exons as candidate splicing

events.

3.2.3 Calculating Normalized logRatio of RNA-Seq Splicing

Indexes

After extracting different types of candidate splicing events with removed in-

trons, we first calculate the read coverage signal at each nucleotide among three or

four exons depending upon the candidate splicing event for two samples, respectively.

Second, to compare exonic read coverage signals in terms of alternative splicing, we

calculate, for each candidate splicing event of each sample, the RNA-Seq splicing
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index at each nucleotide, denoted as SIi, as given in equation (1). A similar splicing

index has been used in microarray studies [126]. We normalize the read coverage

signal at the ith nucleotide ci by the summation of base-wise read coverage signals

divided by the total length of the two shared exons of the candidate splicing event

(exons in black color as shown in Figure 3.2) as

SIi =
ci∑lel

p=1 cp+
∑ler

q=1 cq

lel+ler

, (1)

in which lel and ler are the length of the left and the right exons, respectively. Finally,

we calculate logRatio of the normalized RNA-Seq splicing index SIi along each candi-

date splicing event between two samples, which is denoted as log (SIsample1i/SIsample2i).

The advantage of taking ratio of normalized RNA-Seq splicing indexes at each

nucleotide location of two samples is to reduce the effect of sequencing and alignment

biases from RNA-Seq technology. It is based on the assumption that these biases

are more likely to affect read coverage signals at same nucleotide locations on both

samples in the same way.

3.2.4 Detecting Differential Splicing Events

The univariate conditional normal distribution model for the normalized

logRatio of RNA-Seq splicing index

The normalized logRatio of RNA-Seq splicing index log (SIsample1i/SIsample2i)

around zero indicates no read coverage change at the locus, while log (SIsample1i/SIsample2i)

smaller or greater than zero indicates read coverage change between the two samples

at the locus.
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We denote the normalized log (SIsample1i/SIsample2i) at the ith nucleotide along

the candidate splicing event as Xi. Due to the sequential dependency among the base-

wise read coverage signals, Xi depends on m preceding nucleotides. Therefore, for

computational simplicity, we incorporate the first order auto-correlation to capture

the sequential dependency between Xi and Xi−1, which satisfies the following condi-

tions:

E[Xi] = E[Xi−1] = µ,

Var[Xi] = Var[Xi−1] = σ2 and

Corr[Xi, Xi−1] = ρ or Corr[Xi − µ,Xi−1 − µ] = ρ,

and we assume that [49]

Xi|Xi−1 = xi−1 ∼ N(µ+ ρ(xi−1 − µ), σ2(1− ρ2))

. Let µ′ = µ + ρ(xi−1 − µ) and σ′2 = σ2(1 − ρ2), then {Xi|Xi−1} can be considered

as a series of conditional normal random variables from N(µ′i, σ
′2
i ), for i = 1,...,n,

where n is the total exonic length of the candidate splicing event. If no differential

splicing happens, µ′i and σ′2i are assumed to be two constant values µ′ and σ′2; while

deviations from the constant mean and variance parameters in the spliced region may

indicate a differential splicing event.

The hypothesis testing

The identification of differential splicing event can be transformed to identify

multiple change points at exon boundaries according to different types of candidate

splicing events, and can be further defined as testing the null hypothesis for both
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mean and variance parameters in the series of {Xi|Xi−1} [13, 14]:

H0 : µ′1 = µ′2 = ... = µ′n = µ′ and

σ′21 = σ′22 = ... = σ′2n = σ′2 (2)

versus the alternative:

H1 : µ′1 = ... = µ′p1 6= µ′p1+1 = ... = µ′p2 6= µ′p2+1

= ... = µ′pq 6= µ′pq+1 = ...µ′n and

σ′21 = ... = σ′2p1 6= σ′2p1+1 = ... = σ′2p2 6= σ′2p2+1

= ... = σ′2pq 6= σ′2pq+1 = ...σ′2n (3)

where n is the total exonic length of the candidate splicing event. Under the null

hypothesis(2), µ′ and σ′2 are the unknown constant mean and variance; under the

alternative hypothesis(3), 1 < p1 < p2 < ... < pq < n and p1, p2, ..., pq are the

locations of unknown change points.

The null hypothesis(2) relates to no changes in the mean and variance of the

conditional normal distribution from the sequence {Xi|Xi−1}, and the alternative

hypothesis(3) indicates that multiple changes exist in the parameters of mean and

variance. However, based on five different types of candidate splicing events, we

consider only two change point locations, which are the ending locations of two exonic

regions, for the candidate splicing events of SE, A3SS, A5SS and RI; and three change

point locations, which are the ending locations of three exons, for MXE. We then test

the null hypothesis(2) versus the new alternative hypothesis(4) or (5) shown as below.
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For SE, A3SS, A5SS and RI,

H1 : µ′1 = ... = µ′i 6= µ′i+1 = ... = µ′j 6= µ′j+1 = ... = µ′n and

σ′21 = ... = σ′2i 6= σ′2i+1 = ... = σ′2j 6= σ′2j+1 = ... = σ′2n , (4)

where i and j, 1 < i < j < n, are the two ending locations of the left common

exon and the spliced exon/exonic region along the candidate splicing event. For each

candidate splicing event of the four types, a significant differential splicing event is

detected when the null hypothesis(2) at a given significant level α is rejected, and

both i and j are the ending locations of the left common exon (in black) and the

spliced exon or spliced exonic region (in purple), respectively, in Figure 3.2.

For MXE,

H1 : µ′1 = ... = µ′i 6= µ′i+1 = ... = µ′j 6= µ′j+1

= ... = µ′k 6= µ′k+1 = µ′n and

σ′21 = ... = σ′2i 6= σ′2i+1 = ... = σ′2j 6= σ′2j+1

= ... = σ′2k 6= σ′2k+1 = ... = σ′2n , (5)

where i, j and k, 1 < i < j < k < n, are the three ending locations of the left

common exon and the two spliced exons along the candidate splicing event of MXE.

For each MXE candidate splicing event, a significant differential splicing MXE event

is detected when the null hypothesis(2) at a given significant level α is rejected, and

i, j and k are the ending locations of the left common exon (in black) and the two

spliced exons (in purple and green), respectively, in Figure 3.2.
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The Schwarz information criterion

In order to test the null hypothesis(2) against the alternative hypothesis(4)

or (5), the Schwarz information criterion (SIC)-based method [98] is employed. In

general, the SIC is determined by the maximum likelihood function of a model, the

number of the estimated parameters as well as the sample size. The model with

the minimum SIC indicates the best model for data fitting. Thus, the hypothesis

testing can be converted into selecting a model such that the null hypothesis(2) refers

to a model without change of mean and variance parameters, while the alternative

hypothesis(4) or (5) refers to models with different means and variances specified by

two or three change points.

We denote SIC(n) as the SIC corresponding to the null hypothesis(2), which

is derived as:

SIC(n) = −2 logL0(µ̂
′, σ̂′2, ρ̂) + 3 log n

= n log 2π + n log σ̂′2 + n+ 3 log n

where logL0(µ̂
′, σ̂′2, ρ̂) is the maximum log likelihood function with respect to H0(2),

and µ̂′, σ̂′2, and ρ̂ are the MLEs of µ′, σ′2, and ρ under H0, respectively.

