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CHAPTER 1: INTRODUCTION AND GOALS 

Jets have been found to play an integral role in the study of the quark gluon plasma 

(QGP).  From the time they are created in high energy nuclear collisions to the moment they exit 

the QGP and hadronize,  they are influenced by the medium through which they propagate, and 

thus their modification carries evidence about properties of the QGP.  Through perturbative 

quantum chromodynamics (pQCD), the initial rate of jet production can be calculated, and from 

there analysis of jet energy loss  and suppression of final jets due to interaction with the medium 

can be done.  The first theoretical studies done using this method [1-17], combined with research 

on hard probes in vacuum were the foundation of experimental studies at the Relativistic Heavy-

Ion Collider (RHIC) as well as the phenomenological studies that resulted. 

The research teams at RHIC have proven its usefulness in providing insight into high 

energy nuclear physics.  Since its inception, RHIC has supplied supporting data for jet quenching 

phenomena such as single inclusive hadron spectra at large transverse momentum (pT) [18, 19], 

back-to-back high pT dihadron correlations [20] and back-to-back γ-hadron correlations [21-23].  

Recently, the Large Hadron Collider (LHC) has provided even more support in these areas [24-

26].  RHIC has also produced supporting evidence of reconstructed jet supression [27-29], 

increased dijet symmetry [30, 31], and increased γ-jet asymmetry [32, 33].  Though several 

models [34-46] for jet quenching and parton energy loss have been used in the studies at RHIC, 

in this thesis I will focus solely on the higher twist (HT) method of investigating parton energy 

loss in dense matter as jets propagate through the QGP.  Some of these models have been 

supported [47-50] by experimental data from the more recently studied LHC data, and some 

have been found to have discrepancies [24, 25, 51].  The resultant data pool of jet quenching data 
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from both RHIC and the LHC have nonetheless provided new constraints on medium properties 

in even the best experimentally supported models. 

A goal of heavy ion collision studies is to use phenomenological studies of experimental 

data from RHIC and the LHC combined to extract properties of the QGP medium for a variety of 

jet quenching measurements.  For my part in this goal, I have carried out a study of medium 

properties as they apply to the higher twist model, using large pT single inclusive hadron spectra 

suppression data from experiments.  The only property of the medium that affects parton energy 

loss in the HT approach [49] is the jet transport coefficient 𝑞 , a direct fit parameter for parton 

energy loss.  I will use a range of values for 𝑞 , which is the average 𝑝𝑇
2  per unit length imparted 

from a hard parton that propagates without radiation.  I will calculate the nuclear modification 

factor RAA and compare this value to data provided by PHENIX at RHIC, and ALICE and CMS 

at the LHC.  The jet will be assumed to be initiated by a light quark or gluon, which is a 

constraint that is built in to the code used to calculate my results. 

To appropriately study energy loss and medium modification, it is important to include 

calculations that incorporate dynamic bulk matter evolution [52-54].  In this thesis, a 2+1D ideal 

(constant rapidity profile - used particularly in my calculations) [55-58] hydrodynamic 

simulation was used.  These simulations provide space-time information on the evolution of the 

medium, essential in the phenomenological study of jet quenching presented in this thesis.  By 

utilizing experimentally constrained simulations which utilize bulk matter evolutions that have 

been averaged over several calculations, we are able to get a more accurate picture of the bulk 

medium evolution.  In addition, it shows us details about charged hadron spectra and their 

azimuthal properties.  Another benefit of constraining bulk hadron production in heavy ion 

collisions is reduced uncertainty in calculations. 
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My work in this thesis has taken advantage of progress since the initial attempts to extract 

the jet quenching parameter [53, 54].  These previous efforts resulted in diverging values, which 

varied by a factor as high as 8.  Since then, we have made significant progress in jet quenching 

studies, particularly in our theoretical understanding and modeling of such phenomena, including 

how we expect the medium to behave after the initial collision of the heavy ions.  In this work, I 

have used new data from experiments at RHIC and the LHC to restrict my calculations of the jet 

transport parameters.  Temperature and energy dependence have also been investigated, made 

possible by the large difference of initial temperature and range of pT attained at the LHC versus 

that at RHIC. 

In the remainder of this thesis, I will briefly review concepts essential to this study, 

before presenting and discussing results.  This goal will be achieved in the following manner: I 

will begin in Chapter 2 with a discussion of background material.  I have included a brief outline 

of the four known forces in nature, discussions of the quark and parton models, and will close the 

chapter with a short explanation of deep inelastic scattering (DIS).  From there I will continue 

my outline of the field in Chapter 3 through an elementary discussion of quantum 

chromodynamics (QCD) and an explanation of what happens in high energy nuclear collisions.  

