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Chapter I Introduction 
 
Hospital readmission is disruptive to patients and costly to healthcare systems. 

Unnecessary return to hospitals shortly after discharge has been increasingly perceived as 

a marker of the quality of care that patients receive during hospital admission (Chassin et 

al., 2010). About one in five Medicare fee-for-service beneficiaries, totaling over 2.3 

million patients, are rehospitalized within 30 days after discharge, incurring an annual 

cost of $17 billion, which constitutes nearly 20% of Medicare’s total payment (Jencks et 

al., 2009). 

However, it is reported by the Medicare Payment Advisory Commission (MedPAC) 

that about 75% of such readmissions can and should be avoided because they often result 

from a fragmented healthcare system that leaves discharged patients with preventable 

flaws such as hospital-acquired infections and other complications, poor planning for 

follow up care transitions, inadequate communication of discharge instructions, and 

failure to reconcile and coordinate medications (Medicare Payment Advisory 

Commission, 2007). Variations in both medical and surgical readmission rates by 

different hospitals and different geographic regions also indicate that some centers (or 

regions) perform better than others at containing readmission rates (Tsai et al., 2013; 

Jencks et al., 2009) Studies also show that the adjusted readmission rate in the US is 

among the highest ranking in comparison to European countries (Westert et al., 2002). 

Hospital readmission rates have been identified as a main measure of quality of care 

received by patients (Friedman, Basu, 2004) since they are happened due to such factors 

as premature discharging process or inadequate access to care. More importantly, it is 

found that rehospitalization causes an unfitting share of costs for inpatient hospital cares. 
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In 2009, (Jencks et al., 2009) reported that 19.6% of Medicare fee-for-service patients 

discharged from a hospital were readmitted within 30 days, 34.0% within 90 days, and 

more than half (56.1%) within one year of discharge, collectively accounting for $15 

billion of Medicare spending. And recently, based on Obama Care Rule (known as 

Patient Protection and Affordable Care Act or PPACA), about two-thirds (or 2,211) of 

U.S. hospitals have been penalized a cumulative $280 million (1%) in Medicare funds 

because of excess readmissions starting Oct. 1, 2012. This cut will grow to maximum of 

2% for the 2014 program year and 3% for 2015 (Fiegl, 2012). 

Generally, a readmission may be defined as a return hospitalization to a same (or 

different) acute care hospital following a prior acute care admission within a specified 

time interval. Although selection of a time interval can have an impact on rate of 

readmission, no standard time frame is used by all hospitals and various periods such as 

14 days (Reed at al., 1991) or 90–180 days (Benbassat et al., 1995) have been considered. 

Nevertheless, the Veteran Health Administration (VHA) defines readmission rate as a 

proportion of patients who were readmitted to the acute care wards of a hospital within 

30 days following the discharge with some exclusions such as patients died up to one day 

after discharge or patients with psychiatry, rehabilitation and hospice ward stays.  

Another issue which makes the hospital readmission analysis rather complicated 

comes out from of the fact that not all readmission can be grouped as preventable. 

Although several studies have tried to define preventable readmission, still no census 

exists on how to systematically separate those readmissions that might be avoidable and 

those that might not (Stone, Hoffman, 2010) It is also found that lots of patient 

characteristics such age, gender, race, financial condition and even illness type are 
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substantially related to patient risk of  readmission (Soeken, et al., 1991; Boutwell et al., 

2009). However there is still little support to effectively determine which patient factors 

result in a high risk of rehospitalization based on credible clinical criteria. And this issue 

is to be tackled in our research. 

Basically one part of related literature involves providing interventions programs to 

reduce avoidable readmissions without a supporting theoretical or mathematical 

methodology as mentioned in (Demir, E., et al., 2009). 

 In contrast, there are some methodological studies that explore the readmission 

process with the help of a mathematical and/or statistical modeling approach. For 

example, (Cotter et al., 2012) proposed a framework based on transition models to model 

the risk of readmission for chronic obstructive pulmonary disease (COPD) patients in 

UK. They also presented a method to come up with suitable choice of a time window 

which defines readmission. Another study of older UK inpatients showed that the 

internationally-accepted LACE index (Length of stay, Acuity of the admission, Charlston 

co-morbidity index score, and Emergency department visits within six months) is a poor 

tool for predicting 30-day readmission according to logistic regression analysis (Cotter et 

al., 2012). In addition, (Norouzzadeh, S., et al., 2011) presented a comparative study of 

three classification methods with respect to the conventional LACE score and their 

proposed weighted LACE score, and demonstrated the superiority of theirs with 

experimental results.  

In addition, effective October 2012, as directed by Patient Protection and Affordable 

Care Act (PPACA, also called Obamacare), the Centers for Medicare and Medicaid 

Services (CMS) started to cut reimbursement funds for hospitals that have excessive 
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30-day readmission rates for heart failure, myocardial infarction, and pneumonia patients. 

This included 2,213 US hospitals with approximately $280 million funds nationwide, 

which constitutes 1% of the total Medicare budget. Moreover, this cut will grow to 2% 

and 3% for FY 2014 and 2015, respectively. As a result, numerous intervention programs 

have been proposed by policymakers and healthcare organizations to reduce 

rehospitalizations and improve quality and access to care (Hansen et al., 2001). 

While it would be perfect to include all patients in a transitional care intervention, due 

to their resource intensive nature on one hand and hospital supplies constraints on the 

other, it is inevitable to target and deliver such efforts to those subgroups that are at 

greater risk. Nevertheless, identifying patients at increased risk of readmission is 

challenging and calls for advanced analytics tools that help to stratify risk into clinically 

relevant classes and provide information early enough during the hospitalization.  

Various methods have been proposed in recent years to predict hospital readmission 

but most of them do not yield acceptable predictive accuracy, or they are based on patient 

factors that are not typically collected during clinical care (Kansagara et al., 2011). 

Furthermore, a few methods have tried to distinguish avoidable readmission form all 

other types of readmissions (Walraven et aal., 2011), but it remains a disagreement how 

to systematically define and identify those readmissions that can be prevented based on 

credible clinical criteria. 

Another important aspect of readmission studies is related to the choice of timeframe 

used to count the number of readmissions. Although the CMS establish 30-day cutoff 

point for the three acute conditions (heart failure, myocardial infarction, and pneumonia), 

researchers have considered other periods from two weeks (Reed, Pearlman, Buchner, 
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1991) to 180 days (Benbassat, Taragin, 2000) for certain surgical and medical conditions. 

Moreover, with the new chronic and surgical conditions to be penalized in the next few 

years, questions regarding the suitability of the 30 day time window remain to be 

explored.  

1.2. Research background 
 

Hospital readmission is disruptive to patients and costly to healthcare systems. During 

FY 2003-04 near one-fifth of Medicare beneficiaries ̶ over 2.3 million patients ̶ were 

readmitted within 30 days of discharge, yielding to a cost of $17 billion, which is about 

20% of Medicare’s total payment. In 2005 the Medicare Payment Advisory Commission 

(MedPAC) reported that 17.6% of all-cause hospitalizations followed by readmissions in 

a 30-day period after discharge, 11.3% within 15 days, and 6.2% within 7 days. Studies 

also showed that adjusted readmission rate in US is among the highest rank in 

comparison to European countries (Westert et al., 2002).  

Further, readmission is found to associate with health service access and quality of 

care (Kangovi & Grande, 2011). Patients readmitted to hospitals may experience 

premature discharge planning, poor coordination of care, and even erroneous diagnosis. 

Researches also indicate that increased 30-day risk-standardized readmission rates are 

connected with lower patient satisfaction (Boulding et al., 2011). Nonetheless, a large 

proportion of readmissions is obviously planned and deemed appropriate especially when 

they are followed by procedures or surgeries. And to date, there is no consensus on how 

to systematically separate among “bad” readmissions and those that might be advisable. 

On the other hand, with publically reporting 30-day readmission rates, the Centers for 

Medicare and Medicaid Services (CMS) has begun comparing hospital’s performances 
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by their readmission rates on its Hospital Compare website. And as stipulated by §3025 

of the Patient Protection and Affordable Care Act (PPACA, known as Obama Care Rule), 

medical centers with high readmission rates for acute myocardial infarction (AMI), heart 

failure (HF), and pneumonia have lost 1% of their Medicare budget starting Oct. 1, 2012. 

Unfortunately this included 2,213 US hospitals with approximately $280 million funds 

nationwide, and the cut will grow up to 2 percent for FY 2014 and up to 3 percent for FY 

2015. As a result, about one-third of Michigan hospitals (55) were penalized near $14 

Million in FY 2013 (Russell & Eller, 2013). Therefore numerous intervention programs 

have been emerged by policymakers and health care practitioners in the past 5 years to 

decrease readmissions and improve the quality of patient care. 

Generally, a readmission (also referred to as re-hospitalization) is defined as a return 

hospitalization to a same (or different) care unit within a specific time interval, following 

a prior admission and discharge. Although selection of a time interval influences the rate 

of readmission, no standard time frame is yet adopted and various periods from 7 days to 

one year have been considered (Stone & Hoffman, 2010). Typically when it comes to 

acute care hospitalization, the calculation of readmission rate is adjusted with some 

exclusions. These may include admissions within 24 hours of discharge, patient stays 

with nursing home and rehabilitation wards, and patients died up to one day after 

discharge. 

From a systems engineering viewpoint, there are lots of factors that drive readmission 

problem and make its analysis rather complicated. First, various risk attributes contribute 

to patient likelihood of readmission and they come from different levels of health care 

such as patient’s level (age), provider’s level (years of experience), or even facility’s 



	  

	  

7	  

level (bed supply) risk factors. Also these tend to be varied substantially by geographic 

area and at different points in time ̶ spatial and temporal variations (see Fig.1 and Fig.2). 

Second, although not all readmissions are avoidable, policy makers assert that some 

types of services and procedures have excessive readmission rates thus hospitalization 

costs could be declined a lot if a higher quality of care were brought to patients 

throughout hospital stays or post-discharge settings. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 Figure 1 Rate of readmission between Oct. 1, 2003 and Sep. 30,  2004. 
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 Figure 2 2010 rate of 30-day readmission in Medicare beneficiaries  

 

In addition, different approaches of defining avoidable readmissions result in 

different rates of readmission and yet there is no agreement on a unified way of definition 

and also on strategies implemented to prevent such readmissions. Third, the time frame, 

which defines the readmission, is changed for different illness types and while this case 

has direct effects on computing the percentages of readmission, no systematic method is 

existed in the literature. Fourth, readmission depends directly on discharge organism in a 

health care system so the dynamics therein could affect or be affected by discharge 

changing aspects. At the same time, strategies addressing the readmission problem may 

involve a large part of organization such as operations, planning, and even finance 

department.  
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As mentioned, a number of intervention programs have been under way to reduce 

avoidable readmissions across the nation. Some commonly advocated strategies include 

patient education about their medications, patient-centered discharge instruction, follow-

up telephone calls, and post-discharge home visits. When designed by randomized 

controlled trials, such interventions were easily evaluated and found to be really effective 

as compared to observational studies in a variety of patient populations. (Bradley et al., 

2012; Hansen et al., 2011). However due to budget limitations, there is a need to mark 

patients with high risk of readmission who benefit the most from implementing such 

provisions. This is typically done using predictive models that either try to classify high-

risk patients with the help of learning algorithms, or produce a likelihood score for 

change of getting readmitted with some probability.  

The former class utilizes supervised and/or unsupervised approaches without any 

assumptions about the underlying mechanism that generates the data, while the latter 

basically uses statistical models with data assumed being stemmed from a given 

stochastic data model. Each class of methods has its own advantages and drawbacks in 

terms of misclassification errors as well as specific assumptions and computational 

difficulties they pose. Overall it is found that most such predictive models perform poorly 

in terms of discrimination power (Kansagara et al., 2011). Thus one part of the current 

study will be devoted to propose better prediction models that alleviate such pitfalls in the 

literature. Moreover, the existing methods cannot be directly applied in some specific 

circumstances within the readmission problem. Examples may include longitudinal 

observations when patient information is censored before the end of study period, 
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repeated measure data with imbalanced class problems, and multilevel competing risk 

models with time-dependent covariates.       

Apart from various predictive analytics that can be thought for the readmission 

problem, the literature also lacks an optimization framework to deal with operational 

costs and benefits that intervention programs can cause in a medical center. Such 

approaches would provide insights to determine better ways to operate 

admission/discharge activities and target business objectives of the health care system 

while satisfying some operational constraints. Thus another part of current study would 

pertain to developing a mathematical programming framework to optimally allocate 

intervention programs to patients most prone to readmission in a medical facility. 

In my research we will use Veteran Health Administration (VHA) database systems 

to aggregate required information from different health care levels such as patient 

demographic, general medical status, and also provider data. By doing this, my approach 

would better capture both patient-based and population-based variations of readmission.   

1.3. Research objective 

The key purposes of this research are listed as follows: 

1. Tackle the difficulties around the time frame that defines readmission. I seek to 

propose an approach based on phase-type distribution and continuous-time Markov 

chain to optimally define time interval for readmission (Predictive Analytics).  

2. Combine population-based and individual-based risk prediction models in order to 

capture the inherent variations of readmission caused from both patient population 

and single’s past history of readmission. By this, we provide reliable initial estimate 

of readmission for each patient based on characteristics of the population he/she 
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belongs to and then we can personalize it for one’s own behavior with incorporating 

risk factor changes over time (Predictive Analytics).  

3. Formulate the readmission problem within an optimization framework that 

dynamically uses predictions from 2 to find the best way of allocating the 

interventions to a set of patients. That way, by obtaining data in say weekly schedule 

we can analytically reflect migration of patients in and out of a hospital to the 

readmission intervention planning (Prescriptive Analytics).       