Corresponding to H1(4) with two change points i and j, the SIC for differential

splicing events (SE, RI, A3SS and A5SS), denoted by SIC(i, j ) for fixed i and j, 2 6

i, j 6 n− 2, is derived as:

SIC(i, j) = −2 logL1(µ̂
′
1, µ̂

′
2, µ̂

′
3, σ̂

′2
1 , σ̂

′2
2 , σ̂

′2
3 , ρ̂1, ρ̂2, ρ̂3) + 9 log n

= n log 2π + i log σ̂′21 + (j − i) log σ̂′22

+ (n− j) log σ̂′23 + n+ 9 log n,
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where logL1(µ̂
′
1, µ̂

′
2, µ̂

′
3, σ̂

′2
1 , σ̂

′2
2 , σ̂

′2
3 , ρ̂1, ρ̂2, ρ̂3) is the maximum log likelihood function

with respect to H1(4), and µ̂′1, µ̂
′
2, µ̂

′
3, σ̂

′2
1 , σ̂

′2
2 , σ̂

′2
3 , ρ̂1, ρ̂2, ρ̂3 are MLEs of corresponding

parameters for three models specified by two change points i and j under H1(4),

respectively.

Similarly, corresponding to H1(5) with three change points i, j and k, the SIC

for differential splicing events of MXE , denoted by SIC(i, j, k) for fixed i, j and

k, 2 6 i, j, k 6 n− 2, is derived as:

SIC(i, j, k) = −2 logL2(µ̂
′
1, µ̂

′
2, µ̂

′
3, µ̂

′
4, σ̂

′2
1 , σ̂

′2
2 , σ̂

′2
3 , σ̂

′2
4 , ρ̂1, ρ̂2, ρ̂3, ρ̂4) + 12 log n

= n log 2π + i log σ̂′21 + (j − i) log σ̂′22

+ (k − j) log σ̂′23 + (n− k) log σ̂′24 + n+ 12 log n,

where logL2(µ̂
′
1, µ̂

′
2, µ̂

′
3, µ̂

′
4, σ̂

′2
1 , σ̂

′2
2 , σ̂

′2
3 , σ̂

′2
4 , ρ̂1, ρ̂2, ρ̂3, ρ̂4) is the maximum log likelihood

function with respect to H1(5), and µ̂′1, µ̂
′
2, µ̂

′
3, µ̂

′
4, σ̂

′2
1 , σ̂

′2
2 , σ̂

′2
3 , σ̂

′2
4 , ρ̂1, ρ̂2, ρ̂3, ρ̂4 are MLEs

of corresponding parameters for four models specified by three change points i, j and

k under H1(5), respectively.

Based on the principle of information criterion [14], the null model fits the

data better in the sequence of {Xi|Xi−1} if

SIC(n) < SIC(i, j) or SIC(n) < SIC(i, j, k).

Otherwise, the model with two change points better fits the data in the sequence of

{Xi|Xi−1} for differential splicing events SE, A3SS, A5SS and RI, and the change

points i and j are at the ending locations of the left common exon and the spliced

exon or exonic region.
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Similarly, the model with three change points better fits the data in the se-

quence of {Xi|Xi−1} for differential splicing event MXE, and the change points i, j

and k are the ending locations of the left common exon and the two spliced exons.

The test statistic

According to [13], the difference between the SIC scores of the models with

and without change points,

∆n = SIC(i, j)− SIC(n) or ∆n = SIC(i, j, k)− SIC(n)

can be used as a statistic, and we use the asymptotic null distribution of ∆n to

calculate the approximate p-value for the test of the null hypothesis (2) against the

alternative hypothesis (4) or (5) as

p-value = 1− exp
{
−2 exp[b(log n)− a(log n)λ1/2n ]

}
,

where

λn = 2 log n−∆n,

b(log n) = 2 log log n+ log log log n,

a(log n) = (2 log log n)1/2.

After calculating a p-value for each candidate splicing event, we adjust the raw p-value

using the stringent Bonferroni’s procedure.
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3.3 A Multivariate Algorithm for Detecting Differential Splic-

ing Events with Replicates

3.3.1 Overview

Figure 3.3: The workflow of dSpliceType for detecting various types of differential
splicing events with replicates. A) Five most common types of splicing events. Left
panel represents SE, RI, A3SS and A5SS events, and right panel represents MXE
event. B) Candidate splicing events are compiled by removing introns and concate-
nating left common exon, spliced exon(s) or exonic region and right common exon.
C) For each candidate splicing event (illustrated by A5SS and MXE events), read
coverage signals are calculated on nucleotides for each replicate in both conditions.
D) and E) RNA-Seq splicing indexes and normalized logRatio of splicing indexes are
calculated based on read coverage signals. dSpliceType detects the differential splic-
ing events by identifying change points on the ending locations of exon(s) or exonic
region [25].

The pipeline is similar to the one demonstrated in Figure 3.1 of Section 3.2. To

better illustrate, we present the pipeline in Figure 3.3. First, candidate splicing events

are extracted from a gene annotation database supported by junction reads (Figure

3.3A and Figure 3.3B). Second, for each candidate splicing event, read coverage signal
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is calculated at each nucleotide location for each replicate in both conditions (Figure

3.3C). Third, based on the read coverage signals, the normalized logRatio of RNA-

Seq splicing indexes at each nucleotide location is calculated between two conditions

as shown in Figure 3.3D and Figure 3.3E. Finally, for replicates, a series of the nor-

malized logRatio of RNA-Seq splicing indexes along the candidate splicing event is

modeled by a multivariate conditional normal distribution, and dSpliceType detects

the differential splicing events by employing a change point analysis and a parametric

statistical hypothesis test using Schwarz Information Criterion. The raw p-values of

multiple tests for differential splicing events are adjusted using the stringent Bonfer-

roni’s procedure.

Extracting Candidate Splicing Events dSpliceType extracts candidate splicing

events for the five most common types of alternative splicing from gene annotation

database along with supported junction reads as shown in Figure 3.3A and Figure

3.3B. With intron removal, candidate splicing events consist of concatenating left

common exon, spliced exon(s) (for SE and MXE events) or exonic region (for RI,

A3SS and A5SS events) and right common exon. Two spliced exons are for MXE

event. The detailed strategies for extracting different types of candidate splicing

events are described in Section 3.2.2. Novel candidate splicing events can be extracted

by incorporating novel junction reads.

Calculating Normalized logRatio of RNA-Seq Splicing Indexes After ex-

tracting candidate splicing events, the read coverage signal and the RNA-Seq splicing

index at each nucleotide location is calculated in terms of differential splicing for each

replicate in both conditions. The RNA-Seq splicing index at the ith nucleotide loca-

tion is denoted as SIi given in the following equation. [126] used a similar splicing
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index for analysis of differential splicing in microarray studies. The read coverage

signal ci is normalized by read coverage signals on the two common exons of the

candidate splicing event (exons in black color as shown in Figure 3.3B) as

SIi =
ci∑lel

p=1 cp+
∑ler

q=1 cq

lel+ler

,

in which lel and ler are the length of the left and the right common exons, re-

spectively. Finally, the logRatio of normalized RNA-Seq splicing indexes on each

nucleotide of a candidate splicing event between two conditions is calculated. We

denote it as log (SIcaseSampleim/SIcontrolSamplei), where m is the index of replicates in

case condition and SIcontrolSamplei is the average of RNA-Seq splicing indexes at ith

nucleotide location of replicates in control condition.

Since the sequencing and alignment biases are more likely to affect read cov-

erage signals at the same nucleotide locations on all samples in the same way, the

effect of biases from RNA-Seq is substantially reduced by taking ratio of normalized

RNA-Seq splicing indexes at each nucleotide location of replicates in two conditions.

3.3.2 The Multivariate Conditional Normal Distribution Model

for the Normalized logRatio of RNA-Seq Splicing In-

dexes

We denote the normalized log (SIcaseSampleim/SIcontrolSamplei) at the ith nu-

cleotide along the candidate splicing event as Xi, which is a m-dimensional normal

random vector from Nm(µi,Σi), for i = 1,...,n. For computational simplicity, we
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capture the sequential dependency between Xi and Xi−1, which follows [27]:

Xi|Xi−1 = xi−1 ∼ Nm(µ̃, Σ̃),

where

µ̃ = µ+ Σi,i−1Σ
−1
i−1,i−1(xi−1 − µ),

Σ̃ = Σi,i −Σi,i−1Σ
−1
i−1,i−1Σi−1,i.

