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CHAPTER 1. INTRODUCTION

1.0. Introduction

In response to poor urban air quality in many of the United States’ cities, the U.S.
Congress established the Clean Air Act in 1970 “to protect public health and welfare from
different types of air pollution caused by a diverse array of pollution sources” (Chow et al.,
2007). The Clean Air Act established the air quality management framework that is currently in
place today. This framework measures regional ambient air pollutant concentrations but does
not adequately account for the heterogeneous nature of urban regions.

The heterogeneity of urban airsheds results from the interplay of spatially and temporally
complex systems (e.g. Kim et al., 2005; Pinto et al., 2004). It complicates human exposure
estimates in urban areas and creates the need for accurate, highly detailed spatiotemporal air
contaminant models. Distributed and prolonged air quality measurements are resource intensive,
however, and study designs frequently balance tradeoffs between spatial and temporal resolution
(Beevers et al., 2013). Increased density of spatial information and/or increased frequency of
temporal information also increases the potential for erroneous measurements within air quality
datasets. Consequently, there is a growing need to develop practical methods to 1) evaluate the
presence and influence of anomalous air quality measurements and 2) integrate detailed spatial
and temporal air quality data from multiple sources (e.g. Mayer, 1999; Ross et al., 2013; Wilson
et al., 2005).

Currently, air sampling networks in the United States provide regional air pollution
estimates from central-site monitors. Although regulatory monitoring networks offer valuable
time series measurements, they commonly lack the spatial resolution needed to estimate

neighborhood-scale exposure (e.g. Baxter et al., 2013; Ozkaynak et al., 2013; Sarnat et al., 2013;



Wilson et al., 2005). This can result in greater uncertainty (Luginaah et al., 2006) coupled with
corresponding underestimation of variability (Baxter et al., 2013) in large population exposure
estimates.

Alternatively, temporary networks of active or passive air samplers can collect a higher
spatial density of measurements over limited, discontinuous periods of time (e.g., Miller et al.,
2010; Ross et al., 2013). Such, short-term monitoring networks can be logistically difficult to
implement and expensive to repeat (Cocheo et al., 2008). Nevertheless, their measurements are
readily incorporated into land use regression (LUR) and geostatistical interpolation (i.e., kriging)
algorithms to generate pollutant concentration models at increased spatial resolution (e.g., Hoek
et al., 2008; Jerrett et al., 2005; Kunzli et al., 2004; Sampson et al., 2011). LUR and kriging
models share similar limitations but have different strengths For example, both require a large
number of sampling sites and are not readily adaptable to changing meteorological conditions
(Isakov et al., 2011). For example, LUR models can reproduce small scale features such as
roadway configurations that contribute to mobile source pollutants (Mercer et al., 2011) whereas
kriging smooths concentration estimates. Moreover, kriged models generate measures of
uncertainty using estimation of error variance throughout the model domain (Vicedo-Cabrera et
al., 2013) whereas LUR models do not yield corresponding spatial uncertainty estimates.

Accurate datasets, without corrupt information, are essential for creating models that
promote informed decision making. Data outliers can greatly influence finely resolved spatial
models, like kriged or LUR models, at the neighborhood level (Chang-Tien et al., 2003).
Identifying outliers can lead to useful information and unexpected outcomes such as severe air
pollutant exposure for specific geographical zones (Chang-Tien et al., 2003; Torres et al., 2011)

or the identification of air pollution adversely affecting socio-economic groups (Zou et al.,



2014). Therefore, along with measuring uncertainty, an evaluation of the accuracy and influence
of individual data points is essential when making interpretations at highly resolved spatial
scales.

Temporal data in conjunction with spatial data are needed to address chronic exposure
across air pollution gradients in urban areas. Exposure estimates over time are required to study
certain health conditions, such as those associated with pregnancy, which have a specific
gestational period. Therefore, spatiotemporal models, which can provide individual exposure
estimates and time-base exposure estimates, are needed for epidemiological studies (Brauer et
al., 2003).

The combination of spatial modeling with temporal data adds definition to the
heterogeneous nature of air pollution and delivers arguably better exposure estimates (Mdlter et
al., 2010; Romanowicz et al., 2006). This thesis contributes to the development of emerging
modeling approaches by presenting practical methods to refine spatial models and assimilate
detailed temporal data with high spatial resolution models of urban air pollutants. Specifically
this study investigates the spatial and temporal patterns of nitrogen dioxide (NO), total BTEX
(benzene, toluene, ethylbenzene, and xylene), volatile organic compounds (VOCSs), particulate
mass less than 2.5 microns in aerodynamic diameter (PM,s), particulate mass less than 10
microns (PMyp), and polycyclic aromatic hydrocarbons (PAH) in the cities of Detroit and

Windsor.

1.1. Background on the Detroit-Windsor Airshed
This study investigates the contiguous airshed of Detroit, Michigan (U.S.A.) and

Windsor, Ontario (Canada). Detroit is located on the north side of the Detroit River in



southeastern Michigan and Windsor is situated on the south side of the Detroit River in
southwestern Ontario. Windsor is also the southernmost metropolitan city in Canada. Both of
these cities are identified as high air pollutant zones resulting from industrial and transportation

emissions (Health Canada, 2000; MDEQ, 2008; Simon et al., 2005; U.S. EPA, 2009).

Detroit and Windsor are connected by the Ambassador Bridge, which is the busiest
commercial international border crossing in North America (Figure 1.1). The Ambassador
Bridge and Detroit-Windsor Tunnel concentrate traffic in both cities and create focused areas of
air pollution (Wheeler et al., 2008). Municipal and medical waste incinerators, automobile
manufacturing plants, steel mills, the Detroit Edison Rouge River coal-fired power plant, and the
Marathon refinery are examples of major emission sources for Detroit and its surrounding
communities. In Windsor, industrial, municipal, and transportation are the major sources of air
pollution (Wheeler et al., 2008). Beyond industry, traffic induced emissions are a large source of
air pollution for Detroit and Windsor. Major interstate highways in Detroit include 1-75, 1-94,
and 1-96, and Detroit’s major state highways include M-1, M-10, and M-39 (Molaroni, 2010).
Major highways in Windsor include Huron Church Rd (3), E.C. Row Expressway, and

Macdonald Cartier Freeway (401).

1.2 Air Pollutant Sources and Monitoring

Air pollutants come from a range of sources in Detroit and Windsor that include
stationary and on road sources. A majority of NO, is derived from on road sources (MDEQ,
2008). In Detroit, VOC compositions and trends indicate the dominance of vehicular sources

over the many industrial sources with the possible exceptions of styrene and several chlorinated



VOCs (Batterman et al., 2002). According to the US Environmental Protection Agency
(USEPA), in Michigan, 34% of PM;o comes from particles that originate from point sources,
such as power plants, and various manufacturing and industrial processes; 32% comes from
"area" sources that do not originate from any specific point; and another 34% comes from
vehicle emissions. PM,s from vehicle emissions comprises 50% of the ambient PM,s in

Michigan. Area sources make up 37% and point sources contribute 13% (U.S. EPA, 2009).

Air sampling networks established to monitor compliance with National Ambient Air
Quality Standards (NAAQS) and the National Air Pollution Surveillance (NAPS) program are
important sources of outdoor air quality information in Detroit and Windsor. The Michigan Air
Sampling Network (MASN) uses strategically placed monitors to assess air pollutant levels
throughout the state (MDEQ, 2013). The NAPS program provides similar data with two
locations in Windsor. Comparable air sampling networks in other states and countries provide
long-term air quality measurements that may be used to estimate exposure for surrounding
communities (e.g. Dockery et al., 1993; Pope et al., 2009; Samet et al., 2000; Zanobetti et al.,
2003).

Currently, Detroit and Windsor have a limited number of continuous monitoring
locations. Given the need for accurate models to predict and understand the spatial and temporal
variability of air pollutants within heterogeneous urban airsheds, air pollutant modeling is
required to estimate exposure at a spatially resolved level that complements temporally resolved

measurements from the long term air sampling networks.



1.3. Previous Detroit and Windsor Air Quality Studies

Multiple studies in the Detroit and Windsor airshed have focused on correlating air
pollution and human exposure. Recent investigations include the Detroit Exposure and Aerosol
Research Study (DEARS), the Windsor, Ontario Exposure Assessment Study (WOEAS) and the
Geospatial Determinants of Health Outcomes Consortium (GeoDHOC) studies.

The objective of the DEARS project was to determine if air pollutant data from
centralized monitoring stations could be used to estimate exposure in neighborhoods from
multisource air pollutants. It was conducted between 2004 and 2007 and took a number of
approaches to compare central monitoring station measurements to alternative exposure
measurements including indoor, outdoor, and personal monitors (Williams et al., 2009). The
DEARS study confirmed that air pollutants vary at the neighborhood scale and are significantly
affected by weather.

The WOEAS investigation assessed the contribution of ambient air pollutants to personal
and indoor exposures of adults and asthmatic children living in Windsor. The variability of air
pollution, particularly around the Ambassador Bridge, was analyzed using a combination of land
use regression (LUR) modeling (Luginaah et al., 2006; Wheeler et al., 2008) and personal
monitors. The study found that VOC indoor concentrations are a good predictor of personal
exposure (Stocco et al., 2008). The WOEAS study also concluded that using central monitoring
locations for personal exposure in epidemiological studies creates error because of the spatial
variability and wide range of home infiltration factors associated with particulate matter
(Kearney et al., 2011).

The initial GeoDHOC study was designed to examine spatial correlations between

ambient air pollution concentrations and asthma exacerbations in Detroit and Windsor at a high



level of spatial resolution. The underlying premise of the study was that correlations among
mappable environmental attributes and health indicators can be used to better understand and
manage urban community health (Miller et al., 2010). The original aims included: 1)
simultaneous collection and modeling of air pollutant concentrations in Detroit and Windsor, 2)
collection and evaluation of concurrent asthma morbidity data using asthma-related ambulatory
care encounters, emergency department visits, and hospital discharge records in Detroit and
Windsor, and 3) integration of the environmental and asthma data into a geographic information
system (GIS) and modeling framework (Lemke et al., 2013).

The initial GeoDHOC analysis demonstrated spatial variability in air pollutant
distributions between and, more importantly, within the cities of Detroit and Windsor at
neighborhood scales (Miller et al., 2010; Miller et al., 2012a), as well as statistically significant
correlations between the rate of asthma events and concentrations of specific air pollutants
averaged over postal code scales (i.e., zip codes in the USA and forward sortation areas in
Canada) (Lemke et al., 2013). The GeoDHOC study has subsequently been expanded to
investigate the relationship between spatially distributed airborne environmental contaminants
and adverse birth outcomes in Detroit. In a pilot project funded by the W.K. Kellogg Foundation
(“Geospatial Analysis of Air Pollution and Adverse Birth Outcomes in Detroit”, John Reiners,
Jr., PI), the GeoDHOC team is testing a hypothesized geospatial association between
concentrations of specific pollutants (i.e., NO,, PM, and VOCSs) in the Detroit airshed and
adverse birth outcomes (i.e., low birth weight and premature delivery) for pregnant women living
in Detroit (Reiners et al., 2014). To achieve these correlations, a pragmatic method for

integrating high spatial resolution measurements from a temporary monitoring network with time



series measurements from fixed regulatory monitoring stations was implemented (O’Leary and

Lemke, 2014) and this work forms a significant portion of the foundation for this thesis.

1.4 Spatial Outliers

Often air quality data needs refinement to account for anomalous measurements (Torres
et al.,, 2011). These irregular measurements need investigation to minimize potential risks that
can occur from inaccurate air pollutant models. Frequently, models are used to provide a more
robust analysis of air pollution (e.g., O'Leary and Lemke, 2014) but outliers within the dataset
can substantially skew model output. Therefore, accurate measurements, proper assumptions,
and appropriate corrections are needed to ensure air pollutant datasets constitute a relevant tool
for informed decision making.

Generically, an outlier in statistics is one that appears to deviate markedly from other
members of the sample group (Barnett and Lewis, 1994). Outliers are identified by comparing
the values in question to the rest of the distribution or a subset of the distribution (Torres et al.,
2011). Two types of spatial outliers are recognized by differences in magnitude relative to
surrounding points (Figure 1.1):

Global spatial outliers are statistical outliers if their value is unlike the values in the

entire distribution within a geographically defined study area. These data points may be

higher or lower than the other data points.

Local spatial outliers differ from the data points immediately surrounding them. These

points may not be extremes within the entire distribution but stand out when compared to

other data within their local geographic neighborhood.



Example Chart with Spatial Outliers
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Figure 1.1. Example chart of measurements made along a linear profile illustrating
a global outlier and a local spatial outlier.

For the purposes of this thesis, all spatial outliers, including global and local spatial outliers, are
referred to simply as outliers.

With new tools and technology, spatial data are more assessable and manageable leading
to an increase in spatial outlier research. At the Joint Research Center (JRC) in Europe,
geostatistical tools have been used to correct for air pollutant outliers and identify air quality
indicators (Kracht et al., 2013). The JRC includes over 6,000 air monitoring sites, and outliers
are identified using a low pass filter to remove high concentrations while preserving low
frequencies. The Moran’s I is used frequently to identify outliers (e.g., McGrath and Zhang,
2003; Walker et al., 2013; Zhang et al., 2008; Zhang and McGrath, 2004; Zou et al., 2014). In
Ireland, a number of studies used the Moran’s I method to identify spatial outliers when mapping

the soil organic carbon (McGrath et al., 2003, Zhang and McGrath, 2004, and Zhang et al.,



10

2008). Walker et al. (2013) also used the Moran’s I to detect spatial outliers in geomorphic
changes to sand dunes in Western Canada. Clougherty et al. (2013) took a different approach in
New York City and identified outliers as air quality samplers that were + 3 standard deviations

away from the mean.

1.5 Study Motivation and Objectives

The motivation for this thesis stems from a desire to better quantify correlations between
ambient air pollution concentrations and asthma exacerbations and other health outcomes in
Detroit and Windsor. Previously, high spatial resolution correlations were established in the
GeoDHOC pilot study (Lemke et al., 2013). This thesis investigation expands the assessment
between ambient air pollution and asthma exacerbations by 1) reassessing the GeoDHOC spatial
models for outliers and 2) incorporating temporal data into the original and subsequent models.

Specifically, the first objective is to determine if outliers are present in the datasets
and, if so, quantify the magnitude of their impact on modeled spatial pollution
distributions. Spatial outliers, both high and low in magnitude, can substantially influence
ordinary kriged models and lead to potentially inaccurate pollutant concentration estimates
across portions of the airshed.

The second objective is to incorporate temporal data into the modeling of the air
pollutant maps. In the initial GeoDHOC study, Lemke et al. (2013) did not include temporal
information in their analysis, relying instead on a two-week air pollution model to estimate
exposures uniformly throughout 2008 in Detroit and Windsor. This thesis applies the
methodology of O'Leary and Lemke (2014) to extrapolate the September 2008 and June 2009

GeoDHOC datasets and create a time series of monthly concentration maps for 2008.
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The final objective of this study is to determine how a) the correction for outliers
and/or b) increased temporal model resolution influence 2008 asthma associations. The
associations were evaluated on the same spatial scale as Lemke et al. (2013) and used the same
linear regression technique to evaluate asthma correlations with the newly created models from

objectives 1 and 2.

1.6. Hypotheses

The heterogeneous nature of urban air complicates human exposure estimates and creates
a need for accurate, highly detailed spatiotemporal air contaminant models. This investigation
evaluated two hypotheses while developing improved models of the Detroit-Windsor airshed by
identifying spatial data outliers and incorporating temporal trends to better define neighborhood

level air contaminant concentrations.

Hypothesis #1:

Prior GeoDHOC models indicate areas of high concentrations that are inconsistent with
regional concentration trends. The 2008 and 2009 GeoDHOC datasets and the MASN Detroit
datasets were re-evaluated using statistical software including ArcGIS, Surfer, SGeMS, and

SpaceStat to identify global and local spatial outliers. It was hypothesized that spatial models

with outliers removed will improve health correlations for asthma exacerbations.

Hypothesis #2:

The GeoDHOC asthma study relied upon a two-week sampling period in September 2008
to estimate annual air pollutant concentration levels. This thesis utilized MASN data along with

the GeoDHOC June 2009 data to temporally resolve air pollutants throughout 2008 and 2009. It
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was hypothesized that pollutant models with increased temporal resolution will also improve

health correlations for asthma exacerbations.

1.7. Thesis Structure

This thesis comprises five chapters. Chapter 1 introduced the need to spatial data outlier
identification and spatiotemporal models along with previous GeoDHOC studies.
The datasets used for this study are described in Chapter 2. Chapter 3 documents the
methodology used for identifying spatial data outliers, temporal scaling, and asthma correlations.
Results are reported in Chapter 4. A discussion of the results, limitations, conclusions, and

recommendations of future research are presented in Chapter 5.
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CHAPTER 2. DATA

2.0 Introduction

Air pollution, meteorological data, and health information for this study were derived
from a number of sources. Air pollution data came from two sources. The first was a spatially-
distributed set of air pollution measurements developed by the Geospatial Determinants of
Health Outcomes Consortium (GeoDHOC) (Lemke et al., 2013; Miller et al., 2010). The second
dataset consisted of time series measurements of air pollutants from the Michigan Air Sampling
Network (MASN) which is operated by the Air Quality Division of the Michigan Department of
Environmental Quality (MDEQ). Meteorological data were obtained from the National Oceanic
and Atmospheric Administration (NOAA). Asthma information was collated from the Henry
Ford Health System (HFHS) in Detroit and the Canadian Institute for Health Information (CIHI)

in Windsor (Lemke et al., 2013). Each of these datasets is described in more detail below.