The information in Chapter 4 will bring us to the topics of the quark gluon plasma, jets and jet 

quenching, transport coefficients, and the higher twist model.  I will describe the quark gluon 

plasma and then jets: what they are made of and what we know about how they interact with the 

QGP medium.  The discussion of the HT approach to parton energy loss employed in this work 

will include an outline of the constraints on the jet transport parameter in the HT model and their 

investigation by comparing the calculated suppression factors for single hadron spectra with 

experimental data from RHIC and the LHC.  Finally, in Chapter 5, results are compiled with 
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these constraints to provide an up-to-date estimate of the jet transport parameter and its 

temperature dependence within the range that has been reached in the most central Au+Au 

collisions at RHIC and Pb+Pb collisions at the LHC. 
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CHAPTER 2: BACKGROUND 

2.1 Known Forces in Our Universe 

Our current understanding of the universe accounts for four known forces in nature: 

gravity, the electromagnetic force, the weak nuclear force, and the strong nuclear force.  The 

force of gravity is the force that governs our "classical" world.  This interaction between 

macroscopic bodies like Earth and the Moon, or even two objects as small as marbles resting on 

a desk, constitutes gravitational physics we can see in everyday life.  The second force is the 

electromagnetic force.  This is the force that exists due to the interactions between charges and 

currents.  We recognize this force when we perform simple experiments like placing a magnet 

near iron filings.  Next there is the weak nuclear force.  This force has been proven to exist 

through our experimental and theoretical studies of nuclear (radioactive) decay.  Finally we come 

to the strong nuclear force, which is the force being studied in this thesis.  This is the force that 

holds together the fundamental particles that comprise nucleons and other particles bound by the 

strong force; a residual strong force holds nucleons within nuclei.  The work in this thesis has 

been done to contribute to the advancement of our knowledge and understanding of the strong 

force. 

 

2.2 The Quark Model 

In the 1950s, it was determined that protons and neutrons are not fundamental particles, 

different from the electron, which is a fundamental particle.  Protons and neutrons are made up 

of smaller particles known as quarks, anti-quarks, and gluons.  These particles make up not only 

protons and neutrons but also all other strongly interacting particles that exist and interact with 
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each other within the domain of the strong force.  Quarks and anti-quarks have typical properties 

of matter like mass and electric charge, however they also have flavor and color charge [59]. 

Quarks are fermions, which means that in addition to being fundamental particles, they 

carry spin 1/2, like leptons, and follow the Pauli exclusion principle.  Quarks have 6 flavors: up, 

down, strange, charmed, top, and bottom.  At the time of this writing, quarks and anti-quarks 

have never been found in free stable states.  Quarks carry electric charge as wells as color 

charge.  Up, charmed, and top quarks carry the charge +2/3e, while down, strange, and bottom 

quarks carry an electric charge of -1/3e, where e is the magnitude of the charge of the electron 

(or proton): e = 1.602176 x 10
-19

C.  Each quark also has a respective anti-quark, which has 

"opposite" or anti-color charge (discussed below) and opposite electric charge. 

Within the quark model, Gell-Mann gave a description of constituent quarks [60].  In low 

energy regimes, only three quarks are visible within a nucleon.  In the case of the proton, this 

corresponds to two up and one down.  While the color of each up or down quark is not relevant, 

it is essential that each of the three colors (red, blue, green) are present within each nucleon.  

Gell-Mann's model was immediately shown to be successful within the range of low energy 

studies, allowing a number of "new" strongly interacting particles to be discovered. [59] 

 

2.3 The Parton Model 

Another model used to describe the structure of hadrons such as the proton is the parton 

model.  Unlike the quark model, the parton model includes a description of gluons as well as 

quarks.  The term parton generally refers to quarks, anti-quarks, and gluons that have been 

boosted, and thus have high energy and momentum. 
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Gluons carry a spin of 1 and are massless.  Similar to photons, they are the initiators of 

interaction between particles, in this case quarks and anti-quarks [59, 61].  Due to their lack of 

charge, photons are unable to interact with themselves.  While gluons carry no electric charge, 

they do have color charge.  Since they have color charge they can, unlike photons, interact with 

themselves as well as quarks, anti-quarks, and other gluons. 

Within the parton model description of hadrons, there are two types of quarks: sea, and 

valence. Valence quarks carry the net flavors of the hadron, for example the case of the proton, 

there are two excess flavor up quarks and one excess flavor down quark. These tend to have non-

negligible support at larger momentum fractions of the hadron. The sea quarks and anti-quarks 

represent all other flavor carrying partons in the hadron whose net flavor is always vanishing. 

These tend to have greater support at smaller momentum fractions of the nucleon. The sea quarks 

are the quarks and anti-quarks that generally become the quark gluon plasma upon collision of 

two heavy nuclei.  On occasion, sea quarks can participate in hard scattering, but rarely become 

jets as the result of a collision. The number of valence quarks in the nucleon is always fixed, 

however the number of sea quarks will depend on the resolution of the probe. Net flavor in the 

sea quark plus sea anti-quark population always zero.   

In the parton model, each hadron traveling at high momentum is composed of several 

almost non-interacting partons which carry different fractions of the momenta of the parent 

hadron.  We artificially divide these into two “types” of partons: soft and hard.  The term “soft” 

refers to the partons that have a lower momentum, and therefore lower frequency.  These 

partons, which have a momentum ratio of pparton/pproton <<<1, are the particles that provide the 

soft interactions that mainly create the quark gluon plasma (QGP), a very hot, dense matter 

thought to be created from these high energy collisions.  The hard partons have a momentum 
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ratio of momentum ratio of pparton/pproton ≤ 1, and generally are the partons that form jets upon 

interaction with other hard quarks, anti-quarks, and gluons during nuclear collisions.  These jets 

are then used as probes to investigate the properties of the QGP . 