The sequence of {Xi|Xi−1} can be considered as a series of multivariate condi-

tional normal random variables from Nm(µ̃i, Σ̃i), for i = 1, ..., n, where n is the total

exonic length of the candidate splicing event. If no differential splicing happens, µ̃i

and Σ̃i are assumed to be constant mean vector of µ̃ and covariance matrix of Σ̃;

while deviations from the constant mean vector and covariance matrix in the spliced

region may indicate a differential splicing event.

3.3.3 The Hypothesis Testing

The identification of differential splicing event among multiple samples can

be transformed to identify multiple change points at exon boundaries according to

different types of candidate splicing events, and can be further defined as testing the

null hypothesis for both mean and covariance parameters in the series of {Xi|Xi−1}

[13]:

H0 : µ̃1 = µ̃2 = ... = µ̃n = µ̃ and

Σ̃1 = Σ̃2 = ... = Σ̃n = Σ̃ (1)

versus the alternative:
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For SE, A3SS, A5SS and RI,

H1 : µ̃1 = ... = µ̃i 6= µ̃i+1 = ... = µ̃j 6= µ̃j+1 = ... = µ̃n and

Σ̃1 = ... = Σ̃i 6= Σ̃i+1 = ... = Σ̃j 6= Σ̃j+1 = ... = Σ̃n, (2)

where i and j, 1 < i < j < n, are the unknown two locations along the candidate

splicing event. For each candidate splicing event of the four types, a significant

differential splicing event is detected when the null hypothesis(1) at a given significant

level α is rejected, and both i and j are within a small offset of the ending locations

of the left common exon (in black) and the spliced exon or spliced exonic region (in

purple), respectively, in Figure 3.2.

For MXE,

H1 : µ̃1 = ... = µ̃i 6= µ̃i+1 = ... = µ̃j 6= µ̃j+1 = ... = µ̃k 6= µ̃k+1 = ... = µ̃n and

Σ̃1 = ... = Σ̃i 6= Σ̃i+1 = ... = Σ̃j 6= Σ̃j+1 = ... = Σ̃k 6= Σ̃k+1 = ... = Σ̃n, (3)

where i, j and k, 1 < i < j < k < n, are the unknown locations along the candidate

splicing event of MXE. For each MXE candidate splicing event, a significant differen-

tial splicing MXE event is detected when the null hypothesis(1) at a given significant

level α is rejected, and i, j and k are within a small offset of the ending locations

of the left common exon (in black) and the two spliced exons (in purple and green),

respectively, in Figure 3.2.
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3.3.4 The Schwarz Information Criterion

To test the null hypothesis(1) against the alternative hypothesis(2) or (3), the

Schwarz information criterion (SIC)-based method [98] is employed. The model with

the minimum SIC indicates the best model for data fitting. Thus, the hypothesis

testing can be converted into selecting a model such that the null hypothesis(1) refers

to a model without change of mean and covariance parameters, while the alternative

hypothesis(2) or (3) refers to models with different means and covariances specified

by two or three change points. Since, on average, more than 100 nucleotides are in

the common and spliced exons/exonic regions, number of Xi’s are considered to be

sufficient for estimating model parameters and calculating SIC scores.

We denote SIC(n) as the SIC corresponding to the null hypothesis (1), which

is derived as :

SIC(n) = −2 logL0(ˆ̃µ, ˆ̃Σ) +
m(m+ 3)

2
log n,

where the log likelihood is

logL0(ˆ̃µ, ˆ̃Σ) = −1

2
mn log 2π − n

2
log | ˆ̃Σ| − n

2
.

So, we have

SIC(n) = mn log 2π + n log | ˆ̃Σ|+ n+
m(m+ 3)

2
log n.

Corresponding to H1(2) with two change points i and j, the SIC for differential splicing

events (SE, RI, A3SS and A5SS), denoted by SIC(i, j ) for fixed i and j,m 6 i, j 6
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n−m, is derived as:

SIC(i, j) = −2 logL1(ˆ̃µ1, ˆ̃µ2, ˆ̃µ3,
ˆ̃Σ1,

ˆ̃Σ2,
ˆ̃Σ3) +

3m(m+ 3)

2
log n

= mn log 2π + i log | ˆ̃Σ1|+ (j − i) log | ˆ̃Σ2|+ (n− j) log | ˆ̃Σ3|

+ n+
3m(m+ 3)

2
log n.

Similarly, corresponding to H1(3) with three change points i, j and k, the SIC

for differential splicing events of MXE , denoted by SIC(i, j, k) for fixed i, j and

k,m 6 i, j, k 6 n−m, is derived as:

SIC(i, j, k) = −2 logL2(ˆ̃µ1, ˆ̃µ2, ˆ̃µ3, ˆ̃µ4,
ˆ̃Σ1,

ˆ̃Σ2,
ˆ̃Σ3,

ˆ̃Σ4) + 2m(m+ 3) log n

= mn log 2π + i log | ˆ̃Σ1|+ (j − i) log | ˆ̃Σ2|+ (k − j) log | ˆ̃Σ3|

+ (n− k) log | ˆ̃Σ4|+ n+ 2m(m+ 3) log n.

According to the principle of information criterion [13], the null model fits the

data in the sequence of {Xi|Xi−1} better if

SIC(n) < SIC(i, j) or SIC(n) < SIC(i, j, k).

Otherwise, the model with two change points better fits the data in the se-

quence of {Xi|Xi−1} for differential splicing events SE, A3SS, A5SS and RI, and the

change points i and j are at the ending locations of the left common exon and the

spliced exon or exonic region.

Similarly, the model with three change points better fits the data in the se-

quence of {Xi|Xi−1} for differential splicing event MXE, and the change points i, j

and k are the ending locations of the left common exon and the two spliced exons.
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3.3.5 The Test Statistic

According to [13], the difference between the SIC scores of the models with

and without change points,

∆n = SIC(i, j)− SIC(n) or ∆n = SIC(i, j, k)− SIC(n)

can be used as a statistic, and we use the asymptotic null distribution of ∆n to

calculate the approximate p-value for the test of the null hypothesis (1) against the

alternative hypothesis (2) or (3) as

p-value = 1− exp
{
−2exp[b2m(log n)− a(log n)λ1/2n ]

}
,

where

λn = 2 log n−∆n,

a(log n) = (2 log log n)1/2,

b2m(log n) = 2 log log n+m log log log n− log Γ(m),

Γ(m) = (m− 1)!.

The raw p-values of the multiple tests are adjusted using the stringent Bonferroni’s

procedure.
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3.4 Results

3.4.1 Simulation Studies

Simulated data sets

We evaluated the accuracy of dSpliceType and compared the performance

with two existing methods, MATS [100] and Cufflinks/Cuffdiff [113], using simulation

studies. FluxSimulator [39] was used to generate 4 groups of RNA-Seq data sets on

the entire human transcriptome. Each group includes 3 replicates in control and

case conditions, respectively; and each replicate consists of 30 million, 50 million, 100

million and 200 million paired-end reads with 100bp in length in each group.

In each group of RNA-Seq data sets, 8,031 SE, 3,711 A3SS, 3,175 A5SS,

1,661 RI and 1,366 MXE events, corresponding to 40,753 event-related transcripts

and 10,275 differentially spliced genes, were simulated from the annotated Ensembl

database (version 69). For each splicing event, the spliced exon or region is more

than 3 nucleotides. Among 10,275 differentially spliced genes, each gene on average

has 4 event-related transcripts expressed and contains multiple splicing events. To

simulate various splicing ratios in the five types of differential splicing events between

two conditions, FluxSimulator was first used to randomly generate copy numbers

of event-related transcripts as expression profiles for control condition, and then we

generated transcript expression profiles for case condition by re-ordering the copy

numbers of event-related transcripts in each gene of control condition. We used dif-

ferent transcript profiles to generate short reads for replicates in two conditions.

