
Wayne State University

Wayne State University Theses

1-1-2014

Case Study Of Phased Model For Software Change
In A Multiple-Programmer Environment
Yoann Senin
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Senin, Yoann, "Case Study Of Phased Model For Software Change In A Multiple-Programmer Environment" (2014). Wayne State
University Theses. Paper 353.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/353?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages

CASE STUDY OF PHASED MODEL FOR SOFTWARE CHANGE IN A MULTIPLE-
PROGRAMMER ENVIRONMENT

by

YOANN SENIN

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2014

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

© COPYRIGHT BY

YOANN SENIN

2014

All Rights Reserved

DEDICATION

To dad, mom, and Nish.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Václav Rajlich, for his limitless

support and guidance throughout my master education. His expertise in the field

facilitated both the writing of my thesis and my transit at Wayne State University. I would

not forget Leon Wilson whose contribution to this work was priceless. His advice,

availability, and formative influence paved this research.

Now, I would like to thank Laurentiu Radu Vanciu at the SoftwarE Visualization

and Evaluation REsearch Group (SEVERE) lab for always finding time slots in his busy

schedule to teach me some of the tools used in this study and give me thoughtful

remarks and suggestions about the research. Also, I would like to thank Christopher

Dorman whose previous work inspired the current research and whose subtle advice

guided this work. Next, I would like to acknowledge the Department of Computer

Science at Wayne State University for giving me the opportunity to learn software

engineering skills via its more than talented faculty members. My thanks also go to

Nisha Anbazhagan who did not hesitate to proofread this document.

I thank members of my Master Thesis Committee Dr. Marwan Abi-Antoun and

Dr. Hamidreza Chitsaz, for taking their time to evaluate this work and offer any valuable

comments.

Finally, I acknowledge my family and friends who believed in me and supported

me throughout my curriculum.

Any remaining errors in this thesis are mine alone.

iii

iv

TABLE OF CONTENTS

Dedication ...………………………………………………..……………………………………ii

Acknowledgements …………………………………………………………………………….iii

List of Tables…………………………………………………………………………………….vi

List of Figures…………………………………………………………………………………..vii

Chapter 1: Introduction ...………………………………………………………………………1

Chapter 2: Previous work ...……………………………………………………………………4

 2.1. Software Processes ……………………………………………………………….4

2.1.1. Software Evolution ………………………………………………………4

2.1.2. Team Software Processes ……………………………………………..6

 2.1.2.1 SCRUM …………………………………………………………6

 2.1.2.2. Extreme Programming ……………………………………….7

 2.1.2.3. Team Software Process …………………………………….10

2.1.3. Iterative processes ...…………………………………………………..11

 2.1.3.1. Solo Iterative Process ...…………………………………….11

 2.1.3.2. Agile Iterative Process …..…………………………….…....12

 2.1.3.3. Directed Iterative Process ………………………………….14

 2.1.3.4. Centralized Iterative Process……………………………….15

 2.2. Phased Model of Software Change …………………………………………....17

 2.2.1. Phases of Software Changes…………………………………………17

 2.2.2. Previous work using PMSC…………………………………….……..19

 2.3 Software Process Tools……………………………………………………….….20

 2.3.1 Eclipse Technologies…………………………………………………...20

 2.3.1.1. JRipples……………………………………………………….20

 2.3.1.2. JUnit…………………………………………….……………..20

 2.3.2. Other Technologies…………………………………………………….20

 2.3.2.1. Rabbit……………………………..…………………………..21

 2.3.2.2. EclEmma……………………….…………….……………….21

2.3.2.3. Abbot Java GUI Test Framework…………………………..21

 2.3.2.4. Subversion & TortoiseSVN………………………………….21

 2.3.2.5. DiffStats……………………………………………………….21

v

Chapter 3: Case Study…………………………………………………….………………….22

 3.1. Motivation and Goal…………………………………………………….………..22

3.1.1. Desktop Application Development……………………………………22

 3.2. User Study Design ……………………………………………………………….23

3.2.1. Objects of the User Study……………………………………………..26

 3.2.1.1. jEdit ……………………………………………………………26

 3.2.1.2. jAdvisor ……………………………………………………….26

 3.2.1.3. JabRef ...……………………………………………………...27

 3.2.2. Subjects ...………………………………………………………………27

 3.2.3. Division into teams……………………………………………………..27

 3.2.4. Data Collection …………………………………………………………28

Chapter 4: Results and Interpretation……………………………………………………….30

 4.1. Statistical Analysis………………………………………………………………..30

 4.2. PMSC Completion Results………………………………………………………31

4.3. PMSC Code Analysis Performance Results…………………………………..35

4.4. PMSC Code Implementation Performance Results…………………………..36

4.5. PMSC Qualitative Review ...…………………………………………………….37

 4.5.1. PMSC Effectiveness ..………………………………………………...37

 4.5.2. PMSC Sufficiently Defined ..………………………………………….39

 4.5.3. PMSC Completeness …………………………………………………40

 4.6. Less Experienced versus More Experienced Programmers ..……………....41

 4.7. Tool Support ...……………………………………………………………………44

 4.8. Threats to Validity ………………………………………………………………..45

Chapter 5: Conclusion & Future Work ……………………………….……………………..51

Appendix A: Sample of Change Requests………………………………………………….53

Appendix B: Pre experiment Questionnaires……………………………………………….59

Pre experiment Questionnaire from Student 4……………………………………..60

Pre experiment Questionnaire from Student 5……………………………………..61

Pre experiment Questionnaire from Student 6……………………………………..62

vi

Pre experiment Questionnaire from Student 7……………………………………..63

Pre experiment Questionnaire from Student 8……………………………………..64

Pre experiment Questionnaire from Student 9 ..…………………………………..65

Appendix C: Stages Log Reports ……………………………………………………….…..66

Stage 1 Log Report from Student 4…………………………………………..……..67

Stage 1 Log Report from Student 5…………………………………………..……..75

Stage 1 Log Report from Student 6…………………………………………..……..79

Stage 1 Log Report from Student 7…………………………………………..……..85

Stage 1 Log Report from Student 8 .…………………………………………..……97

Stage 1 Log Report from Student 9…………………………………………..……100

Stage 2 Log Report from Student 4…………………………………………..……105

Stage 2 Log Report from Student 5…………………………………………..……110

Stage 2 Log Report from Student 6…………………………………………..……115

Stage 2 Log Report from Student 7…………………………………………..……120

Stage 2 Log Report from Student 8…………………………………………..……128

Stage 2 Log Report from Student 9…………………………………………..……133

Appendix D: Post Experiment Questionnaires……………………………………………138

Post Survey Questionnaire from Student 4………………………………………..139

Post Survey Questionnaire from Student 5………………………………………..141

Post Survey Questionnaire from Student 6………………………………………..143

Post Survey Questionnaire from Student 7………………………………………..145

Post Survey Questionnaire from Student 8………………………………………..147

Post Survey Questionnaire from Student 9………………………………………..149

References.…………………………………………………………………………………...151

vii

Abstract…………………………………………….………………………………………….154

Autobiographical Statement…………………………………………………………………155

viii

LIST OF TABLES

Table 3.1. Case Study Design……………………………………………………………….25

Table 3.2. Case Study Applications Metrics………………………………………………..26

Table 4.1. PMSC Study Data for All Programmers………………………………………..32

Table 4.2. PMSC Study Data for More Experienced Programmers……………………..34

Table 4.3. PMSC Post-Study Survey Data…………………………………………………39

ix

LIST OF FIGURES

Figure 2.1. Types of software changes…………………………………………………….....5

Figure 2.2. Staged model of software lifespan……………………………………………….6

Figure 2.3. XP cycle………………...…………………………………………………………..9

Figure 2.4. SIP Model……………………………………………………………………...….12

Figure 2.5. AIP model…………………………………………………………………………14

Figure 2.6. DIP model…………………………………………………………………………15

Figure 2.7. CIP model…………………………………………………………………………16

Figure 2.8. Phased Model for Software Change…………………………………………...19

Figure 3.1. Programmer Experience………………………………………………………...28

Figure 4.1. Less Experienced Programmer (Individual) Comparison…………………....42

Figure 4.2. More Experienced Programmer (Individual) Comparison………………..….42

Figure 4.3. Less Experienced Programmer (Group) Comparison……………………..…43

Figure 4.4. More Experienced Programmer (Group) Comparison………………….……44

1

CHAPTER 1: INTRODUCTION

The typical lifespan of software is its creation, its release to the general public, its

evolution and maintenance, and the termination of any support on it. From all these

stages, the evolution and maintenance both constitute the most important stage of

software lifespan [30] since a considerable amount of time and effort are dedicated to

them [6, 16]. These two stages of software lifespan consist of a series of software

changes. They are the essence of software evolution [21] and they either correct

defects, add new functionalities, or modify existing features to software.

Completing software changes generally requires programmers to go through

various phases. Among many steps, programmers should initially make sure that the

software change request itself is of the right level of abstraction or granularity. In other

words, they should check whether or not a software change should be decomposed

into smaller changes. Secondly, programmers should resolve inconsistencies.

Such inconsistencies could be one of the following: contradiction in the statement

of the software changes; inadequacy, where the requirements are too briefly

explained; ambiguity in the software change requirements, which makes difficult for

programmers to understand what needs to be done; irrelevance of the change

requests to software; and unfeasibility due to the technology used for the project,

the limited abilities of the team members, or the budget constraints.

Next, programmers should determine the modules or code snippets from the

existing source code where the software change should be implemented. Assessing the

impact of an application of a software change on designated modules is another phase

of the software change process as well as the actual implementation the change in the

2

source code. A last phase is to make certain that the software change has been

correctly implemented and it is in alignment with the requirement.

The software change process has been part of many researches and in most of

them, the center of attention has been individual part of the process such as concept

location or impact analysis [7, 25]. Concept location is a search based on the software

change request terms that identifies the source code fragments that need to be

updated, while impact analysis points out other modules that could be affected by

changes made on the modules identified in the concept location phase.

One remark about the research mentioned earlier is that even though the

software change process is crucial in software lifespan, not many researchers have

demonstrated great interest in it. This is the reason why we believe that there should be

more research on such an integrated process itself. Such research could aid with

improving programmers’ productivity and also make them produce a better quality of

software faster. Harter and al. present in [18] some software process models that

witnessed similar improvements.

In this thesis, we perform an empirical study to do a comparative analysis of

programmers completing software changes using Phased Model for Software Change

(PMSC) and those completing software changes without any assistance. PMSC is a

proposed process that guide programmers in conducting software changes and which is

discussed in detail in [29]. We also show that improves performance of both less

experienced and more experienced programmers. Our results show that PMSC helps in

reducing the time spent to complete software changes.

3

The rest of this thesis is organized as follow: chapter 2 presents previous related

work. It is followed by chapter 3 which explains the motivation for this study and details

its design. Next, chapter 4 reveals the results along with the potential threats of validity

and the measures taken to mitigate them. Finally, chapter 5 concludes the thesis and

suggests future work.

4

CHAPTER 2: PREVIOUS WORK

2.1. Software Processes

 The intent throughout the years of research on software processes, within

software engineering, has always been to both help improve the efficiency in which

software programmers develop software and to improve the quality of their programs.

After software is initially published, there is also usually a team that is dedicated to the

evolution or maintenance of the new software until the end of its lifespan. Also,

depending on the size of the programming team or the size of software to build, there

exist different methods to lead a project successfully to its goal. This section gives an

overview of software evolution and then presents some team software processes

related to software evolution.

2.1.1. Software Evolution

Software evolution consists of the continuous improvement of initially developed

software via a series of software changes. Software changes have been standardized

and differentiated by the International Organization for Standardization (ISO) and the

International Electrotechnical Commission (IEC) in four types as shown in figure 2.1[20]:

• Corrective changes, which fix software defects or malfunctions;

• Preventive changes, which detect and correct dormant bugs existing in the

software before they become active;

• Adaptive changes, which adapt software to its changed or changing

environment;

• Perfective changes, which add new functionalities to software.

5

Figure 2.1. Types of software changes

Rajlich [30] considers software evolution as a very important phase of software

development since a considerable amount of time is spent on it. Its position in the

software lifespan is shown in figure 2.2. Software evolution requires programmers to

understand the complexity of software before being able to evolve it. The product of

software evolution is the delivery of software releases, which upgrade and/or replace

previous versions of the existing software.

It is the responsibility of software managers to determine whether to release

software or not, considering the urgency of deadlines or the completeness of the

implementation of desired functionalities. To be done efficiently, the evolution of

software should follow a process. Section 2.1.2 presents some software processes that

assist with software evolution.

6

Figure 2.2. Staged model of software lifespan

2.1.2. Team Software Processes

 There are various team software processes that support teams of

programmers with handling major software development issues such as scheduling

tasks, estimating deadlines, or communicating poorly inside the development team.

Three of these processes are:

• SCRUM;

• Extreme Programming (XP);

• Team Software Process (TSP).

2.1.2.1 SCRUM

Scrum, a widely used agile process, developed by Ken Schwaber and Jeff

Sutherland in the 1990s gets its name from rugby football where 'scrum' is used to refer

Initial development

Phase-out

Evolution

Maintenance (Servicing)

Close-down

Evolution changes

Servicing patches

Application of Software Changes

7

the process of restarting the game after a minor violation. After such a violation, players

gather to decide on a strategy to play the next phase of the game [17]. In the software

engineering world, scrum is a product development strategy that finds efficient

alternatives to the dominant and widely followed traditional Waterfall sequential

approach. Scrum is designed to be a flexible and iterative software development

framework.

The Scrum process itself has three crucial types of meetings: sprint planning

meetings, daily scrum meetings and end meetings. The sprint planning meeting is held

every seven to thirty days at the beginning of the sprint. It should be noted that a sprint,

also identified as an iteration, is a period of time where specific tasks need to be done.

The backlog, which is the list of requirements for the project, is prepared during this

meeting and the team members decide the tasks they will work on. The daily meeting is

held every day for team members to review updates. The end meetings refer to the two

team meetings held during the end phase of the scrum process called the 'sprint review

meeting' and the 'sprint retrospective'. The purpose of the sprint review meeting is to

review the work that has been completed as planned, while the sprint retrospective

meeting reflects on the improvements that could have been made in the process [33].

Additionally, a thirty days sprint duration for a single sprint is recommended by scrum.

During that interval of time, changes to the plan are not allowed.

2.1.2.2. Extreme Programming

Extreme programming (XP) is another agile process containing 12 key practices

[2, 28]. A few of the practices resemble the ones used in Solo Iterative Process (SIP)

8

and Agile Iterative Process (AIP) explained in more details in section 2.2.2.; some

others are unique to XP and generally used in an extreme way.

These XP practices are the following [30]:

1. The Planning Game

2. Simple Design

3. Small Releases

4. Metaphor

5. Pair Programming

6. Immediate Testing

7. Immediate Refactoring

8. Collective Ownership

9. Continuous Integration

10. On-Site Customer

11. Coding Standards

12. 40-hour Week

XP is a successful agile process that is used by various companies of all sizes

across the world. XP goes a step further than the scrum by ensuring customer

satisfaction amidst very volatile changing requirements. Extreme programming assumes

a working environment where everyone is an equal member of the team. The software

project is developed only by effective and constant communication with the rest of the

team and the customers by feedback for every product testing, and by a simple product

design.

Extreme Programming does not have complex rules [14]. The flowchart in figure

2.3 depicts the rules for extreme programming and how the rules work together to

accomplish a successful and effective working environment. Customers are embedded

in the development process and communication between team members is highly

integrated [15]. XP also recommends software development iterations of one week.

9

Figure 2.3. XP cycle

In this process, a list of requirements is created based on the needs of the

customers. These requirements are then prioritized and only a subset of these

prioritized requirements is part of the next iteration. The selection is done during an

iterative planning meeting. In that meeting, the development team settles on the amount

of work that could be completed by the end of the next iteration, acknowledging

feedback from previous iterations if any. Next, the sprint of one to four weeks long starts

without possibility to change neither the end date nor the features or stories to deliver.

Every single day of the sprint, the stakeholders of the project gather for about 15

minutes to talk about the progress of the project. In that meeting, the team members,

one at the time, tell what they have done, what their task for the day is, and what

challenges they have encountered. By the end of the iteration, the product should be

tested and ready for a release.

10

2.1.2.3. Team Software Process

Team Software Process (TSP) is one of the many directed processes available.

A directed process is a process where the team using that process can manage itself by

planning and monitoring its work. TSP teams are composed of software engineers

trained in Personal Software Process (PSP). Dan Van Duine [11] defines PSP as “a set

of practices that engineers can apply to most structured personal tasks to improve

predictability, quality, and productivity.” In other words, it is a structured software

development approach that helps to enhance single developers’ skills.

Along with PSP, TSP can be used to establish a working process that facilitates

a project team to deliver software products. The product size can range from small to

large. The Team Software Process can help the team of software engineers and

Managers to deliver a quality products irrespective of the size of the project [23].

The development cycle of TSP starts with a TSP trained person planning the

process for the project. This is called the 'Launch' phase. During this initial phase, team

members and the project manager define goals and assess the risks, and also produce

a team plan and assign tasks. During the implementation of the process, the team

meets to give status reports and revise the plan on a regular basis. At the end of the

development cycle performance is measured, and ways to improve the process are

discussed. TSP thus help to form a software development environment that enables the

heightening of a team's productivity [19].

11

2.1.3. Iterative processes

Iterative software processes are processes that continually rework software.

Rajlich [30] presents four of these processes: Solo Iterative Process (SIP), Agile

Iterative Process (AIP), Directed Iterative Process (DIP), and Centralized Iterative

Process (CIP).

2.1.3.1. Solo Iterative Process

SIP is a software process that involves only one programmer. In this process, the

programmer defines a product backlog, which is the list of requirements for a project,

and then creates or updates the code of the software depending on the priority of the

requirements in the product backlog. SIP is described in Figure 2.4.

The programmer, represented as “Solo” in the figure below, receives

requirements from users and generates a product backlog with these requirements.

After analysis of the requirements, the programmer prioritizes the requirements and

turns the ones with the highest priority into the iteration backlog. The next step for the

programmer is to select change requests from the iteration backlog and implements

them in the code. During the implementation, the programmer builds new baselines and

run system tests. Once the selected change requests are implemented, a new software

version is released to the users.

Throughout the process, the programmer keeps time logs and defects logs and

use them to estimate future tasks, baselines, and releases.

Most of software development projects need more efforts than a single

programmer can handle. This is why there exist team processes that divide the tasks to

12

do and allocate them to several persons. The next three sub-sections are examples of

team iterative processes.

Figure 2.4. SIP Model

2.1.3.2. Agile Iterative Process

AIP is a team iterative process where most of the decisions are made by

consensus whether it is to assign tasks or to solve problems. The programming team in

AIP counts approximately five to ten persons and the team members do not need any

specialized skills; the diversity of programming skills makes the tasks allocation very

easy.

AIP has two types of managers: the product manager and the process manager.

The product manager focuses more on the development of software. He supervises the

13

business decisions, controls the change requests, checks the programmers’ work, and

decides on the way to release a product. The process manager on the other hand

makes sure that the AIP process is properly followed. He ensures the functionality and

the productivity of the team and protects them from external interferences.

In Figure 2.5 which represents the AIP model, the product manager creates a

product backlog based on the users’ requirements and then generates an iteration

backlog. The programmers, after discussing and allocating tasks from the iteration

backlog, simultaneously make their software changes. In a daily loop, a new baseline is

created via the build process generally overnight. A daily meeting then takes place

where the programmers discuss the results from the last build, the progress of their

assignment, and the challenges they encounters. The daily meeting lasts roughly 15

minutes. During the meeting, the product manager helps resolve business related

issues of the project, while the process manager makes sure that the meeting is short

and professional.

A software development iteration in AIP lasts about one to four weeks, with a

common duration of two weeks. An iteration ends with an iteration meeting, where the

programmers, managers, and users participate. The first part of the meeting is the

iteration review, where the stakeholders listed above assess the current version of the

product and the expected version. The second part of the iteration meeting is to plan the

next iteration based on what happened in the previous iterations. The release of a new

version of the product to the users is also discussed during the meeting.