 

2.4 Deep Inelastic Scattering 

Increasing the momentum of an electron effectively increases the frequencies associated 

with its wave function.  Using this property, it is possible to bombard a stationary proton with 

such an electron to examine the "contents" of the proton.  During this process, other hadrons and 

strongly interacting particles were found to be broken off from the proton due to the high energy 

scattering of the impacting electron.  This observation in Deep-Inelastic Scattering (DIS) 

experiments led to the discovery of quarks.  At higher momentum exchange and energy of the 

electron, it was found that the proton was composed of many more than 3 objects. The results of 

DIS experiments could be described assuming that the partons were traveling as almost free 

particles within the high energy nucleon.  This inelastic scattering of an electron off a constituent 

particle within the proton proved there were three point-like particles within a proton [62, 63]. 
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CHAPTER 3: HOT STRONGLY INTERACTING MATERIAL 

3.1 Quantum Chromodynamics 

Quantum Chromodynamics (QCD) is the theory of strong interactions of particles which 

involves interaction due to color charge.  To gain an initial, elementary understanding of these 

interactions, we can draw some parallels between color interactions and the electrostatic 

interactions of electrically charged particles.  Introductory electrostatics tells us that the 

interaction created by the electrostatic force will cause two particles with opposite charges to 

attract each other, and like charges to repel each other.  In addition to the attractive force that is 

observed when two oppositely charged particles are placed near each other, we also know that 

particles such as an electron (e
-
 = -1.602x10

-19
) and a positron (e

+
 = 1.602x10

-19
) create a dipole 

when placed near each other.  When viewed from far away, the effects of the dipole cause the 

system to appear neutrally charged.  Finally, we consider the effect an electrically charged 

particle has on a dielectric.  We know that the charged particle will polarize the dielectric, and 

thus the dielectric will have a shielding effect on the charge.  Therefore, from a distance it will 

seem as though the charge is actually smaller than it is in reality.  The consequence of this is that 

we are only able to see larger net charge at very large momentum transfer. 

Since quarks and anti-quarks have electric charge, they will interact according to the rules 

of electromagnetism; more importantly for the scope of this thesis, due to their color charge, they 

will interact through the strong force [61].  In QCD, there are three possible color charges for 

quarks, and three opposite color charges, or anti-colors, for anti-quarks.  Due to the interaction 

created by the strong force, quarks with like colors will repel each other, and those with 

different, as well as opposite color and anti-color will attract each other.  Quarks have been given 

the color charge designations of red (R), blue (B), and green (G), whereas anti-quarks are labeled 



10 

as anti-red (𝑅), anti-blue (𝐵), and anti-green (𝐺) [62].  A quark and its anti-quark placed near 

each other will produce a dipole of sorts, which causes it to seem like there is no charge present 

when the pair is observed from a distance.  There is a caveat to this, however: when viewed from 

far away, whether or not the colors "negate" each other depends on the particular color of each 

quark and anti-quark pair.  For example, the color charges of a green quark and an anti-red anti-

quark will not look as if there is no charge as would a negative and positive charge.  However if 

there is a pair consisting of a green quark and an anti-quark that is anti-green, the colors will 

indeed cancel each other's visibility when viewed from far away.  In addition to combining color 

and anti-color to achieve neutrality due to being a dipole viewed from a distance, color neutrality 

can also be reached through combination of a red, blue, and green quark, as well as a 

combination of anti-red, anti-blue, and anti-green.  Due to the interaction created by the strong 

force, quarks with like colors will repel each other, and those with opposite color and anti-color 

will attract each other.  For two quarks with different colors, the force may be attractive or 

repulsive depending on the particular color channel. 

Color charge also has important physical consequences when a parton carrying a non-

neutral color charge passes through matter.  Given a particle with a color charge, there is an 

entirely different effect as compared to the situation in electromagnetism.  When a color charged 

particle is moving through a medium, it will attract particles of opposite color charge and repel 

particles of similar charge, thereby polarizing the medium.  This however, is where the similarity 

ends.  This color charged particle can also radiate color charge carrying gluons, thereby depleting 

its own charge and spreading it over the medium.  In fact, due to this, the particle actually 

becomes anti-screened, and so appears to have a smaller charge when probed at very small 

distances [59].  From this we realize that at large momentum transfer, we penetrate the cloud of 
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gluons surrounding the elementary color charge, reducing the effectiveness of the interactions of 

the strong force.  This means that when the nuclei are sped up to high momentum, at speeds near 

the speed of light, some of the valence quarks and anti-quarks within the hadrons that comprise 

the nuclei basically exist as free pairs of quarks and anti-quarks.  While the total color charge 

will still be neutral for the whole system, this will allow freedom for the valence quarks and anti-

quarks to interact upon collision of the two nuclei.  The implications of this are huge, and drive 

the fields of high energy nuclear physics and high energy particle physics.  [59] 

 

3.2 High Energy Nuclear Collisions 

High energy nuclear collisions are the interactions of heavy-ions (nuclei with their 

electron clouds stripped off) with other heavy ions or particles like protons and deuterons.  These 

nuclei and particles are sped up in particle accelerators, such as the Relativistic Heavy-Ion 

Collider (RHIC) at Brookhaven National Lab, and the Large Hadron Collider (LHC) at CERN, 

to speeds near the speed of light.  The results presented in this paper will look particularly at 

Au+Au and Pb+Pb collisions, as they pertain to experimental data collected in the experiments 

ALICE (LHC), CMS (LHC), and PHENIX (RHIC).  The accelerated nuclei have energies 

ranging from 200GeV/n at RHIC, to 2.76TeV/n at the LHC, where n is a nucleon pair [64].  This 

energy value can also vary somewhat depending on the experiment. 