We plan to perform lots of descriptive analytics too by summarizing and plotting 

variables in the past and present VA datasets. This is particularly helpful to find basic 

questions about the patient populations under study: Are they rather old? What is the sex 

ratio among them? What types of diseases they are most prone to?   

Moreover, some research questions that I would like to address in this study are as 

follows: 

1. What patient characteristics contribute the most to the chance of being readmitted? 

Are provider or facility level factors related to the risk of readmission? Do 

readmission variations of any patient-level risk factors change at different providers 

or facilities? If these are the cases, at which levels of risk factors is the readmission 

rate higher? 

2. Are the patients more likely to be readmitted in the first week after discharge? What 

are the most frequent diagnoses that patients get readmitted after? Do the odds of 

readmission for those diagnoses change with patient demographic variables and 

timing of readmission? 
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3. How can we distinguish between advisable and preventable readmission in 

administrative data systematically? To what extent does preventability alter the true 

rate of readmission and hospital profiling method? 

4. What is the effect of intervention programs on reducing readmission rates? Does this 

effect vary among pre-discharge, bridging, and post-discharge interventions? Which 

type of intervention is most useful for VA patients diagnosed for heart failure, acute 

myocardial infarction, and pneumonia (these are common illnesses with the highest 

readmission rate according to CMS)?  

5. What is the discriminative ability of different groups of risk factors, such 

demographic variables, SES attributes, utilization variables, and laboratory measures, 

on predicting high-risk patients? Does this ability change for all-cause and specific-

cause readmission risk prediction? 

6. Statistically, how much change in readmission prediction we would expect in case of 

repeated measure and/or censored observations? How much variation do different 

levels of health care hierarchy such as patient level, provider level, and facility level 

account for?  
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We propose a feedback loop analytical framework that includes the key objectives for 

this research. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Proposed Framework 
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In this research, we propose a risk prediction model based on hierarchical nonlinear  

mixed effect framework to extract significant prognostic factors associated with patient 

readmissions that mainly caused by patient non-compliance to the medication 

instructions. The novelty of our method is to directly incorporating patients’ history of 

readmissions, along with other patient characteristics, into the modeling framework thus 

enabling one to explain both patient and population based variations of readmission 

process at the same time. Moreover, we propose a predictive analytics framework that 

enables medical decision makers to characterize and (more accurately) predict avoidable 

readmissions, and to investigate the effects of different patient risk factors on the 

likelihood of rehospitalization. The goals of our study are three-fold: 1) to develop and 

internally validate an administrative algorithm for characterizing avoidable readmissions 

from all types of readmissions, 2) to address the difficulties around selection of an 

appropriate timeframe that defines readmissions for chronic conditions, and 3) to create 

and validate a simple and real-time readmission risk prediction model that can produce 

more desirable prediction accuracy than the literature. The proposed methods and tools 

are evaluated using a wide range of electronic health records from four Veteran Affairs 

(VA) hospitals in the State of Michigan.  

1.3. Dissertation Organization 
 

The dissertation is organized as follows. In chapter 2, first we propose an algorithm 

for identifying potentially avoidable readmissions and then we discuss about determining 

readmission time interval for chronic conditions. Next, we introduced phase-type 

distribution and phase-type Survival Forest for predicting the risk of readmission and 
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then, in the later part of the Chapter 2 we state some performance evaluation measures. 

In Chapter 3, we first describe the data source and the attributes, which is used for our 

research. In addition, the data preprocessing is presented completely. Next we determine 

the potentially avoidable readmissions rates for the given data from VA. With the help of 

proposed method in chapter 2, we predict the risk of readmission. Next, we do some 

descriptive analytics and compare different readmission risk prediction models with our 

proposed model. Conclusions and future studies are presented in Chapter 5 of the 

dissertation. 
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Chapter II Methods and Measures 
 

In this section, we first describe an algorithm built on administrative data to 

characterize avoidable readmissions from all outcomes. Then an analytical approach 

based on Coxian Phase type (PH) distributions is introduced to determine the optimal 

readmission time interval for chronic diseases and particularly COPD patients.  

2.1. Identifying potentially avoidable readmissions 
 

One of the main difficulties that makes the study of hospital readmission rather 

sophisticated is that no consensus yet exists on how to separate among so called “planned” 

readmissions (e.g., scheduled at or soon after the time of discharge) and those that might 

be prevented by implementing better transitional care programs. Different methods 

consider distinct outcomes and result in different readmission rates. Here we classify the 

existing approaches into two broad categories:  

• Methods designed to detect and exclude planned hospitalizations from the 

outcome of interest. Examples in this group include the well-known CMS method 

(Horwitz et al., 2015) and SQLape (Striving for Quality Level and Analyzing of 

Patient Expenses) (Halfon et al., 2002), which is a validated hospital comparison 

system practiced in Switzerland. 

• Methods intended to label avoidable readmissions from all index hospitalizations, 

such as 3M Health Information Division Potentially Preventable Readmission 

measure (Goldfield et al, 2008) . 

The CMS approach takes specific index stays and uses unplanned all-cause 

readmission rate as the primary outcome by removing all non-acute readmissions as well 
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as readmissions for maintenance chemotherapy. It employs AHRQ (Agency for 

Healthcare Research and Quality) Clinical Classification System (CCS) to identify 

planned procedures that contain an inpatient stay, along with the conditions that are acute 

or are complications of care and associated with the planned procedures. Also consistent 

with National Quality Forum (NQF) standards, the approach performs risk adjustment for 

case mix (patient comorbidity) and service mix (types of conditions/procedures cared for 

by the hospital) with the help of CMS Condition Category groupers. 

The 3M approach, on the other hand, considers all types of index hospitalization then 

decides on whether a readmission is avoidable with regard to clinical relationships 

between the reasons of admission and readmission. To this end, All Patient Refined 

Diagnosis Related Group (APR DRG) codes are first utilized to classify the patient 

cohorts; then a group of physicians evaluate the association between the initial admission 

and its following returns, and define preventable readmissions as those returns having a 

clinical relevance with the first hospitalization. Moreover, the approach makes use of 

APR DRG based Severity of Illness (SOI) measures to adjust for case mix risk factors.  

Both approaches are built (and validated) on administrative data, and they are mainly 

used for the purposes of (1) profiling hospitals with respect to their readmission rates and 

(2) adjusting Medicare or Medicaid payments to low-performing medical centers. 

However, according to a recent study in the VHA (Mull et al., 2013), they show only a 

moderate correlation in specifying the readmission rates, which is found related to the 

preventability element of the 3M method. 

In this study, since our goal is more to develop and validate a risk prediction model 

that can be used for clinical applications (rather than hospital profiling and payment 



	  

	  

18	  

adjustment), we derive a hybrid approach adopting both the CMS and 3M rationales to 

choose from the patient outcomes. In a nutshell, we first apply the CMS method to 

exclude those planned procedures that are followed by a non-acute or a non-complication 

of care condition; then the 3M procedure is implemented on the remaining indices in 

order to extract potentially avoidable readmissions (PARs). However, we modify the 

exclusion criteria of both methods and implement VHA definitions of eligible discharge. 

To increase the overall precision of the proposal, we also got help from three reviewers to 

judge all cases identified, after completing each constituent algorithm. Moreover, instead 

of the APR DRG system, the newly-developed Diagnostic Cost Group Hierarchical 

Condition Category, version 21 (DCG/HCC v21) was utilized to assess the clinical 

relationship between each readmission and its initial admission(s) (Pope et al., 2004). We 

chose the DCG/HCC risk adjustment system because 1) it is a part of models that have 

been used and evolved over two decades of research; 2) it has special adjustments for 

elderly beneficiaries as well as patients with chronic conditions; and 3) it is recalibrated 

regularly according to recent modifications on diagnosis and expenditure data. 

The algorithm, which we call Potentially Avoidable Readmission (PAR), can then be 

stated as follows: 

Step 1 (general inclusion/exclusion) 

I. Identify HF, AMI, PN, and COPD cohorts based on principal (or 

secondary) discharge diagnoses, and eliminate all other conditions. Merge records 

of the same patient if he/she had multiple hospitalizations on the same day to the 

same medical unit. This applies to both medical and surgical patients. 
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II. Establish readmission time interval (henceforth T) and categorize each 

entry as either admission or readmission. Also, define eligible admissions as all 

admissions that are at risk of having a readmission.    

III. Exclude: 

a) From the admission set, cases whose discharge status is “death,” since 

they cannot have any readmission. These correspond to stand-alone admissions. 

b) From the admission set, cases whose discharge status are “transfer” to 

another acute care facility, except the four hospitals studied. The reason is that the 

hospital cannot affect a patient’s consequent care under such circumstances. If 

transferred among the four hospitals, however, the final discharging hospital is 

considered responsible for any readmissions. 

c) From the admission set, cases whose discharge status is “against medical 

advice.” Because in such cases, the planned treatment(s) could not be fulfilled and 

thus they do not represent a quality-of-care signal. 

d) From the readmission set, those entries that fall within 24 hours of their 

prior index discharge. This is consistent with the VHA operations policies. 

e) From the readmission set, cases in which any of the CMS planned 

procedures are conducted if not followed by an acute or a complication-of-care 

discharge condition category. Examples of such procedures include peripheral 

vascular bypass, heart valve, kidney transplant, mastectomy, colorectal resection, 

and maintenance chemotherapy. 
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f) From the readmission set, AMI patients hospitalized for a percutaneous 

coronary intervention (PCI) or coronary artery bypass graft (CABG), except those 

that are diagnosed for HF, AMI, unstable angina, arrhythmia, and cardiac arrest. 

g) From both admission and readmission sets, hospitalizations in long-term 

care, palliative care, nursing home, aftercare of convalescence, psychiatry, 

rehabilitation, and hospice wards; or for fitting of prostheses and adjustment 

devices. 

h) From both admission and readmission sets, stays for special conditions 

with high mortality risk, for which chances of post-discharge death is much higher 

than chances of being readmitted. These include, but are not limited to, patients 

with malignant neoplasm without specification of site; and medical patients with 

cancers of breast, skin, colon, upper digestive tract, lung, liver, pancreas, head, 

neck, brain, and fracture of neck of femur (hip). This is consistent with the CMS 

approach. 

i) From both admission and readmission sets, records that are related to 

major or metastatic malignancies, multiple trauma, burns, neonatal, obstetrical, 

Human Immunodeficiency Virus (HIV), and eye care.  The rationale is that these 

conditions usually require specialized follow-up cares and are often not avoidable. 

This is consistent with the 3M approach. 

j) From both admission and readmission sets, patients not enrolled in the VA 

and thus lacking sufficient historical data for the 12 months prior to the index 

admission. The logic is that the information is required to adjust for the case-mix 

and comorbidities. 
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k) From both admission and readmission sets, records with inconsistent 

and/or error components such as age and gender discrepancies, invalid HCC 

assignment, discharge date that preceded the admission date, disagreements 

between the patient’s VA status and its service-based attribute values, 

hospitalizations charged for less than $200 or greater than $4 million, and records 

with distances longer than 3000 miles. 

IV. Calculate eligible admissions as all records remaining in the admission set. 

Note that, situations described in a), b), and c), i.e., “death,” “transfer,” or 

“against-medical-advice” may happen to both admission and readmission entries. 

Step 2 (labeling PARs)    

V. Mark records from the readmission set that have a clinical relationship 

with their initial admissions as defined by one of the eight following categories: 

a) Readmissions for an ambulatory care-sensitive condition as specified by 

the AHRQ(Agency for Healthcare Research and Quality). 

b) Medical readmissions for repeated happening or extension of the reason 

for the initial (or a closely-related) condition. 

c) Medical readmissions for an acute decompensation of a chronic condition 

that relates back to the care given in the course or immediately after the initial 

admission (e.g., a return hospitalization for diabetes by an initially diagnosed AMI 

patient). 

d) Medical readmissions for acute medical complications acquired during or 

soon after the first admission (e.g., a readmission for addressing a urinary tract 

infection of a patient originally hospitalized for hernia repair). 
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e) Readmissions for a mental health or substance abuse condition that 

follows an admission for a non-mental health or non-substance abuse condition. 

f) Readmissions for mental health or substance abuse reason following a 

hospitalization for a mental health or substance abuse reason.    

g) Surgical readmissions to deal with repeated happenings or extensions of 

the condition causing the initial hospitalization (e.g., a readmission for 

appendectomy surgery of a patient who was initially admitted for abdominal pain 

and fever). 

h) Surgical readmissions to tackle a medical or surgical complication 

resulting during the initial admission or in the post-discharge course (e.g., a 

readmission for treating a post-operative wound resulting from an initial 

hospitalization for a bowel resection). 

Step 3 (clinical panel review) 

VI. All exclusions from step 1 and marked PARs in step 2 are reviewed by 

three physicians, and final decision about the outcomes was made by a majority of 

vote scheme. 

Step 4 (calculating PAR rate) 

VII. Define a PAR series as a sequence of one or more PARs that are all 

clinically associated with a similar initial admission. In this way, the succeeding 

PARs are always assessed for having a clinical relationship in reference to the very 

first admission (which starts the sequence), not with the intermediate PARs. As a 

result, the total time interval encompassing a PAR series can be larger than T. 
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VIII. Update the eligible admission set by reclassifying cases in the readmission 

set that are NOT found to be PARs (i.e., not having clinical relationship with their 

prior admissions) and at the same time, do not fall in “death”, “transfer”, or 

“against-medical-advice” categories.  

IX. Calculate PAR rate as #PAR Series
#  Eligible Admissions

. 