14

Figure 2.5. AIP model

 2.1.3.3. Directed Iterative Process

DIP is a team iterative process where the process managers make the decisions,

the planning, and the allocation of tasks. Unlike AIP, the programming team members

have specializations. In fact, there is a group of developers, who produce code, and a

group of testers, who validate the developers’ commits, test and certify baselines. The

product manager in DIP has the same role as the one in AIP: understand the software

and its position in the market. There could be more than one product manager in large

projects. As Rajlich states, “the process managers enact, monitor, and plan DIP.” They

allocate tasks to the developers and testers and make sure that the programming team

works without any interference.

15

Figure 2.6. DIP model

In the DIP model depicted in Figure 2.6., both the product and process managers

work together to produce the iteration backlog at the beginning of the process. The

process managers then assign change requests from the iteration backlog to the

developers, who implement their changes in parallel and submit them to the version

control system. In the build loop, the testers run daily system tests on the code and

generate new baselines.

Communication is a key element in DIP as accurate and regular feedback from

the development team eases the decision-making of managers.

At the end of the iteration, an iteration review informs the stakeholders about the

current state of the project. The length of iterations varies from one to six months.

2.1.3.4. Centralized Iterative Process

CIP, shown in Figure 2.7., is an iterative process highly recommended for teams

with a very diverse set of skills or teams where a high level of quality is expected. An

example of place where CIP is used is an open source community that is composed of

16

volunteers. Another field where CIP is employed is avionics. Software developers in that

field are highly skilled because human life is at stake. This is a reason why the commits

of these programmers are rigorously checked by code guardians before being accepted

in the repository of the version control system.

Code guardians are in general software architects, quality managers, code

owners, and so on. They all inspect and validate the programmers’ commits to protect

the quality of the code in the version control system. Especially, “architects guarantee

that the program architecture will be preserved through the evolution; code owners

guarantee the quality of the commits in the parts of the code they own; and quality

managers guarantee the general quality of the commits.”

Figure 2.7. CIP model

17

2.2. Phased Model of Software Change

In his book Software Engineering: The Current Practice [30], Vaclav Rajlich talks

about the way software changes are managed in projects. He introduces an approach

that guides software engineers in modifying software: the Phased Model of Software

Changes (PMSC). This section describes the different phases that compose PMSC. It

then outlines processes where PMSC is used and finally present some work that used

both PMSC and one of the iterative processes mentioned earlier.

2.2.1. Phases of Software Changes

PMSC is a software development process that assists programmers in applying

software changes, where each step of the process is a phase. Figure 2.8 shows an

overview of the whole process.

At the beginning of the process, programmers prioritize and select the change

request to implement. This is the initiation. This phase is followed by Concept Location

(CL), which identifies in the software the module or the piece of code that needs to be

updated whether to correct a defect or to add a new functionality. It happens sometimes

that concepts are scattered within the code. It is in this circumstance that impact

analysis becomes useful. In addition to the modules identified by CL as the potential

areas to make changes in the code, impact analysis points out other modules related to

the modules to modify and it also determines the impact of changes on these related

modules.

So far, the steps stated constitute the design of software change. They happen

just before the phases where the actual changes of the code are made. These phases

18

in which the actual change is made are the actualization, the refactoring, and the

verification.

Actualization is the phase where modifications in the code are implemented.

These modifications could affect some other parts of the code. It is the reason why,

similarly to impact analysis, change propagation identifies the parts affected by the early

changes in the code. The difference between impact analysis and change propagation

is that modifications are actually made in change propagation.

Another phase in PMSC is refactoring. It consists of changing the structure of the

code without changing any functionality. It is called prefactoring when it happens before

actualization and postfactoring when it happens after. Prefactoring restructures the old

code to make actualization easier, while postfactoring cleans up any mess that could

have occurred during actualization.

The next phase is called verification. This phase reduces bugs and any other problems

that may exist in the code at the time of the prefactoring, the actualization, the

postfactoring and the conclusion.

The last phase of software change is the conclusion. During this phase,

programmers commit their final version of the code into a version control system. They

can also create a new baseline along with an updated documentation and other

materials useful to the development of software.

19

Figure 2.8. Phased Model for Software Change

2.2.2. Previous work using PMSC

In an experience report using SIP [8], Christopher Dorman successfully

implements software changes on a medium sized open source tool despite his limited

experience in Java programming and his newness in the selected project. At the end of

his case study as a part of future work, he recommends the enactment of the other

iterative processes; AIP for small teams and CIP and DIP on large teams.

 As opposed to Dorman’s work, which concentrates primarily on SIP and a single

programmer, the experiment in this document addresses the use of PMSC among small

programming teams; it extends the use of SIP to a multiple programmer environment.

To do so a two phase user study was conducted to capture small team programmers’

experience with PMSC. In the first phases, the groups of students are assigned change

requests to apply on a specific Java-based application without knowledge of any PMSC

procedures. In the following phase, the students are taught PMSC techniques and are

20

asked to make change requests on other Java-based applications following PMSC.

Furthermore, each group works on a different application at each phase.

2.3 Software Process Tools

As Dorman mentions in his experience report [8], software evolution is not only

limited to a set of process steps to follow, but it also needs tools to assist the

programmers in the processes. Two types of tools could be distinguished: the ones

embedded in the Interactive Development Environment (IDE) and the other ones, which

are stand-alone applications. The IDE used in this study is Eclipse Classic 4.2.2.

2.3.1 PMSC-based Technologies

2.3.1.1. JRipples

JRipples is an Eclipse plug-in designed to assist java developers in making their

software changes easier. Buckner, Buchta, Petrenko, and Rajlich [4] created a tool that

helps to keep track of dependencies in a program and that guide programmers in what

their following step could be. At the same time, JRipples reduces the risk of errors that

would occur if that tracking is done manually. The tool focuses mostly on the concept

location, impact analysis, and change propagation aspects of PMSC.

2.3.1.2. JUnit

JUnit is a framework to write repeatable tests in Java programming [3]. It was

created by Kent Beck and Erich Gamma. It could be downloaded separately at junit.org

or be downloaded as part of the Eclipse IDE.

2.3.2. Other Supporting Tools

In addition to the required tools listed above, the students are given a set of tools

that assist them in their work. Because these tools are not mandatory to PMSC, any

21

other similar tools could be used in similar research. The supporting tools used for this

case study are the following.

2.3.2.1. Rabbit

 Rabbit is a plug-in used in Eclipse to track time. It is a tool that runs anonymously

in the background and records the time spent by the user in Eclipse. The information

gathered by Rabbit can be retrieved when the user requires it, via a view designed for

that purpose [13].

2.3.2.2. EclEmma

 EclEmma is an Eclipse plug-in used to get the code coverage for a java program.

In other words, it helps to see how much Java code has been executed during the

execution of the code [12].

2.3.2.3. Abbot Java GUI Test Framework

 Abbot is a testing framework for both functional and unit testing of Java Graphical

User Interfaces. It helps to generate user actions and to test the state of the

components without any human interaction with the source code being tested [36, 37].

2.3.2.4. Subversion & TortoiseSVN

 Subversion is an open-source version control system from Apache. It saves

different versions of files for developers [1].

 TortoiseSVN is a Windows subversion client, which helps to manage different

versions of files or any other documents saved in subversion [34, 35].

2.3.2.5. DiffStats

 DiffStats is a tool created by Christopher Dorman to count the number of lines

added, deleted, or moved in Java source code. It also works with C++ code [9].

22

CHAPTER 3: CASE STUDY

This chapter explains the motivation and goal of the experiment and then details

how the study was performed from start to end.

3.1. Motivation and Goal

In previous research conducted by Chris Dorman in [10], the experience of a solo

programmer is captured and analyzed using the PMSC and Solo Iterative Process

(SIP). The motivation for the study reported in this thesis is to extend that research by

observing the performance of multiple developer environments when applying software

changes using the PMSC approach. Henceforth, a user study is conducted using

graduate students (both Masters and PhD) enrolled in a graduate software engineering

course. These students conducted software changes in a desktop application

development environment.

3.1.1. Desktop Application Development

The teams are tasked with performing software changes on three different Java-

based applications. The first set of software changes is performed without the guidance

of the PMSC technique or assistance of any specified tools beyond the use of the IDE;

thus constituting a pre-test performance baseline. The other set of software changes

are performed respectively on two different applications following the PMSC technique,

and selected tools are adopted to support the PMSC phases of work.

During the software change efforts, programmers within each team record their

experience and their results in software change logs. A post analysis is then

conducted along with any follow-up inquiries to ascertain any observations and

23

findings. Additionally, the software change logs are used to collect quantitative data

similar to data collected by Dorman in his earlier research.

3.2. User Study Design

This study follows the recommended guidelines for empirical research in

software engineering [5, 24].

Six hypotheses have been formulated for this experiment. The first hypothesis is

that programmers complete their change requests faster when they use PMSC, whether

they are less experienced or more experienced. The second one is that they take less

time to analyze their code with PMSC. The third hypothesis is that the programmers

implement their code faster when they follow PMSC. The next hypothesis suggest that

PMSC helps experienced programmers in completing their change requests faster,

while the fifth hypothesis suspects that PMSC accelerates the code analysis of

experienced programmers working on their change requests. The last hypothesis is that

experienced programmers do not need much time to implement their code when they

follow PMSC. These hypotheses are stated as the following alternative hypothesis:

H1: PSMC shortens the completion of change requests. That is, there is a

significant difference between programmers using PSMC and those not using PSMC.

H2: Programmers require less time during code analysis following PMSC.

Specifically, there is a significant difference in the time spent by programmers

performing code analysis using PMSC and those not using PMSC.

H3: Programmers require less time during code implementation following PMSC.

Specifically, there is a significant difference in the time spent by programmers

performing code implementation using PMSC and those not using PMSC.

24

H4: PMSC shortens the completion time of software changes done by

experienced programmers. Specifically, there is a significant difference between

experienced programmers using PSMC and those not using PSMC.

H5: PMSC shortens the code analysis portion of the time of software changes

done by experienced programmers. Specifically, there is a significant difference in the

time spent by experienced programmers performing code analysis using PMSC and

those not using PMSC.

H6: Experienced programmers require less time during code implementation

following PMSC. Specifically, there is a significant difference in the time spent by

experienced programmers performing code implementation using PMSC and those not

using PMSC.

A “Before versus After” type of experiment, also known as a “within-subject”

experiment design, is conducted to measure how programmers perform when they

apply change requests without using PMSC and how they perform with the assistance

of PMSC. The “Before” portion of the design or pre-test serves as a baseline

performance for each individual in the study. Afterward, PMSC is introduced in the post-

test. This within-subject design is used because it provides a “higher degree of

experimental control” [31].

For this study, the systems assigned to the groups are interchange at each

stage. Practically, two systems are initially identified in order to eliminate the learning

effect, which is noticed when participants’ performance improves when they do the

same task repeatedly. As shown in table 3.1, the participants are separated in two

groups, where Group 1 is assigned tasks from System A and Group 2 is assigned tasks

25

from System B for the pre-test (i.e. stage 1). In a training stage, PMSC is introduced to

the groups along with a set of supporting tools. This part of the experiment is a

transition stage that serves as training to get the participants familiar with the new

process and the new tools that will be used in the next stage. Thereafter, it is the

second stage, where the students are assigned a system C and another set of changes

to complete.

Stage 1 Stage 2

Group 1 System A
(jAdvisor)

System C
(JabRef)

subject #2 change request 4 change request 2
subject #5 change request 3 change request 1
subject #6 change request 3 change request 3
subject #8 change request 2 change request 4
subject #10 change request 2 change request 2
subject #12 change request 5 change request 1

Group 2 System B
(jEdit)

System C
(JabRef)

subject #1 change request 1 change request 2
subject #3 change request 4 change request 4
subject #4 change request 5 change request 3
subject #7 change request 2 change request 4
subject #9 change request 1 change request 2
subject #11 change request 4 change request 1

Table 3.1. Case Study Design

Furthermore, we have considered the matter of general repetition, also related

to the learning effect issue. The application of this technique to the study is the

random assignment of the system in each stage and also the random distribution of

the change requests to the participants. This way, each student has a different set

of change requests experience across the stages.

This study design is very similar to the one used in [38].

26

3.2.1. Objects of the User Study

 This section presents the applications used for the study. To reduce the potential

of programmer learning between stages, different applications are used for software

changes. Therefore, the following open-source candidate applications shown in table

3.2 are used.

Program Version
number

Lines of
Code (KLOC)

Number of
packages

Number of
classes

Number of
methods

Number of
files

jAdvisor 0.4.6 4 4 34 353 34
jEdit 4.3 pre 9 100 42 850 5375 517

JabRef 2.6 78 56 835 4265 577
Table 3.2. Case Study Applications Metrics

 3.2.1.1. jEdit

 jEdit (http://jedit.sourceforge.net/) is an open-source text editor intended for

programmers. It is a user-friendly tool written in Java which could be customized with a

large variety of plugins. Some of its features are "Kill ring" which automatically

remembers previously deleted text, side by side windows, intelligent bracket matching,

and auto indenting [22]. The size of jEdit is about 100 KLOC.

 3.2.1.2. jAdvisor

 jAdvisor (http://jadvisor.sourceforge.net/) is a program that schedules classes,

plan courses, and search courses. It is designed for college students and it allows them

to graphically see and improve their schedule. jAdvisor could be personalized to a

specific school via adapters.

jAdvisor is written in Java and it counts 34 source code files grouped in 4 folders

and the size of project is about 4 KLOC spread over 34 classes [27].

http://jedit.sourceforge.net/
http://jadvisor.sourceforge.net/

27

3.2.1.3. JabRef

JabRef (http://jabref.sourceforge.net/), which stands for Java, Alver, Batada,

Reference, is an open-source program that manages bibliographical references. It is a

cross-platform tool written in Java and whose native file format is BibTeX. BibTeX is a

popular file format used to store bibliography. Some of its features are advanced

BibTeX editor, search of pattern in whole bibliography, import of various formats, and

automatic key generation. JabRef counts approximately 78 KLOC.

3.2.2. Subjects

This study is conducted on both Master and Ph.D. students taking a graduate

software engineering course during the fall semester 2013, where the phased model

for software changes is taught. However, we made sure that the knowledge of

PMSC techniques was not transmitted to the students before the suitable time in the

study. The use of students as subjects for this study is appropriate since it has been

proved that “there are only minor differences between the conception of students

and professionals in certain software engineering circumstances.” [26]

The students are divided in small groups in order to make software changes on

the desktop applications listed above, with one application per stage. At the beginning

of each stage, the students are taught the manipulation of the supporting tools to use for

that particular stage. The next section explains how the division in groups was made.

3.2.3. Division into teams

Before their assignment in groups, the students took a pre-study

survey. The survey allowed us to discover the students’ years of experience in object

oriented programming languages such as Java and C++ and also

http://jabref.sourceforge.net/

28

to know their familiarity with the candidate supporting tools to use when working on their

change requests. Afterward, two groups were formed and the students were randomly

assigned to these groups. It should be noted that being part of a particular group did

not matter much because the results of the pre-study survey allowed us to

differentiate the less experienced programmers and the more experienced

programmers. The average number of programming years between the participants

was approximately 2.7 years, with the years ranging from one to seven years.

Moreover, none of the students had any programming experience with the systems

selected for the study. The graph in figure 3.1 shows the overall number of

programming years and the number of Java programming years for each of the

students participating to the experiment.

Figure 3.1. Programmer Experience

3.2.4. Data Collection

The data collection is essential to the user study to build upon Dorman’s prior

research. Therefore, from a quantitative perspective the same data is collected from the

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12

Yrs of Programming Experience with Java

29

teams based on Table 2 of Dorman’s paper [8]. The participants are provided with

log templates to capture both their quantitative and qualitative data. After each stage,

follow-up inquiries are performed to clarify any of the data collected. Finally, a post-

study questionnaire is given to the students to understand their learning experience

during the study.

30

CHAPTER 4: RESULTS AND INTERPRETATION

 In this chapter, we analyze the collected data from a statistical point of view in

order to justify the hypotheses mentioned in the previous chapter. We also interpret the

results. The first section of this chapter explains how the analysis of the data is

accomplished. The next section talks about the efficiency of PMSC, while the last

section of the chapter presents how the supporting tools helped participants of the

study.

 4.1. Statistical Analysis

The population used for this study is composed of programmers with various

levels of expertise. The feedback from the pre-study survey permitted the classification

of the participants in groups of “more experienced programmers” and “less experienced

programmers”. Section 4.6 gives more details about the two groups.

For our statistical analysis, we have followed a set of steps in order to verify the

hypotheses of the study. First, we determined the difference between the total amount

of time spent to complete a change request without the assistance of PMSC and

compared it to the total amount of time spent to complete a change request with the

assistance of PMSC. Next, a set of normality tests is run to observe whether the

collected data follow a normal distribution or not. The existence of a normal distribution

would suggest the use of parametric tests as opposed to the use of non-parametric

tests when there is no normal distribution of the collected data.

The normality test selected is the Anderson-Darling test and the p-value resulting

from the collected data presented in table 4.1 is p=0.283. In the Anderson-Darling test, if

the p-value is greater than α = 0.022 and this means that the data do not follow normal

31

distribution. A consequence for having this distribution is to use a non-parametric test to

prove the hypotheses. Thus, the Wilcoxon matched pair signed rank non-parametric

test is used to justify our hypotheses.

Moreover, in the proof of our hypotheses, we compare a null hypothesis to each

of our alternate hypotheses listed in section 3.2. An alternate hypothesis represents

what we plan on proving and it is noted Ha: µa or Hi: µi where i represents the index of a

specific hypothesis and µi is the median of the population. Conversely, the null

hypothesis designates the opposite of the hypothesis to prove and it is noted H0: µ0,

with µ0 = 0.

4.2. PMSC Completion Results

The experiment assesses programmer’s performance before learning PMSC and

after learning PMSC. In other words, the programmers are given a first set of change

requests, which they complete based on their own methodology. Meanwhile, they

record the amount of time they took in the completion of those change requests (i.e.

stage 1 in Table 4.1). Next, the PMSC approach is presented to the participants and

another set of change requests is assigned to them. They also record the average

amount of time spent on those changes requests while following PMSC (i.e. stage 2 in

Table 4.1). The size and complexity of the system used in the second stage of the study

ensured that any “learning effort” was minimized.

Two of our hypotheses are related to the time spent to complete software change

requests following PMSC: hypothesis H1 that suggest that PMSC shortens the

completion of software change requests for all programmers and hypothesis H4 that

states that PMSC shortens the completion time of software changes done by

32

experienced programmers. As mentioned earlier in this section, the first step for our

statistical analysis on PMSC completion is to determine the difference of time spent to

complete software changes with and without PMSC. The other step is to apply the

Wilcoxon matched pair signed rank non-parametric test to justify the hypotheses H1 and

H4.

Phased Software Change Model User Study Data

Code
Analysis
Stage 1

Code
Implement

Stage 1
Stage 1

Total
Code

Analysis
Stage 2

Code
Implement

Stage 2
Stage 2

Total

subject #1 180 1080 1260 40 330 370
subject #2 731 337 1068 300 270 570
subject #3 165 250 415 30 150 180
subject #4 480 150 630 300 150 450
subject #5 840 660 1500 150 120 270
subject #6 360 240 600 420 70 490
subject #7 380 170 550 107 56 163
subject #8 720 420 1140 20 50 70
subject #9 310 125 435 165 75 240
subject #10 175 278 453 121 448 569
subject #11 90 82 172 150 480 630
subject #12 210 360 570 140 270 410

median 335 264 585 145 150 390
std. dev. 242.63 267.10 388.94 116.41 145.31 174.50
average 386.75 346.00 732.75 161.92 205.75 367.67

time reported in minutes
Table 4.1. PMSC Study Data for All Programmers

A statistical analysis is undertaken to prove the hypotheses listed in section 3.2.

