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CHAPTER 1.  INTRODUCTION 

1.0. Introduction 

In response to poor urban air quality in many of the United States’ cities, the U.S. 

Congress established the Clean Air Act in 1970 “to protect public health and welfare from 

different types of air pollution caused by a diverse array of pollution sources” (Chow et al., 

2007).  The Clean Air Act established the air quality management framework that is currently in 

place today.  This framework measures regional ambient air pollutant concentrations but does 

not adequately account for the heterogeneous nature of urban regions.   

The heterogeneity of urban airsheds results from the interplay of spatially and temporally 

complex systems (e.g. Kim et al., 2005; Pinto et al., 2004).  It complicates human exposure 

estimates in urban areas and creates the need for accurate, highly detailed spatiotemporal air 

contaminant models.  Distributed and prolonged air quality measurements are resource intensive, 

however, and study designs frequently balance tradeoffs between spatial and temporal resolution 

(Beevers et al., 2013). Increased density of spatial information and/or increased frequency of 

temporal information also increases the potential for erroneous measurements within air quality 

datasets. Consequently, there is a growing need to develop practical methods to 1) evaluate the 

presence and influence of anomalous air quality measurements and 2) integrate detailed spatial 

and temporal air quality data from multiple sources (e.g. Mayer, 1999; Ross et al., 2013; Wilson 

et al., 2005). 

Currently, air sampling networks in the United States provide regional air pollution 

estimates from central-site monitors.  Although regulatory monitoring networks offer valuable 

time series measurements, they commonly lack the spatial resolution needed to estimate 

neighborhood-scale exposure (e.g. Baxter et al., 2013; Ozkaynak et al., 2013; Sarnat et al., 2013; 
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Wilson et al., 2005).  This can result in greater uncertainty (Luginaah et al., 2006) coupled with 

corresponding underestimation of variability (Baxter et al., 2013) in large population exposure 

estimates. 

Alternatively, temporary networks of active or passive air samplers can collect a higher 

spatial density of measurements over limited, discontinuous periods of time (e.g., Miller et al., 

2010; Ross et al., 2013).  Such, short-term monitoring networks can be logistically difficult to 

implement and expensive to repeat (Cocheo et al., 2008).  Nevertheless, their measurements are 

readily incorporated into land use regression (LUR) and geostatistical interpolation (i.e., kriging) 

algorithms to generate pollutant concentration models at increased spatial resolution (e.g., Hoek 

et al., 2008; Jerrett et al., 2005; Künzli et al., 2004; Sampson et al., 2011).  LUR and kriging 

models share similar limitations but have different strengths For example, both require a large 

number of sampling sites and are not readily adaptable to changing meteorological conditions 

(Isakov et al., 2011).  For example, LUR models can reproduce small scale features such as 

roadway configurations that contribute to mobile source pollutants (Mercer et al., 2011) whereas 

kriging smooths concentration estimates. Moreover, kriged models generate measures of 

uncertainty using estimation of error variance throughout the model domain (Vicedo-Cabrera et 

al., 2013) whereas  LUR models do not yield corresponding spatial uncertainty estimates.  

Accurate datasets, without corrupt information, are essential for creating models that 

promote informed decision making.  Data outliers can greatly influence finely resolved spatial 

models, like kriged or LUR models, at the neighborhood level (Chang-Tien et al., 2003).  

Identifying outliers can lead to useful information and unexpected outcomes such as severe air 

pollutant exposure for specific geographical zones (Chang-Tien et al., 2003; Torres et al., 2011) 

or the identification of air pollution adversely affecting socio-economic groups (Zou et al., 
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2014).  Therefore, along with measuring uncertainty, an evaluation of the accuracy and influence 

of individual data points is essential when making interpretations at highly resolved spatial 

scales.   

Temporal data in conjunction with spatial data are needed to address chronic exposure 

across air pollution gradients in urban areas.  Exposure estimates over time are required to study 

certain health conditions, such as those associated with pregnancy, which have a specific 

gestational period.  Therefore, spatiotemporal models, which can provide individual exposure 

estimates and time-base exposure estimates, are needed for epidemiological studies (Brauer et 

al., 2003).   

The combination of spatial modeling with temporal data adds definition to the 

heterogeneous nature of air pollution and delivers arguably better exposure estimates (Mölter et 

al., 2010; Romanowicz et al., 2006).  This thesis contributes to the development of emerging 

modeling approaches by presenting practical methods to refine spatial models and assimilate 

detailed temporal data with high spatial resolution models of urban air pollutants. Specifically 

this study investigates the spatial and temporal patterns of nitrogen dioxide (NO2), total BTEX 

(benzene, toluene, ethylbenzene, and xylene), volatile organic compounds (VOCs), particulate 

mass less than 2.5 microns in aerodynamic diameter (PM2.5), particulate mass less than 10 

microns (PM10), and polycyclic aromatic hydrocarbons (PAH) in the cities of Detroit and 

Windsor. 

 

1.1. Background on the Detroit-Windsor Airshed 

This study investigates the contiguous airshed of Detroit, Michigan (U.S.A.) and 

Windsor, Ontario (Canada).  Detroit is located on the north side of the Detroit River in 
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southeastern Michigan and Windsor is situated on the south side of the Detroit River in 

southwestern Ontario.  Windsor is also the southernmost metropolitan city in Canada.  Both of 

these cities are identified as high air pollutant zones resulting from industrial and transportation 

emissions (Health Canada, 2000; MDEQ, 2008; Simon et al., 2005; U.S. EPA, 2009).   

Detroit and Windsor are connected by the Ambassador Bridge, which is the busiest 

commercial international border crossing in North America (Figure 1.1).  The Ambassador 

Bridge and Detroit-Windsor Tunnel concentrate traffic in both cities and create focused areas of 

air pollution (Wheeler et al., 2008).  Municipal and medical waste incinerators, automobile 

manufacturing plants, steel mills, the Detroit Edison Rouge River coal-fired power plant, and the 

Marathon refinery are examples of major emission sources for Detroit and its surrounding 

communities.  In Windsor, industrial, municipal, and transportation are the major sources of air 

pollution (Wheeler et al., 2008).  Beyond industry, traffic induced emissions are a large source of 

air pollution for Detroit and Windsor.  Major interstate highways in Detroit include I-75, I-94, 

and I-96, and Detroit’s major state highways include M-1, M-10, and M-39 (Molaroni, 2010).  

Major highways in Windsor include Huron Church Rd (3), E.C. Row Expressway, and 

Macdonald Cartier Freeway (401).   

 

1.2 Air Pollutant Sources and Monitoring 

Air pollutants come from a range of sources in Detroit and Windsor that include 

stationary and on road sources.  A majority of NO2 is derived from on road sources (MDEQ, 

2008).  In Detroit, VOC compositions and trends indicate the dominance of vehicular sources 

over the many industrial sources with the possible exceptions of styrene and several chlorinated 
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VOCs  (Batterman et al., 2002).  According to the US Environmental Protection Agency 

(USEPA), in Michigan, 34% of PM10 comes from particles that originate from point sources, 

such as power plants, and various manufacturing and industrial processes; 32% comes from 

"area" sources that do not originate from any specific point; and another 34% comes from 

vehicle emissions. PM2.5 from vehicle emissions comprises 50% of the ambient PM2.5 in 

Michigan. Area sources make up 37% and point sources contribute 13% (U.S. EPA, 2009).    

Air sampling networks established to monitor compliance with National Ambient Air 

Quality Standards (NAAQS) and the National Air Pollution Surveillance (NAPS) program are 

important sources of outdoor air quality information in Detroit and Windsor.  The Michigan Air 

Sampling Network (MASN) uses strategically placed monitors to assess air pollutant levels 

throughout the state (MDEQ, 2013).  The NAPS program provides similar data with two 

locations in Windsor.  Comparable air sampling networks in other states and countries provide 

long-term air quality measurements that may be used to estimate exposure for surrounding 

communities (e.g. Dockery et al., 1993; Pope et al., 2009; Samet et al., 2000; Zanobetti et al., 

2003).   

Currently, Detroit and Windsor have a limited number of continuous monitoring 

locations.  Given the need for accurate models to predict and understand the spatial and temporal 

variability of air pollutants within heterogeneous urban airsheds, air pollutant modeling is 

required to estimate exposure at a spatially resolved level that complements temporally resolved 

measurements from the long term air sampling networks.   
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1.3. Previous Detroit and Windsor Air Quality Studies 

Multiple studies in the Detroit and Windsor airshed have focused on correlating air 

pollution and human exposure.  Recent investigations include the Detroit Exposure and Aerosol 

Research Study (DEARS), the Windsor, Ontario Exposure Assessment Study (WOEAS) and the 

Geospatial Determinants of Health Outcomes Consortium (GeoDHOC) studies.   

The objective of the DEARS project was to determine if air pollutant data from 

centralized monitoring stations could be used to estimate exposure in neighborhoods from 

multisource air pollutants.  It was conducted between 2004 and 2007 and took a number of 

approaches to compare central monitoring station measurements to alternative exposure 

measurements including indoor, outdoor, and personal monitors (Williams et al., 2009).  The 

DEARS study confirmed that air pollutants vary at the neighborhood scale and are significantly 

affected by weather.   

The WOEAS investigation assessed the contribution of ambient air pollutants to personal 

and indoor exposures of adults and asthmatic children living in Windsor.  The variability of air 

pollution, particularly around the Ambassador Bridge, was analyzed using a combination of land 

use regression (LUR) modeling (Luginaah et al., 2006; Wheeler et al., 2008) and personal 

monitors.  The study found that VOC indoor concentrations are a good predictor of personal 

exposure (Stocco et al., 2008).  The WOEAS study also concluded that using central monitoring 

locations for personal exposure in epidemiological studies creates error because of the spatial 

variability and wide range of home infiltration factors associated with particulate matter 

(Kearney et al., 2011).   

The initial GeoDHOC study was designed to examine spatial correlations between 

ambient air pollution concentrations and asthma exacerbations in Detroit and Windsor at a high 
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level of spatial resolution.  The underlying premise of the study was that correlations among 

mappable environmental attributes and health indicators can be used to better understand and 

manage urban community health (Miller et al., 2010).  The original aims included: 1) 

simultaneous collection and modeling of air pollutant concentrations in Detroit and Windsor, 2) 

collection and evaluation of concurrent asthma morbidity data using asthma-related ambulatory 

care encounters, emergency department visits, and hospital discharge records in Detroit and 

Windsor, and 3) integration of the environmental and asthma data into a geographic information 

system (GIS) and modeling framework (Lemke et al., 2013).   

The initial GeoDHOC analysis demonstrated spatial variability in air pollutant 

distributions between and, more importantly, within the cities of Detroit and Windsor at 

neighborhood scales (Miller et al., 2010; Miller et al., 2012a), as well as statistically significant 

correlations between the rate of asthma events and concentrations of specific air pollutants 

averaged over postal code scales (i.e., zip codes in the USA and forward sortation areas in 

Canada) (Lemke et al., 2013).  The GeoDHOC study has subsequently been expanded to 

investigate the relationship between spatially distributed airborne environmental contaminants 

and adverse birth outcomes in Detroit. In a pilot project funded by the W.K. Kellogg Foundation 

(“Geospatial Analysis of Air Pollution and Adverse Birth Outcomes in Detroit”, John Reiners, 

Jr., PI), the GeoDHOC team is testing a hypothesized geospatial association between 

concentrations of specific pollutants (i.e., NO2, PM, and VOCs) in the Detroit airshed and 

adverse birth outcomes (i.e., low birth weight and premature delivery) for pregnant women living 

in Detroit (Reiners et al., 2014). To achieve these correlations, a pragmatic method for 

integrating high spatial resolution measurements from a temporary monitoring network with time 
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series measurements from fixed regulatory monitoring stations was implemented (O’Leary and 

Lemke, 2014) and this work forms a significant portion of the foundation for this thesis.   

 

1.4 Spatial Outliers   

Often air quality data needs refinement to account for anomalous measurements (Torres 

et al., 2011).  These irregular measurements need investigation to minimize potential risks that 

can occur from inaccurate air pollutant models.  Frequently, models are used to provide a more 

robust analysis of air pollution (e.g., O'Leary and Lemke, 2014) but outliers within the dataset 

can substantially skew model output.  Therefore, accurate measurements, proper assumptions, 

and appropriate corrections are needed to ensure air pollutant datasets constitute a relevant tool 

for informed decision making.   

Generically, an outlier in statistics is one that appears to deviate markedly from other 

members of the sample group (Barnett and Lewis, 1994).  Outliers are identified by comparing 

the values in question to the rest of the distribution or a subset of the distribution (Torres et al., 

2011).  Two types of spatial outliers are recognized by differences in magnitude relative to 

surrounding points (Figure 1.1): 

Global spatial outliers are statistical outliers if their value is unlike the values in the 

entire distribution within a geographically defined study area. These data points may be 

higher or lower than the other data points.   

Local spatial outliers differ from the data points immediately surrounding them. These 

points may not be extremes within the entire distribution but stand out when compared to 

other data within their local geographic neighborhood.  
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Figure 1.1.  Example chart of measurements made along a linear profile illustrating 

a global outlier and a local spatial outlier. 

 

For the purposes of this thesis, all spatial outliers, including global and local spatial outliers, are 

referred to simply as outliers. 

With new tools and technology, spatial data are more assessable and manageable leading 

to an increase in spatial outlier research.  At the Joint Research Center (JRC) in Europe, 

geostatistical tools have been used to correct for air pollutant outliers and identify air quality 

indicators (Kracht et al., 2013).  The JRC includes over 6,000 air monitoring sites, and outliers 

are identified using a low pass filter to remove high concentrations while preserving low 

frequencies.  The Moran’s I is used frequently to identify outliers (e.g., McGrath and Zhang, 

2003; Walker et al., 2013; Zhang et al., 2008; Zhang and McGrath, 2004; Zou et al., 2014).  In 

Ireland, a number of studies used the Moran’s I method to identify spatial outliers when mapping 

the soil organic carbon (McGrath et al., 2003, Zhang and McGrath, 2004, and Zhang et al., 
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2008).  Walker et al. (2013) also used the Moran’s I to detect spatial outliers in geomorphic 

changes to sand dunes in Western Canada.   Clougherty et al. (2013) took a different approach in 

New York City and identified outliers as air quality samplers that were ± 3 standard deviations 

away from the mean. 

 

1.5 Study Motivation and Objectives 

The motivation for this thesis stems from a desire to better quantify correlations between 

ambient air pollution concentrations and asthma exacerbations and other health outcomes in 

Detroit and Windsor.  Previously, high spatial resolution correlations were established in the 

GeoDHOC pilot study (Lemke et al., 2013).  This thesis investigation expands the assessment 

between ambient air pollution and asthma exacerbations by 1) reassessing the GeoDHOC spatial 

models for outliers and 2) incorporating temporal data into the original and subsequent models.   

Specifically, the first objective is to determine if outliers are present in the datasets 

and, if so, quantify the magnitude of their impact on modeled spatial pollution 

distributions.  Spatial outliers, both high and low in magnitude, can substantially influence 

ordinary kriged models and lead to potentially inaccurate pollutant concentration estimates 

across portions of the airshed.   