2.1 GeoDHOC

The GeoDHOC conducted two, two-week air sampling campaigns in Detroit, Michigan
and Windsor, Ontario between September 5-20, 2008 and May 29-June 13, 2009. A total of 100
passive samplers and 50 active samplers were deployed in 2008. An identical sampling plan was
implemented in 2009 with additional passive samplers totaling 133 passive samplers and 50
active samplers (Figure 2.1).

Sites with a combination of active and passive samplers are designated by codes
including the letter ‘A’ and the station number (e.g., D-A-21 or W-A-4 in Detroit and Windsor,
respectively) (Figure 2.2). Passive samplers measured NO,, SO,, and volatile organic

compound (VOC) concentrations at an approximate spatial density of 5 km? per sample (Figure
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2.2). BTEX compounds comprised 64% and 72% of total VOCs measured in 2008 and 2009,
respectively. Active samplers measured polycyclic aromatic hydrocarbons (PAHs) and
particulate matter (PM) in three size fractions (PM;, PMi.,5, and PM;s.10) at an approximate

spatial density of 10 km? per sampler throughout both cities.
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The pollutant measurement datasets differed slightly in the number of points associated
with each analyte. NO, had 97 sampling points in 2008 and 122 sampling points in 2009.
BTEX and VOCs had 98 and 133 sampling points in 2008 and 2009, respectively. The greater
number of samplers for these analytes in 2009 arose from the inclusion of additional sampling
points in northwest and southwest Detroit, as well as the inclusion of a profile perpendicular to
Huron-Church road on the approach to the Ambassador Bridge in Windsor. PM,s, PMjg, and
PAHs had 38 sampling points in 2008 and 37 sampling points in 2009. Implementation of
quality control/quality assurance procedures (Miller et al., 2010), resulted in the exclusion of

different points from the 2008 and 2009 datasets for all of the analytes listed above.

Pollutant distribution models were created using ordinary kriging with a 300m x 300m
grid spacing. Details of sampling, QA/QC and mapping methods for the GeoDHOC data set are
given by Miller et al. (2010). These models demonstrated neighborhood-scale spatial variability
of air pollutants within the Detroit-Windsor airshed during the 2008 (Miller et al., 2010) and
2009 (O'Leary and Lemke, 2014) sampling periods. Kriging variance maps illustrating the
spatial distribution of estimation uncertainty in the Miller et al. (2010) and O'Leary and Lemke

(2014) maps are provided in the appendices (Figure A.1).

2.2 MASN

The second air pollution data set consisted of time series measurements at five MASN
locations within the city of Detroit from 2008-2010 (Figure 2.1). Not all analytes were
measured at each location (Table 2.1). Measurements at two nearby MASN locations outside the
city (Allen Park and Dearborn) were excluded from the study because PM,s and PMj

measurements at these sites did not differ materially in temporal trends from the Detroit station
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measurements during the period examined. Hence, only MASN samplers located in the city of
Detroit were included in the study. Measurements at two National Air Pollution Surveillance
(NAPS) monitoring stations in Windsor were also excluded because they are outside Detroit, the
refined study area for temporal analyses described in Section 3.2 of this thesis.

The Detroit MASN data set includes single sampling locations for NO,, VOCs including
individual BTEX components, and PMy, (Table 2.1). The East 7 Mile location was the only
active NO, sampling location in the study area during the study period. At this location, NO,
was sampled continuously using automated chemiluminescence (Federal Reference Method
(FRM) RFNA-0179-035) (U.S. EPA, 2013) and hourly concentrations were reported. BTEX
concentrations at Southwestern High School were derived from air samples collected over a 24
hour period every 12 days using SUMMA canisters. These samples were analyzed for VOCs
using gas chromatography/mass spectrometry following EPA method TO-15 (U.S. EPA, 1999).
PM;jo concentrations were measured at the Southwestern High School site over a 24 hour period

every six days using a High-Volume Air Sampler (FRM RFPS-1287-064) (U.S. EPA, 2013).

Table 2.1. Michigan Air Sampling Network (MASN) monitoring sites in Detroit.

Site Name Abbreviation  Location Analyte Method Sampling Samp_le/ report
Frequency Duration
East Seven E7Mile northeast NO, FRM 35 Continuous 1 hour
Mile Detroit PM,s FRM 118 3days 24 hours
Linwood Linwood central Detroit  PM,5 FRM 118 1to 3days 24 hours
Newberry south central
School NewSch Detroit PM, 5 FRM 118 3 days 24 hours
FIA/ south central
Lafayette St. FIA Detroit PM, 5 FRM 118 3 days 24 hours
PM, 5 FRM 118 3 days 24 hours
Sputhwestern SWHS southyvest PMyo FRM 64 6 days 24 hours
High School Detroit EPA TO-
VOCs 15 12 days 24 hours
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PM,s was measured at five Detroit MASN sampling locations during the 2008-2010
study period (Table 2.1). PM,5s was measured over a 24 hour period using a PM, s Sequential
Air Sampler (Rupprecht & Patashnick Company, Incorporated Partisol®-Plus Model 2025, FRM
RFPS-0498-118) (U.S. EPA, 2013). PM,5 was sampled every 3 days at each site, with the
exception of the FIA/West Lafayette Street site where daily samples were available after October

1, 2009.

2.3 Meteorological Data

Weather data from the National Oceanic and Atmospheric Administration (NOAA) were
obtained for the Coleman A. Young International Airport, located in northeast Detroit (Figure
2.1). These data provided hourly observations of wind speed, wind direction, temperature, and
precipitation for 2008 (National Climatic Data Center, 2014). Monthly average wind rose plots
(Figure 2.2) indicate prevailing westerly winds throughout much of the year, although greater
variability in wind direction and speed was generally present in the spring (March through May)

and late summer (August through September) (Figure 2.2).

2.4 Asthma Data

Asthma data for this study were derived directly from the GeoDHOC analysis reported
by Lemke et al. (2013). In that study, asthma events were defined as hospital admissions and
emergency department visits with a primary diagnosis of asthma. In 2008, approximately 2,800
asthma hospitalizations and emergency room visits were reported in the Henry Ford Health
System (HFHS) patient database for Detroit. During the same year, approximately 650

comparable asthma events were reported in the Discharge Abstract Database (DAD) and the
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National Ambulatory Care Reporting System (NACRS) in Windsor (Lemke et al., 2013).
These counts, normalized to number of asthma events per 1000 patients in each zip code
tabulation area in Detroit and each postal forward sortation area in Windsor, constitute the

spatially distributed asthma frequencies used in this thesis.
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CHAPTER 3. METHODS

3.0 Introduction

This study consists of two major investigations, spatial outlier analysis (hypothesis #1)
and temporal scaling (hypothesis #2), to address the relationship between asthma exacerbations
and air pollution in Detroit and Windsor. The spatial outlier analysis utilized a multistep process
to assess outliers in the Geospatial Determinants of Health Outcomes Consortium (GeoDHOC)
datasets for September 2008 and June 2009. Potential outliers were initially identified using four
different outlier identification methods and then refined to a set of spatial data outliers based on a
convergence of these methods. New ordinary kriged spatial models were subsequently derived
from the resulting air pollution datasets with spatial data outliers removed. The second effort
incorporated Michigan Air Sampling Network (MASN) time series air pollutant concentration
measurements. The original GeoDHOC models and the revised models with outliers removed
were temporally scaled by incorporating the MASN time-based dataset. The resulting air
pollutant concentration models were then correlated with acute asthma events in Detroit and
Windsor to reassess the impact of air pollution on asthma and test the two hypotheses of this

study (Section 1.6).

3.1 OQutliers

Four independent methods were used to identify potential outliers that were subsequently
reassessed using a combination of the methods to select a final set of spatial outliers. These
include box plots, difference maps, variogram clouds, and the Moran’s I, each of which takes
into account different aspects of individual pollutant measurements relative to surrounding
measurements. The box plot and Moran’s I approach are quantitative means of assessing spatial

data outliers whereas the difference maps and variogram clouds are more qualitative
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assessments. Analytes examined for outliers included nitrogen dioxide (NO,), total benzene,
toluene, ethylbenzene, and xylene (BTEX), total volatile organic compounds (VOCs), mass of
particulate matter less that 2.5 microns in aerodynamic diameter (PM,s), mass of particulate

matter less than 10 microns (PMyg), and polycyclic aromatic hydrocarbon (PAH).

Both global and local outliers (Section 1.4) were considered. Global outliers, which are
values unlike the rest of the entire distribution, were determined using box plots and difference
maps. In contrast, local outliers, which are different from nearby and adjacent points, were
identified using difference maps and Moran’s I and confirmed using variogram clouds. Because
combinations of global and local outlier identification methods were used, the outliers were all

grouped together.

SpaceStat (Biomedware, Inc.) was used to create boxplots, variogram clouds, and
Moran’s I analysis charts. SpaceStat links each of its charts and plots in a common dataset that
enables direct graphical comparisons among the different methods employed in this study. The
difference maps were generated using Surfer 11 (Golden Software). SpaceStat was used for the
variography and to create the ordinary kriged models with the outliers removed. The final map

versions of the difference maps and new models were created in ArcMap 10.0 (ESRI).

3.1.1 Box Plots

Box plots are aspatial representations illustrating the spread of concentration distributions.
The box plots created for this study are a statistical visualization of the range of each dataset
relative to the median and interquartile range (IQR) (Figure 3.1). The black box in the center of

the graph represents the IQR and the line in the middle is the median. The “whiskers” (the
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horizontal lines above and below the box), represent +/- 1.5 times the IQR beyond the box

boundaries (Figure 3.1).

Box Plot Example

Potential outliers ——
Data Points

I .
o -{ - <"

1.5xIQR

<«<—Potential outliers

Figure 3.1. Example Box Plot with labels.

This study treated points located outside of the whiskers as potential outliers. Histogram
charts were generated to confirm that these points were located on the extreme ends of the

distribution for each dataset.

3.1.2 Variogram Clouds

Variogram clouds are exploratory plots of dataset spatial variability, in which each point
represents the dissimilarity (square root of the absolute difference) between any two
measurement locations as a function of their Euclidean distance. Each variogram cloud takes the
entire dataset into account and is useful for identifying local variability. Points that fall in the
upper left corner demonstrate a high degree of dissimilarity across short separation distances

(Figure 3.2). Conversely, points in the bottom right show little dissimilarity over long distances.
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Points that are close together are expected to display more similarity than points separated
by a greater geographical distance (Isaaks and Srivastava, 1989). Consequently, pairs of points
displaying high dissimilarity over a geographically small distance were initially considered
potential spatial data outliers for this study. However, selecting all of the points in the top left
was found to be too arbitrary. The box plot (aspatial technique) was therefore used to identify
extreme values in conjunction with the variogram clouds (spatial technique) to identify outliers.
If the resulting highlighted points identified through the box plot analysis showed a large degree
of dissimilarity in a short geographical distance on the variogram cloud (Figure 3.2), the
sampling location was considered a potential spatial outlier because it registered as both a global

(box plot) and local (variogram cloud) anomaly.
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Figure 3.2. Example variogram clouds. Graph A shows an example variogram cloud with
a box representing a region with potential outliers. Graph B highlights points associated
with a single sampler location (identified on a corresponding box plot for the same dataset)
that is considered to be a potential outlier. Graph C highlights points associated with a

single sampler location that is not considered to be a potential outlier.
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3.1.3 Difference Maps

Difference maps quantify the change in pollutant measurements between the two
GeoDHOC sampling periods in September 2008 and June 2009. They were generated using grid
arithmetic by subtracting the September 2008 GeoDHOC ordinary kriged model grids from the

June 2009 ordinary kriged model grids for each analyte:

Dif ference Map = (GeoDHOC June 2009 OK model) — (GeoDHOC Sept.2008 OK model)  (Eqn. 3.1)

Isoconcentration lines were added to each difference map to help highlight large concentration

changes over short distances.

Two different approaches were used when identifying potential outliers based on the
difference maps. The first approach assessed the concentration difference, both positive and
negative, between the two sampling periods. Major differences typically generated ‘bulls eye’
shaped isoconcentration lines centered on a single sampler location (Figure 3.3). The September
2008 sampling locations and June 2009 sampling locations were assessed individually because
the sampling locations varied from year to year (Section 2.1). Sampling points that demonstrated

a large difference between the two sampling years were considered potential outliers.

The second approach assessed abnormally high or low model values adjacent to, but offset
from, individual sampling locations. Some modeled grids included high or low concentration
values that were markedly different from nearby sampling locations. These features can result as
artifacts from gridding and contouring algorithms when closely spaced control points have
markedly different values. The resulting ‘bulls eye,” which is shifted away from an actual
sampling location, constitutes a potentially inaccurate model estimate. For example, in Figure

3.3, the lower red box shows a zone in Windsor where the sampler location, black dot, is located
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to the left of the center contour circle. The locations near the sampling point were determined to
be inaccurately modeled and the associated sampler was identified as a potential spatial data

outlier.

Difference Map Example
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Figure 3.3. Example difference map illustrating different approaches to spatial

outlier identification.

3.1.4 Local Moran’s I

The Local Moran’s I is a weighted correlation coefficient that quantifies spatial
randomness for each location in the dataset. Spatial patterns are evaluated by the Moran
algorithm for each point measurement using a set number of surrounding points. In this study,
eight surrounding points were utilized. Locations that deviate from spatial randomness

demonstrate a specific spatial pattern. Spatial patterns include clustering of high or low values,
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or, alternatively, individual high or low values surrounded by samplers with consistent, but

contrasting (low or high) values, respectively (Figure 3.4).

o | Low o
A | surrounded J o
by high '.
(Low-high) ° o ° o
®o0® 28 o %

Statistically Significant Low-High

, High sufrounded by
high (High-high)

=
2
Ee]
o
o
=
S
o
o]
ey
20
2 © &
— Low o o
(@] o
c surrounded
o o
V by low
=
> (Low-low)
Q
N
°
o Statistically Significant High-Low
e °®
S T
o
wv @
o , o High surrounded
o, 0o’ by low (High-low)
°
<0 0 >0

Attribute Value (z,)

Figure 3.4. Local Moran’s I scatter plot example with high-low and low-high points
highlighted. Positive | values are found in the upper right-hand and lower left-hand
quadrants of this chart. Potential outliers, indicated by statistically significant negative |
values, appear as light blue or pink dots in the upper left and lower right quadrants and

are highlighted by the boxes on this example chart.
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The Local Moran’s I function assumes a normal population to evaluate spatial distributions
with spatial randomness representing the null hypothesis. The Jarque-Bera test was used to test
for normality (Kiefer and Salmon, 1983) by examining the GeoDHOC dataset for each analyte in
Sept. 2008 and June 2009. If the dataset generated a p-value equal to or less than 0.05, it was
determined to be non-normal and, consequently, a normal score transform was performed.

Subsequently, the Moran’s I was calculated in SpaceStat using the following equation:
n
Ii = ZiZWi,ij,l. :F] (Eqn32)
j=1

where | is the Moran’s I coefficient, z is the z score, w is a weighting parameter applied to the
neighbors, i identifies the sampler point being evaluated, j is an index value corresponding to
each of the nearby neighbors, and n is the number of neighbors (Anselin, 1995). A value of zero
indicates no spatial autocorrelation. Positive I; values indicate that there is either a cluster of low
or high values. Negative I; values indicate that high and low values are clustered together
(Figure 3.4).  Consequently, potential outliers were identified as sampling points with a
negative I; value along with a p-value less than or equal to 0.05. These represent either sampling
points with higher values than the surrounding sampling locations (high-low) or lower values

that the surrounding sampling location (low-high).

Parameters of the Local Moran’s I include number of randomizations, point adjacency
method, neighbor weight method, and Simes Correction. This study used 999 Monte Carlo
simulations to derive a p-value for each sampler location. The point adjacency method was set
to the nearest 8 neighbors. This ensured that I; only reflected the immediate surrounding sampler

locations. The neighbor weight method was standardized to neighbor count.
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The Simes correction was used to adjust p-values for the Local Moran’s I calculations.
Local clustering values are not independent because the Moran’s I test statistics are derived from
repeat trials drawn from the same dataset, and neighboring areas overlap, which makes the test

statistics correlated. The Simes adjustment is defined as:

pi' =(m+1—-a)p; (Egn. 3.3)

with n as the number of p-values (number of neighbors + central location) and a as the index
value starting at 1 and describing the location in the vector of p-values (hnumber of neighbors +

central location).

3.1.5 Outlier Determination

A three step process was implemented to select spatial data outliers. 1) Potential outliers
were identified from the global dataset using each of the four methods described above. 2)
Potential outliers identified only by a single method were disregarded. 3) Each remaining
potential outlier was then individually assessed using a combination of the four methods to
determine a final set of outliers for subsequent analysis in this study. Variogram clouds were
plotted in conjunction with points identified on box plots to evaluate pairs of points associated
with extreme values. Sampler locations identified with box plot analysis and Moran’s 1 were
plotted on the difference maps to facilitate visual comparison of those three identification
methods. Sampler locations identified using Moran’s I were also evaluated using variogram

clouds to assess agreement for local outliers.



