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Chapter I Introduction 

Health care delivery is a complex multilevel system in which primary care is the base 

level and acts as a principal point of consultation for patients. The traditional format of 

primary care is mainly featured by primary care physicians (PCP), in which each PCP has 

a designated set of patients, called a patient panel. In current practices of most providers, 

the panel is simply decided by a predetermined maximum size; that is when the quota is 

reached, no more patients will be added [1,2]. Typical panel sizes range from 1200 to 

1600 patients. However, this number alone cannot reflect the actual health workload 

generated in the panel. For example, a PCP with 1200 young and healthy patients might 

be generally underutilized, while one with 1200 elderly patients having multiple 

comorbidities may experience excessive workload, causing long delays in its panel 

appointment times and forcing patients to switch their PCPs.  

It is found that many factors such as patient’s age, gender, health status and insurance 

plan can influence the required healthcare workload. Ostbye and colleagues [3] find that 

patients with different chronic diseases regularly have different visiting frequencies to 

their PCPs. Naessens and colleagues [4] discover that the number of chronic conditions in 

a patient will significantly affect clinical workload and medical cost. Potts and colleagues 

[5] propose a risk-standard method to adjust the panel size for each PCP calculating 

disease burden of each physician panel for six chronic diseases. However, there is no 

description or proof about how the risk values are assigned. Balasubramanian and 

colleagues [6] apply classification and regression trees (CART) to classify approximately 
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20,000 patients at the Mayo Clinic of Rochester, Minnesota, into 28 categories by using 

age and gender as factors, so that each category has different workload patterns. 

In recent years, the patient-centered medical home (PCMH) has been introduced as a 

prominent intervention to improving the US primary care systems with better-quality 

outcomes at lower costs [7]. This model consists of different health professionals grouped 

together to provide comprehensive, coordinated, accessible and cost effective care while 

maintaining high levels of service quality and stability. Each team consists of a group of 

medical professionals such as primary care provider, registered nurse, nutritionist, social 

worker, and medical clerk that are well poised to provide many aspects of primary care. 

Theoretically, medical homes are composed of “joint principles” that ideally complement 

one another and feed into a comprehensive vision of appropriate primary care delivery. 

The principles are consisted of having a personal physician with an ongoing relationship, 

a whole person orientation care for all stages of life, a physician-directed medical practice 

taking responsibilities for all of the continuing care, a coordinated and/or integrated care 

system across all elements of the care systems, a continuous emphasis on quality and 

safety, an enhanced access to care through such systems as open scheduling and 

expanded hours, and finally an appropriate payment system that recognize the added 

value provided to PCMH patients [8]. 

Augmented with modern health information technology, the PCMH is crafted to 

initiate numerous reforms in health care delivery and reimbursement systems [9].  

As of 2007, there was some literature examining the prevalence and effectiveness of 

medical homes. For instance, Fisher [10] outlined some recommendations for the success 
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of medical homes such as increasing effective communication and sharing of information 

across health care providers, broadening the medical performance measures to include 

patients’ experience with care and ordinary assessment of outcomes, and establishment of 

medical-home payment system that share savings among all providers involved. A survey 

by Commonwealth Fund of 3,535 US adults found that when they were provided with a 

medical home, racial and ethnic disparities in care access and quality were substantially 

reduced [11]. Furthermore, having a medical home was associated with more preventive 

screenings and better management of chronic conditions. The Centers for Medicare & 

Medicaid Services (CMS) planned to pursue Medicare pilot projects in 400 practices in 8 

regional sites, and by 2009, twenty bills promoting the PCMH concept have been 

successfully introduced in 10 states [12]. Another study within the Group Health system 

in Seattle showed that a medical home prototype led to 29% fewer emergency visits, 6% 

fewer hospitalizations, and total savings of $10.30 per patient per month over a 

twenty-one month period [13]. Bates and Bitton [14] indicated seven health information 

technology domains deemed to be critical for the success of the PCMH model including 

telehealth, measurement of quality and efficiency, care transitions, personal health 

records, and, most importantly, registries, team care, and clinical decision support for 

chronic diseases.   

Practically, as of December 2009, there were about 26 pilot projects involving 

medical home being directed in 18 states. These consist of over 14,000 physicians and 

approximately 5 million patients [15]. Of interest, Veterans Health Administration 

(VHA) launched a nationwide 3-year program in April 2010 to create PCMHs in more 
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than 900 primary care clinics. Early results indicated dramatic improvements such as 

reducing the appointment waiting time from as long as 90 days down to one day and 

decreasing the percentage of inappropriate emergency department visits from 52% to 

12% [16].  

1.1 Overview of Patient Centered Medical Home 

Presently, the PCMH model has been practiced by many hospitals and medical 

centers, Bitton et. al. [15], and its performance has been evaluated by many studies, 

Nutting et. al. [17], Jaen et. al. [18], and Crabtree et. al. [19].As it is shown in Fig.1, there 

are two different phases in PCMH process. In this section, we describe the two phases of 

PCMH. 

   

Figure 1 Two Phases in PCMH 
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Fig.2 shows the different benefits from Patient Centered Medical Home. 

 

 

Figure 2 Patient Centered Medical Home Benefits 

 

 

The first phase is, healthcare demand estimation. Generally, healthcare demand is the 

amount of time required to care for a patient over a time period which is related to 

patient’s demographic, diagnostic, and health attributes. The goal of the first phase in 

PCMH process, is to develop a rigorous statistical based workload estimation model 

which provides a good estimate of workload healthcare demand for a relevant set of 

healthcare professionals for any particular patient based on his/her key attributes.  

The second phase is called, patient assignment. This phase can be executed with the 

help of healthcare demand estimation from the first phase and developing an optimization 
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model in which each patient is assigned to only one team with the respect to balancing 

supply and demand policy in healthcare system. It should be noted that the healthcare 

supply is the total available hours of profession time within a given period (typically a 

year) and it can be calculated easily based on the head counts and available service hours 

to patients from all professional lines. 

A good patient panel design and management methodology is even more critical for 

PCMH model than the traditional PCP model for the following reasons: 

• In the traditional single PCP model, the healthcare supply is the total available 

hours of physician time within a given period (typically a year) by a PCP, and the 

healthcare demand is the total requested physician hours generated by the patients 

in the panel. The healthcare supply can be treated as deterministic, and the 

healthcare demand as a random variable. In PCMH model, the healthcare supply 

is a portfolio of total available hours by various members in a team within a 

particular period, (e.g., total physician time, total nurse time, total clerk time, 

etc.), the healthcare demand is a portfolio of demand requested by the patients in 

the patient panel to PCMH team members, the healthcare supply is in the form of 

a deterministic vector, while the healthcare demand is in the form of a vector of 

random variables.  

• Even for a single PCP model, balancing healthcare supply and demand by panel 

design in order to optimize patient access and the continuity of care is a 

challenging task. For PCMH model, it is a portfolio of healthcare supply and 

demand that needs to be balanced in order to improve access, maintain continuity 
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and reduce the care cost. It is a much more challenging task and without a 

scientific patient panel design methodology, depending on the composition of 

patients in a PCMH patient panel, it is possible that some members of the PCMH 

team will get overly stressed, while other team members are under-utilized.  

• In PCMH model, the design of the professional mix in a team (that is, who is in 

the team) and team members staffing level (available hours of each team member) 

so that they match the healthcare demand portfolio generated from the patients in 

the panel is the key to its success. The desirable state of a PCMH team should 

have the following features: a) The workload generated by the patient panel 

should be spread evenly on PCMH team members; b) The amount of workload 

for each PCMH team member should be such that the work can be accomplished 

in a timely manner and each team member’s utilization rate is high.  

• In a medical facility that practices PCMH model, all primary care is performed by 

numbers of PCMH teams. Designing patient panels and allocating patient 

population to these multiple teams is a challenge, since the professional mix and 

staffing level of these teams must balance well with the total workload generated 

by the entire patient population of the medical facility.  

• In any medical facility, due to migration or death, some existing patients drop out 

from the patient set and some new patients add to the patient population. This 

necessitates that the patient panels be dynamically updated; and so too the PCMH 

team staffing levels (which is also susceptible to the similar migration forces).  

• The PCMH model can also be used in specialty care. However, specialty cares are 
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usually even more expensive, and the variation in workload generated by patients 

with various attributes is even higher. Thus, it is critical that this mismatch of 

supply and demand be minimized. 

In a nutshell, one of the key success factors for the patient centered medical home 

model is to achieve balance between supply and demand of healthcare services. The 

annual supply of healthcare services can be estimated relatively easily based on head 

counts and available service hours to patients from all professional lines. The estimation 

of demand of healthcare services is much more difficult and it can be estimated based on 

the statistical workload model in the first phase [20, 21] and finally the patients can be 

assigned to multiple teams by an optimization model. In fact, the PCMH is in practice 

even more difficult, since the optimization model has the stochastic nature and the 

stochasticity is due to healthcare demand source [22].  

1.2. Research Objectives 

1.2.1. Develop a statistical workload estimation model based on patient attributes 

In this research, we develop a multivariate hierarchical based portfolio prediction model 

that takes into account postulated attributes from different levels such as disease types 

(patient-level), years of experience of the assigned provider (team-level), and zip-code 

based distance between the patient’s home and his/her assigned facility (facility-level). 

We also want to propose an intensity score for panel size and staffing level adjustment 

used at different levels of hierarchy, as it would help decision makers on their PCMH 

team allocation and budget policy decisions. Finally, we seek to screen highly 

contributing risk factors to demand portfolio variations, since it would inform program 
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analysts on areas more likely affecting the care portfolio balance. 

To the best of our knowledge, our work is the first attempt to develop such a clinical 

portfolio prediction model for medical homes within the OR/MS community. Our 

contributions include extending the hierarchical generalized linear model to include 

multivariate response variables in a Bayesian framework, presenting a Markov chain 

Monte Carlo algorithm with novel prior specifications to fit the model, and utilizing our 

proposal on real data from VHA to produce findings that have key public and medical 

implications. Also our approach allows for passing heterogeneous variances and 

unstructured covariance matrices for the nested random effects as well as their 

interactions with responses and covariates simultaneously.  

1.2.2. Develop optimization-based models as the basis for patient allocation care  

With the help of the model developed in 1.2.1, we are able to estimate the 

annual workload demand portfolio for each patient with given attributes.  In this 

research together with the healthcare service supply data, and based on the 

principles of balancing supply and demand, we proposed a stochastic optimization 

model with recourse to assign the patients to different PCMH teams in second phase. 

Moreover, we used Progressive Hedging Algorithm (PHA) and L Shaped Benders 

Decomposition Algorithm (BDA) to solve the assignment problem in second phase, and 

finally we compare these two stochastic solutions with the deterministic solution and we 

reported the value of stochastic solution (VSS). Finally we compared PHA and BDA in 

our problem considering CPU time and their performance for different dimension of 
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problem. 

1.3. Dissertation Organization 

The dissertation is organized as follows. In chapter 2, we do literature review on 

Multivariate Multilevel Framework and Bayesian Variable Selection and then we discuss 

about STAR models and Hierarchical STAR models. Finally, in the later part of the 

Chapter 2 we propose our method in Multi-response Hierarchical STAR model and 

Bayesian Function Selection.  

In Chapter 3, we first describe the assumptions and stochastic optimization models for 

patient assignment and then we show the extensive form of our proposed model. Next the 

solution approaches such as Progressive Hedging and L Shaped Benders Decomposition 

and their application are introduced.  In chapter 4, first the data source and the attributes 

are described completely. With the help of proposed method in chapter 2, we did the 

model fitting and diagnostics on the mentioned dataset. Next, for patient assignment, we 

applied two solution approaches to the stochastic optimization model and then we 

compared the solutions with deterministic one. Finally the value of stochastic solution is 

reported. Conclusions and future studies are presented in Chapter 5 of the dissertation. 
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Chapter II Methodology for Phase I 

Many kinds of health care data, including clinical data, billing/claims data, and 

patient specific data, involve hierarchical (nested) or clustered structure. For example, in 

a study of assessing differences in mortality rates across hospitals, data is randomly 

collected on samples of patients nested within each hospital. In this application, there are 

two levels of the hierarchy (level-1 for patients and level-2 for hospitals), and for each 

level, a set of specific covariates is existed (such as age, gender, and severity of illness at 

the first level; and hospital size and hospital teaching status at the second level) that 

might have a relationship with the outcome. To handle these hierarchically structured 

data, multilevel models (also known as hierarchical linear models, variance components 

models, random-effect models, or split-plot designs) have been proposed and applied in 

different fields including psychometrics, biostatistics and econometrics [23]. The basic 

idea is to link the covariates at higher levels to the predictor variables at lower levels by 

imposing another set of regressions in which the lower-level (regression) coefficients are 

explained by higher-level predictors. 

The assumption of parametric form of covariates in the hierarchical linear model 

makes it rather restricted. For example, in longitudinal growth studies where repeated 

measures of the response variable (e.g., height) are clustered within individuals, the 

relation between age and height is often found to be exponential. To relax the linearity 

constraints, covariates with nonparametric structure (such as local regression or 

smoothing spline) or semi-parametric structure (such as partially linear model or 
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varying-coefficient models) can be incorporated in the multilevel framework at each level 

of the hierarchy [23]. One such extension is generalized additive mixed models, which 

enjoy the nonparametric properties of additive models and distributional flexibility of 

generalized linear mixed models. Another more recent class of this type is the 

hierarchical version of structured additive regression (STAR) models [24] that offers a 

broad and rich class of complex regression containing several important subclasses as 

special cases e.g., generalized additive mixed models,  state-space models for 

longitudinal studies, geo-additive models [25],  and varying-coefficient models [26]. 

As in many areas of statistical modeling and machine learning, the problem of 

variable selection (also known as feature selection, attribute selection, model selection, 

variable subset selection) has become an important issue in multilevel models. Variable 

selection often aims to choose a subset of relevant covariates from a possibly large set of 

candidates that might include many redundant or irrelevant features. Due to its practical 

importance, this problem has attracted many researchers from diverse fields, leading to a 

vast amount of literature on selecting predictors of regression models. Classical methods 

in this area basically relied on 1) 𝑝-value such as stepwise deletion or 2) information 

criteria like AIC, BIC, and more recently focused information criterion [27], among 

others. However such approaches usually suffer from lack of stability and perform poorly 

in selecting random effect components [28]. In addition, they involve a combinatorial 

optimization comparing 2!!! different models (𝑝 and 𝑞 are numbers of fixed and 

covariance parameters, respectively), which is 𝑁𝑃-hard and might be infeasible to solve 

even when 𝑝 + 𝑞 ≪ 𝑛 is fixed (𝑛 is sample size) [29]. To address such drawbacks, 
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regularization (or shrinkage) methods have been introduced that focus on selecting 

variables simultaneously with model estimation using some data oriented penalty 

functions. Popular examples may include the least absolute shrinkage and selection 

operator (Lasso) [30] or smoothly clipped absolute deviation (SCAD) [31] and 

modifications such as hierarchical or random Lasso. To get an overview of variable 

selection in linear models, see the review paper by [32]. Variable selection is also of great 

importance in high-dimensional data such as DNA microarray or functional MRI data 

(see [33] for a review). Likewise, various studies have been devoted to variable selection 

in nonparametric additive models and semi-parametric linear models (see, for example, 

[34] and [35]). Multivariate variable selection has also been studied in a number of 

researches such as [36] and [37].   

Compared to classical methods that are primarily based on Bayes factors, approaches 

for Bayesian variable selection are mostly built around spike-and-slab priors. The basic 

idea is to introduce a binary latent variable 𝐼! associated with each regression coefficient 

so that the variable is forced to be zero when 𝐼! is in the spike part, or keep unchanged if 

𝐼! is in the slab part. The posterior distribution of 𝐼! is then interpreted as marginal 

posterior probabilities for inclusion or exclusion of the respective covariate. See 

stochastic search variable selection (SSVS) of [38] and mixture of Zellner’s g priors of 

[39] as popular examples, and a recent review paper of O'Hara and Sillanpää (2009) [40].  

In multilevel models, however, the problem of selecting the random effects is more 

complicated since it involves boundary problems that can arise from either nonnegative 

constraints on fixed-effect parameters or positive semi-definite constraints on covariance 
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matrices. To date, approaches for variable selection in this class mainly pertain to linear 

(or generalized linear) mixed models such as generalized information criterion of Pu and 

Niu [29], and Bayesian methods of Spiegelhalter [41], among others (see [42] for a 

review).    

In contrast to variable selection, component (or function) selection deals with 

selecting an appropriate subset of covariates and, at the same time, determining whether 

linear or more flexible functional forms of covariates have to be chosen. Research on this 

area has started by [43] who proposed a group SCAD penalty for regularization in 

wavelets approximation. [44] developed the COSSO estimator in additive smoothing 

spline analysis of variance (SS-ANOVA) models with a fixed number of covariates. 

Recently, by extending the nonnegative garrote estimator [28], [45] developed a single 

step shrinkage approach method for function selection in generalized additive models. 

In this research, consistent with the idea of modeling multivariate outcomes in 

multilevel data structures [23] , we first extend hierarchical STAR models introduced in 

[24] to include multivariate response variables from the exponential family distribution. 

This way, we will be able to simultaneously model the relationship of several responses 

on a set of structured additive predictors accounting for possible correlation among the 

dependent variables. Then, we propose spike-and-slab priors for automatic variable 

selection and model choice within a Bayesian hierarchical framework similar to [46]. We 

apply our model to a real-world healthcare data obtained from the Department of Veteran 

Affairs (VA). The application analyzes Patient Centered Medical Home (PCMH) project 

data gathered from a large number of medical facilities during fiscal year 2011–12. 
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Separate data tables from 1) patient’s health conditions and care utilization, and 2) 

patient’s demographic information are first combined to form patient-level data. The 

patient-level data is further aggregated to the provider and station levels to help predict 

patient’s total care demands on primary and non-primary care on a yearly basis. By 

combining these multilevel data sources together, our proposal can assist health 

professionals in primary care management and the assignment of predicted healthcare to 

providers.          

2.1.  STAR models based on Bayesian P-splines 

Let 𝑦! , 𝑥! , 𝜈! , 𝑖 = 1,… ,𝑛, denote the 𝑖-th sampled vector in data, where 𝑦! is the 

response variable, 𝑥! = 𝑥!!, 𝑥!!,… , 𝑥!"
!
 is a vector of continuous covariates, and 

𝜈! = 𝜈!!, 𝜈!!,… , 𝜈!" ! is a vector of further (mostly categorical) predictors. Structured 

Additive Regression (STAR) models [46] assume that, given 𝑥! and 𝜈!, the distribution of 

𝑦! belongs to an exponential family 𝜋 𝑦! 𝑥! , 𝜈! ,𝜙 = 𝑐 𝑦! ,𝜙 exp !!!!!! !!
!

, where 

𝑏 ⋅ , 𝑐 ⋅ , 𝜃!, and 𝜙 are determined by the type of distribution. The conditional expected 

value 𝜇! = 𝐸 𝑦!|𝑥! , 𝜈!  is related to a semi-parametric additive predictor 𝜂! by 𝜇! = 𝑔 𝜂!  

via a fixed (known) link function 𝑔 ⋅  as in generalized linear models. The additive 

predictor 𝜂! has the form 

𝜂! = 𝑓! 𝑥!! +⋯+ 𝑓! 𝑥!" + 𝜈!!𝛾,                                                                               (2.1) 

in which 𝑓!,… , 𝑓! are unknown nonlinear (possibly smooth) functions of the continuous 

covariates, and 𝜈!!𝛾 represents the usual linear part of the model. Following the Bayesian 
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version of P(enalized)-splines [47], the unknown functions 𝑓! is approximated by a 

polynomial spline of degree 𝑟 defined over a set of (not necessarily equally spaced) knots 

𝑥!!"# = 𝜁!! < 𝜁!! < ⋯ < 𝜁!
!!!! < 𝜁!