We mapped the simulated RNA-Seq data sets uniquely to the human reference

genome (hg19/GRCh37) using Tophat2 [53] and Bowtie2 [59]. To evaluate and com-

pare the three methods, the alignment results in BAM format were served as inputs
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for the latest version of MATS (3.0.8) and Cufflinks/Cuffdiff (2.1.1) using default

parameters. Read coverage signals (.bedgraph files) converted from alignment results

(.bam files) using BEDtools [89] and read junctions (.bed files) were used as inputs

for dSpliceType. The complete Ensembl annotation database and the significance

level of 0.05 for adjusted p-values were used to detect differentially spliced genes for

Cufflinks/Cuffdiff and differential splicing events for dSpliceType and MATS. To con-

trol false positives and biological significance of events, we further set parameters of

dSpliceType such that the average read coverage on the spliced exonic region is more

than 10 at least in one condition, the average ratio of normalized RNA-Seq splicing

indexes on the spliced exonic region is greater than 1.2 or smaller than 0.8. Please

note that the detected differentially spliced genes in Table 3.1 and Figure 3.4 are

all true positives, and no false positive is detected by all three methods with their

parameter settings.

Simulation results of detecting differentially spliced genes

Table 3.1: Comparison of the differentially spliced genes detected by dSpliceType,
MATS and Cuffdiff in 4 groups of simulated data sets. For each method, the highest
detection rate is in bold face [25].

# of # of Spliced Methods
Reads Genes1 dSpliceType MATS Cuffdiff

30M 8,054 78% 7,148 70% 2,086 20%
50M 10,275 8,701 85% 7,977 78% 2,626 26%
100M 9,170 89% 8,704 85% 3,425 33%
200M 9,467 92% 9,154 89% 4,527 44%

1The total number of differentially spliced genes in the simulated data sets. M
stands for million.

We compared the overall performances of the three computational methods on

detecting differentially spliced genes in 4 groups of simulated data sets. We collected
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Figure 3.4: The comparison of the detected differentially spliced genes by dSplice-
Type, MATS and Cuffdiff (200 million simulated data set) [25].

the detected differentially spliced genes directly from the result file of Cuffdiff (splic-

ing.diff). For dSpliceType and MATS, a gene is considered to be differentially spliced

if any type of differential splicing event was detected by the method for that gene. Ta-

ble 3.1 shows that dSpliceType outperforms the other two methods by achieving the

highest numbers and detection rates in all simulated data sets, and dSpliceType can

detect 92% of the true differentially spliced genes when the sequencing depth reaches

200 million reads. One possible reason for the lowest detection rate for Cuffdiff is

the inaccurate estimation of relative transcript abundances of genes when a gene has

many annotated transcripts.

To better evaluate the performance of dSpliceType, we compared the differ-

entially spliced genes detected by the three methods in the 200 million simulated

data set. As shown in Figure 3.4, there are 4,162 true differentially spliced genes

detected by all the methods, and 464, 171 and 115 genes were exclusively detected

by dSpliceType, MATS and Cuffdiff, respectively. We further examine the 464 genes
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detected exclusively by dSpliceType, and found that our method is able to better

detect differentially spliced genes of low abundances (0<FPKM<1 and 1<FPKM<5)

than the competing methods as shown in Table 3.2.

Table 3.2: The percentage of differentially spliced genes of relatively low abundances
in both conditions detected by each method exclusively and all methods (200 million
simulated data set) [25].

# of Spliced Genes1 0 <FPKM <1 1 <FPKM <5

dSpliceType 464 11% 25%
MATS 171 5% 12%
Cuffdiff 115 0% 3%
All Methods 4,162 0% 1%

1The total number of differentially spliced genes detected by each method and all
three methods.

In addition to differentially spliced genes of relatively low abundances, a large

number of differentially spliced genes detected by dSpliceType is overlapped with that

detected by the other two methods as shown in Figure 3.4. Therefore, dSpliceType

is demonstrated to be able to detect differentially spliced genes in a large dynamic

range of expressed genes.

Simulation result of detecting differential splicing events

Since both dSpliceType and MATS are event-based methods, we focused on

each type of splicing events to further investigate the gap between them. Table 3.3

shows that for each data set, dSpliceType outperforms MATS by 4% to 19% of de-

tected rate on SE and MXE splicing events. For A3SS and A5SS events, MATS

outperforms dSpliceType in some of the data sets while the rates of detection are still

comparable. This is because when the spliced regions of A3SS or A5SS events are

short, e.g., less than 5 nucleotides, data points used to estimate model parameters

and calculate SIC scores may not sufficient. For RI event, MATS slightly outperforms
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Table 3.3: Comparison of the differential splicing events detected by dSpliceType and
MATS in 4 groups of simulated data sets. For each method in each type of splicing
event, the highest detected rate is highlighted in bold.

Type of # of Splicing # of Methods
Splicing Events1 Reads dSpliceType MATS

30M 5,853 73% 4,795 60%
SE 8,031 50M 6,341 79% 5,493 68%

100M 6,706 84% 6,196 77%
200M 6,880 86% 6,612 82%

30M 2,567 69% 2,173 59%
A3SS 3,711 50M 2,758 74% 2,482 67%

100M 2,914 79% 2,845 77%
200M 3,007 81% 3,048 82%

30M 2,150 68% 1,888 59%
A5SS 3,175 50M 2,356 74% 2,224 70%

100M 2,489 78% 2,499 79%
200M 2,559 81% 2,672 84%

30M 728 44% 1,009 61%
RI 1,661 50M 901 54% 1,101 66%

100M 1,092 66% 1,235 74%
200M 1,260 76% 1,317 79%

30M 1,126 82% 855 63%
MXE 1,366 50M 1,189 87% 956 70%

100M 1,242 91% 1,051 77%
200M 1,263 92% 1,107 81%

1For each type of splicing events, the number of differential splicing events in the
simulated data sets. M stands for million.

dSpliceType in each data set. The possible reason is that since the spliced regions of

RI event are usually longer than 1,000 nucleotides, more reads need to be sequenced

to cover the long spliced regions, which can make model calculation more accurate.

Therefore, when the number of reads reaches to 200 million, the detected rates of the

two methods are quite close (76% of dSpliceType vs. 79% of MATS).
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Runtime comparison

Table 3.4: Runtime comparison of dSpliceType, MATS and Cuffdiff in 4 groups of
simulated data sets. The shortest runtimes are highlighted in bold [25].

Methods 30M 50M 100M 200M
(Hours : Minutes)

BEDTools + dSpliceType 0:36+0:25 0:48+0:29 1:30+0:31 2:30+0:32
Total 1:01 1:17 2:01 3:02

Cuffdiff 2:52 3:01 3:31 4:38
MATS 17:02 19:13 30:35 40:41

dSpliceType (1 thread), Cuffdiff (6 threads), and MATS (1 thread). The runtime
of Cuffdiff includes gene and transcript relative abundance estimation, differential
expression analysis and differential splicing analysis. The runtime of MATS includes
the conversion time from .bam to .sam, and differential splicing analysis. M stands
for million.