The DCG/HCC system is used throughout the algorithm to assess the clinical 

association between an initial admission and its PAR series. In other words, we first 

apply the CMS HCC model to assign HCC codes for all indices; then the reviewers 

examine the HCC codes of an initial admission and all of its related PARs to judge 

whether the readmission(s) could have been avoidable. If available, we also take into 

account other sources of information such as clinical visits between admission and 

readmission, and communication with the patient, patient’s family and primary care 

physician assigned, to help on the avoidability assessment of the PARs. 

The readmission time interval introduced in II is defined as 30 days for HF, AMI, and 

PN cohorts. For the COPD, we follow an analytical approach that is outlined in the next 

section. 

2.2. Determining readmission time interval for chronic conditions 
 

It is clear that, similar to the type of readmission (planned vs. avoidable), the length 

of time window between the dates of initial discharge and index readmission affects the 

ratio of avoidable readmissions (see sections VIII and IX in the PAR algorithm). The 

longer the interval is the more readmissions will be recognized and the more money the 

insurer could save under the bundled policy; however, the chances that a readmission has 
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a clinical relevance with its initial admission become diminished. Although the CMS and 

health policy makers adopt a 30-day time window for profiling hospitals and public 

reporting, other intervals from two weeks (Reed et al., 1991) to 180 days (Benbassat et 

al., 2010) are examined in different situations from certain types of surgery to a specific 

clinical condition. Researchers also raise the issue of improper interval selection in the 

literature (Hasan, 2011). In this study, to decide on the appropriate timeframe for COPD 

patients, first we examine the patterns of empirical readmission rates over days after 

discharge and recommend a graphical-based estimate; then we develop an analytical 

framework founded on Coxian phase-type distribution to determine the optimal cut off 

time defining the readmission. 

2.2.1. Graphical based approach  
 

The trend of COPD readmission rate over days following discharge is shown in 

Figure 4. Consider that the vertical axis displays percentage of patients not readmitted. 

As shown, the rate is high in the first weeks after discharge, then it levels off and 

becomes constant, before rising again near 60 days. The rate of (all-type) readmission is 

17.3% for the CMS-endorsed 30-day time window. However, inspecting the plot, we find 

that the slope of the readmission curve becomes stable around the 39th day, so we 

suggest that 39-day interval may be more appropriate choice for counting COPD 

readmissions. We believe this finding is also clinically justifiable because chronic 

conditions, as opposed to acute conditions, are getting worse over an extended amount of 

time so those readmissions that occur even after the 30th day may also be associated with 

the quality of the “inpatient” care and should thus be considered for transitional care 

intervention programs. 
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2.2.2. Phase-type distribution  
 

Phase-type (PH) distributions comprise a rich class of probability distributions that 

have been exploited extensively in various applications of stochastic modeling such as 

financial engineering, teletraffic modeling, drug kinetics, biostatistics, and survival 

analysis. 

 

                

     Figure 4 Percentage of COPD patients not readmitted 

 
The distribution is created by one or more inter-related Poisson processes on 

nonnegative real numbers, which can be represented as the time to reach an absorbing 

state in a finite-state continuous time homogeneous Markov chain. Despite its prevalence 

in other areas, the number of applications of PH distribution in healthcare literature is 

limited, with most publications focusing on modeling patients’ length of stay (Fackrell, 

2009). 
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Inspired by the observations from Figure 1, we assert that the rate of COPD 

readmission is not constant and changes over time. Further, using all-cause inpatient data 

from the same VA facilities, it was previously demonstrated that the (mean) hazard of 

readmission over time is influenced by a set of relevant patient factors including source 

of patient admission and treatment specialty (Shams et al., 2014). Therefore, it is desired 

to define the readmission timeframe in accordance with avoidability level and 

representativeness of quality care. We also recognize that the determination of the 

interval should not be based on the (instantaneous) risk or hazard of readmission, as the 

hazard (in the terminology of survival analysis) is a time-dependent conditional 

probability function that changes with both time and the patient’s case mix. On the other 

hand, since bias may be introduced when using the graphical inspection method, the 

approach taken should be able to objectively stratify the patients into clinically distinct 

groups according to avoidability strength of their readmission.  

Considering these characteristics, here we undertake a patient flow approach and 

develop a conceptual framework for the movements of patients after release from the 

hospital (see Figure 5). It is assumed that discharged patients travel between two major 

states (Short-Stay and Long-Stay) in their community before being returned to the 

hospital. In other words, patients begin their post-discharge period from the Short-Stay 

(SS) group consisting of m sequential transient phases; then they are either readmitted to 

the hospital at the rate of 𝜆!! or move to the Long-Stay (LS) group with rate  𝜆!. Patients 

entering in the LS group remain another r  (transient) phases in the community before 

going back to the hospital at the rate of  𝜆!". Here, consistent with the CMS and MedPAC 

logic, we ascertain that readmission from the SS group is a marker of poor quality of 



	  

	  

27	  

inpatient care possibly because of premature discharge and poorly-designed process of 

inpatient care, whereas readmission from the LS group represents deficient quality of 

post-acute and outpatient follow-up care. Note that the rates are not identical within or 

between the two groups.  

The current framework results in a special case of order m r+  Coxian PH 

distribution, which is represented by an absorbing continuous-time Markov chain (CTMC) 

with m r+  transient states and one absorbing state (Hospital). Then the dynamics of the 

underlying finite-state stochastic process ( ){ }; 0X t t ≥  is governed by the transition 

intensity matrix { } 
; ,h j h j Eα= ∈A  where { }1,2, ,E m r= +K  and  

( ) ( )
 

  
 

0

|
( ) lim ,

( ) ( ) .
th j

h h h j
h j

P X t t j X t h
t

t
t t

α

α α

Δ ↓

≠

+Δ = =⎡ ⎤⎣ ⎦=
Δ

= −∑
                                                                 (1) 

Hence, the random variable time to readmission T is equal to the time spent in the 

above CTMC until absorption in the Hospital state, which is also known as the sojourn 

time (Stroock, 2005). In this case, the probability density function f, the survival function 

S, and the k-th noncentral moment of T can be expressed by 

 

( ) exp( )( )f t t= −π Q Q1                                                                                                (2)                           

( ) exp( )S t t= π Q 1                                                                                                       (3)             

( k)( 1) ! ,  1,2,...k
km k k−= − =Q 1                                                                                    (4) 
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where 𝜋 is the row vector of the initial probabilities over the transient states, Q is the 

(m+r) × (m+r) transient partition of the  intensity matrix, and 1 represents an (m+r) × 1 

column vector of 1’s. Here, exp (A) denotes the matrix exponential of a square matrix B 

(Golub, Van Loan, 2012). Based on the transition flow diagram shown, the Coxian PH 

distribution is represented by PH (𝜋, Q) where 𝜋 = (1, 0, K, 0) and Q ={𝑞!!}  can be 

simplified as: 

{ }
 

  

, 1  

,  

,  S S  ,  L S

1, 2, , -1                                  

1, 2, , -1, 1, m 2, , 1

;   

;  
( ) ,    .

h h h

h h h

m m m m r m r

m r

m m m r

h

h

q
q
q q

λ

λ

λ λ λ

+

+ +

+

+ + + −

= =

= − =

= − + = −

K

K K

                                                 (5) 

It is worth mentioning that the actual states of the Markov model are not observable; 

that is, we do not know the state (SS or LS) from which the patients absorb (readmit) to 

the hospital. In addition, the phases within each major state (SS and LS) do not carry any 

practical interpretations, but time spent in each phase follows an exponential distribution. 

Therefore, the PDF of time-to-readmission (2) can be viewed as a mixture of two 

generalized Erlang distributions (McLachlan, Peel, 2004) and then is reduced to  

SS LS( ) ( ) (1 ) ( )f t pf t p f t= + −                                                                                       (6) 

where SSf and LSf are the PDFs of the time-to-readmission for the Short-Stay and 

Long-Stay groups, with shape parameters m  and m r+  respectively, and p is the 

probability of a patient being in the Short-Stay group, which can be obtained by 
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λ
λ λ+

. 

Following the methods discussed, we propose that the optimal cut-off point for the 

readmission time window is the point that separates the two components in (6), which, as 
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mentioned earlier, are corresponding to the readmission from inpatient and outpatient 

care spells one-to-one. Thus, the solution t∗  to 

SS LS( ) (1 ) ( )pf t p f t= −                                                                                                    (7) 

will give the optimal readmission timeframe. In order to solve (7), we need to 

estimate the 2( ) 1m r+ −  unknown parameters in (5) using approaches such as maximum 

likelihood (Asmussen, Nerman, Olsson 1996), moment matching (Johnson, 1993), or 

probabilistic clustering (Reinecke, 2012) that best fit with empirical data. Observing the 

time to readmission data 1 2( , , )Nt t t=t K , in the current paper, we use  the EM 

(Expectation-Maximization) algorithm to maximize the general log-likelihood function  

( )
1
log exp( )( )

N

i
t

=

−∑ π Q Q1  

with EMpht software (Asmussen S EMpht  software, 2013). Further, by altering the number 

of phases, we select the models that best compromise model parsimony and goodness of 

fit based on both Akaike’s Information Criterion (AIC) (Akaike,1974) and Bayesian 

Information Criterion (BIC) (Schwarz 1978).  

2.3. Predicting potentially avoidable readmissions  
 

In the interest of reducing avoidable readmissions, it is necessary to note that in most 

cases, including all patients in the intervention programs is neither possible nor 

economically feasible. Thus to exploit the full potentials of such plans and raise their 

sustainability, it is beneficial to target patient subsets that are at higher risk of being 

readmitted. In this regard, predictive modeling approaches turned out to be promising not 

only in readmission risk prediction models, but also in other healthcare research areas 

such as hospital profiling based on patient health outcomes (Krumholz et al., 2006), 
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chronic disease management programs (Bayerstadler et al., 2013), and patient no-show 

problems (Alaeddini et al., 2011). Employing advanced statistical and/or machine-learning 

algorithms, such models typically try to predict the probability of an outcome given a set 

amount of health data including administrative, claim, or even medical laboratory data. 

Generally, risk of readmission needs to be assessed in two different episodes of the 

intervention programs, namely, pre-discharge and post-discharge. In the former, 

controlled variables that can be reasonably achieved before hospital discharge (for 

instance initial diagnosis) is fed into the model and the results are used to identify 

high-risk subgroups to receive the pre-discharge interventions like patient education and 

medication reconciliation. The latter, in contrast, make use of relatively all captured 

information such as LOS of the index hospitalization or principal diagnosis at discharge, 

and pinpoint high-risk cohorts to be assigned to post-discharge interventions like 

follow-up telephone calls and timely ambulatory visits. Also according to the type and 

timing of data gathered, predictive models can be applied for either profiling hospitals 

based on rate of readmission or predicting the chance of rehospitalization for a given 

patient.  

Suppose 𝐷 and 𝛿 denote the time to readmission and the readmission status (1= 

readmitted within 𝐷 days of the discharge, 0= Otherwise). Two modeling families with 

distinct objectives can be thought of for predicting patient readmission. The first group, 

which we call classification models, focus on readmission indicator 𝛿 and try to estimate 

it by first learning an algorithm based on inputted features and known class labels. These 

methods mostly use algorithmic models and treat the data mechanism as unknown (black 

box). Such models are usually prone to overfitting the training dataset in the case of small 
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sample sizes and/or repeated measurements. Nonetheless, they are computationally fast 

and easy to implement with minimal assumptions about the underlying mechanism that 

generates the data.  

The second group, which we name timing-based models, concentrate on 𝐷 and try to 

relate some of its probability functions to a given set of covariates in parametric 

(accelerated  failure  time models) or semi-parametric (proportional hazards models) 

fashion. As opposed to the first class, these methods are rather data models: the 

parametric timing-based methods have distributional assumptions for 𝐷 , and the 

semi-parametric ones have proportionality  assumptions of the covariate effects. 

Nevertheless, they are capable of dealing with small (to medium) samples and also are 

able to update readily to take in new observations with minimum structural changes. In 

addition, models of this class have nice probabilistic interpretations of the outcome and 

they can incorporate correlations among the observations in the modeling process. 

Examples of the first group in readmission studies includes logistic regression (Shulan, 

Gao, Moore , 2013), random forest (Au et al., 2012), and support vector machines (Zhang et 

al., 2013), while the second group includes the Cox proportional hazard model (Hernandez, 

2010), and the lognormal frailty model. Although each model has its own merits and 

specific applicability, overall, it  is  found  that  most of the described techniques perform 

poorly in terms of discrimination power and predictive accuracy. 

Besides, according to current problems in readmission reduction programs, no 

consensus exists on the chosen set of patient (and system) factors that deemed related to 

the likelihood of readmission. This usually happens in studies comprising dissimilar 

health care settings (e.g., Medicare versus private health insurance) or diverse patient 
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populations (e.g., VA versus Non-VA). For instance, in a study of UK inpatients, the 

popular  LACE  measure (Length  of  stay,  Acuity  of  the  admission,  Charlson 

comorbidity score (Charlson et al., 1987), and Emergency  department  visits  within  six  

months) which works well in a number of UK populations, is found to be mediocre in 

predicting  30-day readmission rates. Therefore, we believe that in our study, a 

data-driven patient-centered approach should be developed to guide the decisions upon 

the readmission intervention programs. To this end, we do not impose a priori candidate 

variables to the modeling process nor do we limit our analysis to the previously-selected 

risk factors from other studies. 

Beyond these aspects, in order to fill the gaps in the literature and satisfy specific 

requirements of our modeling environment, we determined that a desired PM proposal 

should: 

• Be able to handle censored observations, which are common in time-to-event data. 

• Have the means to deal with repeated measure and recurrent event cases that may 

happen in longitudinal event history analysis. 

• Incorporate patients’ past history of readmission into the modeling framework.  

• Carry information about the timing of readmission. 