!! = 𝑥!!"# within the domain of 𝑥!. The spline can be 

expressed in terms of a linear combination of 𝑀! = 𝑘! + 𝑟 B-spline basis functions 

evaluated at the observation 𝑥!, i.e.,  

𝑓! 𝑥! = 𝛽!"𝐵!" 𝑥!
!!
!!! .                                                                                                                                                                                                        (2.2)                                                            

Here 𝐵 ⋅ ’s are known basis functions and 𝛽! = (𝛽!!,… ,𝛽!!!)
! corresponds to a vector 

of unknown regression coefficients to be estimated. By defining the (𝑛×𝑀!) design 

matrix 𝑋! 𝑖,𝑚 = 𝐵!"(𝑥!"), the predictor (2.2) can be rewritten in matrix form as 

 𝜼 = 𝑿!𝜷! +⋯+ 𝑿!𝜷! + 𝑽𝜸,                                                                                      (2.3)  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   

where 𝑽 is the usual design matrix for linear effects. Within this unified framework, 

components of (2.2) can represent various types of model terms, such as 1) linear terms 

(𝑓! 𝒙 = 𝛽!𝒙!); 2) nominal or ordinal predictors (𝑓(𝑥!") = 𝛽!(!) iff 𝑥!" = 𝑘); 3) smooth 

functions of continuous covariates (splines, kriging effects, tensor product splines, etc.); 

4) Markov random field or its conditional specification, e.g. the conditional 

autoregressive model; 5) random effect models (cluster-specific intercept or slopes); and 

6) interaction terms between different effects (varying-coefficient models, effect 

modifiers). 

For a fully Bayesian inference when selection of variables (and functions) is not 

considered, a diffuse prior 𝑝 𝛾 ∝ 𝑐𝑜𝑛𝑠𝑡 is typically used for sampling from 𝜸. The 
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choice of priors for the unknown functions 𝑓!,… , 𝑓!, however, depends on the type of the 

covariate and the prior beliefs about smoothness. To avoid over fitting of a particular 

function 𝑓!, the smoothness priors can be written into a general form as 

𝑝 𝛽! 𝜏!! ∝
1
𝜏!!

!" 𝑲!      !

exp −
1
2𝜏!!

𝛽!
!𝐾!𝛽! ,                                                                                                                                (2.4) 

in which 𝑲! is a penalty matrix and 𝜏!! is the variance parameter. The goal of 𝑲! is to 

shrink smoothness parameters towards zero, or penalize unexpected jumps between 

adjacent 𝛽!’s. In most cases such as Gaussian random field 𝑲! is rank deficient (i.e., 

rk 𝑲! < 𝑀!), leading to partially improper prior for 𝛽!. The variance parameter 𝜏!! , 

controls the amounts of smoothness and is sampled by an uninformative (conjugate) 

inverse Gamma hyper priors 𝜏!! ∼ 𝐼𝐺 𝑎! , 𝑏!  normally with small choices for 𝑎! and 𝑏!.  

2.2.  Hierarchical STAR models 

When data are hierarchically structured in some levels, STAR models can be extended in 

a multilevel framework to account for possible correlations within units of a cluster (or a 

level) in the hierarchy. Such specification is usually expressed by imposing another 

regression model with structured additive predictors to the coefficient 𝜷𝒋 in (2.3) as  

𝜷! = 𝜼! + 𝜺! = 𝑿!!𝜷!! +⋯+ 𝑿!!!𝜷!!! + 𝑽!𝜸! + 𝜺! .                                                                                                        (2.5)                                                                      

Here it is assumed that 𝜺! ∼ 𝑁 𝟎, 𝜏!!𝐼  is a vector of i.i.d. Gaussian random variables, but 

more complicated forms such as Dirichlet process mixture can be applied. Modeling 

higher levels of the hierarchy are also straightforward by again setting another STAR 

equations to the parameters in (2.5) e.g., 𝜷!" = 𝜼!" + 𝜺!" , 𝑙 = 1,… ,𝑝! , 𝜺!" ∼ 𝑁 𝟎, 𝜏!"!𝐼  for 
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level-3 regression. In this way, the whole model can be seen as a hierarchy of 

complicated STAR models with (possibly) nonlinear and smooth terms. In some 

applications of hierarchical models, observations are clustered according to their spatial 

(or geographical) positions. For example, in our VA medical home study, 𝑥! may 

represent the district (or zip code) in which the patient lives. This way, 𝑥! represents a 

group indicator taking values of 𝑐 ∈ 1,… ,𝐶! . Then a regular way to model such cluster 

specific heterogeneity is to assume 𝑓! 𝑐 = 𝛽!" ∼ 𝑁 0, 𝜏!!  with design matrix 𝑋! being a 

0/1 incidence matrix of dimension 𝑛×𝐶!. Note that this approach is also taken when 

modeling random intercepts in multilevel structure. In other applications, we may like to 

study how the effect of a covariate is modified according to changes in the levels of a 

third variable. Such interactions can happen among the covariates at one given level or 

across multiple levels. As an instance in our case study, we are interested in how 

possessing a particular comorbid condition can moderate the relationship between 

patient’s age and healthcare demand. Here, it is presumed that 𝑥! is a two-dimensional 

term as 𝑥! = 𝑥!
(!), 𝑥!

(!) !
. If 𝑥!

(!) is continuous and 𝑥!
(!) is categorical, their interaction is 

modeled by 𝑓! 𝑥! = ℎ 𝑥!
(!) 𝑥!

(!), and the associated design matrix is given by 

𝑑𝑖𝑎𝑔 𝑥!
(!),… , 𝑥!

(!) 𝑋!
(!), in which 𝑋!

(!) is the usual design matrix for spline basis 

function evaluated at the observation 𝑥!
(!). If both covariates are continuous, a more 

flexible approach can be based on two-dimensional P-spline, in which the unknown 
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interaction surface can be approximated by the tensor product of the corresponding 

one-dimensional B-splines as:  

𝑥!
(!), 𝑥!

(!) = 𝛽!,!!!!𝐵!,!! 𝑥!
(!) 𝐵!,!! 𝑥!

(!)!!!
!!!!

!!!
!!!!

.                                        

The related design matrix 𝑋! is then 𝑛× 𝑀!! ⋅𝑀!!  and it consists of products of 

basis functions. The appropriate priors for 𝛽! = 𝛽!,!!,… ,𝛽!,!!!!!!

!
are commonly 

found in spatial statistics. 

Another common application in multilevel analysis is related to random slopes that 

appear when combining regression equations of higher levels with the lower levels to 

form a compound representation [23]. For example, in our case study of the VA medical 

home project, we would like to model the heterogeneity in the slope of relationship 

between healthcare demand and patient’s age among all PCMH teams. Then, a random 

slope with regard to index variable 𝑥!
(!), which indicates the teams here, can be 

incorporated as 𝑓! 𝑥! = ℎ 𝑥!
(!) 𝑥!

(!) with ℎ 𝑥!
(!) = 𝛽!" ∼ 𝑁 0, 𝜏!! . Following this, the 

design matrix 𝑋! is given by 𝑑𝑖𝑎𝑔 𝑥!
(!),… , 𝑥!

(!) 𝑋!
(!) where 𝑋!

(!) is a 0/1 incidence 

matrix.         

2. 3. Proposed methods  

2. 3. 1. Multi-response hierarchical STAR model 

When we want to simultaneously study multiple response variables, a multivariate model 

should be developed to capture additional correlation among different measurements. 

One key advantage of such modeling lies in its ability to control type I error rate better as 
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compared to carrying out a series of univariate tests. In the context of multilevel analysis, 

different responses can be incorporated by placing them in a separate ‘response’ level at 

the lowest level of the hierarchy. A series of 𝑑 dummy variables, one for each response, 

is then defined and entered into regression equations at higher levels. For simplicity, we 

first focus on three-level structure, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠(!) within 𝑝𝑎𝑡𝑖𝑒𝑛𝑡! within (medical home) 

𝑡𝑒𝑎𝑚!, with regular predictors, and then show how this can be extended to STAR 

context. A model with more than three levels is just a straightforward extension to what 

we propose here. 

Suppose there are 𝐻 response variables in the lowest level. We define 𝑑!!"
(!!) = 1 if 

response ℎ!-th is modeled and zero otherwise [23]. Let 𝑥!,!" and 𝑧!,! denote 𝑝-th and 𝑞-th 

covariate in the patient level and team level, respectively. Let 𝑢!,!
(!!) and 𝑢!,!

(!!) represent 

ℎ!-th random intercept and ℎ!-th random slope of the 𝑝-th predictor in the patient level, 

one-to-one. Then we model the outcome as  

𝑦!!" =

𝑑!!"
(!!)𝛽!

(!!)
!! + 𝑑!!"

(!!) 𝛽!
(!!)

𝑥!,!"!
!!!!! + 𝑑!!"

(!!) 𝛽!
(!!)𝑧!,!

!
!!!!! +

𝑑!!"
(!!)

!! 𝛽!,!
(!!)!

!!!
!
!!! 𝑥!,!"𝑧!,! + 𝑑!!"

(!!)
!! 𝑢!,!

(!!)𝑥!,!"!
!!! + 𝑑!!"

(!!)𝑢!,!
(!!)

!! +

d!"#
(!!)ε!"

(!!)
!!                                                                                                                                                                                                                                                                   (2.6)  
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𝑢!,!
!

⋮

𝑢!,!
!

⋮

⋮

⋮

𝑢!,!
!

∼ 𝑁 𝟎,Ω! , Ω! =

𝜏!!
! !

⋮

𝜏!!,!
!

⋮

⋮

⋮

𝜏!!,!
! !

⋯

⋱

⋯

⋯

𝜏!!
! !

⋯

⋱

⋯

⋯

⋱

⋯

⋯

⋱
⋯

𝜏!!,!
! !

⋮

𝜏!!,!
! (!)

⋮

⋮

⋮

𝜏!!
! !

              (2.7)                             

            

𝜀!"
!

⋮

𝜀!"
!

∼ 𝑁 𝟎,Ω! , Ω! =

𝜎!
!(!)

⋮

𝜎!
(!)(!)

⋯

⋱

⋯

𝜎!
(!)(!)

⋮

𝜎!
!(!)

                                           (2.8)      

The first term in (2.6) shows the grand mean for each of the response variable 

followed by patient level predictors and team level predictors; then cross-level 

interactions (effect modifiers) are included followed by random slopes and then random 

intercept terms; and at last patient level residuals. Note that there is no level-1 residual 

specified since level-1 exists only to define the multivariate structure. The random effects 

are defined in (2.7) with a general unstructured covariance Ω! that contains the pairwise 

covariances between each set of these random effects for the intercept and slopes within 

each of the responses and between the response variables. The patient level residuals are 

defined in (2.8) with covariance structure Ω! that would include all variances and 

covariances between patient level residuals. Taking a matrix form, we can rewrite (2.6) as  
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𝑦!!" = 𝑑!!"
(!!)

!! 𝒁!!𝕭(!!)𝑿!" + 𝑑!!"
(!!)𝑼!

(!!)!𝑿!"!! + 𝑑!!"
(!!)𝜀!"

(!!)
!! ,                          (2.9)                                          

where we have   

𝒁! = 1, 𝑧!,! ,… , 𝑧!,!
! ,𝑿!" = 1, 𝑥!,!" ,… , 𝑥!,!"

! ,𝑼!
(!!) = 𝑢!,!

(!!),𝑢!,!
(!!),… ,𝑢!,!

(!!) !
        (2.10)       

𝕭(!!) =

𝛽!
(!!)

𝛽!
(!!)

⋮

𝛽!
(!!)

𝛽!
(!!)

𝛽!,!
(!!)

⋮

𝛽!,!
(!!)

⋯

⋯

⋯

𝛽!
(!!)

𝛽!,!
(!!)

⋮

𝛽!,!
(!!)

  .                                                                        (2.11)  

Note that 𝛽!
(!!)

,… ,𝛽!
(!!)

 in the first row of (11) show regression coefficients for patient 

level predictors while 𝛽!
(!!),… ,𝛽!

(!!) placed in the first column of (2.11) indicate 

coefficients for team level variables.   

To extend this within the STAR framework where the covariates are represented by a 

linear combination of B-splines basis functions, we simplify (2.6) for a particular 

outcome ℎ! as 

𝑦!!"
(!!) = 𝛽!

(!!) + 𝛽!
(!!)

+ 𝑢!,!
(!!) 𝑥!,!"!

!!! + 𝛽!
(!!)𝑧!,!

!
!!! + 𝛽!,!

(!!)!
!!!

!
!!! 𝑥!,!"𝑧!,! +

𝑢!,!
(!!) + 𝜀!"

(!!)      for  ℎ! = 1,… ,𝐻  .                                                                                                                                                                                          (2.12)                                                                                                                                 

We assume that, for response ℎ!, patient level covariate 𝑥!,𝑝 = 1,… ,𝑃 is represented by 

a set of 𝑀!
(!!)

= 𝑘! + 𝑟 polynomial spline of degree 𝑟 over 𝑘! + 1 knots  𝜁!!
(!!) <

𝜁!!
(!!) < ⋯ < 𝜁!

!!(!
!)

. Similarly, team level predictor 𝑧! , 𝑞 = 1,… ,𝑄 is represented by 
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𝑀!
(!!) = 𝑘! + 𝑟 polynomial splines of degree 𝑟 over a domain. Hence, a hierarchical 

STAR model with a multivariate response has the form   

𝑦!!"
(!!) =

𝛽!
(!!) + 𝛽!!!

(!!)
+ 𝑢!!,!,!

(!!) 𝐵!!!
(!!)

𝑥!,!"
!!

(!!)

!!!!
+!

!!! 𝛽!!!
(!!)!!(!

!)

!!!!
𝐵!!!
(!!)!

!!! 𝑧!,! +

𝛽!!!!!"
(!!)!!(!

!)

!!!!
!!

(!!)

!!!!
!
!!!

!
!!! 𝐵!!!

(!!) 𝑥!,!" 𝐵!!!
(!!) 𝑧!,! + 𝑢!,!

(!!) + 𝜀!"
(!!), ℎ! =

1,… ,𝐻                                                                                                                                                                                                                                                                              (2.13)          

          

𝑢!,!
!

⋮

⋮

⋮

𝑢
!!

(!)
,!,!

!

∼ 𝑁 𝟎,Ω! , Ω! =

𝜏!!
! !

⋮

⋮

⋮

𝜏!
!, !!

!
,!

! !

⋯

⋱

⋯

⋯

⋱

⋯

⋯

⋱

⋯

𝜏!
!, !!

!
,!

! !

⋮

⋮

⋮

𝜏!
!!

!
,!

! !

                                (2.14)                         

                   

𝜀!"
!

⋮

𝜀!"
!

∼ 𝑁 𝟎,Ω! , Ω! =

𝜎!
! !

⋮

𝜎!
! !

⋯

⋱

⋯

𝜎!
! !

⋮

𝜎!
! !

                                                                                                              (2.15)      

In (13), 𝐵 ⋅  and 𝛽 ⋅  represent basis functions and B-spline coefficient, respectively. 

Random effect splines are defined in (2.14). For a particular outcome, the patient level 

random effects present each patient’s deviance from the average intercept 𝑢!,! and from 
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the average slope of each the splines 𝑢!,! ,… ,𝑢!!,!,! . The patient level covariance 

matrix includes the pairwise covariances between each set of spline random effects for 

the intercept and slopes within each of the response variables as well as between the 

response variables. The patient level residuals are defined in (2.15) with covariance 

structure Ω!. Although covariances described in (2.14) and (2.15) are in general 

unstructured format, special forms such as Toeplitz or Kronecker type structure can be 

taken based on different applications.  

Following section 2.2, the interaction effect between patient level and team level 

covariates is modeled with varying coefficient ℎ 𝑥!,!" 𝑧!,! if 𝑧 is categorical, or through 

nonparametric two dimensional surface fitting of 𝑓 𝑥!, 𝑧!  by the tensor product of two 

univariate B-splines as in (2.13) if 𝑧 is continuous. If variable selection is not looked at, 

the most commonly used priors for the latter case is established on the next four nearest 

neighborhood on a regular lattice as    

         

𝛽!!!!!"
(!!) ⋅  ∼ 𝑁 !

!
𝛽(!!!!)!!!"
(!!) + 𝛽(!!!!)!!!"

(!!) + 𝛽!!(!!!!)!"
(!!) + 𝛽!!(!!!!)!"

(!!) ,
!!"
!(!!)

!
     

(2.16) 

for 𝑚! = 2,… ,𝑀!
(!!)

− 1,𝑚! = 2,…𝑀!
(!!) − 1, that can be seen as a direct 

generalization of a first-order random walk in one dimension. Other types of priors such 

as Kronecker product of penalty matrices of the main effects 𝑲!",! = 𝑲!,!⨂𝑲!,! can also 

be applied [48]. 
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2. 3. 2.  Relationship with a structural equation model 

Here we show how the multilevel spline model with a multivariate response can 

equivalently be represented and estimated in the structural equation modeling framework. 

For simplicity we choose a model with only level-2 predictors, but this can be extended 

to more general cases with higher-level predictors and possible interactions such as the 

one we developed in previous section. In addition, we pick the linear spline model as a 

special case to help better understand the approach, but this can easily be generalized to 

other types of splines like the one we exploit in this paper. 

Generally structural equation models (SEM) involve two specific parts with distinct 

objectives: a measurement equation and a structural equation [48]. In the measurement 

equation, each of the responses 𝑦!
(!!) loads on the latent variables 

𝑓!
(!!),𝑚 = 0,1,… ,𝑀(!!). The intercept term for response ℎ! is 𝑓!

(!!) and the loadings for 

any of the measurements 𝑦!
(!!) on this latent variable are 1. The other 𝑀(!!) factors serve 

as the slopes for each piece on domain 𝑥! defined by the linear splines  

   𝑠!,!"
(!!) =

0

𝑠!" − 𝑠 !!! ,!
(!!)

𝑠!,!
(!!) − 𝑠 !!! ,!

(!!)

        if  𝑠!" ≤ 𝑠 !!! ,!
(!!)

                                  if  𝑠   !!! ,!
(!!) < 𝑠!" ≤ 𝑠!,!

(!!)

if  𝑠!" > 𝑠!,!
!!

                           (2.17)                              

Applying the same 𝑀(!!) + 1 pieces, 𝑚 = 0,1,… ,𝑀(!!), as above, the measurement 

equation can be written as 



 
 

26 

 

𝑦!
(!!) = 𝑓!

(!!) + 𝑠!,!
(!!) − 𝑠 !!! ,!

(!!) 𝑓!
(!!)

!:!!,!
!! !!!"

+ 𝑠!" −!:! !!! ,!
(!!) !!!"!!!,!

(!!)

𝑠 !!! ,!
(!!) 𝑓!

(!!) + 0𝑓!
(!!)

!:! !!! ,!
(!!) !!!"