Table 3.4 shows the runtime comparison of the three methods among the 4

groups of simulated data sets on the same Linux Ubuntu Server with 4 x Twelve-

Core AMD Opteron 2.6GHz and 256GB RAM. For each data set, the runtime of

dSpliceType is faster than the other two. The runtime of dSpliceType on each data

set can be separated into two parts, the time of converting alignment results to read

coverage signals using BEDtools [89] and the time of detecting differential splicing

events by dSpliceType. The conversion time increases linearly with the number of

reads, for example, 36 minutes for 6 samples of 30 million data set and 150 minutes for

200 million data set; while the detection time of dSpliceType does not change much

as 25 minutes for 30 million and 32 minutes for 200 million data sets. This is because

the total number of nucleotides covered by short reads of 4 groups of simulated data

sets are quite similar, and only the values of read coverage signals on those nucleotides

are changed when the number of reads increases. Therefore, as shown in Table 3.4,

the increase in the number of reads reflects more of the increase in conversion time,

not detection time.
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3.4.2 Real-world Data Analysis

RNA-Seq data and pre-processing

We applied dSpliceType to a public paired-end Illumina RNA-Seq data set of

human H1 and H1 derived neuronal progenitor cell lines (shorted as H1 and H1-npc).

The data set can be accessed from NIH Roadmap Epigenomics Project with NCBI

SRA number SRR488684, SRR488685, SRR486241 and SRR486242 as two replicates

of H1 and H1-npc cell lines, respectively. For each replicate, about 200 million reads

(100bp × 2) were sequenced. For real-world RNA-Seq data analysis, the alignment

procedure, the input files and parameters for dSpliceType are similar to simulation

studies.

Detection of differential splicing events

dSpliceType detected amount of differential splicing events. We present five

differential splicing events detected by dSpliceType with different types of alternative

splicing in Figure 3.5, in which MATS can detect four except the A3SS differential

splicing event of gene DNAJC10, and Cuffdiff only detected gene CLK4 as a differ-

entially spliced gene.

Each case study of differential splicing events includes the plots of the read

coverage signals on the candidate splicing event, the calculated RNA-Seq splicing

indexes and the logRatio of RNA-Seq splicing indexes, and the change points i, j or

i, j and k at the ending locations of the exons of the differential splicing event. For

all the five case studies, it can be seen that the values of logRatio of the RNA-Seq

splicing indexes in the shared exonic regions are close to zero, which indicates that

no obvious read coverage changes exists in them between the two conditions after
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Figure 3.5: The five case studies of detected differential splicing events with replicates
by dSpliceType. Each row indicates a case study, and three columns show the plots
of read coverage signal, RNA-Seq splicing index, and logRatio of splicing index and
detected change points, respectively. (A) A skipped exon (SE) differential splicing
event is detected for the gene chr7 - ESYT2. (B) An alternative 5’ splice site (A5SS)
differential splicing event is detected for the gene chr2 + MBD5. (C) An alternative 3’
splice site (A3SS) differential splicing event is detected for the gene chr2 + DNAJC10.
(D) A retained intron (RI) differential splicing event is detected for the gene chr5 -
CLK4. (E) A mutually exclusive exon (MXE) differential splicing event is detected
for the gene chr4 + GALNT7 [25].
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normalization. However, the values of logRatio of the RNA-Seq splicing indexes in

the spliced exonic regions deviate from zero with different variations regarding to

different types of alternative splicing, which reflects the read coverage discrepancy

when the differential splicing event happens.

3.5 Discussion and Conclusion

As studies increasingly shift from DNA microarrays, RNA-Seq holds the promise

to better interrogate transcriptomes, particularly splicing mechanisms. The method,

dSpliceType, is designed specifically to utilize read coverage signals and work with

multiple biological replicates.

Compared with read-count based methods, dSpliceType has the following ma-

jor advantages. dSpliceType detects accurately differential splicing events. Instead of

complex model for bias correction, we believe that taking ratio of normalized RNA-

Seq splicing indexes between conditions is an efficient way to eliminate the effect of

sampling biases from RNA-Seq. We use a model of multivariate conditional normal

to capture the sequential dependency of the read coverage signals after normalization

and taking logRatio, and detect differential splicing events by comparing SIC scores

between models with or without change points.

The read counts based differential splicing methods usually require sequencing

at a certain depth. Therefore, the performance of these methods may be limited for

genes with low abundances. However, as a read-coverage based method, dSpliceType

overcomes this limitation; the detection can be effective as long as the nucleotides of

the splicing event are covered by reads, regardless of coverage depth. This is because

a sufficient number of per-base coverage signal values in exonic regions can be used

to accurately estimate model parameters (i.e., the means and variance covariance
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matrices), and the sharp signal changes on exon-exon boundaries of the splicing events

can be effectively identified as change points, even if the read coverage is relatively

low.

The increasing depth of RNA-Seq allows read-count based methods to detect

more differentially spliced genes. However, this is also more computational intensive

if the method needs to process every reads and employs an iterative or re-sampling

procedure. dSpliceType is not sensitive to the increase in the number of short reads

because it provides a closed-form solution using read coverage signals, and the in-

creasing number of reads do not incur extra computational load since they primarily

result in elevated values of read coverage signals. Converting read alignment result

to read coverage signals is considered to linearly increase the time complexity. Thus,

dSpliceType is time efficient.

As a read-coverage based method, dSpliceType can be applied to RNA-Seq

data from multiple sequencing platforms, with longer or shorter read lengths, as long

as the base-wise read coverage signals are available. dSpliceType is expected to be

more powerful with the ever-increasing sequencing coverage depth.
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Chapter 4: A RNA-Seq Computational Workflow to Jointly

Study Genes with Differential Expression and Differential

Splicing 3

4.1 Introduction of the Computational Workflow

Most of human genes are alternatively spliced. As a result, it drastically

increases the diversity of functional proteins. Using RNA-Seq data, there exists a

greater potential to better interrogate human transcriptomes. As presented in Chap-

ter 2, we developed an EM-based transcriptome quantification algorithm and tool,

RAEM, to estimate relative transcript abundances, which can be used to conduct

differential expression analysis at isoform and/or gene levels. Also, in Chapter 3, a

novel algorithm and tool, dSpliceType, was developed and presented for detecting

differential splicing events using RNA-Seq data. Differential expression or differential

splicing analysis may provide novel biological insights; however, one type of analysis

only provides difference of human transcriptomes from one biological angle. To better

characterize and understand the pathological consequences of serious human diseases,

in this chapter, we have developed a computational workflow to jointly study genes

from two aspects, differential expression and differential splicing, simultaneously.

Figure 4.1 shows the steps of the computational workflow to jointly study genes

with differential expression and differential splicing. The workflow conducts transcript

quantification (estimating the relative transcript proportions/abundances) by taking

read alignment files (.sam, .bam, or .bedgraph) and gene annotation database (.gtf

3The content in this chapter is largely derived from original author text and contributions found
in [23].
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Figure 4.1: The computational workflow of joint study of differential expression and
differential splicing.

or .gff file) as input. Gene-level and isoform-level differential expression analysis can

be performed based on the estimation of transcript relative abundances using RAEM

followed by abundance and/or variance filtering with certain cutoff. Differentially

spliced genes can be detected by quantifying the discrepancy of relative transcript

proportions using RAEM in each gene across samples using a statistical test or de-

tected directly from read coverage signals using dSpliceType. Finally, we present

genes by combining the analysis results of both differential expression and differential

splicing. The computational workflow is employed to study a human idiopathic pul-

monary fibrosis (IPF) lung disease. We present gene information in two dimensions
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in terms of both differential expression and differential splicing, and we are able to de-

tect differential splicing variants from non-differentially expressed genes as potential

biomarkers.

4.2 Detecting Splicing Variants from non-Differentially Ex-

pressed Genes in a Human Lung Disease

4.2.1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive form of chronic lung scar-

ring, which occurs predominantly in older adults and carries a dismal prognosis.