As alluded to above, in the collision of these nuclei, softer partons with larger interaction 

are stopped and lead to the formation of the Quark Gluon Plasma. This plasma will persist as 

long as the temperature within it is sufficiently high (leading to larger momentum transfers and 

thus weaker coupling between particles). Due to the large densities and pressures produced the 

plasma expands and cools. As the temperature drops, the coupling between the particles 
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increases and the deconfined state eventually transitions back to a plasma of colorless interacting 

hadrons. As the system continues to expand and cools, these hadrons ``freeze out'' and then free 

stream to the detectors. 

 

3.3 The Quark Gluon Plasma 

The quark-gluon plasma (QGP) is a very hot, dense state of matter created upon collision 

of two high momentum nuclei, or heavy ions.  When the two nuclei and their constituents 

collide, there is an immense transfer of energy, which creates an intense temperature increase, 

leading to deconfinement: the appearance of color charge degrees of freedom.  It is mainly the 

soft, low momenta partons that make up this deconfined phase.  The effect of deconfinement 

actually strips individual quarks, anti-quarks and gluons from their parent hadrons, allowing 

individual quarks and gluons to interact with each other.  This concept is similar to the idea of 

the plasma matter within the sun and other stars.  Inside stars, the matter is so dense and hot that 

electrons are separated from nuclei, and are able to move around freely.  Using the knowledge 

that we have of deconfinement, combined with our ability to create these conditions in the lab, 

we can use perturbative quantum chromodynamic (pQCD) calculations to describe the effects of 

color interactions from moving partons on media, and then compare the results of these 

calculations to experimental data. 
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CHAPTER 4: JETS, JET QUENCHING, AND TRANSPORT COEFFICIENTS 

4.1 Jets and Jet Parameters 

Occasionally the hard, high frequency, high momenta partons in the colliding hadrons of 

the nuclei will scatter elastically off each other, creating jets.  A parton that is struck by another 

parton (quark, anti-quark, or gluon), may impart a high enough energy to radiate gluons, which 

will then propagate through the medium [63].  As they propagate through the medium, they will 

interact with other partons, emitting other gluons as well as recombining.  This process creates a 

cone-shaped "shower" of partons, or a jet.  The formation of jets is a consequence of a 

weakening of the strong force at high momentum transfer. 

It has been observed at RHIC and the LHC that when these partons are ejected from the 

collision area as jets, they traverse the QGP medium.  As they move through the medium, the 

partons encounter decreasing medium temperature, and lose momentum due to radiation, 

collisions with and scattering from other partons.  They eventually reach a point where the 

temperature is low enough that they hadronize.  When two hard partons collide, two jets are 

created and leave the collision area in back-to-back trajectories.  Each pair of jets will have a 

different momentum, and a component of the momentum vector of these particles, the transverse 

momentum (pT), is the component that is perpendicular to the path of the nuclei immediately 

prior to their collision. 

The jet transport coefficient 𝑞  is defined as the mean transverse momentum squared per 

unit length, exchanged between a hard parton and the medium. It is an operator of tensor 

construct, and has the form 

𝑞  =  
4𝜋𝐶𝐹𝛼𝑠

𝑁𝑐
2 − 1

  𝑑𝑦− 𝐹𝑎𝑖+ 0 𝐹𝑖
𝑎+ 𝑦−   𝑒𝑖𝜉𝑝+𝑦−

.          (1) 
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In the previous equation, CF represents the Casimir of the hard parton, Nc = 3 are the number of 

colors of the quarks, and 𝛼𝑠 is the strong coupling constant. Inside the integration over negative 

light-cone separation y
-
, the factors F

ai+ 
represent the gluon field strengths experienced by the 

hard parton as it propagates in the negative light-cone direction. The target is assumed to move 

along the positive light-cone direction with momentum p
+
.  This parameter describes jet 

quenching in high energy nuclear collisions, meaning that 𝑞  controls the radiative energy loss 

[64].  This energy loss is due to induced gluon bremsstrahlung, caused by the scattering 

experienced by the partons in the jet shower. 

The nuclear modification factor, RAA, is a measure of the suppression of the yield of high 

pT hadrons in A-A (nucleus-nucleus) collisions, with respect to the yield of a p-p collision scaled 

up by the number of binary nucleon-nucleon encounters expected to occur in a heavy-ion 

collision [65]: 

𝑅𝐴𝐴 =  

𝑑𝑁𝐴𝐴

𝑑𝑝𝑇𝑑𝑦

 𝑁𝑏𝑖𝑛  
𝑑𝑁𝑃𝑃

𝑑𝑝𝑇𝑑𝑦

.          (2) 

 

The scaling factor Nbin is the number of nucleon-nucleon collisions that are expected to occur for 

a given A-A collision.  The nuclear modification factor provides a measure of jet modification as 

it traverses the QGP. If a heavy ion collision was merely a superposition of nucleon-nucleon 

collisions, we expect to obtain at high momenta (pT > 2 GeV) an RAA value of approximately 1.  