+ 𝜀!
(!!), for  ℎ! = 1,… ,𝐻; for  𝑝 = 1,… ,𝑃.                                                        

(2.18) 

It is noticed that any rescaling of (2.18) proportional to the loadings can be employed as 

well. To see how this is equivalent to multilevel spline model, an additional subscript 

showing patients, 𝑖, is included and 𝛽!,!
(!!) + 𝑢!,!"

(!!)  is substituted for each of the 𝑓!
(!!). 

This gives    

𝑦!"
(!!) =

𝛽!
(!!) + 𝑢!,!"

(!!) + 𝑠!,!
(!!) − 𝑠 !!! ,!

(!!) 𝛽!,!
(!!) + 𝑢!,!"

(!!)
!:!!,!

(!!)!!!"
+

𝑠!" − 𝑠 !!! ,!
(!!) 𝛽!,!

(!!) + 𝑢!,!"
(!!)

!:! !!! ,!
(!!) !!!"!!!,!

(!!) + 0 𝛽!,!
(!!) +

!:! !!! ,!
(!!) !!!"

𝑢!,!"
(!!) + 𝜀!"

(!!)      

= 𝛽!
(!!) + 𝑢!,!"

(!!) + 𝑠!,!"
(!!) 𝛽!,!

(!!) + 𝑢!,!"
(!!)!(!!)

!!! + 𝜀!"
(!!)  , for  ℎ! = 1,… ,𝐻; for  𝑝 =

1,… ,𝑃                                                                                                                      (2.19)                                                                                                                               

which can be derived from (2.13) with spline 𝐵 ⋅  defined in (2.17) and excluding terms 

that contain level-3 covariates 𝑧!’s.  

The structural equation of the SEM characterizes the mutual relationships between 

the factors. It can be shown that the coefficient for the univariate relationship between 

any two factors, 𝑓!!
(!!) regressed on 𝑓!!

(!!) is identical to that between two random effects 

𝑢!!,!
!!  and 𝑢!!,!

!!  by substituting 𝛽!,!
(!!) + 𝑢!,!

(!!)  for each of the 𝑓!
(!!) as               
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                𝛽!!!!
!! !! =

!"# !!!
(!!),!!!

(!!)

!"# !!!
(!!) =

!"# !!!,!
(!!) !!!!,!

(!!) ,!!!,!
(!!) !!!!,!

(!!)

!"# !!!,!
(!!) !!!!,!

(!!) =
!"# !!!,!

(!!) ,!!!,!
(!!)

!"# !!!,!
(!!) =

!!!!!,!
(!!)(!!)

!!!,!
!(!!) ,                                                       (2.20) 

in which the numerator and denominator can be found from (2.14). Similarly, other 

regression coefficients derived from the relationship between factors can be demonstrated 

to be equal to those between random effects. 

A number of works have investigated the equivalence of linear multilevel models and 

SEMs in the literature [49]. Yet, it should be pointed out that nonlinear multilevel models 

and generalized linear multilevel models do not always have identical parameterization 

within the SEM framework. Our goal here is to provide a basis for replacing a 

multivariate linear multilevel spline model with a standard SEM so that specific strengths 

of SEM analysis can be captured and they might help improve upon our multilevel 

analysis. Examples of such strengths may include ability to explicitly model 

measurement errors through multiple indicator latent factors, and testing within-level and 

across-level mediation, which are not straightforward in multilevel analysis. Also our 

attempts here can further be utilized in a way to parameterize and estimate generalized 

STAR models within a standard SEM framework.        

2. 3. 3.  Bayesian function selection 

In real world data sets with complex hierarchical structure, choosing a suitable subset 

among many potential predictors and at the same time determining their appropriate 

shapes (smooth vs. linear) and interaction effects is a challenging and important task. For 

example in our case of the VA medical home study, we want to select a small group from 
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a set of 30 comorbidity indicator variables and to decide whether the effect of patient’s 

age and patient’s care assessment need score on the response variables are nonlinear or 

linear, whether an interaction between age and some of the comorbidities is required, and 

whether a district-specific heterogeneity arising from the location of medical facilities is 

necessary. To this end, we apply spike-and-slab prior structure for selecting single effect 

variables as well as grouped coefficients combined with smoothing parameters that 

represent particular model terms. The main idea of such an approach is to assume a 

mixture prior for each 𝛽! = (𝛽!!,… ,𝛽!!!)
! with one part being a narrow spike around the 

origin that imposes very strong shrinkage on the coefficients and the other part being a 

wide slab that forces very little shrinkage on the coefficients [50] . The posterior mixture 

weights for the spike (or slab) component of a specific coefficient or coefficient batch can 

be interpreted as the posterior probability of its exclusion from (or inclusion in) the 

model. 

According to Section 3.1, we note that any multi-response hierarchical STAR model 

of form (13) can be written in a unifying form 𝒚 = 𝜼+ 𝜺 where 𝜼 = 𝜼! + 𝑿!𝜷! +⋯+

𝑿!𝜷! with 𝜼! showing offset terms (e.g., grand means of multivariate responses) and 

effects that are not under selection procedure. Then the conventional spike-and-slab prior 

structure is given by the following hierarchical Bayesian model   

𝛽! 𝛿! ,𝜌!!  
prior

~ 𝑁 0, 𝜐!!   with  𝜐!! = 𝜌!!𝛿! , 

                                                     𝛿! 𝜔  
prior

~ 𝜔𝐼! 𝛿! + 1− 𝜔 𝐼!! 𝛿! ,                                         
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                                                         𝜌!!  
prior

~ Γ!! 𝑎!, 𝑏! , 

                                                   and  𝜔  
prior

~ Beta 𝑎! , 𝑏! .                                          (2.21) 

This structure is called Normal-mixture of inverse Gammas (NMIG) prior that places a 

bimodal prior on the hyper-variance 𝜐!! of the coefficients that leads to a spike-and-slab 

type prior on the STAR coefficient themselves. 𝐼! ⋅  is an indicator function that takes 1 

in 𝑧 and zero otherwise and 𝑣! is a very small positive constant. This way, 𝛿 will be 1 

with probability 𝜔 and close to zero with probability 1− 𝜔 . Hence, the implied prior 

for (hyper-) variance 𝜐!! is a bimodal mixture of inverse Gamma distributions, with one 

part focused on very small values—the spike with 𝛿! = 𝑣!—and a second diffuse part 

with more mass on larger values—the slab with 𝛿! = 1. The mixture weights 𝜔 , in 

addition, follows a Beta prior that captures any prior knowledge about the sparsity of  

coefficient 𝛽! [46]. 

It is found that prior structure (2.21) does not work well for coefficient batch in the 

STAR models which are associated with spline basis functions or random effects. Briefly, 

the problem is that a small hyper-variance for a batch of coefficient entails small 

coefficient values and vice versa. This problematic dependence between a vector of 

coefficients and their associated hyper-variances causes MCMC sampler unlikely to 

switch between basins of attraction around the two spike and slab modes. To reduce the 

dependence, a multiplicative parameter expansion for 𝛽! is recommended that improves 

the mixing properties of 𝛿! and boosts the shrinkage characteristics of the resulting prior 
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compared to (21). The idea is to expand 𝛽! as 𝜷! = 𝛼!𝚵! where scalar 

𝛼!
prior

~ NMIG 𝑣!,𝜔,𝑎!, 𝑏!  is given as (2.21) and it is independent of  𝚵!. Elements of the 

𝑀!-dimensional vector 𝚵! are then assigned as  

 𝚵!" 𝑟!" ∼ 𝑁 𝑟!", 1 ,            𝑟!" ∼ !
!
𝐼! 𝑟!" + !

!
𝐼!! 𝑟!" ,      𝑗 = 1,… ,𝑝;𝑚 = 1,… ,𝑀!     (2.22)            

which corresponds to a mixture of two i.i.d Gaussian density with mean  ±1 and equal 

mixture weights. The current approach resolves the mixing problems of 𝛿! since the 

Markov blankets of both 𝛿! and 𝜌! now includes only 𝛼! of dimension one instead of the 

vector 𝜷!.  

The MCMC posterior inference and component selection is performed by a 

block-wise Metropolis-within-Gibbs sampler which reduces to a standard Gibbs scheme 

when responses are Gaussian (see the Appendix). The full conditional densities (FDC) 

for parameters 𝜔, 𝜌!!, 𝛿!, and conditional means 𝒓 = 𝑟!!, 𝑙: 1,… ,ℒ  of normal variables  

Ξ 𝑟! ∼ 𝑁 𝑟! , 1 , 𝑟! = ±1 are given in closed form regardless the choice of exponential 

family for the responses (see the Appendix). The full conditionals of 𝜶 and  𝚵 are based 

on the conditional design matrices 𝑿! = 𝑿blockdiag 𝚵!,… ,𝚵!  and 

𝑿! = 𝑿blockdiag 𝟏!!,… ,𝟏!" 𝜶, where 𝟏! is a 𝑒×1 vector of ones and 𝑿 = 𝑿!,…𝑿!  

is the concatenation of the designs for the model terms as in (2.2). Under the Gaussian 

assumption of the responses, these are given as follows 

𝜶| ⋅  ∼ 𝑁 𝝁! ,𝚺!   where  

                                            𝚺! =
!
!
𝑿!!𝑿! + diag 𝜹𝝆! !!

!!
,𝝁! =

!
!
𝚺!𝑿!!𝒚	  	  	  	  	  	  	  	  (2.23)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   
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and  

𝚵| ⋅  ∼ 𝑁 𝝁!,𝚺!   where  

                                            𝚺! =
!
!
𝑿!!𝑿! + 𝐈

!!
,𝝁! = 𝚺!

!
!
𝑿!!𝒚+ 𝒓 .             (2.24)                             

If the response variables are not Gaussian, the penalized iteratively reweighted least 

squares (P-IWLS) is used within a Metropolis-Hastings iteration to sample from 𝜶 and 𝚵 

[46]. The posterior inclusion probability 𝑃 𝛿! = 1 𝒚  can then be employed to decide 

upon insignificant, intermediate, and important model terms.   

2. 4.   Model Specification 

The PCMH data is hierarchically organized into three nested levels as shown in Fig.3, 

where patients are grouped within PCMH teams, and teams are in turn nested within VA 

facilities. Note that PCMH teams are tied to facilities, i.e., a specific team cannot work at 

different facilities (teams are nested within facilities). Risk factors can be associated with 

the response variables at each level while patients from the same team (facility) may have 

more similar outcomes than patients chosen at random from different teams (facilities). 

For example, we can study the effects of age (patient-level), PCMH assigned provider’s 

experience (team-level), and type of hospital (facility-level) on the outcomes with nested 

sources of variability. This setting, in addition to health services research, may happen in 

many other applications such as educational studies where students are nested within 

schools and successively within school district. It has been shown that ignoring a level of 

hierarchy in a data can greatly influence the estimated variances and sensitivity, can 

seriously inflate Type I error rates [51], and also can result in errors in interpreting the 
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results of statistical significance tests [52]. As such, multilevel statistical models have 

been proposed to appropriately analyze the hierarchical (correlated) nesting of data, 

taking into account the variability associated with each level of the hierarchy [52]. 

 

 

 

 

 

 

 

 

Figure 3 Data structure for PCMH hierarchical model 

 
To simplify, we begin by creating a univariate 2-level generalized linear model 

(GLM) that predicts the primary care RVU (PCRVU) in each PCMH team with one 

patient-level (age) and one team-level (assigned provider’s experience) predictors. The 

level-1 model would look like 

 yi  j = β0 j +β1 jΧ i  j + ei  j                                                                                              (2.25)                                                

where  i jy  is the PC workload for patient i in PCMH team j with an exponential family 

density of form 
( )( | , ) ( , )exp y bf y x c y θ θ

φ φ
φ

⎧ ⎫−
= ⎨ ⎬

⎩ ⎭
, 0 jβ  is the average PC workload 

generated in team j,  i jΧ  is the patient-level predictor (age) for patient i in team j, and 

··· Facility k=1 

Team 
j=1 

Team 
j=J1 

··· 

Facility k=n 

Team 
j=1 

Team 
j=Jn 

··· 

1           2···         I11         1            2···          IJ1              1           2···          I1n         1           2···          
IJn 



 
 

33 

 

1 jβ  is its coefficient or slope. The parameters θ  and φ  are called canonical (natural) 

parameter and scale (dispersion) parameter, respectively. Also ( )c ⋅  and ( )b ⋅  are 

determined by the type of (conditional) distribution under study. This way, we assume 

that each team has a different (varying) intercept coefficient and a different (varying) 

slope coefficient. These team-specific coefficients can be specified as either fixed effects 

or random effects. Treating them as fixed effects, however, leads to a large number of 

parameters with often very poor estimation results. A more conservative way is to think 

of them as random variables being modeled by some (level-2) hyperparameters. The last 

term,  i je , is the patient-level error term which is assumed to be normally distributed with 

covariance structure R. Unlike most methods in the literature, which suppose that the 

residual variation is the same at the 2-level (teams) and/or the upper levels of hierarchy, 

we allow unequal variations of the residual to be passed not only on various levels of the 

hierarchy but also on different response variables.  

The next step is to explain the variation of the (level-1) regression coefficients 

introducing explanatory variables at the team level like 

0 00 01  

1 10 11 1    .
j j o j

j j j

Z u
Z u

β γ γ

β γ γ

= + +

= + +                                                                                             (2.26)
 

In this equation, 00γ  is the grand mean of PC workload across patients and across PCMH 

teams, 10γ  is the average effect of the patient-level predictor (age) across all teams, jZ is 

the team-level predictor (assigned provider’s experience) for team j, 01γ  and 11γ  are its 

(level-2) intercept and slope regression coefficient, and the u -terms are random errors at 
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the team level, which are assumed to be normally distributed with covariance G. Similar 

to the R-side covariance matrix, we let these level-2 random errors have unequal 

variances and also leave them free to be correlated with each other. It is worth pointing 

out that Zj in the second line of (2.26) acts as a moderator for the relationship between 

workload and patient age at level-1 analysis; that is, the relationship varies according to 

the value of the moderator variable. Following the same logic, we can extend this model 

to add further hierarchies at the facility-level, at the regional level, and so on.   

Now a multivariate generalization of this hierarchical GLM is proposed in which both 

PC and Non-PC workloads are predicted simultaneously. There are several advantages of 

using a multivariate approach instead of univariate method [21]. One is that the 

multivariate analysis can better control the type I error rate compared to carrying out a 

series of univariate statistical tests. Second, this approach can shrink the prediction 

interval of the dependent variables to a large extent when compared to predicting one of 

them in isolation. Also using a multivariate scheme, the covariance structure of the 

responses can be decomposed over the separate levels of hierarchy, which can be of 

much value for multilevel factor analysis.  

Suppose we have P response variables and let Yhijk be the workload on outcome h 

(PC or Non-PC workload here) of patient i in PCMH team j and facility k. Here we put 

the measures (responses) on the lowest level of hierarchy, and represent the different 

outcome variables by defining P dummy variables like  

    

1     
    .

0    p h i j k

p h
d

p h
=⎧

= ⎨
≠⎩                                                                                             (2.27)
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Then we formulate the lowest level as  

   1   1 1   2   2 2          ...    ,h i j k i j k i j k i j k i j k p i j k p p i j kY d d dπ π π= + + +                                     (2.28) 

in which neither the usual intercept nor the error term exists as before. The reason for this 

is that we solely serve the lowest level as a way to define the multivariate structure using 

dummy variables. Then following (2.25), we may use π -terms to employ regression 

equations at the patient level  

    0   1        p i j k p j k p j k p i j k p i j kX eπ β β= + +                                                                      (2.29)	  

in which a separate index is utilized for denoting the dependent variable of interest. It is 

noted that with this approach one can fit different intercepts and slopes for different 

response variables and allow them to vary across any levels of hierarchy. Following 

(2.26), at the team level, we can have 

 0   0 0  0 1   0  

 1   1 0  1 1   1      ,
p j k p k p k j k p j k

p j k p k p k j k p j k

Z u
Z u

β γ γ

β γ γ

= + +

= + +                                                                   (2.30)
 

where we introduce our 2-level predictors (level-1 moderators) along with random 

intercepts and slopes and finally link them to the facility level equations by   

 0 0  0 0 0  0 0 1  0 0 

 0 1  0 1 0  0 1 1  0 1 

 1 0  1 0 0  1 0 1  1 0 

 1 1  1 1 0  1 1 1  1 1       .

p k p p k p k

p k p p k p k

p k p p k p k

p k p p k p k

W u
W u
W u
W u

γ λ λ

γ λ λ

γ λ λ

γ λ λ

= + +

= + +

= + +

= + +

                                                                   (2.31)     

Keeping on this way, one can straightforwardly extend the model to include more 

predictors at each level and study the effects of fixed and random parameters at any given 
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point. Another advantage of such modeling is that we can impose an equality constraint 

across all response variables to build a specific relation with certain effects. For example, 

we can force level-1 regression coefficients for p=1 (PC workload) and p=2 (Non-PC 

workload) to be equal by adding the constraint 1 1  2 1  j k j kβ β= . This makes the new 

model nested within the original model, and thus we can test whether simplifying the 

model is justified, using a chi-square test on deviances. Plus, if the predictor has random 

components attached to it, a similar approach would apply to the random part of the 

model.  

At this point, we specify the structure of random components in the model. As shown, 

we have two random parts in our method: first is the level-1 residual errors as appear in 

(2.29) by e -terms, and second relates to (higher level) varying intercepts and slopes 

introduced by u -terms in (2.30) and (2.31). We denote the covariance matrix of the 

former as R and the latter as G and then assume that both are normally distributed with 

   E

Var      .

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

u 0
e 0

u G 0
0 Re                                                                                              (2.32)

 

As illustrated, the residual and random parameters are independent having zero means. 

Generally G and R matrices are large and square with dimensions equal to the number of 

random coefficients and residuals. While several structures such as spatial or compound 

symmetry can be thought to formulate those, here we propose an unstructured 
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parameterization tactic by taking the Kronecker product of their decomposed matrices, 

named Parametric and Structured, as 

2 2           .
⊗⎡ ⎤

⎢ ⎥= ⊗⎢ ⎥
⎢ ⎥⎣ ⎦

1 1P S 0 0
G 0 P S 0

0 0 O                                                                         

(2.33) 

At the moment we focus on G decomposition, but a same logic is applied to R. In (2.33), 

⊗  shows the Kronecker (direct) product; P -terms represent the Parametric part, which is 

low dimension and needs to be estimated by data; S -terms stands for Structured part, 

which is typically high dimensional and assumed as known; and zero-off diagonals 

express the independence among components (see [53] for use of Kronecker product in 

modeling covariance structures). Note that in its simplest case such as general linear 

models, where the Parametric matrix is reduced to scalars and the Structured part is taken 

as identity matrices, equation (2.33) will reduce to the previously known formula 

2σ= ⊗G P S = I. Thus we can imply (2.33) as a generalization for covariance functions 

of other linear statistical models.    

To better describe the structure in (2.33), we present examples from our case study. 