Studies indicate that 50% of patients with IPF die within 3 years of diagnosis [72]

and that the majority of afflicted patients die from IPF [18]. To date there are no

known agents that reduce mortality of IPF and clinical trials are stymied by a dearth

of clinically employed biomarkers. Our understanding of the pathogenesis of IPF is

far from complete, and to date there has been a lack of powerful, high throughput

molecular profiling techniques that permit delineation of the whole transcriptome

landscape at high resolution.

Splice variants occur in conjunction with fibrosis in the lung and other organs

[29, 36, 79, 99, 110]. Traditional methods use high throughput gene expression pro-

filing techniques, such as microarray, to detect differentially expressed genes at the

whole-transcriptome scale. In-depth examination of the splicing of the top ranked

genes using lower throughput, but more accurate techniques, such as qRT-PCR [34],

can be subsequently performed. These approaches have proven useful, but they do

not permit a comprehensive transcriptomic landscape at the level of splicing variants.
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The declining cost and increasing throughput of RNA-seq technology provide

new opportunities to characterize the highly diverse and complex human transcrip-

tome. Compared with the older tilting and exon arrays, RNA-seq provides abundant

signal at base-pair resolution, and promises a better means to identify and quan-

tify splicing variants in the human transcriptome [7, 22, 91, 92, 121]. Examining

transcriptomes at the isoform-level allows for detecting differential regulated splicing

variants encoded by the non-differentially expressed genes, which may be important

but are often hidden from discovery by many older microarray techniques. We apply

our method and report the whole transcriptome-scale analysis of differential splicing

events in IPF patient samples using RNA-seq. To the best of our knowledge, this is

the first study that examines splicing variants from non-differentially expressed genes

for human IPF disease.

4.2.2 RNA-Seq Dataset and Preprocessing

Human IPF and control lung specimens were obtained from the NIH Lung

Tissue Research Consortium (LTRC). The transcriptomes of 3 IPF patient samples

and 3 age-matched controls were deep-sequenced using an Illumina Genome Analyzer

II with a read length of 54 bases. This is considered a suitable control group because

most patients with IPF have been smokers. For each tissue sample (biological repli-

cate), over 25 million single-end reads were generated and stored in a file with fastq

format. The RNA-seq data were submitted to the NCBI Short Read Archive with

accession number SRA048904.

We first performed a per base sequence quality check using fastQC Software

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). We confirmed the high

short read quality of each sample, with the average quality score at each base position
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above 35 using fastQC, which is much higher than the recommended threshold of 20.

TopHat (v1.0.14) [112] was used thereafter to align short reads that were unique

to the human reference genome (release hg19/GRCh37). Default settings and ’-g

1’ parameter were used. Alignment results were saved in a SAM format. For each

sample, between 60% and 70% of reads were uniquely aligned to the reference genome,

representing in a sufficient amount of aligned reads for analyses.

4.2.3 Expression Abundance Estimation at both Gene and

Isoform Level

Based on the alignment results of all the samples, expression abundance esti-

mation was conducted at both gene and isoform levels using Ensembl ASTD database

(version 60). SAMMate [128] (http://sammate.sourceforge.net/), free Graphical User

Interface (GUI) software, was employed for gene and isoform quantification. For iso-

form quantification, we applied the method, RAEM (Reads Assign by Expectation

Maximization), reported in [22] and implemented in SAMMate. The output results of

SAMMate contain not only expression abundance level measured by RPKM (Reads

Per Kilobase of exon or transcript model per Million mapped reads) [78], but also

aligned read counts for each gene and isoform, which were used as the input for

differential expression analysis using edgeR [94].

4.2.4 Differential Expression Analysis at both Gene and Iso-

form Level

Firstly, an average RPKM cut off of 1 in both control and case conditions

was applied to remove very low-abundance genes. And then, for those isoforms be-

longing to the remaining genes, we further filtered out very low-abundance isoforms,
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which have an average RPKM value less than 1 in both conditions. Finally, edgeR

was employed to prioritize the differentially expressed genes and isoforms with FDR

values.

4.2.5 Differential Splicing Detection

We applied RAEM to estimate isoform proportions for each gene. With the

abovementioned abundance filtering results, in order to identify the most consistent

differential splicing events, we also applied the variance filtering at the isoform-level.

First, for each isoform of each gene, we multiplied the estimated isoform proportion by

100, e.g. enlarging 90% to 90, and then calculated the enlarged proportion variance

for both control and case conditions. If the variance of enlarged proportion of every

isoform in both conditions is smaller than 150 (the cutoff of the variance filter),

we considered that the gene does not contain too much proportion variance on its

isoforms, and keep these genes as candidates. Secondly, for each candidate gene, we

constructed an n x 2 matrix. In the matrix, n rows correspond to the isoforms, and

two columns correspond to the average of isoform enlarged proportions in control

and case conditions respectively. Finally, for candidate genes, to detect differential

splicing events between two conditions, we applied the Pearson’s Chi-squared test of

independence (R function chisq.test) with Yates’ correction for continuity, and ranked

those genes by FDR values, which are calculated from raw Chi-square p-values using

Benjamini-Hochberg procedure [8].

In differential splicing analysis, we primarily focused on the divergence of iso-

form proportions for each gene across the IPF and control conditions. We examined

all the genes as long as their expression abundances are above a certain threshold.

In general, the Chi-squared test should be applied on actual count data, e.g. RPKM
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value of each isoform. However, directly using read count data has the following

limitations: for highly expressed genes (> 100 RPKM), even the minor change of

isoform proportions between two conditions can yield significant differential splicing

events (significant p-values); on the other hand, for relative low abundance genes

(< 10 RPKM), major change of isoform proportions between two conditions can be

missed (non-significant p-values). Thus, we used the average of enlarged propor-

tions as pseudo counts to make the p-values comparable across the genes of different

abundances and achieve a more robust detection of differential splicing.

4.2.6 Joint Results

Differential Expression and Differential Splicing Analysis

In total, 110,982 protein coding isoforms were annotated, corresponding to

20,560 protein coding genes. After gene and isoform abundance filtering, 13,923 genes

and 44,396 isoforms were selected for differential expression analysis at the gene- and

isoform-level, respectively.

Although many known genes are differentially expressed, splicing variants can

display a characteristic ”switch” between major and minor isoforms. In addition

to variations in overall gene expression, differential splicing may also be important

to fully understand the underlying mechanisms involved in the pathobiology of IPF.

Since differential splicing isoforms may play an important role in lung fibrosis [99], we

conducted differential splicing analysis at the whole transcriptome scale, investigat-

ing those genes in which the proportions of expressed isoforms change (major-minor

isoform switch) between control and case conditions.

After abundance and variance filtering, 3,098 genes with more than 1 expressed

isoform were left as candidates for differential splicing analysis. Among these, 248
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genes have Chi-square test False Discovery Rate (FDR) less than 0.05, and we con-

sidered these genes differentially spliced with statistical significance.

Joint Analysis of Differential Expression and Differential Splicing

Although newer microarray technologies, such as exon-junction array and tilt-

ing array, enable transcriptomic analysis at the isoform-level [48, 58, 85, 101], the

sensitivity and specificity are inherently limited by signal saturation, probe design

and non-specific hybridization. Compared with microarray technologies, RNA-seq

provides nucleotides sequencing at base-pair resolution, and therefore increases the

accuracy of differential expression and differential splicing analyses. Since these two

types of analyses examine different aspects of gene expression variation, it is neces-

sary to perform a joint analysis to uncover novel biological events that could not be

revealed by each alone. We attempted to identify IPF splicing variants that are con-

sistent among replicates by examining the major-minor switch of isoform proportions

within each gene. The combined information for these genes is presented in Figure

4.2.

In Figure 4.2A, 3,098 genes were plotted, with each purple dot corresponding

to one gene, after abundance and variance filtering described in the Methods Section.