31

3.1.6 Kriging

After spatial data outliers were identified for each analyte, they were removed from the
Miller et al. (2010) and O'Leary and Lemke (2014) datasets and remodeled using ordinary
kriging. Kriging is a geostatistical method that uses a weighted linear regression to interpolate
values at unsampled locations. There are numerous types of kriging that include ordinary
kriging, simple kriging, universal kriging, and indicator kriging (Webster and Oliver, 2007).
Ordinary kriging was employed, which, like the other kriging methods, is considered a ‘best
linear unbiased estimator’ (B.L.U.E.) (Isaaks and Srivastava, 1989). It is ‘linear’ because of its
use of weighted linear regressions. It is ‘unbiased’ by setting the mean residual (error) as close
to zero as possible. And it is ‘best’ by minimizing the estimation error variance. Ordinary
kriging distinguishes itself from other forms of kriging by assuming a constant local mean in the
search neighborhood of the estimation point (Isaaks and Srivastava, 1989). This offers greater
flexibility to incorporate spatial variability than other kriging techniques such as simple kriging
which assumes a constant global mean (Isaaks and Srivastava, 1989) or kriging with a trend,
which assumes an a priori model of spatial variation (Goovaerts, 1997). Kriging requires a
covariance model to quantify variance as a function of separation distance for each variable of

interest. Variogram models are generated through a process called variography.

A variogram (or, more strictly, a semi-variogram) measures variance or covariance
between one or more values measured at distinct locations as a function of the distance between
the locations. When generating an initial model for kriging, an ‘experimental variogram’ is used.
For this study, experimental semi-variograms were defined as half the mean squared difference

between values separated by a defined distance or ‘lag’ (Isaaks and Srivastava, 1989):
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y(h) = #(h)za,j)(vi —v;)? (Egn. 3.4)

where v is the variance at lag increment h, N(h) is the total number of data pairs separated by lag
h, and v; and v; are the attribute values of a single pair at locations i and j.

In contrast to the variogram cloud introduced in section 3.1.3, in which every pair of
points is shown, experimental variograms display the average variance summed over multiple
pairs of points at specified separation distances. Defining a lag distance with an appropriate
tolerance to group pairs reduces the noise (contained in the variogram cloud) and enables a
covariance structure to emerge. A continuous variogram model is then fit to the experimental
variogram to define the covariance structure. Two common types of variogram models were

used in this study:
3
Spherical y(h) = c [1.5% - 0.5 (g) ] (Eqn. 3.5)

Exponential y(h) = c [1 — exp (— %)] (Egn. 3.6)

where v is the variance at lag increment h, ¢ represents the sill contribution, and a represents the
range of the spherical model or the effective range (distance where y reaches 95% of the sill
contribution) in the exponential model (Goovaerts, 1997). These variogram models were used in
conjunction with a nugget effect accounting for measurement uncertainty to interpolate over the

entire study area with kriging estimates.

3.1.7 Kriging Parameters
Ordinary kriging was used to model the newly created GeoDHOC air pollution datasets
with outliers removed for the Detroit and Windsor airshed. Models were created for the

September 2008 and June 2009 sampling periods. The original September 2008 (Miller et al.,



33

2010) and June 2009 (O'Leary and Lemke, 2014) ordinary kriged GeoDHOC models are
henceforth referred to as Model 1 (Table 3.1). The subsequent ordinary kriged maps with

outliers removed are referred to as Model 2 (Table 3.1).

In formulating new variogram models and kriging parameters, an attempt was made to
adhere to the parameters of Model 1 (original models) as much as possible (Table 3.2).
However, several parameters required changes. The lag distance and lag tolerance were kept the
same as previous models (1000 meters and 500 meters, respectively). The lag count was
increased to 20. The nugget effect, or discontinuity at the origin, was kept the same for NO,,
BTEX, and VOCs. The ordinary kriging search radius was set to 10,000 meters for passive
sampler analytes (NO,, BTEX, and VOCs). For active sampler analytes (PM and PAHS), the
search radius was set to 20,000 meters because of the smaller number of samplers distributed
throughout the same study area. Sill contributions were adjusted from Model 1 to Model 2 to
account for the decreased variance observed when extreme values identified during the outliers

analysis were excluded, subsequently reducing the range of observed values for each analyte.

The original particulate matter models (Miller et al., 2010) were developed in the mass
increments in which they were measured during GeoDHOC sampling: PMi, PM;,5, and
PM25.10. Subsquent PM mass concentration models reported by Lemke et al. (2013) included the
sumation of incremental particulate matter to derive mass concentration distributions for PM; s
and PMyo , two regulated PM fractions in the US and Canada. To facilitate comparison of
PM-asthma correlations, PM;, PMjs, and PMj, summations were used in this thesis.
Consequently, the variogram models generated for PM,5s and PMyo in Model 2 were distinctly

different from Model 1 (Table 3.2).



Table 3.1. Summary of the four models used in this study.

34

Model Description Source
Ordinary kriged models for the Detroit-Windsor .
Model 1 Airshed in September 2008 and June 2009 using g,‘ggr eznglieﬁgio()zoﬂ(;
the original GeoDHOC dataset. Y
Ordinary kriged models for the Detroit-Windsor
Airshed in September 2008 and June 2009 using , .
Model 2 the GeoDHOC dataset with spatial outliers Master’s Thesis
removed.
Model 1 with temporal scaling for 12 months in .,
Model 3 2008. This model is only applicable to Detroit. O’Leary and Lemke (2014)
Model 4 Model 2 with temporal scaling for 12 months in Master’s Thesis

2008. This model is only applicable for Detroit.




35

0000z 00001 Sv ST yds 06 081 05 1 005 000T )4 IV | 600Z 0TNd
0000Z 000€T LT €00 yds 06 081 05 T 005 000T 0z Y | 800Z O0TINd
0000z 000L S0 S0 yds 06 081 55 1 005 000T )4 IV | 600Z SCINd =
0000Z 000TT SET Al yds 06 081 €5 T 005 000T 0z Y | 800Z SCNd m.
00007 0000T 1[04 S¢ yds 06 08T 0§ T 005 000T o¢ IV | 6002 Hvd W
0000T 0009T [ |34 dxa 06 081 8€ T 005 000T )4 IIv | 800C J20M m
0000T 00STT [ £5°0 dxa 06 08T SE T 005 000t 0z IV | 800Z X314 W
0000T 0009T [ €T Yds 06 08T 09 T 005 000T )4 IV | 6002 ZON m
00001 000ST 8 S£0 dx3 06 081 SS T 005 0001 0z v | 800Z ZON
"5135E1EP GO0Z PUE 800F 243 Ylog JO) paacLual sialjino elep [eneds yum sjapow J0HJe=9 pasiy Aleulpio mau sy) Joj s13)aweled
0o0og 000TT e0¢ €C0 yds 06 081 0 1 005 000T 91 e 6002 -m.wﬁEm
00042 ooos 1o EL0 yds 06 081 0 1 005 000T 91 e 600 | 52T Wd
0080F 0008 580 ST°0 yds 06 08T 0 T 005 0001 91 li® 600¢ TiAd
00557 00s8 LT £02 yds 06 08T 0 T 005 000T at lie 600¢ Hvd
ooser 00591 58°L vZo yds 06 081 0 1 005 000T 91 e 6002 J20A
00555 00S8T 87 6¥0'0 yds 06 081 0 T 005 0001 at lie 6002 X314
0oost 000ctT 9Ct €1 yds 06 081 0 1 005 000T 91 e 6002 CON ow
6007 Ul s|2pow DOHgoe=9 padiy Ateulpio |eulSlio 3yl Joj si313Weled &
-
0000€ 000.2 6 T yds 06 08T 0 T 005 0001 91 lIe | 800C ._DH o
-5°C Wd z
0000€ 0009 T T yds 06 08T 0 T 005 0001 91 Il | 800¢ | S'¢-T Wd w
0000€ 0000T LS50 10 Yds 06 08T 0 T 005 000T =] 8 lle | 800c TiAd W
0000€ 0000¢€ [ S0 dxs 06 081 0] T 005 0001 9T lIE | 800OC J0A
0000€ 0000T ST £5°0 yds 06 08T 0 T 005 000T 91 Il | 80OC X314
0000€ 00ZST 96 SL°0 yds 06 08T 0 T 005 0001 91 lI® | 800c ZON
2007 Ul s|epow JOHge=9 paduy Aleulpio [euiSuo ay) Joj sislsweled
mhﬂhx (L) uoINgLIUc) e | aosuessjol | de] 3|8uy | uno) () (w) | uno) = | s | ey
a8 aduey ns 3|8uy 3|8uy | me1s | 28uy | aouessjol | Feq Seq
siajaweled Suiiny pue |apoy weiSolep si3)awWeled wWelfolep [eluawuiadxy uoneLIoU| 3aseIE(

‘s1a)aureaed SmSLry Areurpio pue WEISOLIBA “T ¢ J]QEL




36

3.2 Temporal Scaling

Both the original Miller et al. (2010) and O'Leary and Lemke (2014) ordinary kriged
GeoDHOC models (Model 1), as well as the subsequent models with outliers removed (Model 2)
were temporally scaled to generate a series of monthly air pollutant maps for 2008 following the
approach described by O'Leary and Lemke (2014). This process integrated the spatially-rich
GeoDHOC datasets with the temporally-rich MASN datasets for NO,, total BTEX, PM, s, and
PMjo. The temporally scaled models inclusive of outliers are collectively referred to as Model 3;
whereas the temporally scaled models exclusive of outliers are collectively referred to as Model
4 (Table 3.1). Published asthma data were available only for 2008. Consequently the effects of
temporal scaling process could be assessed only for the twelve months during the 2008 time
period.

The process of integrating MASN and GeoDHOC data sets began with a comparison of
their respective measurements and model estimates. Cross validation was initially applied to
assess the point-wise accuracy of modeled estimates for both Model 1 and Model 2.
Subsequently, a two-step process was employed to develop a set of spatially and temporally
interpolated concentration maps for NO,, total BTEX, PM,s and PMj, across the study area.
Temporal data were restricted to Detroit in the O'Leary and Lemke (2014) study. Consequently,
temporal scaling of the GeoDHOC spatial models only included areas inside the municipal
boundaries of Detroit and the enclosed municipalities of Hamtramck and Highland Park.

Initially, existing GeoDHOC maps for each pollutant were combined using a weighted
average scheme to produce a series of spatially interpolated maps for twelve consecutive months.
Subsequently, temporal trends derived from MASN time series measurements were

superimposed on the monthly maps to generate a series of 12 monthly models spanning the
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period from January 2008 through December 2008 for each pollutant. Originally, a 36-month
period (2008-2010) was modeled in support of the perinatology study (O'Leary and Lemke,
2014) but this thesis is limited to 2008 to coincide with the period of asthma data availability.

Computations were performed using Surfer 11.4, ArcMAP 10.0, and SpaceStat 3.2.20 software.

3.2.1 Comparison of Measurements and Model Estimates

GeoDHOC samplers were either collocated or placed in close proximity to three of the
MASN samplers. These included the East 7 Mile location, Southwestern High School, and West
Lafayette Street/FIA sites (Figure 2.1). Concentrations measured by the individual GeoDHOC
samplers at these three sites were compared to MASN measurements from the corresponding
time periods to assess agreement between the two data sets. In addition, the spatial and temporal
variability of the GeoDHOC and MASN concentration data sets were compared.

In the cross validation process, individual measured values for each pollutant were
removed and re-estimated with ordinary kriging using the remaining observations. The
distribution of estimation error at sampled locations was examined for magnitude, bias, and

independence.

3.2.2 Spatial Modeling

Model 1 and Model 2 served as the anchor points for each pollutant during spatial
interpolation. These maps, which model the spatial variability of measurements integrated over
continuous two-week sampling periods across the Detroit-Windsor airshed, were assumed to be
representative of the spatial distribution during the month in which samples were collected (i.e.,

September 2008 and June 2009). A weighted average was applied to construct spatially
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distributed concentration models for the eight months between September 2008 and June 2009.
Weighting factors for each month were assigned using fractions of the nine months separating
the anchor months based on proximity in time to each anchor month. For example, the October
map was blended with an 8/9 weighting for September plus 1/9 weighting for June at each point
in the 300 m x 300 m model grid. Similarly, November combined 7/9 September with 2/9 June,
and so on. This procedure was implemented independently for each of the four pollutants
mapped.

July 2009 and August 2009 spatial models were also constructed using an analogous
procedure to complete a 12-month series. This procedure required the additional assumption that
the modeled spatial distribution of air pollutants in September 2008 can be used as a proxy for
the spatial distributions in September 2009. July and August spatial distributions were calculated
using a 1/3 and 2/3 weighting to combine the June 2009 and September 2009 models for each
pollutant, with higher weights assigned to the temporally more proximal month. The completed
year-long series of monthly GeoDHOC models (September 2008 through August 2009) served
as a template of spatially variable models that subsequently were refined using available MASN

time series measurements.

3.2.3 Temporal Modeling

Implementation of the temporal scaling of the monthly GeoDHOC spatial models for
both Model 1 and Model 2 occurred in four steps. First, monthly averages of MASN
measurements were calculated for each pollutant. This process was straightforward for NO,,
total BTEX, and PMo, which were each measured at a single MASN station so that an arithmetic

average of the time series measurements made during each month could be used. In contrast,
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PM, s was measured at five MASN sites with an irregular spatial distribution throughout the city
(Figure 2.1). Consequently, the four PM, s stations clustered in south central Detroit were first
averaged together. The resulting south central Detroit value was then averaged with the East 7
Mile site in northeast Detroit to derive a crudely declustered average PM,s concentration
incorporating information from all five MASN sites.

Second, individual monthly GeoDHOC models (Section 3.2) for each of the four
pollutants analyzed were spatially averaged over the city of Detroit, inclusive of the embedded
municipalities of Hamtramck and Highland Park (Figure 2.1). This process averaged the
estimated values at each point in the 300 m x 300 m grid for each model.

Third, monthly spatial averages were compared to the corresponding monthly average of
the MASN time series measurements. September 2008 and June 2009 are the only months in this
study when direct comparisons between MASN measurements and unadjusted GeoDHOC spatial
models for the City of Detroit are possible. Therefore, the mean of the September 2008 and June
2009 differences between GeoDHOC and MASN monthly averages for each pollutant was

adopted as a target adjustment factor (TAF):

(GeoDHOCsept 08 — MASNsept 08) + (Ge0DHOC jyne 99 — MASN jyne 09)

TAF; =
2

(Eqn. 3.7)

where subscript i represents each of the four pollutants considered.
Fourth, a spatially uniform bulk shift was calculated for each month and pollutant using
the target adjustment factor and the difference between the GeoDHOC spatial model average and

the corresponding MASN average:
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Bulk Shift; ; = TAF; — [GeoDHOC; ; — MASN; ] (Eqn. 3.8)

where subscript j represents each of the months considered. When [GeoDHOC;; — MASN; ] is
positive and smaller than the target adjustment factor, positive bulk shift values are needed to
increase the monthly difference up to the fixed target adjustment factor. Alternatively, if
[GeoDHOC;; — MASN;;] is positive but greater than the target adjustment factor, negative bulk
shift values are needed to decrease the monthly difference down to the target adjustment factor.
The converse occurs when [GeoDHOC;; — MASN;;] is negative. The resulting bulk shift was

subsequently used to adjust each monthly GeoDHOC spatial model:

Adjusted Monthly Model; ; = (GeoDHOC Spatial Model; ;) + (Bulk Shift; ;)

(Eqn. 3.9)

The end product was two series (Models 3 and 4) of spatially and temporally variable

concentration models for each of the four pollutants during each of the 12 months of 2008.

3.3 Asthma correlations

Linear regression was employed to generate correlations between the asthma dataset and
air pollutant Models 2, 3, and 4. Model 1 asthma correlations are published in Lemke et al.
(2013). Asthma data were aggregated at the zip code scale in Detroit and the equivalent forward
sortation area scale in Windsor (Lemke et al., 2013). Consequently, air pollutant model
concentrations were averaged over each of the postal regions for this study. Lemke et al. (2013)

also reported cumulative asthma data for 2008. Therefore, the twelve individual months in
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Model 3 and Model 4 were averaged to create an annual concentration for Model 3 and Model 4
in each postal zone for 2008. The SpaceStat aspatial linear regression tool was used for

regression analysis defined by:

with by as the slope, and by as the y-intercept The asthma exacerbation rate was assigned as the

dependent variable, y, and the air pollutant concentration was set as the independent variable, x.

Statistically significant correlations had a p-value of 0.05 or less. SpaceStat also returns
model r? values which measure the strength of the association between the independent and
dependent variables. The model r* values are defined as one minus the residual sum of squares

(RSS) over the total sum of squares (TSS):

2122
re=1 prp (Egn. 3.11)
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CHAPTER 4. RESULTS

4.0 Introduction

Results from the spatial outlier analysis (Section 3.1) and temporal scaling (Section 3.2)
are presented in this chapter in Sections 4.1 and 4.2, respectively. Spatial outlier identification
and temporal scaling, used individually and in combination, generated three new air pollution
models for the study area. In total, four different models (Table 3.1) provided a means to assess
relationships between asthma rates to air pollution in the Detroit-Windsor international airshed
(Section 3.3) and test the study hypotheses (Section 1.6). Results of these regressions are also

presented below in Section 4.3.

4.1 Spatial Data Outliers Identification

Box plots, variogram clouds, difference maps, and Moran’s I (Section 3.1) were used to
identify potential spatial outliers in the GeoDHOC dataset. No single method, among the four
used, emerged to definitively determine spatial outliers for each analyte. The set of potential
outliers, identified using the four methods individually, was initially refined by requiring
concurrence of at least two of the four methods to identify the same sampling location as a
potential outlier. Each remaining potential outlier was then individually assessed using

appropriate combinations of four methods.