Suppose that we are interested to know whether the identity of a VA facility introduces 

dissimilar amounts of workload variations. Thus we may construct the top left part of 

(2.33) like             

,

,

σ σ
σ σ

⎡ ⎤
⎢ ⎥⊗ = ⊗
⎢ ⎥
⎣ ⎦

2

PCRVU PCRVU Non-PCRVU
Facility Facility 2

Non-PCRVU PCRVU Non-PCRVU

P S I

                            (2.34)
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which permits heterogeneous variances across workloads (main diagonal) along with 

their possible correlation (off-diagonal), and further postulates that the facilities are 

independent to each other (with the identity matrix). So at the worst case for fitting 

(2.34), we need 3 degree-of-freedom (DF) to estimate three different elements from the 

parametric matrix. Further, we may suspect that it is better to fit age (level-1 predictor) 

with varying intercept and slopes presented by different teams as      

,

,

σ σ
σ σ

⎡ ⎤
⎢ ⎥⊗ = ⊗
⎢ ⎥
⎣ ⎦

2

(Intercept) (Intercept) Age
Team Team 2

Age (Intercept) Age

P S I                                                  (2.35)                                   

where the (1:1) element is the amount of variation in regression intercepts among 

different teams, the (2:2) element is the amount of variation in regression slopes 

introduced by the patient age across teams, and as before the identity matrix expresses the 

independence among PCMH teams. Here the model specification is completed and in the 

next part we explain the model fitting and inference in a Bayesian framework. 

2. 5. Estimation and Inference   

Before describing model inferences, we give another but equivalent description of our 

proposal. By substituting equation (2.26) into equation (2.25) and rearranging the terms, 

we have 

 00 10  01 11  1    i j i j j i j j j i j o j i jy Z Z u u eγ γ γ γ= + Χ + + Χ + Χ + +                                        (2.36)    

in which two distinct segments can be implied: the first is 

00 10  01 11  i j j i j jZ Zγ γ γ γ⎡ ⎤+ Χ + + Χ⎣ ⎦ , which we call the deterministic part, and the second 



 
 

39 

 

is 1    j i j o j i ju u e⎡ ⎤Χ + +⎣ ⎦ , which we call the stochastic part. That way, the moderator effect 

of (26) is expressed as cross-level interaction  i j jZΧ  and the multiplication 1  j i ju Χ

directly reveals that the error is different for different values of  i jΧ  (heteroscedasticity). 

Taking a matrix form, we may rewrite the right-hand-side of (2.10) as = Xγ +Wεη , 

where X  and W are the design matrices for deterministic and stochastic parts. Then the 

left-hand-side of (2.10), conditional on the stochastic, shapes a GLM response of 

( )g E ⎡ ⎤⎣ ⎦Y ε , where ( )g ⋅  is a differentiable monotonic link function that allows the 

outcomes to possess any member of the exponential class of distributions. Now assuming 

a density function of ( ; )p p pq υε for the stochastic part of the pth response variable (

1,2, ,p P= ⋅ ⋅ ⋅ ), we can make inferences about the unknown parameters by maximizing 

the marginal likelihood 

1

( , , | ) ( | , ) ( ; )     ,
P

p p p p p p p p

p

L f q dυ φ θ φ υ
=

= ∏∫γ Y Y ε ε                                         (2.37) 

where 1 2, , , P⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦γ γ γ γ  is the vector of deterministic coefficients, ( ; )p p pq υε  is a 

multivariate Gaussian distribution of dimension  P with mean zero and 

variance-covariance pυ , and pφ and pθ  are the GLM scale and canonical parameters, 

respectively.  

Generally two basic methodologies have been expressed in the literature for 

optimizing a univariate version of (2.37): the first one tries to approximate the model 

based on linearization and pseudo-data with fewer nonlinear components, such as the 
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pseudo-likelihood technique [54]. The second category consists of integral approximation 

methods that attempt to approximate the log likelihood of (2.37), such as adaptive 

Gaussian quadrature [55]. But both approaches have some key drawbacks that, we think, 

cause them inappropriate for our study context. For example, a true objective function for 

the overall optimization does not exist in the first class; thus it potentially produces 

estimates that are inconsistent under standard (small domain) asymptotic assumptions. 

Additionally, the bias size can be substantial in the case of major variance components or 

few observations per participant. Similarly, methods in the second approach cannot 

accommodate R-side covariance structure such as over dispersion parameter. These 

problems also become more crucial when more than one outcome needs to be estimated 

[54].  

Due to this, we decide to put forward a Bayesian framework that utilizes an exact 

maximum likelihood approach by numerical integration techniques. To this end, we need 

to first determine suitable priors for the parameters of interest then employ a 

simulation-based integration technique, such as Metropolis-Hastings or slice sampling, to 

iteratively sample the posterior until convergence. Afterwards, generated samples are 

used to estimate the approximate expectations of quantities of interest. However, setting 

up the appropriate priors can greatly affect inference about posteriors, because in many 

cases, diffuse priors and/or improper priors lead to improper posteriors upon which no 

valid inference can be made [56]. Accordingly, for the deterministic coefficient vector 

pγ , we use a Gaussian prior of form ( )0 ,N γ Γ . Moreover, to sample from η , since its 

distribution cannot be identified, we apply the Metropolis-Hastings update of Damlen et 
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al. [57]. In summary, the method is updating η  in some blocks; each consists of groups 

of residuals expected to have some form of residual co-variation as defined by the R 

structure. That way, the conditional density of pη  is formulated as 

( | ; , ) ( | ) ( | , )p p p p p p p
l i i i N l l

i l

f p fη
∈

∝∏Y γ ε Y e 0 Rη
                                                 (2.38)

 

where l stands for blocks of pη with non-zero residual covariances, p
Nf  indicates a 

conditional multivariate normal distribution for the linear predictor residuals, and 

( | )p p
i i ip ηY  is the probability of data point p

iY (from pth outcome) with linear predictor 

p
lη .  

In order to update the parameter vector T T T,p = [ ]γ ερ , the single-block Gibbs 

sampler of García-Cortés, Sorensen [26] is applied. Essentially, the method solves the 

sparse linear system of 1 T 1
 (1 )p p p− −
∗ ∗= −M R M e%ρ ρ −Α  using Cholesky decomposition 

technique. In the formula, Α  is the coefficient matrix of form 

1
T 1

1

−
−

−

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦

0
M R M

0 G
Γ

Α , in which = [  ]M X W  is the whole design matrix, Γ  is 

the prior (co)variance matrix for the deterministic part, and { }  p p
∗ ∗, eρ are random 

realizations drawn from multivariate normal distributions 0
 ~ ,p N∗

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

γ 0
0 0 G

ρ
Γ

 and 

 ~ ( , )p pN∗ ∗e M Rρ  respectively. Based on these, the desired prior sample of 

( | ; , , )p pf M R Gηρ  is given by  
p p

∗+%ρ ρ . 
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For taking samples of the variance structures R and G , we need the sum of squares 

matrix associated with each diagonal component of (2.33). This is given by 

T 1= −H SΦ Φ, where Φ  is a stochastic matrix in which each column is related to the 

relevant row/column of Parameteric matrix P and each row is associated with the related 

row/column of Structured matrix S . In this way, P can be Gibbs sampled in one block 

from the Inverse-Wishart (IW) distribution 1~ (( ) , )p pIW n n−
Φ+ +P H H , where nΦ  is 

the number of rows inΦ , pH is the prior sum of squares, and pn  is its degrees of 

freedom. It should be noted that IW is a conjugate prior for the covariance matrix of a 

multivariate normal distribution. 

Usually the goodness-of-fit of Bayesian models can be assessed using the deviance 

information criterion (DIC), which is a Bayesian alternative to AIC and Schwarz 

criterion. The DIC can be calculated at different levels of hierarchy and a smaller amount 

indicates a better fit to the data while compensating for model complexity. Here, we 

adopt the method of Spiegelhalter et al. [57] and define the deviance as 

2log(Pr  ( ) )D = − Y |Ω , where Ω  are some parameters of the model. We calculate this 

probability for the lowest level of the hierarchy at each iteration. In the formula, in case 

of Gaussian responses we have ,={ }RΩ ρ  and the likelihood would be the normal 

density ( | , )Nf Y Xγ +Wε R . On the other hand, when the responses are not normal, 

=Ω η  and the likelihood would change to ( )|p p
i i i

i

f∏ Y η , where the argument denotes 

the conditional probability of the ith data point (lowest level of hierarchy). In other words, 
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for non-Gaussian responses, deviance is obtained by the probability of the data given the 

linear predictor η , whereas in normal responses, it is calculated using the probability of 

the data given the parameters. The DIC can then be attained by DIC = 2 ( )D D− Ω , 

where D  is the mean deviance of all iterations and ( )D Ω  is the deviance evaluated at 

the mean estimates of the parameters.    
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Chapter III Methodology on Phase II 

In section 1.1, we described two different phases for implementing Patient 

Centered Medical Home (PCMH), and in this section we present a stochastic 

programming model with recourse for the second phase, patient assignment. 

3.1 Model Assumptions 

Here, we presume the following assumptions in our proposed model: 

Assumption A1 Patient assignment in PCMH teams is completed in two stages.  

We begin by an initial panel including anticipated patients who, we think, ask for care 

from the PCMH teams. Since we do not know this panel is fixed within the planning 

horizon, the assignment in the first stage is provisional with tentative cost (𝑐). Then, the 

second stage is started in which actual patient’s care demands become known. If the 

demands for each profession line cannot be met by the available capacity, some of 

patients are reassigned to under loaded/backup members at a specific cost. 

Assumption A2 Excessive workload for each PCMH profession beyond a given limit is 

supported by backup professionals. 

Excess workload is the difference between the demanded workload and the time 

available for care. Some researches indicate that excessive workload decreases the quality 

of patient care [58].x In our case, there is a threshold on excessive workload for each 

profession line specified by the VHA. The extra workload beyond this limit results in 

other backup professionals assisting overloaded professionals while a penalty is paid for 

each unit of extra workload below the limit.  
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Assumption A3:  The patient panel to be assigned to PCMH teams includes unforeseen 

outpatients, so the number of patients is fixed. 

During a planning horizon, patients may leave the panel by switching to other 

healthcare systems or death. Also new patients may enter the panel by transferring from 

other healthcare systems or direct admissions, and will need an assignment to a team. 

One way to deal with this situation is to periodically update the patient pool and 

remaining hours on personnel. Then the model has to be solved at regular time intervals 

with new patient pool. Instead, we can represent the actual panel by multiplying the 

number of registered patients by a factor to account for unforeseen patients. This latter 

approach is taken in our present work.       

Assumption A4: The composition of medical home team is known a priori. 

Veterans are at the center of their medical homes, which also includes their families 

and caregivers. In Veteran Health Administration (VHA), healthcare professionals on the 

team include a primary care physician (PCP) or nurse practitioner (NP), a registered 

nurse (RN) who serves as the care manager, a clinical staff assistant who is usually a 

licensed practical nurse (LPN), and an administrative clerk. When additional services are 

needed to meet the Veteran’s goals and needs, another care team may be called in. These 

may include social workers, dietitians, pharmacists, mental health practitioners, 

specialists, and other non-VA health care professionals.   

Assumption A5: Staffing levels in the medical home teams can be regarded as constant 

and purely exogenous. 
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The supply of health services can be given relatively easy based on head counts and 

available service hours from all professional lines within a specific planning period. That 

is, the healthcare supply is a portfolio of total available hours by various members in a 

team within a particular period which includes total PCP time, total RN time, total clerk 

time, etc. This includes hiring and firing of all temporary personnel too. The counted 

service times incorporate the productivity factor per full-time equivalent (FTE) hours. 

Here we assume a deterministic ratio of productive and contractual FTE per professional. 

Also capacity levels are assumed to be independent of demand for care, quality of care 

provided or any other controlled variables in the model. 

Assumption A6: Healthcare demands on professional lines are dependent random 

variables. 

In medical home model, demands are in form of a portfolio, i.e. a vector of 

continuous random variables composed of stochastic demands on each team member. 

Demands are measured on a yearly basis in relative value unit [59]. We assume that, for a 

given patient, demands generated on different team members are dependent. This means 

that, for a particular instance of the problem, demand realizations on PCP and RN may be 

correlated. Thus, to generate problem instances for our computational study, we use a 

multivariate workforce prediction algorithm that can take into account such dependencies 

among demands [60]. 

Assumption A7: Shortages on health services depend only on demand and contracted 

capacities.  
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Assumption A8:  There is no difference in efficiency among similar professionals. 

It is assumed that professional lines (such as RNs or clerks) among teams are 

identical in terms of efficiency and quality of care provided.  

Assumption A9: No coordination exists among identical professionals. 

We assume that care needed by a patient cannot be split among multiple professionals 

in different teams. In other words, identical professionals in different teams (e.g., two 

LPNs in two medical home teams) cannot coordinate their tasks among each other. 

 
3.2 Stochastic model for patient assignment 

Our proposed model consists of finding the optimum allocation of a set of patients to 

medical home teams such that each patient is assigned exactly to one team, subject to 

resource constraints limiting teams’ workload capacity to handle patients. The problem is 

modeled as a two-stage stochastic program with mixed 0-1 recourse. The first-stage 

decisions involve assigning an initial panel to the PCMH teams well ahead in time. These 

assignments are associated with a tentative cost that can be estimated or given as 

constant. The second-stage decisions are related to the adjustments that are made after 

first-stage decisions and once we get closer to the actual demand realizations. These 

include possible patient reassignments and overtime capacities used in excess of available 

service hours on each professional line in each team under each possible scenario. 

 Our first two-stage stochastic patient assignment model is presented by the following 

notations where bold face represents vectors throughout:  
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Indices 

𝑖 ∈ 𝐼: index for patients 

𝑗 ∈ 𝐽: index for medical home teams 

𝑟 ∈ 𝑅: index for professional lines within each team 

𝜔 ∈ Ω: index for scenarios, Ω denotes the sample space of the underlying probability 

triple 

Fixed Model Parameters 

𝑐!": cost for team 𝑗 to deliver care to patient 𝑖 

𝑏!": regular time available on profession 𝑟 in team 𝑗 

𝛽!: marginal overtime penalty of profession 𝑟 per each unit of excess time usage 

Scenario Dependent Model Parameters 

𝑑!"# 𝜔 : time required by profession 𝑟 in team 𝑗 to deliver care to patient 𝑖 in scenario 𝜔,   

𝐝 ∈ ℝ!!
! |!||!|  

First Stage Decision Variable 

𝑥!": binary assignment variable representing whether patient 𝑖 is assigned to medical 

home team 𝑗 (𝑥!" = 1) or not (𝑥!" = 0)  

Second Stage Decision Variable 

𝑢!": amount of overtime on professional 𝑟 within team 𝑗 used in excess of its available 

capacity 
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Note that in all stochastic models presented throughout this paper, we assume 

dependency exists between second stage random parameters and 𝜔, but the dependence 

of the second stage decision variable on 𝜔 is suppressed. Also we presume that Ω has a 

finite support on the underlying probability space. Using the above notations, the 

mathematical formulation of the first model (TSSPA1) can be written as follows. 

(TSSPA1 model) 

First Stage Problem: 

  
x
min    𝑐!"𝑥!"!∈!!∈! +   𝒬 𝑥                                                                                    (3.1a)                                                              

 

  s. t.     𝑥!"!∈! = 1          ∀  𝑖 ∈ 𝐼                                                                                      (3.1b)      

 

   𝑥!" ∈ 0,1                 ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽,                                                                             (3.1c)  

 

where   

 𝒬 𝑥 :=   𝔼𝐝[𝑄 𝑥,𝑑 𝜔 ].                                                                                         (3.2) 

Second Stage Recourse Problem: 

  𝑄 𝑥,𝑑 𝜔 =
u
min      𝛽!𝑢!"!∈!!∈!                                                                        (3.3a)   

        

 s. t.       𝑑!"# 𝜔!∈!!∈! 𝑥!" ≤   𝑏!" +   𝑢!"       ∀  𝑗 ∈ 𝐽,      ∀  𝑟 ∈ 𝑅                                      (3.3b) 

   

 𝑢!" ≥ 0            ∀  𝑗 ∈ 𝐽,      ∀  𝑟 ∈ 𝑅.                                                                                      (3.3c)              
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Note that 𝔼 stands for mathematical expectation. Generally, the expectation can take 

the form of utility functions or it may include risk measures. Here 𝑄 𝑥,𝑑 𝜔  equals the 

total capacity violation cost given assignment 𝑥, the realized healthcare demands 𝑑 𝜔 , 

and a given recourse policy. The objective function then minimizes the sum of patient 

initial assignment costs and the expected mismatch cost. Constraints (3.1b) ensure that 

each patient is assigned to only one medical home team. Binary restrictions on the 

first-stage variables are defined by (3.1c). The expected recourse function is given in 

(3.2). The objective function in the second-stage is to minimize the sum of overtime 

penalties incurred by allocating patients in excess of professional capacities for given 

first-stage assignment policy 𝑥 and random vector 𝐝. Constraints (3.3b) are the healthcare 

supply-demand constraints stating that, on each profession within each medical home 

team, demands can exceed supplied capacities by 𝑢!" unit at the cost of 𝛽! per unit. 

Non-negativity restrictions on the second stage decision variables are defined by (3.3c).  

In summary, the TSSPA1 model first assigns patients to medical home teams without 

full information on the healthcare demands subject to constraints (3.1b) and (3.1c) and 

with associated cost 𝑐!". Later, when full information about demands become available, 

we observe a realization of 𝑑 𝜔  and penalize the sum of supply-demand mismatches 

over all professionals in all PCMH teams with respective unit penalty 𝛽! ≥ 0. The 

TSSPA1 model is in the framework of the classical stochastic generalized assignment 

problem [61] extended for the multi-recourse case when violations on 

capacity-constraints are allowed. 
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We can also write the TSSPA1 model as a nonlinear stochastic program like 

    
x
min    𝑐!"𝑥!"!∈!!∈! +   𝔼 𝛽! 𝑑!"# 𝜔!∈!!∈! 𝑥!" − 𝑏!"

!
!∈!!∈!   

                            s. t.    3.1b   and  (3.1c),  

where ⋅ ! = max ⋅ ,0 . Here, the expected mismatch penalty, i.e., the expected values of 

the recourse function for a given patient assignment 𝒙, is given as 

𝔼 𝛽! 𝑑!"# 𝜔!∈!!∈! 𝑥!" − 𝑏!"
!

!∈!!∈! =

𝛽!!∈!!∈! 𝔼 𝑑!"# 𝜔!∈!!∈! 𝑥!" − 𝑏!"
! , 

in which 𝔼 𝑑!"# 𝜔!∈!!∈! 𝑥!" − 𝑏!"
!  is the expected overtime required by 

profession 𝑟 in medical home team 𝑗.   