• Manage many relevant risk factors without having computational or inferential 

problems such as overspecification or multicolinearity. 

• Not be overly complex but should be computationally effective and easy to 

implement. 

• Be as stable as possible in a complex data environment. 
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• Discriminate very high from very low risk patients and be comparable (or superior) 

to the existing methods in terms of such performance indices as c-statistics. 

To fulfill the mentioned criteria, as well as to take advantages of both data models and 

algorithmic models, we propose our modeling methodology in the next section. 

2.3.1. Phase-type Survival Forest  

Decision trees are powerful and flexible non-parametric classifiers that use inductive 

inference for exploratory knowledge discovery. Due to their simple-to-comprehend and 

intuitive representation of information, decision trees have gained lots of attention in 

many disciplines such as computational biology, health informatics, medical imaging, 

and biomedical engineering (Breiman, 1993). A survival tree (Davis, Anderson ,1989) is a 

special kind of classification and regression tree (CART) for survival data that partitions 

the covariate space recursively to build groups (nodes in the tree) of subjects that are 

homogeneous with respect to the outcome of interest. This is typically done by 

maximizing a measure of node homogeneity like Wasserstein metric between the survival 

functions (Gordon, Olshen, 1985) or logrank statistics (Ciampi et al., 1986). A regular 

algorithm begins at the root node with all records and exhaustively searches all potential 

binary splits with the attributes, then picks the best one according to a splitting criterion 

such as a homogeneity measure. However, this process may lead to a large tree that 

usually overfits the data. To alleviate, a pruning mechanism is employed to find a subtree 

of appropriate size, or alternatively an ensemble approach (such as bagging or random 

forest) can be worked with which avoids the problem of selecting a single tree. Random 

Forest (Breiman, 2001) is a popular ensemble method that grows many (de-correlated) 
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classification trees by bootstrapping a training sample and then producing a label that is 

the mode of all votes from the individual trees.  

Following what was proposed, here we develop a special case of Breiman’s RF, a 

phase-type survival forest (PHSF), that 1) uses the PH likelihood (with censored 

observations) as its splitting criterion for each tree grown, and 2) deals with repeated 

measure and recurrent readmission situations by performing bootstrap sample at a subject 

(patient) level. 

• Slitting criterion 

We chose minimization of the weighted average information criterion (Wu, 

Sepulveda ,1998) as the splitting criterion to induce individual trees. WIC is a weighted 

average of BIC and bias-corrected AIC (Hurvich, Tsai 1989) which works better than (or at 

least as well as) other criteria in both small and large sample sizes. Recalling (2) and (3), 

the full log-likelihood function with censored observations becomes  

1
log( ( )) (1 ) log( ( )),

N

i i i i
i

L f t S tα α
=

= + −∑                                                                                  (8) 

where iα  is an indicator which equals 1, if it  is a complete time for the i-th 

hospitalization, and becomes zero if it  is a censored case (that is, no readmission occurs 

before the end of study). Notice that, censorship may occur for the three acute conditions 

(and the COPD) if no readmission is seen within 30 (or T) days of discharge. The WIC is 

calculated as 

( )
( )( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( )( )( ) ( )( )

2log 1 log 1 2 1
WIC 2

2 log 1 1

d N N N d N N d
d L d

N N N d N d

− − + + + +
= − + +

+ − + − +

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

                   (9) 
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in which 2( ) 1d m r= + − , is the PH number of degrees of freedom, and N  is the total 

number of sampled records. 

In such a manner, at each node of a tree, if covariate l  has G  values and breaks the 

node into partition set 1 2( , , ),Gl l K l then the total WIC for the split can be expressed by 

the sum of singular WICs of every sub-group partitioned by the covariate: 

full full
1

 WIC WIC .( ) ( )
g g

G

g
dd

=

=∑ l l                                                                                            (10) 

 

Therefore, the information gain is defined as the improvement made in the WIC after 

splitting the node:   

( )( ) ( )full fullWIC WIC ,R RIG d d= −l                                                                                      (11) 

 

where R  stands for the node before partition (i.e., the parent node). Beginning from the 

root node, at every single node, we apply one covariate at a time and record the gain for 

partitioning by that covariate. Then, we repeat this with other attributes and select a split 

that minimizes the WIC the most (or yields the largest gain) to recursively partition into 

child nodes. Also, if no positive gain can be obtained at a node by any possible split, the 

node becomes a terminal node. 

• Forest development 

As mentioned before, since patients (can) have multiple records in the dataset, 

repeated measures and recurrent events are likely. In this case, the bootstrapped samples 

are dependent and chances of having correlated observations in the in-bag training set are 

high. Consequently, trees grown may be correlated and overfitting is plausible. To 
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alleviate this problem, we developed the PHSF algorithm (Algorithm 1) that performs 

subject-specific bootstrapping rather than using traditional replicate-based bootstrap. 

According to the algorithm, a subject classification is calculated as the label with the 

maximum number of votes cast across all records for that subject among all trees. The 

PHSF is able to produce predictions for specific replicates of a subject, and it can also be 

reduced to the original random forest if no replicate per subject is available. Consistent 

with the rule-of-thumb, subject-level bootstrapping performed in the algorithm ensures 

that about 63% of the subjects (rather than replicates) are elected in-bag. In this way 

subjects with more replicates cannot dominate the training process. 

 

Algorithm 1. Phase-type Survival Forest 

I. For 1b =  to B : 

a) Take a bootstrap sample (i.e., a random sample chosen with replacement) of size S  at the 
subject level (patient) from the training data. Assuming jn  records per patient j , 

1 2 SN n n n= + + +L .  

b) Grow an unpruned tree bT  on each bootstrap by repeating the following steps, until no 
improvement is made in (11). 

i. Select vʹ′  variables at random from the whole v  variables. Normally vʹ′  should be 
much less than v , such as v  or even 1.    

ii. Following the splitting criterion introduced, pick the best variable among the vʹ′ , and 
split the node into two child nodes. 

II. Output the ensemble of trees { }1
B

bT .   

To make a prediction for a new patient x : 

Let ( )
ˆ ( )b iC x  be the class prediction of the bth tree for replicate i  of the patient. Then 

{ }  1PHSF ( )
ˆ ˆ( )  ( )

B

b iC x majority vote C x= .    
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      Considering that the PHSF generates proportions of votes for each class, similar to 

data models, we can have an (unbiased) estimate of the probability that a patient is 

readmitted. Further, like the original version of the random forest, the out-of-bag (OOB) 

data (which includes about one-third of all subjects) is used to get a running unbiased 

estimate of the classification error in both replicate and subject levels. Finally, like 

Breiman’s RF algorithm, we use the permutation-based measure to get a raw importance 

score for variable v  as: 

( )
 

, ,
1  .

B
v

c b c b
b

v

p p
I

B
=

−
=
∑

                                                                                                            (12) 

 

In the formula, ,c bp  is the proportion of correctly classified replicates out of total 

OOB replicates in a given tree, and ,
v
c bp  is the proportion of OOB replicates classified 

right after variable v  is randomly permuted across all OOB cases. 

2.4. Performance evaluation measures   
 

We compare the PHSF algorithm with four popular classification methods: Breiman’s 

Random Forest, Logistic Regression, Neural Network (NN), and Support Vector 

Machine (SVM). To evaluate the predictive accuracy of the approaches, we use 

sensitivity (also called true positive rate or recall), specificity, positive predictive value 

(or precision), negative predictive value, F-measure, Matthews correlation coefficient, 

and the area under the receiver operating characteristic curve (AUROC). Denoting True 

Positive (Negative) and False Positive (Negative) outcomes as TP (TN) and FP (FN), the 

predictive measures are computed as 
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sensitivity / ( )                        
specificity / ( )
PPV / ( )
NPV / ( )
F 2 / (2 )

MCC
( )( )( )( )

 
TN FP TN

TP TP FP
TN TN FN

TP TP FP FN
TP TN F

TP TP F

P FN
TP FP TP FN TN FP T

N

N FN

= +

= +

= +

= + +

× − ×
=

+ + + +

= +

                                                       (13) 

 

Sensitivity (specificity) determines the proportions of actual positives (negatives) that 

are correctly classified as such. Positive predictive value (PPV) measures the proportion 

of positive predictions that are true positive, while negative predictive value (NPV) 

indicates the proportions of negative test outcomes that are true negatives. The F-score 

can be interpreted as a harmonic mean of precision and recall, with a best value at 1 and a 

worst at zero. The Matthews correlation coefficient (MCC) is a correlation coefficient 

between observed and predicted binary tuples, which works well in class-imbalanced 

situations where the classes can be of very different sizes. Expectedly, it returns a real 

value in [–1,+1], in which +1 represents a perfect prediction, zero means no better than 

random prediction, and –1 shows total disagreement between prediction and observation. 

The ROC curve is a graphical tool that exemplifies the performance of a classifier by 

plotting, at various cut-off points for the predicted risk, the sensitivity vs. one minus the 

specificity. In other words, moving along the ROC from bottom-left to top-right trades 

off false positives for false negatives. The AUROC (or c-statistics) can then be defined as 

the proportion of times a given classifier correctly discriminates a random pair of patients 

with and without readmission. Stated differently, an AUROC of 0.77 indicates that a 

patient with readmission is credited with a higher prediction value than a patient without 

readmission 77% the time, for a random pair of patients with and without readmission. A 
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value of 0.5 for the AUROC shows that the model does not work better than a random 

pick; values between 0.7–0.8 suggest a modest separation ability; and values bigger than 

0.8 imply good discriminative power. A simple approach to calculating AUROC for 

binary classification is presented by ( Hand, Till, 2001) as  

0 ( 1) / 2ˆ ,S n nA
n n

+ −

+ −

− +
=                                                                                                             (14) 

 

where n+ and n−  are the number of positive and negative entries, respectively, and 

0 iS r=∑ , in which ir  is the rank of the i-th positive example in the ranked list. 
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Chapter III Result and Analyses 
 

In this section, we describe steps to implement the proposed methods with the VHA 

data. First, data preprocessing is presented in Section 4.1. Then we perform the PAR 

algorithm to recognize avoidable readmissions from all other types of outcome. After 

that, we fit the proposed Coxian PH distribution to COPD time-to-readmission data and 

find the optimal cut-off for the time interval. Finally, predictive modeling with the PHSF 

algorithm as well as details about model calibration and validation are presented. 

3.1. Data 

The dataset used in this retrospective cohort study is provided by the Veteran Health 

Administration (VHA), which is the largest single medical system in the United States, 

with 152 medical centers and nearly 1400 outpatient clinics. We analyze inpatient 

administrative records gathered from four medical facilities in the State of Michigan, 

namely, Ann Arbor, Battle Creek, Detroit, and Saginaw, to identify all hospitalizations 

for Heart Failure (HF), Acute Myocardial Infarction (AMI), Pneumonia (PN), and 

Chronic Obstructive Pulmonary Disease (COPD) from Fiscal Year 2011 to FY12. 

Cohorts are marked with ICD-9-CM (International Classification of Diseases, Ninth 

Revision, Clinical Modification) codes, similar to the coding utilized by the CMS for 

calculating hospital readmission rates.  

There were no major changes in the hospital bed supplies, and in the patient 

admission/discharge processes through that period of time. During a hospital stay, 

patients may move to different acute wards within the hospital and their episodes of care 

are carefully tracked with standard computerized means. We use additional data files for 



	  

	  

42	  

patients with chronic conditions as well as patients exposed to environmental hazards 

such as Agent Orange, to effectively illustrate those impacts on the risk of readmission. 

The original set contains 7200 randomly selected records, which correspond to 2985 

distinct adult patients with principal (or secondary) discharge diagnoses of HF, AMI, PN, 

and COPD. General exclusions include: (1) Hospital admissions within 24 hours of index 

discharge, (2) Hospitalizations with a length of stay less than 24 hours (observation stays) 

or followed by a death, (3) Patients transferred to another acute care facility, (4) Patients 

discharged against medical advice. To count readmissions in the last month of FY12, the 

first month of FY13 is taken into account.  

In additions, we omit stays in long term care, nursing home, psychiatry, 

rehabilitation, and hospice wards. However, as we are interested in modeling the effect of 

patient’s related factor changes (over time) on the risk of readmission, unlike most 

studies in the literature (Joynt, Orav, Jha, 2011), we do not exclude recurrent 

(re)admissions of the same patient from the analyses. We also design both external and 

internal model validations by using stratified split sample and bootstrap resampling 

methods. 

3.1.1. Controlled variables     

We aggregate patient level data files with provider and station levels in order to 

obtain various types of risk factors for this study. To achieve a better picture of the data 

environment, we further arrange them into five groups: (1) Demographics: age at 

discharge, sex, race, and marital status; (2) Socioeconomic: means tested income, and 

insurance status (Medicare, Medicaid, private, none); (3) Utilization: length of stay of the 

index hospitalization (LOS), treating facility, source of admission (direct from home, 

outpatient clinic, transition from any of the four VA hospital, VA Nursing Home Care 
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Unit (NHCU), and VA domiciliary), primary care provider, enrollment priority, and 

average distance (between patient’s home zip code and the zip code of the facility he/she 

got admitted); (4) Service based: Agent Orange status, Prisoner Of War (POW) status, 

and radiation status; and (5) Comorbidity and severity: Diagnosis Related Group (DRG), 

Hierarchical Condition Category (HCC), and Care Assessment Need (CAN) score. Tthe 

variables were selected based on the relevant medical literature and confirmed by a group 

of Veteran Affairs (VA) health professionals.  

The enrollment priority is a priority level assigned according to the veteran’s severity 

of service-connected disabilities and the VA means test. The DRG is a validated 

reimbursement classification scheme exploited to identify the cost of services that a 

hospital renders. In its basic version, the groups are organized with respect to their 

similarities in patient diagnosis, age, sex, and the presence of complications or 

comorbidities; then a measure of cost is attached to each group (Fetter et al., 1980).  