The whole panel is further partitioned into 6 regions and detailed information is

shown in Figure 4.2B. For each gene, we define up-regulation as fold change > 1.25,

down-regulation as fold change < 0.8 and no change as fold change between 0.8 and

1.25. We also define significant differential splicing as -ln (FDR) > 3 (corresponding

to FDR value < 0.05). In Figure 4.2A, most genes fall into region (1), (3) and (5),

representing genes without major-minor isoform switches.

The genes located in regions (2), (4) and (6), however, are significantly dif-

ferentially spliced, and would not be discovered by gene-level analysis. In particular,



78

Figure 4.2: Joint Study of differential expression and differential splicing between IPF
lungs and controls [23].

genes in region (4) are not differentially expressed at the gene level but display sig-

nificantly differential splicing, so genes in this region represent a novel and previously

uncharacteristic region of regulation that warrants further investigation.

A Case Study of Predicted Differentially Spliced Gene

We discuss in detail an example (gene TOM1L1) from region (4) (Figure 4.2A)

with strong differential splicing evidence based on their read coverage signal maps.
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The case correspond to one type of alternative splicing in IPF without significant

expression abundance changes at the gene-level.

Figure 4.3: A case study of gene TOM1L1 illustrating the skipped exon splicing event
using the annotated transcripts [23].

Exon skipping or cassette exon is the most common type of alternative splic-

ing event in eukaryotic species [96]. A representative of this type of alternative

splicing is TOM1L1, which has two annotated isoforms: ENST00000445275 and

ENST00000348161 (Figure 4.3). The major difference between these two isoforms

is that the 6th exon of ENST00000445275 is skipped in ENST00000348161. Impor-

tantly, with a 0.93 fold change, the gene is considered to show no differential ex-

pression. However, based on our differential expression analysis at the isoform-level,

ENST00000445275 is down-regulated and ENST00000348161 is up-regulated, with
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0.34 and 2.09 fold changes, respectively. The observed gene-level differential expres-

sion ratio (DER) (0.93) represents the mixture of isoform-level DER (0.34 and 2.09).

Meanwhile, the isoform proportion of ENST00000445275 decreases from 77.35% in

control to 27.10% in IPF cases, while the isoform proportion of ENST00000348161 in-

creases from 22.65% to 72.90%. These differences between control and case condition

indicate a high degree of major-minor isoform switches, as the differential splicing

FDR value is 1.48E-09. It also reveals the advantage of isoform-level differential ex-

pression and differential splicing analysis. The red box highlights the decreased read

coverage at the skipped exon from control to case condition as the evidence of the

exon skipping.

Figure 4.4: (A)The validation result for the down-regulated (in green color) isoform
ENST0000445275 of gene TOM1L1 [23]. (B)The qRT-PCR validation result of the
common region of transcripts in gene TOM1L1 [23].

The predicted splicing variant was validated by quantitative RT-PCR analysis

as shown in Figure 4.4, with the bar chart representing the relative expression values

among three samples in each condition. One splicing variant was confirmed for the

case study of TOM1L1, and the experiment was performed in triplicate. In order

to infer the up or down regulation of other splicing variants, we also quantified the

common region of the transcripts in genes TOM1L1 qRT-PCR experiments. Due to
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the limited amount of sample tissues, we performed single validation experiment on

each individual sample.

For TOM1L1, the PCR primers were designed at the region of the skipped

exon. As shown in Figure 4.4A, the qRT-PCR analysis confirms the down-regulated

expression of transcript ENST00000445275 in samples from IPF patients in a statis-

tically significant manner (T-test p-value of 0.01). We further quantified the common

region of the transcripts ENST00000445275 and ENST00000348161 in each individual

sample tissue, and the results demonstrate a non-significant change (T-test p-value

of 0.48) in expression abundance (Figure 4.4B). Collectively, we confirmed that the

transcript ENST00000348161 is up-regulated as predicted.

Biological Insight

Aged lung has a predisposition for disrepair and for lung fibrosis [108, 111].

Recently, it has been shown that significant DNA methylation differences that ac-

count for changes in gene expression are associated with specific age-related disor-

ders, and one of these genes is TOM1L1. TOM1L1 is known to be recruited to the

endosome and can subsequently recruit clathrin. In addition, it has been reported

that TOM1L1 is a regulating adaptor bridging activated EGFR with the endocytic

machinery for internalization of activated EGFR [71]. Taking together, we can spec-

ulate that TOM1L1 could potentially serve as a marker for lung aging and maybe as

a marker for susceptibility to lung fibrogenesis.

4.2.7 Conclusion

Several array studies have been conducted to improve our understanding of

the molecular processes involved in lung fibrogenesis, and to develop biomarkers.
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However, most of these studies are based on differential expression analysis at the

gene level through microarray platforms. This type of analysis is a powerful tool in

identifying gene patterns and pathways associated with IPF [10, 15]. Splicing variants

encoded by non-differentially expressed genes across conditions may play an important

role in human IPF. Thus, by using RNA-Seq, we focused on detecting alternative

splice variants from those non-differentially expressed genes, which have not been

identified in previous pulmonary fibrosis microarray research. We applied abundance

and variance filters at gene and isoform levels for detecting the most consistent splicing

events in a conservative way. Our approach of joint analysis of differential expression

and differential splicing appears to be useful in identifying splicing variants of IPF.

Similar analysis approaches may also be applicable to deciphering the pathobiology

of other life-threatening diseases.
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Chapter 5: Conclusions and Future Works

Given the opportunity that RNA-Seq technologies provided for characteriz-

ing and better understanding human transcriptomes, computational approaches that

utilize either read counts or read coverage signals have been extensively developed.

These methods have helped biomedical researchers to extract useful information from

large amounts of sequencing data from human tissues. Deep biological insights may

be generated to understand the pathological consequences of diseased cell develop-

ment and differentiation and to eventually identify potential biomarkers for human

life-threatening diseases. In this dissertation, two algorithms and tools and a compu-

tational workflow using RNA-Seq were presented to analyze human transcriptomes

between healthy and diseased conditions with a great emphasis on alternative splicing.

First, a read count-based Expectation-Maximization (EM) algorithm and tool,

RAEM, was presented for estimating relative transcript proportions. By utilizing

short reads aligned to exonic regions of each gene, RAEM constructs an observed

cDNA fragment-compatible matrix to capture the relationship between short reads

and all annotated transcript isoforms. Then, it employs an EM algorithm to in-

fer the cDNA fragment-originating matrix with maximized likelihood and estimates

the relative transcript isoform proportions iteratively. We applied RAEM to predict

microRNA-155 targets at isoform-level.

Second, to identify and specify the spliced regions and the associated types of

differential splicing events, we developed a read coverage-based algorithm and tool,

called dSpliceType. dSpliceType utilizes sequential dependency of normalized base-

wise read coverage signals and a change-point analysis, followed by a parametric

statistical hypothesis test using Schwarz Information Criterion (SIC) to detect sig-
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nificant differential splicing events in the form of five well-known types. We applied

dSpliceType to detect differential splicing events from H1 (human embryonic stem

cell) and H1 differentiated neuronal progenitor cultured cell lines.

Finally, a novel computational workflow was developed to jointly study genes

with differential expression and differential splicing between healthy and diseased

conditions. The computational workflow is employed to study a human idiopathic

pulmonary fibrosis (IPF) lung disease. The genes are presented from two dimensions

in terms of both differential expression and differential splicing. Some splicing variants

from non-differentially expressed genes have been detected and biologically validated

as potential biomarkers of human IPF disease.