In our second proposed model we extend the recourse subproblem by allowing 

reassignments of some patients at a pre-specified cost, provided that the capacity of a 

professional is violated. To this end, we introduce new binary variable 𝑦!" , 𝑖, 𝑗 ∈ 𝐼×𝐽 

that determines the final patient assignment with actual cost 𝑐!". This cost differs from the 

first stage provisional cost which we here denote by 𝑐!". We also define 𝑧! , 𝑖 ∈ 𝐼 as an 

auxiliary variable referring to those patients with a non-zero healthcare demand that have 

been reassigned, and 𝛼! , 𝑖 ∈ 𝐼 as recourse costs for such reassignments. Further, we let 

𝑤! , 𝑖 ∈ 𝐼 as a binary parameter whose values is conditional on the value of demand such 

that patient 𝑖 brings a non-zero demand (𝑑!"# 𝜔 > 0) only if 𝑤! = 1. The new model 

(TSSPA2) can then be formulated using the extended recourse function as follows. 
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(TSSPA2 model) 

First Stage Problem: 

   
x
min    𝑐!"𝑥!"!∈!!∈! +   𝒬 𝑥                                                                                        (3.4) 

  s. t.           3.1b   and   3.1c ,                                                                       

where 𝒬 𝑥 :=   𝔼𝐝[𝑄 𝑥,𝑑 𝜔 ], and 𝑄 𝑥,𝑑 𝜔  is the value of second stage recourse 

function obtained by solving the following optimization problem: 

Second Stage Recourse Problem: 

 𝑄 𝑥,𝑑 𝜔 =
zuy ,,

min      𝑐!"𝑦!"!∈!!∈! + 𝛼!𝑧!!∈! + 𝛽!𝑢!"!∈!!∈!                         (3.5a)  

 s. t.        𝑦!" + 𝑧! ≥ 𝑤!𝑥!"      ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽                                                                  (3.5b) 

 

  𝑦!" ≥   𝑤!!∈!       ∀  𝑖 ∈ 𝐼                                                                                            (3.5c) 

 

 𝑑!"# 𝜔!∈!!∈! 𝑦!" ≤   𝑏!" +   𝑢!"           ∀  𝑗 ∈ 𝐽, ∀  𝑟 ∈ 𝑅                                              (3.5d) 

 

  𝑦!" ∈ 0,1         ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽                                                                                     (3.5e) 

 

  𝑧! ∈ 0,1             ∀  𝑖 ∈ 𝐼                                                                                                   (3.5f) 

 

 𝑢!" ≥ 0            ∀  𝑗 ∈ 𝐽, ∀  𝑟 ∈ 𝑅.                                                                                       (3.5g) 

The first stage problem in TSSPA2 model is similar to the first stage problem in 
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TSSPA1 except that the assignment costs in TSSPA1 are replaced with provisional 

assignment costs 𝑐!". The second-stage problem, however, intends to minimize the 

expected total costs of actual (final) assignments, reassignments, and overtime penalties 

on professional lines. Constraints (3.5b) set 𝑧! to 1 whenever patient 𝑖 has a non-zero 

demand and it is not assigned to the same team it was assigned to a priori. In other 

words,   𝑧! equals to one if (𝑤!𝑥!" = 1  and  𝑦!" = 0), otherwise it takes zero. Constrains 

(3.5c) ensure that all patients with non-zero demand are indeed assigned to a medical 

home team. Integrality requirements on the actual assignment variable 𝑦!" and the 

auxiliary variable 𝑧! are defined in (3.5e) and (3.5f), respectively. All other constraints 

are the same as the second stage problem in TSSPA1 model. In what follows we focus on 

the stochastic program defined by the TSSPA2 model as it manages handling patient 

reassignments in the PCMH workforce planning.  

3. 3. Solution Approaches 

The stochastic problem TSSPA2 is difficult to solve since it has binary variables in 

stage one and mixed binary variables in stage two. This implies that the recourse function 

𝒬 𝑥  is generally non-convex and lower semi-continuous [62]. In addition, since the 

model handles excess healthcare demands with a unit overtime penalty and enough 

capacity in the second stage, it follows that TSSPA2 model is a two-stage program with 

relatively complete recourse. A popular approach to proceed consists of approximating 

the uncertainty in the healthcare demand by a finite set of scenarios that leads to a 

decision tree representation of the stochastic model. Here the set of scenarios can be 
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assumed available [63] or has to be generated by proper methods satisfying special 

statistical features [64]. Then the model can be reformulated into a large-scale 

deterministic equivalent program. Commercial solvers have been used directly to such 

models but due to the amount of memory required, such packages cannot solve practical 

real-world problems in reasonable times. Thus, decomposition techniques have been 

proposed in the literature to obtain operational running time by exploiting the block 

structure of the feasible region defining the extensive form models [65].  

There are two general classes of decomposition strategies for stochastic programs: 

vertical or stage-based, and horizontal or scenario-based [66] The well-known example of 

the former is the L-shaped method or Bender decomposition [67], and exemplars of the 

later include progressive hedging algorithm [68] and dual decomposition [69]. Solution 

approaches based on the L-shaped method approximate the non-linear recourse function 

by outer linearization using an alternative formulation of (3.4) and (3.1b)-(3.1c). This 

way, a master problem is solved at each iteration, 𝓀, to achieve a feasible solution, 

𝑥𝓀 ,𝜃𝓀 , where 𝜃𝓀 lower bounds the recourse function 𝒬 𝑥 . The solution of the first 

stage problem is transferred to the second stage subproblems that are solved 

independently to get the dual solutions. Then optimality cuts are generated from the dual 

solutions and added to the master problem. These cuts help to lower bound hyperplanes 

of the recourse function 𝒬 𝑥 . The algorithm stops once the optimal solution is found or 

some pre-specified tolerance is met. A multicut version of the L-shaped method has also 

been proposed and applied to solve two stage and multistage stochastic programs. It 

differs from the classical L-shaped method in that it creates an optimality cut for every 
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single scenario in the second stage. As a result the size of the master problem increases 

rapidly and it becomes computationally expensive to tackle. 

Solution methods based on scenario decomposition, on the other hand, use an 

alternative formulation of the two-stage problem in which the first stage decision 

variables 𝒙 are temporarily indexed by random scenarios. The (augmented) Lagrangian 

relaxation is applied to all non-anticipativity (or implementability) constraints that ensure 

feasible solutions are scenario-invariant at each node of the decision tree. The original 

stochastic problem is then decomposed per 𝜔 and the resulting subproblems are 

independently solved to obtain a general lower bound. One main advantage of such 

methods over the variants of L-shaped approaches is that no limitations are existed on the 

number of stages and also on the type of decision variables allowed in each stage – as the 

case in many proposed mixed-integer stochastic algorithms. Another benefit of these 

decomposition approaches is that, given a set of scenarios, the difficulty of handling 

subproblems is more uniform because the underlying partition strategy is scenario-based. 

This is favorable in parallel computing since the distribution of workload among parallel 

processing elements would be more stable. However, the L-shaped methods depend 

highly on convexity assumptions and more importantly the computational burden of the 

master problem can increase significantly with the number of iterations, while the 

subproblems are regularly easy to solve.  

In our initial numerical experiments we found that the progressive hedging algorithm 

(PHA) is suitable for our problem. We decided to propose our solution approach based on 

the PHA since (1) the core PHA strategy is based on augmented Lagrangian, which is not 
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restricted to the issues of convexity; (2) the subproblems only need to be solved 

approximately in the algorithm; (3) it is easily implemented and customized in 

environments where packages for solving deterministic equivalent model already exist; 

(4) it is proved to be an efficient scalable approach to large-scale mixed-integer stochastic 

programs in a number of real-world instances [70,71,72];(5) valid lower bounds (and 

quality of the solutions) for the mixed-integer case can be obtained by using dual prices 

of the non-anticipativity constraints in any iteration [73]; and (6) it can be easily 

parallelized [74].  

In this paper we consider the following reasonable assumption: healthcare demands 

are team-independent, that is, for each 𝑖 ∈ 𝐼 and 𝑟 ∈ 𝑅, 𝑑!"# 𝜔 = 𝑑!" 𝜔   ∀  𝑗 ∈ 𝐽. In the 

next section, inspired by the PHA scheme, we first apply a scenario decomposition 

technique to separate the stochastic problem TSSPA2 per scenarios of the demand 

realization. Then we define a reference patient assignment policy and modify the 

first-stage cost of scenario subproblems that can reflect the difference between each 

assignment and the reference point. Following this, we present our proposed primal-dual 

algorithm iteratively computes a reference assignment, updates the fixed costs to seek for 

a consensus design, performs upper bounding and lower bounding. The last step of the 

algorithm repeats the same procedure for a reduced problem with the assignments that 

have not converged to a consensus policy.     

3.3.1. Scenario Decomposition          

Stochastic program TSSPA2 is generally an infinite dimensional optimization problem. 

To deal with this, we approximate the problem by considering a finite set of possible 
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scenarios 𝒮 ⊆ Ω of the random event with corresponding probability mass 𝑝!, 𝑠 ∈ 𝒮. 

Doing this, the mathematical expectation is expressed by a probability weighted sum and 

the problem is represented by a multiscenario deterministic model called the extensive 

form (EF), as follows. 

(EF):             

min       𝑐!"𝑥!"!∈!!∈! + 𝑝!!∈𝒮 𝑐!"𝑦!"!!∈!!∈! + 𝛼!𝑧!!!∈! + 𝛽!𝑢!"!!∈!!∈!    (3.6a)   

 s. t.           𝑥!"!∈! = 1          ∀  𝑖 ∈ 𝐼                                                                                       (3.6b)   

 𝑦!"! + 𝑧!! ≥ 𝑤!𝑥!"             ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽, ∀  𝑠 ∈ 𝒮                                                           (3.6c)   

𝑦!"!!∈! ≥ 𝑤!             ∀  𝑖 ∈ 𝐼, ∀  𝑠 ∈ 𝒮                                                                                (3.6d) 

 

𝑑!"!!∈!!∈! 𝑦!"! ≤   𝑏!" +   𝑢!"!           ∀  𝑗 ∈ 𝐽, ∀  𝑟 ∈ 𝑅, ∀  𝑠 ∈ 𝒮                                        (3.6e) 

 

  𝑥!" ∈ 0,1                 ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽                                                                                   (3.6f) 

 

𝑦!"! ∈ 0,1                 ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽, ∀  𝑠 ∈ 𝒮                                                                    (3.6g) 

 

𝑧!! ∈ 0,1             ∀  𝑖 ∈ 𝐼, ∀  𝑠 ∈ 𝒮                                                                                     (3.6h)    

 

𝑢!"! ≥ 0        ∀  𝑗 ∈ 𝐽, ∀  𝑟 ∈ 𝑅, ∀  𝑠 ∈ 𝒮,                                                                          (3.6i) 

in which the reassignment and overtime variables as well as, now deterministic, 

healthcare demands are scenario specific. The constraint matrix defining model 
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(3.6a)-(3.6i) is sparse and exhibits a block-diagonal structure, each block associated to a 

single scenario 𝑠 ∈ 𝒮 in the tree. By solving problem (EF) one can finds an assignment 

policy that minimizes the sum of fixed costs and expected second-stage costs over all 

scenarios. Constraints (3.6c) link the first- and second-stage variables and allow the 

reassignments to happen only if they are different from the assignments in the first stage. 

By making copies of the first-stage decision variables, 𝑥!"! = 0,1 ,∀  𝑖 ∈ 𝐼, ∀  𝑗 ∈ 𝐽, 

for each scenario 𝑠 ∈ 𝒮, problem (EF) can be reformulated as 

(P1):           

min       𝑝!!∈𝒮 𝑐!"𝑥!"!!∈!!∈! + 𝑐!"𝑦!"!!∈!!∈! + 𝛼!𝑧!!!∈! + 𝛽!𝑢!"!!∈!!∈!    (3.7a)         

   

s. t.           𝑥!"!!∈! = 1          ∀  𝑖 ∈ 𝐼, ∀  𝑠 ∈ 𝒮                                                                       (3.7b) 

 

  𝑦!"! + 𝑧!! ≥ 𝑤!𝑥!"!             ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽, ∀  𝑠 ∈ 𝒮                                                         (3.7c) 

 

  𝑥!"! = 𝑥!"!         ∀  𝑠, 𝑡 ∈ 𝒮, 𝑠 ≠ 𝑡                                                                                       (3.7d) 

 

 𝑥!"! ∈ 0,1                 ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽, ∀  𝑠 ∈ 𝒮                                                                  (3.7e) 

 

 6d , 6e , and   6g -‐ 6i , 

where equations (3.7d) enforce non-anticipativity or implementability constraints. These 

constraints correspond to a large non-separable block with nonzero coefficients and they 
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make sure initial patient assignments (first-stage decisions) are not tailored for each 

specific scenario that might happen. Since the number of such constraints may be too 

large to affect the convergence rate, for each 𝑠 ∈ 𝒮 they are replaced with a “global” 

solution 𝑥!" ∈ 0,1 ,∀   𝑖, 𝑗 ∈ 𝐼×𝐽 . Then augmented Lagrangian relaxation is applied 

on 𝑥!"! = 𝑥!" ,∀   𝑖, 𝑗 ∈ 𝐼×𝐽 ,∀𝑠 ∈ 𝒮 penalizing quadratically any violations of it. The 

resulting objective function becomes         

min         𝑝!!∈𝒮 𝑐!"𝑥!"!!∈!!∈! + 𝑐!"𝑦!"!!∈!!∈! + 𝛼!𝑧!!!∈! + 𝛽!𝑢!"!!∈!!∈! +

                         𝜆!"!!∈! 𝑥!"! − 𝑥!" + !
!

𝜌 𝑥!"! − 𝑥!"
!

!∈!!∈!!∈! ,                                      (3.8)                                   

in which 𝜆!"! ,∀   𝑖, 𝑗 ∈ 𝐼×𝐽 ,∀𝑠 ∈ 𝒮 denotes the dual variables for the relaxed 

constraints, and 𝜌 > 0 is an external penalty ratio that aims to achieve a consensus 

among the scenario solutions. In other words, the last two components in (3.8) construct 

additional costs we pay for the differences between the scenario solutions and the 

“global” first-stage policy. Given the fact that 𝑥!"!  and 𝑥!" are binary, the objective can be 

reduced to  

 

min         𝑝!!∈𝒮 𝑐!" + 𝜆!"! − 𝜌𝑥!" +
!
!
𝑥!"!!∈!!∈! + 𝑐!"𝑦!"!!∈!!∈! + 𝛼!𝑧!!!∈! +

                         𝛽!𝑢!"!!∈!!∈! − 𝜆!"!!∈! 𝑥!" +
!
!
𝜌𝑥!"!∈!!∈!!∈! .                                  (3.9)            

Note that the relaxed problem defined with the objective function (3.9) is not 

separable. However, if the global solution 𝑥!" is given and fixed, the relaxed formulation 
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can be decomposed according to each scenario. For a scenario 𝑠, the corresponding 

subproblem, given 𝑥!", can be expressed as 

(P2): 

 min        𝑐!" + 𝜆!"! − 𝜌𝑥!" +
!
!
𝑥!"!!∈!!∈! + 𝑐!"𝑦!"!!∈!!∈!    

                       + 𝛼!𝑧!!!∈! + 𝛽!𝑢!"!!∈!!∈!                                                         (3.10a)                 

s. t.           𝑥!"!∈! = 1          ∀  𝑖 ∈ 𝐼                                                                                      (3.10b)                                                                                  

𝑦!"! + 𝑧!! ≥ 𝑤!𝑥!"             ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽                                                                  (3.10c)                                                            

𝑦!"!!∈! ≥ 𝑤!             ∀  𝑖 ∈ 𝐼                                                                                             (3.10d) 

𝑑!"!!∈!!∈! 𝑦!"! ≤   𝑏!" +   𝑢!"!           ∀  𝑗 ∈ 𝐽, ∀  𝑟 ∈ 𝑅                                                     (3.10e) 

  𝑥!" ∈ 0,1                 ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽                                                                                 (3.10f) 

 𝑦!"! ∈ 0,1                 ∀  𝑖 ∈ 𝐼,      ∀  𝑗 ∈ 𝐽                                                                                (3.10g) 

𝑧!! ∈ 0,1             ∀  𝑖 ∈ 𝐼                                                                                                   (3.10h)             

𝑢!"! ≥ 0        ∀  𝑗 ∈ 𝐽, ∀  𝑟 ∈ 𝑅,                                                                                         (3.10i) 

which takes the form of a deterministic mixed 0-1 formulation identical to (EF) with a 

perturbed first stage cost 𝑐!" + 𝜆!"! − 𝜌𝑥!" +
!
!
𝑥!"! . For addressing these subproblems we 

rely on the branch and bound algorithm in CPLEX (with the clique cuts and feasibility 

pump heuristic), though a variety of other exact or heuristic methods exploiting special 

combinatorial structures can be applied. By solving the subproblem (P2), solutions for 
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different scenarios may be dissimilar. To cope with this issue and to obtain a consensus 

solution among the subproblems, we proposed the following algorithm.      

3.4. Proposed Algorithm         

Let 𝜈 denote the iteration index of our proposed algorithm. To get an overall solution that 

is served as a reference point for all scenarios, the average operator given the scenario 

probabilities was originally suggested by [67]. Let 

𝑋 𝑠 ≔ 7𝑏 , 7𝑐 , 7𝑒 , 6𝑑 , 6𝑒 , 6𝑔 , 6ℎ , 6𝑖  be the feasible set for scenario 

𝑠 ∈ 𝒮. Having solved subproblems 𝜂 𝑠 = min 𝑐!"𝑥!!!!∈!!∈! + 𝑐!"𝑦!"!!∈!!∈! +

𝛼!𝑧!!!∈! + 𝛽!𝑢!"!!∈!!∈! 𝑥!"! ,𝑦!"! , 𝑧!!,𝑢!"! ∈ 𝑋 𝑠  for all 𝑠 ∈ 𝒮, the suggested overall 

assignment yields 

  𝑥!"! = 𝑝!!∈𝒮 𝑥!"!" ,                ∀   𝑖, 𝑗 ∈ 𝐼×𝐽 ,                                                                   (3.11) 

which is useful to recognize the local trends and characteristics among scenario solutions. 

Here two situations can happen: (1) 𝑥!"! ∈ 0,1 , which means that consensus occurs and 

the overall solutions has been retained; (2) 0 < 𝑥!"! < 1, which means that the overall 

assignment is not feasible for the original problem. Provided that case (2) happens, a 

value of 𝑥!"!  that is close to one imply a tendency toward assigning a given patient 𝑖 to 

PCMH team 𝑗, and vice versa. Because case (1) is rarely occurred, to produce a feasible 

overall solution in iteration 𝜈 of the algorithm, one can pick one solution among 

𝑥!"!! , 𝑥!"!! ,… , 𝑥!"𝒮". In the current study, we pick a worst-case scenario solution with the 

maximum objective value, that is, 𝑥!"
!",! = argmax 𝜂! 𝑥!"!" : 𝑠 ∈ 1, 2,…𝒮 . This 
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solution is feasible for problem (EF) and 𝑐!"𝑥!"
!",!

!∈!!∈! + 𝑝!!∈𝒮 𝑄 𝑥!",! ,𝑑 𝑠  

provides an upper bound for its optimal value. Although 𝑥!"
!",! may bias the search 

process, we calculate it iteratively to keep a best upper bound. 

In order to gradually obtain consensus among scenario solutions, the Lagrangian 

multiplier 𝜆 and the penalty parameter 𝜌 are iteratively updated (similar ideas are 

suggested in Rockafellar and Wets (1991)). This way, we dynamically adjust for the 

differences between the scenario solutions and the overall solution generated, thus the 

scenario solutions are forced to converge to a reference solution. If 𝜆!"!" defines the 

Lagrangian multiplier associated with the nonanticipativity constraint for assignment of 

patient 𝑖 to PCMH team 𝑗 for scenario 𝑠 at iteration 𝜈, and 𝜌! denotes the quadratic 

penalty at iteration 𝜈, we then update the parameters as follows                   

 𝜆!"!" ⟵ 𝜆!"!"!! + 𝜌!!! 𝑥!"!" − 𝑥!"!!! ,              ∀   𝑖, 𝑗 ∈ 𝐼×𝐽                                             (3.12) 

𝜌! ⟵ 𝜕𝜌!!!  .                                                                                                             (3.13) 
 

Here we set the initial value 𝜌! to a small positive real number and 𝜕 > 1, which 

requires a gradual increase in the penalty parameter. Following these updates, variants of 

the scenario subproblems are solved which are augmented with a linear term in 𝒙 

proportional to  𝝀!" and a quadratic proximal term penalizing diversion of 𝒙!" from 𝒙!!!. 