Suppression is due to energy loss in the medium created in high energy nuclear collisions.  As 𝑞  

increases, more energy is radiated, meaning more quarks, anti-quarks and gluons are created in 

the shower of partons.  This change in the jet's composition and participants is called nuclear 

modification. 
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4.2 The Higher Twist Model 

The HT model was developed [66] from the study of twist corrections to deep inelastic 

scattering.  Twist calculations were initially used to describe the physics of partons undergoing a 

few scattering in a medium.  Later it was discovered that this method could be extended to 

multiple scattering [66].  Contrary to other energy loss approaches, the HT approach directly 

calculates the medium modified fragmentation function. 

In the higher twist model (HT), pQCD is used to calculate the corrections to a hard 

process in an expansion in powers of λ/Q, or the twist of a collision.  In these cases, we are 

generally looking at a value for λ
2
Q of the order of ΛQCD ≈ 200 MeV, while Q (the virtuality) is 

of the order of a few GeV.  Here λ is a small dimensionless parameter, and Q is the perturbative 

hard scale, or virtuality of a parton.  The short range, high energy applications of pQCD are ideal 

for these calculations.  In this thesis, I look at how higher twist corrections are affected by the 

medium created due to DIS in high energy collisions [46].  Varying path lengths through the 

medium results in different variations of jet modification, and suppression of the jet occurs by 

powers of Q
2
.  This expansion in inverse powers of the momentum transfer is a result of 

determination of the gradation of parton matrix values that exist between hadron states [66].  

From the hierarchy of the expansion and inclusion of phenomenology of the meduim, the 

medium modified fragmentation functions can then be derived.  This scalable value makes this 

an integral tool in solution of multiple scattering event problems, as it allows for multi-particle 

correlation generalizations. 
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4.2 The Higher Twist Calculation 

As explained above, the HT approach [46, 67] is a first order calculation of the 

correction of a fragmentation function evolution in vacuum.  The fragmentation function 

describes the distribution of hadrons formed in the hadronization of a parton, as a function of the 

momentum fraction of the parent hadron.  My calculation is extended from single scattering to 

include multiple scattering through modified QCD evolution equations.  These modified 

equations involve multiple scattering for induced gluon emission.  This modification to the in 

vacuum fragmentation function is altered utilizing a vacuum plus medium modified kernel.  

Factorization [68] is explicitly utilized in this calculation; the initial parton distribution functions 

are factorized from the hard sattering cross section as well as the final fragmentation function.  

The equation 

 

𝑑𝜍

𝑑𝑦𝑑2𝑝𝑕
 =   𝑑2𝑏𝑑2𝑟𝑇𝐴𝐵 𝑏, 𝑟  𝑑𝑥𝑎𝑑𝑥𝑏𝐺𝐴 𝑥𝑎 , 𝑄2 𝐺𝐵 𝑥𝑏 , 𝑄2 

𝑑𝜍 

𝑑𝑡 
 
𝐷  𝑧, 𝑄2 

𝜋𝑧
,           3  

 

 

is the definition for the cross section in which hadrons of a particular transverse momentum (ph) 

for a specified rapidity interval (y) are produced in the collision of two heavy ions. 

In the equation above, 𝑇𝐴𝐵 𝑏, 𝑟 =   𝑑𝑧 𝜌𝐴 𝑧, 𝑟  + 𝑏  /2  𝑑𝑧′ 𝜌𝐵   (𝑧′, 𝑟  −  𝑏  /2 ), is 

called the thickness function, where nucleus A/B has a nuclear density ρA/B.  GA(xA,Q
2
) and 

GB(xB,Q
2
) are the nuclear parton distribution functions of the participant nuclei,  these include 

any corrections necessary due to parton shadowing.  Two contributions are considered within the 

modified fragmentation function 𝐷 (𝑧, 𝑄2).  The first is the vacuum evolution, and is contained in 

the DGLAP equations  
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𝜕𝐷𝑞
𝑕 𝑧, 𝑄2 

𝜕𝑙𝑜𝑔(𝑄2)
 =  

𝛼𝑠 𝑄
2 

2𝜋
  

𝑑𝑦

𝑦
 𝑃𝑞→𝑖 𝑦 𝐷𝑖

𝑕  
𝑧

𝑦
, 𝑄2 .          (4)

1

𝑧

 

 

The medium modified evolution equation [68] provides the second input to the modified 

fragmentation function 

 

𝜕𝐷𝑞
𝑕 𝑧, 𝑄2, 𝑞− 

𝜕log𝑄2
=  

𝛼𝑠

2𝜋
  

𝑑𝑦

𝑦

1

𝑧

   𝑑𝜁𝑃𝑞→𝑖 𝑦 𝐾𝑞− ,𝑄2 𝑦, 𝜁 𝐷𝑞
𝑕(

𝑧

𝑦

𝜁𝑓

𝜁𝑖

, Q2, q−, y).          (5) 