4.1.1 Outlier Identification
The box plot provided useful exploratory statistics to evaluate the distribution of
measurements for each pollutant. Box plot graphs showed the spread of each dataset and the

relative magnitude of potential outliers indicated by the bottom and top whiskers (Table 4.1). In
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a number of instances, the bottom whisker (1.5 times the interquartile range below the first
quartile) fell below zero (Table 4.1, Figure 4.1). This occurred for BTEX 2009, VOC 2008 and
2009, and PAH 2008 and 2009. In total, the box plots (Figure 4.1) displayed 24 potential
outliers that exceeded +1.5 times the interquartile range (Table 4.2). Unusally high values at or
above the whisker were observed at 21 sampling locations and low values at or below the
whisker were found at 3 locations. Histograms confirmed that these points were located on the

extreme ends of the dataset (Figure 4.2).

Table 4.1. Summary table of GeoDHOC measured values for 2008 and 2009 and box plot
values for each analyte.

. # of . first . third IQR Bottom Top
Year  Analyte  Unit data ™" max mean  std quartile median quartile IaR x1.5  Whisker  Whisker
2008 NO, ppb 97 7.3 25.2 15.3 3.0 13.2 15.7 17.0 3.8 5.7 7.5 22.7
2009 NO, ppb 122 7.7 27.1 15.4 3.5 13.3 15.3 17.3 4.1 6.1 7.1 23.5
2008 BTEX |.J.g/m3 98 1.0 30.9 8.9 4.0 6.4 8.8 10.5 4.2 6.3 0.1 16.8
2009 BTEX |.J.g/m3 133 1.8 11.7 5.6 2.1 4.0 5.6 6.9 2.9 4.4 -0.4 11.3
2008 VvOC L,Lg/m3 98 3.8 46.6 13.8 5.7 9.8 13.7 16.4 6.7 100 -0.2 26.4
2009 VvOC Mg/m3 133 2.7 16.7 7.8 2.8 5.7 7.7 9.6 3.9 5.9 -0.2 15.4
2008 PM,s ug/m3 38 3.9 13.4 7.7 1.6 6.9 7.6 8.2 13 1.9 5.0 10.1
2009 PM,s ug/m3 37 7.8 17.7 9.5 14 8.5 9.2 10.0 15 2.2 6.3 12.2
2008 PMy ug/m3 38 5.9 23.0 12.8 3.2 11.1 12.1 13.5 2.4 3.6 7.4 17.1
2009 PMy ug/m3 37 11.8 219 15.8 2.6 13.9 15.4 16.8 2.9 4.3 9.7 211
2008 PAH Mg/m3 38 33 53.5 20.1 13.7 6.1 18.3 28.5 224 336 -27.5 62.1
2009 PAH ;,Lg/m3 37 7.9 149.8 335 27.3 16.8 28.3 37.5 20.7 311 -14.3 68.6
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Table 4.2. Summary table of potential spatial data outliers identified in the GeoDHOC
2008 and 2009 datasets. A check mark indicates that the sampling location was identified
as a potential outlier by that method. Shading indicates that the sample location was
IQR is interquartile range and Mes. Diff. is

determined to be a spatial data outlier.

measured difference (June 2009-Sept. 2008).

x 1.5 BoxPlot Box Variogram Difference Mes.

Year Analyte  Unit SiteID  Value

Y IQR Location Plot  Cloud Map Diff.
2008 NO2 ppb D-A-35 252 227 top v v v 4.5
2008 NO2 ppb W-p-3 7.3 7.5 bottom v v v 7.9
2009 NO2 ppb D-P-25 27.1 235 top v v v 7.9
2009 NO2 ppb D-A-14 25.2 23.5 top v - - 3.8
2009 NO2 ppb W-P-23  25.0 23.5 top v v - -
2008 BTEX pg/m’>  D-A-25 309 168 top v v v -19.3
2008 BTEX ug/m’>  D-A5 205 168 top v - - -8.8
2009 BTEX ug/m’>  D-A25 116 113 top v - - -19.3
2009 BTEX ug/m®*  D-A5 117 113 top v v - 8.8
2009 BTEX ug/m>  D-A-33 98 113 - - - v 8.8
2008 VOC pg/m’>  D-A-25 466 264 top v v v -30.9
2008 VOC ug/m’>  D-A5 276 264 top v - - -12.1
2009 VOC ug/m’>  D-A-25 157 154 top v - - -30.9
2009 vOC ug/m’*  D-A-33 13.0 154 - - - v 8.7
2008 PM2.5  ug/m’  W-A2 3.9 5.00 bottom v - v 5.7
2008 PM2.5 ug/m’ D-A-6 105 10.1 top v - - 0.2
2008 PM2.5 ug/m’  W-A4 134  10.1 top v v - 5.5
2009 PM2.5  ug/m’  W-A8 147 122 top v v v 7.3
2009 PM2.5 pg/m® D-A-33 129 122 top v - v 3.8
2008 PM10  mg/m’  W-A2 59 7.4  bottom Vv - v 9.9
2008 PM10  mg/m’ D-A-32 230 17.1 top v v - -1.9
2008 PM10  ug/m’ D-A-6 225 17.1 top v v - 3.1
2008 PM10  pg/m’  W-A-4 206 17.1 top v - - 8.3
2009 PM10  mg/m’>  W-A-8 219 211 top v v v 10.3
2009 PM10  ug/m’ D-A-33 205 211 - - - v 5.4
2009 PAH pg/m>  D-A-32 987 686 top v - v 73.7
2009 PAH pg/m>  W-A-3 1498 68.6 top v v v -
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Each point identified using a box plot was subsequently evaluated on a variogram cloud
to assess the relationship between spatial and concentration differences (Figures 4.3 to 4.13). Of
the 24 points identified on box plots, variogram clouds showed 13 sampling locations with a high
degree of dissimilarity in a short geographical distance (Table 4.2). All but one of these points
were sampling locations with concentrations plotting above the top whisker in the corresponding

box plot.

The difference maps displayed a number of sampling points with large concentration
differences between the September 2008 and June 2009 sampling periods (Figure 4.14).
Potential outliers identified by the box plot method and the difference maps showed good
agreement. In total, 12 of the 24 sampling points indicated by the box plot were in areas that

demonstrated a distinct difference between the sampling periods (Table 4.2).

The Local Moran’s I test revealed 22 statistically significant points (p-value equal or less
than 0.05) that showed spatial patterns of outliers (Table 4.3). Of these, 18 points were
classified as low-high, meaning the sampling points had a lower concentration than the
surrounding points. The remaining four points were classified as high-low points, indicating the

sampling points had a higher concentration than the surrounding samplers.
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Table 4.3. Statistically significant Local Moran’s I results.

normal Mean s
Analyte  Year Unit Site 1D Analyte scores  z-walue neighbor Moran's | High/Low Pwalue
conc. values value values

NO2 2008 ppb -A-10 151 -0.18 -0.18 1.08 -0.20 Low-high 0.002
NO2 2008 ppb b-P-19 150 -0.23 -0.24 0.89 -0.21 Low-high =0.001
NO2 2009 ppb W-A-4 155 0.15 0.16 -0.66 -0.10 High-low 0.048
NO2 2009 ppb b-P-23 151 -0.07 -0.07 092 -0.07 Low-high 0.016
NO2 2008 ppb b-P-5A 145 -0.39 -0.39 072 -0.28 Low-high 0.026
BTEX 2008 pgfm*  W-P-7 96 0.64 0.30 -0.76 -0.23 High-low 0.022
BTEX 2008 pgfm*  D-A-34 BB 124 -0.17 094 -0.16 Low-high 0024
BTEX 2008 pgfm*  D-P-2 7.6 0.96 -0.38 096 -0.37 Low-high 0.008
BTEX 2009 pgfm*  W-P-2 56 0.04 0.04 -0.80 -0.03 High-low 0024
BTEX 2008 pgfm*  D-P-27 51 -0.19 -0.19 078 -0.15 Low-high 0.04
BTEX 2008 pgfm* D-A-B 5.0 -0.25 -0.25 074 -0.19 Low-high 0.022
BTEX 2009 pg/m*  D-4-10 5.0 -0.27 -0.27 097 -0.26 Low-high 0.006
BTEX 2009 pg/m*  D-P-12 4.6 -0.35 -0.35 0.89 -0.31 Low-high 0.018
YoC 2008 pgfm*  D-A-34 135 -0.14 -0.14 092 -0.13 Low-high 0.004
YoC 2008 pegfm®*  D-P-2 120 -0.41 -0.41 094 -0.38 Low-high 0.012
YoC 2008 pugfm* D-P-25 129 -0.25 -0.25 069 -0.17 Low-high 0.034
WoC 2008 pgfm*  D-A-10 69 -0.21 -0.21 0492 -0.19 Low-high 0.002
VoC 2009 pgfm*  D-P-12 B7 -0.23 -0.23 0.89 -0.21 Low-high 0.012
VoC 2009 pgfm*  D-P-27 BB -0.33 -0.33 075 -0.25 Low-high 0.018
PM2.5 2008 pgfm*  W-A-4 134 222 2.26 -0.64 -1.44 High-low 0.046
PAH 2008 pgfm* D-A-15 183 -0.03 -0.03 0949 -0.03 Low-high 0001
PAH 2008 pgfm*  D-A-24 168 -0.74 -0.75 081 -0.61 Low-high 0.014
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Results from the Moran’s I did not agree well with the the other data outlier methods.
With the exception of W-A-4 for PM,5 in 2008, the location of potential Moran’s I outliers did
not correspond to the spatial location of potential outliers on the difference maps (Figure 4.14).
Moreover, with the same exception of W-A-4 for PM, s, potential Moran’s 1 outliers were not
identifiable as potential outliers on variogram clouds (Figure 4.15). This was surprising
because, in theory, both the Local Moran’s I and vairogram clouds are used to identify local
spatial outliers. The Moran’s I results were also not global outliers because they plotted in the
middle of the histograms for each dataset with the exeption of W-A-4 (Figure 4.16). Because of
the poor association of the Moran’s I results with the other methods, the Moran’s I was excluded

from further consideration as a spatial-outlier identification method in this study.

After the initial analysis using the three remaining outlier detection methods (excluding
the Moran’s I), ten sampling locations identified by only one method were dropped as potential
outliers (Table 4.2). Based on the spatial position and magnitude of each of the remaining 17
potential outliers, as reflected in the combination of their corresponding box plot, variogram
cloud, and difference map, a total of 13 outliers were identified (Table 4.2). One or two outliers
were found for each analyte execpt for BTEX and VOCs which lacked outliers in 2009 and PAH
which lacked outliers in 2008. Two outliers were identified for NO, and PM, s in 2008 and for

PAH and PM;5 in 2009 (Table 4.2).

4.1.2 Variogram Modeling and Kriging with Outliers Removed
Variogram models and ordinary kriged grids were computed from the datasets with the

outliers removed to generate Model 2 of this study (Figure 4.17). Although both Models 1 and 2
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interpolate over a larger area than the Detroit and Windsor municipal borders, the models were
compared using only the values for grid nodes located in Detroit (including Hamtramck and

Highland Park) and Windsor.

Model 2 employed different variogram and kriging parameters than Model 1. The still
contribution was lower for Model 2 compared to Model 1 for NO,, BTEX, VOC, and PAH
(Table 3.2). As a result, standard deviations for NO,, BTEX, VOC, and PM;5 (Table 4.4) were
reduced in Model 2 compared to Model 1. Conversely, standard deviations increased markedly
for PMyg and slightly for PAHs (Table 4.4) in Model 2 compared to Model 1. Different versions
of the PM datasets were used for Models 1 and 2 (Section 3.1.6), however, so direct comparisons

between these models are problematic.
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Table 4.4. Comparison of original GeoDHOC ordinary kriged models (Model 1) to the
revised ordinary kriged models with spatial data outliers removed (Model 2).

%
Year Analyte Unit Model# Mean Min Max Range  STD Difference

of STD
2008 NO, ppb Model1 15.2 9.1 22.6 13.4 2.42

-4.23
2008 NO, ppb Model 2 15.2 9.1 20.0 10.9 2.32
2009 NO, ppb Model1 15.1 8.2 23.6 15.4 3.16

-4.94
2009 NO2 ppb Model 2 14.9 8.1 22.6 14.4 3.01
2008 BTEX pg/m®> Model1 8.8 1.9 26.4 24.5 2.96

-14.4
2008 BTEX pg/m®> Model2 8.7 1.9 18.1 16.2 2.56
2008 vVOC ug/m> Modell 13.7 4.1 37.0 33.0 4.12

-13.1
2008 vVOC ug/m> Model2 13.5 4.1 23.5 19.4 3.61
2008 PM, s pg/m3 Modell 7.7 5.1 10.1 5.0 0.67

-9.93
2008 PM,s  upg/m® Model2 7.8 6.0 10.0 4.0 0.74
2009 PM,s  upg/m® Modell 9.6 7.7 13.0 5.2 0.77

-73.1
2009 PM, 5 pg/m®> Model2 9.2 8.3 10.3 2.0 0.36
2008 PMyg pg/m’> Model1 12.7 8.8 19.6 10.8 1.89

22.1
2008 PMyo pg/m®> Model2 13.1 10.0 22.9 13.0 2.36
2009 PMyo pg/m®> Model1 15.9 12.6 19.2 6.6 1.31

21.3
2009 PMy,  pg/m® Model2 15.6 125  19.9 7.4 1.62
2009 PAH pg/m®> Model1 31.8 13.3 79.3 66.1 11.0

4.30
2009 PAH pg/m®> Model 2 28.4 10.0 65.1 55.1 11.5




50

4.2 Temporal Scaling

4.2.0 Introduction

MASN time series measurements NO,, total BTEX, PM, s, and PMo were combined with
Model 1 (the original GeoDHOC models) and Model 2 (with outliers removed) to generate a 12
month series of maps for 2008 using a process that included a comparison of proximal
GeoDHOC and MASN measurements followed by spatial and temporal modeling (Section 3.2).
The resulting temporally scaled datasets derived from Models 1 and 2 are called Model 3 and
Model 4, respectively (Table 3.1). Results from each step in the derivation of these maps are

presented in this section.

4.2.1 Comparison of Measurements and Model Estimates

NO,, total BTEX, PM;s, and PMj, measurements at GeoDHOC sampling locations
differed from MASN values measured at collocated or nearby locations in September 2008 and
June 2009. Collocated GeoDHOC and MASN measurements for NO, and total BTEX agreed
within 25%, with the exception of June 2009 BTEX, which varied by 81% (Table 4.5). Although
collocated PM samplers were not available in this study, GeoDHOC measurements collected
within 1 km of the Southwestern High School and FIA/Lafayette St. sites agreed within 13%

(Table 4.6).

The spatial and temporal variability of air pollutant measurements are summarized in
Table 4.7. The magnitudes of spatial and temporal variability are comparable for NO, and
BTEX, while the observed temporal variability of PM,5 and PMyg is slightly greater than the

sampled and modeled spatial variability.
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Table 4.5. GeoDHOC and MASN collocated sampler concentrations

. Distance  from
Analyte Location MASN sampler Sept. 2008 June 2009

MASN (East 7 Mile) 12.1 10.3
NO, (ppb) GeoDHOC collocated (D-P-27) <1m 15.5 125
% difference 24.7 194
MASN (SWHS) 7.7 1.8
BTEX (ug/m’)  GeoDHOC collocated (D-P-22) < 1m 8.8 4.4
% difference 13.0 80.9

Table 4.6. GeoDHOC and MASN nearby sampler concentrations

. Distance  from
Analyte Location MASN sampler Sept. 2008 June 2009

MASN (SWHS) 11.3 9.4
PM,5 (ug/m’)  GeoDHOC (D-A-6) 990m 10.5 10.3
% difference 6.9 9.1
MASN (FIA) 11.2 9.0
PM,s (ug/m’)  GeoDHOC (D-A-30) 395m n/a 10.0
% difference n/a 9.8
MASN (SWHS) 20.4 22.0
PMyo(ng/m®)  GeoDHOC (D-A-6) 990m 22.5 19.4

% difference 9.6 12.8
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Table 4.7. Comparison of Detroit values for the MASN temporal dataset, the GeoDHOC
observed (sampled) dataset, Model 1, and Model 2. Model 2 BTEX 2009 was not created
due to lack of outliers.