HCCs have been used ad hoc, mainly for case-mix and risk adjustment in healthcare 

utilization and payment systems. Each HCC group forms a set of clinically and 

cost-similar conditions reflecting hierarchies among related diseases as defined by the 

ICD-9-CM codes (Pope, 2004). We create dummy variables for both the DRG and HCC 

variables in the regression studies; that is, if a patient is a member of the category, he or 

she is given a 1 on this variable; otherwise the score remains zero. The CAN score is a 

general illness severity score that reflects the likelihood of admission or death within a 

specified time period, and it works somewhat similar to diagnostic cost group (DxCG) 

risk score (Sales, 2013). The score is commonly expressed as a percentile ranging from 0 

(lowest risk) to 99 (highest risk) and it shows how a VA patient is compared with others 
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pertaining to the chances of hospitalization or death. It is interesting to note that all 

predictor variables except LOS are real time and would be available before patient 

discharge, so they can be employed in planning for pre-discharge (transitional care) 

intervention programs.    

3.1.2. Study outcomes     

The main outcome is rate of avoidable readmission after discharge. Unlike the large 

literature that studies only the occurrence of readmission by logistic (or probit) regression 

methods (Berry et al., 2013; Pracht, Bass 2011), our current approach is a hybrid of both 

occurrence and timing of readmission, which enables us to directly incorporate the effect 

of partially known inforamtion (censored observations) into the risk of readmission. For 

hospitalizations after HF, AMI, and PN, we follow the CMS approach and define the 

readmission time interval as 30 days; if no consecutive admission is occurred within 30 

days after the most recent admission, the outcome is flagged as censored. For COPD 

patients, however, we do not adopt the 30-day cutoff, and instead develop an approach to 

optimally determine the interval that best stratifies the quickly-readmitted and 

slowly-readmitted patient groups. We further modify the approach introduced by 

(Goldfield et al., 2008)t o distinguish between avoidable and unpreventable outcomes.  

The most common causes of readmission for the four cohorts as well as their changes 

over time are also investigated as secondary health outcomes. 

3.1.3. Data preprocessing   
 

Since real world data generally contain missing values, noise (e.g., errors and 

outliers), and inconsistent records, data preprocessing is essential for ensuring valid 
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analytics. In this regard, added to what is given in the PAR algorithm (section II, part k), 

we perform the following tasks: 

a) Create attributes for time-to-readmission, readmission status, LOS, and 

sequence of (repeated) readmissions using admission and discharge dates. 

b) In predictive model building, we use the default replacement method of 

Breiman’s algorithm for missing values. For univariate analysis, however, missing 

values are imputed with the hot-deck method (Ford ,1983). 

c) Identify and remove extreme records (outliers) with Local Outlier Factor 

(LOF) technique (Breunig et al., 2000). 

d) Correct error records and flawed data combinations (e.g., POW: Yes, 

Veteran: No).  

e) Discretize attributes like distance into three levels (near: below 25 miles, 

middle: between 25 and 50 miles, far: above 50 miles) by k-means clustering.  

Following these steps, the number of records is reduced to 6975 with 2813 distinct 

patients. 

3.1.4. Statistics 
 

Our main outcome was avoidable readmission measured by the PAR metric in the 

first 30 days of hospital discharge. We first examine the presence of any difference in the 

baseline characteristics between the cohorts using univariate logistic regression. Since the 

same patient could have several avoidable readmissions during the study, we used 

generalized estimation equation to adjust for serial correlations among readmissions of 

the same patient. 

Then, using the entire set of patient risk factors, we performed a random forest 
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analysis. Random forest (Breiman, 2001a) is a popular nonparametric method that grows 

many classification trees by bootstrap resampling technique to estimate the aggregated 

probability of an outcome. Although they were recently adopted in estimating propensity 

scores (HSR paper, 2013), few researches have studied the use of random forest to 

predict the risk of readmission (AHJ paper, 2012). Each tree provides a classification 

based on a set of randomly chosen predictor variables that are used to split the data at 

each node.  

With this set of trees, the ability of each predictor to separate the patient who had or 

did not have the outcome is assessed and weighted with respect to the overall quality of 

the tree. Then importance of each covariate in all tress is summarized by a Gini index, 

which tells how much accuracy of the prediction is lost if the variable is not included. 

Such methods proved to increase the accuracy of prediction compared to classical 

statistical methods such as logistic and probit regression (Breiman, 2001b). 

Since we are interested in studying the effect of having previous readmissions on the 

likelihood of outcome, we modify the random forest algorithm in a way that it can handle 

the correlation among repeated measures and recurrent events of the same subject. The 

basic idea is to have the forest take a bootstrap sample at the patient level rather than at 

the replicate level, i.e. doing subject-specific bootstrap instead of traditional 

replicate-based bootstrap. This way, when a particular patient is chosen at random, all of 

its replicates (repeated measures) that had the outcome (recurrent events) or did not have 

the outcome are attached to it. Hence, trees grown are not correlated and overfitting is 

avoided. For instance, patients with more repeated measures cannot dominate the 

learning process in the training data (HCMS paper, 2014). 
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We started by including all risk factors into the random forest to estimate the 

predicted probability of avoidable readmission. We additionally created a new variable 

called ‘sequence’ for determining how many times a given patient was readmitted in the 

study. Except age, length of stay, CAN score, Charlson comorbidity index, and sequence, 

all other covariates are entered as dummy variables. We set the number of trees to grow 

and the number of variables to randomly split at each node as 5,000 and 5, respectively.    

The latter number is the suggested default and equals to the square root of the total 

number of variables in the algorithm. We also investigated what the optimal cutpoint for 

continuous variables should be that most discriminate high vs. low risk patients using 

operating characteristic curves.  

We then performed two sensitivity analyses: (1) sensitivity of random forest error 

rates to our selected parameters by letting the number of trees to change between 2,000 to 

5,000 and the number of randomly chosen variables to vary between three to seven, and 

(2) sensitivity of error rates to class weights by setting different weights for the two 

cohorts that had or did not have the outcome. Finally, we conducted internal validation 

with same population underlying the sample, as well as external validation with a new 

patient sample. We used R platform for all analyses and statistical computing (RCD, 

2005). 

3.2. Potentially avoidable readmissions rates   
 

Using 30-day (and T-day; see Section 4.3) readmission timeframes for the three acute 

conditions (and COPD), we begin by classifying all records to admissions and 

readmissions. Removing instances from the admission and readmission sets that meet one 

or more exclusion criteria (see section III of the PAR algorithm), we initially identify 
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total of 5,449 eligible admissions and 968 readmissions. Of the 968 readmissions, 173 

cases were found not clinically related to their prior admissions (see PAR algorithm, 

section V), from which 27 cases are fitted in either “death,” “transfer,” or “against-

medical-advice” groups and thus be dropped. The remaining 146 readmissions were then 

reclassified as eligible admissions, resulting in 5,595 eligible admissions. Hence, we end 

up having 795 PARs, from which 596 examples belong to a PAR series with only one 

PAR, and 78 match to a PAR series with two or more PARs. Consequently, the total 

number of unique PAR series becomes 674, and the PAR rate (see section IX of the PAR 

algorithm) is found to be 12.05 percent. Following the same appraoch, rates of PAR for 

HF, AMI, PN, and COPD are 13.26, 12.47, 11.16, and 11.33 percent. 

The facility-adjusted PAR rates vary from 12.37% to 13.69% for HF; 11.83%–13.16% 

for AMI; 10.74%–11.93% for PN, and 10.68%–12.13% for COPD.  From all HF 

avoidable readmissions, 86.3% are readmitted once, 11.4% are readmitted twice and 2.3% 

are readmitted three or more times. These rates are (81.7%; 14.6%; 3.7%), (88.4%; 

10.9%; 0.7%), and (83.2%; 14.7%; 2.1%) for AMI, PN, and COPD respectively. 

The pattern of PAR rates for the three acute conditions and the COPD during 

cumulative periods after discharge (days 0–7, 0–15, 0–21, and 0–30) are outlined in 

Table 1. As shown, of all 30-day avoidable readmissions, nearly 58% of the HF, 55% of 

the AMI, and 60% of the PN cohorts occurred within 15 days after hospital discharge. In 

other words, the majority of acute (avoidable) readmissions happens relatively soon after 

discharge, and they remain common even after two weeks of discharge. However, only 

around 58% of all COPD (avoidable) readmissions take place until the third week after 

discharge, and nearly 22% is left beyond the 30 day interval, which supports our 
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argument about the inappropriateness of the 30-day timeframe for the chronic disease. 

This finding can be of great value for health professionals when they plan to allocate 

inpatient and early outpatient intervention programs to both acute and chronic conditions. 

The mean (standard deviation) patient age of the readmitted cohort is 78.6 years (3.5 

years) for HF, 80.3 years (4.1 years) for AMI, 79.3 years (2.9 years) for PN, and 76.2 

years (3.1 years) for COPD. Frequent comorbid conditions among readmissions are 

coronary artery disease (CAD), atrial fibrillation, and diabetes for the HF cohort; anemia, 

congestive heart failure, and vascular disease with complications for the AMI cohort; 

chronic obstructive pulmonary disease, congestive heart failure, and cardiorespiratory 

failure and shock for the PN cohort; and chronic bronchitis, pneumonia, and diabetes 

mellitus for the COPD cohort. 

 

                       Table 1 Distribution of avoidable readmissions over time 

 

 

 

 

 

 

The most common diagnoses of 30-day (or T-day; see Section 4.3) readmission after 

HF, AMI, PN, and COPD hospitalizations are displayed in Table 2. It appears that after 

admission for HF and AMI, readmissions happen mostly for heart failure (39.6% and 

28.3% of readmissions, respectively), but following hospitalizations for PN and COPD, 

patients get readmitted because of COPD (21.4% and 32.5%, in turn). Also, the top five 

Cohort 
Days following discharge 

0–7 0–15 0–21 0–30 
Heart Failure 28.6% 57.9% 81.7% 100% 
Acute Myocardial Infarction 33.4% 54.6% 86.4% 100% 
Pneumonia 31.1% 60.1% 83.3% 100% 
COPD 21.1% 42.6% 58.5% 78.3% 
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readmission diagnoses contribute to 63.2% of all readmissions after HF, 59.4% of all 

readmissions after AMI, 55.6% of all readmissions after PN, and 65.1% of all 

readmissions after COPD.  

Further, we realized that the most frequent reasons for avoidable readmissions in all 

conditions are related to “recurrence or extension of the reason (Section V, part b)” and 

“medical complications (Section V, part d)”, with an average of 54.7% and 23.2% 

through all the hospitals. As expected, in none of the acute and chronic conditions is the 

proportion of non-clinically related readmissions over 15.4 percent.  

 

Table 2 Top readmission diagnoses for patients hospitalized with HF, AMI, PN, and  
COPD 

Rank HF cohort AMI cohort PN cohort COPD cohort 

Diagnosis Percent 
of PAR 

Diagnosis Percent 
of PAR 

Diagnosis Percent 
of PAR 

Diagnosis Percen
t of 
PAR 

1 Heart failure 39.6% Heart failure 28.3% COPD 21.4% COPD 32.5% 

2 Renal failure 9.3% Coronary 
artery 
disease 

13.7% Pneumonia 15.3% Bronchitis 16.3% 

3 Arrhythmias 6.7% Pneumonia 8.6% Heart failure 10.6% Cardio-
Respiratory 
Failure and 
Shock 

7.6% 

4 Cardio-respir
atory failure 
and shock 

4.1% Septicemia/
Shock 

5.5% Cardio-respi
ratory 
failure and 
shock 

4.4% Pneumonia 5.3% 

5 Pneumonia 3.5% Renal failure 3.3% Renal failure 3.9% Hypertension 3.4% 
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Next, we compared percentages of readmissions calculated by our method (PAR) to 

those of the 3M method for the three acute conditions in the four hospitals (Figure 6). In 

our method, consistent with the literature (Medicare Payment Advisory Commission, 

2007), we observe that a greater proportion of all readmissions can be avoided in the first 

two weeks after discharge, but the contribution declines as time passes. Compared to the 

3M approach, our method considers (slightly) fewer rehospitalizations as being avoidable 

and produces lower rates of readmission throughout all periods after discharge. A 

probable reason for this may be related to the CMS- and VHA-specific exclusions of our 

method, which is not found in the 3M approach. Besides, almost the same trend (not 

shown here) is seen for the COPD readmissions but over an extended time interval 

following discharge. 

 

 

 

 

 

 

 

 

 

 

Figure 6 Percent of readmission over 
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3.3. Optimal COPD readmission timeframe   
 

In this section, we fit the proposed Coxian PH distribution to COPD 

time-to-readmission data in order to find the optimal cut-off point that defines avoidable 

readmissions. Using empirical data, we first examine the percentile distribution of times 

in Table 3. 

Table 3 Percentile distribution of the COPD time to readmission 
	   	  
 

 

As shown, the median time-to-(avoidable) readmission is about 36 days and the 

distribution is (highly) right skewed, with more than half of patients readmitted after the 

30th day from discharge. This implies that, unlike acute conditions, poor quality of 

inpatient care for chronic conditions may reveal itself after 30 days from discharge. So 

setting the 30-day as a fixed timeframe for both acute and chronic conditions may not be 

appropriate. 

We then applied the EMpht software to estimate the phase-type generator Q  in (5) 

using COPD time-to-readmission data from FY 11–12. In brief, the program starts with 

an initial guess (0)Q  (for the non-zero elements in (5)) and proceeds with a number of 

iterations of the EM algorithm to increase the log-likelihood function 

( )
1
log exp( )( )

N

i
t

=

−∑ π Q Q1 .  