To justify hypothesis H1 that suggests that PSMC shortens the completion of change

requests, a measurement of the difference between the amount of time spent by the

participants completing the change requests without PMSC and the amount of time

33

taken to complete the change requests while using PMSC is necessary. The null

hypothesis H0: µ0 = 0 (median = 0), which infers that PMSC does not assist

programmers in the completion of a change request, is originally considered. It is then

compared to hypothesis H1: µ1. More precisely, the comparison consists of the

differentiation of the time spent to complete a change request with the assistance of

PMSC and the time spent to complete a change request without the assistance of

PMSC.

The results from table 4.1 show that the programmers completed their software

changes in stage 2 faster than they did in stage 1. More precisely, without assistance of

PMSC they took on average 6 hours 27 minutes (387 minutes) to perform code analysis

and 5 hours 46 minutes (346 minutes) for the coding, thus totaling an average of 12

hours 13 minutes (733 minutes). The median is 9 hours 45 minutes (585 minutes) and

the standard deviation (std. dev.) is 6 hours 29 minutes (389 minutes). On the other

hand, when following PMSC, programmers took on average 2 hours 42 minutes (162

minutes) to perform code analysis and 3 hours 26 minutes (206 minutes) for the

actualization, totaling an average of 6 hours 08 minutes (368 minutes) to complete the

change request with the assistance of the PMSC approach. The median is 6 hours 30

minutes (390 minutes) and the standard deviation (std. dev.) is 2 hours 54 minutes (174

minutes). This constitutes a 49.8% overall improvement or 6 hours 05 minutes (365

minutes) reduction in time, consisting of 58.1% improvement in code analysis and

40.5% improvement in code implementation. The significant reduction in the standard

deviation between stage 1 and stage 2 might show that PMSC helps programmers to

perform better.

34

When the results are narrowed to experienced programmers only as shown in

table 4.2, one could notice that PMSC has helped experienced programmers to reduce

the time they spent to complete their change request. In fact, without the assistance of

the PMSC approach, it took them approximately 357 minutes to perform code analysis

and 410 minutes to implement their code during the first stage, thus totaling an average

of 767 minutes to complete the change request. The median is 600 minutes and the

standard deviation (std. dev.) is 312 minutes. On the other hand, experienced

programmers spent 121 minutes to analyze their code and 217 minutes in the

actualization phase with the assistance of PMSC, totaling on average 338 minutes to

complete their change requests. The median is 390 minutes and the standard deviation

(std. dev.) is 171 minutes. This constitutes a 44.1% overall improvement or 429 minutes

reduction in time, consisting of 66.1% improvement in code analysis and 47.1%

improvement in code implementation. Once again, the remarkable difference in the

standard deviation between the two stages may prove a consistent performance among

experienced programmers following PMSC.

Phased Software Change Model User Study Data - More Experienced Programmers

Code

Analysis
Stage 1

Code
Implement

Stage 1
Stage 1

Total
Code

Analysis
Stage 2

Code
Implement

Stage 2
Stage 2

Total

subject #1 180 1080 1260 40 330 370
subject #4 480 150 630 300 150 450
subject #7 380 170 550 107 56 163
subject #8 720 420 1140 20 50 70
subject #10 175 278 453 121 448 569
subject #12 210 360 570 140 270 410

median 295 319 600 114 210 390
std. dev. 197.27 314.68 312.37 90.70 145.62 170.57
average 357.50 409.67 767.17 121.33 217.33 338.67

time reported in minutes
Table 4.2. PMSC Study Data for More Experienced Programmers

35

The next step for this statistical analysis is to perform a Wilcoxon matched pair

signed rank non-parametric test. The result of this test is a p-value p = 0.025, which is

less than α = 0.05 and implies 95% confidence. This result means that there is

statistically significant evidence of a difference between the null hypothesis H0 (i.e. µ0 =

0) and the actual median size µ1 (i.e. µ1 = 6 hours 09 minutes). Therefore, the

hypothesis H1 is verified. In other words, PMSC shortens the completion of change

requests.

Regarding hypothesis H4 that states that PMSC shortens the completion time of

software changes done by experienced programmers, the verification requires a

measurement of the difference between the amount of time spent by the experienced

programmers completing the change requests without PMSC and the amount of time

taken to complete the change requests with the assistance of PMSC. The null

hypothesis H0: µ0 = 0 (median = 0) considered in this case is that PMSC does not assist

experienced programmers in the completion of their change request. H4: µ4 is then

compared to the null hypothesis H0: µ0 = 0 and the p-value generated from the Wilcoxon

matched pair signed rank is p = 0.059. This p-value is slightly greater than α = 0.05 at a

95% confidence test, thus implying that although we find improvements, there is no

evidence of statistical significance that experienced programmers require less time to

complete their software change.

4.3. PMSC Code Analysis Performance Results

For our experiment, analyzing PMSC code analysis performance implies the

verification of hypothesis H2 and hypothesis H5. For this purpose, the data in table 4.1 is

once again statistically analyzed in an attempt to validate the hypothesis H2, which

36

states that programmers require less time during code analysis following PMSC. The

null hypothesis considered to prove H2 implies that PMSC has no effect on the time

spent by programmers to analyze source code. Thus, H2: µ2 is compared to the null

hypothesis H0: µ0 = 0 and the p-value generated from the Wilcoxon matched pair signed

rank is p = 0.009. This p-value is less than α = 0.05 at a 95% confidence test. An

immediate conclusion from this result is that there is statistical significant evidence that

programmers need less time in code analysis when they use PMSC.

A similar statistical analysis is done for hypothesis H5: µ5. That is, PMSC

shortens the code analysis portion of the time of software changes done by experienced

programmers. The null hypothesis H0: µ0 = 0 considered to evaluate H5 infers that

PMSC does not assist experienced programmer in the code analysis phase. After

comparing H5 to the null hypothesis H0, the Wilcoxon matched pair signed rank

generated a p-value p = 0.036, which is less than α = 0.05 and implies 95% confidence.

Thus, there is also statistical significant evidence that experienced programmers need

less time in their code analysis when they follow PMSC.

4.4. PMSC Code Implementation Performance Results

Finally, the same statistical analysis is repeated for hypothesis H3 and hypothesis

H6, which are both related to the code implementation performance of PMSC.

Hypothesis H3 suggests that programmers require less time during code implementation

following PMSC. The null hypothesis H0: µ0 = 0 considered in this case is that PMSC

does not assist programmers in code implementation. For H3, performing a Wilcoxon

matched pair signed rank after the comparison of the null hypothesis and hypothesis H3:

µ3 does not generate convincing statistical evidence supporting that programmers

37

require less time during code implementation when they follow PMSC. In fact, the p-

value obtained is p = 0.131, which is greater than α = 0.05 at a 95% confidence test.

We also used the previous statistical analysis to evaluate hypothesis H6: µ6. This

hypothesis asserts that experienced programmers require less time during code

implementation following PMSC. The null hypothesis H0: µ0 = 0 adopted to prove H6

indicates that PMSC does not assist experienced programmers in code implementation.

Next, the hypothesis H6 is compared to the null hypothesis H0 and the Wilcoxon

matched pair signed rank provided a p-value p = 0.281, which is greater than α = 0.05

at a 95% confidence test. Therefore, there is not conclusive statistical evidence that

substantiates that experienced programmers require less time during code

implementation following PMSC.

From the verification of these hypotheses, an early conclusion can be drawn.

Even though the PMSC approach aid programmers in code analysis, any improvement

in code implementation or testing might heavily depend on the individual programmers’

native programming skillsets and experience.

4.5. PMSC Qualitative Review

This section examines whether some of the qualitative goals of the user study

are reached. Specifically, it elaborates on the effectiveness of PMSC, its sufficient

definition, and its completeness.

4.5.1. PMSC Effectiveness

The data collected and presented in table 4.3 provides evidence to substantiate

that PMSC is an effective process for programmers completing software changes from

the participants’ perspective. In fact, 67% of the participants claimed in their post –

38

experiment survey that it was helpful for them to complete their change request with the

assistance of PMSC as opposed to completing it without any assistance. Besides, 83%

of the programmers reported in their stage log reports having saved time when following

PMSC. Specifically, the reduction of time was more noticeable in the concept location

and impact analysis phases, both constituting the code analysis phase, rather than

other phases of the software change process. 80% of the participants affirmed having

saved time in the concept location phase and 70% of them reported having saved time

in the impact analysis phase. In addition to that, respectively 37% and 30% of the

programmers mentioned having saved time in the refactoring and verification phases.

Finally, 60% of the participants whom PMSC saved the time reported time savings

during actualization.

Table 4.3 shows the results from the post-study survey questionnaire. One

important remark from this survey is that programmers on average spent less time

during the stage using PMSC even though they claimed that the software change

requests were more challenging in that stage. Also, the examination of the

programmers’ comments and observations from their stage logs and post-study survey

indicates that the programmers found the concept location and impact analysis phases

as the most laborious phases because of the necessity to decipher the system and its

source code. Regardless, less time is needed to quantitatively and qualitatively perform

code analysis with the assistance of PMSC than without.

39

Post Study Survey Questionnaire

Question Yes No
Was PMSC More Effective? 8 4

Did PMSC Save Time? 10 2

If so in which phases?

Concept Location? 8 2

Impact Analysis? 7 3

Refactoring (Pre & Post)? 3 5

Actualization? 6 4

Verification? 3 7

On a scale of 1 - 5 rate the difficulty performing the
change request in the following stages:

Avg. ±σ

Stage 1? 3 1.16

Stage 2? 4 1

Table 4.3. PMSC Post-Study Survey Data

4.5.2. PMSC Sufficiently Defined

In theory, the current definition of PMSC phases is easily understandable, but it

is not always the case in practice. In fact, some participants perceived limitations in

impact analysis. They were not able to accurately discern whether that phase was

complete or sufficient without having to inspect all the pieces of code reported by the

impact analysis tool JRipples. As a result, there was a wide variation and

inconsistencies in their time, effort, and performance. Some participants found

necessary to perform thorough class inspections in the impact analysis phase. A

comment from one of these participants was that “The change request required a lot of

analysis based on inspecting all of the classes flagged as next for the estimated impact

set”. Other participants inspected selected classes instead. One of them reported that

40

“During Impact Analysis, 174 classes were marked as a neighboring class. Seemed too

many classes to analyze”.

These remarks from the participants are in alignment with what Dorman

mentions in his report [8] when he points out that some aspects of impact analysis

needs more clarification. More precisely, he emphasizes that impact analysis needs a

better definition of its exit criteria. As a reminder, exit criteria refer to the conditions at

which a phase should stop as opposed to entrance criteria which refer to the conditions

at which a phase should start. From this observation, it should be understood that

further research in determining entrance / exit criteria would be valuable to improve

PMSC.

Another remark is made on the students’ logs concerning concept location. That

is there is no guideline about the appropriate circumstances in which the concept

location techniques available in JRipples should be used. This lack of indication in

the choice of concept location technique led us to allow the participants to

select a technique according to their liking. As a result, this freedom of choice

brought the participants to confusion as they did not know whether they should

perform grep analysis, dependency search, or both. This aspect of PMSC would

also benefit an in-depth investigation.

4.5.3. PMSC Completeness

Although the participants’ feedback infers that all the activities and tasks they

performed are addressed by PMSC, it is essential to mention that the comments from

the participants’ log reports also reveal that the PMSC phases do not always succeed

41

each other as presented on figure 2.4. Two main observations are made from these log

reports.

The first observation concerns the code analysis phase. Specifically, the

transition between conception location and impact analysis is not always perceivable

since it occurs mostly in an intermixed way. Sometimes programmers can start impact

analysis without knowing exactly whether all the code fragments highlighted by concept

location are found or not. It may happen that other code snippets that were missed from

conception location get discovered during the impact analysis phase. Thus, there exist

an iterative aspect between concept location and impact analysis.

The other remark is related to code implementation. Specifically, refactoring and

actualization must also allow iterative characteristics between phases. The reason is

that performing code change during refactoring could generate a ripple-effect for

additional impact analysis or actualization supporting the software change.

4.6. Less Experienced versus More Experienced Programmers

The data collected from the pre-experiment survey allowed us to divide the

participants in two main groups. The criteria for the differentiation were the number of

years programming in multiple languages and their experience level. The first half of the

participants was classified as “more experienced programmers” with an average of 4.33

years programming in Java, while the second half was identified as “less experienced

programmers” with an average of 1.13 years programming in Java. Figure 3.1 gives

more details about the ranking of the participants. The outcome of the in-depth analysis

conducted on the students’ performance differences over the stage 1 and the stage 2 of

the experiment was that there was an obvious improvement observed with both the less

42

experienced programmers and more experienced programmers. As depicted in figure

4.1, 5 out of 6 less experienced programmers reduced their overall time in completing

software changes with the assistance of PMSC compared to their overall time in

completing software changes without PMSC. Similarly, figure 4.2 shows that 5 out of 6

more experienced programmers completed their change requests faster with the

assistance of PMSC than without PMSC.

Figure 4.1. Less Experienced Programmer (Individual) Comparison

Figure 4.2. More Experienced Programmer (Individual) Comparison

43

The less experienced programmers completed their software changes with on

average 44% less time. They precisely used 51.3% less time for the code analysis

constituted of concept location and impact analysis, and they 31.2% less time during

code implementation composed of refactoring, actualization, and verification.

The more experienced programmers reduced their overall time to complete their

software changes by 55.8%. While following PMSC, they spent 66% less time to

perform their code analysis and finished their code implementation in 46.9% less time

than the time they spent without the assistance of PMSC. One could presume that

performing software changes is relatively obvious for experienced programmers.

However, the data results summarized in figure 4.3 and figure 4.4 indicate that more

experienced programmers gain from using PMSC.

Figure 4.3. Less Experienced Programmer (Group) Comparison

44

Figure 4.4. More Experienced Programmer (Group) Comparison

The statistical analysis of the data collected substantiates that PMSC effectively

assists both less experienced and more experienced programmers in the concept

location and impact analysis phases of software change. However, the same remark

cannot be deduced for the code implementation phases. As a matter of fact, statistical

findings do not provide significant evidence to confirm that PMSC aids programmers in

code implementation. Thereby, it could be inferred that any improvement in both code

implementation and verification phases essentially depends on individual programmers’

innate programming skills and personal experience.

4.7. Tool Support

The use of supporting tools within PMSC phases produces diverse outcome as

not all PMSC phases dispose of specific tool. Feedback from the participants sustained

800

45

that the supporting tools used during concept location and impact analysis were useful,

yet the lack of integration of the set of tools within the experiment was problematic. In

addition, it was quite challenging for the students to fully understand a set tools before

being able to implement their change requests. Because of that, it was imperative to

have training sessions. JRipples played an important role in the study as it helped in

supporting integration between concept location and impact analysis. On the contrary,

there was no such integration support in the code implementation and verification

phases. An example of integration in the later phases could be to mark all source code

fragments modified during refactoring and actualization. Therefore, an integrated

support could be to do unit testing and regression testing based on the modified

modules. This type of integration would have been immensely helpful to the students.

Lastly, although the PMSC process can be followed without any tool support, integrating

tool support within the process would further improve the quality of work achieved by

programmers.

4.8. Threats to Validity

As in almost every experiment, there exist multiple factors that can compromise

the results of an ongoing research and lead to a misinterpretation of the findings. One of

the main concerns for us then becomes the identification these confounding factors and

how to counter them. As a reminder, confounding factors are variables not under

investigation, which may somehow affect the results of the experiment. In this study, we

made sure that quantitative data was properly collected in order to effectively prove the

hypotheses listed in section 3.2. In addition to that, pre-experiment and post-experiment

qualitative data was collected to strengthen the quantitative data. The rest of this

46

section explains how the subjects of this study were selected and identifies potential

threats. For the later matter, it elaborates on how internal and external validity were both

ensured.

While designing the user study, we determine the potential candidate for

the experiment. The options available to us are to choose between professional

software engineers and students in a computer science department. The decision is

eased by [5, 26], which address the problem of using students instead of professional

programmers. In fact, it is usually advantageous to select students for software

engineering research, yet there exist circumstances where it is more

appropriate to use professional programmers. In [5], claim is made that there are

contexts where the use of students in research should be embraced as a

complementary approach to attempt to rely on a sampling of professional

programmers rather than being considered as an inadequate technique. Similarly in

[26], it is demonstrated that the use of students instead of professional software

engineers only generates minor differences in performance results. However,

the difference in performance between a beginner and an expert programmer is

obvious when they perform much complex task such as leveraging asynchronous

programming or security when necessary. This idea concurs with the research

presented in [32], which identifies how novice programmers handle exceptions as

opposed to senior developers. To verify the hypotheses of this study, we estimate

that working with graduate students rather than undergraduate students is suitable.

The reason for that is there is a distinction between less experienced and more

experienced programmers and all the observed similarities and differences are

reported.

47

Key dependent and independent variables are identified to undertake potential

threats to validity. For this experiment, these variables are the size of the candidate

systems, the variety and complexity of the software change requests, the programmers’

experience. Consequently, we made sure to precisely address these variables in the

design of the user study.

Regarding internal validity, we made certain that the participants’ programming

background was known. Having that information helped them in determining and

countering the major confounding factors that could influence the participants. These

confounding factors were years of programming experience, familiarity with the objects

within the user study, familiarity with the proposed approach, and the supporting tools.

Moreover, the learning effect issue was addressed. More precisely, the knowledge

acquired during the first stage of the experiment might have increased the participants’

effectiveness in completing the later software change requests. Therefore, actions

outlined in section 3.2 were used to attenuate this learning effect.

Another effort to enforce internal validity was to standardize as many of the

conditions as possible. These conditions included the establishment of the tools to be

used within the study and the production of a standard format for the documents

required to collect both qualitative and quantitative data at each stage of the study.

Regarding data collection, it was acknowledged that self-reporting of performance was

limited at times. To lessen these limitations, a quality control review of the participants’

log was incorporated in the process of reviewing the different log reports. In other

words, for any log report with unclear or doubtful data results, a follow-up questionnaire

was sent to its author for further clarification. Internal validity was also imposed by

48

selecting and designing the user study. Specifically, the software change requests and

the subject systems under study were randomly selected and assigned to the

participants.

While internal validity is more related to the technical aspect of the study,

external validity focuses more on the knowledge and the experience of the participants.

The programming background from the subjects of a study may be diverse and some

programmers may be accustomed to specific programming technologies, source code,

and application domain more than others. For this experiment, the participants might

have more practical knowledge about various searches and comprehension

approaches. Again, the use of students as opposed to professional programmers only

generates minor differences in performance results in certain circumstances [26]. In the

interpretation of the results, care was taken not to generalize the results too much. The

main confounding factor to address for external validity was the classification of the

participants in groups of more experienced and less experienced programmers.

Specifically, we confined in a narrow and relevant space the comparison of the results

from the more experienced programmers against the less experienced programmers.

Despite the careful design and the knowledge acquired by its participants,

weaknesses were noticeable in the experiment and some of them are the following.

First, the participants of the study did not work in a control environment. They worked at

home and at their own pace, so the data that some students entered in the logs could

be considered trustworthy. Therefore, we had to discard some of the student logs from

the study. Additionally, the students had so much freedom about their working

environment that we run into problems when some of them could not use some of the

49

Windows-based supporting tools (i.e. TortoiseSVN) on their Mac system. Second,

PMSC was exhaustively taught in class. Nevertheless, we failed to practically present

all its facets during the experiment. For example, we did not show the participants how

to determine the estimated impact set nor the actual impact set. A direct consequence

was that we did not collect any data about it. Furthermore, we were not able to collect

enough data about neither the refactoring nor the verification phases because of the

lack of training on the supporting tools. One reason is that refactoring is not required, so

some students did it and some others did not. About the verification phase, we probably

did not get enough data from students because they did not know how to do testing

appropriately. There was also confusion among the students about change propagation.

In JRipples for instance, it was unclear when to mark a class “Next” or “Propagated”. A

last remark is that the participants were working more as individual programmers than

team members in their respective groups because the change requests were not

designed in such a way that the students work together as a team.