The second objective is to incorporate temporal data into the modeling of the air 

pollutant maps.   In the initial GeoDHOC study, Lemke et al. (2013) did not include temporal 

information in their analysis, relying instead on a two-week air pollution model to estimate 

exposures uniformly throughout 2008 in Detroit and Windsor.  This thesis applies the 

methodology of O'Leary and Lemke (2014) to extrapolate the September 2008 and June 2009 

GeoDHOC datasets and create a time series of monthly concentration maps for 2008.  
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The final objective of this study is to determine how a) the correction for outliers 

and/or b) increased temporal model resolution influence 2008 asthma associations.  The 

associations were evaluated on the same spatial scale as Lemke et al. (2013) and used the same 

linear regression technique to evaluate asthma correlations with the newly created models from 

objectives 1 and 2.   

 

1.6. Hypotheses 

The heterogeneous nature of urban air complicates human exposure estimates and creates 

a need for accurate, highly detailed spatiotemporal air contaminant models.  This investigation 

evaluated two hypotheses while developing improved models of the Detroit-Windsor airshed by 

identifying spatial data outliers and incorporating temporal trends to better define neighborhood 

level air contaminant concentrations.   

Hypothesis #1:  

Prior GeoDHOC models indicate areas of high concentrations that are inconsistent with 

regional concentration trends.  The 2008 and 2009 GeoDHOC datasets and the MASN Detroit 

datasets were re-evaluated using statistical software including ArcGIS, Surfer, SGeMS, and 

SpaceStat to identify global and local spatial outliers.  It was hypothesized that spatial models 

with outliers removed will improve health correlations for asthma exacerbations. 

Hypothesis #2: 

The GeoDHOC asthma study relied upon a two-week sampling period in September 2008 

to estimate annual air pollutant concentration levels.  This thesis utilized MASN data along with 

the GeoDHOC June 2009 data to temporally resolve air pollutants throughout 2008 and 2009.  It 
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was hypothesized that pollutant models with increased temporal resolution will also improve 

health correlations for asthma exacerbations. 

1.7. Thesis Structure 

 This thesis comprises five chapters.  Chapter 1 introduced the need to spatial data outlier 

identification and spatiotemporal models along with previous GeoDHOC studies.   

The datasets used for this study are described in Chapter 2.  Chapter 3 documents the 

methodology used for identifying spatial data outliers, temporal scaling, and asthma correlations.  

Results are reported in Chapter 4.  A discussion of the results, limitations, conclusions, and 

recommendations of future research are presented in Chapter 5.   
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CHAPTER 2.  DATA  

2.0 Introduction 

 Air pollution, meteorological data, and health information for this study were derived 

from a number of sources.  Air pollution data came from two sources.  The first was a spatially-

distributed set of air pollution measurements developed by the Geospatial Determinants of 

Health Outcomes Consortium (GeoDHOC) (Lemke et al., 2013; Miller et al., 2010). The second 

dataset consisted of time series measurements of air pollutants from the Michigan Air Sampling 

Network (MASN) which is operated by the Air Quality Division of the Michigan Department of 

Environmental Quality (MDEQ).  Meteorological data were obtained from the National Oceanic 

and Atmospheric Administration (NOAA).   Asthma information was collated from the Henry 

Ford Health System (HFHS) in Detroit and the Canadian Institute for Health Information (CIHI) 

in Windsor (Lemke et al., 2013).  Each of these datasets is described in more detail below. 

 

2.1 GeoDHOC  

The GeoDHOC conducted two, two-week air sampling campaigns in Detroit, Michigan 

and Windsor, Ontario between September 5-20, 2008 and May 29–June 13, 2009.  A total of 100 

passive samplers and 50 active samplers were deployed in 2008.  An identical sampling plan was 

implemented in 2009 with additional passive samplers totaling 133 passive samplers and 50 

active samplers (Figure 2.1). 

Sites with a combination of active and passive samplers are designated by codes 

including the letter ‘A’ and the station number (e.g., D-A-21 or W-A-4 in Detroit and Windsor, 

respectively) (Figure 2.2).  Passive samplers measured NO2, SO2, and volatile organic 

compound (VOC) concentrations at an approximate spatial density of 5 km
2
 per sample (Figure 
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2.2). BTEX compounds comprised 64% and 72% of total VOCs measured in 2008 and 2009, 

respectively. Active samplers measured polycyclic aromatic hydrocarbons (PAHs) and 

particulate matter (PM) in three size fractions (PM1, PM1-2.5, and PM2.5-10) at an approximate 

spatial density of 10 km
2
 per sampler throughout both cities.   
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The pollutant measurement datasets differed slightly in the number of points associated 

with each analyte.  NO2 had 97 sampling points in 2008 and 122 sampling points in 2009.  

BTEX and VOCs had 98 and 133 sampling points in 2008 and 2009, respectively.  The greater 

number of samplers for these analytes in 2009 arose from the inclusion of additional sampling 

points in northwest and southwest Detroit, as well as the inclusion of a profile perpendicular to 

Huron-Church road on the approach to the Ambassador Bridge in Windsor.  PM2.5, PM10, and 

PAHs had 38 sampling points in 2008 and 37 sampling points in 2009.  Implementation of 

quality control/quality assurance procedures (Miller et al., 2010), resulted in the exclusion of 

different points from the 2008 and 2009 datasets for all of the analytes listed above. 

Pollutant distribution models were created using ordinary kriging with a 300m x 300m 

grid spacing.  Details of sampling, QA/QC and mapping methods for the GeoDHOC data set are 

given by Miller et al. (2010).  These models demonstrated neighborhood-scale spatial variability 

of air pollutants within the Detroit-Windsor airshed during the 2008 (Miller et al., 2010) and 

2009 (O'Leary and Lemke, 2014) sampling periods.  Kriging variance maps illustrating the 

spatial distribution of estimation uncertainty in the Miller et al. (2010) and O'Leary and Lemke 

(2014) maps are provided in the appendices (Figure A.1). 

 

2.2 MASN 

The second air pollution data set consisted of time series measurements at five MASN 

locations within the city of Detroit from 2008-2010 (Figure 2.1).  Not all analytes were 

measured at each location (Table 2.1). Measurements at two nearby MASN locations outside the 

city (Allen Park and Dearborn) were excluded from the study because PM2.5 and PM10 

measurements at these sites did not differ materially in temporal trends from the Detroit station 
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measurements during the period examined.  Hence, only MASN samplers located in the city of 

Detroit were included in the study.  Measurements at two National Air Pollution Surveillance 

(NAPS) monitoring stations in Windsor were also excluded because they are outside Detroit, the 

refined study area for temporal analyses described in Section 3.2 of this thesis. 

The Detroit MASN data set includes single sampling locations for NO2, VOCs including 

individual BTEX components, and PM10 (Table 2.1).  The East 7 Mile location was the only 

active NO2 sampling location in the study area during the study period.  At this location, NO2 

was sampled continuously using automated chemiluminescence (Federal Reference Method 

(FRM) RFNA-0179-035) (U.S. EPA, 2013) and hourly concentrations were reported.  BTEX 

concentrations at Southwestern High School were derived from air samples collected over a 24 

hour period every 12 days using SUMMA canisters. These samples were analyzed for VOCs 

using gas chromatography/mass spectrometry following EPA method TO-15 (U.S. EPA, 1999).  

PM10 concentrations were measured at the Southwestern High School site over a 24 hour period 

every six days using a High-Volume Air Sampler (FRM RFPS-1287-064) (U.S. EPA, 2013). 

 

Table 2.1. Michigan Air Sampling Network (MASN) monitoring sites in Detroit. 

Site Name Abbreviation Location Analyte Method 
Sampling 
Frequency 

Sample/report  
Duration 

East Seven 
Mile 

E7Mile 
northeast 
Detroit 

NO2 FRM 35 Continuous 1 hour 

PM2.5 FRM 118 3 days 24 hours 

Linwood Linwood central Detroit PM2.5 FRM 118 1 to 3 days 24 hours 

Newberry 
School 

NewSch 
south central 
Detroit 

PM2.5 FRM 118 3 days 24 hours 

FIA / 
Lafayette St. 

FIA 
south central 
Detroit 

PM2.5 FRM 118 3 days 24 hours 

Southwestern 
High School 

SWHS 
southwest 
Detroit 

PM2.5 FRM 118 3 days 24 hours 

PM10 FRM 64 6 days 24 hours 

VOCs 
EPA TO-
15 

12 days 24 hours 
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PM2.5 was measured at five Detroit MASN sampling locations during the 2008-2010 

study period (Table 2.1).  PM2.5 was measured over a 24 hour period using a PM2.5 Sequential 

Air Sampler (Rupprecht & Patashnick Company, Incorporated Partisol
®
-Plus Model 2025, FRM 

RFPS-0498-118) (U.S. EPA, 2013).  PM2.5 was sampled every 3 days at each site, with the 

exception of the FIA/West Lafayette Street site where daily samples were available after October 

1, 2009.   

 

2.3  Meteorological Data 

Weather data from the National Oceanic and Atmospheric Administration (NOAA) were 

obtained for the Coleman A. Young International Airport, located in northeast Detroit (Figure 

2.1).  These data provided hourly observations of wind speed, wind direction, temperature, and 

precipitation for 2008 (National Climatic Data Center, 2014).  Monthly average wind rose plots 

(Figure 2.2) indicate prevailing westerly winds throughout much of the year, although greater 

variability in wind direction and speed was generally present in the spring (March through May) 

and late summer (August through September) (Figure 2.2). 

 

2.4  Asthma Data 

Asthma data for this study were derived directly from the GeoDHOC analysis reported 

by Lemke et al. (2013).  In that study, asthma events were defined as hospital admissions and 

emergency department visits with a primary diagnosis of asthma.  In 2008, approximately 2,800 

asthma hospitalizations and emergency room visits were reported in the Henry Ford Health 

System (HFHS) patient database for Detroit.  During the same year, approximately 650 

comparable asthma events were reported in the Discharge Abstract Database (DAD) and the 



20 

 

National Ambulatory Care Reporting System (NACRS) in Windsor (Lemke et al., 2013).    

These counts, normalized to number of asthma events per 1000 patients in each zip code 

tabulation area in Detroit and each postal forward sortation area in Windsor, constitute the 

spatially distributed asthma frequencies used in this thesis.  
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Feb 2008 March 2008 

April 2008 May 2008 June 2008 

July 2008 Aug 2008 Sept 2008 

Oct 2008 Nov 2008 Dec 2008 

Figure 2.3.  Monthly windrose graphs for the Coleman Young International Airport in 

Detroit for 2008.  The scale is consistent for each month. 
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CHAPTER 3.  METHODS  

3.0 Introduction 

This study consists of two major investigations, spatial outlier analysis (hypothesis #1) 

and temporal scaling (hypothesis #2), to address the relationship between asthma exacerbations 

and air pollution in Detroit and Windsor.  The spatial outlier analysis utilized a multistep process 

to assess outliers in the Geospatial Determinants of Health Outcomes Consortium (GeoDHOC) 

datasets for September 2008 and June 2009.  Potential outliers were initially identified using four 

different outlier identification methods and then refined to a set of spatial data outliers based on a 

convergence of these methods.  New ordinary kriged spatial models were subsequently derived 

from the resulting air pollution datasets with spatial data outliers removed.  The second effort 

incorporated Michigan Air Sampling Network (MASN) time series air pollutant concentration 

measurements.  The original GeoDHOC models and the revised models with outliers removed 

were temporally scaled by incorporating the MASN time-based dataset.  The resulting air 

pollutant concentration models were then correlated with acute asthma events in Detroit and 

Windsor to reassess the impact of air pollution on asthma and test the two hypotheses of this 

study (Section 1.6).   

3.1  Outliers  

Four independent methods were used to identify potential outliers that were subsequently 

reassessed using a combination of the methods to select a final set of spatial outliers.  These 

include box plots, difference maps, variogram clouds, and the Moran’s I, each of which takes 

into account different aspects of individual pollutant measurements relative to surrounding 

measurements.  The box plot and Moran’s I approach are quantitative means of assessing spatial 

data outliers whereas the difference maps and variogram clouds are more qualitative 
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assessments.  Analytes examined for outliers included nitrogen dioxide (NO2), total benzene, 

toluene, ethylbenzene, and xylene (BTEX), total volatile organic compounds (VOCs), mass of 

particulate matter less that 2.5 microns in aerodynamic diameter (PM2.5), mass of particulate 

matter less than 10 microns (PM10), and polycyclic aromatic hydrocarbon (PAH). 

Both global and local outliers (Section 1.4) were considered.  Global outliers, which are 

values unlike the rest of the entire distribution, were determined using box plots and difference 

maps.  In contrast, local outliers, which are different from nearby and adjacent points, were 

identified using difference maps and Moran’s I and confirmed using variogram clouds.  Because 

combinations of global and local outlier identification methods were used, the outliers were all 

grouped together. 

SpaceStat (Biomedware, Inc.) was used to create boxplots, variogram clouds, and 

Moran’s I analysis charts.  SpaceStat links each of its charts and plots in a common dataset that 

enables direct graphical comparisons among the different methods employed in this study.  The 

difference maps were generated using Surfer 11 (Golden Software).  SpaceStat was used for the 

variography and to create the ordinary kriged models with the outliers removed.  The final map 

versions of the difference maps and new models were created in ArcMap 10.0 (ESRI).  

3.1.1  Box Plots  

Box plots are aspatial representations illustrating the spread of concentration distributions.  

The box plots created for this study are a statistical visualization of the range of each dataset 

relative to the median and interquartile range (IQR) (Figure 3.1).  The black box in the center of 

the graph represents the IQR and the line in the middle is the median.  The “whiskers” (the 
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horizontal lines above and below the box), represent +/- 1.5 times the IQR beyond the box 

boundaries (Figure 3.1).   

 

Figure 3.1.  Example Box Plot with labels. 

This study treated points located outside of the whiskers as potential outliers.  Histogram 

charts were generated to confirm that these points were located on the extreme ends of the 

distribution for each dataset. 

3.1.2  Variogram Clouds 

Variogram clouds are exploratory plots of dataset spatial variability, in which each point 

represents the dissimilarity (square root of the absolute difference) between any two 

measurement locations as a function of their Euclidean distance.  Each variogram cloud takes the 

entire dataset into account and is useful for identifying local variability.  Points that fall in the 

upper left corner demonstrate a high degree of dissimilarity across short separation distances 

(Figure 3.2).  Conversely, points in the bottom right show little dissimilarity over long distances.   
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Points that are close together are expected to display more similarity than points separated 

by a greater geographical distance (Isaaks and Srivastava, 1989).  Consequently, pairs of points 

displaying high dissimilarity over a geographically small distance were initially considered 

potential spatial data outliers for this study.  However, selecting all of the points in the top left 

was found to be too arbitrary.  The box plot (aspatial technique) was therefore used to identify 

extreme values in conjunction with the variogram clouds (spatial technique) to identify outliers.  

If the resulting highlighted points identified through the box plot analysis showed a large degree 

of dissimilarity in a short geographical distance on the variogram cloud (Figure 3.2), the 

sampling location was considered a potential spatial outlier because it registered as both a global 

(box plot) and local (variogram cloud) anomaly.   

 

  Figure 3.2.  Example variogram clouds.  Graph A shows an example variogram cloud with 

a box representing a region with potential outliers.  Graph B highlights points associated 

with a single sampler location (identified on a corresponding box plot for the same dataset) 

that is considered to be a potential outlier.  Graph C highlights points associated with a 

single sampler location that is not considered to be a potential outlier.   