 

 

In Equations (4) and (5), we note the inclusion of the Altarelli-Parisi splitting function 

Pq→i(y).  The factor 𝐾𝑞−,𝑄2 (𝑦, 𝜁) contains all information on the medium modification, such as 

the jet transport coefficient and phase factors that take into account contributions from emission 

amplitude interference.  The leading contribution to 𝐾𝑞−,𝑄2 𝑦, 𝜁  is given as [69] 

 

𝐾𝑞−,𝑄2 𝑦, 𝜁 =
[𝑞 𝐴 𝜁 − (1 − 𝑦) 𝑞 𝐴/2 +  1 + 𝑦 2𝑞 𝐹]

𝑄2
  2 − 2 cos

𝑄2 𝜁 − 𝜁𝑖 

2𝑞−𝑦 1 − 𝑦 
  .             (6) 

 

 

The jet transport coefficient is represented here in two ways.  A quark scattering off a 

gluon field has a jet transport coefficient represented as 𝑞 𝐹 .  If instead a hard gluon (either by 

itself or radiated from a hard quark) were to undergo scattering off the glue field, it would entail 

a jet transport coefficient represented by 𝑞 𝐴.  Both jet transport coefficients are position 

dependent, and 𝑞 𝐴 (for the gluon) can be expressed [70-72] nearly identical to Equation (1), 

expect with a substitution CF → CA, which simply changes the color factor (Casimir) to that of 

the gluon instead of a quark.  The gluon jet coefficient is related to the jet transport coefficient of 

the quark by 𝑞 F = (CF/CA) 𝑞 A. 
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In general, 𝑞  is assumed to scale with a fundamental property of the medium.  For the HT 

model used in this thesis, I assume that 𝑞  scales with the entropy density s (the Refs. [55, 72] 

describe other scaling assumptions made for 𝑞 ): 𝑞  𝑠 =  𝑞 0 (s/s0).  At an initial time τ0, s0 is the 

maximum entropy density that can be achieved at the highest energy at RHIC in the center of the 

most central collisions.  At this point, 𝑞  = 𝑞 0, and this is when thermalization occurs within the 

colliding mass.  The entropy density profile is calculated within a (2+1)D viscous hydrodynamic 

module [73, 74] (designed by a hydro group within the JET Collaboration).  The initial 

conditions for RHIC Au+Au collisions (temperature T0 = 346 MeV,  𝑠 = 200 GeV/n) and LHC 

Pb+Pb collisions (T0 = 447,   𝑠 = 2.76 TeV/n) are calculated using MC-KLN initial conditions.  

Next the distance integral Kq-,Q2 (y,ζ) is sampled to calculate the hadron spectra in the heavy ion 

collision.  This is done by sampling the integral through the evolving medium over a large 

number of paths, whose starting points come from the binary collisions profile.  After averaging 

the medium length integral over Kq-,Q2 (y,ζ), Equations 2 and 3 are used to calculate the medium 

modified evolution of the fragmentation function. 

The input distribution for both the vacuum evolution equation and the medium evolution 

equation is a vacuum fragmentation function.  This function is at an input scale of Q0
2
 = p/L, and 

evolves from Q0
2 

= 1 GeV
2
 according to the vacuum evolution equation.  The mean escape 

length of jets with a given energy in the medium (L) can be calculated using the energy p of a 

parton using the single emission formalism of Guo and Wang [12, 13].  Here p = ph/z is the 

transverse momentum of the parton which fragments to a hadron with transverse momentum ph 

and momentum fraction z.   

The results presented in this thesis are updates of the calculations done in Reference [48].  

Since publication of the previously mentioned results, there have been some changes to the 
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numerical routine which calculates these results.  The fluid-dynamical simulations now include a 

new initial state, which uses an MC-KLN that takes into account new data from the LHC.  In 

addition, these hydrodynamic calculations are now averaged over a large ensemble of fluctuating 

initial conditions [51, 52].  The numerical routine now also averages over those same fluctuating 

initial conditions to determine jet origin distributions from the binary collision profile 

consistently. 

The following figures (Figures 1 and 2) compare my calculated values of hadron 

suppression to experimental data obtained from the PHENIX experiment at RHIC and the 

experiments CMS and ALICE at the LHC.  The experimental data from RHIC is for 0-5% 

central Au+Au collisions at  𝑠 = 200 GeV/n (Figure 1), and the data from the LHC is for 0-5% 

central Pb+Pb collisions at  𝑠 = 2.76 TeV/n) (Figure 2).  A range of values for 𝑞 0 was used to 

obtain values of RAA, which are represented by the lines in the figures.  The best fit to 

experimental data in each plot is illustrated by the solid line.  A range of pT ≥ 5 and 20 GeV/c 

were used in the calculations to find the best fit.  Finally, Figure 3 presents the χ
2
 distributions 

using the data from Figures 1 and 2.  This χ
2
 distribution was fit to experimental data and is a 

function of the initial value of 𝑞 0.  The best fit values of the jet transport parameter are 𝑞 0 = 2.0 ± 

0.25 GeV2/fm at RHIC and 𝑞 0 = 2.9 ± 0.6 GeV
2
/fm at the LHC.  
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FIGURE 1: RAA Calculated via Higher Twist vs PHENIX (RHIC) data 

Results above are for the HT model, as compared to experimental data from RHIC.  Mid-

rapidity, neutral pion (π
0
) spectra, nuclear modification factor RAA values are shown for 0-5% 

central Au+Au collisions at  𝑠 = 200 GeV/n, as they compare to PHENIX [75, 76] (RHIC) data.  