We also acknowledged that the two classes of programmers could have

performed differently under others software engineering conditions. It is clear that

assigning different change request, software systems, and application domains may

require different efforts to complete the changes. This outcome may happen as well if

PMSC is merged with supporting tools different from the ones used in this user study. It

should additionally be kept in mind that the subject systems of this experiment are not a

stereotype of all types of software systems. However, they were selected such a way

that they were diverse in size and complexity. Any attempt to generalize the findings to

50

other software change requests and types of software systems should be done

thoughtfully.

51

CHAPTER 5: CONCLUSION AND FUTURE WORK

This thesis explored how a phased model for software change (PMSC) affects

the time programmers spend to complete software change requests. An exploratory

study was conducted by graduate students implementing a set of software changes.

The first stage consisted of the participants using their previous knowledge of software

engineering to complete software change requests, while in the second stage, the same

participants completed another set of change requests, but this time with the assistance

of PMSC that was introduced to them after stage 1. Our findings show that there is

statistically significant evidence that PMSC considerably reduce the time used to

implement a software change. In fact, the required time to do so may be reduced by

half. We additionally discovered that PMSC aids both experienced and less experienced

programmers not only in code analysis activities, but also in code implementation

phases.

Upon acknowledgement of the strength and weaknesses of this current study, a

repeat experiment should have the students working in a controlled environment such

as a lab, with all the required tools installed on the computers from the lab. This way,

their work can be monitored appropriately and the data collected from them would be

more reliable. Another recommendation would be to incorporate more training to the

study to avoid any sort of confusion among participants.

Although there is evidence that PMSC is an effective process, offering additional

guidance for specific PMSC phases would improve the process. Also, greater

integration and a smoother transition between the tools would further improve impact of

PMSC.

52

Future work would include an exploration of entrance and exit criteria of the

PMSC phases.

APPENDIX A: Sample of Software Change Requests

Sample of jAdvisor Change Requests

1. Permutation Request: Generate the various permutations of a schedule that exists

from a set of selected courses. The user will just enter the courses that they want to

take and the program should create the various schedules and present them to the user

in an organized way.

2. School Adapter: Research the creation of a school adapter like the ones included

with the program. This school adapter should download the appropriate school

schedule for Wayne State, if possible. If not possible we should implement a school

adapter for any other Michigan school. Once a proper document describing the creation

of a school adapter is finalized, the programmer will implement the adapter.

3. Schedule Display: Currently, the user is not allowed to add a class that has a time

confliction. This is immensely unusable. Instead the user should be able to add such a

class, however, all classes that overlap at any time should be shown as red instead of

the default. Also they should be labeled as conflicting.

4. XML Class Schedule Support: Research the usage of XML as a way to save the

output schedule of the user. The XML structure must be clear and readable. Once this

structure is documented, as a DTD file, the user should be able to save their output in

the XML format, and also the program should be able to read the XML format into both

the planner and schedule tabs.

5. Color Coding Schedule: JAdvisor allows the user to enter block time to the

schedule; however, it is very limited. You are to add a classification drop down box to

the block time menu. It is to display various classifications like study time, food break

53

time, homework time, etc. The amount of different classifications is up to you, but

should reflect various parts of a schedule. Each classification should then show up as a

different color block on the schedule. This way the user can easily identify their

allocated time.

6. Planner Duplication: The planner is supposed to allow the user to plan all four years

of their curriculum, but it allows for duplicates. Since usually students do not repeat

their courses, the program should ask the user for an overwrite if they do add a

duplicate course either in the same semester or future semesters. Calculate the number

of credits taken for each duplicate course.

7. Planner Courses: Create a planner wizard that allows the user to enter in all of the

courses necessary for their degree and the maximum and minimum number of credits

for each course. These should then be saved in XML format. Next show these courses

in the planner tab on the right hand side. If a course has been taken and the maximum

credits is satisfy the name should appear in red and the user should not be allowed to

select it. Also the mandatory courses should appear in red in the wizard. A mandatory

course has the minimum credits greater than 0. In our department, for example,

CSC6580 and CSC6500 are mandatory courses.

8. HTML Support: The current implementation allows the user to output HTML, but not

to read it in. The user needs this ability. The program should read an HTML file and fill

in the scheduler or the planner as if it were saved. You can decide if an HTML is a

planner or a scheduler based on the column names of the table.

54

Sample of jEdit Change Requests

1. “Modify the splash window”: Currently the splash window of jEdit is a static picture.

Add the names and emails of your group members to it. And add moving text as the

same effect shown in “About jEdit” dialog. Adjust the scrolling speed so that all text can

be shown.

2. “Zoom the text editor”: Under menu View, add two menu items “zoom+” and

“zoom–“ to scale the editors. At this stage, the scaling factors are not defined. The view

should be able to be scaled multiple times.

3. “Search and mark all”: Under menu Search, add menu item “mark all”. Locate all

matches and add markers to all of the lines.

4. “Add timestamps to log”: Locate where the activity.log is. Currently there are no

timestamps in the log file. Add timestamps to all kinds of messages.

5. “Duplicate data when creating a new view”: Currently clicking View | New View

will create a new view for the same data; which means that modification in one view will

affect the other one. Add menu item New View&Buffer under menu View to allow the

user to duplicate data for the current shown view only.

6. “Show/Hide whitespace”: Currently jEdit shows a red dot at the end of every line.

Newline is the only whitespace symbol that jEdit shows. Add menu item Show/Hide

whitespace under menu View to allow the user to choose whether all whitespace

symbols (newlines, blanks, and tabs) will be shown. At this stage you do not have to

worry about editing of the text with whitespace showing.

55

7. “Search list”: Currently jEdit allows users to access the text that was previously

search by pressing page_up or right-click keys in Search Dialog. Display in a listbox the

last 5 text fragments that were previously search.

8. “Signature”: Allow the user to specify a signature to be used as the footer in all

printed documents. An option should be available to enable/disable the signature.

When the option is enabled, the signature will appear in the status bar.

9. “Edit remote files”: The user can indicate the URL of the file; jEdit retrieves the

document to local machine for modification; then puts it back to the location named by

the URL to overwrite the original one. At least protocols of HTTP and FTP should be

supported.

10. “Simulate notepad appearance”: Draw horizontal black lines, which separate

continuous lines. The appearance is like paper in a notebook.

11. “Record the typing speed of the user”: Record how many characters and words

the user types in this session and show how fast he/she is. Use words per minute to

measure the speed. The information will be shown at the status bar.

13. “vi-style input”: The procedure is: 1) double press key “ESC”; 2) input a number X;

3) type in something; 4) press “ESC” again, the sentence which you just typed will be

inserted X times at the current position. Any key sequences not following the procedure

exactly will not invoke this behavior.

14. “open read only”: Allow the user to open the file in read-only mode. All the

features except editing should be available.

56

Sample of JabRef Change Requests

1. Consolidating BibTeX files

Input: a folder, output: a .bib file

Hints:

• scan recursively the input folder and its sub folders

• find all BibTeX files

• parse these files to BibTex Databases

• merge these databases, remove conflicts if any

• save the consolidated databases to a output file

Create GUI for this functionality

2. Shrinking BibTeX files

Input: a .bib file, a folder containing .tex files, output: a new .bib file

Hints:

solution 1:

• scan .tex files

• find citation command (\cite, \citet, \citep) to collect the keys of the BibTeX items

used

• compare to the keys in the .bib file, remove any redundant items

solution 2:

• compile the .tex file using bibtex commands

• open the output .bbl file of the .bib file

• read all the bibtex items that have been used

• compare and remove any redundant items

57

Create GUI for this functionality

3. Unicity of bibTeX key

In the feature "Autogenerate BibTeX keys" keys are generated in this format

[author][year].

Make a change so that the BibTeX keys have the timestamp added to the format like

this [author][year]_[hhmmss] (e.g. Brooks2010_083025).

4. Auto-update timestamp on edit

The current format of the timestamp when adding an entry is [year].[month].[day] (e.g.

2013.11.18).

Make a change so that the timestamp has the format [year][month][day].[hh][mm][ss]

(e.g. 20131118.083025) and it is auto updated when the button auto is clicked.

58

APPENDIX B: Pre – Experiment Questionnaires

This appendix contains the pre - experiment questionnaires of the study. Only a

sampling of these questionnaires is shown in this thesis to preserve the length of the

document. Six out of twelve pre - experiment questionnaires are kept for this purpose

and the criterion of selection of reports is the level of experience of the participants.

Specifically, three less experienced and three more experienced participants had their

questionnaires selected.

The full list of pre - experiment questionnaires is available online via the following

link:

https://drive.google.com/folderview?id=0BwkmElTjUf2qVjZVXzdDaWpSdHc&usp=shari

ng.

59

https://drive.google.com/folderview?id=0BwkmElTjUf2qVjZVXzdDaWpSdHc&usp=sharing
https://drive.google.com/folderview?id=0BwkmElTjUf2qVjZVXzdDaWpSdHc&usp=sharing

CSC 6110 Student Pre-Experiment Questionnaire

Please answer the following questions for the CSC 6110 team project assignments to the best of
your ability.

Student #

Graduate Status Masters

Ph.D.

Please indicate programming experience

Java Beginner

Intermediate

Expert

Years of experience

C/C++ Beginner

Intermediate

Expert

Years of experience

Other (Please list)

Beginner

Intermediate

Expert

Years of experience

Experience / Familiarity with the following applications

Eclipse None / NA Beginner Intermediate Expert

SVN / TortoiseSVN None / NA Beginner Intermediate Expert

Abbot Java GUI
Test Framework

None / NA Beginner Intermediate Expert

JUnit None / NA Beginner Intermediate Expert

4

1

1

CSC 6110 Student Pre-Experiment Questionnaire

Please answer the following questions for the CSC 6110 team project assignments to the best of
your ability.

Student #

Graduate Status Masters

Ph.D.

Please indicate programming experience

Java Beginner

Intermediate

Expert

Years of experience

C/C++ Beginner

Intermediate

Expert

Years of experience

Other (Please list)

Beginner

Intermediate

Expert

Years of experience

Experience / Familiarity with the following applications

Eclipse None / NA Beginner Intermediate Expert

SVN / TortoiseSVN None / NA Beginner Intermediate Expert

Abbot Java GUI
Test Framework

None / NA Beginner Intermediate Expert

JUnit None / NA Beginner Intermediate Expert

5

1

1

CSC 6110 Student Pre-Experiment Questionnaire

Please answer the following questions for the CSC 6110 team project assignments to the best of
your ability.

Student #

Graduate Status Masters

Ph.D.

Please indicate programming experience

Java Beginner

Intermediate

Expert

Years of experience

C/C++ Beginner

Intermediate

Expert

Years of experience

Other (Please list)

Beginner

Intermediate

Expert

Years of experience

Experience / Familiarity with the following applications

Eclipse None / NA Beginner Intermediate Expert

SVN / TortoiseSVN None / NA Beginner Intermediate Expert

Abbot Java GUI
Test Framework

None / NA Beginner Intermediate Expert

JUnit None / NA Beginner Intermediate Expert

6

1

1

CSC 6110 Student Pre-Experiment Questionnaire

Please answer the following questions for the CSC 6110 team project assignments to the best of
your ability.

Student #

Graduate Status Masters

Ph.D.

Please indicate programming experience

Java Beginner

Intermediate

Expert

Years of experience

C/C++ Beginner

Intermediate

Expert

Years of experience

Other (Please list)

Beginner

Intermediate

Expert

Years of experience

Experience / Familiarity with the following applications

Eclipse None / NA Beginner Intermediate Expert

SVN / TortoiseSVN None / NA Beginner Intermediate Expert

Abbot Java GUI
Test Framework

None / NA Beginner Intermediate Expert

JUnit None / NA Beginner Intermediate Expert

7

7

2

Python, JavaScript

CSC 6110 Student Pre-Experiment Questionnaire

Please answer the following questions for the CSC 6110 team project assignments to the best of
your ability.

Student #

Graduate Status Masters

Ph.D.

Please indicate programming experience

Java Beginner

Intermediate

Expert

Years of experience

C/C++ Beginner

Intermediate

Expert

Years of experience

Other (Please list)

Beginner

Intermediate

Expert

Years of experience

Experience / Familiarity with the following applications

Eclipse None / NA Beginner Intermediate Expert

SVN / TortoiseSVN None / NA Beginner Intermediate Expert

Abbot Java GUI
Test Framework

None / NA Beginner Intermediate Expert

JUnit None / NA Beginner Intermediate Expert

8

1

2

CSC 6110 Student Pre-Experiment Questionnaire

Please answer the following questions for the CSC 6110 team project assignments to the best of
your ability.

Student #

Graduate Status Masters

Ph.D.

Please indicate programming experience

Java Beginner

Intermediate

Expert

Years of experience

C/C++ Beginner

Intermediate

Expert

Years of experience

Other (Please list)

Beginner

Intermediate

Expert

Years of experience

Experience / Familiarity with the following applications

Eclipse None / NA Beginner Intermediate Expert

SVN / TortoiseSVN None / NA Beginner Intermediate Expert

Abbot Java GUI
Test Framework

None / NA Beginner Intermediate Expert

JUnit None / NA Beginner Intermediate Expert

9

1

1

PRO C

1

APPENDIX C: Stages Log Reports

This appendix contains the study log reports from Stage 1 and Stage 2.

However, to preserve the length of this thesis, we present a sampling of our log reports

in this thesis. Only six out of twelve reports are kept for Stage 1 and six out of twelve

reports are retained for Stage 2. The criterion of selection of the reports is the level of

experience of the participants. Specifically, three less experienced and three more

experienced participants had their log reports selected for Stage 1. The same

participants also had their log reports selected for Stage 2.

The stages log reports presented in this thesis as well as the ones not shown are

available online at the following addresses:

• Stage 1 Log Reports:

https://drive.google.com/folderview?id=0BwkmElTjUf2qcHRLWTBlY25NY

UU&usp=sharing

• Stage 2 Log Reports:

https://drive.google.com/folderview?id=0BwkmElTjUf2qSWJfRXduTVdXQ

nc&usp=sharing

66

https://drive.google.com/folderview?id=0BwkmElTjUf2qcHRLWTBlY25NYUU&usp=sharing
https://drive.google.com/folderview?id=0BwkmElTjUf2qcHRLWTBlY25NYUU&usp=sharing
https://drive.google.com/folderview?id=0BwkmElTjUf2qSWJfRXduTVdXQnc&usp=sharing
https://drive.google.com/folderview?id=0BwkmElTjUf2qSWJfRXduTVdXQnc&usp=sharing

CSC 6110 Project Results Log

Student #4

Change Request#: 5

“Duplicate data when creating a new view” Currently clicking View | New View will create

a new view for the same data; which means that modification in one view will affect the other

one. Add menu item New View&Buffer under menu View to allow the user to duplicate data for

the current shown view only.

1 Detailed Report

1.1 Code Analysis

The steps performed for implementing the change were:

1. Before starting to work on the change, the JEdit tutorial was read on some of the basic

features like View, Buffer and the relationship between them to understand their

functionality to better work on the change.

2. Performed code search using the string “view menu” and retrieved the list of classes

that were associated with it.

3. Analyzed the dependencies between the classes and the underlying methods to narrow

down the classes that needs changes.

4. Ran the JEdit.java class to see the initial output to analyze the various View menu

options to better understand the change request.

5. Inspected the class jedit_gui.props on how a new menu has been added and after

reviewing the same, added a new menu item new-view-buffer under the view menu.

6. Tested the code if the new menu is added under the view menu.

7. After the new menu was added, the action of creating a new buffer had to be

assigned to the created menu. So searched for “action” in the search bar and found

that actions.xml was the relevant file to create the action for the new menu item

created.

67

8. In the new buffer that was created, some text was typed in and the new-view-buffer

menu was selected to see if the change in text in one view is affecting the other. It

was affecting, so started with the code search that deals with the buffering of the text

area from one view to the other.

9. Searched for the string “buffer” and retrieved classes like Buffer.java,

BufferHandler.java, BufferOptions.java, BufferChanging.java, BufferHistory.java, etc.

10. After visiting the mentioned classes and their dependent classes and methods, figured

that Buffer.java is the class that has to be referred to make changes.

11. The class Buffer.java had a variable called ‘dirty’ which is set to true when the user

had entered some input in the text area. If there is no input then the attribute ‘dirty’ is

set to false. So the ‘dirty’ attribute was set to true when there was some user input in

the text area and the content of the current buffer was copied onto the buffer of the

second view.

12. Tested the functionality again and this time the change in text in one view did not affect

the other thus implementing the change request.

Please provide a detailed journal entry describing how you went about identifying and

determining which source code files needed to be modified in order to support this change

request.

Describe the steps performed, how you went about inspecting / investigating the source code

files and where to make the necessary changes.

68

Code Files Visited

Code Files Visited /
Inspected Only

Comments

13

1. JEdit.java

2. Actions.xml

3. jedit.props

4. jedit_gui.props

5. Buffer.java

6. TextArea.java

7. JEditTextArea.java

8. BufferHandler.java

9. View.java

10. ViewOptionPane.java

11. JEditBuffer.java

12. BufferOptions.java

13. BufferChanging.java

1.1.1 Code file 1 – Jedit.java

This being the main class file, ran the file to check the output of the JEdit editor and

analyzed the various options under the view menu and also in-depth code inspection was

done for the ‘new-view’ method to understand the functionality of the method.

1.1.2 Code file 2 – Actions.xml

The motivation behind visiting this file was to check how the menu items are given an action

to perform. The search term provided was ‘action’ that retrieved a list of class files that had

action as the string. After visiting all the classes, this xml file seemed the most relevant as

there were functions that assign actions to the menu items.

1.1.3 Code file 3 –jedit.props

This file was visited in a thought that this would be the file to create the new menu item. When

69

the search ‘menu’ was given in the search bar this file was brought up by the search and

when inspected this file, realized that this file was not useful.

1.1.4 Code file 4- jedit_gui.props

This was the next jedit file that showed up when the search ‘menu’ was given. The previous

file jedit.props did not seem to be useful. So the next file in the result was investigated to find

out if this could be used for creating menus. After analyzing the entire file, concluded that this

is the right one for creating menus.

1.1.5 Code file 5- Buffer.java

The next thing to look for after creating menu and assigning an action was files related to

buffer and view. To implement the change request, the understanding of the working of buffer

and view was very important. The search term given was ‘buffer’ and that produced

Buffer.java, BufferHandler.java, BufferOptions.java and BufferChanging.java. The files retrieved

were analyzed line by line to understand how buffer is created and under what condition a

buffer is created. Buffer.java had all the required information for buffer creation while the other

class files did not turn out to be useful.

1.1.6 Code file 6 – TextArea.java

TextArea.java was visited to check if there was any functionality regarding the text input in the

text area. There was no search term provided for the file. It was randomly selected for

analysis as the name of the file seemed relevant. But this class file contained information

about the font size, font and various formatting options for the text. So this class was not useful

for the change.

1.1.7 Code file 7-JEditTextArea.java

This file was the next file that was picked for analysis when the previous TextArea.java did not

seem useful. But this class file also did not have any useful information.

1.1.8 Code file 8- BufferHandler.java

This file showed up when the search for buffer was made but when this file was visited it

70

did not have any required information.

1.1.9 Code file 9 – View.java

The reason to view ‘view.java’ file was to analyze if the class has any methods for creating

new view and check the functionality of the existing view. The search term given was ‘view’

using the eclipse search bar. This file was not useful for the change.

1.1.10 Code file 10- ViewOptionPane.java

The next file that was retrieved for the search ‘view’ was ViewOptionPane.java. This class also

did not have any relevant information about view.

1.1.11 Code file 11-JEditBuffer.java

This file was retrieved for the search term ‘Buffer’. Visited the file to find out if it has any code

fragment for buffer creation and concluded not useful.

1.1.12 Code file 12-BufferOptions.java

This also was one of the files that was brought out for the search term ‘Buffer’ and was not

required for the request implementation.