 

 

 

 

(C) (B) (A) 
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3.1.3  Difference Maps 

Difference maps quantify the change in pollutant measurements between the two 

GeoDHOC sampling periods in September 2008 and June 2009.  They were generated using grid 

arithmetic by subtracting the September 2008 GeoDHOC ordinary kriged model grids from the 

June 2009 ordinary kriged model grids for each analyte: 

               (                          )  (                          )      (Eqn. 3.1) 

Isoconcentration lines were added to each difference map to help highlight large concentration 

changes over short distances.    

Two different approaches were used when identifying potential outliers based on the 

difference maps.  The first approach assessed the concentration difference, both positive and 

negative, between the two sampling periods.  Major differences typically generated ‘bulls eye’ 

shaped isoconcentration lines centered on a single sampler location (Figure 3.3).  The September 

2008 sampling locations and June 2009 sampling locations were assessed individually because 

the sampling locations varied from year to year (Section 2.1).  Sampling points that demonstrated 

a large difference between the two sampling years were considered potential outliers.   

The second approach assessed abnormally high or low model values adjacent to, but offset 

from, individual sampling locations.  Some modeled grids included high or low concentration 

values that were markedly different from nearby sampling locations.  These features can result as 

artifacts from gridding and contouring algorithms when closely spaced control points have 

markedly different values.  The resulting ‘bulls eye,’ which is shifted away from an actual 

sampling location, constitutes a potentially inaccurate model estimate.  For example, in Figure 

3.3, the lower red box shows a zone in Windsor where the sampler location, black dot, is located 
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to the left of the center contour circle.  The locations near the sampling point were determined to 

be inaccurately modeled and the associated sampler was identified as a potential spatial data 

outlier.    

 

Figure 3.3.  Example difference map illustrating different approaches to spatial 

outlier identification.  

 

3.1.4  Local Moran’s I 

The Local Moran’s I is a weighted correlation coefficient that quantifies spatial 

randomness for each location in the dataset.  Spatial patterns are evaluated by the Moran 

algorithm for each point measurement using a set number of surrounding points.  In this study, 

eight surrounding points were utilized.  Locations that deviate from spatial randomness 

demonstrate a specific spatial pattern.  Spatial patterns include clustering of high or low values, 
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or, alternatively, individual high or low values surrounded by samplers with consistent, but 

contrasting (low or high) values, respectively (Figure 3.4).    

 

 

 

Figure 3.4.  Local Moran’s I scatter plot example with high-low and low-high points 

highlighted.  Positive I values are found in the upper right-hand and lower left-hand 

quadrants of this chart.  Potential outliers, indicated by statistically significant negative I 

values, appear as light blue or pink dots in the upper left and lower right quadrants and 

are highlighted by the boxes on this example chart. 
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The Local Moran’s I function assumes a normal population to evaluate spatial distributions 

with spatial randomness representing the null hypothesis. The Jarque-Bera test was used to test 

for normality (Kiefer and Salmon, 1983) by examining the GeoDHOC dataset for each analyte in 

Sept. 2008 and June 2009.  If the dataset generated a p-value equal to or less than 0.05, it was 

determined to be non-normal and, consequently, a normal score transform was performed.  

Subsequently, the Moran’s I was calculated in SpaceStat using the following equation:   

      ∑      

 

   

                                                              (       ) 

where I is the Moran’s I coefficient, z is the z score, w is a weighting parameter applied to the 

neighbors, i identifies the sampler point being evaluated,  j is an index value corresponding to 

each of the nearby neighbors, and n is the number of neighbors (Anselin, 1995).  A value of zero 

indicates no spatial autocorrelation. Positive Ii values indicate that there is either a cluster of low 

or high values.  Negative Ii values indicate that high and low values are clustered together 

(Figure 3.4).   Consequently, potential outliers were identified as sampling points with a 

negative Ii value along with a p-value less than or equal to 0.05.  These represent either sampling 

points with higher values than the surrounding sampling locations (high-low) or lower values 

that the surrounding sampling location (low-high).     

 Parameters of the Local Moran’s I include number of randomizations, point adjacency 

method, neighbor weight method, and Simes Correction.  This study used 999 Monte Carlo 

simulations to derive a p-value for each sampler location.  The point adjacency method was set 

to the nearest 8 neighbors.  This ensured that Ii only reflected the immediate surrounding sampler 

locations.  The neighbor weight method was standardized to neighbor count.   
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 The Simes correction was used to adjust p-values for the Local Moran’s I calculations.  

Local clustering values are not independent because the Moran’s I test statistics are derived from 

repeat trials drawn from the same dataset, and neighboring areas overlap, which makes the test 

statistics correlated.  The Simes adjustment is defined as: 

  
  (     )      (Eqn. 3.3) 

with n as the number of p-values (number of neighbors + central location) and a as the index 

value starting at 1 and describing the location in the vector of p-values (number of neighbors + 

central location).  

 

3.1.5  Outlier Determination 

A three step process was implemented to select spatial data outliers.  1) Potential outliers 

were identified from the global dataset using each of the four methods described above.  2)  

Potential outliers identified only by a single method were disregarded.  3)  Each remaining 

potential outlier was then individually assessed using a combination of the four methods to 

determine a final set of outliers for subsequent analysis in this study.  Variogram clouds were 

plotted in conjunction with points identified on box plots to evaluate pairs of points associated 

with extreme values. Sampler locations identified with box plot analysis and Moran’s I were 

plotted on the difference maps to facilitate visual comparison of those three identification 

methods.  Sampler locations identified using Moran’s I were also evaluated using variogram 

clouds to assess agreement for local outliers.  
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3.1.6 Kriging  

After spatial data outliers were identified for each analyte, they were removed from the 

Miller et al. (2010) and O'Leary and Lemke (2014) datasets and remodeled using ordinary 

kriging.  Kriging is a geostatistical method that uses a weighted linear regression to interpolate 

values at unsampled locations.  There are numerous types of kriging that include ordinary 

kriging, simple kriging, universal kriging, and indicator kriging (Webster and Oliver, 2007).  

Ordinary kriging was employed, which, like the other kriging methods, is considered a ‘best 

linear unbiased estimator’ (B.L.U.E.) (Isaaks and Srivastava, 1989).  It is ‘linear’ because of its 

use of weighted linear regressions.  It is ‘unbiased’ by setting the mean residual (error) as close 

to zero as possible.  And it is ‘best’ by minimizing the estimation error variance. Ordinary 

kriging distinguishes itself from other forms of kriging by assuming a constant local mean in the 

search neighborhood of the estimation point (Isaaks and Srivastava, 1989).  This offers greater 

flexibility to incorporate spatial variability than other kriging techniques such as simple kriging 

which assumes a constant global mean (Isaaks and Srivastava, 1989) or kriging with a trend, 

which assumes an a priori model of spatial variation (Goovaerts, 1997).  Kriging requires a 

covariance model to quantify variance as a function of separation distance for each variable of 

interest.  Variogram models are generated through a process called variography.   

A variogram (or, more strictly, a semi-variogram) measures variance or covariance 

between one or more values measured at distinct locations as a function of the distance between 

the locations.  When generating an initial model for kriging, an ‘experimental variogram’ is used.  

For this study, experimental semi-variograms were defined as half the mean squared difference 

between values separated by a defined distance or ‘lag’ (Isaaks and Srivastava, 1989): 
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 ( )  
 

  ( )
∑ (     )

 
(   )     (Eqn. 3.4) 

where γ is the variance at lag increment h, N(h) is the total number of data pairs separated by lag 

h, and vi and vj are the attribute values of a single pair at locations i and j.   

In contrast to the variogram cloud introduced in section 3.1.3, in which every pair of 

points is shown, experimental variograms display the average variance summed over multiple 

pairs of points at specified separation distances.  Defining a lag distance with an appropriate 

tolerance to group pairs reduces the noise (contained in the variogram cloud) and enables a 

covariance structure to emerge. A continuous variogram model is then fit to the experimental 

variogram to define the covariance structure.  Two common types of variogram models were 

used in this study: 

Spherical             ( )    [   
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]    (Eqn. 3.5) 

Exponential         ( )    [     ( 
  

 
)]    (Eqn. 3.6) 

where γ is the variance at lag increment h, c represents the sill contribution, and a represents the 

range of the spherical model or the effective range (distance where γ reaches 95% of the sill 

contribution) in the exponential model (Goovaerts, 1997).  These variogram models were used in 

conjunction with a nugget effect accounting for measurement uncertainty to interpolate over the 

entire study area with kriging estimates.   

3.1.7 Kriging Parameters 

Ordinary kriging was used to model the newly created GeoDHOC air pollution datasets 

with outliers removed for the Detroit and Windsor airshed.  Models were created for the 

September 2008 and June 2009 sampling periods.  The original September 2008 (Miller et al., 
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2010) and June 2009 (O'Leary and Lemke, 2014) ordinary kriged GeoDHOC models are 

henceforth referred to as Model 1 (Table 3.1).  The subsequent ordinary kriged maps with 

outliers removed are referred to as Model 2 (Table 3.1).   

In formulating new variogram models and kriging parameters, an attempt was made to 

adhere to the parameters of Model 1 (original models) as much as possible (Table 3.2).   

However, several parameters required changes.  The lag distance and lag tolerance were kept the 

same as previous models (1000 meters and 500 meters, respectively).  The lag count was 

increased to 20.  The nugget effect, or discontinuity at the origin, was kept the same for NO2, 

BTEX, and VOCs.  The ordinary kriging search radius was set to 10,000 meters for passive 

sampler analytes (NO2, BTEX, and VOCs).  For active sampler analytes (PM and PAHs), the 

search radius was set to 20,000 meters because of the smaller number of samplers distributed 

throughout the same study area. Sill contributions were adjusted from Model 1 to Model 2 to 

account for the decreased variance observed when extreme values identified during the outliers 

analysis were excluded, subsequently reducing the range of observed values for each analyte.     

The original particulate matter models (Miller et al., 2010) were developed in the mass 

increments in which they were measured during GeoDHOC sampling: PM1, PM1-2.5, and 

PM2.5-10.  Subsquent PM mass concentration models reported by Lemke et al. (2013) included the 

sumation of incremental particulate matter to derive mass concentration distributions for PM2.5 

and PM10 , two regulated PM fractions in the US and Canada.  To facilitate comparison of 

PM-asthma correlations, PM1, PM2.5, and PM10 summations were used in this thesis.  

Consequently, the variogram models generated for PM2.5 and PM10 in Model 2 were distinctly 

different from Model 1 (Table 3.2).   
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Table 3.1.  Summary of the four models used in this study.   

Model  Description Source 

Model 1 

Ordinary kriged models for the Detroit-Windsor 

Airshed in September 2008 and June 2009 using 

the original GeoDHOC dataset. 

Miller et al. (2010) and 

O’Leary and Lemke (2014) 

Model 2 

Ordinary kriged models for the Detroit-Windsor 

Airshed in September 2008 and June 2009 using 

the GeoDHOC dataset with spatial outliers 

removed. 

Master’s Thesis 

Model 3 
Model 1 with temporal scaling for 12 months in 

2008.  This model is only applicable to Detroit.   
O’Leary and Lemke (2014) 

Model 4 
Model 2 with temporal scaling for 12 months in 

2008.  This model is only applicable for Detroit.   
Master’s Thesis  
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3.2 Temporal Scaling 

Both the original Miller et al. (2010) and O'Leary and Lemke (2014) ordinary kriged 

GeoDHOC models (Model 1), as well as the subsequent models with outliers removed (Model 2) 

were temporally scaled to generate a series of monthly air pollutant maps for 2008 following the 

approach described by O'Leary and Lemke (2014).  This process integrated the spatially-rich 

GeoDHOC datasets with the temporally-rich MASN datasets for NO2, total BTEX, PM2.5, and 

PM10. The temporally scaled models inclusive of outliers are collectively referred to as Model 3; 

whereas the temporally scaled models exclusive of outliers are collectively referred to as Model 

4 (Table 3.1).  Published asthma data were available only for 2008. Consequently the effects of 

temporal scaling process could be assessed only for the twelve months during the 2008 time 

period.  

The process of integrating MASN and GeoDHOC data sets began with a comparison of 

their respective measurements and model estimates.  Cross validation was initially applied to 

assess the point-wise accuracy of modeled estimates for both Model 1 and Model 2.  

Subsequently, a two-step process was employed to develop a set of spatially and temporally 

interpolated concentration maps for NO2, total BTEX, PM2.5 and PM10 across the study area.  

Temporal data were restricted to Detroit in the O'Leary and Lemke (2014) study.  Consequently, 

temporal scaling of the GeoDHOC spatial models only included areas inside the municipal 

boundaries of Detroit and the enclosed municipalities of Hamtramck and Highland Park.   

Initially, existing GeoDHOC maps for each pollutant were combined using a weighted 

average scheme to produce a series of spatially interpolated maps for twelve consecutive months.  

Subsequently, temporal trends derived from MASN time series measurements were 

superimposed on the monthly maps to generate a series of 12 monthly models spanning the 
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period from January 2008 through December 2008 for each pollutant.  Originally, a 36-month 

period (2008-2010) was modeled in support of the perinatology study (O'Leary and Lemke, 

2014) but this thesis is limited to 2008 to coincide with the period of asthma data availability.  

Computations were performed using Surfer 11.4, ArcMAP 10.0, and SpaceStat 3.2.20 software. 

 

3.2.1 Comparison of Measurements and Model Estimates  

 GeoDHOC samplers were either collocated or placed in close proximity to three of the 

MASN samplers.  These included the East 7 Mile location, Southwestern High School, and West 

Lafayette Street/FIA sites (Figure 2.1).  Concentrations measured by the individual GeoDHOC 

samplers at these three sites were compared to MASN measurements from the corresponding 

time periods to assess agreement between the two data sets.  In addition, the spatial and temporal 

variability of the GeoDHOC and MASN concentration data sets were compared. 

 In the cross validation process, individual measured values for each pollutant were 

removed and re-estimated with ordinary kriging using the remaining observations. The 

distribution of estimation error at sampled locations was examined for magnitude, bias, and 

independence. 

 

3.2.2 Spatial Modeling  

Model 1 and Model 2 served as the anchor points for each pollutant during spatial 

interpolation.  These maps, which model the spatial variability of measurements integrated over 

continuous two-week sampling periods across the Detroit-Windsor airshed, were assumed to be 

representative of the spatial distribution during the month in which samples were collected (i.e., 

September 2008 and June 2009).  A weighted average was applied to construct spatially 



38 
 

 
 

distributed concentration models for the eight months between September 2008 and June 2009. 

Weighting factors for each month were assigned using fractions of the nine months separating 

the anchor months based on proximity in time to each anchor month.  For example, the October 

map was blended with an 8/9 weighting for September plus 1/9 weighting for June at each point 

in the 300 m x 300 m model grid. Similarly, November combined 7/9 September with 2/9 June, 

and so on. This procedure was implemented independently for each of the four pollutants 

mapped. 

July 2009 and August 2009 spatial models were also constructed using an analogous 

procedure to complete a 12-month series.  This procedure required the additional assumption that 

the modeled spatial distribution of air pollutants in September 2008 can be used as a proxy for 

the spatial distributions in September 2009.  July and August spatial distributions were calculated 

using a 1/3 and 2/3 weighting to combine the June 2009 and September 2009 models for each 

pollutant, with higher weights assigned to the temporally more proximal month.  The completed 

year-long series of monthly GeoDHOC models (September 2008 through August 2009) served 

as a template of spatially variable models that subsequently were refined using available MASN 

time series measurements.   