Fixing the maximum number of iterations at 5000 runs and Runge-Kutta step length 

at 
 

0.1
max i iQ

 (in which 
 

max i iQ is the largest absolute value of the diagonal element of 

Percentile 0 10 25 50 75 90 100 
Day 1 7 19 36 88 174 283 
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the last estimate of Q ), we configure different Coxian PH structures by modifying the 

order of the sub-class Markov processes (i.e., parameters m and r ). This way, we start 

with 1m = , examine various levels of r from 1 to 10, and pick the best in terms of AIC 

and BIC; then we repeat this for 2m =  until 10m = . We stop the search if the 

log-likelihood does not improve in any intermediate level. Also due to non-identifiability 

of the parametrization of the phase-type distribution (O’Cinneide CA, 1990), we do several 

fits starting with various initial values produced in previous runs. The results of best fits 

at each level of m  are then summarized in Table 4. 

It is apparent that there is no improvement in the fits after the fourth phase of the 

Short-Stay group (i.e., m=4). Hence an order 6 of the Coxian PH distribution with 4 and 6 

phases for the Short-Stay and Long-Stay groups respectively is considered to most 

suitably represent the time-to-readmission process of the COPD patients in the dataset. 

Note that we do not show fits after (m=5) as they provide no further enhancements. 

 

Table 4 Results of various Coxian PH fits 

Fit r AIC BIC 
m=1 3 35443.4 35443.02 
m=2 2 35181.3 35180.90 
m=3 1 34077.7 34077.32 
m=4 2 33816.5 33818.28 
m=5 2 33844.2 33851.54 

 

The estimates of the intensity rates in (5) along with their standard errors are 

calculated in Table 5. Given the small amounts of error, we see that the parameters are 

well estimated with EMpht. Also note that 1 λ ,  2λ , and  3λ  belong to the Short-Stay 
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group, while  4λ  and  5λ  are related to the Long-Stay group. According to the table, the 

probability of a patient being in the Short-Stay group is calculated as 

1.26 0.4437
1.26 1.58

p = =
+

, 

which means that the COPD patients spend about 44.37% of their time in the 

Short-Stay group in the community before returning to the hospital. 

Then, in order to solve (7) and obtain the optimal COPD readmission timeframe, we 

need to derive the PDFs SSf  and LSf . This can be done based on a convolution of a set 

of independent exponential variables ( iX ) as follows (Ross, 2009): 

                                          

( )

( )

 

 
 

1 2

1 2 1

1 2

  0

SS

1 2 10 0 0 0

1 1 2 1

1
  0

  

( )                                                                           (15)

( ) ( )

( )d d d

m

j j

m

m m

i

m

m

i i

k

X X X

x t t t
X X

X

x

f f x

f t f t t

f x t t t t

e
λ λ

λ λ

λ λ

−

− −

+ + +

− +

=

=

= −

× × −

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

×
+

∫ ∫ ∫ ∫

∏

L

L

L L

( ) ( )

( )

( )

( ) ( )

  

 

 

  

 

1 2

  0

1

1

LS

1

1

1

0   0

  0

  0   0

( )

j j

m r

m

m
j

k
k j

m r

m r
j

k
k j

i
m r

k j j

i i

k k j j

X X X

x

f f x

e
λ λ

λ λ

λ λ

λ λ λ λ

+

+

+

++ + +

− +

=

=

=
≠

=

=
≠

− +

⎡ ⎤
= = +⎢ ⎥

⎣ ⎦

×
+ − +

∑
∏

∏

∑
∏

L

         

Note that the escape rate 
  0iλ is zero for all phases except m and m+r, that is, 
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Finally, by substituting (15) in (7) with 0.4437p = , we compute t∗  (or T in the PAR 

algorithm) as 42 days, which is pretty close to, but more accurate than what we observe 

in Figure 1. Thus, for the COPD cohort we should utilize a 42-day timeframe to count the 

correct number of avoidable readmissions in our study. 

3.4. Predicting the risk of avoidable readmissions 
 

In this section, we first perform some descriptive analytics on the patient risk factors 

for the two cohorts within each condition. Afterwards, steps for predictive modeling 

along with details about model validation and calibration are described. We then end by 

doing performance evaluation and comparison studies. 

Table 5 Estimated intensity rates for the COPD Coxian PH model 

Parameter Estimate Standard 
Error 

1 λ  0.04 0.008 

 2λ  3.62 0.126 

 3λ  5.17 0.233 

 4λ  1.58 0.075 

 5λ  0.96 0.039 

  SSλ  1.26 0.097 

  LSλ  0.83 0.004 

 

3.4.1   Descriptive Analytics  
 

Baseline patient characteristics in PAR and No-readmission cohorts are displayed in 

Table 6 (for Heart Failure and Acute Myocardial Infarction) and Table 7 (for Pneumonia 

and COPD). The presence of any significant difference between the cohorts was also 
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tested using univariate logistic regression and the results are shown in terms of P-Values 

[missing values are imputed by the hot-deck method]. Since the same patient could have 

several avoidable readmissions during the study period, we used generalized estimation 

equation to adjust for serial correlations among readmissions of the same patient.  

During the study, a total of 5,595 eligible admissions were made in the four VA 

hospitals, out of which about 14. 21%  were followed by an unnecessary rehospitalization. 

Note that this rate is different from what is reported in Section 4.2 (which is 12.05%) 

because here we count each readmission separately rather than as members of a PAR 

series. In all conditions, the populations are generally male (>86%), married (>51%), 

older (>67 years), and live within 25 miles of a VA facility (>60%).  

More than 21% in all conditions do not have private insurance or insurance through 

Medicare or Medicaid programs. More than half of patients in all conditions are admitted 

directly from their home and more than 50% have one to four past-year hospitalizations. 

On average, the care assessment score is higher in respiratory diseases (near 69) 

compared to circulatory conditions (about 66). Almost 18% of the patients are also 

diagnosed with more than ten HCCs (not shown in the tables).  

Note that in the attribute “source of admission,” class ‘transfer’ is related to those 

patients who are transferred only among the four VA hospitals, and ‘Other’ is related to 

some other admission sources such as observation/examination, non-VA hospitals not 

under VA auspices, community nursing homes under (or not under) VA auspices, 

non-veteran hospitals, etc. Further, priority groups 1, 2, and 3 are generally assigned to 

veterans with service-connected disabilities of > 50%, [30%, 50%), and [20%, 30%), 

respectively. Other groups are as follows: 4, catastrophically disabled veterans; 5, low 
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income or Medicaid; 6, Agent Orange or Gulf War veterans; 7, non-service connected 

with income being below HUD; and 8, non-service connected with income being above 

HUD. For each condition, patient comorbidities are identified with the help of 

Comorbidity Software (Kaboli et al., 2012), using ICD-9-CM and DRG codes from the 

index hospitalization and any admission in the 12 months prior. 

It is observed that patients who are subsequently readmitted are elderly and usually 

have a greater number of comorbidities. Male patients have on average a greater chance 

to be readmitted in HF and COPD cohorts rather than females, but this cannot be 

generalized since the VA sample here contains only about 8% female patients.  The 

analysis shows that length of stay is not generally associated with odds of avoidable 

readmission, when patient and facility characteristics are not controlled for.  

However, after adjusting for the case-mix and service-mix (not shown here), the 

relation tends to be negative (about 7.3% increase for each in-hospital day lower than 

expected), which implies that shorter individual LOS is generally connected with higher 

risk of readmission. Therefore, consistent with (Kaboli et al., 2012), we observe that 

significant reduction in LOS, without simultaneously improving inpatient care, is more 

likely to result in premature discharge and rehospitalization. Further, enrollment priority 

turns out to be highly linked with odds of readmission in all conditions, especially when 

it comes to catastrophically disabled veterans (increases of .2% in AMI to 10.9% in HF). 

Furthermore, the odds of avoidable readmissions are significantly higher in patients 

exposed to ionizing radiation and Agent Orange in all conditions. Among the comorbid 

conditions, having diabetes and cancer increases the chance of readmission, as does 
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having mental disorders and substance abuse (with harsher effect in circulatory 

conditions). 

3.4.2   Predictive modeling with PHSF 
 

Following Algorithm 1, we used the entire set of patient risk factors to develop a 

readmission prediction model. Additionally, we create two more covariates, namely, 

“sequence” and “Charlson comorbidity index” and entered them into the analysis. For 

non-categorical variables in the candidate set (i.e., age, LOS, CAN score, sequence, and 

Charlson index), we evaluated different cut-off points to split the dataset into binary 

partitions and explore the optimal cutpoint that most discriminates high vs. low risk using 

operating characteristic curves (with whole dataset). We then used this ROC-generated 

cutpoint for further analyses. Also for categorical features with more than two classes 

(like race), following (Friedman, Hastie, Tibshirani, 2009) we optimally select a series of 

binary splits (instead of multiway splits) that produce the best discrimination results.  

 We begin with the baseline model that uses all sampled data points (5,595 records) in 

the subject-specific bootstrapped PHSF and we let the forest internally perform 

cross-validation using OOB samples during each run. The number of trees and the 

number of variables to try at each split are set to 6,000 and 5, respectively. Also we set 

the cutpoints with respect to minimizing the WIC criterion (see Section 3.1.1) as follows: 

Age, 68 (years); LOS, 5 (days); CAN score, 66; sequence, 3; and Charlson index, 4.5. 

Results of variable importance are summarized in Table 8 (Sig. stands for significance 

level).  

As illustrated, almost all statistically significant variables (Sig. <.05) refer to overall 

health and agedness factors, which may reflect a generalized vulnerability to disease 
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among recently discharged patients—inpatients regularly lose their strength and develop 

new difficulties in doing their day-to-day activities (Gill et al., 2010). Interestingly, 

‘sequence’ turns out to be (positively) related to readmission risk, which highlights the 

fact that the chance of unnecessary returns to hospital is greater in patients with prior 

history of readmission. 

In the baseline model, the c-statistics is .793; sample-level OOB error rates are 3.16%, 

2.35%, and 8.05% for overall, No-readmission class, and PAR class, respectively; and 

there are large interactions [based on Breiman’s variable interaction model [46]] between 

Agent Orange and Radiation, between Priority and LOS, and between Priority and 

Insurance, to name a few. 

 

 

 

 

 

 

 



	  

	  

60	  

Table 6 Baseline characteristics (mean (SD) for continuous variables; n(%) for 
categorical variables) 

 Heart Failure 
(n=1674) 

 Acute Myocardial Infarction 
(n=1417) 

Characteristic No Readmission 
(n=1447) 

PAR 
(n=227) 

P-Value  No Readmission 
(n=1211) 

PAR 
(n=206) 

P-Value 

Age (years) 68.6 (5.2) 71.3 (3.2) <.01  69.3 (5.6) 73.3 (3.7) <.01 
Sex, Male 1406 (97.2) 215 (96.9) .04  1097 (90.6) 192 (93.2) .07 

Race 
Black 
White 
Other 

 
986 (68.1) 
432 (29.8) 
  29 (2.1) 

 
193 (85.0) 
  29 (12.8) 
  5 (2.2) 

 
 

<.01 
 

  
769 (63.5) 
405 (29.8) 
  37 (3.1) 

 
169 (82.0) 
  29 (14.1) 
    8 (3.9) 

 
 

<.01 
 

Marital status 
Current spouse 
Never married 
Previously married 

 
839 (57.9) 
307 (21.2) 
301 (20.9) 

 
137 (58.3) 
  52 (21.4) 
  38 (20.3) 

 
 

.35 
 

  
631 (52.1) 
320 (26.4) 
260 (21.5) 

 
112 (54.4) 
  58 (26.7) 
  36 (18.9) 

 
 

.42 
 

Primary insurance 
Medicare 
Medicaid 
Private 
Not insured  

 
732 (50.6) 
249 (17.2) 
107 (7.4) 
359 (24.8) 

 
126 (55.5) 
  27 (11.9) 
  25 (11.0) 
  49 (21.6) 

 
 

.03 
 

  
624 (51.5) 
226 (18.7) 
103 (8.5) 
258 (21.3) 

 
  97 (47.1) 
  32 (15.5) 
  28 (13.6) 
  49 (23.8) 

 
 

.07 
 

Length of stay (days) 5.2 (6.1) 6.2 (4.4) .07  5.8 (5.8) 5.1 (6.8) .11 

Source of admission 
Direct from home 
Outpatient clinic 
Transfer 
VA NHCU 
VA Domiciliary 
Other 

 
797 (55.1) 
392 (27.1) 
  17 (1.2) 
  62 (4.3) 
  13 (0.9) 
166 (11.5) 

 
129 (56.8) 
  63 (27.8) 
    3 (1.3) 
  12 (5.3) 
    4 (1.8) 
  16 (7.0) 

 
 
 
 

.31 

  
623 (51.4) 
392 (32.4) 
  23 (1.9) 
  62 (5.1) 
  13 (1.1) 
  98 (8.1) 

 
107 (51.9) 
  67 (32.5) 
    4 (1.9) 
  10 (4.9) 
    5 (2.4) 
  13 (6.3) 

 
 
 
 

.26 

Enrollment priority 
1 
2 
3 
4 
5 
6 
7 
8 

 
126 (8.7) 
167 (11.5) 
293 (20.2) 
173 (12.0) 
316 (21.8) 
115 (7.9) 
103 (7.1) 
154 (10.6) 

 
17 (7.5) 
  9 (4.0) 
38 (16.7) 
52 (22.9) 
66 (29.1) 
15 (6.6) 
19 (8.4) 
11 (4.8) 

 
 
 
 
 

<.001 
 
 
 