1.1.13 Code file 13- BufferChanging.java

This was amongst one of the files that was retrieved for the search ‘Buffer’ and was not required

for the change request.

1.2 Code Changes

Please provide a detailed journal entry describing how you went about performing the

necessary coding changes for this change request.

Coding Change Summary

71

Code Files

Visited Changed Added Unchanged Comments

13 3 0 10 Addition of statements

Modified Code Files

Code File Name Task Lines of Code

 Added Deleted Total

1.
jedit_gui.props

Created a menu item

new-View-Buffer
2 0 2

2.
actions.xml

Created a new action for

newViewBuffer
5 0 5

3.
JEdit.java

Added a new method

newViewBuffer
13 0 13

1.2.1 Code file 1 - jedit_gui.props

Searched for the string “view menu” to retrieve the list of relevant classes. Inspected all the

files that was pulled out on the search and found that this was the file where all the menu for

the JEdit has been created. Accordingly, the menu item new-view-buffer was created under

the View menu.

1.2.2 Code file 2 – actions.xml

After the new menu was added, its subsequent action had to be assigned to the menu item.

This led to another search for classes that dealt with creating actions for the existing

menu. The search string provided was ‘action’ that retrieved a list of classes that had

dependencies with action. After visiting all the classes and their dependent methods, ended

up in actions.xml that the search result was referring to. Analyzed the entire file as to how

actions are created for each menu and deeply inspected the action created for “new-view”

menu and a similar action was created for new-view-buffer.

72

1.2.3 Code file3 – Jedit.java

The change was to create a new view such that modification in one view does not affect the

other when new-view-buffer menu is chosen. Currently the buffer changes in each view, so

the current buffer is captured from the view and is assigned to the newly created view.

When a user has typed in the TextArea, a new buffer is not created. A dirty bit is set to

true to accomplish the same. Then the text from the first view is retrieved using the getText

method and assigned to the new buffer using the setText method. This way the modification

in one view does not affect the other.

1.3 Testing

Testing was done at 3 stages.

1. Testing was done to check after the new-view-buffer was created.

2. Secondly, after the new menu was created, the action was assigned to it and testing

was again performed to check if the action is assigned to the menu.

3. Thirdly, the testing was done to check if the modification in one view affects the other.

Statement Verification

Code File Name Coverage of Application Tests
Failed

Bugs
Found Total

Stateme

Covere
d

%

1. JEdit.java 5506 29 0.52% 0 0

1.4 Timing

For code analysis, no tool was used for calculating the time. The time shown below is an

approximate manual calculation spent on analysis. Time spent for code change and testing

73

were captured from Rabbit.

Timing Totals

Phase Name
Time

(hh:mm)

Code Analysis 08:00

Code Change 01:00

Testing 01:30

Total Time 10:30

1.5 Conclusions

The menu ‘new-view-buffer’ was created in a way that the content in one view does not affect

the content in the other view while the content in view1 is copied onto view2.

74

CSC 6110 Project Results Log

Student #5

Change Request#: 3

Please provide a description of the change request / defect:

Currently, the user is not allowed to add a class that has a time confliction. This is
immensely unusable. Instead the user should be able to add such a class, however, all
classes that overlap at any time. Also they should be labeled as conflicting.

1 Detailed Report

1.1 Code Analysis

Please provide a detailed journal entry describing how you went about identifying and

determining which source code files needed to be modified in order to support this change

request.

Describe the steps performed, how you went about inspecting / investigating the source code

files and where to make the necessary changes.

Code Files Visited

Code Files
Visited /

Inspected Only

Comments

2 TimeofDay.java

 Advisor.java

1.1.1 Code file 1

Please provide a detailed journal entry describing the reason / motivation for visiting /

inspecting the file. Also please describe how code file inspection was performed (i.e. tools

used, terms searched, etc…)

75

TimeofDay.java

Ans:- First, I executed the project and then in the project tried to add two classes with same

time and in the console it showed error and through the use of EclEmma coverage I narrowed

down the file TimeofDay.java and in that is isAConflict(). This is the reason for inspecting the

file.

1.1.2 Code file 2

Please provide a detailed journal entry describing the reason / motivation for visiting /

inspecting the file. Also please describe how code file inspection was performed (i.e. tools

used, terms searched, etc…)

Advisor.java

Ans:- when I wanted to add two classes with same time in the initial phase of project ,eclipse

console used to show error messages and I inspected it as I wanted System.err.println

statement to show conflict message instead of error message in the console. This is the

reason why I inspected this file.

1.2 Code Changes

Please provide a detailed journal entry describing how you went about performing the

necessary coding changes for this change request.

Coding Change Summary

Code Files

Visited Changed Added Unchanged Comments

2 # 1 # # 1 TimeofDay.java - (CHANGED)

Advisor.java - (UNCHANGED)

Modified Code Files

Code File Name Task Lines of Code

Added Deleted Total

 1 TimeofDay.java MODIFICATION 8 - 8

76

1.2.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this file and its

new / modified responsibilities

TimeofDay.java

Ans:- First , I executed the project and then in the project tried to add two classes with same

time and in the console it showed error and then I saw TimeofDay.java file and modified the

method isAConflict() with return type Boolean true to false and then I executed the projected

which allowed to add two classes with same time and then I imported libraries java.awt.Color,

java.util.*, javax.swing.JOptionPane , javax.swing.UIManager, javax.swing.JOptionPane and

javax.swing.UIManager and then I created UI.put to add red color and

JOptionPane.showMessageDialog to show conflict information in dialog box and then I added

System.err.println statement to show conflict message instead of error message in the

console.

1.2.2 Code file 2

Please provide a detailed journal entry describing the changes performed on this file and its

new / modified responsibilities

1.3 Testing

Please provide a detailed journal entry describing how you went about performing testing for

this change request.

I had created a testcase with start time 11 and end time 13.00 using assertequals, asserttrue,

assertfalse and assertnotnull and in the output showed both errors and failures as zero in

junittest on file timeofdaytest.java file. It also showed green color band instead of red color

band which indicates there are no bugs.

Statement Verification

Code File Name Coverage of Application Tests
Failed

Bugs
Found Total

Statements
Covered

Statements
%

 1 TimeofDayTest.java 16427 31 0.2 0 0

77

1.4 Timing

Please provide a detailed journal entry describing how any of the supporting tools aided with

completing this change request.

Timing Totals

Phase Name Time
(hh:mm)

Code Analysis 14:00

Code Change 7:00

Testing 4:00

Total Time 25:00

1.5 Conclusions

Please provide a detailed journal entry summarizing completing this change request.

Answer:- First I analyzed all codes to create a vision pattern of packages by looking for

GUI(Graphical User Interface) package, planner package, scheduler package and adapter

package for which I lost most of the time and then I executed the jadvisor project and

narrowed down the file and method to modify with.

78

CSC 6110 Project Results Log

Student #6

Change Request 3: Schedule display
Please provide a description of the change request / defect:

Currently, the user is not allowed to add a class that has a time confliction. This is immensely

unusable. Instead the user should be able to add such a class, however, all classes that

overlap at any time should be shown as red instead of the default. Also they should be labeled

as conflicting.

1 Detailed Report

1.1 Code Analysis

Please provide a detailed journal entry describing how you went about identifying and

determining which source code files needed to be modified in order to support this change

request.

Describe the steps performed, how you went about inspecting / investigating the source code

files and where to make the necessary changes.

All the source code files were first downloaded and the following steps were followed to

analyze and point out the changes needed in the files:

1. Firstly, since the task was about modifying schedule display, source code files or folders

having any name relation to ‘schedule’ were inspected as a first approach. This

approach led to inspection of folder ‘jadvisor.scheduler’

2. In the jadvisor.scheduler, all the files were analyzed briefly to get an idea of their

inputs,outputs and function files that they may refer.

3. The search command in Eclipse was utilized to find for words that matched the string

‘conflict’ in all the files under the entire jadvisor project folder. To maximize the search

options, the search string was given as *conflict*.

4. There were 12 matches that were obtained from the previous step. A picture of the

results is shown figure 1 below.

79

 Figure 1. Results of the search command *conflict*

The relationship between the different files was studied to understand how they handle the

input and outputs between each other. The lines of code shown in the search results were

studied.

Code Files Visited

Code Files
Visited /

Inspected Only

Comments

4 The files that have the string ‘conflict’ were visited. Following are the

files:

ScheduleWizard.java | StudentBlock.java | StudentSchedule.java |

TimeOfDay.java |

1.1.1 Code file 1: ScheduleWizard.java

Please provide a detailed journal entry describing the reason / motivation for visiting /

inspecting the file. Also please describe how code file inspection was performed (i.e. tools

used, terms searched, etc…)

80

This file had a matching string ‘conflict’ from the search command and was therefore visited for

inspection. Using line 34 as a pointer from the search results, the specific line was studied in

this file. It was found that this line was a comment section of the code and the file performed a

task of ruling out classes that had time conflicts.

1.1.2 Code file 2: StudentBlock.java

Please provide a detailed journal entry describing the reason / motivation for visiting /

inspecting the file. Also please describe how code file inspection was performed (i.e. tools

used, terms searched, etc…)

Similar to the previous file, the reason to visit this file was that it had 2 matches for the string

‘conflict’. The relevant lines 53 and 56 were studied. This file takes the values of class time and

dates and refers TimeOfDay.java file for inputs.

1.1.3 Code file 3: StudentSchedule.java

There were 6 matches of the string ‘conflict’ in this file. The study of this file revealed that if

there is a conflict between the classes, then it displays an error message ‘Cannot Add’. All the

lines related to conflict were studied.

1.1.4 Code file 4: TimeOfDay.java

There were 2 string matches in this file. Lines 70 and 76 from the search results were studied

to find their contribution to file outputs.

1.2 Code Changes

Please provide a detailed journal entry describing how you went about performing the

necessary coding changes for this change request.

Coding Change Summary

Code Files

Visited Changed Added Unchanged Comments

4 1 - 3 TimeOfDay.java was edited.

81

Modified Code Files

Code File Name Task Lines of Code

Added Deleted Total

1 TimeOfDay.java Allow the user to

add the class in

spite of a

conflict.

7 lines added None deleted 7 lines

1.2.1 Code file 1: TimeOfDay.java

Please provide a detailed journal entry describing the changes performed on this file and its

new / modified responsibilities

The following were the changes performed in TimeOfDay.java file:

1. Added 4 new libraries. java.awt.Color library manages the change of color for the task

that requires a notification in different color. java.util.*, javax.swing.UIManager and

javax.swing.JOptionPane libraries are required to generate a pop up dialogue box.

2. Line 79 had a true value which would prevent adding classes in case of a conflict. The

value was changed to false. With this change, the user is allowed to add the class

irrespective of a conflict.

3. Line 74 to 76 were added. The code in these lines change the color to Red and

generates a pop up message that reads “There is conflict between classes”.

1.3 Testing

Please provide a detailed journal entry describing how you went about performing testing for

this change request.

After modifying the TimeOfDay.java file, JUnit test case tool was implemented to run the

‘IsAConflict’ method for finding errors. A test case is shown in figure 2 below.

82

Figure 2. Test case using IsAConflict method

1) Test case was created to check for the correctness and the following errors were found

and later debugged.

Statement Verification

Code File Name Coverage of Application Tests Failed Bugs Found

Total
Statements

Covered
Statements

%

1 TimeofDay.java 333 151 45.03% 1 4

1.4 Timing

Please provide a detailed journal entry describing how any of the supporting tools aided with

completing this change request.

Eclipse: Eclipse is widely used and is the most developers start off. It supports several plug-ins

like rabbit, Coverage, Eclemma and SVN which helped throughout the project in keeping track

of time and check for the statements.

83

JUnit: Verifying the correctness of a program's behavior by inspecting the content of output

statements using a manual testing, or more specifically, a visual process. Doing it manually

was the tedious task. So JUnit helped in running the particular class or methods separately.

Timing Totals

Phase Name Time
(hh:mm)

Code Analysis 06.00

Code Change 03.00

Testing 01.00

Total Time 10.00

1.5 Conclusions

Please provide a detailed journal entry summarizing completing this change request.

The Java tools Eclipse and JUnit were efficiently employed in this task to point out the areas to

be studied and modified for completing the change request. The learning curve involved in

understanding the software and the code was longer and led to greater amount of time spent

on analyzing the code and shorter time for the actual modification of the code. The testing of

code using JUnit yielded valuable insight into errors and further modifications of the code. The

change required was successfully implemented as per the request. Overall, got a exposure to

new environment.

84

CSC 6110 Project Results Log

Student #7

Change Request#: Zoom the text editor
Please provide a description of the change request / defect:

Under menu View, add two menu items “zoom+” and “zoom-” to scale the editors. At this stage, the
scaling factors are not defined. The view should be able to be scaled multiple times.

Contents
1 Detailed Report ... 2

1.1 Code Analysis .. 2

1.1.1 Change strategy .. 2

1.1.2 Change and Code Analysis .. 3

1.1.3 Code File: ActionContext.java ... 5

1.1.4 Code File: actions.xml ... 5

1.1.5 Code File: Buffer.java .. 6

1.1.6 Code File: ChunkCache.java .. 6

1.1.7 Code File: DockableWindowFactory.java .. 6

1.1.8 Code File: EditAction.java ... 6

1.1.9 Code File: EditPane.java .. 6

1.1.10 Code File: EnhancedMenu.java ... 7

1.1.11 Code File: FastRepaintManager.java... 7

1.1.12 Code File: GUIUtilities.java .. 7

1.1.13 Code File: Gutter.java ... 7

1.1.14 Code File: JComponent.java .. 7

1.1.15 Code File: jEdit.java ... 8

1.1.16 Code File: jedit_gui.props ... 8

85

1.1.17 Code File: JEditTextArea.java .. 8

1.1.18 Code File: JTextArea.java .. 8

1.1.19 Code File: PaintText.java ... 9

1.1.20 Code File: SyntaxStyle.java.. 9

1.1.21 Code File: TextArea.java.. 9

1.1.22 Code File: TextAreaPainter.java .. 9

1.2 Code Changes ...10

1.2.1 Code file 1: actions.xml ...10

1.2.2 Code file 2: EditPane.java ...10

1.2.3 Code file 3: jedit_gui.props ...10

1.2.4 Code file 4: SyntaxStyle.java ...10

1.3 Testing ..11

1.4 Timing ...11

1.5 Conclusions ...12

1 Detailed Report

1.1 Code Analysis
Please provide a detailed journal entry describing how you went about identifying and determining
which source code files needed to be modified in order to support this change request.
Describe the steps performed, how you went about inspecting / investigating the source code files and
where to make the necessary changes.

1.1.1 Change strategy

The strategy for making this change was composed of the following steps:

1. Search the source code for adding the menu items “Zoom in” and “Zoom out”
2. Understand the existing code to know how the menu bar and their items work.
3. Run the program and manually test the change.
4. Change the program: add the menu items and make them functional (when they were clicked

they showed a message in the program log).

86

5. Run the program and manually test the change.
6. Browser the code and understand the logic behind the editor’s text area.
7. Change the code for making the zoom-in/zoom-out features work when the menu items were

clicked.
8. Run the program and manually test the change.
9. Use abbot to make and run the GUI tests.

Steps 6, 7 and 8 where iteratively performed until the change worked. There were some additional
activities after two or three iterations of these steps:

1. Find another text editor in Java which provides the zoom-in/zoom-out functionality. The other
editor found was RText1.

2. Understand how this feature works in RText.
3. Change the code of JEdit, based on the code of RText.

1.1.2 Change and Code Analysis

In general, for making this change these actions were performed (using eclipse features):
1. Searching text in the code.
2. Finding dependencies of classes, methods and attributes (clients and suppliers).
3. Debugging and running the program.

From the step 1 to 5 this is what was done to identify, understand and modify the code:

1. Search “menu” in all the source code.
2. Browse the search results. Only the results located in the org folder of jEdit were reviewed, as

this folder contains the source code.
3. Visit the methods of the class GUIUtilities that deal with the menu bar loading.
4. Visit the class EnhancedMenu as this is instantiated in one of those methods.
5. Visit the class jEdit to figure it out where the menus’ names are stored.
6. Inspect the file jedit_gui.props and change it to add the menu items in the View menu.
7. Run the program to check if the menu items effectively appear.
8. Search “Unknown action” in all the source code. When clicking one of the added menu items a

message in the log appeared with the text “Unknown action: zoom-in”.
9. Browse the results.
10. Visit the classes EditAction and DockableWindowFactory. The class DockableWindowFactory

did not contain anything useful.
11. Visit the class ActionContext, since one of the methods of EditAction called the method

ActionContext.getAction.
12. By browsing the dependencies of this class, the class jEdit was visited again.

87

13. Visit the file actions.xml. The file was changed by adding two actions called “zoom-in” and
“zoom-out”

14. Two methods were added to the class EditPane: zoomIn and zoomOut. The methods contained
only a line which displayed a message in the program’s log.

15. The program was run and some manual tests were performed.

For the rest this is what was done:
1. The class EditPane was inspected to understand how it worked. The class was inspected

because some actions in actions.xml related to the view menu use this class.
2. These classes were inspected, based on dependencies analysis of the class EditPane:

a. Buffer
b. SyntaxStyle
c. TextAreaPainter
d. PaintText
e. JEditTextArea
f. TextArea
g. ChunkCache

3. More than three runs and debugs of the program were performed to understand the code.
4. The methods zoomIn and zoomOut of the class EditPane were modified. Now, they changed

the font of the classes TextArea and TextAreaPainter.
5. The program was run and some manual tests were performed.
6. The change partially worked: the caret and the dot in the text area changed their size but not

the font.
7. These classes were inspected in detail: EditPane, TextArea and TextAreaPainter.
8. Some minor changes were performed. The program was run and debugged, but the changes

didn’t work.
9. The inheritance of the class TextArea was changed to JTextArea, instead of JComponent, and

some refactorings were necessary. This change was based on the RText’s code2.
10. The program was run. This change didn’t work as the program logged some exceptions.
11. This last change was reverted.
12. The text “font” was searched in the package org.gjt.sp.jedit.textarea
13. Every result was read in the results window.
14. The following classes were inspected:

a. ChunkCache
b. FastRepaintManager
c. Gutter
d. TextArea
e. TextAreaPainter

15. The method TextAreaPainter.setStyles and its clients were inspected. This method was reached
because its comments had something related to the font.

16. The class SyntaxStyle was inspected.

2 http://fifesoft.com/rtext/

88

http://fifesoft.com/rtext/

17. The methods zoomIn and zoomOut of the class EditPane were modified. They now call the
method TextAreaPainter.setStyles with new font styles. The size of the fonts was changed to
the current size of the text area’s font.

18. The program was run and some manual tests were performed. The change now works.

Code Files Visited
Code Files Visited /
Inspected Only

Comments

20 In total, the following 20 code files were visited:
1. ActionContext.java
2. actions.xml
3. Buffer.java
4. ChunkCache.java
5. DockableWindowFactory.java
6. EditAction.java
7. EditPane.java
8. EnhancedMenu.java
9. FastRepaintManager.java
10. GUIUtilities.java
11. Gutter.java
12. JComponent.java
13. jEdit.java
14. jedit_gui.props
15. JEditTextArea.java
16. JTextArea.java
17. PaintText.java
18. SyntaxStyle.java
19. TextArea.java
20. TextAreaPainter.java

1.1.3 Code File: ActionContext.java

Motivation for inspection: one of the methods of EditAction called the method ActionContext.getAction.

Method used: dependencies browsing through reference searching (CTRL+G in Eclipse).

1.1.4 Code File: actions.xml

Motivation for inspection: this file contains the actions of the menu items. The file was changed by adding two

actions called “zoom-in” and “zoom-out”.

Method used: manual dependencies browsing.

89

1.1.5 Code File: Buffer.java

Motivation for inspection: this class represents a text buffer of a file. This class was inspected in order to

understand its behavior, in relation with the change request.

Method used: dependencies browsing through reference searching (CTRL+G in Eclipse), from the class EditPane.