 

3.2.3 Temporal Modeling 

Implementation of the temporal scaling of the monthly GeoDHOC spatial models for 

both Model 1 and Model 2 occurred in four steps. First, monthly averages of MASN 

measurements were calculated for each pollutant.  This process was straightforward for NO2, 

total BTEX, and PM10, which were each measured at a single MASN station so that an arithmetic 

average of the time series measurements made during each month could be used.  In contrast, 
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PM2.5 was measured at five MASN sites with an irregular spatial distribution throughout the city 

(Figure 2.1).  Consequently, the four PM2.5 stations clustered in south central Detroit were first 

averaged together.  The resulting south central Detroit value was then averaged with the East 7 

Mile site in northeast Detroit to derive a crudely declustered average PM2.5 concentration 

incorporating information from all five MASN sites. 

Second, individual monthly GeoDHOC models (Section 3.2) for each of the four 

pollutants analyzed were spatially averaged over the city of Detroit, inclusive of the embedded 

municipalities of Hamtramck and Highland Park (Figure 2.1). This process averaged the 

estimated values at each point in the 300 m x 300 m grid for each model. 

Third, monthly spatial averages were compared to the corresponding monthly average of 

the MASN time series measurements. September 2008 and June 2009 are the only months in this 

study when direct comparisons between MASN measurements and unadjusted GeoDHOC spatial 

models for the City of Detroit are possible. Therefore, the mean of the September 2008 and June 

2009 differences between GeoDHOC and MASN monthly averages for each pollutant was 

adopted as a target adjustment factor (TAF): 

 

𝑇𝐴𝐹  
(                            )   (                            )

 
      (Eqn. 3.7) 

 

where subscript i represents each of the four pollutants considered.   

Fourth, a spatially uniform bulk shift was calculated for each month and pollutant using 

the target adjustment factor and the difference between the GeoDHOC spatial model average and 

the corresponding MASN average:  
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  𝐵  𝑘          𝑇𝐴𝐹  [            𝐴 𝑁   ]    (Eqn. 3.8) 

 

where subscript j represents each of the months considered.  When [GeoDHOCi,j – MASNi,j] is 

positive and smaller than the target adjustment factor, positive bulk shift values are needed to 

increase the monthly difference up to the fixed target adjustment factor.  Alternatively, if 

[GeoDHOCi,j – MASNi,j] is positive but greater than the target adjustment factor, negative bulk 

shift values are needed to decrease the monthly difference down to the target adjustment factor. 

The converse occurs when [GeoDHOCi,j – MASNi,j] is negative. The resulting bulk shift was 

subsequently used to adjust each monthly GeoDHOC spatial model: 

 

𝐴   𝑠          𝑦           (                        )  (𝐵  𝑘         ) 

           (Eqn. 3.9) 

 

The end product was two series (Models 3 and 4) of spatially and temporally variable 

concentration models for each of the four pollutants during each of the 12 months of 2008.   

 

3.3 Asthma correlations 

 Linear regression was employed to generate correlations between the asthma dataset and 

air pollutant Models 2, 3, and 4.  Model 1 asthma correlations are published in Lemke et al. 

(2013).  Asthma data were aggregated at the zip code scale in Detroit and the equivalent forward 

sortation area scale in Windsor (Lemke et al., 2013).  Consequently, air pollutant model 

concentrations were averaged over each of the postal regions for this study.  Lemke et al. (2013) 

also reported cumulative asthma data for 2008.  Therefore, the twelve individual months in 
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Model 3 and Model 4 were averaged to create an annual concentration for Model 3 and Model 4 

in each postal zone for 2008.  The SpaceStat aspatial linear regression tool was used for 

regression analysis defined by: 

𝑦               (Eqn. 3.10) 

with b1 as the slope, and b0 as the y-intercept  The asthma exacerbation rate was assigned as the 

dependent variable, y, and the air pollutant concentration was set as the independent variable, x.   

  Statistically significant correlations had a p-value of 0.05 or less.  SpaceStat also returns 

model r
2
 values which measure the strength of the association between the independent and 

dependent variables.  The model r
2
 values are defined as one minus the residual sum of squares 

(RSS) over the total sum of squares (TSS): 

      
   

   
.      (Eqn. 3.11) 
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CHAPTER 4.  RESULTS 

4.0 Introduction  

Results from the spatial outlier analysis (Section 3.1) and temporal scaling (Section 3.2) 

are presented in this chapter in Sections 4.1 and 4.2, respectively.  Spatial outlier identification 

and temporal scaling, used individually and in combination, generated three new air pollution 

models for the study area.  In total, four different models (Table 3.1) provided a means to assess 

relationships between asthma rates to air pollution in the Detroit-Windsor international airshed 

(Section 3.3) and test the study hypotheses (Section 1.6).  Results of these regressions are also 

presented below in Section 4.3. 

 

4.1 Spatial Data Outliers Identification 

Box plots, variogram clouds, difference maps, and Moran’s I (Section 3.1) were used to 

identify potential spatial outliers in the GeoDHOC dataset.  No single method, among the four 

used, emerged to definitively determine spatial outliers for each analyte.  The set of potential 

outliers, identified using the four methods individually, was initially refined by requiring 

concurrence of at least two of the four methods to identify the same sampling location as a 

potential outlier.  Each remaining potential outlier was then individually assessed using 

appropriate combinations of four methods. 

4.1.1  Outlier Identification 

The box plot provided useful exploratory statistics to evaluate the distribution of 

measurements for each pollutant.  Box plot graphs showed the spread of each dataset and the 

relative magnitude of potential outliers indicated by the bottom and top whiskers (Table 4.1).  In 
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a number of instances, the bottom whisker (1.5 times the interquartile range below the first 

quartile) fell below zero (Table 4.1, Figure 4.1).  This occurred for BTEX 2009, VOC 2008 and 

2009, and PAH 2008 and 2009.  In total, the box plots (Figure 4.1) displayed 24 potential 

outliers that exceeded ±1.5 times the interquartile range  (Table 4.2).  Unusally high values at or 

above the whisker were observed at 21 sampling locations and low values at or below the 

whisker were found at 3 locations.  Histograms confirmed that these points were located on the 

extreme ends of the dataset (Figure 4.2).   

Table 4.1.  Summary table of GeoDHOC measured values for 2008 and 2009 and box plot 

values for each analyte. 

Year Analyte Unit 
# of 
data 

min max mean std 
first 
quartile 

median 
third 
quartile 

IQR 
IQR 
x1.5 

Bottom 
Whisker 

Top 
Whisker 

2008 NO2 ppb 97 7.3 25.2 15.3 3.0 13.2 15.7 17.0 3.8 5.7 7.5 22.7 

2009 NO2 ppb 122 7.7 27.1 15.4 3.5 13.3 15.3 17.3 4.1 6.1 7.1 23.5 

2008 BTEX µg/m3 98 1.0 30.9 8.9 4.0 6.4 8.8 10.5 4.2 6.3 0.1 16.8 

2009 BTEX µg/m3 133 1.8 11.7 5.6 2.1 4.0 5.6 6.9 2.9 4.4 -0.4 11.3 

2008 VOC µg/m3 98 3.8 46.6 13.8 5.7 9.8 13.7 16.4 6.7 10.0 -0.2 26.4 

2009 VOC µg/m3 133 2.7 16.7 7.8 2.8 5.7 7.7 9.6 3.9 5.9 -0.2 15.4 

2008 PM2.5 µg/m3 38 3.9 13.4 7.7 1.6 6.9 7.6 8.2 1.3 1.9 5.0 10.1 

2009 PM2.5 µg/m3 37 7.8 17.7 9.5 1.4 8.5 9.2 10.0 1.5 2.2 6.3 12.2 

2008 PM10 µg/m3 38 5.9 23.0 12.8 3.2 11.1 12.1 13.5 2.4 3.6 7.4 17.1 

2009 PM10 µg/m3 37 11.8 21.9 15.8 2.6 13.9 15.4 16.8 2.9 4.3 9.7 21.1 

2008 PAH µg/m3 38 3.3 53.5 20.1 13.7 6.1 18.3 28.5 22.4 33.6 -27.5 62.1 

2009 PAH µg/m3 37 7.9 149.8 33.5 27.3 16.8 28.3 37.5 20.7 31.1 -14.3 68.6 
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Table 4.2.  Summary table of potential spatial data outliers identified in the GeoDHOC 

2008 and 2009 datasets.  A check mark indicates that the sampling location was identified 

as a potential outlier by that method.  Shading indicates that the sample location was 

determined to be a spatial data outlier.  IQR is interquartile range and Mes. Diff. is 

measured difference (June 2009-Sept. 2008). 

 

 

 

Year Analyte Unit Site ID Value 
x 1.5 
IQR 

Box Plot  Box 
Plot 

Variogram 
Cloud 

Difference 
Map 

Mes. 

Location Diff. 

2008 NO2 ppb D-A-35 25.2 22.7 top    -4.5 

2008 NO2 ppb W-P-3 7.3 7.5 bottom    7.9 

2009 NO2 ppb D-P-25 27.1 23.5 top    -7.9 

2009 NO2 ppb D-A-14 25.2 23.5 top  - - 3.8 

2009 NO2 ppb W-P-23 25.0 23.5 top   - - 

2008 BTEX µg/m3 D-A-25 30.9 16.8 top    -19.3 

2008 BTEX µg/m3 D-A-5 20.5 16.8 top  - - -8.8 

2009 BTEX µg/m3 D-A-25 11.6 11.3 top  - - -19.3 

2009 BTEX µg/m3 D-A-5 11.7 11.3 top   - -8.8 

2009 BTEX µg/m3 D-A-33 9.8 11.3 - - -  8.8 

2008 VOC µg/m3 D-A-25 46.6 26.4 top    -30.9 

2008 VOC µg/m3 D-A-5 27.6 26.4 top  - - -12.1 

2009 VOC µg/m3 D-A-25 15.7 15.4 top  - - -30.9 

2009 VOC µg/m3 D-A-33 13.0 15.4 - - -  8.7 

2008 PM2.5 µg/m3 W-A-2 3.9 5.00 bottom  -  5.7 

2008 PM2.5 µg/m3 D-A-6 10.5 10.1 top  - - -0.2 

2008 PM2.5 µg/m3 W-A-4 13.4 10.1 top   - -5.5 

2009 PM2.5 µg/m3 W-A-8 14.7 12.2 top    7.3 

2009 PM2.5 µg/m3 D-A-33 12.9 12.2 top  -  3.8 

2008 PM10 µg/m3 W-A-2 5.9 7.4 bottom  -  9.9 

2008 PM10 µg/m3 D-A-32 23.0 17.1 top   - -1.9 

2008 PM10 µg/m3 D-A-6 22.5 17.1 top   - -3.1 

2008 PM10 µg/m3 W-A-4 20.6 17.1 top  - - -8.3 

2009 PM10 µg/m3 W-A-8 21.9 21.1 top    10.3 

2009 PM10 µg/m3 D-A-33 20.5 21.1 - - -  5.4 

2009 PAH µg/m3 D-A-32 98.7 68.6 top  -  73.7 

2009 PAH µg/m3 W-A-3 149.8 68.6 top    - 
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Each point identified using a box plot was subsequently evaluated on a variogram cloud 

to assess the relationship between spatial and concentration differences (Figures 4.3 to 4.13).  Of 

the 24 points identified on box plots, variogram clouds showed 13 sampling locations with a high 

degree of dissimilarity in a short geographical distance (Table 4.2).   All but one of these points 

were sampling locations with concentrations plotting above the top whisker in the corresponding 

box plot.    

The difference maps displayed a number of sampling points with large concentration 

differences between the September 2008 and June 2009 sampling periods (Figure 4.14).  

Potential outliers identified by the box plot method and the difference maps showed good 

agreement.  In total, 12 of the 24 sampling points indicated by the box plot were in areas that 

demonstrated a distinct difference between the sampling periods (Table 4.2).   

The Local Moran’s I test revealed 22 statistically significant points (p-value equal or less 

than 0.05) that showed spatial patterns of outliers (Table 4.3).  Of these, 18 points were 

classified as low-high, meaning the sampling points had a lower concentration than the 

surrounding points.  The remaining four points were classified as high-low points, indicating the 

sampling points had a higher concentration than the surrounding samplers.   
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Table 4.3.  Statistically significant Local Moran’s I results.    
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Results from the Moran’s I did not agree well with the the other data outlier methods.  

With the exception of W-A-4 for PM2.5 in 2008, the location of potential Moran’s I outliers did 

not correspond to the spatial location of potential outliers on the difference maps (Figure 4.14).  

Moreover, with the same exception of W-A-4 for PM2.5, potential Moran’s I outliers were not 

identifiable as potential outliers on variogram clouds (Figure 4.15).  This was surprising 

because, in theory, both the Local Moran’s I and vairogram clouds are used to identify local 

spatial outliers.  The Moran’s I results were also not global outliers because they plotted in the 

middle of the histograms for each dataset with the exeption of W-A-4 (Figure 4.16).  Because of 

the poor association of the Moran’s I results with the other methods, the Moran’s I was excluded 

from further consideration as a spatial-outlier identification method in this study.   

After the initial analysis using the three remaining outlier detection methods (excluding 

the Moran’s I), ten sampling locations identified by only one method were dropped as potential 

outliers (Table 4.2).  Based on the spatial position and magnitude of each of the remaining 17 

potential outliers, as reflected in the combination of their corresponding box plot, variogram 

cloud, and difference map, a total of 13 outliers were identified (Table 4.2).  One or two outliers 

were found for each analyte execpt for BTEX and VOCs which lacked outliers in 2009 and PAH 

which lacked outliers in 2008.  Two outliers were identified for NO2 and PM2.5 in 2008 and for 

PAH and PM2.5 in 2009 (Table 4.2). 

 

4.1.2 Variogram Modeling and Kriging with Outliers Removed 

  Variogram models and ordinary kriged grids were computed from the datasets with the 

outliers removed to generate Model 2 of this study (Figure 4.17).  Although both Models 1 and 2 
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interpolate over a larger area than the Detroit and Windsor municipal borders, the models were 

compared using only the values for grid nodes located in Detroit (including Hamtramck and 

Highland Park) and Windsor.   

Model 2 employed different variogram and kriging parameters than Model 1.  The still 

contribution was lower for Model 2 compared to Model 1 for NO2, BTEX, VOC, and PAH 

(Table 3.2).  As a result, standard deviations for NO2, BTEX, VOC, and PM2.5 (Table 4.4) were 

reduced in Model 2 compared to Model 1.  Conversely, standard deviations increased markedly 

for PM10 and slightly for PAHs (Table 4.4) in Model 2 compared to Model 1.  Different versions 

of the PM datasets were used for Models 1 and 2 (Section 3.1.6), however, so direct comparisons 

between these models are problematic.   
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Table 4.4.  Comparison of original GeoDHOC ordinary kriged models (Model 1) to the 

revised ordinary kriged models with spatial data outliers removed (Model 2).   