The algorithm proceeds until the following both conditions are met: (1) the differences 

between scenario solutions and overall assignment get sufficiently small, that is, 
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𝑥!"! − 𝑥!"
!

!∈𝒮 ≤ 𝜀; and (2) there are 10 consecutive nonimproving iterations. The 

statement of the entire procedure is given in Algorithm 1.  

Remark 1. The idea behind the adjustment scheme (3.12) is intuitive. For any patient 

assignment 𝑥!"!" in a scenario subproblem 𝑠 at iteration 𝜈, two cases might occur: (1) 

𝑥!"!" < 𝑥!"!!! which corresponds to the case that patient 𝑖 is not assigned to PCMH team 𝑗 

in this scenario (or 𝑥!"!" = 0) but it is assigned to it in the overall assignment (remember 

that 0 < 𝑥!"!!! < 1). Then the idea is to decrease its cost in the scenario subproblem in 

order to encourage assigning patient 𝑖 to team 𝑗. Also the modification is more powerful 

when 𝑥!"!!! is near one. (2) 𝑥!"!" > 𝑥!"!!! which means patient 𝑖 is assigned to PCMH team 

𝑗 in the scenario (or 𝑥!"!" = 1) but not all other scenarios agree upon this assignment. Then 

first stage cost 𝑐!" + 𝜆!"! − 𝜌𝑥!" +
!
!

 is adjusted within the scenario to trigger not 

assigning patient 𝑖 to PCMH team 𝑗. Again the adjustment is stronger when 𝑥!"!!! is near 

zero.         

Lower Bounds 

We present the following proposition showing that implicit lower bounds on the optimal 

cost can be obtained in any iteration of the proposed algorithm for the two-stage 

stochastic mixed 0-1 problem TSSPA2. Let 𝓏∗ represents the optimal objective value of 

(P1) and suppose that (P1) is feasible with −∞ < 𝓏∗ < +∞, and 𝑋 𝑠 ≠ ∅,∀𝑠 ∈ 𝒮. 

Proposition 1. The dual price system 𝜆!, 𝑠 ∈ 𝒮 define implicit lower bounds on 𝓏∗.          
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Proof.  Let 𝜆! ∈ ℝ! meet 𝑝!𝜆! = 0!∈𝒮     (𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡-‐𝑤𝑖𝑠𝑒). Define  

𝒟! 𝜆! ≔   min !!"
! ,!!"

! ,!!
!,!!"

! ∈! ! 𝑐!" + 𝜆!"! 𝑥!"!!∈!!∈! + 𝑐!"𝑦!"!!∈!!∈! + 𝛼!𝑧!!!∈!                                                                                                       

                                                                                                                                                    + 𝛽!𝑢!"!!∈!!∈!                                                                  

(3.14) 

Then we have to prove 𝒟! ≔ 𝑝!𝒟! 𝜆!!∈𝒮 ≤ 𝓏∗. Let 𝑥!"! ,𝑦!"! , 𝑧!!,𝑢!"! , 𝑠 ∈ 𝒮    be the 

optimal solution to (P1). Following the feasibility conditions, we have 

𝒟! 𝜆! ≤ 𝑐!" + 𝜆!"! 𝑥!"!

!∈!!∈!

+ 𝑐!"𝑦!"!

!∈!!∈!

+ 𝛼!𝑧!!

!∈!

+ 𝛽!𝑢!"!

!∈!!∈!

 

Then it follows  

𝒟! ≤ 𝑝!
!∈𝒮

𝑐!" + 𝜆!"! 𝑥!"!

!∈!!∈!

+ 𝑐!"𝑦!"!

!∈!!∈!

+ 𝛼!𝑧!!

!∈!

+ 𝛽!𝑢!"!

!∈!!∈!

 

              = 𝑝!
!∈𝒮

𝑐!"𝑥!"!

!∈!!∈!

+ 𝑐!"𝑦!"!

!∈!!∈!

+ 𝛼!𝑧!!

!∈!

+ 𝛽!𝑢!"!

!∈!!∈!

+ 𝑝!
!∈𝒮

𝜆!"!

!∈!!∈!

𝑥!"!  

 

              = 𝑝!
!∈𝒮

𝑐!"𝑥!"!

!∈!!∈!

+ 𝑐!"𝑦!"!

!∈!!∈!

+ 𝛼!𝑧!!

!∈!

+ 𝛽!𝑢!"!

!∈!!∈!

= 𝓏∗.                                                                             

It is worth noting that argument 𝑝!𝜆! = 0!∈𝒮    is maintained in every iteration 𝜈 of 

the algorithm. To see this, we check for 𝜈 = 1 and extend the results by induction in 
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every 𝜈: for 𝜈 = 1, we have 𝜆!,! = 𝜌 𝑥!"
!,! − 𝑥!"! = 𝜌 𝑥!"

!,! − 𝑝!!∈𝒮 𝑥!"
!,! , thus the sum 

𝑝!𝜆!,!!∈𝒮    is equal to 𝜌 𝑝! 𝑥!"
!,! − 𝑥!"!!∈𝒮    which is zero since 𝑝! 𝑥!"

!,! − 𝑥!"!!∈𝒮    is 

always zero. So 𝑝!𝜆!" = 0!∈𝒮    for all 𝜈. Furthermore, we can see that dual subproblems 

𝒟! 𝜆!  are roughly identical in structure to those solved by the algorithm, except that 

quadratic penalty terms −𝜌𝑥!" +
!
!

 are absent. This observation is very helpful in 

efficiently obtaining lower bounds within the proposed algorithm. Also 𝑝!𝜆! = 0!∈𝒮    

can be taken as “dual” feasibility constraints for the “primal” non-anticipativity 

constraints 𝑥! = 𝑥, since their subspaces are orthogonal to each other— a primal-dual 

optimality condition in the convex case. 

To assess the quality of the lower bounds obtained, we consider the standard 

Lagrangian method for (P1) and relax the non-anticipativity constraints (3.7d) using 

multipliers 𝛾!. We let 𝒲 as the feasible set defined by constraints set (P1) except (3.7d), 

and for  𝓌 = 𝑥!" , 𝑥!"! ,𝑦!"! , 𝑧!!,𝑢!"! !∈𝒮
∈𝒲 we define objective 

𝐿 𝓌, 𝛾 ≔

𝑝!!∈𝒮 𝑐!"𝑥!"!!∈!!∈! + 𝑐!"𝑦!"!!∈!!∈! + 𝛼!𝑧!!!∈! + 𝛽!𝑢!"!!∈!!∈! +

𝛾!"!!∈!!∈! 𝑥!"! − 𝛾!"!!∈! 𝑥!"!∈! .  

Then the relaxation problem can be expressed as 𝐹 𝛾 = min  𝓌∈𝒲𝐿 𝓌, 𝛾 , and the 

Lagrangian dual problem is given by    

  𝓏!" ≔ sup!𝐹 𝛾 .                                                                                                       (3.15) 
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Further, based on Theorem 1 [66], the value of 𝓏!" in the mixed 0-1 problem equals 

to the optimal objective value of the following linear program.   

Theorem 1.          

𝓏!" =

min 𝑝!!∈𝒮 𝑐!"𝑥!"!!∈!!∈! +

𝑐!"𝑦!"!!∈!!∈! + 𝛼!𝑧!!!∈! + 𝛽!𝑢!"!!∈!!∈! 𝑥!"! ,𝑦!"! , 𝑧!!,𝑢!"! ∈

                                                                                                                                                          ℂ 𝑋 𝑠 ,𝑝!𝑥!"! − 𝑝!𝑥!" ,∀𝑠 ∈ 𝒮             (3.16)                                    

in which the closure of the convex hull of s, ℂ X s , is a closed polyhedral set. In most 

practical cases the requirements by which ℂ 𝑋 𝑠  is a closed polyhedral set are met. 

Examples include situations when the set defined by the linear constraints is bounded or 

the cost coefficients are rationals. 

Since it is a stochastic mixed 0-1 problem, a duality gap is usually existed between 

(P1) and problem (3.16). This gap can be closed by a branch-and-bound approach where 

bounding is obtained by solving either the dual problem (3.15) as in [67] or the primal 

problem (3.16) as in the work by [72]. In the following proposition we show that our 

proposed algorithm can yield both primal and dual optimal solutions to (3.16) and (3.15). 

In addition it is shown that the lower bound 𝒟 𝜆  from (3.14) is as tight as best bounds 

from the dual decomposition, 𝓏!".       



 
 

67 

 

Proposition 2. Assume that Algorithm 1 is used to the primal problem (3.16). In each 

iteration 𝜈, and for each scenario 𝑠, a scenario subproblem of the form    

min !!"
! ,!!"

! ,!!
!,!!"

! ∈ℂ ! ! 𝑐!"𝑥!"!

!∈!!∈!

+ 𝑐!"𝑦!"!

!∈!!∈!

+ 𝛼!𝑧!!

!∈!

+ 𝛽!𝑢!"!

!∈!!∈!

+ 𝜆!"
!,!

!∈!!∈!

𝑥!"! +
𝜌
2 𝑥!"! − 𝑥!"!

!

!∈!!∈!

 

is solved. Then in the limit, a solution set 𝑥∗, 𝜆!∗   𝑖𝑠  𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑  𝑤ℎ𝑒𝑟𝑒  𝑥∗solves the 

primal problem (16), and 𝜆!∗,∀𝑠 ∈ 𝒮 solves the dual problem (15). In addition, in the 

limit, the lower bound 𝒟 𝜆  from (14) is equal to 𝓏!".       

Proof.  Since ℂ 𝑋 𝑠 ,∀𝑠 ∈ 𝒮 define closed convex polyhedral sets, the problem (3.16) 

is a linear program. Then the proof  is given by Theorem 5.2 in [67].                                

Therefore, we can interpret Algorithm 1 as a primal-dual algorithm where primal 

solutions 𝑥!"! !!!

!
 and dual solutions 𝜆!"

!,!
!!!

! ,∀𝑠 ∈ 𝒮 are generated during the running 

time. Moreover, the above sequences converge to a saddle point of the standard 

Lagrangian.  
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Chapter IV: Application 

4.1. Data Source and Study Variables 

According to National Center for Veterans Analysis and Statistics (NCVAS), VA 

operates the largest health care system in the USA with 23 geographically different 

regions (known as VISNs, or Veterans Integrated Service Networks) separated 

hierarchically within each VISN by level of care or type into different facilities such as 

VA medical centers (VAMC), Community Based Outpatient Clinic (CBOC), Vet Center 

(VC), and so forth. Within each facility, every VA primary care enrollee was assigned to 

an independent physician or non-physician PCP by a standard process-VA Primary Care 

Management Module. To ensure sufficient staffing and quality of care, each PCP was 

appointed a target panel size, taking into account the intensity of primary care visits and 

availability of resources such as supporting staff and capital. 

In this study we collected outpatient data from a random sample of 888 different 

facilities (which corresponds to 130 VAMCs of all 23 VISNs) during FY11 quarter 3 to 

FY12 quarter 2. The period of one year is appropriate; according to the VA program 

professionals, the primary care population at each practice site is not subject to drastic 

change from one year to the next. The Decision Support System (DSS) and National 

Patient Care Database (NPCD) files of the VA Corporate Data Warehouse (CDW) were 

employed to extract demographic, socioeconomic, and other types of variables. In 

addition, due to its rigorous data validity and availability, we chose DRG (Diagnosis 
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Related Group, 29th version) and its ACC (Aggregated Condition Category) codes for 

patient case-mix and risk adjustment measures in our predictive analytics [75]. 

Initially there were 82,000 randomly selected patients with 48 independent attributes 

coded. All patient visits to primary care and women’s health are assembled for a total 

capture period of one year. Visits from other primary care related clinics, such as Internal 

Medicine or Geriatric Primary Care, are excluded from the analysis. The two dependent 

variables are total primary care (PC) and non-primary care (Non-PC) Relative Value 

Units (or RVUs), and for each unique SSN, they are calculated by converting the primary 

care and non-primary care Current Procedural Terminology (or CPT) codes from all 

patient visits during the fiscal year (according to the Centers for Medicare and Medicaid 

Services model). Simply, the Non-PCRVU refers to all of the non-primary care workload 

during the year, which could be from one or many visits to outpatient specialty care, and 

the PCRVU is the primary care workload during the year from outpatient primary care. 

One advantage of using RVUs in our approach, as opposed to simple face-to-face visit 

counts, lies in its ability to further accommodate workloads generated by telephone 

encounters at the VHA. It is noted that the RVU can be seen as a comparable measure of 

value for care services used in the US Medicare reimbursement and is determined by 

assigning weight to factors such as personnel time, level of skill, and sophistication of 

equipment required to render patient services. The predictor variables include baseline 

demographic and socioeconomic attributes along with some medical factors such as 

whether the patient has insurance, to which VA facility the patient has been admitted, and 

so on. Before presenting descriptive of the independent variables we perform some 
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data-preprocessing activities to prevent unexpected errors during model fitting phase. 

These include: 1) discarding and imputing (by unconditional mode imputation) missing 

values of such features as ‘VISN’ and ‘CAN Score’ (will be introduced shortly), 2) 

removing outliers from such variables as ‘Age’ and ‘Assigned provider experience’ thus 

focusing on the first through ninety-ninth percentiles, and 3) binning multimodal, highly 

skewed features such as ‘Distance’ and ‘Length of stay’ into discrete factors. Following 

this preprocessing, the number of records was reduced to 81,190 patients.  

To achieve a better picture of the data environment, we tentatively arranged all 

independent attributes into five groups as summarized in Table 1. It should be noted that 

these variables remain the same for a patient during the fiscal year. Note that SD stands 

for standard deviation and % denotes the percentages of the subgroup in the population. 

‘Priority’ levels range from 1-8 and are assigned based on the veteran’s severity of 

service-connected disabilities and VA income means test (VHA Handbook 1601A.03). 

‘Distance’ is calculated in miles between patient’s home zip code and the zip code of the 

facility he/she admitted, considering the latitude and longitude of the two locations. 

Records with a calculated distance greater than 240 miles were excluded and the 

remaining were converted into three levels. ‘Changed provider count’ denotes the number 

of times during the year that the patient changed his/her assigned provider. As mentioned 

earlier this variable could be a marker of unbalanced workload among PCPs and 

discontinuity of care received by patients. ‘Length of stay’ (LOS) displays the number of 

days spent admitted at a VA hospital. ‘CAN Score’ is the care assessment need score, 

which reflects the likelihood of admission or death within a specified time period. This 
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score is commonly expressed as a percentile ranging from 0 (lowest risk) to 99 (highest 

risk) and it indicates how a VA patient is compared with other patients in terms of the 

likelihood of hospitalization or death. Each PCMH team has a unique 10-digit code 

throughout all VA medical systems nationwide. Currently all teams have the same 

number of professions within all VA centers. The number of PCMH teams and VA 

facilities in our data set are 6,051 and 287 respectively. ACC categories are determined 

based on the various ICD-9-CM (International Classification of Disease, ninth version, 

Clinical Modification) codes assigned to the patient at each visits during the whole fiscal 

year. They basically indicate the occurrence of a specific disease group, and they are not 

mutually exclusive categories, meaning that a patient may have more than one ACC 

during the fiscal year and most actually do.       

As shown in Table 1, the mean age of patients is 62.42 years (SD = 15.26) and about 

half of the cohort was over age 63 (median = 63). Not surprisingly, near 94% of our 

veteran population was male and approximately 61% of all were insured. Over half of the 

patients were married but lower than one third of all were reported as actively employed. 

The most frequently enrolled patients are the low income and Medicaid group followed 

by >50% connected disability, and non-service connected patients with income above 

HUD (Housing and Urban Development). The majority of patients (93%) did not spend a 

day as an inpatient admitted to the hospital, and most of them travelled only a short 

distance to receive care from the VA hospitals. The mean care assessment score is 

roughly 47 with a great variation (SD = 28.88). Also, on average, most of patient’s 

assigned providers are well-experienced working rather full time in their roles.   
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Table 1 Baseline characteristics of patient factors (n = 81190) 

Group Attribute Mean (SD) n (%) 
Demographic Gender 

Male 
Female 

  
76247 (93.91) 
  4943 (6.09) 

Age (as of 7/1/2011, years) 62.42 (15.23)  
Marital status 

Married 
Previously married 
Never married 
Unknown 

  
46634 (57.44) 
22520 (27.74) 
11559 (14.24) 
    477 (0.58) 

Socioeconomic Insurance (of any types) 
Yes 
No 

  
49551 (61.03) 
31639 (38.97) 

Employment status 
Active Military Service 
Employed Full-Time 
Employed Part-Time 
Not Employed 
Retired 
Self Employed 
Unknown 

  
    134 (0.16) 
17008 (20.95) 
  4013 (4.94) 
28619 (35.25) 
28517 (35.12) 
  2039 (2.51) 
    860 (1.07) 

Enrollment Priority 
1 (service connected disability > 50%) 
2 (service connected disability 30%–40%) 
3 (service connected disability 20–30%) 
4 (catastrophically disabled) 
5 (low income or Medicaid) 
6 (Agent Orange or Gulf War illness) 
7 (non-service connected, income below HUD) 
8 (non-service connected, income above HUD) 

  
18404 (22.67) 
  6548 (8.07) 
  9859 (12.14) 
  2285 (2.82) 
21258 (26.18) 
  3697 (4.55) 
  2243 (2.76) 
16896 (20.81) 

 

Next, we provide two schematic views of the mean annual care demand and disease 

prevalence of multiple patient groups. In Fig. 4, the average RVU demands of the 

primary and non-primary care generated are displayed across different priority groups 

with insurance status nested. Not unexpectedly, the non-primary care effort is always 

more than the primary care workload and its ratio changes from 1.8 in group 8-insured to 

6.6 in group 4-uninsured. In all priority groups, uninsured VA patients compared to 
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insured ones produce, on average, more workload in terms of both primary and 

non-primary care. In addition, the biggest (lowest) workload demands for both primary 

and specialty care services are associated with group 8-uninsured patients (group 

6-insured patients). 

 

 

 

 

 

 

 

 

 

 

Figure 4 Average annual primary care and non-primary care relative  

 
Fig. 5 displays a mosaic plot of illness types along with patients’ gender and their 

marital status. We excluded ACC 28 (neonate’s diseases) and ‘unknown’ marital 

category from these analyses because of either the absence or rarity in our sample study. 