1.1.6 Code File: ChunkCache.java

Motivation for inspection: this class was inspected in order to understand its behavior, in relation with the

change request. It was not relevant for the request. Also, the class was one of the results for the search “font” in

the package org.gjt.sp.jedit.textarea.

Method used: text searching (CTRL+H in Eclipse) and dependencies browsing through reference searching

(CTRL+G in Eclipse), from the class EditPane.

1.1.7 Code File: DockableWindowFactory.java

Motivation for inspection: this class was one of the results for the search “Unknown action”. This class did

not contain anything useful related to the change request.

Method used: text searching (CTRL+H in Eclipse).

1.1.8 Code File: EditAction.java

Motivation for inspection: this class was one of the results for the search “Unknown action”.

Method used: text searching (CTRL+H in Eclipse).

1.1.9 Code File: EditPane.java

Motivation for inspection: this class represents the editor of a view in jEdit, including the text area. The class

was inspected because some actions in actions.xml related to the view menu use this class. Two

methods were added to this class: zoomIn and zoomOut.

90

1.1.10 Code File: EnhancedMenu.java

Motivation for inspection: the class is instantiated from one the methods inspected in the class GUIUtilities.

Method used: dependencies browsing through reference searching (CTRL+G in Eclipse), from the class

GUIUtilities.

1.1.11 Code File: FastRepaintManager.java

Motivation for inspection: this class was one of the results for the search “font” in the package

org.gjt.sp.jedit.textarea. This class is responsible for painting some specific elements in the text area.

Method used: text searching (CTRL+H in Eclipse).

1.1.12 Code File: GUIUtilities.java

Motivation for inspection: this class was one of the results for the search “menu”. The methods that deal with

the menu bar loading were reviewed.

Method used: text searching (CTRL+H in Eclipse).

1.1.13 Code File: Gutter.java

Motivation for inspection: this class was one of the results for the search “font” in the package

org.gjt.sp.jedit.textarea. This class is the left side bar that displays the line numbers of the text area.

Method used: text searching (CTRL+H in Eclipse).

1.1.14 Code File: JComponent.java

Motivation for inspection: the inheritance of the class TextArea was changed to JTextArea, instead of

JComponent. The class was inspected in order to understand its relationship with JTextArea.

91

Method used: text searching (CTRL+H in Eclipse) and dependencies browsing through inheritance hierarchy

visualization (CTRL+G in Eclipse), from the class JComponent.

1.1.15 Code File: jEdit.java

Motivation for inspection: this class is the main class of jEdit and is responsible for loading properties

configuration files of the application. This class was visited to figure it out where the menus’ names and actions

of menus were stored.

Method used: text searching (CTRL+H in Eclipse) and dependencies browsing through reference searching

(CTRL+G in Eclipse), from the classes ActionContext and EnhancedMenu.

1.1.16 Code File: jedit_gui.props

Motivation for inspection: this file is used to store GUI label names, including menus and menu item. This file

was changed to add the menu items in the View menu.

Method used: manual dependencies browsing.

1.1.17 Code File: JEditTextArea.java

Motivation for inspection: This class is a super class of a text area. This class was inspected in order to

understand its behavior, in relation with the change request.

Method used: dependencies browsing through reference searching (CTRL+G in Eclipse), from the class EditPane.

1.1.18 Code File: JTextArea.java

Motivation for inspection: the inheritance of the class TextArea was changed to JTextArea, instead of

JComponent. The class was inspected in order to understand its relationship with JComponent.

Method used: text searching (CTRL+H in Eclipse) and dependencies browsing through inheritance hierarchy

visualization (CTRL+G in Eclipse), from the class JTextArea.

92

1.1.19 Code File: PaintText.java

Motivation for inspection: this class is responsible for painting some visual components of the text editor. This

class was inspected in order to understand its behavior, in relation with the change request.

Method used: dependencies browsing through reference searching (CTRL+G in Eclipse), from the class EditPane.

1.1.20 Code File: SyntaxStyle.java

Motivation for inspection: a syntax style is basically a font with some visual attributes. This class was inspected

in order to understand its behavior, in relation with the change request.

Method used: dependencies browsing through reference searching (CTRL+G in Eclipse), from the class

TextAreaPainter.

1.1.21 Code File: TextArea.java

Motivation for inspection: this class is the text area of jEdit. This class was inspected in order to understand its

behavior, in relation with the change request. Also, the class was one of the results for the search “font” in the

package org.gjt.sp.jedit.textarea.

Method used: text searching (CTRL+H in Eclipse) and dependencies browsing through reference searching

(CTRL+G in Eclipse), from the class EditPane.

1.1.22 Code File: TextAreaPainter.java

Motivation for inspection: this class paints all the elements in the text area. This class was inspected in order to

understand its behavior, in relation with the change request. Also, the class was one of the results for the search

“font” in the package org.gjt.sp.jedit.textarea.

Method used: text searching (CTRL+H in Eclipse) and dependencies browsing through reference searching

(CTRL+G in Eclipse), from the class EditPane.

93

1.2 Code Changes
Please provide a detailed journal entry describing how you went about performing the necessary coding
changes for this change request.

Coding Change Summary
Code Files
Visited Changed Added Unchanged Comments

20 4 0 16 The process was described in the previous
section.

Modified Code Files
Code File Name Task Lines of Code

Added Deleted Total
1 actions.xml Addition of the menu item actions. 12 0 12
2 EditPane.java Addition of the zoom-in/zoom-out logic. 45 0 45
3 jedit_gui.props Addition of the menu items. 5 0 5
4 SyntaxStyle.java Addition of a method. 7 0 7

1.2.1 Code file 1: actions.xml

The menu item actions zoom-in and zoom-out were added

1.2.2 Code file 2: EditPane.java

The methods zoomIn(), zoomOut() and updateFontSize(Font font) were added:
• zoomIn(): performs zoom-in of the current view of the text editor. The increment is 25 (point

size). The upper size limit is 500.
• zoomOut(): performs zoom-out of the current view of the text editor. The decrement is 25

(point size). The lower size limit depends on the parameter “view.fontsize”.

The constant attributes fontSizeIncre (25) and MAX_SIZE (500) were added to control the bounds of
the zooming.

1.2.3 Code file 3: jedit_gui.props

The actions zoom-in and zoom-out were added.

1.2.4 Code file 4: SyntaxStyle.java

94

The overridden method toString was added. This was added to visualize the style changing while
testing.

1.3 Testing
Please provide a detailed journal entry describing how you went about performing testing for this
change request.

Testing was performed in two ways:

1. Manually, by running the program and checking that the new functionality was working.
2. Automatically, by using JUnit. Unfortunately, although the plan was to use Abbot, the tool

displayed some errors when running jEdit from the Abbot script editor (Figure 1), so it was not
possible to use it. Thus, JUnit was used to implement and execute three test cases:

a. Basic zoom-in/zoom-out: this test case consisted in emulating 3 zoom-in and 3 zoom-
out operations, by directly calling the methods zoomIn and zoomOut of the class
EditPane. At the end, the size of the font was the same than the size before the test was
executed.

b. Perform zoom-in until the upper size bound was reached: the expected behavior is that
when the upper bound (500) is reached, the zoomIn method has no effect when
executed.

c. Perform zoom-out until the lower size bound was reached: the expected behavior is
that the zoomOut method has no effect when the lower bound is reached.

Figure 1. Error thrown by jEdit when was run from the Abbot script editor.

Statement Verification
Code File Name Coverage of Application Tests Failed Bugs Found

Total
Statements

Covered
Statements

%

 EditPane.java 40 40 100 0 0

1.4 Timing
Please provide a detailed journal entry describing how any of the supporting tools aided with
completing this change request.

The timing was tracked manually and by using the eclipse plugin Rabbit.
Eclipse significantly supported searching of terms, dependency browsing, and coding.

95

Eclemma was used to analyze and calculate coverage of tests.
DiffStats was used to count the number of lines added in each modified file.
JUnit was used to perform automatic unit testing and regression testing.
Tortoise SVN was used to resolve conflict easily and fast.

All the tools helped to minimize development times.

Timing Totals
Phase Name Time

(hh:mm)

Code Analysis 06:20
Code Change 00:30
Testing 2:20
Total 09:10

1.5 Conclusions
Please provide a detailed journal entry summarizing completing this change request.

The changed didn’t work in the beginning because the method TextAreaPainter.setStyles was not
checked and understood. For this reason, code analysis took more time than expected. In general,
understanding the code is the most expensive task.

Regarding testing, as mentioned before, the usage of Abbot was unsuccessful due to some errors
thrown by the tool. I tried to code the tests, instead of using the abbot script editor, but the tutorial
followed was outdated, as some of the methods used in it were deprecated, and the main window of
jEdit could not be displayed.

96

CSC 6110 Project Results Log

Student #8

Change Request : CREATION OF A SCHOOL ADAPTER

1 Detailed Report

1.1 Code Analysis

I have gone through the project source code. I found that in order to create an Adapter , there

is need for creation of an object. So, I identified that the change can be done in Advisor.java

file and I have created a new object named new WSUAdapter() in the Advisor.java file. After

the object creation, I studied the default as well as NCSU and UNC adapters . Then I have

downloaded the Wayne state Class schedule and implemented the changes in the

WSUAdapter.java file where the selection of courses, classes and look up of time table can

be done.

Code Files Visited

Code Files Visited /
Inspected Only

Comments

Advisor.java Created an object named WSUAdapter() .

SchoolAdapter.java Studied the methods used in the project.

DefaultSchoolAdapter.java

NCSU.java

UNC.java

Inspected the files and studied about their implementation.

WSUAdapter.java Downloaded the information about the Wayne State University

and implemented the changes.

WSUAdapterTest.java Assertions are written in the file and JUNIT testing is done.

1.1.1 Code file 1

Firstly, I wanted to create a School Adapter. So, I researched every file in the project to see

where I can make change to attain it. I found Advisor.java, wherein I have created an object.

97

Then it has appeared on the interface namely WsuSchoolAdapter . Tortoise SVN has been

used to commit the changes.

1.1.2 Code file 2

Secondly, I wanted to download the information about the wayne state school and made the

changes in the WSUAdapter.java file . Before doing it I inspected the flow of code in the file

and made necessary modifications.I used DiffStats to check the changes happened.

TortoiseSVN has been used to add and commit the file.

1.2 Code Changes

Please provide a detailed journal entry describing how you went about performing the

necessary coding changes for this change request.

Coding Change Summary

Code Files

Visited Changed Added Unchanged Comments

2 2 0 0 WSUAdapter.java (changed)

Advisor.java (changed)

Modified Code Files

Code File Name Task Lines of Code

Added Deleted Total

 Advisor.java MODIFICATION 1 0 1

 WSUadapter.java MODIFICATION 14 0 14

1.2.1 Code file 1
Changes were made in Advisor.java file.I have created an object named WSUAdapter and

modifications were seen on the user interface where WsuSchoolAdapter has been shown.

1.2.2 Code file 2

Changes were made in WSUAdapter.java file. Here I have downloaded the information about

the school courses and schedule .Necessary code modifications have been done to show the

working of the adapter.

98

1.3 Testing

I have created JUnit assertions to check the validation of the statements in the file.

assertTrue(), assertFalse(), assertNotNull() and assertArrayEquals() methods have been used

in the WSUAdapterTest.java file and checked for working of all the functionalities.

Statement Verification

Code File Name Coverage of Application Tests
Failed

Bugs
Found Total

Statements
Covered

Statements
%

 WSUAdaptertest.java 16465 76 0.5 0 0

1.4 Timing

Timing Totals

Phase Name Time
(hh:mm)

Code Analysis 12:00

Code Change 3:00

Testing 4:00

Total Time 19:00

1.5 Conclusions

Firstly, I looked into all the files and have studied the flow the project. After analysis of code, I

have created an Object and changed the UI to show WSUSchoolAdapter implementation. After

executing the JAdvisor project , WsuSchoolAdapter has been implemented .

99

CSC 6110 Project Results Log

Student #9

Change Request#: Group 4 - “Modify the splash window”.
Please provide a description of the change request / defect:

Currently the splash window of jEdit is a static picture. Add the names and emails of your

group members to it. And add moving text as the same effect shown in “About jEdit” dialog.

Adjust the scrolling speed so that all text can be shown.

1 Detailed Report

1.1 Code Analysis

The change request was to add names and emails of the group members and roll the names

on the SplashScreen as shown in About jEdit. The following procedure was followed to

accomplish the change:

1. The first step was to search for “splashscreen” in eclipse. The search returned all the

files containing Splashscreen in their files. On browsing the search result under org

folder of jedit, Splashscreen.java was found. Only the result in the org folder has to be

checked as it contains the source code.

2. Since the changes had to be done similar to the About jEdit, a search was given with

“aboutjedit” as search key in eclipse. The search indicated, there were no files with

aboutjedit in them.

o Next a search was given on one of the names getting rolled in About jEdit. The

search result returned the file jedit_gui.props. The names were assigned to

about.text.

o So the next search was for given on “about.text” and “Animation”. The result lead

to AboutDialog.java.

3. On analyzing the AboutDialog.java code, the rolling mechanism was understood.

4. Using AboutDialog.java as reference, changes were made to the SplashScreen.java

5. A method AnimationThread was added to Splashscreen.java, similar to the one present

in AboutDialog.java to roll the names on the screen.

6. The change was implemented twice.

100

o The first time when the change was done, the names were placed in

jedit_gui.props with splash.text as variable. It was called in splashscrren.java in

the method splashscreen().

o The program was throwing error on executing it.

o Further analysis was done using the debugger in eclipse. The togglebreakpoints

were placed in the main method (jEdit.java) , GUIUtilities.java and

Splashscreen.java.

o It was discovered that the file jedit_gui.java is read after splash is called. So the

names could not be added to jedit_gui.java. The names were then added to the

SplashScreen.java file.

7. Changes to the method paintComponent was made to include the names of the team

members and their Email IDs.

8. The method splashScreen() calls the animation thread to roll the names.

Code Files Visited

Code Files Visited /
Inspected Only

Comments

5

The following files visited:

1. SplashScreen.java

2. AboutDialog.java

3. jedit_gui.props

4. jEdit.java

5. GUIUtilities.java

1.1.1 Code file: SplashScreen.java

1. The change request involved, changes in the splashscreen. So a search was

given in the eclipse with the name “Splashscreen”. It returned all the files

containing the name splashscreen in it and the file Splashscreen.java.

2. Further, an analysis was made so as to determine the task performed by the file.

o The file displays the version, and the progress of the jEdit startup.

o The flow of the methods paintcomponent, advance, advance(string),

logAdvanceTime and splashscreen() was understood.

101

1.1.2 Code file: AboutDialog.java

1. Since the requested change was to roll the names as in About jEdit. A search was

made in the eclipse with the name “aboutjedit”. On a search on one of the names rolling

on the screen of About jEdit, it returned jedit_gui.props. Next the repository was

searched with search key as “Animation”. On browsing the search result the file

AboutDialog.java was obtained.

2. The file was analyzed for the animation to understand the workings of the method

AnimationThread().

1.1.3 Code file: jedit_gui.props

The search on one of the names in the About Jedit lead to jedit_gui.props. This file contains

all the names of the rolled in about jedit and contains java version.

1.1.4 Code file: jEdit.java

To determine the flow of the program jedit, a search on “main(String”. On browsing the

search result, jEdit. Java is determined as to containing the main method. This function

calls GUIUtilities.java.

1.1.5 Code file: GUIUtilities.java
From above, the file is analyzed. It is this file which calls the method splashscreen().

1.2 Code Changes
Coding Change Summary

Code Files

Visited Changed Added Unchanged Comments

5 1 0 4 The file Splashscreen.java was edited

Modified Code Files

Code File Name Task
Lines of Code

Added Deleted Total

1 SplashScreen.java

The names have to be

displayed in the

splashscreen giving a

rolling effect

97 0 97

102

1.2.1 Code file 1: Splashscreen.java

Basically, the Splashscreen.java was changed keeping AboutDialog.java as reference. The

following are the changes made to the Splashscreen.java

1. A method AnimationThread() is added to roll the names in the splashscreen – It rolls the

names as in, it changes the position of the names.

2. A method addNotify() is added to start the thread. – start the thread

3. A method removeNotify() is added to kill the thread. – kills the thread

4. The names are added to paintComponent to display them – It displays the names of the

team members.

5. The Animation thread is called from splashScreen method.

So the When the SplashScreen is called, the names are displayed giving a rolling effect.

1.3 Testing

There are two types of testing done:

• First, a manual testing is done. On executing the program the names are displayed on

the splash screen with a rolling effect.

• Since the Splashscreen is neither a functionality nor a GUI, a simple test in done using

JUnit wherein the methods in Splashscreen are called using the object type

Splashscreen and checked if the methods are successfully executed.

public class SplashScreenTest {

 @Test
 public void testSplashScreen() {
 SplashScreen splash = new SplashScreen();
 }

 @Test
 public void testDispose() {
 SplashScreen splash = new SplashScreen();
 splash.dispose();

}
 }

103

Statement Verification

Code File Name

Coverage of Application

Tests Failed Bugs Found Total
Statements

Covered
Statements

%

1 SplashScreen.java 548 521 95.1 0 0

1.4 Timing

The supporting tool Rabbit was used to time the duration spent on each individual file. But it is

difficult to provide a distinctive timeline for Code analysis and Code Change. Below is the

timeline approximated for each of the Phase.

Timing Totals

Phase Name Time
(hh:mm)

Code Analysis 5:10

Code Change 2:00

Testing 00:05

Total Time 7:15

1.5 Conclusions

The first change done to the code didn’t work because the names were added to the

jedit_gui.props file and were called from splashscreen(). On further analysis and using debug

functionality in eclipse, it came to light that jedit_gui.props is read after the splashscreen is

called. So, it was concluded that the names have to be added to the splashscreen.java itself.

 Regarding testing, since the change is neither a functionality nor a GUI application, a test is

done to check if the methods in the splashscreen thrown an error or not.

Overall, it can be concluded that code analysis is the most expensive task followed by code

change.

104

CSC 6110 Project Results Log

Student #4

Change Request#: 3

Please provide a description of the change request / defect:

In the feature "Autogenerate BibTeX keys" keys are generated in this format [author][year].
Make a change so that the BibTeX keys have the timestamp added to the format like this
[author][year]_[hhmmss] (e.g.Brooks2010_083025).

1 Phase Report

1.1 Concept Location

Please provide a detailed journal entry describing how you went about performing concept
location for this change request.

Concept Location Summary

 Code Files Comments

Visited Propagating Unchanged

Concept Location Code Files Visited

Code File Name Tool Used Located? Comments

1.2 Impact Analysis

Please provide a detailed journal entry describing how you went about performing impact
analysis for this change request.

105

Impact Analysis Summary
Code Files Comments

Visited Impacted Propagating Unchanged Not Visited

10 3 1 7 0

Impact Analysis Code Files Visited

Code File Name Tool Used Impacted? Comments

1 BibtexParser.java Eclipse search Yes Added a few LOC to change the
format of the timestamp

2 JabRefPreferences.java Eclipse Search Yes Changed the format of the timestamp

3 BibtexDatabase.java Eclipse Search No

4 EntryEdit.java Eclipse Search No

5 DatePickerButton.java Eclipse Search No

6 LabelMaker.java Dependency
search No

7 DefaultLabelPatterns.java Dependency
Search

Yes Uncommented 10 LOC for the default
pattern of the bibtex key

1.3 Prefactoring

Please provide a detailed journal entry describing how you went about performing
prefactoring for this change request.

Prefactoring Summary

Code Files

Visited Changed Added Propagatin

Unchange

Added to Changed Set

Prefactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total

106

Prefactoring was not required for this change.

1.3.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this files and
its new / modified responsibilities

1.4 Actualization

Please provide a detailed journal entry describing how you went about performing
actualization for this change request.