Many possible future projects can be extended from the presented work:

• Possible Extensions of RAEM As introduced in the Chapter 2, RAEM

estimates relative transcript proportions/abundances based on the assumption

that the reads are sequenced uniformly at each nucleotide location along the

transcript isoforms. However, short reads are more likely to be generated non-

uniformly. Therefore, RAEM can be extended by using more sophisticated

statistical models, such as a generalized Poisson model, and to use stochastic

EM algorithm to overcome local optimal problem if the likelihood function is

not concave. While the stochastic EM algorithm may need more computa-

tional efforts, the extension of RAEM can easily lend itself to parallelization by

estimating relative transcript abundances of several genes simultaneously.

• Possible Extensions of dSpliceType The current command-line version of

dSpliceType is focused on detecting the five most well-known types of differen-

tial splicing events based on a transcript annotation database. There are several

ways to enhance dSpliceType to be more useful and robust. 1) dSpliceType
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can be extended to detect novel differential splicing events by incorporating

novel junctions when extracting candidate splicing events. 2) The framework

of dSpliceType can also be extended and applied to detect other complicated

splicing events. 3) dSpliceType can be incorporated into the SAMMate GUI

software to easily allow biomedical researchers who lack computational skills

to analyze their RNA-Seq data. 4) Since dSpliceType detects splicing events

based on each candidate splicing event, it is rather straight forward to parallelize

multiple detection procedures.

• Classification Utilizing both Differential Expression and Differential

Splicing Machine learning methods have been widely used for classifying dis-

ease samples from healthy controls. A wide range of classification methods

have been applied, such as K-Nearest Neighbor, Random Forest, Support Vec-

tor Machine and Logistic Regression. In many applications, differentially ex-

pressed genes have been selected as features to discriminate disease samples from

healthy controls. As differential splicing is the mechanism-revealing feature of

human diseases, it should be a better idea to utilize both differential expression

genes and differential splicing genes to develop mechanistic and more effective

classifiers.

RAEM has been encoded in an in-house software suite called SAMMate, which

is freely available at http://sammate.sourceforge.net/. dSpliceType is freely

available at http://orleans.cs.wayne.edu/dSpliceType/.

http://sammate.sourceforge.net/
http://orleans.cs.wayne.edu/dSpliceType/
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APPENDIX A: BIOLOGICAL TERM AND ABBREVIATION

3’UTR: 3’ Untranslated Region. 3’UTR is in the end of a mRNA but not trans-

lated into proteins. 3’ UTR may contain sequences that regulate translation efficiency,

mRNA stability, and polyadenylation signals.

5’UTR: 5’ Untranslated Region. 5’UTR is at the beginning of a mRNA but not

translated into proteins.

A3SS: Alternative 3’ Splice Site. A type of alternative splicing in which two splice

sites are recognized at 3’ end exon of an alternative splicing event.

A5SS: Alternative 5’ Splice Site. A type of alternative splicing in which two splice

sites are recognized at 5’ end exon of an alternative splicing event.

AS: Alternative splicing. A regulated process during gene expression by which a

single gene can produce multiple spliced mRNAs and proteins.

cDNA: complementary DNA. A form of DNA artificially synthesized from a mes-

senger RNA template and used in genetic engineering to produce gene clones.

CPA: Change Point Analysis. An analytical method that attempts to find a point

along a sequence of data point values where the characteristics or distribution of the

values before and after the point are different.

Chromosome: An organized structure of DNA and protein found in cells. It is

a single piece of coiled DNA containing many genes, regulatory elements and other

nucleotide sequences.

DEA: Differential Expression Analysis. It refers to use statistical testing to decide

whether an observed difference in read counts of a gene/isoform across samples of two

conditions is significant, and not due to random variation.

DSA: Differential Splicing Analysis. It refers to detect whether the difference in
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the relative abundance of the expressed transcripts in a gene across samples of two

conditions is significant.

EM algorithm: Expectation maximization algorithm is an iterative method for

finding maximum likelihood estimates of parameters in statistical models, where the

model depends on unobserved latent variables.

Exon: A sequence of DNA that codes information transcribed to mRNA and trans-

lated to protein.

Exon-exon junction: A sequence fragment spanning two exons. One end is

mapped on the end of the first exon, and the other end is mapped on the beginning

of the second exon.

FDR: False Discovery Rate is a statistical method used to adjust raw p-values in

multiple hypothesis testing.

FPKM: Fragments Per Kilobase of exon/transcript model per Million mapped frag-

ments.

Intron: A segment of a gene between exons without coding information for proteins.

Introns are removed by RNA splicing process when producing mature mRNA.

IPF: Idiopathic Pulmonary Fibrosis. An interstitial human lung disease of unknown

cause and high mortality rate.

Isoform: Any of several different forms of the same protein. Different forms of a

protein may be produced from the same gene by alternative splicing.

microRNA/miRNA: microRNAs are single-stranded RNA molecules of about 21-

23 nucleotides in length. They are non-coding RNAs, and their main function is to

down regulate gene expression.

mRNA: Messenger RNA. A molecule of RNA encodes a chemical “blueprint” for

a protein product. mRNA is transcribed from a DNA template, and carries coding

information to the ribosomes for protein synthesis.
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MXE: Mutually Exclusive Exons. A type of alternative splicing in which two

different individual exons are spliced out between two shared ending exons of two

transcripts.

NGS: Next-Generation Sequencing. A group of new sequencing technologies that

can rapidly sequence DNA or mRNA on the gigabase scale and generate millions of

short reads.

RI: Retained Intron. A type of alternative splicing in which an intron remains in

the mature mRNA transcript.

RNA-Seq: One type of NGS technologies. It sequences cDNA in order to get

information about a sample’s RNA content, which is quickly becoming a promising

tool in the study of diseased human transcriptomes.

RPKM: Reads Per Kilobase of exon/transcript model per Million mapped reads.

SE: Skipped Exon. A type of alternative splicing in which a cassette exon and its

flanking introns are spliced out of the transcript.

SIC: Schwarz Information Criterion. A likelihood function based statistical criterion

for model selection among a finite set of models.

Transcript: A sequence of RNA produced by transcription.

Transcript quantification: It refers to quantify the transcript expression abun-

dance.

Transcription and Translation: The process by which DNA is used as a template

to create mRNA is called transcription. The mRNA then undergoes a further process

called translation where the mRNA is used to synthesize proteins.

Transcriptome: The complete set of all transcripts, such as mRNAs, small RNAs

and lincRNAs, in a cell or a population of cells.
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Alternative splicing plays a key role in regulating gene expression, and more

than 90% of human genes are alternatively spliced through different types of alterna-

tive splicing. Dysregulated alternative splicing events have been linked to a number

of human diseases. Recently, high-throughput RNA-Seq technologies have provided

unprecedented opportunities to better characterize and understand transcriptomes,

in particular useful for the detection of splicing variants between healthy and diseased

human transcriptomes.

We have developed two novel algorithms and tools and a computational work-

flow to interrogate human transcriptomes between healthy and diseased conditions.

The first is a read count-based Expectation-Maximization (EM) algorithm and tool,

which is called RAEM. It estimates relative transcript isoform proportions by max-

imizing the likelihood in each gene. The RAEM algorithm has been encoded in our

published software suite, SAMMate. We have employed RAEM to predict isoform-

level microRNA-155 targets. The second is called dSpliceType, which is a read

coverage-based algorithm and tool to detect differential splicing events. It utilizes se-

quential dependency of normalized base-wise read coverage signals and a change-point
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analysis, followed by a parametric statistical hypothesis test using Schwarz Informa-

tion Criterion (SIC) to detect significant differential splicing events in the form of the

five well-known splicing types. The results of both simulation and real-world studies

demonstrate that dSpliceType is an efficient computational tool for detecting various

types of differential splicing events from a wide range of expressed genes. Finally, we

developed a novel computational workflow to jointly study human diseases in terms of

both differential expression and differential splicing. The workflow has been used to

detect differential splicing variants from non-differentially expressed genes of human

idiopathic pulmonary fibrosis (IPF) lung disease.
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