  
104 (8.6) 
136 (11.2) 
239 (19.7) 
133 (11.0) 
331 (27.3) 
172 (14.2) 
  26 (2.1) 
  70 (5.8) 

 
19 (9.2) 
13 (6.3) 
41 (19.9) 
23 (11.2) 
56 (27.2) 
12 (5.8) 
15 (7.3) 
27 (13.1) 

 
 
 
 
 

<.001 
 
 
 

Distance to hospital 
Near (<25m) 
Middle ([25, 50]m) 
Far (>50m) 

 
856 (59.2) 
549 (37.9) 
  42 (2.9) 

 
155 (68.3) 
  69 (30.4) 
    3 (1.3) 

 
 

.02 
 

  
781 (64.5) 
406 (33.5) 
  24 (2.0) 

 
151 (73.3) 
  53 (25.7) 
    2 (1.0) 

 
 

.03 
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Table 6 continued 

 

 

 
 
 
 
 
 

 Heart Failure 
(n=1674) 

 Acute Myocardial Infarction 
(n=1417) 

Characteristic No Readmission 
(n=1447) 

PAR 
(n=227) 

P-Value  No Readmission 
(n=1211) 

PAR 
(n=206) 

P-Value 

Radiation, Yes 11 (0.8) 5 (2.2) .03  9 (0.7) 6 (2.9) .02 
Agent Orange, Yes 63 (4.4) 16 (7.0) .02  42 (3.5) 13 (6.3) .03 

CAN score 67.4 (4.1) 71.7 (2.9) <.01  64.5 (4.6) 68.6 (3.7) .02 
No. of past year 
hospitalization 

0 
1-4 
>4 

 
 
663 (45.8) 
713 (49.3) 
  71 (4.9) 

 
 
  71 (31.3) 
122 (53.7) 
  34 (15.0) 

 
 
 

<.001 
 

  
 
503 (41.5) 
616 (50.9) 
  92 (7.6) 

 
 
  52 (25.2) 
124 (60.2) 
  30 (14.6) 

 
 
 

<.001 
 

Comorbidity 
CAD 
Heart failure 
Vascular disease w/c 
Cardiorespiratory  
Pneumonia 
Atrial fibrillation 
Anemia 
Diabetes 
COPD 
Chronic bronchitis 
Malignant neoplasm 
Mental disorder 
Substance abuse 

 
486 (33.6) 
— 
202 (14.0) 
153 (10.6) 
  97 (6.7) 
403 (27.9) 
225 (15.5) 
351 (24.3) 
242 (16.7) 
  83 (5.7) 
  71 (4.9) 
160 (11.1) 
118 (8.2) 

 
94 (41.4) 
— 
45 (19.8) 
37 (16.3) 
19 (8.4) 
77 (33.9) 
47 (20.7) 
71 (31.3) 
49 (21.6) 
12 (5.3) 
19 (8.4) 
37 (16.3) 
31 (13.7) 

 
.04 
— 
.02 
.01 
.32 
.05 
.05 
.02 
.05 
.66 
.03 
.01 

<.01 

  
  81 (6.7) 
346 (28.6) 
306 (25.3) 
134 (11.1) 
  51 (4.2) 
291 (24.0) 
378 (31.2) 
159 (13.1) 
  63 (5.2) 
  17 (1.4) 
  25 (2.1) 
102 (8.4) 
112 (9.2) 

 
16 (7.8)  
73 (35.4) 
67 (32.5) 
14 (6.8) 
15 (7.3) 
62 (30.1) 
81 (39.3) 
37 (18.0) 
17 (8.3) 
  6 (2.9)  
12 (5.8) 
31 (10.7) 
33 (16.0) 

 
.53 
.04 
.02 
.06 
.05 
.04 
.03 
.05 
.07 
.14 

<.01 
<.01 
<.01 
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Table 7 Baseline characteristics 
 

 Pneumonia 
(n=1306) 

 COPD 
(n=1198) 

Characteristic No Readmission 
(n=1117) 

PAR 
(n=189) 

P-Value 
 

No Readmission 
(n=1025) 

PAR 
(n=173) 

P-Value 

Age (years) 67.7 (4.9) 68.3 (2.8) <.01  63.6 (4.5) 65.3 (2.6) <.01 

Sex, Male 1035 (92.7) 182 (96.3) .07  966 (94.2) 169 (97.7) .04 

Race 
Black 
White 
Other 

 
731 (65.4) 
335 (30.0) 
  51 (4.6) 

 
153 (81.0) 
 25 (13.2) 
 11 (5.8) 

 
 

<.01 
 

  
597 (58.2) 
390 (4.7) 
  38 (37.1) 

 
126 (72.8) 
  42 (24.3) 
    5 (2.9) 

 
 

<.01 
 

Marital status 
Current spouse 
Never married 
Previously married 

 
571 (51.1) 
244 (21.8) 
302 (27.1) 

 
106 (56.1) 
  32 (16.9) 
  51 (27.0) 

 
 

.27 
 

  
579 (56.5) 
201 (19.6) 
245 (23.9) 

 
103 (59.5) 
  41 (23.7) 
  29 (16.8) 

 
 

.09 
 

Primary insurance 
Medicare 
Medicaid 
Private 
Not insured  

 
602 (53.9) 
185 (16.6) 
  89 (8.0) 
241 (21.6) 

 
  91 (48.1) 
  24 (12.7) 
  26 (13.8) 
  48 (25.4) 

 
 

.06 
 

  
535 (52.2) 
157 (15.3) 
  94 (9.2) 
239 (23.3) 

 
103 (59.5) 
  18 (10.4) 
    9 (5.2) 
  43 (24.9) 

 
 

.05 
 

Length of stay (days) 4.9 (5.4) 5.7 (4.2) .03  3.7 (5.1) 4.3 (3.2) .08 
Source of admission 

Direct from home 
Outpatient clinic 
Transfer 
VA NHCU 
VA Domiciliary 
Other 

 
651 (58.3) 
225 (20.1) 
  21 (1.9) 
  59 (5.3) 
  16 (1.4) 
145 (13.0) 

 
114 (60.3) 
  40 (21.2) 
    5 (2.6) 
  14 (7.4) 
    5 (2.6) 
  11 (5.8) 

 
 
 
 

.09 

  
575 (56.1) 
324 (31.6) 
  32 (3.1) 
  62 (6.0) 
  14 (1.5) 
  18 (1.7) 

 
102 (59.0) 
  51 (29.5) 
    3 (1.7) 
    9 (5.2) 
    1 (0.6) 
    7 (4.0) 

 
 
 
 

.36 

Enrollment priority 
1 
2 
3 
4 
5 
6 
7 
8 

 
  74 (6.6) 
141 (12.6) 
219 (19.6) 
115 (10.3) 
341 (30.5) 
172 (15.4) 
  37 (3.3) 
  18 (1.6) 

 
22 (11.6) 
17 (9.0) 
35 (18.5) 
29 (15.3) 
36 (19.0) 
  8 (4.2) 
14 (7.4) 
28 (7.4) 

 
 
 
 
 

<.001 
 
 
 

  
119 (11.6) 
  50 (4.9) 
182 (17.8) 
202 (19.7) 
341 (33.3) 
  22 (2.1) 
  26 (2.5) 
  83 (8.1) 

 
26 (15.0) 
14 (8.1) 
23 (13.3) 
41 (23.7) 
51 (29.5) 
  5 (2.9) 
  7 (4.0) 
  6 (3.5) 

 
 
 
 
 

.01 
 
 
 

Distance to hospital 
Near 
Middle 
Far 

 
692 (62.0) 
421 (37.7) 
    4 (0.4) 

 
127 (67.2) 
  59 (31.2) 
    3 (1.6) 

 
 

.01 
 

  
713 (69.6) 
307 (30.0) 
    5 (0.5) 

 
132 (76.3) 
  37 (21.4) 
    4 (2.3) 

 
 

<.01 
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Table 7 continued 

 

 

 

 

 

 
 

 Pneumonia 
(n=1306) 

 COPD 
(n=1198) 

Characteristic No Readmission 
(n=1117) 

PAR 
(n=189) 

P-Value  No Readmission 
(n=1025) 

PAR 
(n=173) 

P-Value 

Radiation, Yes 10 (0.9) 8 (4.2) <.01  13 (1.3) 9 (5.2) <.01 
Agent Orange, Yes 39 (3.5) 15 (7.9) <.001  64 (6.2) 21 (12.1) <.001 

CAN score 68.3 (4.6) 69.1 (2.8) <.01  70.4 (3.7) 72.7 (2.6) <.01 
No. of past year 
hospitalization 

0 
1–4 
>4 

 
 
485 (43.4) 
593 (53.1) 
  39 (3.5) 

 
 
  56 (29.6) 
114 (60.3) 
  19 (10.1) 

 
 
 

<.01 
 

  
 
526 (51.3) 
447 (43.6) 
  52 (5.1) 

 
 
  33 (19.1) 
117 (67.6) 
  23 (13.3) 

 
 
 

<.001 
 

Comorbidity 
CAD 
Heart failure 
Vascular disease w/c 
Cardiorespiratory  
Pneumonia 
Atrial fibrillation 
Anemia 
Diabetes 
COPD 
Chronic bronchitis 
Malignant neoplasm 
Mental disorder 
Substance abuse 

 
216 (19.3) 
335 (27.7) 
181 (16.2) 
273 (24.4) 
 — 
  66 (5.7) 
  33 (3.0) 
132 (11.8) 
339 (30.3) 
  72 (6.4) 
  31 (3.1) 
106 (9.5) 
138 (12.4) 

 
31 (16.4) 
71 (34.5) 
35 (18.5) 
58 (30.7) 
 — 
14 (7.4) 
10 (5.3) 
35 (18.5) 
69 (36.5) 
  9 (4.8) 
10 (5.3) 
27 (14.3) 
33 (17.5) 

 
.3 
.03 
.4 
.05 
— 
.3 
.09 
.01 
.04 
.4 
.06 
.03 
.04 

  
137 (13.4) 
119 (11.6) 
  82 (8.0) 
  94 (9.2) 
355 (34.6)  
  35 (3.4) 
  13 (1.3) 
288 (28.1) 
— 
402 (39.2) 
156 (15.2) 
221 (21.6) 
269 (26.2) 

 
25 (14.5) 
17 (9.8) 
20 (11.6) 
10 (5.8) 
72 (41.6)  
  8 (4.6) 
  5 (2.9) 
63 (36.4) 
— 
86 (49.7) 
43 (24.9) 
52 (30.1) 
60 (34.7) 

 
.64 
.53 
.14 
.14 
.06 
.43 
.11 
.02 
— 

<.01 
<.001 

.01 

.02 
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Table 8 Variable importance for the baseline PHSF model 

 

 

 

 

 

Attribute Raw score Z-score Sig. 
CAN score 4.87 2.372 .009 
Age 4.53 2.296 .011 
Charlson CI 4.17 2.010 .022 
No. of Past-year hospitalization 4.09 1.816 .035 
Sequence 3.85 1.738 .041 
LOS 3.79 1.658 .049 
CAD 3.36 1.390 .082 
Vascular disease w/c 3.41 1.381 .084 
Admission source 3.21 1.303 .096 
Atrial fibrillation 3.28 1.255 .105 
Priority 2.88 1.068 .143 
Agent Orange 2.52 .961 .168 
Pneumonia 2.75 .930 .176 
Sex 2.19 .869 .194 
Mental disorder 2.66 .815 .207 
Malignant neoplasm 2.53 .762 .223 
Race 1.55 .653 .257 
Radiation 1.43 .564 .286 
Cardiorespiratory disease 1.71 .550 .291 
Insurance 1.21 .483 .314 
Heart failure 1.17 .466 .321 
Diabetes 1.64 .454 .325 
POW .88 .330 .371 
COPD 1.42 .323 .373 
Marital status .80 .283 .389 
All others .63 .197 .422 
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• Model calibration 

We then calibrated the baseline model as follows: 1) we focused only on the 16 most 

important variables found in the baseline model; 2) we imputed missing values based on 

Breiman’s replacement technique; 3) we modified the optimal  cut-off points with regards 

to maximizing the c-statistics (the new cutpoints are 69 years for age, 70 for CAN score, 

and 4.7 for Charlson index, while others remain unchanged); and 4) we altered the class 

weights to 1 on class ‘No-readmission’  and 8 on class ‘PAR’, to adjust for the 

imbalanced prediction errors in the classes. Then we rerun the model with 10,000 trees 

and 4 variables to try at each split.  

Depiction of variable importance for the calibrated model is shown in Table 9. 

Expectedly, the ranking of variables does not change but we achieved better results in 

terms of scores and significance levels. It is noticed that, though Mental disorder and 

Malignant neoplasm are only marginally significant, we decide to keep them in the final 

model since 1) they are both medically significant in contribution to the risk of 

readmission, and 2) they together contribute largely to the model discrimination ability. 

In the calibrated model, the c-statistics jumps to .836; no serious interactions remain 

among variables; and the overall, No-readmission, and PAR error rates become 3.67%, 

2.51%, and 2.64%, respectively. It is remarkable that the calibrated model considerably 

decreases PAR misclassification rate, but at the expense of increasing the overall error 

rate a little bit. We perceive that this tuning in class weights is really appealing for our 

situation because in readmission prediction models, the cost of false negatives (which 

correspond to readmitted patients incorrectly predicted as No-readmission) is usually 
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much higher than the cost of false positives (which correspond to non-readmitted patients 

incorrectly predicted as PAR cases). 

Since the PHSF method takes an ensemble approach of trees, as we mentioned earlier, 

we can obtain an unbiased estimate of PAR probability for each patient. Therefore, it is 

possible to further check the model calibration by evaluating predicted and actual PAR 

rates at different risk deciles. These results appear in Table 10 and Figure 4. 