Year Analyte Unit Model # Mean 

 

Min Max Range STD 
% 
Difference 
of STD 

2008 NO2 ppb Model 1 15.2  9.1 22.6 13.4 2.42 
-4.23 

2008 NO2 ppb Model 2 15.2  9.1 20.0 10.9 2.32 

2009 NO2 ppb Model 1 15.1  8.2 23.6 15.4 3.16 
-4.94 

2009 NO2 ppb Model 2 14.9  8.1 22.6 14.4 3.01 

2008 BTEX µg/m3 Model 1 8.8  1.9 26.4 24.5 2.96 
-14.4 

2008 BTEX µg/m3 Model 2 8.7  1.9 18.1 16.2 2.56 

2008 VOC µg/m3 Model 1 13.7  4.1 37.0 33.0 4.12 
-13.1 

2008 VOC µg/m3 Model 2 13.5  4.1 23.5 19.4 3.61 

2008 PM2.5 µg/m3 Model 1 7.7  5.1 10.1 5.0 0.67 
-9.93 

2008 PM2.5 µg/m3 Model 2 7.8 
 

6.0 10.0 4.0 0.74 

2009 PM2.5 µg/m3 Model 1 9.6  7.7 13.0 5.2 0.77 
-73.1 

2009 PM2.5 µg/m3 Model 2 9.2  8.3 10.3 2.0 0.36 

2008 PM10 µg/m3 Model 1 12.7 
 

8.8 19.6 10.8 1.89 
22.1 

2008 PM10 µg/m3 Model 2 13.1 
 

10.0 22.9 13.0 2.36 

2009 PM10 µg/m3 Model 1 15.9  12.6 19.2 6.6 1.31 
21.3 

2009 PM10 µg/m3 Model 2 15.6  12.5 19.9 7.4 1.62 

2009 PAH µg/m3 Model 1 31.8  13.3 79.3 66.1 11.0 
4.30 

2009 PAH µg/m3 Model 2 28.4  10.0 65.1 55.1 11.5 
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4.2 Temporal Scaling  

4.2.0 Introduction 

 MASN time series measurements NO2, total BTEX, PM2.5, and PM10 were combined with 

Model 1 (the original GeoDHOC models) and Model 2 (with outliers removed) to generate a 12 

month series of maps for 2008 using a process that included a comparison of proximal 

GeoDHOC and MASN measurements followed by spatial and temporal modeling (Section 3.2).  

The resulting temporally scaled datasets derived from Models 1 and 2 are called Model 3 and 

Model 4, respectively (Table 3.1).  Results from each step in the derivation of these maps are 

presented in this section.   

 

4.2.1 Comparison of Measurements and Model Estimates  

NO2, total BTEX, PM2.5, and PM10 measurements at GeoDHOC sampling locations 

differed from MASN values measured at collocated or nearby locations in September 2008 and 

June 2009.  Collocated GeoDHOC and MASN measurements for NO2 and total BTEX agreed 

within 25%, with the exception of June 2009 BTEX, which varied by 81% (Table 4.5). Although 

collocated PM samplers were not available in this study, GeoDHOC measurements collected 

within 1 km of the Southwestern High School and FIA/Lafayette St. sites agreed within 13% 

(Table 4.6).  

The spatial and temporal variability of air pollutant measurements are summarized in 

Table 4.7.  The magnitudes of spatial and temporal variability are comparable for NO2 and 

BTEX, while the observed temporal variability of PM2.5 and PM10 is slightly greater than the 

sampled and modeled spatial variability.   
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Table 4.5.  GeoDHOC and MASN collocated sampler concentrations 

Analyte Location 
Distance from 
MASN sampler 

Sept. 2008 June 2009 

NO2 (ppb) 

MASN (East 7 Mile) 
 

12.1 10.3 

GeoDHOC collocated (D-P-27) < 1m 15.5 12.5 

% difference 
 

24.7 19.4 

BTEX (µg/m3) 

MASN (SWHS) 
 

7.7 1.8 

GeoDHOC collocated (D-P-22) < 1m 8.8 4.4 

% difference 
 

13.0 80.9 

 

Table 4.6.  GeoDHOC and MASN nearby sampler concentrations 

 

 
 

 

 

 

 

 

 
  

Analyte Location 
Distance from 
MASN sampler 

Sept. 2008 June 2009 

PM2.5  (µg/m3) 

MASN (SWHS) 
 

11.3 9.4 

GeoDHOC (D-A-6) 990m 10.5 10.3 

% difference 
 

6.9 9.1 

PM2.5  (µg/m3) 

MASN (FIA) 
 

11.2 9.0 

GeoDHOC (D-A-30) 395m n/a 10.0 

% difference 
 

n/a 9.8 

PM10 (µg/m3) 

MASN (SWHS) 
 

20.4 22.0 

GeoDHOC (D-A-6) 990m 22.5 19. 4 

% difference 
 

9.6 12.8 
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Table 4.7.  Comparison of Detroit values for the MASN temporal dataset, the GeoDHOC 

observed (sampled) dataset, Model 1, and Model 2.  Model 2 BTEX 2009 was not created 

due to lack of outliers. 

Dataset Analyte  Unit Year Mean 
Standard 

Deviation 

Sample 

Variance 
Range Minimum Maximum 

MASN NO2 ppb 2008-2010 12.5 2.79 7.80 12.0 7.6 19.5 

Sampled 

Dataset 
NO2 ppb 2008 15.3 2.95 8.69 17.9 7.3 25.2 

Sampled 

Dataset 
NO2 ppb 2009 15.4 3.5 12.2 19.4 7.7 27.1 

Model 1 NO2 ppb 2008 16.2 1.82 3.33 11.1 11.5 22.6 

Model 1 NO2 ppb 2009 16.5 2.27 5.16 13.3 10.3 23.6 

Model 2 NO2 ppb 2008 16.1 1.67 2.79 8.2 11.8 20.0 

Model 2 NO2 ppb 2009 16.3 2.07 4.28 11.8 10.8 22.6 

MASN BTEX µg/m
3
 2008-2010 4.6 2.2 4.83 8.2 1.1 9.4 

Sampled 

Dataset 
BTEX  µg/m

3
 2008 8.9 3.95 15.6 30.0 1.0 30.9 

Sampled 

Dataset 
BTEX  µg/m

3
 2009 5.6 2.07 4.30 10.0 1.8 11.7 

Model 1 BTEX  µg/m
3
 2008 10.0 2.47 6.12 24.5 1.9 26.4 

Model 1 BTEX  µg/m
3
 2009 6.7 1.3 1.69 8.4 2.8 11.1 

Model 2 BTEX  µg/m
3
 2008 9.8 1.91 3.65 16.2 1.9 18.1 

Model 2 BTEX  µg/m
3
 2009 N/A N/A N/A N/A N/A N/A 

MASN PM2.5  µg/m
3
 2008-2010 10.9 3.02 9.11 11.5 5.8 17.3 

Sampled 

Dataset 
PM2.5  µg/m

3
 2008 7.7 1.62 2.62 9.5 3.9 13.4 

Sampled 

Dataset 
PM2.5  µg/m

3
 2009 9.5 1.44 2.07 6.9 7.8 14.7 

Model 1 PM2.5  µg/m
3
 2008 7.9 0.53 0.29 3.0 6.9 9.8 

Model 1 PM2.5  µg/m
3
 2009 9.7 0.72 0.52 4.3 8.1 12.4 

Model 2 PM2.5  µg/m
3
 2008 7.9 0.58 0.34 3.0 7.0 10.0 

Model 2 PM2.5  µg/m
3
 2009 9.4 0.3 0.09 1.7 8.6 10.3 

MASN PM10  µg/m
3
 2008-2010 20.2 5.59 31.2 20.8 11.7 32.5 

Sampled 

Dataset 
PM10  µg/m

3
 2008 12.8 3.21 10.29 17.0 5.9 23.0 

Sampled 

Dataset 
PM10  µg/m

3
 2009 15.8 2.57 6.58 10.1 11.8 21.9 

Model 1 PM10  µg/m
3
 2008 13.2 1.81 3.29 8.9 10.7 19.6 

Model 1 PM10  µg/m
3
 2009 16.2 1.16 1.34 5.3 13.9 19.2 

Model 2 PM10  µg/m
3
 2008 13.5 2.4 5.76 12.3 10.6 22.9 

Model 2 PM10  µg/m
3
 2009 16.2 1.34 1.80 6.5 13.4 19.9 
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For the September 2008 and June 2009 Models 1 and 2, cross validation of predicted 

(kriged) vs. observed concentrations demonstrates that kriging modeled estimates agree well 

with observed values (Table A1).  Small mean errors (close to zero), small standard deviations, 

lack of trend in the spatial distribution of estimation errors, and the absence of conditional bias 

on scatter plots of error versus estimated values indicate a lack of bias in kriged model 

estimations.  Kriging variance maps for Model 1 and Model 2 exhibit low estimation variance 

throughout the majority of the study area for each pollutant (Figure A1). 

 

4.2.2 Spatial Modeling  

The temporally unadjusted 12-month series of GeoDHOC Models 1 and 2 for NO2, total 

BTEX, PM2.5, and PM10 are presented in Figure 4.18.  Model 1 spatially averaged unadjusted 

mean values for September 2008 and June 2009 concentrations in the City of Detroit differed by 

2 to 40% (Table 4.8).  Model 2 spatially averaged unadjusted mean values  for September 2008 

and June 2009 concentration in the City of Detroit differed by 1 to 58% (Table 4.8).  Spatially 

averaged mean concentrations for the 12-month series models (Table A2) vary progressively 

between the September 2008 and June 2009 anchor months as a consequence of the averaging 

method employed to construct them.  Spatial variability is retained in each of the monthly 

models, although, in some cases, it is slightly attenuated as indicated by coefficient of variation 

values for individual months that are lower than the two anchor months, September 2008 and 

June 2009 (Table A2).   
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Table 4.8.  Model 1 and Model 2 Detroit September 2008 and June 2009 spatial model 

mean, standard deviation (SD) and coefficient of variation (CV). 
Model 1 

  Values for Sept. 
2008 Detroit 

Values for June 
2009 Detroit 

Difference 
(Sept. 2008 – June 2009) 

% Difference 

NO2 Mean (ppb) 16.2 16.5 -0.3 2.1 

SD (ppb) 1.8 2.3 -0.5 
 

CV (%) 11.3 13.7 -2.4 
 

BTEX Mean (µg/m
3
) 10 6.7 3.3 39.9 

SD (µg/m
3
) 2.5 1.3 1.2 

 
CV (%) 24.8 19.5 5.3 

 
PM2.5 Mean (µg/m

3
) 7.9 9.7 1.8 20.2 

SD (µg/m
3
) 0.5 0.7 -0.2 

 
CV (%) 6.7 7.4 -0.7 

 
PM10 Mean (µg/m

3
) 13.2 16.2 3 20.9 

SD (µg/m
3
) 1.82 1.2 0.7 

 
CV (%) 13.8 7.1 6.7 

 
Model 2 

  Values for Sept. 
2008 Detroit 

Values for June 
2009 Detroit 

Difference 
(Sept. 2008 – June 2009) 

% Difference 

NO2 Mean (ppb) 16.1 16.3 -0.2 1.1 

SD (ppb) 1.7 2.1 -0.4 
 

CV (%) 10.3 12.7 -2.4 
 

BTEX Mean (µg/m
3
) 10.0 17.0 -7.1 52.3 

SD (µg/m
3
) 2.5 2.4 0.1 

 
CV (%) 24.8 14.2 10.6 

 
PM2.5 Mean (µg/m

3
) 7.9 9.4 -1.5 16.9 

SD (µg/m
3
) 0.5 0.3 0.2 

 
CV (%) 6.7 3.2 3.5 

 
PM10 Mean (µg/m

3
) 13.5 16.2 -2.7 18.4 

SD (µg/m
3
) 2.4 1.3 1.1 

 
CV (%) 17.8 8.3 9.6 

 
 

4.2.3 Temporal Modeling  

Although differences were observed in PM2.5 measurements among the five MASN 

locations, temporal variation tracked consistently from station to station during 2008 through 
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2010 (Figure 4.19).  Averaging the south central PM2.5
 
mean value of 11.3 µg/m

3
 with the East 7 

Mile value of 8.5 µg/m
3
 yielded a declustered Detroit average PM2.5 value of 9.9 µg/m

3
 for 

September 2008.  Similar averaging of the south central PM2.5
 
mean value of 9.1 µg/m

3
 with an 

East 7 Mile value of 8.7 µg/m
3
 yielded a value of 8.9 µg/m

3
 for June 2009. 

Averaged city of Detroit model concentrations for NO2, total BTEX, PM2.5, and PM10 

(Model 1 and Model 2) also varied in relation to temporally averaged MASN measurements for 

the months of September 2008 and June 2009 (Table 4.9).  Averaging of monthly differences 

between GeoDHOC and MASN values for September 2008 and June 2009 in Model 1 

(Equation 3.7) resulted in positive target adjustment factors of 5.2 ppb and 3.5 µg/m
3
 for NO2 

and total BTEX, and negative target adjustment factors of  -0.6 µg/m
3 

and -6.5 µg/m
3
 for PM2.5 

and PM10, respectively (Table 4.9).   For Model 2, the NO2 and total BTEX had positive target 

adjustment factors of 5.03 ppb and 3.44 µg/m
3
 and PM2.5 and PM10had negative target 

adjustment factors of  -0.72 µg/m
3 

and -6.36 µg/m
3
, respectively (Table 4.9). 

These target adjustment factors were used to calculate bulk shift values for the three years 

of MASN data (Equation 3.8, Table A3, and Table A4).  The 2008 bulk shift values were 

applied to adjust the 12-month series of spatially interpolated models for NO2, total BTEX, 

PM2.5, and PM10 for each month in 2008 (Equation 3.9).  In some cases, this resulted in an 

increase in values (positive bulk shift); in others, a decrease (negative bulk shift) (Table 4.10).  

In all cases, the adjustment enforced the target difference between the MASN and GeoDHOC 

averages uniformly across each time series of monthly estimates for each pollutant in Models 3 

and 4 (Figure 4.20).  Although only the 12 months of 2008 are applied in this thesis, the entire 

three-year monthly time series is shown in Figure 4.19 to include the GeoDHOC June 2009 

Model 1 and Model 2 spatial averages, which were used to calculate the adjustment factor for 
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Models 3 and 4.  The resulting spatially and temporally variable concentration models for each 

of the four pollutants during each of the 12 months incorporate the temporal trends present in the 

MASN data as well as the 300 by 300 m spatial resolution from the original GeoDHOC ordinary 

kriged maps (Figure 4.21).   

Table 4.9.  Comparison of Model 1 and Model 2 with MASN monthly averages.  

Model 1 
  September 2008 

 
June 2009   

Analyte 

GeoDHOC 

Spatial 

Model 

Average 

MASN 

Average 
Difference  

GeoDHOC 

Spatial 

Model 

Average 

MASN 

Average 
Difference 

Target 

Adjustment 

Factor 

(Average 

Difference) 
 

NO2 (ppb) 16.2 12.1 4.1 
 

16.5 10.3 6.3 5.2 

Total BTEX 

(µg/m
3
)

 
 

10 7.7 2.3 
 

6.7 1.9 4.8 3.5 

PM2.5 (µg/m
3
) 7.9 9.9 -2.0 

 
9.7 8.9 0.8 -0.6 

PM10 (µg/m
3
) 13.2 20.4 -7.2   16.2 22 -5.8 -6.5 

Model 2 

  September 2008 
 

June 2009   

Analyte 

GeoDHOC 

Spatial 

Model 

Average 

MASN 

Average 
Difference  

GeoDHOC 

Spatial 

Model 

Average 

MASN 

Average 
Difference 

Target 

Adjustment 

Factor 

(Average 

Difference) 
 

NO
2
 (ppb) 16.1 12.1 4.0 

 
16.3 10.3 6.1 5.0 

Total BTEX 

(µg/m
3
) 

9.8 7.7 2.1 
 

6.7 1.9 4.8 3.4 

PM2.5 (µg/m
3
) 7.9 9.9 -2.0 

 
9.4 8.9 0.5 -0.7 

PM10 (µg/m3) 13.5 20.4 -6.9   16.2 22 -5.8 -6.4 
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Table 4.10.  Range of monthly bulk shift values for Model 1 and Model 2 

  Analyte Min Max Range 

M
o

d
el

 1
 

NO2 (ppb) -3.8 8.3 12.1 

BTEX (µg/m
3
) -3.4 5. 6 9.0 

PM2.5 (µg/m
3
) -4.1 8.0 12.1 

PM10 (µg/m
3
) -9.7 11.5 21.2 

M
o

d
el

 2
 

NO2 (ppb) -3.7 8.3 12.1 

BTEX (µg/m3) -3.4 5.5 8.8 

PM2.5 (µg/m3) -4.0 8.2 12.2 

PM10 (µg/m3) -9.7 9.9 19.6 

 

4.3 Asthma Correlations 

 Four different models were created to assess the relationship between air pollution and 

asthma rates in Detroit and Windsor but two factors limited how the air pollutant models were 

used.  First, because asthma data were available only for 2008 (Lemke et al., 2013), correlations 

were limited to the corresponding 2008 time period for this study.  Second, temporal data were 

evaluated exclusively in Detroit for the perinatology study (O'Leary and Lemke, 2014).  