The hydrodynamics simulation starts at 𝜏0 =0.6 fm/c, which is when the system thermalizes.  At 

the time of thermalization, initial values of  initial gluon jet transport parameter 𝑞 0 range from 

1.2-3.0 GeV
2
/fm. 
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FIGURE 2: RAA Calculated via Higher Twist vs CMS and ALICE (LHC) data 

Results above are for the HT model, as compared to experimental data from RHIC.  Mid-

rapidity, charged particle spectra, nuclear modification factor RAA values are shown for 0-5% 

central Au+Au collisions at  𝑠 = 2.76 TeV/n, as they compare to ALICE [25] and CMS [24] 

data at the LHC.  The hydrodynamics simulation starts at 𝜏0 =0.6 fm/c, which is when the system 

thermalizes.  At the time of thermalization, initial values of  initial gluon jet transport parameter 

𝑞 0 range from 2.3-3.8 GeV
2
/fm.  
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FIGURE 3: χ2
 d.o.f. Fitting of PHENIX, ALICE, and CMS Data  

Above is the χ
2
/d.o.f presentation of the best fit values for 𝑞 .  χ2 is presented as a function 

of 𝑞 0, the initial gluon jet transport parameter.  Fits were made by fitting HT model calculations 

of RAA(pT) (shown in Figures 1 and 2) to PHENIX (RHIC) data [75, 76] and data sets from 

ALICE [25] and CMS [24] (LHC) combined.  The best fits shown in the two previous figures 

(Figures 1 and 2) is verified by the χ
2
 calculation, and are at 𝑞 0≈ 2.0 GeV

2
/fm for RHIC, and 𝑞 0≈ 

2.9 GeV
2
/fm for the LHC. 
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To appropriately compare medium properties, I will only consider the value of 𝑞  directly 

extracted by the HT model using constraints on the model parameters as provided by the 

experimental data.  This will allow for a more accurate comparison to phenomenological jet 

quenching studies.  To do this, I will consider only the suppression factor for single inclusive 

hadron spectra (RAA(pT)) at RHIC and the LHC.  The jet transport coefficient 𝑞  should be a 

function of both local temperature and jet energy within the HT model, and jet energy will vary 

with jet propagation length.  The value of 𝑞  for a quark jet at the center of 0-5% Au+Au and 

Pb+Pb collisions will be used as a gauge of medium properties.  This will be done at the 

maximum density achieved in the previously mentioned heavy ion collisions, and will be applied 

to the bulk evolution when the hydroynamic models are at initial time τ0 = 0.6fm/c.  The intital 

temperatures for the hydrodynamic model will be set at T0=346-373 MeV (RHIC) and T0 = 447-

486 MeV (LHC), where these most central (0-5%) collisions of Au+Au and Pb+Pb will be at  𝑠 

= 200 GeV/n at RHIC and Pb+Pb collisions at  𝑠 = 2.76 TeV/n at LHC, respectively. 
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FIGURE 4: Comparative Results of Five Different Approaches to Energy Loss 

Figure 4 presents assumed temperature dependent results of the jet transport coefficient 

scaled as 𝑞 /T
3
 for

 
5 different models.  The red dotted line represents the calculations for this 

thesis.  At initial time τ0 = 0.6 fm/c in 0-5% centrality A+A (Au+Au and Pb+Pb) collisions, 

values of 𝑞  are extracted from fitting in both the HT-M and HT-BW.  This fitting was done using 

a comparison of calculated values with experimental data from RHIC and the LHC for RAA.  For 

GLV-CUJET, MARTINI, and McGill-AMY, values of 𝑞  are calculated within each model using 

experimentally constrained parameters (RHIC and LHC data).  The quark jet considered has 

initial E=10 GeV [77].  The filled boxes are errors at three separate temperatures at RHIC and 

the LHC, while the ranges of temperatures are indicated by arrows.  Finally, DIS experiments are 

included and noted by the triangle, which indicates the value of 𝑞 N/Teff
3
 in cold nuclei.  
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Figure 4 shows the results I obtained as they compare to results of other models within 

the JET Collaboration.  The jet transport coefficient 𝑞  for a quark jet is either extracted (HT-M, 

HT-BW) or calculated (GLV-CUJET, MARTINI, McGill-AMY) as a function of initial 

temperature at initial energy E=10 GeV [77].  Initial values for 𝑞  (assumed to be independent of 

energy in the HT model) are are 𝑞 0 =0.89 ± 0.11 GeV
2
/fm in the center of 0-5% Au+Au 

collisions at RHIC, and 𝑞 0 =1.29 ± 0.27 GeV
2
/fm in 0-5% Pb+Pb collisions at LHC (note: these 

values are for quark jets, and are 4/9 the values of those for gluon jets, which are those in the 

above figures).  An assumption in the HT model is that 𝑞  is assumed to follow the entropy 

density, and therefore 𝑞 /T
3
 (Figure 4) is calculated based using the parameterized EOS [79] 

within the hydrodynamic evolution of the bulk medium, for temperatures close to and below the 

QCD phase transitions. 