We note that, both on average and over the whole range of predictions, the predicted 

probability of readmission matches up well with the actual probabilities. Average 

predicted readmission (not shown here) also monotonically increases with growing risk, 

ranging from 8.79% in the lowest decile to 43.75% in the highest, a range of 34.96% in 

total. For the 12% of readmissions that happens between deciles four and five, the PHSF 

model under-predicts by roughly 8.5%. It also over-predicts by about 4%–14% for the 

small number of readmissions (21%) which occur in deciles 6–10.  

 

 
Figure 7 Calibration curve for the PHSF model 
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• Model validation 

Here, we used the calibrated model and studied its internal validity (also called 

reproducibility), based on the same population underlying the sample. To this end, since 

the PHSF does perform bootstrapping internally, we slightly modified the split-sample 

technique for our purposes: we randomly partitioned the sample into 50% training and 50% 

testing sets and redid this 7 times.  

For each partition we ran the PHRF algorithm and obtained the c-statistics. The 

average c-statistics for the seven runs of training sets reached .839 and for the test sets, it 

was .821. Hence, there exists an “optimism” of .018 in the mean AUROCs for the 

training and testing splits, and as a result, the internally-validated (or optimism-corrected) 

c-statistics is estimated as .818. 

To provide more robust evidence of validity, we further conducted external (in fact: 

spatial) validation (also called generalizability) with a new sample of 478 patients 

admitted (with primary diagnosis of HF, AMI, PN, and COPD) in the months of August 

and September 2012. It is noted that we included the same patient factors studied in the 

new sample. The c-statistics in the external sample decreased to .809 (a decrease of .027) 

which is slightly more than results from internal validation (a decrease of .018). However, 

both internal and external validations confirm the superiority of our proposal over the 

current approaches in terms of discrimination power and stability. Nonetheless, we obtain 

greater c-statistics (at least .813) when the PHSF is applied separately on each condition. 

It should also be remarked that with the current sample data, the CMS endorsed model 

can only produce a c-statistics of about .63. 
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Table 9 Variable importance for the calibrated PHSF model 

 

 

 

 

 

 

 

 

 

 

 

 

Attribute Raw score Z-score Sig. 
CAN score 7.88 3.582 <.0001 
Age 7.32 2.874 .002 
Charlson CI 7.06 2.398 .008 
No. of Past-year hospitalization 7.18 2.324 .010 
Sequence 6.72 2.077 .019 
LOS 6.47 1.957 .025 
CAD 6.24 1.898 .029 
Vascular disease w/c 6.31 1.847 .032 
Admission source 5.95 1.794 .036 
Atrial fibrillation 6.03 1.736 .041 
Priority 5.77 1.705 .044 
Agent Orange 5.62 1.682 .046 
Pneumonia 5.66 1.662 .048 
Sex 5.24 1.656 .049 
Mental disorder 5.39 1.632 .051 
Malignant neoplasm 5.27 1.615 .053 
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Table 10 Calibration by risk decile for the PHSF model 

Risk decile Sample size Predicted PAR Observed PAR O/P ratio 
1 2286 201 183  0.910  
2 1112 149 141  0.946  

3 893 106 118  1.113  
4 481 94 102  1.085  

5 343 79 83  1.051  
6 215 77 74  0.961  

7 138 48 45  0.938  
8 82 31 28  0.903  

9 29 17 15  0.882  
10 16 7 6  0.857  

 

 

Table 11 Performance comparisons of our model over the selected methods 

Method Predictive accuracy measure 
Sensitivity Specificity PPV NPV F-score MCC MSE AUROC 

Our proposal 91.95% 97.65% 86.61% 98.65% .892 .874 .032 .836 

Random Forest 88.43% 97.35% 84.70% 98.07% .865 .843 .039 .802 
SVM 86.16% 97.52% 85.20% 97.70% .857 .833 .041 .775 

Logistic Regression 83.40% 97.21% 83.19% 97.25% .833 .805 .048 .721 
Neural Network 82.39% 97.06% 82.28% 97.08% .823 .794 .051 .704 
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3.4.3   Numerical comparisons 
 

In this section, we evaluate the proposed PHSF method with Logistic Regression 

(LR), Breiman’s Radom Forest (RF), Support Vector Machine (SVM), and Neural 

Network (NN) in terms of predictive measures introduced in previous section (plus mean 

squared error). The models are built and compared with the R version 3.0.2 (RDC Team, 

2005) using packages randomForest (Liaw, Wiener, 2002), e1071 (Dimitriadou et al., 2008), 

glm2 (Marschner, 2011), and also MATLAB neural network toolbox (Demuth, Beale ,1993).  

It is worth mentioning that we used different kernels such as polynomial and radial 

basis function for the SVM method; and for the NN approach, we also tested for two and 

three layers with different numbers of sigmoid hidden neurons and linear output neurons. 

For the pure random forest method, we did the same calibration as with the PHSF, and 

for the logistic regression, we used generalized estimation equation to account for 

clustering at the patient level.  

The comparison results are summarized in Table 11 and Figure 8. As shown, the 

proposal works better than other alternatives in all predictive criteria. The Breiman’s 

random forest approach and SVM produce very close results in this sample but the NN 

approach seems unable to compete with other models having a modest discrimination of 

about 0.7. Not surprisingly, all models predict ‘No-readmission’ cases better than the 

PAR cases. It is of interest that SVM slightly outperforms the RF in terms of precision (.5% 

higher) and true negative rate (.17% higher).  

Furthermore, in the overall spectrum of false positive rates, the proposal assigns a 

higher probability of readmission for a patient with PAR compared to a ‘No-readmission’ 

patient, about 83.6% of the times. Looking at different ROC stairs graphs, we can infer 

that, with a false positive rate between .09 to .25, our PHSF is placed higher than others, 
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but it falls behind the SVM and NN in case of very small rates of false positive. In higher 

false positive rates, we observe that RF and SVM are very similar in discrimination 

ability and they work as well as PHSF beyond .7 false positive rate. However, logistic 

regression turns out to fall short at a type I error rate of .8 to .9. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 ROC curves for different predictive models 
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Chapter IV Conclusion 
 
 

Hospital readmission is disruptive to patients and costly to healthcare systems. About 

one in five Medicare fee-for-service beneficiaries, totaling over 2.3 million patients, are 

re-hospitalized within 30 days after discharge, incurring an annual cost of $17 billion, 

which constitutes near 20% of Medicare’s total payment. However it is reported by the 

Medicare Payment Advisory Commission that about 75% of such readmissions can and 

should be avoided because they are the results of a fragmented healthcare system that 

leaves discharged patients with preventable flaws such as hospital-acquired infections 

and other complications, poor planning for follow-up care transitions, inadequate 

communication of discharge instructions, and failure to reconcile and coordinate 

medications.  

Variations in rate of readmission by medical facility and by geographic region also 

indicate that some hospitals perform better than others at containing readmission rates. In 

addition, effective October 2012, as directed by Patient Protection and Affordable Care 

Act (PPACA), the Centers for Medicare and Medicaid Services (CMS) started to cut 

hospitals’ reimbursement funds that have excess readmission rates for their heart failure, 

myocardial infarction, and pneumonia patients. Hence, reducing unnecessary 

rehospitalization through care transition programs has attracted policymakers and health 

organizations as a way to simultaneously improve quality of care and reduce costs. Yet, 

there is a lack of analytical tools that help understand the care transition dynamics at 

various patients’ health episodes and effectively provide predictions of readmission risks 
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of different patient groups and hospital operation units by using diverse data from 

electronic health records.  

Concentration on reducing unnecessary readmission has never been higher, especially 

with the CMS augmenting the rates of penalties and introducing new waves of diseases 

that will be under scrutiny during next years. In response to this policy shift, hospitals 

and clinicians are become more interested in analytics ways to identify patients at 

elevated risk of avoidable readmission, since such tools can ultimately be used to guide 

more appropriate discharge planning and efficient resource utilization. Although a variety 

of approaches have been proposed to identify patients with higher risk, their potentials 

have been limited mainly because they do not incorporate timing of readmission in their 

prediction and/or they are not accurate enough. 

In this study, we make several contributions to readmission reduction studies. First, 

we address the problem of characterizing avoidable (or unnecessary) readmissions from 

all other types of outcomes. Our algorithm (PAR) is based on administrative data and 

takes a more accurate look at preventability components of rehospitalization compared to 

existing methods. We also suggest using a more comprehensive risk adjustment tool 

(DCG/HCC) in counting avoidable readmissions, as well as getting help from other 

sources of information, like clinic visits between index admission and readmission, in 

assessing the avoidability of readmissions. 

Second, we assert that the government-endorsed 30-day timeframe that is used to 

count readmissions is not “optimal” for chronic conditions such as COPD. Therefore, we 

develop a stochastic model based on Coxian phase-type distribution to analytically 

calculate the optimum cut-point that best stratifies among quickly-readmitted and slowly-
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readmitted COPD patients. We then adopt the new time window in the PAR algorithm to 

adjust for COPD readmissions. 

Third, by combining algorithmic and data models, we put forward a hybrid predictive 

approach that exploits good aspects of classification and timing-based analytics models. 

We then demonstrate the superiority of our model over current solutions with respect to 

various accuracy criteria. Further, to confirm that the high discrimination ability of our 

proposal is irrespective to overfitting, we perform internal and external validation 

practices. Also, unlike some studies in the literature, we do not limit our work to a 

specific disease  or within a specific hospital (Smith et al., 1996), but instead we aggregate 

data from four different VA facilities containing inpatients diagnosed with four different 

conditions.     

Even though our results introduce new aspects of readmission studies, one should pay 

attention to some limitations in interpreting and generalizing them. First, the data used in 

the study is from one region (Veteran Integrated Service Network 11, Veterans In 

Partnership) in the State of Michigan, with a veteran population that is mostly male and 

veteran, and a government-funded care delivery system; hence the results may not be 

identical in other health care systems. Second, the study is limited to administrative data 

(that are regularly available to all health plans) and it does not have laboratory test results 

and vital signs such as hemoglobin or serum level at discharge, which may affect the risk 

of unnecessary readmission.   

In future work, we plan to use our proposal to compare and profile the hospitals on 

their readmission rates using proper risk adjustment for case mix and service mix. The 

approach currently employed by the CMS (and the VHA) is to calculate a ratio of 
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observed to expected outcomes for a given hospital, and evaluate it across the normal 

range of all other hospitals given the same mix. Methods in this context are primarily 

based on models in which the hospital effects on outcome are taken as random. 

Nonetheless, they have been recently argued because 1) they often produce biased 

estimates of outcomes at the provider level; and 2) they cannot prevent confounding 

issues when the patient characteristics are correlated with facility effects (Kalbfleisch, 

Wolfe, 2013). 
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       One of the significant sources of waste in the Unites States health care systems is 

preventable hospital readmission. About 2.3 million Medicare fee-for-service 

beneficiaries are re-hospitalized within 30 days after discharge which incurs an annual 

cost of $17 billion. However, it is reported by the Medicare Payment Advisory 

Commission that about 75% of such readmissions can and should be avoided because 

they are the results of factors such as poor planning for follow up care transitions, 

inadequate communication of discharge instructions, and failure to reconcile and 

coordinate medications. Hence, reducing unnecessary rehospitalization through care 

transition and systems engineering principles has attracted policymakers and health 

organizations as a way to simultaneously improve quality of care and reduce costs.  

In this dissertation we investigated predictive and prescriptive analytics approaches 

for discharge planning and hospital readmission problem. Motivated by the gaps in 

research, we first develop a new readmission metric based on administrative data that can 
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identify potentially avoidable readmissions from all other types of readmission. The 

approach is promising and uses a comprehensive risk adjustment, Diagnostic Cost Group 

Hierarchical Condition Category, to assess the clinical relevance between a readmission 

and its initial hospitalizations. Next, we tackle the difficulties around selecting an 

appropriate readmission time interval by proposing a generic Continuous Time Markov 

Chain (CTMC) approach conceptualizing the movements of patients after discharge. We 

found that cutoff point defining readmission time interval must not depend on the 

instantaneous risk of readmission but rather it has to be based on quality of inpatient or 

outpatient care received. We further assert that the government endorsed 30 day time 

window which has been used for profiling hospitals and public reporting is not 

appropriate for chronic conditions such as chronic obstructive pulmonary disease. Thus, 

we propose a special case of the CTMC method and obtain the “optimal” cut-point that 

best stratifies among inpatient and outpatient care episodes.  

Third, we proposed a novel tree-based prediction method, phase-time survival forest 

(PTSF), for patient risk of readmission that combines good aspects of traditional 

classification methods and timing-based models. The method is simple to implement and 

can be able to (1) model the effect of partially known information (censored 

observations) into the risk of readmission, and (2) directly incorporate patient’s history of 

readmission and risk factors changes over time. The latter property is highly favorable 

especially when repeated measurements of patient factors or recurrent readmissions are 

likely. The basic idea is quite generic and it works by modifying the traditional replicate 

based bootstrap samples to account for correlations among repeated records of a subject. 

We demonstrated the superiority of our model over current solutions with respect to 
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various accuracy and misclassification criteria. Further, to confirm that the high 

discrimination ability of our proposal is irrespective to overfitting, we performed internal 

and external validation with 2011–12 Veterans Health Administration data from 

inpatients hospitalized for heart failure, acute myocardial infarction, pneumonia, or 

chronic obstructive pulmonary disease in the Mid-West facilities. Results indicated 

improved discrimination power compared to the literature (c-statistics greater than 80%) 

and good calibration. 

Overall, the current research outlined a successful multifaceted analytics framework 

that enables medical decision makers to systematically characterize, predict, and reduce 

avoidable readmissions and contribute to patient care quality improvements. 
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