Dataset Analyte [ Unit | Year Mean Stan_da_r d Sa”?p'e Range | Minimum | Maximum
Deviation | Variance
MASN |NO, |[ppb |2008-2010 | 125 | 279 780 | 120 7.6 195
gz':;z:ftd NO, | ppb 2008 153 | 295 869 | 17.9 7.3 25.2
gz':;z:ftd NO, | ppb 2009 15.4 3.5 122 | 194 7.7 27.1
Model1 | NO, | ppb 2008 162 | 182 333 | 111 115 22.6
Model 1 | NO, | ppb 2009 165 | 227 516 | 13.3 10.3 23.6
Model 2 | NO2 | ppb 2008 161 | 167 2.79 8.2 11.8 20.0
Model 2 | NO2 | ppb 2009 163 | 207 428 | 118 10.8 22.6
MASN | BTEX |ug/m® | 2008-2010 | 4.6 2.2 4.83 8.2 11 9.4
SDZT;‘;L‘id BTEX | npg/m® | 2008 8.9 3.95 156 | 30.0 1.0 30.9
SDZT;‘;L‘id BTEX | ng/m® | 2009 5.6 2.07 430 | 100 18 11.7
Model 1 | BTEX | ng/m® | 2008 100 | 247 612 | 245 1.9 26.4
Model 1 | BTEX | pg/m® | 2009 6.7 1.3 1.69 8.4 2.8 111
Model 2 | BTEX | pg/m® | 2008 9.8 1.91 365 | 162 1.9 18.1
Model 2 | BTEX | ng/m® | 2009 NA | NA NA | NA N/A N/A
MASN | PMys | ng/m® | 2008-2010 | 109 | 3.02 911 | 115 5.8 17.3
SDaart‘;gLid PM,s | wg/m® | 2008 77 1.62 2.62 9.5 3.9 134
SDZT;ELT PMps | wogm* | 2009 | 95 | 144 207 | 69 78 14.7
Model 1 | PMos | ng/m® | 2008 7.9 0.53 0.29 3.0 6.9 9.8
Model 1 | PMys | ng/m® | 2009 9.7 0.72 0.52 4.3 8.1 12.4
Model 2 | PMps | pg/m® | 2008 7.9 0.58 0.34 3.0 7.0 10.0
Model 2 | PMps | wg/m® | 2009 9.4 0.3 0.09 1.7 8.6 10.3
MASN | PMy | ng/m® | 2008-2010 | 202 | 559 312 | 208 11.7 325
gzrt‘;z'eid PMy | wom® | 2008 | 128 | 321 1029 | 17.0 5.9 23.0
gzrt';‘s’ﬁd PMy, | pg/m® | 2009 | 158 | 257 658 | 101 | 118 219
Model 1 | PMy, ug/m? 2008 13.2 1.81 3.29 8.9 10.7 19.6
Model1 |PMy | wg/m® | 2009 162 | 116 1.34 5.3 13.9 19.2
Model 2 | PMyy | ng/m® | 2008 135 2.4 576 | 12.3 10.6 22.9
Model 2 | PMyy | ng/m® | 2009 162 | 134 1.80 6.5 13.4 19.9
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For the September 2008 and June 2009 Models 1 and 2, cross validation of predicted
(kriged) vs. observed concentrations demonstrates that kriging modeled estimates agree well
with observed values (Table Al). Small mean errors (close to zero), small standard deviations,
lack of trend in the spatial distribution of estimation errors, and the absence of conditional bias
on scatter plots of error versus estimated values indicate a lack of bias in kriged model
estimations. Kriging variance maps for Model 1 and Model 2 exhibit low estimation variance

throughout the majority of the study area for each pollutant (Figure Al).

4.2.2 Spatial Modeling

The temporally unadjusted 12-month series of GeoDHOC Models 1 and 2 for NO,, total
BTEX, PM;s, and PMyg are presented in Figure 4.18. Model 1 spatially averaged unadjusted
mean values for September 2008 and June 2009 concentrations in the City of Detroit differed by
2 to 40% (Table 4.8). Model 2 spatially averaged unadjusted mean values for September 2008
and June 2009 concentration in the City of Detroit differed by 1 to 58% (Table 4.8). Spatially
averaged mean concentrations for the 12-month series models (Table A2) vary progressively
between the September 2008 and June 2009 anchor months as a consequence of the averaging
method employed to construct them. Spatial variability is retained in each of the monthly
models, although, in some cases, it is slightly attenuated as indicated by coefficient of variation
values for individual months that are lower than the two anchor months, September 2008 and

June 2009 (Table A2).
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Table 4.8. Model 1 and Model 2 Detroit September 2008 and June 2009 spatial model
mean, standard deviation (SD) and coefficient of variation (CV).

Values for Sept.  Values for June Difference % Difference
2008 Detroit 2009 Detroit (Sept. 2008 — June 2009)

NO,  Mean (ppb) 16.2 16.5 0.3 2.1
SD (ppb) 1.8 2.3 -0.5
CV (%) 11.3 13.7 2.4

BTEX Mean (ug/m’) 10 6.7 33 39.9
SD (ug/m’) 2.5 1.3 1.2
CV (%) 24.8 19.5 5.3

PMs Mean (ug/m’) 7.9 9.7 1.8 20.2
SD (ug/m’) 0.5 0.7 -0.2
CV (%) 6.7 7.4 0.7

PMy  Mean (ug/m’) 13.2 16.2 3 20.9
SD (ug/m’) 1.82 1.2 0.7
CV (%) 13.8 7.1 6.7

EE
Values for Sept.  Values for June Difference % Difference
2008 Detroit 2009 Detroit (Sept. 2008 — June 2009)

NO,  Mean (ppb) 16.1 16.3 0.2 1.1
SD (ppb) 1.7 2.1 0.4
CV (%) 10.3 12.7 2.4

BTEX  Mean (ug/m’) 10.0 17.0 7.1 52.3
SD (ug/m”°) 2.5 2.4 0.1
CV (%) 24.8 14.2 10.6

PMs Mean (ug/m’) 7.9 9.4 -1.5 16.9
SD (ug/m”°) 0.5 0.3 0.2
CV (%) 6.7 3.2 3.5

PMy  Mean (ug/m’) 13.5 16.2 2.7 18.4
SD (ug/m”°) 2.4 13 1.1
CV (%) 17.8 8.3 9.6

4.2.3 Temporal Modeling
Although differences were observed in PM,s measurements among the five MASN

locations, temporal variation tracked consistently from station to station during 2008 through
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2010 (Figure 4.19). Averaging the south central PM, s mean value of 11.3 pg/m? with the East 7
Mile value of 8.5 pug/m® yielded a declustered Detroit average PM,s value of 9.9 pg/m?® for
September 2008. Similar averaging of the south central PM,s mean value of 9.1 pg/m?® with an

East 7 Mile value of 8.7 pg/m?® yielded a value of 8.9 pg/m? for June 2009.

Averaged city of Detroit model concentrations for NO,, total BTEX, PM,s, and PMyg
(Model 1 and Model 2) also varied in relation to temporally averaged MASN measurements for
the months of September 2008 and June 2009 (Table 4.9). Averaging of monthly differences
between GeoDHOC and MASN values for September 2008 and June 2009 in Model 1
(Equation 3.7) resulted in positive target adjustment factors of 5.2 ppb and 3.5 pg/m® for NO,
and total BTEX, and negative target adjustment factors of -0.6 ug/m®and -6.5 pg/m? for PM,s
and PMy,, respectively (Table 4.9). For Model 2, the NO, and total BTEX had positive target
adjustment factors of 5.03 ppb and 3.44 pg/m® and PM,s and PMyhad negative target

adjustment factors of -0.72 pug/m®and -6.36 pg/m?®, respectively (Table 4.9).

These target adjustment factors were used to calculate bulk shift values for the three years
of MASN data (Equation 3.8, Table A3, and Table A4). The 2008 bulk shift values were
applied to adjust the 12-month series of spatially interpolated models for NO,, total BTEX,
PM,5, and PMy, for each month in 2008 (Equation 3.9). In some cases, this resulted in an
increase in values (positive bulk shift); in others, a decrease (negative bulk shift) (Table 4.10).
In all cases, the adjustment enforced the target difference between the MASN and GeoDHOC
averages uniformly across each time series of monthly estimates for each pollutant in Models 3
and 4 (Figure 4.20). Although only the 12 months of 2008 are applied in this thesis, the entire
three-year monthly time series is shown in Figure 4.19 to include the GeoDHOC June 2009

Model 1 and Model 2 spatial averages, which were used to calculate the adjustment factor for
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Models 3 and 4. The resulting spatially and temporally variable concentration models for each
of the four pollutants during each of the 12 months incorporate the temporal trends present in the
MASN data as well as the 300 by 300 m spatial resolution from the original GeoDHOC ordinary

kriged maps (Figure 4.21).

Table 4.9. Comparison of Model 1 and Model 2 with MASN monthly averages.

Model 1
September 2008 June 2009
GeoDHOC GeoDHOC ;Zr.%itmem
Spatial MASN . Spatial MASN . J
Analyte Difference Difference Factor
Model Average Model Average (Average
Average Average Difference)
NO, (ppb) 16.2 12.1 4.1 16.5 10.3 6.3 5.2
Total - BTEX 4, 7.7 23 6.7 19 48 35
(Hg/m”)
PM, s (ug/m®) 7.9 9.9 -2.0 9.7 8.9 0.8 0.6
PMyg (ug/m?) 13.2 20.4 7.2 16.2 22 5.8 6.5
Model 2
September 2008 June 2009
GeoDHOC GeoDHOC ;‘:‘jﬁ%ﬁ:mem
Spatial MASN . Spatial MASN . 1
Analyte Difference Difference Factor
Model Average Model Average (Average
Average Average Difference)
NO? (ppb) 16.1 121 4.0 16.3 10.3 6.1 5.0
ol =~ BTEX g4 7.7 2.1 6.7 1.9 48 3.4
(Hg/m°)
PM, s (ug/m®) 7.9 9.9 2.0 9.4 8.9 0.5 0.7
PMyo (1g/m3) 135 20.4 -6.9 16.2 22 -5.8 -6.4
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Table 4.10. Range of monthly bulk shift values for Model 1 and Model 2

Analyte Min Max Range
NO, (ppb) 3.8 8.3 12.1
_ | BTEX (ngim’) -3.4 5.6 9.0
o]
B8 3
S | PMas(ug/im’)  -4.1 8.0 12.1
PMyo(pg/m®) 9.7 11.5 21.2
NO, (ppb) -3.7 8.3 12.1
N BTEX (ug/m’) -3.4 5.5 8.8
o]
3
S | PM,s(ug/m’)  -4.0 8.2 12.2
PMy, (ug/m’)  -9.7 9.9 19.6

4.3 Asthma Correlations

Four different models were created to assess the relationship between air pollution and
asthma rates in Detroit and Windsor but two factors limited how the air pollutant models were
used. First, because asthma data were available only for 2008 (Lemke et al., 2013), correlations
were limited to the corresponding 2008 time period for this study. Second, temporal data were
evaluated exclusively in Detroit for the perinatology study (O'Leary and Lemke, 2014).

Therefore, Models 3 and 4 asthma correlations focused specifically on the Detroit airshed.

Air pollution Models 1 and 2 and 2008 asthma associations were evaluated for both
Detroit (Table 4.11) and Windsor (Table 4.12). In Detroit, BTEX and VOCs were statistically

significant for both Models 1 and 2, although the coefficients of determination (r?) were weaker
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than the original r> in Model 1 (Table 4.11). Although NO;, PM,5, and PMj, were not
statistically significant, r* values increased with the outliers removed. In Windsor, asthma
associations with NO, for both Model 1 and 2, and VOCs and PMj, for Model 1 were
statistically significant (Table 4.12). For all analytes in Windsor with the exception of PM,,
which was not statistically significant, r* values decreased indicating weaker correlations

between asthma and air pollution.

Associations between asthma events in Detroit and each of the four air pollution models
are presented in Table 4.13. NO, and BTEX associations were statistically significant for Model
3 and Model 4. The strength of NO, associations increased markedly in Model 3 and Model 4.
Model 4 had the highest correlation of any model for BTEX. Although the Model 3 correlation
was slightly lower than Model 1, it remained high. PM,s associations were not statistically
significant although incorporating the temporal trend in Model 3 and Model 4 increased the r?
value. Conversely, PMo was also not statistically significant but incorporating the temporal

trend decreased the r? value.
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Table 4.11. Model 1 and 2 asthma associations for Detroit. Statistically significant
associations are highlighted in red.

GeoDHOC Detroit

Year Analyte  Model# r° r p-value
2008 NO, Model 1 0.03 0.17 0.40
2008 NO, Model 2 0.04 0.21 0.32

2008 BTEX Model 1 0.28 0.53 0.01

2008 BTEX Model 2  0.18 0.43 0.03

2008 VOC Model 1 0.26 0.51 0.01
2008 VOC Model 2  0.14 0.37 0.07
2008  PMys Model 1 0.00 0.04 0.84
2008  PMys Model 2 0.00 0.05 0.80
2008  PMy Model 1 0.00 0.00 1.00

2008  PMy Model 2 0.06 0.24 0.24




60

Table 4.12. Model 1 and 2 asthma associations for Windsor. Statistically significant
associations are highlighted in red.

GeoDHOC Windsor

Year Analyte  Model# r° r p-value
2008 NO, Model 1 0.39 0.63 0.03
2008 NO; Model 2 0.35 0.59 0.04

2008 BTEX Model1  0.18 0.43 0.16

2008 BTEX Model 2 0.13 0.36 0.24

2008 VOC Model1  0.34 0.58 0.05
2008 VOC Model 2 0.25 0.50 0.10
2008 PM,s Model 1 0.10 0.31 0.33
2008  PM,s Model 2 0.16 0.40 0.21
2008  PMy Model 1 0.37 0.61 0.04

2008  PMy Model 2 0.23 0.48 0.11
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Table 4.13. Comparison of Detroit asthma associations for Models 1-4. Statistically
significant associations are highlighted in red.

GeoDHOC Detroit

Year Analyte  Model # r? r p
2008 NO, Model 1 0.03 0.17 0.40
2008 NO, Model 2 0.04 0.21 0.32
2008 NO, Model 3 0.19 0.44 0.03
2008 NO, Model 4 0.16 0.40 0.05
2008 BTEX Model 1 0.28 0.53 0.01
2008 BTEX Model 2 0.18 0.43 0.03
2008 BTEX Model 3 0.26 0.51 0.01
2008 BTEX Model 4 0.32 0.56 0.00
2008 PM;s Model 1 0.00 0.04 0.84
2008 PM,s Model 2 0.00 0.05 0.80
2008 PM,s Model 3 0.02 0.13 0.52
2008 PM;s Model 4 0.00 0.00 0.89
2008 PMy Model 1 0.00 0.00 1.00
2008 PMy Model 2 0.06 0.24 0.24
2008  PMy Model 3 0.04 0.19 0.36
2008 PMy Model 4 0.00 0.06 0.79
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Figure 4.3. Variogram cloud graph for NO;, 2008. In each graph, the highlighted pairs are
associated with a potential spatial outleir identified through the box plot method. Distance

in meters.
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Figure 4.4. Variogram cloud graph for NO, 2009. In each graph, the highlighted pairs are
associated with a potential spatial outleir identified through the box plot method. Distance
in meters.
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Figure 4.5. Variogram cloud graph for BTEX 2008. In each graph, the highlighted pairs
are associated with a potential spatial outleir identified through the box plot method.
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Figure 4.6. Variogram cloud graph for BTEX 2009. In each graph, the highlighted pairs
are associated with a potential spatial outleir identified through the box plot method.
Distance in meters.
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Figure 4.7. Variogram cloud graph for VOC 2008. In each graph, the highlighted pairs
are associated with a potential spatial outleir identified through the box plot method.
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Figure 4.8. Variogram cloud graph for VOC 2009. In each graph, the highlighted pairs

are associated with a potential spatial outleir identified through the box plot method.
Distance in meters.



67

a = :{? -

gm PM, - 2008 3 o PM, 5 2008
[

2 2

5 - o S

B | TRl 2

3o gdipetas s |18 s

o Tt - a1 ) i =1 I
v 0.0 30092.0 0.0 30092.0
Distance (m) Distance (m)

T =

< A PM, 2008

E 2.5

g

o

2

T

o

D , .

§° I L R .

l%— o |-I='-' I:-’ a1 . ) i

0.0 30092.0
Distance (m)
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Figure 4.10. Variogram cloud graph for PM,5 2009. In each graph, the highlighted pairs
are associated with a potential spatial outleir identified through the box plot method.
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Figure 4.11. Variogram cloud graph for PM;o 2008. In each graph, the highlighted pairs
are associated with a potential spatial outleir identified through the box plot method.
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Figure 4.12. Variogram cloud graph for PMy, 2009. In each graph, the highlighted pairs
are associated with a potential spatial outleir identified through the box plot method.
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Figure 4.13. Variogram cloud graph for PAH 2009. In each graph, the highlighted pairs
are associated with a potential spatial outleir identified through the box plot method.
Distance in meters.