Actualization Summary

Code Files

Visited Changed Added Propagating Unchanged Added to Changed Set
10 3 0 0 8 2

Actualization Code Files

Code File Name Task Lines of Code

1 BibtexParser.java Addition of few lines Added Deleted Total

2 JabRefPreferences.java Modification 3 0 3
3 DefaultLabelPatterns.java Modification 0

1.4.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this file and its
new / modified responsibilities

BibtexParser.java:

In the BibtexParser.java file, code was added to append the time to the end of the bibtex key
using the java.Util.Date package and constructor date which calculates the hours,
minutes and seconds and displays in the format hhmmss using the methods
getHours(),getMinutes() and getSeconds().
JabRefPreferences.java
Modified the format of the timestamp variable to yyyy.MM.dd_hhmmss.

107

DefaultLabelPatterns.java

Uncommented the lines of code to display the changed format for the display of the
bibtex key to [author][year]_[timestamp].

1.5 Postfactoring

Please provide a detailed journal entry describing how you went about performing
postfactoring for this change request.

Postfactoring Summary

Code Files

Visited Changed Added Propagatin

Unchange

Added to Changed Set
0 0 0 0 0 0

Postfactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total

Postfactoring was not necessary as the change involved adding only a few lines of code.

1.6 Verification

Please provide a detailed journal entry describing how you went about performing
verification for this change request.

Statement Verification

Code File Name

Coverage of Application
Tests Failed

Bugs Found Total

Statemen

Covered
Statemen

%

1 Bibtexparser.java 3 0 0

Manual testing was done by importing a bib file and selecting an entry to autogenerate bibtex
keys and the code worked perfectly and the time was appended to the end of the key.

108

1.7 Timing

Please provide a detailed journal entry describing how the supporting tools aided with
completing this change request.

Timing Totals

Phase Name Time
(hh:mm)

Concept Location 04:00

Impact Analysis 01:00

Prefactoring 00:00

Actualization 02:00

Postfactoring 00:00

Verification 00:30

1.8 Conclusions

Please provide a detailed journal entry summarizing completing this change request.
The time format hhmmss was added to the bibtex key using the standard java util package
with the date constructor and the methods to retrieve hours, minutes and seconds. The
concept location was time consuming as there were a lot of classes that was associated with
the date formatter and picking the right place for the change consumed time.

Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact Set

Changed
Set

Added during
Total

Project Pre Act Post

3 10 5 3 0 3 0 3

109

CSC 6110 Project Results Log

Student #5

Change Request #: 1

Please provide a description of the change request / defect:

“Consolidating BibTeX files

Input: a folder, output: a .bib file

Scan recursively the input folder and its sub folders, find all BibTeX files, parse these files to BibTex

Databases, merge these databases, remove conflicts if any and save the consolidated databases to a

output file

Create GUI for this functionality

1 Phase Report

1.1 Concept Location

Please provide a detailed journal entry describing how you went about performing concept location for this

change request.

I first started analysis and then I made the first jabref propagating and the I grep query search with

word “” and words like “” it showed an results of both I narrowed my search to BasePanel.java then I

visited it gave me the EOL marker and before it I called the method.

Concept Location Summary

Code Files Comments

Visited Propagating Unchanged

#2 #1 #0

It showed basepanel with EOL marker is

disabled before running the file and when we

open the database it enables with use EOL

marker

110

Concept Location Code Files Visited

Code File Name Tool Used Located? Comments

1 Jabref.java Jripples

2 BasePanel.java Jripples – query yes

1.2 Impact Analysis

Please provide a detailed journal entry describing how you went about performing impact analysis for this

change request

Impact Analysis Summary

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

#3 # # #3 #

Impact Analysis Code Files Visited

Code File Name Tool Used Impacted? Comments

1 Overlaypanel.java Jripple-IA No

2 PreviewPanel Jripple-IA No

3 ColorSetupPanel Jripple-IA No

1.3 Prefactoring

Please provide a detailed journal entry describing how you went about performing prefactoring for this

change request.

Prefactoring Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

111

Prefactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total

1.3.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this file and its new /

modified responsibilities

Filehandling.java when I select the file it tells type of file and path.

1.4 Actualization

Please provide a detailed journal entry describing how you went about performing actualization for this

change request.

Actualization Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

#2 #1 #1 # # #1

Actualization Code Files

Code File Name Task
Lines of Code

Added Deleted Total

1 Filehandling .java
Gui for opening
the file

1

1.4.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this file and its new /

modified responsibilities

Here I made object call for basepanel.java to filehandling.java which handles gui for scanning files to

consolidated file

112

1.5 Postfactoring

Please provide a detailed journal entry describing how you went about performing postfactoring for this

change request.

Postfactoring Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

Postfactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total

1.5.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this files and its new /

modified responsibilities

1.6 Verification

Please provide a detailed journal entry describing how you went about performing verification for this

change request.

Verification is I did manual by using cmd by testing each modified class calling from main test class.

Statement Verification

Code File Name
Coverage of Application

Tests Failed Bugs Found Total
Statements

Covered
Statements

%

113

1.7 Timing

Please provide a detailed journal entry describing how the supporting tools aided with completing this

change request.

Timing Totals

Phase Name
Time

(hh:mm)

Concept Location 2:00

Impact Analysis :30

Prefactoring -

Actualization 1:00

Postfactoring -

Verification 1:00

1.8 Conclusions

Please provide a detailed journal entry summarizing completing this change request.

The tricky situation was creating a button using windowbuilder in eclipse but I used the button from

open database button for searching the file for consolidating file .Snapshot of the file and I also used

plugin zotero-better-bibtex-master /combine.rb file to parse, merge databases and make consolidated

file.

Code File Summary

Change

Number in Code Files
Visited

Concept
Location

Estimated
Impact Set

Changed
Set

Added during
Total

Project Pre Act Post

 2 #2 #3 # # #2 # #7

114

CSC 6110 Project Results Log

Student #6

Change Request 3 : Unicity of bibTeX key

Please provide a description of the change request / defect:

In the feature "Autogenerate BibTeX keys" keys are generated in this format [author][year].

Make a change so that the BibTeX keys have the timestamp added to the format like this

[author][year]_[hhmmss] (e.g. Brooks2010_083025).

1 Phase Report

1.1 Concept Location

Please provide a detailed journal entry describing how you went about performing concept location for this

change request.

Concept Location Summary

Code Files Comments

Visited Propagating Unchanged

06 - 02

Concept Location Code Files Visited

Code File Name Tool Used Located? Comments

1 BibtexEntry.java Jripples No

2 Util.java Jripples Yes

3 DefaultLabelPatterns.java Jripples Yes

4 BasePanel.java Jripples No

5 BibtexParser.java Jripples Yes

6 JabRefPreferances Jripples yes

115

1.2 Impact Analysis

Please provide a detailed journal entry describing how you went about performing impact analysis for this

change request.

Impact Analysis Summary

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

03 03 - - -

Impact Analysis Code Files Visited

Code File Name Tool Used Impacted? Comments

1 JabRefPreferences.java JRipples Yes

2 Util.java Jripples Yes

3 BibtexParser.java Jripples Yes

1.3 Prefactoring

Please provide a detailed journal entry describing how you went about performing prefactoring for this

change request.

1) This change request has not gone through this stage.

Prefactoring Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

Prefactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total

116

1.3.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this files and its new /

modified responsibilities

1.4 Actualization

Please provide a detailed journal entry describing how you went about performing actualization for this

change request.

Actualization Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

05 3 - - 02 03

Actualization Code Files

Code File Name Task
Lines of Code

Added Deleted Total
1 Util.java Added LOC 5 - 5
2 JabRefPreferences.java Modified 1 - 1
3 DefaultLabelPatterns.java Added 1 - 1

1.4.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this file and its new /

modified responsibilities

1) Util.java : Few lines of code were added to display Time in hh:mm:ss format.

2) JabRefPreferences.java: The default timestamp format was modified to

YYYY:MM:DD_hh:mm:ss.

3) DefaultLabelPatterns : The new line was added to display timestamp in the given format.

117

1.5 Postfactoring

Please provide a detailed journal entry describing how you went about performing postfactoring for this

change request.

1) This change request has not gone through this stage.

Postfactoring Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

Postfactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total

1.5.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this file and its new /

modified responsibilities

1.6 Verification

Please provide a detailed journal entry describing how you went about performing verification for this

change request.

Statement Verification

Code File Name
Coverage of Application

Tests Failed Bugs Found Total
Statements

Covered
Statements

%

1 Util.java 578 289 35% 2 -
2 DefaultLabelPatterns.java 346 230 25% - -
3 JabRefPrefrences.java 489 290 30% - -

118

1.7 Timing

Please provide a detailed journal entry describing how the supporting tools aided with completing this

change request.

Timing Totals

Phase Name
Time

(hh:mm)

Concept Location 06.30

Impact Analysis 00.30

Prefactoring -

Actualization 00.45

Postfactoring -

Verification 00.25

1.8 Conclusions

Please provide a detailed journal entry summarizing completing this change request.

Initially it took more time find the concept location, even though JRipples tool shows up the classes

that have to be visited but checking each and every file was time consuming. But it helped in finding

the classes that were going to be impacted by other classes. Once the class was found that is going to

be changed then it was easy to track which other classes are going to change. The code is added to

display time along with date.

Code File Summary

Change

Number in Code Files
Visited

Concept
Location

Estimated
Impact Set

Changed
Set

Added during
Total

Project Pre Act Post

 06 03 03 - 03 - 3

119

CSC 6110 Project Results Log

Student #7

Change Request#: Auto-update timestamp on edit
Please provide a description of the change request / defect:

The current format of the timestamp when adding an entry is [year].[month].[day] (e.g. 2013.11.18).

Make a change so that the timestamp has the format [year][month][day].[hh][mm][ss] (e.g.

20131118.083025) and it is auto updated when the button auto is clicked.

Table of Contents
1 Phase Report ... 2

1.1 Concept Location .. 2

1.2 Impact Analysis ... 4

1.3 Prefactoring .. 4

1.4 Actualization ... 5

1.4.1 Code file 1: JabRefPreferences.java .. 5

1.4.2 Code file 1: EntryEditor.java .. 6

1.5 Postfactoring ... 6

1.5.1 Code file 1: EntryEditor.java .. 6

1.6 Verification ... 7

1.7 Timing ... 7

1.8 Conclusions ... 8

120

1 Phase Report

1.1 Concept Location

Please provide a detailed journal entry describing how you went about performing concept location for this

change request.

Concept Location was done using Eclipse searching tools and the features of JRipples, including the Grep

searching feature.

The first step for performing concept location was to understand the current functionality related to the

change request. For this, I ran the program; I used it and made some tests. Some doubts came out

about the change request which were clarified by the teacher assistant.

After understanding the functionality, I started JRipples and marked the JabRef class as propagated.

Instead of looking and checking every class as Next I searched for “timestamp”. Most of search results

marked as next were reviewed, according to the number of matches; the classes with more matches were

inspected first. In concrete, the following classes were inspected (in the following order):

1. Util: it contains three methods called setAutomaticFields which modify the timestamp field.

2. JabRefPreferences: it contains all the preferences of the application, including the ones that

define the default owner and timestamp. This class was modified.

3. BibtextFields: it models the fields of a bibtex entry.

4. Globals: it manages global application features.

5. BibtexEntry: it is the class that models a bibtext entry.

Before inspecting the class JabRefPreferences, I ran the application and I checked the preferences window

of the application. In the general tab of the preferences, the user can change the timestamp format so I

changed it to “yyyyMMdd.hhmmss”. After restarting the application, I added a new entry which had the

timestamp with the format specified. At this point, I knew the change had to do with the application

preferences. To confirm this, I changed the format in the constructor of JabRefPreferences to check if

the timestamp changed, but it didn’t. After making debugging and testing, I realized that when the

preferences are changed in the Jabref’s preference dialog, those are stored in the Windows registry, in

HKEY_CURRENT_USER\Software\JavaSoft\Prefs\net\sf\jabref, and the format defined in the application

121

preferences is the one taken by the application; if there is no format in the registry then the default

format is taken. So, what I did was to remove the JabRef registry entry and the change worked. Finally,

the class JabRefPreferences was marked as Located in JRipples.

For the second part of the change request, I first searched for owner, using the JRipples GREP

search. The following classes were inspected with no success in finding the change location: GeneralTab,

PrefsDialog, BasePanel, BibtexFields and JabRefFrame. These classes where inspected because they

were marked as next. After this, I searched for auto, and the classes AbstractAutoCompleter and

JabRefFrame were inspected with no success. Then I searched for owner again, but this time using the

Eclipse searching feature. In this case, the first class inspected was ImportInspectionDialog and finally I

found the location: the method getExtra of class EntryEditor. This class was not found using JRipples

because it was not marked as Next and I just focused on Next classes.

Concept Location Summary

 Code Files
Comments Visited Propagating Unchanged

13 2 0

Concept Location Code Files Visited

Code File Name Tool Used Located? Comments

1 Util.java JRipples No

2 JabRefPreferences.java JRipples Yes

3 BibtextFields.java JRipples No

4 Globals.java JRipples No

5 BibtexEntry.java JRipples No

6 GeneralTab.java JRipples No

7 PrefsDialog.java JRipples No

8 BasePanel.java JRipples No

122

9 BibtexFields.java JRipples No

10 JabRefFrame.java JRipples No

11 AbstractAutoCompleter.java JRipples No

12 ImportInspectionDialog.java Eclipse search No

13 EntryEditor.java Eclipse search Yes

1.2 Impact Analysis

Please provide a detailed journal entry describing how you went about performing impact analysis

for this change request.

Impact Analysis was performed manually because the amount of classes marked as Next in

JRipples was 174 and the changes seemed not to impact a lot of functionality. The analysis

resulted in no classes impacted.

Impact Analysis Summary

Code Files

Comments
Visited

Impacted

Propagating

Unchanged

Not
Visited

2 0 0 0 173

Impact Analysis Code Files Visited

Code File Name Tool Used Impacted? Comments

1 EntryEditorTab.java Eclipse No

2 Utils.java Eclipse No

1.3 Prefactoring

Please provide a detailed journal entry describing how you went about performing

prefactoring for this change request.

The change didn’t require prefactoring.

123

1.4 Actualization

Please provide a detailed journal entry describing how you went about performing

actualization for this change request.

The actualization was divided in two steps:

1. Change the format of the timestamp field

2. Add the new functionality: when the Auto button is pressed the timestamp field

should be updated to the current timestamp.

Actualization Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

2 2 0 0 0 0

Actualization Code Files

Code File Name Task
Lines of Code

Added Modified Deleted Total

1

JabRefPreferences.java

The timestamp
format was
changed.

0

1

0

1

2

EntryEditor.java

The behavior of
the Auto

button was
changed

8

0

0

8

1.4.1 Code file 1: JabRefPreferences.java

Please provide a detailed journal entry describing the changes performed on this file and

its new / modified responsibilities

The change of this file was done in the constructor. The format of the “timeStampFormat”

property was changed to "yyyyMMdd.HHmmss".

124

1.4.2 Code file 1: EntryEditor.java

Please provide a detailed journal entry describing the changes performed on this file and

its new / modified responsibilities

An attribute that stores the timestamp text field was created. In addition, the method

actionPerfomed of the Auto button was modified so the timestamp field is updated together

with the owner field.

1.5 Postfactoring

Please provide a detailed journal entry describing how you went about performing

postfactoring for this change request.

The postfactoring was performed for testing purposes (see the subsection Verification).

Two attributes their setters and getters were created in EntryEditor.java.

Postfactoring Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

1 1 0 0 0 0

Postfactoring Code Files

Code File Name Task Lines of Code

 Added Modified Deleted Total

1

EntryEditor.java
Creation of two

additional
attributes

30

4

0

34

1.5.1 Code file 1: EntryEditor.java

Please provide a detailed journal entry describing the changes performed on this file and its

new / modified responsibilities

The following attributes, together with their getters and setters were created: onwerField

125

and ownerAutoBtn. The method EntryEditor.getExtra was modified to set those new

attributes.

1.6 Verification

Please provide a detailed journal entry describing how you went about performing verification

for this change request.

The test case developed was simple: just assert the timestamp and owner fields were empty before

the user clicked the auto button and those fields were not after the user clicked the button. In

addition, the timestamp text was asserted to be correct, according to the format

“yyyyMMdd.HHmmss”.

The tests case was implemented using JUnit, and was based on already implemented test:

AutoCompleterTest The following coverage resulted only by the execution of the implemented test

case.

Statement Verification

Code File Name

Coverage of Application
Tests Failed

Bugs Found Total

Statements
Covered

Statements
%

1 JabRefPreferences.java 3761 2714 72.2 0 0
2 EntryEditor.java 3612 1506 41.7 0 0

1.7 Timing

Please provide a detailed journal entry describing how the supporting tools aided with

completing this change request.

The timing was tracked manually.
Eclipse significantly supported searching of terms, dependency browsing, and coding.
JRipples was used to track some of the files visited.
Eclemma was used to analyze and calculate coverage of tests.
DiffStats was used to count the number of lines added in each modified
file. JUnit was used to perform automatic unit testing and regression

126

testing.
Tortoise SVN was used to resolve conflicts easily and fast.

Timing Totals

Phase Name

Time
(hh:mm)

Concept Location 01:31

Impact Analysis 00:16

Prefactoring 00:00

Actualization 00:05

Postfactoring 00:15

Verification 00:51

Total 02:58

1.8 Conclusions

Please provide a detailed journal entry summarizing completing this change request.

Although the change was simple, concept location was a bit hard. But I realized that it was my mistake,

because I was paying attention only to Next classes in JRipples. In addition, it seemed that

verification was going to be tough with Abbot, but at the end I realized I didn’t need to use Abbot.

Code File Summary

Change

Number in Code Files
Visited

Concept
Location

Estimated
Impact Set

Changed
Set

Added during
Total

Project Pre Act Post

1

Auto- update

timestamp

on edit
13 2 2 0 2 1 2

127

CSC 6110 Project Results Log

Student #8

Change Request#: 4

Auto-update timestamp on edit

The current format of the timestamp when adding an entry is [year].[month].[day] (e.g. 2013.11.18).

Make a change so that the timestamp has the format [year][month][day].[hh][mm][ss] (e.g.

20131118.083025) and it is auto updated when the button auto is clicked.

1 Phase Report

1.1 Concept Location

Please provide a detailed journal entry describing how you went about performing concept location for this

change request.

I Used eclipse search approach to find the java files containing the word “timestamp”, in that matches

found Util.java was the file where format for the timestamp was found .

dateFormatter = new SimpleDateFormat(format);

Here is the location and I needed to change the timestamp format.

Concept Location Summary

Code Files
Comments

Visited Propagating Unchanged

2 # 1

It showed the code for format of the timestamp.

It was initially in yyyyMMdd format. Concept

was found in Util.java

128

Concept Location Code Files Visited

Code File Name Tool Used Located? Comments

 Util.java Eclipse search Located
Format for timestamp is located in the

file.

 FileListEditor.java Eclipse search inspected Auto button implementation found here

1.2 Impact Analysis

Please provide a detailed journal entry describing how you went about performing impact analysis for this

change request.

Actually I have found the Change location by using Eclipse search approach. So, impact analysis was not

much looked up.

1.3 Prefactoring

Please provide a detailed journal entry describing how you went about performing prefactoring for this

change request.

This change request has not gone through this stage as the change has to be done within the existing

code.

1.4 Actualization

Please provide a detailed journal entry describing how you went about performing actualization for this

change request.

Actualization Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

2 1 0 # 1 1

Actualization Code Files

Code File Name Task
Lines of Code

Added Deleted Total
 Util.java modification 1 0 1
 FileListEditor.java visited 0 0 0

129

1.4.1 Code file 1

Please provide a detailed journal entry describing the changes performed on this file and its new /

modified responsibilities

Util.java: Timestamp format is found. Changed it to dateFormatter = new

SimpleDateFormat("yyyyMMdd.HHmmss");

FileListEditor.java : auto button functionality is inspected.

1.5 Postfactoring

Please provide a detailed journal entry describing how you went about performing postfactoring for this

change request.

There was no further clean up necessary when the changes were implemented.

1.6 Verification

Please provide a detailed journal entry describing how you went about performing verification for this

change request.