Therefore, Models 3 and 4 asthma correlations focused specifically on the Detroit airshed.   

Air pollution Models 1 and 2 and 2008 asthma associations were evaluated for both 

Detroit (Table 4.11) and Windsor (Table 4.12).  In Detroit, BTEX and VOCs were statistically 

significant for both Models 1 and 2, although the coefficients of determination (r
2
) were weaker 
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than the original r
2
 in Model 1 (Table 4.11).  Although NO2, PM2.5, and PM10 were not 

statistically significant, r
2
 values increased with the outliers removed.  In Windsor, asthma 

associations with NO2 for both Model 1 and 2, and VOCs and PM10 for Model 1 were 

statistically significant (Table 4.12).  For all analytes in Windsor with the exception of PM2.5, 

which was not statistically significant, r
2
 values decreased indicating weaker correlations 

between asthma and air pollution.    

Associations between asthma events in Detroit and each of the four air pollution models 

are presented in Table 4.13.  NO2 and BTEX associations were statistically significant for Model 

3 and Model 4.  The strength of NO2 associations increased markedly in Model 3 and Model 4.  

Model 4 had the highest correlation of any model for BTEX.  Although the Model 3 correlation 

was slightly lower than Model 1, it remained high.  PM2.5 associations were not statistically 

significant although incorporating the temporal trend in Model 3 and Model 4 increased the r
2
 

value.  Conversely, PM10 was also not statistically significant but incorporating the temporal 

trend decreased the r
2
 value.   
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Table 4.11.  Model 1 and 2 asthma associations for Detroit.  Statistically significant 

associations are highlighted in red.   

GeoDHOC Detroit 

Year Analyte Model # r
2
 r p-value 

2008 NO2 Model 1 0.03 0.17 0.40 

2008 NO2 Model 2 0.04 0.21 0.32 

2008 BTEX Model 1 0.28 0.53 0.01 

2008 BTEX Model 2 0.18 0.43 0.03 

2008 VOC Model 1 0.26 0.51 0.01 

2008 VOC Model 2 0.14 0.37 0.07 

2008 PM2.5 Model 1 0.00 0.04 0.84 

2008 PM2.5 Model 2 0.00 0.05 0.80 

2008 PM10 Model 1 0.00 0.00 1.00 

2008 PM10 Model 2 0.06 0.24 0.24 
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Table 4.12.  Model 1 and 2 asthma associations for Windsor. Statistically significant 

associations are highlighted in red.   

GeoDHOC Windsor 

Year Analyte Model # r
2
 r p-value 

2008 NO2 Model 1 0.39 0.63 0.03 

2008 NO2 Model 2 0.35 0.59 0.04 

2008 BTEX Model 1 0.18 0.43 0.16 

2008 BTEX Model 2 0.13 0.36 0.24 

2008 VOC Model 1 0.34 0.58 0.05 

2008 VOC Model 2 0.25 0.50 0.10 

2008 PM2.5 Model 1 0.10 0.31 0.33 

2008 PM2.5 Model 2 0.16 0.40 0.21 

2008 PM10 Model 1 0.37 0.61 0.04 

2008 PM10 Model 2 0.23 0.48 0.11 
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Table 4.13.  Comparison of Detroit asthma associations for Models 1-4.  Statistically 

significant associations are highlighted in red.   

GeoDHOC Detroit 

Year Analyte Model # r2 r p 

2008 NO2 Model 1 0.03 0.17 0.40 

2008 NO2 Model 2 0.04 0.21 0.32 

2008 NO2 Model 3 0.19 0.44 0.03 

2008 NO2 Model 4 0.16 0.40 0.05 

2008 BTEX Model 1 0.28 0.53 0.01 

2008 BTEX Model 2 0.18 0.43 0.03 

2008 BTEX Model 3 0.26 0.51 0.01 

2008 BTEX Model 4 0.32 0.56 0.00 

2008 PM2.5 Model 1 0.00 0.04 0.84 

2008 PM2.5 Model 2 0.00 0.05 0.80 

2008 PM2.5 Model 3 0.02 0.13 0.52 

2008 PM2.5 Model 4 0.00 0.00 0.89 

2008 PM10 Model 1 0.00 0.00 1.00 

2008 PM10 Model 2 0.06 0.24 0.24 

2008 PM10 Model 3 0.04 0.19 0.36 

2008 PM10 Model 4 0.00 0.06 0.79 
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Figure 4.3.  Variogram cloud graph for NO2 2008.  In each graph, the highlighted pairs are 

associated with a potential spatial outleir identified through the box plot method.  Distance 

in meters. 

 

 

Figure 4.4.  Variogram cloud graph for NO2 2009.  In each graph, the highlighted pairs are 

associated with a potential spatial outleir identified through the box plot method.  Distance 

in meters. 
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Figure 4.5.  Variogram cloud graph for BTEX 2008.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters. 

 

 

Figure 4.6.  Variogram cloud graph for BTEX 2009.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters. 
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Figure 4.7.  Variogram cloud graph for VOC 2008.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters. 

   

Figure 4.8.  Variogram cloud graph for VOC 2009.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters. 
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Figure 4.9.  Variogram cloud graph for PM2.5 2008.  In each graph, the highlighted pairs 

are associated with a potential spatial utleir identified through the box plot method.  

Distance in meters. 

   

Figure 4.10.  Variogram cloud graph for PM2.5 2009.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters. 
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Figure 4.11.  Variogram cloud graph for PM10 2008.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters. 

  

Figure 4.12.  Variogram cloud graph for PM10 2009.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters. 
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Figure 4.13.  Variogram cloud graph for PAH 2009.  In each graph, the highlighted pairs 

are associated with a potential spatial outleir identified through the box plot method.  

Distance in meters.   
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Figure 4.18a.  Unadjusted 12-month Model 1 concentrations for NO2, total BTEX, PM2.5, 

and PM10 for September 2008 (upper left) through August 2009 (lower right) in each set. 

 



90 
 

 
 

  

 

Figure 4.18b.  Unadjusted 12-month Model 2 concentrations for NO2, total BTEX, PM2.5, 

and PM10 for September 2008 (upper left) through August 2009 (lower right) in each set. 

 

 

 

NO2 (ppb) 

BTEX (µg/m3) 

PM2.5 (µg/m3) 

PM10 (µg/m3) 

 

 22.6 

8.1 
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Figure 4.19.  MASN Monthly average PM2.5 values at five individual monitoring sites and 

declustered Detroit monthly average.   
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Figure 4.20a.  MASN averages and adjusted monthly averages for Model 1 for years 2008-

2010: (a) NO2, (b) total BTEX, (c) PM2.5, and (d) PM10. Unadjusted Model 1 GeoDHOC 

monthly averages for September 2008 and June 2009 shown as bars. 
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Figure 4.20b.  MASN averages and adjusted monthly averages for Model 2 for years 2008-

2010: (a) NO2, (b) total BTEX, (c) PM2.5, and (d) PM10. Unadjusted Model 2 GeoDHOC 

monthly averages for September 2008 and June 2009 shown as bars. 
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CHAPTER 5. DISCUSSION 

5.0  Introduction 

Epidemiological studies of health outcomes related to chronic exposure to air pollutants 

increasingly rely upon models of urban air pollution to interpret complex urban airsheds.  

Practical methods are needed to assimilate short-term, spatially resolved air pollution 

measurements with widely spaced, long-term time series data to address chronic exposure.  

Incorporation of dense spatial information from numerous monitoring points into highly resolved 

models also increases the potential for erroneous measurement and intensifies the need for 

spatial outlier identification methods.   

  This thesis expands on the GeoDHOC investigation of spatial correlations between 

ambient air pollution concentration and asthma exacerbations in Detroit and Windsor.  The 

discussion that follows examines the impact of outlier identification and temporal scaling to air 

pollutant models and subsequently, to air pollutant-asthma correlations.  Conclusions and 

recommendations for future work are presented in the final section of this chapter.   

 

5.1  Spatial outliers 

A multi-step approach was employed to identify spatial outliers in the GeoDHOC air 

pollutant concentration measurement datasets for September 2008 and June 2009.  In total, four 

alternative methods were evaluated for potential outlier identification.  Unlike previous studies 

which relied upon a single method to identify outliers (e.g., Miller, 2012) or did not assess 

effects of outlier removal (e.g., Clougherty et al., 2013), this study employed multiple methods 
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and evaluated the consequences of outlier removal.  Thus, the approach followed here arguably 

strengthens the overall interpretations of spatial outlier identification and influence. 

The box plot method provided a simple, aspatial approach to the identification of extreme 

concentration values.  The box plot is limited to the identification of global outliers.  The 

majority of the sampling points identified by the box plot as outliers were extreme high values.   

This is not surprising because the bottom box plot whisker fell below zero in approximately half 

the measurement datasets (Table 4.1).  This is a common occurrence and should be expected in 

environmental data that are bounded by zero.  Because all observed values measured air 

pollution exceed zero, there were only two sampler locations measured as extremely low.   

The variogram cloud is a more qualitative outlier identification method because, unlike 

the box plot, there are no specified boundaries within the graph to define what constitutes a 

spatial outlier.  For this reason, the process of identifying spatial outliers with the variogram 

cloud is subjective.  As a result, only sampling points identified using the other three methods 

were analyzed with the variogram cloud.  For the datasets evaluated in this study, box plots and 

variogram clouds complemented each other well with the box plot providing definite boundaries 

and the variogram cloud contributing a spatial component (x-axis).  In contrast, potential outliers 

identified with the local Moran’s I did not correspond well to variogram cloud results. 

Difference maps provide a comparison of modeled air pollutant concentrations over the 

same area during separate measurement events.  In addition, the difference maps supply a visual 

summary tool facilitating additional evaluation of box plot and Moran’s I results within a 

geospatial context.  Each potential outlier identified by the box plot and the Moran’s I was 

plotted on the difference maps to facilitate comparisons among these three methods.  This 
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approach highlighted relationships between box plot and Moran’s I outlier locations and 

significant difference gradients shown on the difference maps.  In this study, box plot outliers 

were found to correspond well with areas of high concentration contrasts on the difference maps.  

Conversely, potential outliers identified using the Moran’s I did not correspond to areas of high 

differences.   

The Local Moran’s I output identified 22 statistically significant points with high-low or 

low-high spatial structure. However, with the exception of one sampler location, these points did 

not correspond well with outliers found using any of the other methods.  The sampler points 

identified with the Moran’s I technique were not located in areas of large differences on the 

difference maps.  These points also did not show patterns of local outliers on the variogram 

clouds (Figure 4.15).  Furthermore, discounting the one exception (W-A-4 for PM2.5 2008), the 

Moran’s I outliers fell in the middle of the histogram (Figure 4.16).  This indicated that each 

identified outlier’s concentration was within an expected range for the global dataset and were 

not global outliers.   

Unlike the other three methods, the Local Moran’s I did not take into account the entire 

dataset which is a potential reason for its lack of agreement with the other methods.  Rather, it 

focused on a specific subset of the dataset, in this case 8 neighbors, to identify localized spatial 

differences.  In addition, spatial weighting was ‘standardized to neighbor count’ which assigned 

uniform spatial weights to all neighbors in the Moran’s I test.  This option, as the default method 

in SpaceStat, provided a simple weighting method in the initial study of the outliers.  Given a 

uniform spatial weight, sampler locations with extreme concentrations were expected to show up 

as statistically significant in the Moran’s I test.  However, this was not the case, which is 

potentially attributable to the narrow subset of data used with the Moran’s I.   
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An alternative explanation for poor Moran’s I performance involves the air pollution 

measurement datasets, whose number of samplers varied with each analyte.  The minimum 

number of measurement points varied greatly for pollutants measured with active samplers (37) 

and passive samplers (98) (Table 2.1).  Other studies applying the Local Moran's I used larger 

datasets (Li et al., 2013; Zhang et al., 2008; Zhang and McGrath, 2004; Zou et al., 2014).  Of the 

sampler points identified as potential outliers with the Moran’s I, 19 of 22 were analytes 

measured with passive samplers.  PM2.5 2008 W-A-4, PAH 2008 D-A-15, and PAH 2009 D-A-

24 points were the only active sampler location identified as a potential outlier with the Moran’s 

I method.  W-A-4 was the only point of agreement between the Moran’s I and any of the other 

three methods. 

The PM2.5 W-A-4 point further highlights the difference in observed values versus 

modeled values because it was the only outlier that was not identified with the difference map.  

When W-A-4 was compared to the PM2.5 2008 dataset, it appeared as an outlier.  The box plot, 

variogram cloud, and local Moran’s I all use the 2008 observed dataset.  The histogram plot of 

PM2.5 2008 also shows W-A-4 PM2.5 concentration at the extreme end of the dataset.  The 

difference map differed from the other approaches in that it used the PM2.5 2008 and 2009 

modeled values and the W-A-4 location did not show an appreciable difference between each 

year with a difference of -1.0 µg/m
3
.  In this way, the difference map showed a consistency in the 

modeled concentration at this location.  This consistency was not present in the measured 

difference of 5.5 µg/m
3
 which is high for PM2.5.  Therefore, the PM2.5 W-A-4 sampler location 

was included as an outlier based on the measured difference.   

Given each method’s strengths and limitations and a comparison of the results for each 

method, the box plots and difference maps were considered to be the most reliable outlier 
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indicators, followed by variogram clouds and the Local Moran’s I.  The box plots provided a 

quantitative means to identify outliers with discrete boundaries and the difference maps provided 

spatial as well as a temporal component when identifying outliers.   Twelve of the 13 outliers in 

Table 4.2 were identified using the box plot and difference map methods.  The variogram cloud 

proved to be a weaker approach relative to the sensitivity of the box plots and difference maps.  

Nine of the 13 outliers were confirmed with the variogram cloud.  Variogram clouds for the four 

outliers not identified by the variogram cloud method (W-A-2 PM2.5 in 2008, D-A-33 PM2.5 in 

2009, W-A-2 PM10 in 2008, and D-A-32 PAH in 2009) exhibited some points that deviated from 

the majority of pairs, but did not show strong variance over a short geographic distance (Figure 

4.9, 4.10, 4.13).   