70

*qdd ur1 31e SIN[BA UONEIIUIIUO)) *IN[( A0 PAI Ul PAIYSIY3IY
saa1no [eneds enuajod pue payopd syurod sojduies gz Joquialdag ay) M dewl dUWABIJIP ‘ON “BF [ b oINs1]

e TS S5 A s19jeWo)ly] I
PN v C¢10

P

N
P 9'€-: Mo

\,
@ .n.m“cm_I
c:.«>
" & (8002-6002) dew 22ua1a11a ZON

sisAjeue woJy papnjoxe sas
sisA|eue Joj papnul Sa)IS @
UBiH-Mm01 8002 | suelon (@)
wonog 800z 10ldxog @

doy gooz 1oidxog (@)
puabar

B £9. O,
ST~
o &

suo13e207 Ja|dwes g0z aY3 Yum dew aduaiapqg °ON




71

*qdd ug a.a1¢ SIN[EA WONEIIUIIUO)) N[ 10 PAI Ul PAAY3IYSIY
s1d1pIno [eneds [enudjod pue papoid syurod sajdwes g7 1qualdag ay) Yim dewt DUIAIJIP ‘ON ‘qp T p oInsi]

Gilz-

\/F./\/

G/

v (4
Z R RG
3
z. »
f N ST

/\!m.l\%n\

4,

SJ9}oLUIO| M.
v 210

9'€-: Mo

T'G : ybiH
anjep

(8002-6002) de a2uaiayia ZON
6002 SisAjeue woyj papnjoxe sajs
6002 SisAjeue 1o} papnjoul salis

o
;9:.;388_“.50_2 .
MOT-YBIH 6002 | S,UBION .

doy 600z 101d¥og .

puabean

suoijedo7 Jajdwes 600z @Y1 Yum dew aoualapid ‘ON




72

*cw/8rl Ul oa€ sanjeA UOPELIIUIIUO)) IN[( 10 P Ul PAYSIYSIY
sJ31Ino [eneds [enudjoed pue payoid syurod sajduwes g0z 1Iquiadag a3y YPIm dewt dUWAIJIP XALI 1§ oInsig

SJ9JoWO|)| I . <
v 210«

€'ST=: Mo
9L :ybiH
anjep
(8002-6002) de @duasay1ad X319
8002 SisA|eue Joj papnjoul sa)S 0
8002 SiSAjeue woy papnjoxs sejs
UYBIH-MOT 8OO | S.UBION ©
MOT-UBIH 800 | S.UBION P
doy 800z 10dx08g .
puabar

suo11ed07 Ja|dwes 800z @Y1 Yyum dew aduataylig X3Lg




73

"W /81l Uy ade San[eA UONEIIUIIU0) °dN|q 10 P Ul PAYSNYSIY
s131pno [eneds [enudjod pue papoid syurod sajdues (g 19quNdaS 3y} YIm dewt DUIARPIP XALI ‘PrI F oInsig

1%

SJ9JaWO|)| N . (

¢l 0«

€6T-: MO

9/ : ybiH

600 S!sA|eue woyy papnjoxs sajs
6002 SisAleue Joj papnjoul sa)is
YBIH-M0T 6002 | S.UBION
MoT-UbiH 6002 | S.uBION

doy 6002 10Idx0g

anjep

- (8002-6002) dep @duaiaya X319

puabar

suo13e207 Jajdwes 007 Y3 Yim dew 9dudJa1d X318




74

*cW /81l Ul aae SaIN[eA UONEIUIIU0)

*an[q 0 P31 Ul PAYSNY3IY

sJa1pno [eneds [enudjod pue papopd syurod sajduwies g0 19quialdag 33 YIim dewt UARJIP DOA 9T ¥ 2Insi]

v ¢

SJS)oLUO|I)] N .

L1 0

(8002-6002

V¢ mo

19 :ybiH

6002 SiSAleue 1o} papnjoxe ajiS
6002 SisAjeue 1o} pasnjoul a)IS
YBIH-M01 600Z | S,UBION

doL 6002 joldxog

puabar

) depy @2uaJayia DOA IejoL

anjep

-~
e

zrdTa

suo11e207 J9jdwes 8007 @Y1 Yum dew 3oua1a}1d DOA




75

*sW/Srl U1 3a€ SAN[EA WOPRIIUIIUOY) PAT Ul PAYSIYSIY
saaIpno eneds [enudjod pue payopd syurod ssjdues (7 19quRIdag 3Y) PIM dewt WP DOA TrI b oInsig

X vz

SJS)oWIO|Y] M— .

1 0

v'TT-: Mol

& (8002-6002) de @2uaiayid OOA

6002 S!sAjeue wouy papnjoxe se)s
600 Sisjeue 1o} papnjoul sa)is
doy 6002 10ldx0g

T9 :ybiH

anjep
|ejoL

puabar

e
LS
N

&

5

< )

.

suo1ed07 Ja|dwes 600z Y1 Yam dew 92uaiayd JOA




76

*cw/8rl Ul a1€ San[eA UOPE.IUIIUO)) *IN[( J0 PAX Ul PAIYSIYSIY
s131pno [eneds [enudjod pue papord syurod sajdures g0z 19quiandag 3y} Ym dewt dUWAIIP SN SPT p oansl]

(mLmHmEo__v_ .
B vy 210

CT-:mo
T°G :ybiH
anjep
(8002-6002) de adouaiayia S°ZNd
8002 S!SAleue wolj papnjoxa sajis
800Z SISAleue 10j papnjoul Sa)S e
(7-v-M) MOT-UBIH 800z | sueion (@)
woRog 800 10ldxog .

doy 800z 10ldxog .

puaban

ge

.

y Y T 7

su011e207 Ja|dwes 8007 Y1 Y1m dew adualapig SYAd




77

*cw1/8rl U1 aae SaN[eA WONEIIUIIUO)) *AN[q 10 PAI Ul PAIYSIYSIY
saapno [eneds [enudjoed pue panoid sjurod sojdues gz 12quualdag 3y PIm dewt IUIAJJIP SINd UPT ¥ oInsig
(.&QoEo__x .

N v ¢1LO0

CT=:mo
TS :ybiy ;
anjep
(8002-6002) de @2uasayia S'ZNd
6002 SISA[EUE WO Papn|oxe Sais
6002 SisAjeue Joj papnjoul Al e

doy 600 10Idxog .

puabar

=Z:

23,2—\

Se

i

suo11e207 Jajdwes 600z 241 Yum dew asuasapig SN




78

*cw/Srl ur aae SaN[eA WONBIIUIIUO)) *IN[( 10 PAI Ul PAYSYSIY
s1aIpno [eneds [enusjod pue papojd syutod ssjdues g0 1quandag a3y M dewt dUIJIP "N “THT ' oINS

( SJO}OWIO|IY| — -

N 14 ¢ 10
LT-:moq
T ubH

anjep

(8002-6002) sdep @duaiayia OLNd
8002 SiSA|eue woJy papnjpxa sa)s
800Z SISA|eue Joj papnjoul Sa)IS e
woyog 800z 10ldxo8 @)
doy gooz ioidxos @

puabar

|

wL
O

H o.
b
k T
\/&
”
L

suolled0 Jajdwes 800z Y1 Yum dew aouaiaia °FINd

——




79

*cw/8rl U1 a1e SIN[EA WONEIIUIIUO)) IN[( 10 PAI Ul PAYSYSIY
s1aIpIno [eneds [enudjod pue papord syurod sajdues g7 1qudag 3y YPIm dew DWABIP 'INd TpT v 2131

v ¢

( SJ9JOWIO|Y| M-
N

(0

LT~ moq

C [ :ybiH

6002 SisA[eue WwoJy papnjoxe sals
6002 SisAeue Joj papnjoul sa}is
do1 600 10ldx0g

(8002-6002) sdep @ouaiayia 0LNd

puaba

enjep

S8y

©L
S O
.
Y
.
S oc
\Q
&
\/ s
4 22

-~ 7

suolled0 Jajdwes 6002 2Y1 yim dew aouaaapia NG




80

*cw/8rl Ul a1e SaN[eA UONEBIUIIUOY) *IN[( 10 P Ul PAYSIYSIY
saaIpno [eneds [enudjod pue panojd syurod ssjdures g 19quIdag 3Y) Yim dewr DUAIJIP HVd NPT ¥ o1Insig

SJoJoWIO|I)| M.
Y b 210

€0T- : moq
0°09 : ubiH
anjeA
(8002-6002) dey @douaiayia HVd
8002 SIsAjeue woJj papnioxa sa)s
800z SIsA|eue 10j papnjoul SIS e

ybiH-mo1 800z | suelonN @
puaba

ol

(3

/4
9
.

~
S)

Si-v-a 0

b X \ :
suol1ed07 Jajdwes 8007 @Y1 Yyim dew aouaJtapiq HYd

[—C/




81

*cw/Srl U1 aae SaN[eA WONEIIUIIUO)) IN[( 10 PAI UI PAYSNYSIY
saapno [eneds [enudjod pue panord syured ssajdures (g 1qudag 9y} Ym dewt DUWIBIP HVA TF1 b oInsl]

(wLmHmEo__x .
vy C10

€0T-:mo7

0°09 : UBIH
anjep

(8002-6002) de @douaiayi HVd
6002 SISA|eue wolj papnjoxa sa)s
6002 SISA|eue Joj papnjoul S8)iS e
ybIH-m07 6002 | sueioN @
doy 600Z 101dx08 .

puabar

suolleoo Jajdwes 6007 2Y3 Yim dew 20uaiaig Hvd



82

(w) 2oueisia

(W) 2oueysia

mv ,m.ﬂonu mu

& &

a —

*Spoyiaw | s,uelolA |e307 2yl ySnoay) palyiauapl 1a1ano . 21+ 5

’ M 800¢ HVd 5 M

|eruaiod e yum pajerdosse sjuiod jo saied paiysiysiy yum spno|) wesdolep GTy 24nsly 600C Hvd - - m S : 2L
(w) dueysia (w) 2dueysia (w) ueysia (w) 2oueysig (w) sdueysig

y g m' w.tﬂs‘ o.o. .m. : m m m.

Tl e g £ & &

. a o a Q e

g g W” g m

§ | 8| & i LT &

) \.M) . \w * M m S ..m

8007 “INd % > | 6002 JOA- ¥ P||600C20A 3 *|[soozo0oA g3

- & &S S 5 - 8
(w) uesiq (w) 2oueysig (w) 2oueysig (w) 2oueysig

; m- £181EE o.o.ﬂm- m .Om. ' m-

8 & 8 & 5

. 8 o m & : W : w

AL B Q s 9 ) e 2 . s Y i " v

800CO0A -~ .. £ 2| |800ZI0A - £ P |6007X318 5 P||600TX318 5 5| |600ZX3L8 A

F e G > RN N
(w) adueysig (w) d>ueysig (w) aduejsia (w) dueysia (w) adueysiq

g f ¢ ] ¢

a W W a W

= = = = =

m : : : m

L m m 8 &

, .u.ov . »\.M, 800¢ X319’ m\m 800 X319 mm 800 X319 m\m

6007 X319 5 - |leoozx3Lg L& X3L B 3L 8¢ 3L B4
(w) 2dueysig (w) 2dueysig (w) 2oueysia (w) 2oueysig (w) dueysiq

" 0F8O0E w.o mu m.. m- m- m

8 g 8 g 8

a a a Q a

) g | & 0y H

i i ] i i

-7 . = ﬂ - v = M R = \w M M

600Z ‘ON % & 6002 ©ON % 5| |600Z “ON % 7/ [800z ‘ON % T |800z ‘ON 2L




83

‘poydw | S UBIOJA] 3Y) Y3noay) sIIpPno Juediyiubis Ajjeansiels
se paiiuapl atam yeyy swutod (sbueso) paaybubiy yum sweaboisiH 9Ty eanbig

(€ w/6r) 800Z S Zhd

Aouenbaly

(evw/6r) 6007 Hvd [eI0L

Asusnbalg

(€ w/brl) 80T Hvd [eI0L

Adusnba.iy

(£ w/brl) 600Z DOA [e30L

Adxuanbay

(€vw/6rl) 8OOZ DOA [R30L

Asuanbalg

(€vw/br) 6002 X318

Asuenbalg

(€ w/6rl) 800Z X318

(qdd) 6002 ZON

Adxusnba.y

(qdd) 8007 ZON

Asusnbaig




84

*qdd wur a.ae sonjea
UONRIIUIIU0D

pue dew

[oed .10J duues ay) SI
Ay ySu oy
o SI 7 [PPOJAL ST 1J9]
dY) uo SI T PPOA
*6002 “ON 10j sdewm
PasSLD] AreuipiQ
VAR EXTT |

L'gimoy
LE€TIYH
anjep

Z I3PON 6002 2ON
seuepunog Ao [ |

<m§oEo__v_IHI
M v 210

1'gimo
L€z iybH
anjep

| ISPOI 6002 2ON
seuepunog Ayo [ |

(220&22'“'
R v z10

*qdd ur a.ae sanjea
U0 LIIUIIU0D

pue dew

[ord 10] Juues Y) ST
A3y oy 1311 oY)
U0 SIT [PPOIA ST 131
Y} Uuo SI T PPOIN
*8007 “ON 10§ sdew
PasLy| AreuipiQ
BLTp 2an51]

6:MOT
97z UBH
anjep

C I9POI 8002 ON
seuepunog A0 [ |

(m._ouoso__xIHI
N v Z10

61 MO
9Zz:ubH
anjep

L 19POI 8002 Z2ON
souepunog Ao [ |

(&o«oso__v_IHI
M v 210




OVIMOT oMol

LIEIUBH LIEIUBH

anjep anjeA

cw/s wote Z 19PO 800Z 20 1 19POI 800Z D0

i sauepunog Ao seuepunog Ao

SIN[EA UONLIJUIIU0D (I (I
SI9}OLUO| Y| M— SI2)OWIO| 1| —
pue dew yoed N vy Z10 “ v z10

J0J dunes ) ST A9y
YL Y31 dY) uo

ST T IPPOIAL ST )31 933
uo st T PPOIA "8007
DOA 10] sdewt
PIsSLD AreuIpiQ
‘PLTH M3

85

*cwi/81l ur aae sanjeA
uoneIuIIU0D
pue dew yoed

J10J duues Y) ST A3
YL JYSLI dY) uo

ST T ISPOIAL ST 1331 94}
uo St T PPOIAN "800
XA19 10j sdew
pasLy AreurpiQ
EAREIET ]

(22»522'”'
R v z10




86

*gu1/3nl Ul 3ae sanjeA
UoNeIIUIIU0I
pue dew goes

J0J duues 3y} SI A3y
YL "JYSLI Y} uo

ST T PPOIAL ST 3] 34}
uo st I PPOIN "600T
SUAJ 10§ sdewr
PISLD AleUIpiQ
JLTp 33T

L1 Mo

0€l :YbiH
anjep
Z I19POIN 6002 s2Nd
seuepunog Auo [ |

(&Ew&o__v_lﬂl
N v Z10

L'l Mo

0°€L : YbIH
anjep
| I9POIN 6002 S2Nd
sauepunog Ao [ |

( S19}2WO|1y| N——
& v 210

ew /8l wraae

SIN[EA UOPLIIUIIUOD
pue dewr yoed

J0J dunes Y] ST A9y
YL "JYSLI Y} uo

ST T IBPOIAL ST 3] 34}
uo SI T PPOIA "8007
ST 10 sdew
PasSLD AreuIpiQ
EAR R

0'G: MO

€01 : YbiH
anjep

Z 19POI 8002 2INd
sauepunog Ao [

( SID}OWIO||y| M— -
N v 210

0'G: Mo

€04 YbiH
anjep
| ISPOIN 8002 s?Nd
souepunog Ao [ |

< SI}OLUO| | M— -
o v 210




87

ew/8rl waae

SaN|eA UOPLIJUIDIUOD
pue dew yoed

J0J duues Y] SI A3y
YL Y3113y uo

ST T IPPOIA ST JJ31 o)
uo St 1 PPOIN "600T
OTIA g 10] sdewn
PasSLD] AreurpiQ
LT P 2ansIg

gL imoq

002 : YBIH

anjep
Z I19POW 6002 **Nd
sauepunog Ao [ |

( S19}OLUO|!| M——
N v 210

AR
0°0Z : YBIH

anjep

| I9PON 6002 °*INd

seuepunog Ao [ |

( SJO}OLUO|IY| M— -
M v Z10

ew /8 wmaae

SINjeA UOne.IJUu32uU0)
pue dew yoed

J0J duues Y} SI A3y
YL Y311 Y uo

ST T PPOIA ST JJ91 o)
uo St T PPOIN "8007
OTIAJ 10] sdewn
pasLyy AreurpiQ
BLT 'y 2In51g

8'g: MO

0°€2 : YBIH

anjep
Z ISPO 8002 °*NId
ssuepunog Auo [ |

( S19}OLUO|!Y] M— -
N v Z 10

8'8 - MO
0°€Z : YBIH
anjep
L I9POIN 8002 °*INd
souepunog A0 [ |

( SID}OLUO|IY| M— -
% v Z10




88

ew/Sl maae

SoNjeA UOneIu2d2uU0d
pue dewt

o®J J10J duIes IY) SI
A3y oy ySu oYy
U0 ST T [9POJAL ST 1J9]
3} Uo SI T PPOJA
6007 HVd 10J sdew
PISLY AreuipiQ
SR ERVIT

L6:M0T
YELIUBH

Z I9POIN 600Z HYd
souepunog Ao [ |

<u._2ch__v.IHl
' v z10

L6:M0T

y6LIUBH
anjep

1 12PO 600Z HVd
souepunog i [ |

( SJB}OLUO|I| — -

N

v T 10




89

NO, (ppb)
wor High : 23.65

o823
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Figure 4.18a. Unadjusted 12-month Model 1 concentrations for NO,, total BTEX, PM_5,
and PM, for September 2008 (upper left) through August 2009 (lower right) in each set.
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Figure 4.18b. Unadjusted 12-month Model 2 concentrations for NO,, total BTEX, PM;s.
and PM, for September 2008 (upper left) through August 2009 (lower right) in each set.
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Figure 4.19. MASN Monthly average PM;5s values at five individual monitoring sites and

declustered Detroit monthly average.
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Figure 4.20a. MASN averages and adjusted monthly averages for Model 1 for years 2008-
2010: (a) NOy, (b) total BTEX, (c) PM35, and (d) PM;o. Unadjusted Model 1 GeoDHOC
monthly averages for September 2008 and June 2009 shown as bars.
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Figure 4.20b. MASN averages and adjusted monthly averages for Model 2 for years 2008-
2010: (a) NOy, (b) total BTEX, (c) PM35, and (d) PM;o. Unadjusted Model 2 GeoDHOC

monthly averages for September 2008 and June 2009 shown as bars.
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CHAPTER 5. DISCUSSION

5.0 Introduction

Epidemiological studies of health outcomes related to chronic exposure to air pollutants
increasingly rely upon models of urban air pollution to interpret complex urban airsheds.
Practical methods are needed to assimilate short-term, spatially resolved air pollution
measurements with widely spaced, long-term time series data to address chronic exposure.
Incorporation of dense spatial information from numerous monitoring points into highly resolved
models also increases the potential for erroneous measurement and intensifies the need for
spatial outlier identification methods.