The code was manually checked for the correctness and the following errors were found and later

debugged. Every file was tested manually to find the errors and it was debugged. The change request

was implemented.

130

Screenshot showing the changed timestamp format

Coverage:

131

1.7 Timing

Please provide a detailed journal entry describing how the supporting tools aided with completing this

change request.

Eclipse search approach helped me to locate the file where is needed to be done. I have changed the

code and completed my change request.

Timing Totals

Phase Name
Time

(hh:mm)

Concept Location 00:20

Impact Analysis 00:00

Prefactoring 00:00

Actualization 00:35

Postfactoring 00:00

Verification 00:15

1.8 Conclusions

Please provide a detailed journal entry summarizing completing this change request.

With the help of Eclipse search tool, I took less time in finding the file where the change has to be

made. I used the keyword “Timestamp” in the search process. Then I found Util.java, where format for

timestamp is present. It was in yyyyMMdd format. I have changed it to yyyyMMdd.hhmmss format.

Thus I have implemented the change request.

132

CSC 6110 Project Results Log

Student #9

Change Request#: 2

Please provide a description of the change request / defect:

Shrinking BibTeX files

Input: a .bib file, a folder containing .tex files, output: a new .bib file.

Create GUI for this functionality.

1 Phase Report

1.1 Concept Location

The request was to add a new gui for this functionality to compare tex files and remove any redundant

items from the files and merge them. The concept location is identified using JRipples. The main search

identifies JabRef containing the main class. The classes marked as Next are scanned through. The file

JabRefFrame.java is selected. The file is located as concept location where the option of comparing

files is provided. Similar analysis provided JabRefFrame.java and JabRefPreference.java.

A new file OpenTex.java is added which takes .tex files as input from the user and parses it.

Concept Location Summary

Code Files Comments

Visited Propagating Unchanged

3 1 2

JabRefPreference.java

JabRefFrame.java

JabRef.java

Concept Location Code Files Visited

Code File Name Tool Used Located? Comments

1 JabRefFrame.java JRipples

2 JabRefFrame.java JRipples

3 JabRef.java JRipples

133

1.2 Impact Analysis

The file impacted by the change is OpenTex.java. JRipples was used to identify the dependencies.

Impact Analysis Summary

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

1 1 0 #

Impact Analysis Code Files Visited

Code File Name Tool Used Impacted? Comments

 - - - -

1.3 Prefactoring

The software didn’t have to be reorganized to make the actualization.

Prefactoring Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

Prefactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total
 - - - - -

1.4 Actualization

Please provide a detailed journal entry describing how you went about performing actualization for this

change request.

134

Actualization Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

4 3 1 1 0 1

Actualization Code Files

Code File Name Task
Lines of Code

Added Deleted Total
1 BasePanel.java Added actions 3 0 3

2 JabRefFrame.java
Added an option

in tool menu
3 0 3

3 JabRefPreference.java
Binding the option

provided in the
JabRefFrame

1 0 1

4 OpenTex.java
Takes files from
the users and
parses it

123 0 123

1.4.1 BasePanel.Java

Added an action to open the class OpenTex.

1.4.2 JabRefFrame.java

It added an option in the tool menu to compare files.

1.4.3 JabRefPreference.java

The file was modified to add a binding to the compare file option in the tool menu.

1.4.4 OpenTex.Java

The file was created to take .tex files from the users and compare them and delete redundant key and

merge the files in .bib format.

135

1.5 Postfactoring

The software didn’t need any postfactoring

Postfactoring Summary

Code Files
Visited Changed Added Propagating Unchanged Added to Changed Set

Postfactoring Code Files

Code File Name Task
Lines of Code

Added Deleted Total
- - - - - -

1.6 Verification

The verification was done by two methods. First testing was done manually asked the users to provide

the files from the system. Second the test was done using JUnit. It accepts the files from the user.

Statement Verification

Code File Name
Coverage of Application

Tests Failed Bugs Found Total
Statements

Covered
Statements

%

 OpenTexTest.java 123 91 73 0 0

1.7 Timing

To locate concept location took time as the code had to be analyzed in detail.

136

Timing Totals

Phase Name
Time

(hh:mm)

Concept Location 2:00

Impact Analysis 00:45

Prefactoring 00

Actualization 00:45

Postfactoring 00

Verification 30:00

1.8 Conclusions

The change request was complicated as the file had to take from the users compare the keys in the

files and merge the files and compile the .tex file to get .bib file. I took time to analyze the code as it

was complicated for. JRipples helped in identifying the concept location faster.

Since the change included creation of a new file, the major coding was done in the new generated file.

Code File Summary

Change

Number in Code Files
Visited

Concept
Location

Estimated
Impact Set

Changed
Set

Added during
Total

Project Pre Act Post

 # # # # # # #

 changed 3 0 0 0 3 0 4

 added 1 1 1 0 1 0

137

APPENDIX D: Post – Experiment Questionnaires

This appendix contains the post - experiment questionnaires of the study.

Similarly to appendix B and appendix C, three less experienced and three more

experienced participants have their post - experiment questionnaires displayed in this

thesis.

All the post - experiment questionnaires are available online via the following link:

https://drive.google.com/folderview?id=0BwkmElTjUf2qSmROWW5OMFZDSGs&usp=s

haring.

138

https://drive.google.com/folderview?id=0BwkmElTjUf2qSmROWW5OMFZDSGs&usp=sharing
https://drive.google.com/folderview?id=0BwkmElTjUf2qSmROWW5OMFZDSGs&usp=sharing

CSC 6110 Student Post-Experiment Questionnaire

Student #

Based on your recent participation / experience in the CSC 6110 Research project please answer
the following questions to the best of your ability.

1. Did performing the change request by following the “Phased Software Change Model” (PSCM) as a part of
Stage 2 of the course assignment work better for you than not following a specific process like you did during
your Stage 1 change request?

Yes No

Additional comments

2. Please check / mark which box best describe whether the PSMC approach help or hinder your performance
during stage 2 change requests compared conducting the stage 1 change request.

very unproductive somewhat / slightly unproductive

Neutral somewhat / slightly productive

very productive

Additional comments

3. Do you feel that following the PSCM approach save you time? If so where specifically?

Yes No

If Yes, which phases?

Concept Location

Yes No

Impact Analysis

Yes No

Refactoring (Pre / Post)

Yes No

Actualization

Yes No

4

Verification

Yes No

Additional comments

4. Please rate the difficulty of performing the change request in the two stages

1 2 3 4 5

Stage 1

Stage 2

Any additional comments

140

CSC 6110 Student Post-Experiment Questionnaire

Student #

Based on your recent participation / experience in the CSC 6110 Research project please answer
the following questions to the best of your ability.

1. Did performing the change request by following the “Phased Software Change Model” (PSCM) as a part of
Stage 2 of the course assignment work better for you than not following a specific process like you did during
your Stage 1 change request?

Yes No

Additional comments

2. Please check / mark which box best describe whether the PSMC approach help or hinder your performance
during stage 2 change requests compared conducting the stage 1 change request.

very unproductive somewhat / slightly unproductive

Neutral somewhat / slightly productive

very productive

Additional comments

3. Do you feel that following the PSCM approach save you time? If so where specifically?

Yes No

If Yes, which phases?

Concept Location

Yes No

Impact Analysis

Yes No

Refactoring (Pre / Post)

Yes No

Actualization

Yes No

5

Verification

Yes No

Additional comments

4. Please rate the difficulty of performing the change request in the two stages

1 2 3 4 5

Stage 1

Stage 2

Any additional comments

142

CSC 6110 Student Post-Experiment Questionnaire

Student #

Based on your recent participation / experience in the CSC 6110 Research project please answer
the following questions to the best of your ability.

1. Did performing the change request by following the “Phased Software Change Model” (PSCM) as a part of
Stage 2 of the course assignment work better for you than not following a specific process like you did during
your Stage 1 change request?

Yes No

Additional comments

2. Please check / mark which box best describe whether the PSMC approach help or hinder your performance
during stage 2 change requests compared conducting the stage 1 change request.

very unproductive somewhat / slightly unproductive

Neutral somewhat / slightly productive

very productive

Additional comments

3. Do you feel that following the PSCM approach save you time? If so where specifically?

Yes No

If Yes, which phases?

Concept Location

Yes No

Impact Analysis

Yes No

Refactoring (Pre / Post)

Yes No

Actualization

Yes No

6

Verification

Yes No

Additional comments

4. Please rate the difficulty of performing the change request in the two stages

1 2 3 4 5

Stage 1

Stage 2

Any additional comments

144

CSC 6110 Student Post-Experiment Questionnaire

Student #

Based on your recent participation / experience in the CSC 6110 Research project please answer
the following questions to the best of your ability.

1. Did performing the change request by following the “Phased Software Change Model” (PSCM) as a part of
Stage 2 of the course assignment work better for you than not following a specific process like you did during
your Stage 1 change request?

Yes No

Additional comments

2. Please check / mark which box best describe whether the PSMC approach help or hinder your performance
during stage 2 change requests compared conducting the stage 1 change request.

very unproductive somewhat / slightly unproductive

Neutral somewhat / slightly productive

very productive

Additional comments

3. Do you feel that following the PSCM approach save you time? If so where specifically?

Yes No

If Yes, which phases?

Concept Location

Yes No

Impact Analysis

Yes No

Refactoring (Pre / Post)

Yes No

Actualization

Yes No

7

In the first stage, I used a slight variation of PMSC.

Verification

Yes No

Additional comments

4. Please rate the difficulty of performing the change request in the two stages

1 2 3 4 5

Stage 1

Stage 2

Any additional comments

I think PSCM doesn’t necessarily saves you time in impact analysis, but maybe the accuracy of finding the change
set is greater than with other approaches.

In general, the change requests were easy. For me, the tasks that consumed most of the time were concept
location and verification. The former because you need to understand the code and this takes time and the second
one because you need make sure the program is behaving as expected; for this you need program the tests and in
some of the cases there were no tests at all.

146

CSC 6110 Student Post-Experiment Questionnaire

Student #

Based on your recent participation / experience in the CSC 6110 Research project please answer
the following questions to the best of your ability.

1. Did performing the change request by following the “Phased Software Change Model” (PSCM) as a part of
Stage 2 of the course assignment work better for you than not following a specific process like you did during
your Stage 1 change request?

Yes No

Additional comments

2. Please check / mark which box best describe whether the PSMC approach help or hinder your performance
during stage 2 change requests compared conducting the stage 1 change request.

very unproductive somewhat / slightly unproductive

Neutral somewhat / slightly productive

very productive

Additional comments

3. Do you feel that following the PSCM approach save you time? If so where specifically?

Yes No

If Yes, which phases?

Concept Location

Yes No

Impact Analysis

Yes No

Refactoring (Pre / Post)

Yes No

Actualization

Yes No

8

Performing change request in stage 2 was better because sometimes we used dependency analysis ,which
helped in saving time.

Verification

Yes No

Additional comments

4. Please rate the difficulty of performing the change request in the two stages

1 2 3 4 5

Stage 1

Stage 2

Any additional comments

Change request in stage 2 was little bit tough to implement.

148

CSC 6110 Student Post-Experiment Questionnaire

Student #

Based on your recent participation / experience in the CSC 6110 Research project please answer
the following questions to the best of your ability.

1. Did performing the change request by following the “Phased Software Change Model” (PSCM) as a part of
Stage 2 of the course assignment work better for you than not following a specific process like you did during
your Stage 1 change request?

Yes No

Additional comments

2. Please check / mark which box best describe whether the PSMC approach help or hinder your performance
during stage 2 change requests compared conducting the stage 1 change request.

very unproductive somewhat / slightly unproductive

Neutral somewhat / slightly productive

very productive

Additional comments

3. Do you feel that following the PSCM approach save you time? If so where specifically?

Yes No

If Yes, which phases?

Concept Location

Yes No

Impact Analysis

Yes No

Refactoring (Pre / Post)

Yes No

Actualization

Yes No

9

Verification

Yes No

Additional comments

4. Please rate the difficulty of performing the change request in the two stages

1 2 3 4 5

Stage 1

Stage 2

Any additional comments

The difficulty level for change requests varied, while some got multiple requirements in one change request others
got very simple request. With my experience in Java, the change requests I got were tough for stage 2. My only
issue was with variation in the difficulty level.
With that said I also learned many stuffs which will be useful in the future.

150

References

[1] apache.org. "Apache™ Subversion®," 1/24/2014; http://subversion.apache.org/.

[2] K. Beck, Extreme Programming Explained, Reading, MA: Addison Wesley, 2000.

[3] K. Beck, "JUnit," 2011.

[4] J. Buckner et al., "JRipples: A Tool for Program Comprehension during
Incremental Change." pp. 149-152.

[5] M. H. Claes Wohlin, Kennet Henningsson, “Empirical Research Methods in
Software Engineering,” Lecture Notes in Computer Science, pp. 7-23, 2003.

[6] T. A. Corbi, “Program Understanding: Challenge for the 1990s,” IBM Systems
Journal, vol. 28, no. 2, pp. 294-306, 1989.

[7] B. Dit et al., “Feature location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, vol. 25, no. 1, pp. 53-95, 2013.

[8] C. Dorman, “An Experience Report Of The Solo Iterative Process,” Computer
Science, Wayne State University, Detroit, MI, 2011.

[9] C. Dorman, "DiffStats," 2011.

[10] C. Dorman, and V. Rajlich, "Software Change in the Solo Iterative Process: An
Experience Report." pp. 22-30.

[11] D. V. Duine, “Personal Software Process & Team Software Process: An
overview,” in Seattle Eastside Area SPIN, 2006.

[12] eclemma.org. "Eclemma - Java Code Coverage for Eclipse ";
http://www.eclemma.org/.

[13] eclipse.org. "Rabbit 1.2.1," http://marketplace.eclipse.org/content/rabbit.

[14] extremeprogramming.org. "The Rules of Extreme Programming," 1/24/2014;
http://www.extremeprogramming.org/rules.html.

[15] extremeprogramming.org. "Extreme Programming: A gentle introduction "
1/24/2014; http://www.extremeprogramming.org/rules.html.

[16] P. Grubb, and A. A. Takang, Software Maintenance: Concepts and Practice,
Second ed.: World Scientific, 2003.

[17] I. N. H. Takeuchi, “The New New Product Development Game,” Harvard
Business Review, pp. 137-146, 1986.

151

http://subversion.apache.org/
http://www.eclemma.org/
http://marketplace.eclipse.org/content/rabbit
http://www.extremeprogramming.org/rules.html
http://www.extremeprogramming.org/rules.html

[18] D. E. Harter, M. S. Krishnan, and S. A. Slaughter, “Effects of Process Maturity on
Quality, Cycle Time, and Effort in Software Product Development,” Manage. Sci.,
vol. 46, no. 4, pp. 451-466, 2000.

[19] W. S. Humphrey. "The Team Software Process (TSP),"
http://www.sei.cmu.edu/reports/00tr023.pdf.

[20] ISO/IEC, "Software Engineering — Software Life Cycle Processes —
Maintenance," 2006.

[21] S. Jarzabek, Effective Software Mantenance and Evolution: A Reuse-based
Approach: CRC Press, 2007.

[22] jEdit.org. "jEdit," 1/28/14; http://www.jedit.org/FAQ/general.html.

[23] C. Jones, Software Engineering Best Practices, p.^pp. 11: McGraw-Hill, 2009.

[24] B. A. Kitchenham, Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El-
Emam, K., and Rosenberg, J., “Preliminary Guidelines for Empirical Research in
Software Engineering,” 2001.

[25] S. Lehnert, “A Taxomony for Software Change Impact Analysis,” Proceedings of
the 12th International Workshop on Principles of Software Evolution and the 7th
annual ERCIM Workshop on Software Evolution, pp. 41-50, 2011.

[26] M. Höst, B. Regnell, and C. Wohlin, “Using Students as Subjects - A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment,” Empirical Software Engineering: An International Journal, vol. 5,
no. 3, pp. 201-214, 2000.

[27] M. Petrenko et al., “Teaching Software Evolution in Open Source,” IEEE
Computer, vol. 40, no. 11, pp. 25-31, 2007.

[28] A. A. R. E. Jeffries, & C. Hendrickson, Extreme programming installed, Boston,
MA: Addison-Wesley Longman, 2000.

[29] V. Rajlich, and P. Gosavi, “Incremental change in object-oriented programming,”
Software, IEEE, vol. 21, no. 4, pp. 62-69, 2004.

[30] V. Rajlich, Software Engineering: The Current Practice, Boca Raton, FL: CRC
Press, 2012.

[31] Sarah Boslaugh, and P. A. Watters, Statistics in a Nutshell: O'Reilly Media, 2008.

[32] H. B. Shah, C. Gorg, and M. J. Harrold, “Understanding exception handling:
Viewpoints of novices and experts,” Software Engineering, IEEE Transactions
on, vol. 36, no. 2, pp. 150-161, 2010.

152

http://www.sei.cmu.edu/reports/00tr023.pdf
http://www.jedit.org/FAQ/general.html

[33] J. S. Sutherland, K., "The Scrum Guide™," scrum.org, ed., 2013.

[34] The TortoiseSVN Team, "TortoiseSVN," 2011.

[35] tortoisesvn.net. "TortoiseSVN," 1/24/2014; http://tortoisesvn.net/about.html.

[36] T. Wall, "Abbot Java GUI Test Framework," 2008.

[37] T. Wall. "Getting Started with the Abbot Java GUI Test Framework," 1/24/2014;
http://abbot.sourceforge.net.

[38] J. Wang et al., “An Exploratory Study of Feature Location Process: Distinct
Phases, Recurring Patterns, and Elementary Actions,” in 27th IEEE International
Conference on Software Maintenance (ICSM), 2011, pp. 213 - 222.

153

http://tortoisesvn.net/about.html
http://abbot.sourceforge.net/

154

ABSTRACT

CASE STUDY OF PHASED MODEL FOR SOFTWARE CHANGE IN A MULTIPLE-
PROGRAMMER ENVIRONMENT

by

YOANN SENIN

August 2014

Advisor: Dr. Václav Rajlich

Major: Computer Science

Degree: Master of Science

The aim of this thesis is to perform an empirical study comparing programmers

completing software changes assisted by the recently published software process

Phased Model for Software Change (PMSC) to those completing software changes

without any assistance. There have been numerous researches on software change,

but most of them focused more on individual phases of the software change process in

lieu of the software change process as a whole. For that reason, this thesis explores the

impact of the PMSC process on programmers’ performance. The subjects of this study

are graduate students with different level of experience.

The results of the experiment show that following the PMSC process improves

the performance of both less experienced and more experienced programmers by

reducing the amount of time spent to complete software changes by about half. This

improvement is noticeable in both code analysis and code implementation activities. We

also talk about ways to refine PMSC.

155

AUTOBIOGRAPHICAL STATEMENT

YOANN SENIN

Yoann Senin received a Master of Science in Computer Science at University

Félix-Houphouët-Boigny, former University of Cocody (Ivory Coast), in 2010. After

working as a Web Developer at Afrinal, he moved to Michigan to pursuing his

education. His is currently completing another Master of Science in Computer Science

at Wayne State University with a concentration on software engineering. During his

curriculum at Wayne State University, Senin worked as a Web Developer at the Center

for Urban Studies and also as a Graduate Teaching Assistant at the Department of

Computer Science of the same institution. His versatile experience both in web

development and desktop application development make him proficient in PHP, JSP,

Java, MySQL, Oracle, HTML, CSS, XML technologies, and several other tools related

to the listed technologies.

http://www.afrinal.com/
http://cus.wayne.edu/
http://cus.wayne.edu/

	Wayne State University
	1-1-2014
	Case Study Of Phased Model For Software Change In A Multiple-Programmer Environment
	Yoann Senin
	Recommended Citation

	Table of Contents - thesis
	All_chp_Thesis
	Chapter 1: Introduction
	Chapter 2: Previous work
	Chapter 3: Case Study
	Chapter 4: Results and Interpretation
	Chapter 5: Conclusion and Future Work

	Abstract_thesis
	Autobiography