Four sampler locations, W-P-23 NO2 2009; D-A-5 BTEX 2009; D-A-32 PM10 2008; and 

D-A-6 PM10 2008, were identified with the box plot and the variogram cloud methods.  These 

points were not chosen as outliers because they did not show a larger difference on the difference 

maps.  In two cases, D-A-25 for BTEX and VOC, there was a large measured concentration 

difference between values in 2008 and 2009.  D-A-25 in 2008 was an outlier for BTEX and VOC 

but while this large difference remained in 2009, it was no longer anomalous for the D-A-25 

2009 data sample.   

The Moran’s I was therefore considered the weakest outlier identification method, 

because of its almost uniformly poor agreement with the other identification methods.  Given the 

relative congruence of results among the box plots, difference maps, and variogram cloud 

methods, coupled with their collective lack of agreement with the Moran’s I results, the Moran’s 

I approach was discounted as a method of outlier identification.  In the end, the remaining three 

spatial data outlier identification methods determined the final list of outliers.   
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5.2  Kriging 

 Removing spatial outliers changed the overall concentration values and in some instances 

the spatial distribution of modeled concentration values in the revised ordinary kriged models.  

These changes are attributable to the removal of outliers and the subsequent adjustment of the 

variogram models from Model 1 to Model 2.  These changes had a direct influence on the global 

statistics of the models (Table 4.4) and localized changes were observed immediately around the 

areas where outliers were removed (Figure 4.16).     

There was relatively good agreement between Model 1 and 2 variogram characteristics 

for NO2, BTEX and VOCs.  This was expected given the large number of passive sampler points 

such that removal of one or two outliers had a smaller influence on global geostatistical 

relationships, including variogram characteristics. One important change from Model 1 to Model 

2 for NO2, BTEX, and VOC was lower sill contributions (Table 3.2) resulting from lower 

variance in the measurement distributions after the outliers were removed.   

Conversely, there was poor consistency between the variogram characteristics for PAH 

and PM from Model 1 to Model 2.  PM2.5 behaved as expected with a lower standard deviation in 

Model 2 when compared to Model 1 (Table 4.4).  PM10 and PAH did not share this outcome and 

the standard deviations increased in Model 2.   

Direct comparisons between Model 1 and Model 2 were possible for PAH in 2009.  

Model 1 had a relative nugget of 30% compared to Model 2 nugget of 11%.  This difference 

likely contributed to the unexpected increase in the standard deviation with Model 2 when 

compared to Model 1.   
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 The particulate matter models (PM2.5 and PM10) are not directly comparable between 

Model 1 and Model 2 (Section 3.1.6).  Nevertheless differences between the models were 

reviewed.  PM2.5 standard deviations for Model 2 were lower than Model 1, as expected; 

however, the percent difference of the standard deviations measured in 2008 and 2009 differed 

substantially (Table 4.4).  in contrast, PM10 standard deviation increased with the removal of 

outliers, which was not expected.  The large change in percent difference for PM2.5 and the 

increase in standard deviation in Model 2 for PM10 may reflect differences in how each model 

was generated.  The PM2.5 Model 1 consists of a summation of independently generated PM1 and 

PM1-2.5 ordinary kriged models.  Similarly, the PM10 Model 1 consists of a summation of 

independently generated PM1, PM1-2.5, and PM2.5-10 ordinary kriged models.  In contrast, PM2.5 

and PM10 for Model 2 were kriged directly from the summation of measured particulate mass 

concentration ≤2.5 microns for PM2.5 and particulate mass concentration ≤10 microns for PM10, 

respectively.  Additional investigation is needed to establish a direct comparison between the two 

models.     

 The removal of outliers from several models changed the grid interpolation values in 

areas relatively far away from the outlier locations (Figure 4.16).  Although spatial changes were 

expected to occur in areas of close proximity to where outliers were removed, the degree of 

distance where grid nodes were affected was unanticipated.  These changes resulted from a 

combination of effects stemming from the removal of the outlier including changes in the 

variogram model and the recalculation of kriging weights based on the revised distribution of 

control points.  The variogram model has a global impact on the ordinary kriged model while the 

outliers have a local impact based on the search radius.  In this way, changes to the models are 

most likely attributed to variogram revisions after the removal of the outliers.   
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5.3  Temporal Scaling 

Air pollutant Models 1 and 2 were scaled to incorporate time varying concentrations 

observed in Detroit in the 2008 Michigan Air Sampling Network (MASN) dataset.  Air pollution 

in Detroit is heterogeneous (Miller et al., 2010) and varies with time (Figure 4.19).  

Consequently, the goal of the temporal scaling was to generate a more complete exposure 

estimate for 2008 through the combination of a spatially resolved dataset (Model 1 and Model 2) 

with the temporally detailed MASN dataset.  In the O'Leary and Lemke (2014) study, the 

GeoDHOC models were scaled for a three-year period.  However, temporal scaling is evaluated 

only for 2008 in this thesis, corresponding to the period of available asthma data (Lemke et al., 

2013).   

This analysis incorporates air quality measurements for corresponding pollutants 

analyzed using different methods and varying time scales in the GeoDHOC and MASN data sets. 

It is therefore assumed that both of these datasets, the GeoDHOC and MASN, are compatible.  

Similar relationships between passive sampler measurements and continuous or periodic 

automated fixed-site measurements have been examined in other studies.  For example, 

Vardoulakis et al. (2009) compared chemiluminescence and passive NO2 measurements from 

collocated samplers and found satisfactory agreement (relative bias and coefficient of variation < 

5%) during four or five week measurement periods over thirteen months.  Mukerjee et al. (2004) 

found BTEX measurements made with 3M organic vapor monitors over three to seven day 

sampling periods agreed within 10% of automated gas chromatograph measurements.   

In the present study, collocated GeoDHOC and MASN measurements for NO2 and total 

BTEX agreed well, with the exception of June 2009 BTEX (Table 4.5). GeoDHOC PM2.5 and 

PM10 concentrations measured within 1000 m of MASN stations also compared well to MASN 
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measurements (Table 4.6).  However, GeoDHOC concentrations represent integrated 

measurements for two-week periods and therefore might not be expected to agree well, 

particularly when MASN measurements are discontinuous and infrequent during the comparative 

time window.  For example, the June 2009 MASN monitor sampled total BTEX twice in June 

2009, with 24-hour reported concentrations of 2.0 µg/m
3
 on June 6, and 1.7 µg/m

3
 on June 18. 

These values agree poorly with the collocated GeoDHOC sample measurement of 4.4 µg/m
3
 

(Table 4.5).  On the other hand, integrated measurements of longer duration are arguably more 

useful than infrequent central monitoring measurements for long term exposure estimation if the 

detection of peak concentrations of short duration is not essential.  Given the well documented 

intra-urban variability of NO2 (e.g., Hewitt, 1991; Jerrett et al., 2007; Ross et al., 2013), BTEX 

(e.g., Miller et al., 2012b; Vardoulakis et al., 2011), and PM (e.g., Brook et al., 1999; Rodes et 

al., 2010; Wilson et al., 2005) measurements, this thesis chose not to treat the MASN values 

were not considered to be representative of the entire city.  Consequently, no attempt to 

incorporate a systematic bias between collocated GeoDHOC and MASN measurements was 

undertaken in this study.  Rather, computation and subsequent modification focused on 

comparisons between GeoDHOC model values (spatially averaged over the entire Detroit study 

area) and corresponding MASN measurements for which time series measurements were 

available.  The rationale for this approach requires that the GeoDHOC datasets and interpolated 

monthly models adequately capture spatial variability of the air pollutants across the city of 

Detroit.  This is supported through the semi-variogram models (Figure A2) and sampler spacing 

(Figure 2.1). The GeoDHOC samplers, which ranged in spatial density from 5 km
2
 to 10 km

2
, 

were spaced at intervals well below the variogram ranges (Table 3.2).   
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The approach followed here also assumes that the GeoDHOC ordinary kriging models 

(Models 1 and 2), based on two-week measurements, are representative of the distribution of the 

mapped pollutants for the entire months of September 2008 and June 2009. It was further 

assumed that these models can be interpolated to represent spatial distributions in the ten 

remaining unsampled months of the year (Section 3.2.2) and that these inferred spatial 

distributions can be extrapolated for a year-long study period (Section 3.2.3).  The first 

assumption is supported by the constancy of MASN pollutant concentration running averages 

calculated for each month (Figures A3, A4, A5, and A6). Rapid, large magnitude changes in 

mean concentrations were not observed and therefore not expected over the course of a few 

weeks for any of the pollutants considered.  The second assumption implies that the location and 

relative magnitude of stationary and mobile sources is consistent throughout the year and that 

meteorological conditions were similar enough to allow spatial distributions modeled in 

September 2008 to serve as a proxy for September 2009.  Alternatively, extrapolating between 

the months from June 2008 to September 2008 was considered.  However, the meteorological 

conditions between June 2008 and June 2009 showed distinct differences in dominant wind 

directions, therefore making the September comparison more favorable.   

Continuity of source distribution is supported by prior studies in Windsor, a segment of 

the Detroit-Windsor airshed that established significant correlations across winter, spring, 

summer, and fall seasons for NO2 and BTEX (Miller et al., 2012b; Wheeler et al., 2008).  

Seasonal correlations in the Windsor observations suggested consistency in source distributions, 

and hence spatial variability, for NO2 and VOCs throughout the year.  This supposition was more 

likely for pollutants derived from local sources such as NO2, VOCs, and PM10, than for 
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pollutants of secondary origin like PM2.5, which may also contain a regionally-sourced 

component that can depend on wind direction and other meteorological conditions.   

The approach outlined here rests upon the additional assumption that the available 

MASN time series measurements reflect temporal trends across the city of Detroit throughout the 

three-year study period.  Although differing measurement frequencies were employed for each 

analyte (Table 2.1), records were 95% or more complete at each MASN site during 2008-2010. 

In the case of PM2.5, concentrations measured at five MASN locations across Detroit (Figure 

2.1) tracked consistently with each other during the three-year period of interest (Figure 4.18).   

Sajani et al. (2004) reported similar contemporaneous temporal trends for NO2 measured at four 

different stations located throughout the urban area of Bologna, Italy.  This implied that although 

air pollutant measurements made at widely-spaced regulatory monitoring sites may fail to 

capture significant spatial variability in the surrounding area (Baxter et al., 2013; Ozkaynak et 

al., 2013), relative changes in these measurements over time reflected temporal trends affecting 

the larger surrounding urban area.  

Unquestionably, such temporal trends are influenced by daily and seasonal 

meteorological conditions. Weather conditions were not explicitly factored into the modeling 

procedures employed here and the inability of kriged maps to incorporate changes in monthly 

average wind direction is a limitation of this study's approach. However, the influence of major 

weather changes is assumed to directly influence the temporal trends recorded at MASN sites.  

Seasonal variations in concentrations occur in the 12 monthly NO2 concentration models (Figure 

4.19), with higher concentrations in winter months.  Consistent seasonal variations are not 

evident in BTEX, PM2.5 or PM10 models, however (Figure 4.19).  This study attributed the lack 

of seasonality in BTEX to greater variability in local VOC source distribution (as reflected in the 
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high coefficient of variation for BTEX) (Table 4.8). Elsewhere, other researchers have observed 

a lack of seasonality in PM measurements. Brook et al. (1999), for example, found significant 

overlap between summer and winter seasons in 24-hour PM2.5 mass concentration distributions 

measured in fourteen Canadian cities and Johnson et al. (2013) found that seasonal PM2.5 models 

did not predict daily concentrations better than annual models in Windsor, Ontario.   

Finally, in the absence of other information, it was assumed that the modeled spatial 

distribution of pollutant concentrations remained constant while the magnitude of the 

concentrations fluctuated uniformly across Detroit throughout the yearlong study period. As a 

consequence of this assumption, a bulk shift was employed to translate temporal trends from the 

MASN time series measurements to the monthly GeoDHOC estimates (Section 3.3). Alternative 

shifting techniques for incorporating the temporal trend were considered, including a ratio 

technique employed by Ross et al. (2013) to adjust two-week spatially interpolated air pollutant 

concentrations to temporal trends from continuous stationary monitors in New York City.  The 

ratio technique was rejected because it resulted in localized concentration estimates far outside 

(in some cases two to three times higher than) the range of measured values for several pollutant 

models.  In contrast, the bulk shift generated concentration values within the range of observed 

values for each pollutant (Table 4.10, Table A3, and Table A4), except in the case of negative 

concentration values present in two months in Model 1 and Model 2.  BTEX values in these cells 

were replaced with 1/2 the method detection limit (0.1µg/m
3
) to maintain physically realistic 

concentrations. The underlying assumption that the magnitude of pollutant distributions fluctuate 

uniformly throughout Detroit becomes more tenuous when extended over longer periods of time 

during which major changes in infrastructure or economic conditions may occur.   
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5.4  Asthma correlations 

The thesis examined the relationship between asthma exacerbations and air pollution in 

Detroit and Windsor with a specific focus on spatial outlier analysis (hypothesis #1) and 

temporal scaling (hypothesis #2).  Initially it was hypothesized that with the removal of the 

spatial outliers, health correlations for asthma exacerbations would improve (hypothesis #1).  

The second hypothesis stated that with increasing temporal resolution, correlations between 

model air pollutant concentrations and for asthma exacerbations would also improve.  Evaluation 

of each hypothesis yielded differing results.   

 The diminished association between air pollution and asthma exacerbations in Model 2 

compared to Model 1 does not support the first hypothesis.  Although the strength of the 

correlations improved for some analytes, the removal of spatial outliers in Model 2 reduced the 

number of statically significant correlations.  Specifically, the removal of outliers improved 

correlations in Detroit for NO2, PM2.5, and PM10 (Table 4.11).  However, this improvement was 

not enough to reach the level of statistical significance at p≤0.05.  Conversely, in Windsor, 

removing outliers in Windsor decreased the strength of the correlation for all analytes except 

PM2.5 (Table 4.12).  All of the outliers removed were extreme data values and by removing the 

outliers the range of modeled values decreased in Model 2.  This decreased range may have had 

an adverse effect on the sensitivity of the statistical relationship between air pollution and asthma 

exacerbations.   

The improved correlations between air pollution and asthma exacerbations in Models 3 

and 4 support the second hypothesis that correlations between air pollutant models and asthma 

exacerbations increase with temporal resolution.  The incorporation of the MASN dataset, in 

Models 3 and 4, consistently increased the strength of the correlation in Detroit except for BTEX 
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for Model 3 and PM2.5 and PM10 for Model 4.  With the inclusion of a time trend in the air 

pollution data, both the air pollution models and asthma data represent aggregated values for the 

entire 2008 year.  The improved correlations potentially are a result of the incorporation of 

additional information in the form of MASN time-series measurements throughout 2008 and the 

revision of the postal code pollution estimates for each analyte to represent an equivalent period 

of time to the asthma dataset.   

The analytes measured with passive samplers tended to correlate better with asthma than 

analytes measured with active samplers in all models and, as a result, the statistically significant 

points identified in Models 3 and 4 (Table 4.13) were analytes measure with passive samplers.  

This is potentially attributable to the number of passive versus active samples rather than the 

type of sampling method.  The number of passive samplers ranged from 97 to 98 locations across 

the entire study area while the number of active samplers ranged from 37 to 38 samplers in the 

same area.  In Detroit the number of passive samplers ranged from 65 to 66 samplers and the 

number of active samplers was 23 samplers.  The asthma correlation statistical results suggest 

higher sensitivity with higher spatial sample density and may indicate that a minimum sample 

spacing of approximately 1 per 5 km
2
 is needed to accurately model neighborhood spatial 

variability of the pollutants analyzed.   