Variation between models of the 𝑞 /T
3
 values in Figure 4 are considered to be theoretical 

uncertainties.  The wide range of values, which have been constrained by the measured 

suppression factors for single hadron spectra at RHIC and LHC, have been extracted as follows: 

𝑞 

𝑇3
 ≈  {

4.6 ± 1.2 at RHIC,
3.7 ± 1.4 at LHC.

          (7) 

These values are for the highest temperatures reached in 0-5% centrality Au+Au collisions at 

RHIC and Pb+Pb collisions at LHC.  Consistent with leading order (LO) pQCD correction [80] 

estimates, these values are very close to an earlier estimate [6].  They do however, present a 

surprisingly small value for the strong coupling constant. 

Values of 𝑞 𝑁/Teff  from jet quenching in DIS [79] of cold nuclei are also included in 

Figure 4.  For an ideal quark gas with 3 quarks within each nucleon in a large nucleus, the value 

of 𝑞 N = 0.02-0.06 GeV
2
/fm at an effective temperature was used, and the result is an order of 

magnitude smaller than in Au+Au collisions at RHIC and Pb+Pb collisions at the LHC. 
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CHAPTER 5: CONCLUSIONS AND OUTLOOK 

For this thesis, I conducted a study on the jet transport parameter and extracted jet 

parameters applicable to parton energy loss.  This energy loss, due to jet interactions within a 

dense medium, has parameters constrained by experimental data from RHIC and the LHC, and is 

for suppression factors relating to large transverse momentum hadron spectra in high energy 

heavy ion collisions.  A deeper understanding of the temperature dependence of 𝑞  within the HT 

parton energy loss model have been made possible due to new data from the LHC, combined 

with data from RHIC and advances in our understanding and modeling of jet quenching and bulk 

evolution.  These new constraints to the assumed temperature dependence of 𝑞  and its 

implementation have allowed for significant narrowing of the acceptable variation of 𝑞  extracted, 

as compared to earlier efforts [57, 58].  This updated extracted value is consistent with pQCD as 

well as (next to leading order) NLO anti-de Sitter/conformal field theory (AdS/CFT SYM) 

results.  A first investigation of jet energy and jet transport coefficient temperature dependence 

was made possible by the use of a large range of pT results from the experimental data and higher 

temperatures reached in the center of heavy ion collisions at the LHC. 

From this point, there are many other studies possible using hard probes constrained by 

experimental data.  This first step has proved the effectiveness of this method, and can be 

extended to a range of other observables including dihadron and gamma-hadron correlations, 

single jets, dijets and gamma-jets suppressions, azimuthal asymmetries, modification of jet 

profile and jet fragmentation functions.  To do this, the studies should be done using a realistic 

model for jet quenching.  This model should be inclusive of hadronization and bulk evolution 

which should be constrained by experimental data for bulk hadron spectra.  A full Monte Carlo 
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simulation that involves an evolving jet shower in expanding medium is required to do this.  

Uncertainties in jet transport parameters can be further reduced from advances in theoretical 

understanding of jet quenching and modeling of bulk evolution, complementary statistical data 

from RHIC and the LHC, and greater precision in measurements.  Through achieving this, we 

should also achieve a quantitative description and understanding of the QGP. 

Current results have been summarized in Figure 4.  The JET Collaboration includes other 

models that investigate parton energy loss in addition to the HT-M model that I used for my 

calculations: GLV-CUJET, McGill-AMY, MARTINI, and HT-BW.  A wider range of jet 

energies and maximum temperatures in 0-5% centrality A+A collisions to establish a full 

quantitative spectrum for the jet transport parameter 𝑞 (E,T).  Lower energy ( 𝑠 = 0.02 - 0.2 

TeV/n) experimental data from RHIC and higher energy ( 𝑠  = 5.5 TeV/n) data from the LHC 

on nuclear modification factors will enable greater constraint on jet-medium interactions.  Both 

constraints imposed by bulk observables on viscous hydrodynamic calculation and jet quenching 

calculations for light and heavy quarks jets will be required.  One last important and challenging 

problem still open is reconciliation of bulk "flow" moments with high pT jet azimuthal multipole 

moments (vn).  These phenomena occur in the ranges of pT < 4 GeV/c and pT > 10 GeV/c, 

respectively.  Finally, perturbative (NLO pQCD) and non-perturbative (lattice QCD and 

AdS/CFT) methods must be used concurrently to improve theoretical calculations of the jet 

transport coefficient.  This can be done within the broad energy and temperature ranges available 

at RHIC and the LHC to reduce modeling uncertainties in jet quenching studies.  
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In the continuing effort to describe properties of the quark-gluon plasma, energy loss is 

studied through leading order higher twist calculations of high transverse momentum single 

hadron suppression.  Input of several values for the jet transport parameter 𝑞  were used at pT 

ranges of ~5-20 GeV at RHIC and ~10-100 GeV at LHC, with collision centrality of 0-5%.  The 

results of the calculations are then compiled and compared with experimental data to determine 

the best fit value for 𝑞 . 
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