Note that letters P, N, and M above the marital bar denote ‘Previously married’, ‘Never 

married’, and ‘Married’ groups. The ACC labels are given in Table 6. As shown, the 

most commonly occurring conditions among all patient clusters is ACC 30 (Screening) 
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followed by ACCs 5 (nutritional and metabolic) and 16 (heart). However, the least 

prevalent illnesses among the VA patients are ACC24 (pregnancy-related), ACC13 

(developmental disability), and ACC15 (cardio-respiratory arrest). Plus, in almost all 

disease types, married males are more at risk than two other male groups. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Mosaic plot of disease prevalence across patient gender and marital 

 
4.2. Analytics 

4.2.1. Model Fitting and Diagnostics 

We conduct multiple analyses to estimate the effect of different patient factors such 

as disease types (ACCs) on the mean annual primary and non-primary care. To employ 

our method we first determine the appropriate distributions for the two responses. Here 
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the standard Quantile-Quantile plot along with maximum likelihood method is used, but 

one can also employ non-parametric techniques such as kernel density estimation. We 

examine different base densities such as gamma, lognormal, beta, and Cauchy, then judge 

the best choice as having the best graphical pattern in QQ plot and the biggest likelihood 

value simultaneously. Based on these criteria, the lognormal distribution is found the 

most proper case for both RVUs. Fig. 6 shows the QQ plots along with bootstrapped 

point-wise confidence envelopes at 0.95 accuracy rate. As shown, the PCRVU (left 

panel) displays a perfect linear pattern, and even for Non-PCRVU (right panel), almost 

all points lie within the confidence band. We also get the minimum value of the minus 

log-likelihood based on ML fitting when the lognormal distribution is taken. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Quantile-Quantile plots of primary care relative value unit  
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To determine the appropriate link function ( )g ⋅ , a range of classical options including 

log link and inverse link are evaluated by two goodness-of-fit measures, namely DIC and 

modified Hosmer-Lemeshow test [76]. Based on the results (not shown here) we observe 

that the (default) identity link does estimate the upper and lower tails of both RVUs, 

accounted for the covariates, more properly than other links, and thus it is chosen for our 

study. 

Since failing to specify the suitable probability density for priors can result in 

inferential and numerical problems as discussed in chapter2, for the deterministic 

parameters we pick a multivariate normal density with zero vector for the mean 0γ  and a 

diagonal matrix of large variances (1e+10) for Γ . This way we can make sure that the 

prior is always proper. However, for each (decomposed) block of the G-(R-) side, we are 

required to specify the hyperparameters through the IW distribution, which takes two 

scalars; the expected (co)variance at the limit and the degree of belief parameter. We 

configure several prior specifications not only for these two parameters but also for 

different shapes (degrees of freedom) the decomposed matrices can take, then assess the 

impacts on the DIC measure and their posterior distributions (with MCMC diagnostics). 

A few such comparisons are discussed in chapter 2, but now for the first step of our 

modeling strategy (discussed later), we choose a diagonal matrix of 1/3 for all three 

hierarchies (patients, PCMH teams, and facilities) with 2 degrees of freedom. Scaling 

outcomes to have a unit variance before the analysis, this prior implies that the total 

variance is equally split across all three levels together with a priori independence of PC 

and Non-PC workloads. 
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Although different modeling strategies could be selected for estimating our multilevel 

model, we focus on the most parsimonious and best-fitting approach for the given data 

and our specific research questions. To this end, six models (Table 2) from basic to 

comprehensive are run sequentially and the outputs are reported for each step in order to 

provide insights for a particular objective. Further, to avoid overfitting within each step, 

we perform stepwise selection for the deterministic covariates with probabilities to enter 

and stay of 0.15 and 0.1 respectively.  

 

Table 2 Regression modeling strategy and results for 3-level hierarchical model 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

No predictors, 
just residual 
and random 
intercepts 

(Unconditional) 

Model 1 + 
patient-level 

predictors 

Model 2 + 
random 

slopes for 
patient-level 

predictors 

Model 3 + 
team-level 
predictors 

Model 4 + 
random 

slopes for 
team-level 
predictors 

Model 5 + 
facility-level 

predictors 

Results used to 
compute 
Interclass 

Correlation 
Coefficient 

(ICC) which 
assesses the 

degree of 
clustering 

among subsets 
of cases in the 

data.  

Results show 
the 

relationships 
between 

patient-level 
predictors 

and outcomes 

Model 2 
results + 

findings that 
show if the 
associations 

between 
patient-level 

predictors and 
the outcomes 
vary across 
team-level 

and 
facility- level 

units   

Model 3 
results + 

results that 
reveal the 

relationships 
between 

team-level 
predictors 

and the 
outcomes  

Model 4 
results + 

findings that 
shows if the 
associations 

between 
team-level 
predictors 

and the 
outcomes 

vary across 
facility-level 

units      

Model 5 
results + 

results that 
indicate the 
relationships 

between 
team-level 
predictors 

and the 
outcomes.   

 

Alternatively, one can employ a Bayesian selection to determine a variable subset. 

Different functional forms of covariates, such as logarithmic and power relations, as well 
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as within-level interactions are evaluated too at each step but only the statistically 

significant ones are included. As an example, we analyze 12 pairs of ACC interactions 

that are notable for co-occurring in patients with multiple chronic illnesses and/or an 

acute disease combined with a chronic condition [77]. 

The improvement in model fit is evaluated by DIC over all iterations after the burn-in 

phase of MCMC simulations. Based on a rule of thumb, we favor the model with lower 

DIC when the DIC reduction of more than 10 units is observed. Depending on the 

goodness-of-fit and significance tests, sometimes intermediate models, such as a reduced 

version of model 3 with only one significant random slope, are also examined. 

Performing this strategy, we seek to answer the following three research questions: 

• How much of the variance in PC and Non-PC workload is associated with patients, 

PCMH teams, and VA facilities? 

• Does the effect of any patient-level predictor change among PCMH teams or VA 

facilities? And does the effect of any team-level predictor vary among VA 

facilities? 

• What is the impact of patient non-adherence (as measured by “Changed provider 

count”) on PC workload, controlling for patient, PCMH team, and VA facility 

characteristics?   

Setting the significance level at 0.05, we run the models with 50,000 iterations, a 

burn-in period of 10,000, and a thinning interval of 25. All analyses and computations are 

done in R version 3.0.2 [78]. In order to address the first question, we fit the 

unconditional model as summarized in Tables 3-5. Note that the first (third) row in each 
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table shows PC (Non-PC) intercept variance along with its 95% Highest Posterior 

Density interval, and the second row corresponds to the workload correlations.  The team 

interclass correlation coefficient for the PC outcome is computed as 

0.168 
0.609 0.168 0.218 + +

. Note that the numerator is the PCRVU variance at the team 

level obtained from Table 4, and the denominator is the sum of PCRVU variances in all 

levels obtained from Tables 4-6. Simply put, we find that about 17% of the variation in 

PC workload exists between PCMH teams and 22% is there between VA facilities, 

leaving near 61% of the variance to be accounted for by patients. Thus a practically 

meaningful proportion of all variation happens at higher levels, providing support for our 

use of a 3-level hierarchical model. These percentages are 5%, 16%, and 79% for 

Non-PC workload respectively. Other useful points can be made by interpreting the 

correlations among PC and Non-PC at different levels. First, the results of a joint 

conditional independence test Gueorguieva [79] show that the RVUs (at the patient level) 

are positively associated which confirms the fact that a simultaneous modeling of both 

primary and non-primary care is more reasonable than using one of them in isolation. 

Second, we infer that the correlation is not significant when it comes to the team level, 

and it is poorly significant at the facility level.  

We continue our modeling effort to include predictors and random components at all 

levels, and then answer other research questions based on the outputs from the best fitting 

model. For brevity we will not walk through all detailed outputs at each stage, and 

instead summarize them in Table 3,4,5. Also note that level-2 and level-3 predictors are 
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displayed italic. In each row, the first number is for PC and the second is for Non-PC 

outcome, with (′), (″), () displaying significance at 0.05, <0.001, and non-significance 

respectively. It worth noting that we suppress the overall intercept since otherwise, the 

parameter estimates associated with PC are translated as contrasts with Non-PC. Also for 

team-level, facility-level, and interactions, we only include those factors that are 

significant in at least one of the six models.  

Graphically assessing the relation of age with the outcomes, we observe that both 

responses have a sigmoidal trend at team levels thus we decide to fit its nested random 

components with covariance matrix like  
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Table 3 Coefficient estimates model for joint PC and Non-PC workloads 

 Model 1 Model 2 Model 3 Model 4 

Deterministic Effect     

Gender, Male  0.41″, 0.02″ 0.43″, 0.03″ 0.42″, 0.01″  

Age  1.02″, 1.04″  1.03, 1.03 1.03, 1.03 

Age × Age  0.92″, 0.94″ 0.9′, 0.91′ 0.91′, 0.93′ 

Insurance, Yes  0.95′, 0.92 0.94′, 0.9 0.95′, 0.91 

LOS, Zero  1.07, 0.74″ 1.06, 0.71″ 1.08, 0.73″ 

CAN Score  1.12″, 1.07″ 1.08, 1.02  1.09, 1.03 

SQRT (CAN Score)  1.15′, 1.19″ 1.1′, 1.12′ 1.12′, 1.13′ 

Priority (ref = 8) 
1 (disability > 50%) 
2 (disability 30%–40%) 
3 (disability 20–30%) 
4 (catastrophically dis.) 
5 (Medicaid) 
6 (Agent Orange, …) 
7 (below HUD) 

 
 

 
0.96″, 1.25″ 
1.02′, 1.32″ 
0.94′, 1.01″ 
1.03″, 1.17″ 
1.05″, 1.03″ 
1.06″, 1.34′ 
1.09″, 1.1″ 

 
0.97″, 1.22″ 
1.02′, 1.28′ 
0.92′, 1.04″ 
1.04″, 1.14″ 
1.04″, 1.05″ 
1.03″, 1.32″ 
1.08″, 1.07″ 

 
0.96″, 1.23″ 
1.03′, 1.29′ 
0.92′, 1.03″ 
1.03′, 1.15″ 
1.05″, 1.04″ 
1.03″, 1.33″ 
1.09″, 1.07″ 

ACC001–Infectious and 
Parasitic  1.07″, 1.22″ 1.05″, 1.23″ 1.04″, 1.24″  

ACC002–Malignant 
Neoplasm  1.04″, 1.33″ 1.04″, 1.3″ 1.03″, 1.31″ 

ACC003–Benign/In 
Situ/Uncertain Neoplasm  1.07″, 1.65″ 1.06″, 1.65″ 1.06″, 1.64″ 

ACC004–Diabetes  1.53″, 0.98′ 1.52″, 0.97′ 1.53″, 0.96′ 

ACC005–Nutritional and 
Metabolic  1.18″, 1.02 1.19″, 1.03 1.2″, 1.02 

ACC006–Liver  1.13″, 1.04′ 1.11″, 1.05′ 1.12″, 1.05′ 

ACC007–Gastrointestinal  1.09″, 1.13″ 1.07″, 1.14″ 1.07″, 1.14″ 

ACC008–Musculoskeletal and 
Connective Tissue  1.18″, 1.27″ 1.17″, 1.27″ 1.16″, 1.28″ 

ACC009–Hematological  1.09″, 1.05″ 1.08″, 1.06″  1.07″, 1.06″  

ACC010–Cognitive Disorders  1, 1.12″ 0.98, 1.1″ 1, 1.11″ 

ACC011–Substance Abuse  1.06″, 0.88″ 1.06″, 0.9″ 1.05″, 0.9″ 
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Table 4 Coefficient estimates model for joint PC and Non-PC workloads 

 Model 1 Model 2 Model 3 Model 4 

ACC012–Mental  1.03′, 1.73″ 1.04′, 1.7″ 1.03′, 1.71″ 

ACC013–Developmental Disability  0.99, 1.24″ 1.01, 1.23″ 1.01, 1.22″ 

ACC014–Neurological  1.07″, 1.15″ 1.06″, 1.14″ 1.07″, 1.16″ 

ACC015−Cardio-Respiratory Arrest  1.07′, 1.02 1.03′, 1.04 1.05′, 1.03 

ACC016−Heart  1.15″, 1.05′ 1.14″, 1.06′ 1.16″, 1.04′ 

ACC017−Cerebrovascular  1.05, 1.02 1.05, 1.03 1.04, 1.01 

ACC018−Vascular  1.08″, 1.26″ 1.1″, 1.26″ 1.09″, 1.27″ 

ACC019−Lung  1.09″, 1.11″ 1.07″, 1.12″ 1.08″, 1.12″ 

ACC020−Eyes  1.08″, 1.12″ 1.09″, 1.13″ 1.09″, 1.14″ 

ACC021−Ears, Nose, and Throat  1.11″, 1.40″ 1.12″, 1.38″ 1.1″, 1.39″ 

ACC022−Urinary System  1.06″, 1.01 1.07″, 1.02 1.08″, 1.02 

ACC023−Genital System  1.09″, 1.07″ 1.09″, 1.04″ 1.1″, 1.06″ 

ACC025−Skin and Subcutaneous  1.11″, 1.42″ 1.13″, 1.43″ 1.12″, 1.43″ 

ACC026−Injury, Poisoning, 
Complications  1.1″, 1.28″ 1.11″, 1.29″ 1.12″, 1.3″ 

ACC027−Symptoms, Signs, and 
Ill-Defined Conditions  1.17″, 1.45″ 1.15″, 1.41″ 1.16″, 1.42″ 

ACC029−Transplants, Openings, 
Amputations  0.9″, 1.01 0.94″, 0.98 0.92″, 0.99 

ACC030−Screening/History  1.22″, 2.01″ 1.23″, 1.98″ 1.2″, 1.98″ 

Changed provider count    1.11″, 1.09″ 

Distance (ref = Far) 
Middle 
Near 

 
 

   

Diabetes × Liver  1.02, 1.13′ 1.03, 1.15′ 1.03, 1.16′ 

Diabetes × Cardio-Respiratory Arrest  1.12′, 1.11″ 1.1′, 1.13″ 1.13′, 1.12″ 

Diabetes × Heart  1.03, 1.1″ 1.04, 1.12″ 1.03, 1.11″ 

Diabetes × Cerebrovascular  1.07′, 1.17′ 1.06′, 1.14′ 1.06′, 1.15′ 

Diabetes × Urinary System  1.04, 1.12′ 1.06, 1.1′ 1.05, 1.1′ 
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Table 5 Coefficient estimates model for joint PC and Non-PC workloads 

 Model 1 Model 2 Model 3 Model 4 

Diabetes × Transplants, 
Openings, Amputations  1.08′, 1.09 1.09′, 1.07 1.09′, 1.08 

Substance Abuse × Mental  1.04″, 1.20″ 1.03″, 1.21″ 1.04″, 1.21″ 

Heart × Cerebrovascular  1.12′, 1.14″ 1.09′, 1.13″ 1.1′, 1.15″ 

Heart × Vascular  1.06, 1.04′ 1.07, 1.05′ 1.05, 1.05′ 

Cerebrovascular × Vascular   1.01, 1.12″ 1.03, 1.13″ 1.02, 1.14″ 

Male × Diabetes  1.06′, 1.12′ 1.05′, 1.14′ 1.04′, 1.14′ 

Male × Neurological  1.08″, 1.11′ 1.09″, 1.13′ 1.1″, 1.12′ 

Age × Heart  1.11″, 1.21′ 1.09″, 1.19′ 1.09″, 1.2′ 

Age × Nutritional and 
Metabolic  1.14′, 1.07″ 1.15′, 1.09″ 1.14′, 1.08″ 

Age × Gastrointestinal  1.05′, 1.1′ 1.07′, 1.12′ 1.06′, 1.12′ 

Priority 4 × Neurological  1.13′, 1.17″ 1.14′, 1.17″ 1.11′, 1.16″ 

Priority 6 × 
Cardio-Respiratory Arrest  1.14″, 1.06′ 1.14″, 1.07′ 1.13″, 1.07′ 

Variance Component      

Residual  0.609′, 0.79′  0.446′, 0.55′ 0.357′, 0.46′ 0.352′, 0.44′ 
Intercept (team) 0.168′, 0.05′ 0.093′, 0.04′ 0.076′, 0.04′ 0.064′, 0.04′ 
Intercept (facility) 0.218′, 0.16′ 0.125′, 0.1′ 0.106′, 0.08′ 0.091′, 0.08′ 
Slope (age: team)   0.088′, 0.09′ 0.081′, 0.09′ 
Slope (age^2: team)   0.042′, 0.06 0.047, 0.07′ 
Slope (CAN Score: team)   0.078′, 0.09′ 0.072′, 0.1′ 
Slope (CAN Score^(0.5): 
team)   0.037, 0.05′ 0.042′, 0.04′ 

Slope (insurance: facility)   0.051′, 0.06′ 0.047′, 0.07′ 

Slope (changed provider 

count: facility) 
    

Model Fit      

DIC 461019.6 227245.2 225469.7 225411.4 



 
 

84 

 

A similar structure is fitted for CAN Score as well, but with square root instead of 

second power relation. For ‘Changed provide count’ we first test a structure with both 

random intercept and slope at the facility-level, but after failing to reject the null 

hypothesis of intercept, we reduce it to random slope only. For fitting insurance 

covariance, again we first try ,

,

σ σ
σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

Insured Un-insured

2

Insured

2

Un-insured Insured Un-insured

,  

and then drop the correlation after the significance test.  

According to the DIC index shown at the bottom of Table 6, we realize that each 

forward model exhibits a better fit to the data, so we take model 6 to answer the 

remaining research questions. In order to further validate the final model, we apply model 

6 to FY12 quarter 3 data and find almost identical results. We repeat the joint 

independence test of Gueorguieva [79] for model 6 and reaffirm the positive correlation 

of responses at the patient level. Put differently, we find that after controlling for all 

sources of variation, if the primary care workload is increased from one patient to 

another, on average we will expect an increase in the related non-primary care. In Table 

6, the estimates for deterministic effects are interpreted as prevalence ratios but variance 

components are reported in natural scale. Also note that the data is scaled to have a unit 

variance before analysis. 

It is worth to highlight that some estimates are changed in terms of significance 

among models. For example, age, insurance, and CAN Score are significant in Model 2 

but no longer significant in later models once their related random slopes are introduced 
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in Model 3. Examining other random components in these models, we figure out that 

significant variability exists in their nested random intercepts and slopes, even after 

controlling for these patient-level predictors. Hence, we can say that the association 

between these variables and the outcomes varies considerably among PCMH teams. Thus 

we expect that the influence of patient oldness on care demands may be stronger or 

weaker from one PCMH team to another within a VA facility. The same thing happens in 

terms of effect magnitude for ‘Changed provider count’ between Models 4 and 5; the 

relationship between this variable and both workloads changes meaningfully among 

different VA facilities. By these statements, we tackle our second research question.            

To answer the last research question, we look at the deterministic effect of ‘Changed 

provider count’ in Model 6. As shown, for each time that a patient switches assigned 

provider, we will expect an average of 6% more workload in his/her primary care, after 

accounting for variations of his/her non-primary care demands. Other selected key 

findings from Model 6 can be summarized as below:    

• Adjusting for the contributions of all other variables, female VA patients tend for 

produce about 57% more PC (98% more Non-PC) compared to males. This is not 

unexpected due to gender imbalance issue existed in VA patients. 

• Inpatient cohort generally creates 28% more workload in non-primary care 

compared to outpatients, after accounting for variations of their primary cares. 

• Catastrophically ill veterans (P4) have 1.15 times the Non-PC demands of the P8 

comparison group. The increase rates are about 35% and 23% for veterans exposed 

to Agent Orange (or other herbicides) and >50% for disabled veterans. Having been 
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exposed to such chemicals also notably affects the increased caress for 

cardio-respiratory arrest.   

• Change rates in primary cares range from 7% decrease for ACC29 (Transplant) to 

52% increase for ACC4 (Diabetes). For non-primary cares, this varies from 11% 

reduction for ACC11 (Substance Abuse) to 99% rise for ACC30 (Screening). 