This thesis expands on the GeoDHOC investigation of spatial correlations between
ambient air pollution concentration and asthma exacerbations in Detroit and Windsor. The
discussion that follows examines the impact of outlier identification and temporal scaling to air
pollutant models and subsequently, to air pollutant-asthma correlations. Conclusions and

recommendations for future work are presented in the final section of this chapter.

5.1 Spatial outliers

A multi-step approach was employed to identify spatial outliers in the GeoDHOC air
pollutant concentration measurement datasets for September 2008 and June 2009. In total, four
alternative methods were evaluated for potential outlier identification. Unlike previous studies
which relied upon a single method to identify outliers (e.g., Miller, 2012) or did not assess

effects of outlier removal (e.g., Clougherty et al., 2013), this study employed multiple methods



96

and evaluated the consequences of outlier removal. Thus, the approach followed here arguably

strengthens the overall interpretations of spatial outlier identification and influence.

The box plot method provided a simple, aspatial approach to the identification of extreme
concentration values. The box plot is limited to the identification of global outliers. The
majority of the sampling points identified by the box plot as outliers were extreme high values.
This is not surprising because the bottom box plot whisker fell below zero in approximately half
the measurement datasets (Table 4.1). This is a common occurrence and should be expected in
environmental data that are bounded by zero. Because all observed values measured air

pollution exceed zero, there were only two sampler locations measured as extremely low.

The variogram cloud is a more qualitative outlier identification method because, unlike
the box plot, there are no specified boundaries within the graph to define what constitutes a
spatial outlier. For this reason, the process of identifying spatial outliers with the variogram
cloud is subjective. As a result, only sampling points identified using the other three methods
were analyzed with the variogram cloud. For the datasets evaluated in this study, box plots and
variogram clouds complemented each other well with the box plot providing definite boundaries
and the variogram cloud contributing a spatial component (x-axis). In contrast, potential outliers

identified with the local Moran’s I did not correspond well to variogram cloud results.

Difference maps provide a comparison of modeled air pollutant concentrations over the
same area during separate measurement events. In addition, the difference maps supply a visual
summary tool facilitating additional evaluation of box plot and Moran’s I results within a
geospatial context. Each potential outlier identified by the box plot and the Moran’s I was

plotted on the difference maps to facilitate comparisons among these three methods. This
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approach highlighted relationships between box plot and Moran’s I outlier locations and
significant difference gradients shown on the difference maps. In this study, box plot outliers
were found to correspond well with areas of high concentration contrasts on the difference maps.
Conversely, potential outliers identified using the Moran’s I did not correspond to areas of high

differences.

The Local Moran’s I output identified 22 statistically significant points with high-low or
low-high spatial structure. However, with the exception of one sampler location, these points did
not correspond well with outliers found using any of the other methods. The sampler points
identified with the Moran’s | technique were not located in areas of large differences on the
difference maps. These points also did not show patterns of local outliers on the variogram
clouds (Figure 4.15). Furthermore, discounting the one exception (W-A-4 for PM, 5 2008), the
Moran’s I outliers fell in the middle of the histogram (Figure 4.16). This indicated that each
identified outlier’s concentration was within an expected range for the global dataset and were

not global outliers.

Unlike the other three methods, the Local Moran’s I did not take into account the entire
dataset which is a potential reason for its lack of agreement with the other methods. Rather, it
focused on a specific subset of the dataset, in this case 8 neighbors, to identify localized spatial
differences. In addition, spatial weighting was ‘standardized to neighbor count’” which assigned
uniform spatial weights to all neighbors in the Moran’s I test. This option, as the default method
in SpaceStat, provided a simple weighting method in the initial study of the outliers. Given a
uniform spatial weight, sampler locations with extreme concentrations were expected to show up
as statistically significant in the Moran’s 1 test. However, this was not the case, which is

potentially attributable to the narrow subset of data used with the Moran’s I.
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An alternative explanation for poor Moran’s I performance involves the air pollution
measurement datasets, whose number of samplers varied with each analyte. The minimum
number of measurement points varied greatly for pollutants measured with active samplers (37)
and passive samplers (98) (Table 2.1). Other studies applying the Local Moran's | used larger
datasets (Li et al., 2013; Zhang et al., 2008; Zhang and McGrath, 2004; Zou et al., 2014). Of the
sampler points identified as potential outliers with the Moran’s I, 19 of 22 were analytes
measured with passive samplers. PM;,s 2008 W-A-4, PAH 2008 D-A-15, and PAH 2009 D-A-
24 points were the only active sampler location identified as a potential outlier with the Moran’s
| method. W-A-4 was the only point of agreement between the Moran’s I and any of the other

three methods.

The PM,s W-A-4 point further highlights the difference in observed values versus
modeled values because it was the only outlier that was not identified with the difference map.
When W-A-4 was compared to the PM,5 2008 dataset, it appeared as an outlier. The box plot,
variogram cloud, and local Moran’s I all use the 2008 observed dataset. The histogram plot of
PM,5 2008 also shows W-A-4 PM, s concentration at the extreme end of the dataset. The
difference map differed from the other approaches in that it used the PM,5s 2008 and 2009
modeled values and the W-A-4 location did not show an appreciable difference between each
year with a difference of -1.0 pg/m®. In this way, the difference map showed a consistency in the
modeled concentration at this location. This consistency was not present in the measured
difference of 5.5 pg/m?® which is high for PM,s. Therefore, the PM,s W-A-4 sampler location

was included as an outlier based on the measured difference.

Given each method’s strengths and limitations and a comparison of the results for each

method, the box plots and difference maps were considered to be the most reliable outlier
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indicators, followed by variogram clouds and the Local Moran’s I. The box plots provided a
quantitative means to identify outliers with discrete boundaries and the difference maps provided
spatial as well as a temporal component when identifying outliers. Twelve of the 13 outliers in
Table 4.2 were identified using the box plot and difference map methods. The variogram cloud
proved to be a weaker approach relative to the sensitivity of the box plots and difference maps.
Nine of the 13 outliers were confirmed with the variogram cloud. Variogram clouds for the four
outliers not identified by the variogram cloud method (W-A-2 PM,s in 2008, D-A-33 PM;s in
2009, W-A-2 PMyg in 2008, and D-A-32 PAH in 2009) exhibited some points that deviated from
the majority of pairs, but did not show strong variance over a short geographic distance (Figure

4.9,4.10, 4.13).

Four sampler locations, W-P-23 NO, 2009; D-A-5 BTEX 2009; D-A-32 PMj, 2008; and
D-A-6 PMyo 2008, were identified with the box plot and the variogram cloud methods. These
points were not chosen as outliers because they did not show a larger difference on the difference
maps. In two cases, D-A-25 for BTEX and VOC, there was a large measured concentration
difference between values in 2008 and 2009. D-A-25 in 2008 was an outlier for BTEX and VOC
but while this large difference remained in 2009, it was no longer anomalous for the D-A-25

2009 data sample.

The Moran’s I was therefore considered the weakest outlier identification method,
because of its almost uniformly poor agreement with the other identification methods. Given the
relative congruence of results among the box plots, difference maps, and variogram cloud
methods, coupled with their collective lack of agreement with the Moran’s I results, the Moran’s
| approach was discounted as a method of outlier identification. In the end, the remaining three

spatial data outlier identification methods determined the final list of outliers.
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5.2 Kriging

Removing spatial outliers changed the overall concentration values and in some instances
the spatial distribution of modeled concentration values in the revised ordinary kriged models.
These changes are attributable to the removal of outliers and the subsequent adjustment of the
variogram models from Model 1 to Model 2. These changes had a direct influence on the global
statistics of the models (Table 4.4) and localized changes were observed immediately around the

areas where outliers were removed (Figure 4.16).

There was relatively good agreement between Model 1 and 2 variogram characteristics
for NO,, BTEX and VOCs. This was expected given the large number of passive sampler points
such that removal of one or two outliers had a smaller influence on global geostatistical
relationships, including variogram characteristics. One important change from Model 1 to Model
2 for NO,, BTEX, and VOC was lower sill contributions (Table 3.2) resulting from lower

variance in the measurement distributions after the outliers were removed.

Conversely, there was poor consistency between the variogram characteristics for PAH
and PM from Model 1 to Model 2. PM; 5 behaved as expected with a lower standard deviation in
Model 2 when compared to Model 1 (Table 4.4). PM;o and PAH did not share this outcome and

the standard deviations increased in Model 2.

Direct comparisons between Model 1 and Model 2 were possible for PAH in 20009.
Model 1 had a relative nugget of 30% compared to Model 2 nugget of 11%. This difference
likely contributed to the unexpected increase in the standard deviation with Model 2 when

compared to Model 1.
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The particulate matter models (PM,5s and PMyg) are not directly comparable between
Model 1 and Model 2 (Section 3.1.6). Nevertheless differences between the models were
reviewed. PM,s standard deviations for Model 2 were lower than Model 1, as expected;
however, the percent difference of the standard deviations measured in 2008 and 2009 differed
substantially (Table 4.4). in contrast, PM;, standard deviation increased with the removal of
outliers, which was not expected. The large change in percent difference for PM,s and the
increase in standard deviation in Model 2 for PMj, may reflect differences in how each model
was generated. The PM;,s Model 1 consists of a summation of independently generated PM; and
PMi25 ordinary kriged models. Similarly, the PMj; Model 1 consists of a summation of
independently generated PMj, PM.,5, and PM,s.10 ordinary kriged models. In contrast, PM;s
and PMjo for Model 2 were kriged directly from the summation of measured particulate mass
concentration <2.5 microns for PM; 5 and particulate mass concentration <10 microns for PMjj,
respectively. Additional investigation is needed to establish a direct comparison between the two

models.

The removal of outliers from several models changed the grid interpolation values in
areas relatively far away from the outlier locations (Figure 4.16). Although spatial changes were
expected to occur in areas of close proximity to where outliers were removed, the degree of
distance where grid nodes were affected was unanticipated. These changes resulted from a
combination of effects stemming from the removal of the outlier including changes in the
variogram model and the recalculation of kriging weights based on the revised distribution of
control points. The variogram model has a global impact on the ordinary kriged model while the
outliers have a local impact based on the search radius. In this way, changes to the models are

most likely attributed to variogram revisions after the removal of the outliers.
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5.3 Temporal Scaling

Air pollutant Models 1 and 2 were scaled to incorporate time varying concentrations
observed in Detroit in the 2008 Michigan Air Sampling Network (MASN) dataset. Air pollution
in Detroit is heterogeneous (Miller et al., 2010) and varies with time (Figure 4.19).
Consequently, the goal of the temporal scaling was to generate a more complete exposure
estimate for 2008 through the combination of a spatially resolved dataset (Model 1 and Model 2)
with the temporally detailed MASN dataset. In the O'Leary and Lemke (2014) study, the
GeoDHOC models were scaled for a three-year period. However, temporal scaling is evaluated
only for 2008 in this thesis, corresponding to the period of available asthma data (Lemke et al.,
2013).

This analysis incorporates air quality measurements for corresponding pollutants
analyzed using different methods and varying time scales in the GeoDHOC and MASN data sets.
It is therefore assumed that both of these datasets, the GeoDHOC and MASN, are compatible.
Similar relationships between passive sampler measurements and continuous or periodic
automated fixed-site measurements have been examined in other studies. For example,
Vardoulakis et al. (2009) compared chemiluminescence and passive NO, measurements from
collocated samplers and found satisfactory agreement (relative bias and coefficient of variation <
5%) during four or five week measurement periods over thirteen months. Mukerjee et al. (2004)
found BTEX measurements made with 3M organic vapor monitors over three to seven day
sampling periods agreed within 10% of automated gas chromatograph measurements.

In the present study, collocated GeoDHOC and MASN measurements for NO, and total
BTEX agreed well, with the exception of June 2009 BTEX (Table 4.5). GeoDHOC PM;5 and

PMjo concentrations measured within 1000 m of MASN stations also compared well to MASN
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measurements (Table 4.6). However, GeoDHOC concentrations represent integrated
measurements for two-week periods and therefore might not be expected to agree well,
particularly when MASN measurements are discontinuous and infrequent during the comparative
time window. For example, the June 2009 MASN monitor sampled total BTEX twice in June
2009, with 24-hour reported concentrations of 2.0 pg/m* on June 6, and 1.7 pg/m* on June 18.
These values agree poorly with the collocated GeoDHOC sample measurement of 4.4 pg/m®
(Table 4.5). On the other hand, integrated measurements of longer duration are arguably more
useful than infrequent central monitoring measurements for long term exposure estimation if the
detection of peak concentrations of short duration is not essential. Given the well documented
intra-urban variability of NO, (e.g., Hewitt, 1991; Jerrett et al., 2007; Ross et al., 2013), BTEX
(e.g., Miller et al., 2012b; Vardoulakis et al., 2011), and PM (e.g., Brook et al., 1999; Rodes et
al., 2010; Wilson et al., 2005) measurements, this thesis chose not to treat the MASN values
were not considered to be representative of the entire city. Consequently, no attempt to
incorporate a systematic bias between collocated GeoDHOC and MASN measurements was
undertaken in this study. Rather, computation and subsequent modification focused on
comparisons between GeoDHOC model values (spatially averaged over the entire Detroit study
area) and corresponding MASN measurements for which time series measurements were
available. The rationale for this approach requires that the GeoDHOC datasets and interpolated
monthly models adequately capture spatial variability of the air pollutants across the city of
Detroit. This is supported through the semi-variogram models (Figure A2) and sampler spacing
(Figure 2.1). The GeoDHOC samplers, which ranged in spatial density from 5 km? to 10 km?,

were spaced at intervals well below the variogram ranges (Table 3.2).
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The approach followed here also assumes that the GeoDHOC ordinary kriging models
(Models 1 and 2), based on two-week measurements, are representative of the distribution of the
mapped pollutants for the entire months of September 2008 and June 2009. It was further
assumed that these models can be interpolated to represent spatial distributions in the ten
remaining unsampled months of the year (Section 3.2.2) and that these inferred spatial
distributions can be extrapolated for a year-long study period (Section 3.2.3). The first
assumption is supported by the constancy of MASN pollutant concentration running averages
calculated for each month (Figures A3, A4, A5, and A6). Rapid, large magnitude changes in
mean concentrations were not observed and therefore not expected over the course of a few
weeks for any of the pollutants considered. The second assumption implies that the location and
relative magnitude of stationary and mobile sources is consistent throughout the year and that
meteorological conditions were similar enough to allow spatial distributions modeled in
September 2008 to serve as a proxy for September 2009. Alternatively, extrapolating between
the months from June 2008 to September 2008 was considered. However, the meteorological
conditions between June 2008 and June 2009 showed distinct differences in dominant wind
directions, therefore making the September comparison more favorable.

Continuity of source distribution is supported by prior studies in Windsor, a segment of
the Detroit-Windsor airshed that established significant correlations across winter, spring,
summer, and fall seasons for NO, and BTEX (Miller et al., 2012b; Wheeler et al., 2008).
Seasonal correlations in the Windsor observations suggested consistency in source distributions,
and hence spatial variability, for NO, and VOCs throughout the year. This supposition was more

likely for pollutants derived from local sources such as NO,, VOCs, and PMy,, than for
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pollutants of secondary origin like PM,s, which may also contain a regionally-sourced
component that can depend on wind direction and other meteorological conditions.

The approach outlined here rests upon the additional assumption that the available
MASN time series measurements reflect temporal trends across the city of Detroit throughout the
three-year study period. Although differing measurement frequencies were employed for each
analyte (Table 2.1), records were 95% or more complete at each MASN site during 2008-2010.
In the case of PM;s, concentrations measured at five MASN locations across Detroit (Figure
2.1) tracked consistently with each other during the three-year period of interest (Figure 4.18).
Sajani et al. (2004) reported similar contemporaneous temporal trends for NO, measured at four
different stations located throughout the urban area of Bologna, Italy. This implied that although
air pollutant measurements made at widely-spaced regulatory monitoring sites may fail to
capture significant spatial variability in the surrounding area (Baxter et al., 2013; Ozkaynak et
al., 2013), relative changes in these measurements over time reflected temporal trends affecting
the larger surrounding urban area.

Unquestionably, such temporal trends are influenced by daily and seasonal
meteorological conditions. Weather conditions were not explicitly factored into the modeling
procedures employed here and the inability of kriged maps to incorporate changes in monthly
average wind direction is a limitation of this study's approach. However, the influence of major
weather changes is assumed to directly influence the temporal trends recorded at MASN sites.
Seasonal variations in concentrations occur in the 12 monthly NO, concentration models (Figure
4.19), with higher concentrations in winter months. Consistent seasonal variations are not
evident in BTEX, PM,5 or PMy, models, however (Figure 4.19). This study attributed the lack

of seasonality in BTEX to greater variability in local VOC source distribution (as reflected in the
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high coefficient of variation for BTEX) (Table 4.8). Elsewhere, other researchers have observed
a lack of seasonality in PM measurements. Brook et al. (1999), for example, found significant
overlap between summer and winter seasons in 24-hour PM, s mass concentration distributions
measured in fourteen Canadian cities and Johnson et al. (2013) found that seasonal PM; s models
did not predict daily concentrations better than annual models in Windsor, Ontario.