 

5.5 Model Limitations 

Overall, the asthma correlations in this study were limited by the assignment of air 

pollution exposure estimates based on modeled ambient air concentrations rather than personal 

exposure which can lead to potential error (Kearney et al., 2011).  Moreover, the asthma events 



109 
 

 
 

were reported by postal code which decreased the effective spatial resolution of the air pollutant 

models from a 300 by 300 meter grid spacing to aggregate zip code or forward sortation area 

scale averages.  In addition, the asthma data were aggregated on a yearly basis and did not 

account for temporal variation throughout the year.  Finally, the results of the correlation do not 

account for differences in socioeconomic demographics or medical management of asthma.    

 The air pollution models had a number of specific limitations which differ between 

Models 1 through 4.  Air pollution Models 1 and 2 were limited in their temporal resolution.  

These models relied exclusively on the September 2008 air pollutant data for the asthma 

correlation.  These two-week air pollutant concentrations did not account for daily air pollution 

fluxes or air pollutant concentrations during the rest of 2008.  Air pollution Models 3 and 4 

incorporated temporal trends for all of 2008, but the resulting monthly air pollution models were 

subsequently aggregated to annual zip code concentration values in order to study the 

relationship to the asthma data.  This process reduced the temporal resolution of the models. 

 Future studies should reassess the asthma associations using better resolved spatial and 

temporal asthma data.  Refining the spatial resolution of asthma events to the neighborhood level 

using residential addresses and increasing the temporal resolution of the asthma data to monthly 

counts, as found in the air pollution models, may improve asthma-pollutant associations.  

Applying the temporal scaling technique used in the study to the Windsor air pollution models 

may further refine the air pollution dataset for the Detroit-Windsor international airshed.  Given 

that Detroit and Windsor differed in their response to the spatial data outlier analysis, this type of 

future study could support or refute the results of temporal scaling in Detroit (hypothesis #2).    
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5.6 Conclusions and Recommendations 

 This thesis developed three new sets of air pollutant models that can be utilized for future 

epidemiological studies.  Overall, the correlations between air pollution and asthma 

hospitalizations were weaker with the spatial outliers removed but improved with the addition of 

temporal data.  When outliers were removed, statistically significant correlations between air 

pollution and asthma decreased.  Incorporating a temporal time trend increased the number of 

statistically significant correlations.  The resulting models generated by this study provided a 

more detailed analysis of the air pollution in Detroit and Windsor.  The study improves model 

integrity by increasing the spatial integrity and temporal resolution of air pollution estimates.  

Removing outliers from the datasets reduced the variance of the model for a number of analytes 

in Detroit and Windsor.  The results of temporal scaling preserve spatial variability captured by 

the two detailed GeoDHOC air sampling campaigns and incorporate temporal variability present 

in MASN data in Detroit.  Limitations of the asthma data necessitated less detailed regression 

analysis using spatially and temporally aggregated air pollution models.  Nevertheless, the 

aggregated air pollution models still contain the spatial and temporal content embedded in the 

newly created models.  This allowed for new correlations between air pollution and asthma 

exacerbations.   

 In conclusion, this thesis expands on previous GeoDHOC studies (Lemke et al., 2013; 

Miller et al., 2010; O'Leary and Lemke, 2014) and provides additional insights into the 

association between asthma exacerbations in both Detroit and Windsor and the international 

airshed spanning both cities.  The spatial data outlier identification and temporal scaling 

approaches outlined here can be applied to other datasets or cities where long-term time series 

measurements are available to supplement spatially variable air pollutant datasets.  Additional 
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spatially or temporally resolved asthma exacerbation data can lead to future studies that 

incorporate more detailed aspects of the air pollutant models.  In particular, incorporation of 

Windsor NAPS data through temporal scaling can help confirm the findings of the Detroit 

temporal scaling. 
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APPENDICES 

 

 

 

Figure A1f.  Model 2 NO2 variance maps for the ordinary kriged 

models for September 2008 (top) and June 2009 (bottom).  
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Figure A1b.  Model 1 BTEX variance maps for the ordinary kriged 

models for September 2008 (top) and June 2009 (bottom).  
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Figure A1c.  Model 1 PM1 variance maps for the ordinary kriged 

models for September 2008 (top) and June 2009 (bottom).  
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Figure A1d.  Model 1 PM1-2.5 variance maps for the ordinary 

kriged models for September 2008 (top) and June 2009 (bottom).  
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Figure A1e.  Model 1 PM2.5-10 variance maps for the ordinary 

kriged models for September 2008 (top) and June 2009 (bottom).  
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Figure A1f.  Model 2 NO2 variance maps for the ordinary kriged 

models for September 2008 (top) and June 2009 (bottom).  
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Figure A1g.  Ordinary kriged variance maps for Model 2 in 

September 2008 with BTEX variance concentrations on top and VOC 

variance concentrations below.  
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Figure A1h.  Model 2 PM2.5 variance maps for the ordinary kriged 

models for September 2008 (top) and June 2009 (bottom).  
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Figure A1i.  Model 2 PM10 variance maps for the ordinary kriged 

models for September 2008 (top) and June 2009 (bottom).  
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Figure A1j.  Model 2 PAH variance maps for the ordinary kriged 

models for June 2009.  
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Figure A2a.  Model 1 

NO2 sample semi-

variogram and 

variogram models for 

September 2008 

(above) and June 2009 

(below).  

NO2 2008 

NO2 2009 
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Figure A2b.  Model 1 

BTEX sample semi-

variogram and 

variogram models for 

September 2008 

(above) and June 2009 

(below).  

BTEX 2008 

BTEX 2009 
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Figure A2c.  Model 1 

PM1 sample semi-

variogram and 

variogram models for 

September 2008 

(above) and June 2009 

(below).  

PM1 2008 

PM1 2009 
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Figure A2d.  Model 1 

PM1-2.5 sample semi-

variogram and 

variogram models for 

September 2008 

(above) and June 2009 

(below).  

PM1-2.5 2008 

PM1-2.5 2009 
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PM2.5-10 2008 

PM2.5-10 2009 

Figure A2e.  Model 1 

PM2.5-10 sample semi-

variogram and 

variogram models for 

September 2008 

(above) and June 2009 

(below).  
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Figure A3a.  

Model 2 NO2 

sample semi-

variogram and 

variogram 

models for 

September 2008 

(above) and 

June 2009 

(below).  

Figure A3b.  

Model 2 BTEX 

sample semi-

variogram and 

variogram 

models for 

September 2008. 

Figure A3c.  

Model 2 VOC 

sample semi-

variogram and 

variogram 

models for 

September 2008.  
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Figure A3d.  

Model 2 PM10 

sample semi-

variogram and 

variogram 

models for 

September 2008 

(above) and 

June 2009 

(below).  

 

Figure A3c.  

Model 2 PM2.5 

sample semi-

variogram and 

variogram 

models for 

September 2008 

(above) and 

June 2009 

(below).  

 

PM2.5 2008 
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Figure A3e.  

Model 2 VOC 

sample semi-

variogram and 

variogram 

models for June 

2009.  
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Figure A4.  NO2 concentrations for September 2008 and June 2009. 

 

 

 

 

 

 

 

 

 

 

 

Figure A5.  Total BTEX concentrations for September 2008 and June 2009. 
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Figure A6.  PM2.5 concentrations for September 2008 and June 2009.  

 

 

 

 

 

 

 

 

 

 

 

Figure A7.  PM10 concentration for September 2008 and June 2009. 
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Figure A8a.  Local Moran’s I scatter plot for NO2 with September 2008 on top and June 

2009 below.   
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Figure A8b.  Local Moran’s I scatter plot for BTEX with September 2008 on top and June 

2009 below.   
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Figure A8c.  Local Moran’s I scatter plot for VOC with September 2008 on top and June 

2009 below.   
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Figure A8d.  Local Moran’s I scatter plot for PM2.5 with September 2008 on top and June 

2009 below.   
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Figure A8e.  Local Moran’s I scatter plot for PM10 with September 2008 on top and June 

2009 below.   
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Figure A8f.  Local Moran’s I scatter plot for PAH with September 2008 on top and June 

2009 below.   
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Table A1.  Cross validation results for Model 1 and Model 2 in September 2008 and June 

2009 ordinary kriged models. 

 

Model 1         

Year Analyte 
Mean error for 

interval 
Mean absolute error 

for interval 
Std. 
Dev. 

2008 NO2 7.50E-02 1.5 2 

2009 NO2 1.10E-01 1.9 2.6 

2008 BTEX 1.40E-01 2.4 3.7 

2009 BTEX 2.50E-02 0.29 1.6 

2008 PM1 9.40E-04 0.55 0.82 

2009 PM1 -1.70E-03 0.72 1.1 

2008 PM1-2.5 -2.70E-03 0.84 1.5 

2009 PM 1-2.5 1.60E-03 0.35 0.57 

2008 Pm 2.5-10 2.20E-02 1.1 1.7 
2009 Pm 2.5-10 -4.80E-02 0.9 1.3 

Model 2 
    

Year Analyte 
Mean error for 

interval 
Mean absolute error 

for interval 
Std. 
Dev. 

2008 NO2 4.63E-02 1.42 1.8 

2009 NO2 7.53E-02 1.78 2.4 

2008 BTEX 8.05E-02 1.84 2.6 

2008 VOC 8.80E-02 2.58 3.5 

2008 PM2.5 -2.54E-03 0.96 0.34 

2009 PM2.5 1.96E-02 0.74 0.94 

2008 PM10 3.61E-02 1.65 2.6 

2009 PM10 -2.02E-02 1.44 2.0 

2009 PAH 6.29E-01 9.46 12.0 
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Table A3.  Model 1 monthly bulk shift values for NO2, total BTEX, PM2.5, and PM10 

  
NO2 BTEX PM2.5 PM10 

Year Month (ppb) (µg/m3) (µg/m3) (µg/m3) 

2008 Jan 5.1 -1.4 7.4 0.6 

2008 Feb 5.5 -1.3 4.3 -2.8 

2008 March 3.1 0.2 2.0 0.0 

2008 April 0.3 2.2 2.1 8.6 

2008 May -2.6 0.6 -2.6 4.6 

2008 June -0.3 5.6 0.0 11.5 

2008 July -1.4 4.6 6.4 10.5 

2008 Aug -1.7 -2.3 1.1 5.4 

2008 Sept 1.1 1.3 1.4 0.7 

2008 Oct 2.9 -2.2 -1.2 -2.2 

2008 Nov 4.4 -2.6 4.5 -6.7 

2008 Dec 3.7 -3.4 3.2 -7.9 

2009 Jan 8.3 -2.4 8.0 -7.2 

2009 Feb 5.1 -0.3 5.6 -2.6 

2009 March 4.1 0.4 1.5 -9.7 

2009 April -1.6 -2.7 -4.1 -1.3 

2009 May -0.2 -1.9 -1.5 -3.6 

2009 June -1.1 -1.3 -1.4 -0.7 

2009 July -2.2 0.0 -1.5 -6.1 

2009 Aug -1.0 -1.8 1.0 -3.9 

2009 Sept 0.1 -3.3 2.2 1.9 

2009 Oct 1.0 2.2 -1.8 -6.6 

2009 Nov 2.5 0.3 3.8 4.1 

2009 Dec 2.7 -0.9 1.5 -9.0 

2010 Jan 1.4 -3.0 2.0 -7.6 

2010 Feb 3.8 -1.8 -0.8 -1.8 

2010 Mar 3.6 3.5 1.4 -4.9 

2010 Apr -0.2 0.5 -2.7 3.0 

2010 May -1.4 4.3 -1.4 2.4 

2010 June -3.8 1.2 2.8 -0.3 

2010 July -1.8 1.2 4.2 -1.3 

2010 Aug -1.0 -1.4 5.3 2.9 

2010 Sept -1.6 -2.2 -2.0 2.1 

2010 Oct 2.3 3.3 -2.6 9.4 

2010 Nov 3.9 -0.6 1.7 -3.1 

2010 Dec 2.7 -2.1 2.8 -7.3 
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Table A4:  Model 2 monthly bulk shift values for NO2, total BTEX, PM2.5, and PM10. 

    NO2 BTEX PM2.5 PM10 

Year Month (ppb) (µg/m3) (µg/m3) (µg/m3) 

2008 Jan 5.1 -1.4 7.6 0.6 

2008 Feb 5.5 -1.3 4.4 -3.1 

2008 Mar 3.2 0.1 2.1 -0.7 

2008 Apr 0.3 2.2 2.2 7.6 

2008 May -2.6 0.5 -2.4 3.3 

2008 Jun -0.2 5.5 -0.1 9.9 

2008 Jul -1.4 4.6 6.5 9.9 

2008 Aug -1.7 -2.2 1.1 5.7 

2008 Sep 1 1.4 1.3 0.6 

2008 Oct 2.9 -2.2 -1.3 -2.3 

2008 Nov 4.3 -2.5 4.4 -6.8 

2008 Dec 3.7 -3.4 3.2 -7.9 

2009 Jan 8.3 -2.4 8.2 -7.2 

2009 Feb 5.2 -0.3 5.6 -2.6 

2009 Mar 4.1 0.3 1.6 -9.7 

2009 Apr -1.5 -2.8 -4.0 -1.2 

2009 May -0.1 -2 -1.3 -3.4 

2009 Jun -1 -1.4 -1.5 -0.6 

2009 Jul -2.2 0 -1.4 -6.1 

2009 Aug -1 -1.8 1.0 -3.9 

2009 Sep 0 -3.2 2.1 1.8 

2009 Oct 0.9 2.2 -1.9 -6.7 

2009 Nov 2.5 0.3 3.8 4 

2009 Dec 2.6 -0.9 1.5 -9.1 

2010 Jan 1.4 -3 2.2 -7.7 

2010 Feb 3.9 -1.8 -0.7 -1.8 

2010 Mar 3.7 3.4 1.4 -4.9 

2010 Apr -0.2 0.4 -2.6 3 

2010 May -1.3 4.3 -1.2 2.5 

2010 Jun -3.7 1.1 2.7 -0.2 

2010 Jul -1.8 1.2 4.3 -1.3 

2010 Aug -1 -1.3 5.3 2.9 

2010 Sep -1.7 -2.1 -2.2 1.9 

2010 Oct 2.3 3.4 -2.7 9.3 

2010 Nov 3.9 -0.5 1.7 -3.2 

2010 Dec 2.6 -2 2.8 -7.3 
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EVALUATING SPATIAL OUTLIERS AND INTEGRATING TEMPORAL DATA IN 

AIR POLLUTION MODELS FOR THE DETROIT-WINDSOR AIRSHED  

by 
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Advisor: Dr. Lawrence Lemke 
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Degree:  Master of Science 

 The heterogeneous nature of urban air complicates human exposure estimates and creates 

a need for accurate, highly detailed spatiotemporal air contaminant models.  The study expands 

on previous investigations by the Geospatial Determinants of Health Outcomes Consortium that 

examined relationships between air pollutant distributions and asthma exacerbations.  Two 

approaches, the removal of spatial data outliers and the integration of spatial and temporal data, 

were used to refine air quality models in the Detroit and Windsor international airshed.  The 

evaluation of associations between the resulting air quality models and asthma exacerbations in 

Detroit and Windsor revealed weaker correlations with spatial outliers removed but improved 

correlations with the addition of temporal data.  Recommendations for future work include 

increasing the spatial and temporal resolution of the asthma datasets and incorporating Windsor 

NAPS data through temporal scaling to help confirm the findings of the Detroit temporal scaling. 
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