Finally, in the absence of other information, it was assumed that the modeled spatial
distribution of pollutant concentrations remained constant while the magnitude of the
concentrations fluctuated uniformly across Detroit throughout the yearlong study period. As a
consequence of this assumption, a bulk shift was employed to translate temporal trends from the
MASN time series measurements to the monthly GeoDHOC estimates (Section 3.3). Alternative
shifting techniques for incorporating the temporal trend were considered, including a ratio
technique employed by Ross et al. (2013) to adjust two-week spatially interpolated air pollutant
concentrations to temporal trends from continuous stationary monitors in New York City. The
ratio technique was rejected because it resulted in localized concentration estimates far outside
(in some cases two to three times higher than) the range of measured values for several pollutant
models. In contrast, the bulk shift generated concentration values within the range of observed
values for each pollutant (Table 4.10, Table A3, and Table A4), except in the case of negative
concentration values present in two months in Model 1 and Model 2. BTEX values in these cells
were replaced with 1/2 the method detection limit (0.1pug/m®) to maintain physically realistic
concentrations. The underlying assumption that the magnitude of pollutant distributions fluctuate
uniformly throughout Detroit becomes more tenuous when extended over longer periods of time

during which major changes in infrastructure or economic conditions may occur.
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5.4 Asthma correlations

The thesis examined the relationship between asthma exacerbations and air pollution in
Detroit and Windsor with a specific focus on spatial outlier analysis (hypothesis #1) and
temporal scaling (hypothesis #2). Initially it was hypothesized that with the removal of the
spatial outliers, health correlations for asthma exacerbations would improve (hypothesis #1).
The second hypothesis stated that with increasing temporal resolution, correlations between
model air pollutant concentrations and for asthma exacerbations would also improve. Evaluation

of each hypothesis yielded differing results.

The diminished association between air pollution and asthma exacerbations in Model 2
compared to Model 1 does not support the first hypothesis. Although the strength of the
correlations improved for some analytes, the removal of spatial outliers in Model 2 reduced the
number of statically significant correlations. Specifically, the removal of outliers improved
correlations in Detroit for NO,, PM; s, and PMy, (Table 4.11). However, this improvement was
not enough to reach the level of statistical significance at p<0.05. Conversely, in Windsor,
removing outliers in Windsor decreased the strength of the correlation for all analytes except
PM,s (Table 4.12). All of the outliers removed were extreme data values and by removing the
outliers the range of modeled values decreased in Model 2. This decreased range may have had
an adverse effect on the sensitivity of the statistical relationship between air pollution and asthma

exacerbations.

The improved correlations between air pollution and asthma exacerbations in Models 3
and 4 support the second hypothesis that correlations between air pollutant models and asthma
exacerbations increase with temporal resolution. The incorporation of the MASN dataset, in

Models 3 and 4, consistently increased the strength of the correlation in Detroit except for BTEX
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for Model 3 and PM;5 and PM3y, for Model 4. With the inclusion of a time trend in the air
pollution data, both the air pollution models and asthma data represent aggregated values for the
entire 2008 year. The improved correlations potentially are a result of the incorporation of
additional information in the form of MASN time-series measurements throughout 2008 and the
revision of the postal code pollution estimates for each analyte to represent an equivalent period

of time to the asthma dataset.

The analytes measured with passive samplers tended to correlate better with asthma than
analytes measured with active samplers in all models and, as a result, the statistically significant
points identified in Models 3 and 4 (Table 4.13) were analytes measure with passive samplers.
This is potentially attributable to the number of passive versus active samples rather than the
type of sampling method. The number of passive samplers ranged from 97 to 98 locations across
the entire study area while the number of active samplers ranged from 37 to 38 samplers in the
same area. In Detroit the number of passive samplers ranged from 65 to 66 samplers and the
number of active samplers was 23 samplers. The asthma correlation statistical results suggest
higher sensitivity with higher spatial sample density and may indicate that a minimum sample
spacing of approximately 1 per 5 km? is needed to accurately model neighborhood spatial

variability of the pollutants analyzed.

5.5 Model Limitations
Overall, the asthma correlations in this study were limited by the assignment of air
pollution exposure estimates based on modeled ambient air concentrations rather than personal

exposure which can lead to potential error (Kearney et al., 2011). Moreover, the asthma events
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were reported by postal code which decreased the effective spatial resolution of the air pollutant
models from a 300 by 300 meter grid spacing to aggregate zip code or forward sortation area
scale averages. In addition, the asthma data were aggregated on a yearly basis and did not
account for temporal variation throughout the year. Finally, the results of the correlation do not

account for differences in socioeconomic demographics or medical management of asthma.

The air pollution models had a number of specific limitations which differ between
Models 1 through 4. Air pollution Models 1 and 2 were limited in their temporal resolution.
These models relied exclusively on the September 2008 air pollutant data for the asthma
correlation. These two-week air pollutant concentrations did not account for daily air pollution
fluxes or air pollutant concentrations during the rest of 2008. Air pollution Models 3 and 4
incorporated temporal trends for all of 2008, but the resulting monthly air pollution models were
subsequently aggregated to annual zip code concentration values in order to study the

relationship to the asthma data. This process reduced the temporal resolution of the models.

Future studies should reassess the asthma associations using better resolved spatial and
temporal asthma data. Refining the spatial resolution of asthma events to the neighborhood level
using residential addresses and increasing the temporal resolution of the asthma data to monthly
counts, as found in the air pollution models, may improve asthma-pollutant associations.
Applying the temporal scaling technique used in the study to the Windsor air pollution models
may further refine the air pollution dataset for the Detroit-Windsor international airshed. Given
that Detroit and Windsor differed in their response to the spatial data outlier analysis, this type of

future study could support or refute the results of temporal scaling in Detroit (hypothesis #2).
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5.6 Conclusions and Recommendations

This thesis developed three new sets of air pollutant models that can be utilized for future
epidemiological studies.  Overall, the correlations between air pollution and asthma
hospitalizations were weaker with the spatial outliers removed but improved with the addition of
temporal data. When outliers were removed, statistically significant correlations between air
pollution and asthma decreased. Incorporating a temporal time trend increased the number of
statistically significant correlations. The resulting models generated by this study provided a
more detailed analysis of the air pollution in Detroit and Windsor. The study improves model
integrity by increasing the spatial integrity and temporal resolution of air pollution estimates.
Removing outliers from the datasets reduced the variance of the model for a number of analytes
in Detroit and Windsor. The results of temporal scaling preserve spatial variability captured by
the two detailed GeoDHOC air sampling campaigns and incorporate temporal variability present
in MASN data in Detroit. Limitations of the asthma data necessitated less detailed regression
analysis using spatially and temporally aggregated air pollution models. Nevertheless, the
aggregated air pollution models still contain the spatial and temporal content embedded in the
newly created models. This allowed for new correlations between air pollution and asthma

exacerbations.

In conclusion, this thesis expands on previous GeoDHOC studies (Lemke et al., 2013;
Miller et al.,, 2010; O'Leary and Lemke, 2014) and provides additional insights into the
association between asthma exacerbations in both Detroit and Windsor and the international
airshed spanning both cities. The spatial data outlier identification and temporal scaling
approaches outlined here can be applied to other datasets or cities where long-term time series

measurements are available to supplement spatially variable air pollutant datasets. Additional
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spatially or temporally resolved asthma exacerbation data can lead to future studies that
incorporate more detailed aspects of the air pollutant models. In particular, incorporation of
Windsor NAPS data through temporal scaling can help confirm the findings of the Detroit

temporal scaling.
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APPENDICES
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GeoDHOC PM; 2008 OK Variance Map

Figure Alc. Model 1 PM; variance maps for the ordinary kriged
models for September 2008 (top) and June 2009 (bottom).
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Table Al. Cross validation results for Model 1 and Model 2 in September 2008 and June
2009 ordinary kriged models.

Model 1

Vear Analyte Me:fm error for Mean ab.solute error Std.

interval for interval Dev.
2008 NO2 7.50E-02 1.5 2
2009 NO2 1.10E-01 1.9 2.6
2008 BTEX 1.40E-01 2.4 3.7
2009 BTEX 2.50E-02 0.29 1.6
2008 PM1 9.40E-04 0.55 0.82
2009 PM1 -1.70E-03 0.72 1.1
2008 PM1-2.5 -2.70E-03 0.84 1.5
2009 PM 1-2.5 1.60E-03 0.35 0.57
2008 Pm 2.5-10 2.20E-02 1.1 1.7
2009 Pm 2.5-10 -4.80E-02 0.9 1.3

Model 2
Mean error for Mean absolute error Std.

Year Analyte . .

interval for interval Dev.
2008 NO2 4.63E-02 1.42 1.8
2009 NO2 7.53E-02 1.78 2.4
2008 BTEX 8.05E-02 1.84 2.6
2008 voC 8.80E-02 2.58 3.5
2008 PM2.5 -2.54E-03 0.96 0.34
2009 PM2.5 1.96E-02 0.74 0.94
2008 PM10 3.61E-02 1.65 2.6
2009 PM10 -2.02E-02 1.44 2.0
2009 PAH 6.29E-01 9.46 12.0




139

7'ET 6T LAt 8T'S €70 '8 w9'LT ST L8 falo)s 9T 9T ‘8ny  600C
ToT vS'T €61 69°¢€ €E€0 6'8 T0°LT T€T LL TTT 08'T 9T ‘Inr 600
QT8 VET 9T 6T'€ 0€0 7’6 96T €T L9 LT L0'C €971 unr  600¢
£9°8 8E'T 6°ST we 0€0 6 st 8CT oL T L6'T €971 Aey 600
8C'6 SY'T 9°'ST 6€°€ 1€0 06 or'LT 8CT €L S'TT L8'T €91 dy 600¢
T0T ST €T 69°€ €€0 6'8 T0°LT 1T LL TTT 08T 91 BN 600¢
01T S9'T 0'sT oty 9€'0 L'8 L6'9T 9€'T 08 L0T €L'T 9T ‘ga4 600¢
TeT 8L'T L'YVT 09’y 6€°0 9'8 6T'LT 'l '8 70T 89'T 9T ‘uer 600¢
Vel 6T A 8T'S €0 '8 9'LT vS'1T L'8 0T 9T 9T erle] 800¢
L'YT 80°¢C 9T €8'S 8¥'0 '8 6T°8T 9T T6 T0oT 79'T 9T ‘AON  800¢
9T vee 8'€T €99 €90 '8 G8'8T 8L'T 7'6 ot v9'T 191 N0 800¢
8'LT or'e S'eT oe'L 850 6L LS'6T 16T 86 €01 L9T T9T 'das 8007
O (evw/am)  (evu/an) O (evw/am)  (evw/an) ©)  (evw/am) (evw/an) ©)  (qdd) (qad) 1A
ND PIs uean A pPIsS uesn ND pPIsS uesy N pis  uesiy
0TINd gzwd Xilg ZON
Z |2POIA Wouy salas Yyiuow zT paiejodiaul Ajjeneds
ot ST (44" c0’s €V'0 S'8 8'T¢C €6'T 6'8 11 181 €971 ‘8ny  600C
6L 0C't ST 9’9 150 T6 6T 18T 8L o¢t 86'T 9T ‘Inf 600¢
L 9T'T 9T wL L0 L'6 96T €T L9 Q€T LT S9T ‘unf 600¢
1L ST'T 6'ST SL9 90 S'6 06T vE'T L TET 9T'¢ S9T Aen 600¢
JA A 9T'T 9'sT 19 LS°0 €6 06T T V'L ST 90'¢ S9T 1dy 600¢C
06°L T ST 09's 150 T6 7’6l 18T 8L 0¢tT 86'T 79T SE 600¢C
198 LTT 67T 6T'S 97’0 6'8 10t €91 78 9'TT 6T 79T ‘a4 600¢C
€6 GE'T ST 86’7 €70 L'8 6°0C 8L'T 9’8 €TT S8'T €971 ‘uer 600
ot ST T 'S €70 9’8 8'T¢C €6'T 68 TTT 181 €971 29Q 800¢
€TT 99T 8'€T veE'S 0 €8 8¢t A4 6 TTT 8T €971 ‘AON 800¢
ST 89T SeT 'S 870 T8 8'€C 6C°C 96 TTT 8T 9T ‘PO 800¢
8¢l 18T CEeT SL9 €90 6L 81T LY'C [0)% €TT 8T 9T ‘dag 800¢
) (evw/Bn)  (evw/an) ) (evw/Am)  (gvw/an) ©) (evw/Bn)  (evw/am) ©)  (qdd) (qdd) 123
A Pis uesiy N pPis uesn ND pPis uesn N Pis ues|n
0TINd ST Xilg ZON
T ISPOIN EO.C. S91I9S Yyjuow ¢1 _UUHN_OQLUHC_ >__N_HGQW
*SONSIIE]S [apow Jeneds Ajyauow ooz aunc ybnoayl g0z 4aquwisrdss 104180 7V 908l




140

Table A3. Model 1 monthly bulk shift values for NO,, total BTEX, PM,s, and PMjg

NO2  BTEX  PM2.5 PM10
Year Month (ppb) (ug/m’)  (ug/m’)  (ug/m’)
2008 Jan 5.1 14 7.4 0.6
2008 Feb 5.5 13 4.3 28
2008 March 3.1 0.2 2.0 0.0
2008  April 03 2.2 2.1 8.6
2008  May  -2.6 0.6 26 4.6
2008  June  -0.3 5.6 0.0 115
2008 uly  -1.4 4.6 6.4 105
2008 Aug 17 2.3 11 5.4
2008  Sept 1.1 1.3 14 0.7
2008 Oct 2.9 22 12 2.2
2008 Nov 4.4 26 45 6.7
2008 Dec 3.7 3.4 3.2 7.9
2009 Jan 83 2.4 8.0 7.2
2009 Feb 5.1 0.3 5.6 2.6
2009 March 4.1 0.4 15 9.7
2009  April  -1.6 2.7 4.1 1.3
2009 May  -0.2 1.9 1.5 3.6
2009  June  -1.1 13 14 0.7
2009 uly 2.2 0.0 15 6.1
2009 Aug  -1.0 1.8 1.0 3.9
2009  Sept 0.1 -3.3 2.2 1.9
2009 Oct 1.0 2.2 1.8 6.6
2009 Nov 25 0.3 3.8 4.1
2009 Dec 27 0.9 15 9.0
2010 Jan 14 3.0 2.0 7.6
2010 Feb 3.8 1.8 0.8 1.8
2010 Mar 3.6 3.5 14 4.9
2010 Apr  -0.2 0.5 2.7 3.0
2010 May -14 43 1.4 2.4
2010  June  -3.8 1.2 2.8 0.3
2010 uly  -1.8 1.2 4.2 1.3
2010 Aug  -1.0 14 5.3 2.9
2010  Sept  -1.6 2.2 2.0 2.1
2010 Oct 2.3 3.3 2.6 9.4
2010 Nov 3.9 0.6 17 3.1

2010 Dec 2.7 -2.1 2.8 -7.3
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Table A4: Model 2 monthly bulk shift values for NO,, total BTEX, PM,s, and PMo

NO, BTEX PM, 5 PM,,

Year Month  (ppb) (ug/m®) (ug/m’) (ng/m’)

2008 Jan 5.1 -1.4 7.6 0.6
2008 Feb 5.5 -1.3 4.4 3.1
2008 Mar 3.2 0.1 2.1 0.7
2008 Apr 0.3 2.2 2.2 7.6
2008 May -2.6 0.5 2.4 3.3
2008 Jun -0.2 5.5 -0.1 9.9
2008 Jul -1.4 4.6 6.5 9.9
2008 Aug -1.7 2.2 1.1 5.7
2008 Sep 1 1.4 1.3 0.6
2008 Oct 2.9 2.2 -1.3 2.3
2008 Nov 4.3 -2.5 4.4 6.8
2008 Dec 3.7 3.4 3.2 7.9
2009 Jan 8.3 2.4 8.2 7.2
2009 Feb 5.2 0.3 5.6 2.6
2009 Mar 4.1 0.3 1.6 9.7
2009 Apr -1.5 2.8 -4.0 -1.2
2009 May 0.1 -2 -1.3 3.4
2009 Jun -1 -1.4 -1.5 -0.6
2009 Jul 2.2 0 1.4 6.1
2009 Aug -1 -1.8 1.0 -3.9
2009 Sep 0 -3.2 2.1 1.8
2009 Oct 0.9 2.2 -1.9 6.7
2009 Nov 2.5 0.3 3.8 4
2009 Dec 2.6 -0.9 1.5 9.1
2010 Jan 1.4 -3 2.2 7.7
2010 Feb 3.9 -1.8 0.7 -1.8
2010 Mar 3.7 3.4 1.4 -4.9
2010 Apr -0.2 0.4 2.6 3
2010 May -1.3 43 -1.2 2.5
2010 Jun 3.7 1.1 2.7 -0.2
2010 Jul -1.8 1.2 43 -1.3
2010 Aug -1 -1.3 5.3 2.9
2010 Sep -1.7 2.1 2.2 1.9
2010 Oct 2.3 3.4 2.7 9.3
2010 Nov 3.9 -0.5 1.7 -3.2

2010 Dec 2.6 -2 2.8 -7.3
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The heterogeneous nature of urban air complicates human exposure estimates and creates
a need for accurate, highly detailed spatiotemporal air contaminant models. The study expands
on previous investigations by the Geospatial Determinants of Health Outcomes Consortium that
examined relationships between air pollutant distributions and asthma exacerbations. Two
approaches, the removal of spatial data outliers and the integration of spatial and temporal data,
were used to refine air quality models in the Detroit and Windsor international airshed. The
evaluation of associations between the resulting air quality models and asthma exacerbations in
Detroit and Windsor revealed weaker correlations with spatial outliers removed but improved
correlations with the addition of temporal data. Recommendations for future work include
increasing the spatial and temporal resolution of the asthma datasets and incorporating Windsor

NAPS data through temporal scaling to help confirm the findings of the Detroit temporal scaling.
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