• Both team-level (patient non-adherence) and facility-level (distance) predictors are 

significantly associated with the outcomes: Patients travelling more miles to VA 

hospitals are likely to generate a larger amount of care than closely located patients. 

• In co-occurring diseases studies, diabetes greatly interacts with some acute and 

chronic conditions. For instance, in patients with cardio-respiratory arrest, having 

diabetes is associated with a 13% (14%) increase in primary care (Non-PC) workload. 

Another comorbid condition that poses a similar pattern is heart disease, especially 

for cerebrovascular patients. 

• Risk adjustment for disease types and their interactions improves the model fit to 

a great extent (about 160K reduction in DIC) and makes most of their related effects 

statistically significant.  

Now we present some diagnostic tests for verifying the accuracy of Model 6. First, to 

assess the Markov chain convergence and mixing properties, trace plots and smoothed 

posterior densities are provided for each parameter of interest. As an illustration, Fig.7 

shows the plots for age and gender across both outcomes and Fig.8 displays them for 

R-side covariance components. As depicted in Fig.5, the traces are trendless and the 
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chains are mixing well travelling quickly to the target distribution with small 

autocorrelations.        

Nearly same patterns are observed in Fig.8, but chains are now mixing marginally at a 

bit slower traverse rate, which can easily be tackled by increasing the MCMC iterations. 

Nonetheless, the densities do smoothly estimate the mean posterior for residual variances 

as reported in Table 3,4,5. For deterministic terms in Fig.7, however, the posterior 

histogram is plotted in log scale. We additionally perform Gelman, Rubin [80] and 

effective sample size tests to all posterior estimates (not shown here) and no violations 

are found therein. 

Figure 7 Trace plot and posterior density estimates  
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Figure 8 Trace plot and density estimates for (co)variance components of PC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After additional validation steps such as Copas [81] test of overfitting and posterior 

correlation diagnostics of estimated parameters, we develop two operational indices, 

namely, hospital level normalized intensity score (NIS) and hospital level 

risk-standardized utilization rate (RSUR) as 
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Sum of the total predicted workload of  all patients at the given facility
=

Number of  patients in the facility  Median predicted workloadjNIS
×

 

and  

Sum of the total predicted workload of  all patients with random components
=

Sum of the total predicted workload of  all patients without random components
   .jRSUR  

 
The NIS can be used to adjust the panel size up or down for a given hospital, or even 

for a specific PCMH team within a hospital. Note that the random components are 

implicitly included in the formula. On the other hand, RSUR indicates the ratio of 

predicted (technically called shrinkage estimate) to expected utilization; the numerator 

computes the PC/Non-PC workload when patients are treated as the specific hospital and 

denominator calculates the workload as if patients are treated at a so called ‘reference’ (or 

normal) hospital. Thus values greater than one reveals that the hospital is over-utilized as 

compared with the national average range.  

4.2 .2 Numerical Comparisons 

In this section we design three comparison studies to demonstrate some novel aspects 

of our proposal. First, we evaluate an alternative variance structure with the one applied 

in Model 6 in terms of the goodness-of-fit measure. Particularly, for patient (residual), 

team, and facility random intercepts in scenario (1), we change the Parametric matrix to 

have the same diagonal elements with zero off-diagonals then compare the results with 

the structure used in Model 6. We run each model twice to take control of the Monte 

Carlo error and keep all other factors constant among different fittings. As shown in 
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Table 6, the best fit is corresponding to the first row in which the proposed variance 

structure is applied at all levels of hierarchy. 

 

Table 6 Goodness-of-fit values for the two scenarios 

 

 

 

 

 

 

 

 

 

 

 

Second, we investigate the impacts of the random component’s prior specification on 

MCMC diagnostics and posterior distributions. To this end, the DF is kept fixed, and then 

two alternatives for the expected limit (co)variance (1.one 2.restricted maximum 

likelihood estimates), as well as other values for the IW degree of belief {0.002, 0.02, 

0.2, and 1}are assessed. The values used in Model 6 for these two are 1/3 and zero. 

Results (available from authors) denote that almost no change occurs in deterministic 

estimates, DIC measure, and directions of (co)variance components. However, the 

absolute range of alternations in variance estimates is around 2.3% that the base values in 

Model 6. We detect that better chain convergence and mixing property is observed when 

using priors with smaller limit (co)variances and larger (near one) degree of the belief 

parameter. Further, the posterior correlation estimates remain reasonably unchanged 

Facility Team Patient Deviance information criterion 

2 2 2 225337.8 – 227448.1 

2 2 1 225491.7 – 225494.1 

2 1 2 225401.1 – 225396.9 

2 1 1 225582.5 – 225580.3 

1 2 2 225378.5 – 225375.7 

1 2 1 225444.9 – 225441.2 

1 1 2 225457.8 – 225460.5 

1 1 1 225550.7 – 225554.0 
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while examining different types of priors, which provide some reassurance that our priors 

do not dominate the model to an unacceptable extent. 

Lastly, we perform comparisons between our proposal and the situations when one 

employs a series of univariate (multilevel) GLMs for predicting the outcomes. To this 

end, we keep Model 6 settings constant and consider two scenarios: 1) A bivariate 3-level 

GLM with joint primary and non-primary care workloads, and 2) Two univariate 3-level 

GLMs one for primary care (PC) and one for non-primary care (Non-PC) workload 

predictions. Fitting both models, we aggregate the credible intervals for the mean 

outcomes and then compare them with the actual values. Interestingly, the probability of 

joint correct prediction (for both responses) is about 67% for the first scenario and about 

58% for the second. Then we pick those correct intervals, compute their ranges {max–

min} , and calculate basic statistics for the ranges in Table 7. As displayed, the credible 

intervals are substantially narrowed when applying the multivariate approach. Thus we 

can conclude that a joint modeling of primary and non-primary care workloads would 

provide more robust and realistic predictions for medical home practices.     

 

Table 7 Summary statistics for the range of joint correct intervals 

 
Multivariate  Univariate 

Primary Care Non-Primary Care  Primary Care Non-Primary Care 

Mean 0.431 1.023  0.514 1.083 

Median 0.381 0.977  0.439 1.058 
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4.2.  Modeling 

We use natural logarithm transformation for the both response variables (primary care 

relative value unit or ‘pcrvu’ and non-primary care relative value unit or ‘npcrvu’) in 

order to convert them into Gaussian. We distinguish four levels of hierarchy: responses 

(level-1) are nested in 𝑝𝑎𝑡𝑖𝑒𝑛𝑡! (level-2), patients are nested in PCMH 𝑡𝑒𝑎𝑚! (level-3), 

and PCMH teams are nested in VA medical 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦! (level-4).  The following four level 

hierarchical STAR model is suggested: 

Level− 1:𝑦!"#
(!!) = 𝑑!"#

!   𝐥𝐧 𝒑𝒄𝒓𝒗𝒖 + 𝑑!"#
!   𝐥𝐧 𝒏𝒑𝒄𝒓𝒗𝒖         

Level− 2: 𝐥𝐧 𝒑𝒄𝒓𝒗𝒖 =

𝟏𝜼!
! + 𝒇!

! 𝑎𝑔𝑒 + 𝒇!
! 𝑙𝑜𝑠 + 𝒇!

! 𝑐𝑎𝑛 + 𝒇!
! 𝑎𝑔𝑒 𝑎𝑐𝑐1+⋯+    

                                                                              𝒇!"
! 𝑎𝑔𝑒 𝑎𝑐𝑐30+ 𝒇!!

! 𝑐𝑎𝑛, 𝑙𝑜𝑠 +⋯+ 𝑽(!)𝜸(!) + 𝜺(!)  

                                                                      = 𝟏𝜼!
(!) + 𝑿!

(!)𝜷!
(!) +⋯+ 𝑽(!)𝜸(!) + 𝜺(!)  

Level− 2: 𝐥𝐧 𝒏𝒑𝒄𝒓𝒗𝒖 = 𝟏𝜼!
(!) + 𝑿!

(!)𝜷!
(!) +⋯+𝑽(!)𝜸(!) + 𝜺(!)  

Level− 3:  𝜼!
!

=   𝟏𝜼!,!
! + 𝒇!,!

! 𝑝𝑟𝑜𝑣. 𝑒𝑥𝑝 + 𝒇!,!
! 𝑝𝑟𝑜𝑣. 𝑓𝑡𝑒 + 𝒇!,!

! 𝑝𝑟𝑜𝑣. 𝑐ℎ𝑛𝑔

+ 𝒇!,!
! 𝑝𝑟𝑜𝑣.𝑝𝑜𝑠 + 𝒇!,!

! 𝑝𝑟𝑜𝑣. 𝑒𝑥𝑝 𝑝𝑟𝑜𝑣.𝑝𝑜𝑠 +⋯+ 𝑽!
! 𝜸!

! + 𝜺!
(!)  

                                                  = 𝟏𝜼!,!
(!) + 𝑿!,!

(!)𝜷!,!
(!) +⋯+ 𝑽!

! 𝜸!
! + 𝜺!

(!)  

Level− 3:  𝜼!
! = 𝟏𝜼!,!

(!) + 𝑿!,!
(!)𝜷!,!

(!) +⋯+ 𝑽!
! 𝜸!

! + 𝜺!
(!)  

Level− 3:𝜷!
! = 𝒇!,!

! 𝑝𝑟𝑜𝑣. 𝑒𝑥𝑝 + 𝑽!
! 𝜸!

! + 𝜺!
! = 𝑿!,!

(!)𝜷!,!
(!) + 𝑽!

! 𝜸!
! + 𝜺!

!   

Level− 3:𝜷!
! = 𝒇!,!

! 𝑝𝑟𝑜𝑣. 𝑒𝑥𝑝 + 𝑽!
! 𝜸!

! + 𝜺!
! = 𝑿!,!

(!)𝜷!,!
(!) + 𝑽!

! 𝜸!
! + 𝜺!

!   

Level− 4:𝜼!,!
! = 𝑽!,!

! 𝜸!,!
! + 𝜺!,!

!   
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Level− 4:𝜼!,!
! = 𝑽!,!

! 𝜸!,!
! + 𝜺!,!

!                                                                           (4.1 ) 

The top level equation contains the two responses. The level-2 equations are STAR 

models for logged primary and non-primary care workloads that are regressed on 

possibly nonlinear effects of patient’s age, care assessment need score, and length of stay 

using P-splines. We also include interaction effects between age, CAN score, priority, 

and all disease types, and between CAN score and length of stay with a two dimensional 

surface. The categorical covariates on the patient level along with their possible 

interactions are encoded as dummy variables and subsumed in 𝑽(⋅) with parameters 𝜸(⋅). 

Note that here we use the same set of effects for the both response regression, but this 

may change in other applications with a bivariate response. The first and the second 

level-3 equations model patient-specific offset by the team level covariates such as 

provider experience and its interaction with provider position plus random intercepts 𝜺!
(⋅). 

In addition, the linear or index terms on this level such as provider position are included 

in 𝑽!
⋅ . The third and the fourth level-3 equations model slope-specific heterogeneity of 

age plus additional linear terms 𝑽!
⋅ , and random slopes 𝜺!

⋅ . Finally team-specific 

intercepts are modeled through level-4 equations containing the logarithm of average 

facility distance 𝑽!,!
⋅  and facility random intercepts 𝜺!,!

⋅  . 

        

4.3.  Analyses 

We perform sensitivity analysis for component selection with regards to different 

hyperparameter settings, i.e. 𝑣! = 0.00025, 0.005, 0.01 and 

𝑎!, 𝑏! = 5, 25 , 5, 50 , 10, 35 . We also evaluate the prediction performance of 

models with and without having higher level hierarchies based on deviance values 

obtained for a test subset containing 1,000 observations.   
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4.4.  Results 

The maximal model contains  approximately 121 model terms with 640 coefficients in 

total. The hyperparameters are set to 𝑎! , 𝑏! = 1, 1 , 𝑎!, 𝑏! = 5, 25 , and 

𝑣! = 0.00025. Since we convert our responses to Gaussian, a very flat hyperprior 

𝜙 ∼ Γ!! 10!!, 10!!  is chosen for the error variance. The estimates are constructed on 

MCMC samples from ten parallel chains with a burn-in run of 1,000 iterations each, 

followed by a sampling phase of 15,000 iterations, with every tenth iteration used. For 

modeling smooth terms we use cubic P-spline basis functions with 20 equidistant inner 

knots over the range of the covariates plus second-order difference penalties penalizing 

deviations from linearity. For linear/polynomial terms we use orthogonal bases functions 

of the associated degree without an intercept. For modeling index effects we employ 

dummy variables with sum-to-zero contrasts. The correlation structures of the random 

effects (‘team-ind’ and ‘fac-ind’) are set to identity here, but more complex classes such 

as autoregressive or spatial correlation can be applied. 

The model terms with posterior inclusion probability 𝑃 𝛿! = 1 𝒚  greater than 0.10 

are listed in Table 2, for the primary care relative value unit, and in Table 3 for the 

non-primary care value unit. Compared with the non-primary care RVU, the model for 

the primary care RVU is rather sparse with only 10 terms with inclusion probability 

larger than 0.10. In both models, the team and facility random intercepts accounted for 

hierarchical heterogeneity turn out to be very imperative. Four other terms are also 

common in the two models, i.e., linear part of CAN score, marital status, whether the 

patient has been diagnosed with a musculoskeletal or connective tissue condition, and 

whether the patient has had a screening or history of disease. In terms of disease 

variables, the non-primary care additive predictor is almost dominated by cancer, eye, 

mental, skin, ear/nose/throat, and injury/poisoning, while nutrition/metabolic and heart 

diseases are more prominent in the primary care additive predictor. The posterior mean of 

the nonparametric additive predictor 𝜂 associated with a number of selected effects along 

with 90% credible intervals are illustrated in figures11-13 for the primary care RVU, and 
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in figures 14-17 for the non-primary care RVU. As shown in figure 9, the care 

assessment need score effect on the primary care RVU is increasing from about -0.2 to 

+0.2 with a zero effect around 50. However, on the non-primary care RVU, the CAN 

score has a greater effect changing from -1 to +1 (figure 12). The effects of comorbidities 

are shown in figures 10 and 14. As expected, having a comorbid condition is always 

associated with greater clinical workload in both primary and non-primary care settings. 

The interaction effect of CAN score and priority on the non-primary care RVU (figure 

16) shows that, patients in priority groups such as 5 and 6 are likely to generate more 

workloads as their CAN score increase. Yet, patients in other groups like 8 and 2 have a 

decreasing trend with regards to increasing in CAN score. The interaction effect of age 

and provider position on the non-primary care workload is oscillating with a direction 

change around the age of 58. The effect of length of stay on the non-primary care 

workload is much higher than all other covariates. Its interaction with priority group is 

also illustrated in figure 17 showing a large positive effect in group 7 and a large negative 

one in group 6.  

In the test set containing 1,000 independent patients, the selected covariate set is the 

same as in Table 2 for the primary care RVU, except that there is no interaction effect 

identified; for the non-primary care workload prediction, the model includes exactly the 

same terms as shown in Table 3. This finding assures the stability of our approach and 

reinforces its internal validity (or reproducibility) with related samples underlying a same 

population. 

We then perform predictive performance evaluation with different hyperparameter 

settings. To this end, the mean posterior deviance  !
!

−2𝑙 𝒚 𝜼(!),𝜙(!)!
! , the average of 

twice the negative log-likelihood of the observations over the saved MCMC iterations, is 

calculated and saved. Results confirm that the prediction accuracy is very robust across 

all the parameter combinations for both primary care and non-primary care workloads. 

However, variable selection is a little bit sensitive to the varying hyperparameters 

especially to the choice of 𝑣!. Generally we observe that very small values of 𝑣! allow 

small effects to be included in the model, while larger values of 𝑣! do more 
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conservatively. The model sparsity is found to be more sensitive with regard to 𝑣! than 

toward 𝑎!, 𝑏! . 

Examining the hierarchical versus nonhierarchical modeling, we notice that the mean 

posterior deviance is much smaller when we include random intercepts from level-3 and 

level-4 hierarchies. Specifically for the primary care RVU in the test set the reductions in 

deviance are 186 and 53 units with regards to the team and facility intercepts, 

respectively with the null deviance equal to 1932. For the non-primary care workload 

these cuts are found to be 197 and 64 units. Thus we perceive that ignoring the 

hierarchical structure of data, which introduces nested correlations among observations, 

can result in a biased prediction of both outcomes. 

 

 

Figure 9 QQ plot of primary care relative value unit with 95% confidence bands 
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Figure 10 QQ plot of non-primary care relative value unit with 95% confidence 

bands 
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Figure 11 Linear (top) and nonlinear (down) effects of care assessment 
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Figure 12 Effects of different comorbid conditions  
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Figure 13 Effects of different facility on the primary care  
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Figure 14 Linear (top) and nonlinear (down) effects of care assessment  
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Figure 15 Linear (top) and nonlinear (down) effects of age on NPC 
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Figure 16 Effects of different comorbid conditions on the non-primary care  



 
 

104 

 

 

Figure 17 Interaction effects of care assessment need score and enrollment priority  
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Figure 18 Interaction effects of length of stay and enrollment priority (top  
 

4. 2. 3. Computational study for phase II 

In this section we present results from an empirical study for outpatient assignment in 

John D. Dingell VA medical center in Detroit, Michigan. First we describe the patient 
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data used and how parameters are estimated from historical records to generate problem 

instances for the optimization problem. Next, we present results from numerical 

experiments illustrating the quality of solutions and value of stochastic solution (VSS). 

Finally, we report results from a series of sensitivity analyses done regarding to scenario 

grouping and input parameters such as the penalty parameter 𝜌 and the number of 

scenarios considered.  

The proposed algorithm was encoded in Pomo algebraic modeling language  and used 

CPLEX 12.6 callable library in Python 2.7. We set absolute (cplex) mipgap tolerance to 

1e-4 and we applied the default settings for the clique and feasibility pump switches in 

the solver. Moreover, we set the MIP search emphasis to “moving best bound” (option 3) 

and maximum cplex run time to 6 hours in scenario subproblems. Numerical experiments 

were run on a 7-core Dell 2.00 GHz machine with 16 GB RAM. Patient healthcare 

demands on different professional lines were generated using multivariate prediction 

models in R language [60].             

4.2.3.1 Patient Data and Problem Instances           

We used a set of 1,000 (= 𝐼 ) randomly selected patients visited the VA facility during 

FY 2012-13. The Decision Support System (DSS) and National Patient Care Database 

(NPCD) files of the VA Corporate Data Warehouse (CDW) were employed to extract 

patient-level factors such as demographic and socioeconomic variables. All patient visits 

to primary care were assembled for a total capture period of one year. Visits from other 

primary care related clinics, such as internal medicine or geriatric primary care, were 

dropped because health services requested by such visits are generally not rendered 
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through medical homes. The healthcare demands generated on each professional line 

were measured in Relative Value Unit (RVU; Dummit, 2009) on a yearly basis. The 

RVU schema has been widely used for reimbursement and each value was assigned  to  a  

particular  service  (as  defined  by  a  coding  system  called  Current  Procedural 

Terminology or CPT) rendered by a provider. The values are adjusted by geographic 

regions so that, for  example,  a  99213  CPT  code  (refers  to  office/other  outpatient  

services)  performed  in Manhattan  is  worth  more  than  when  performed  in  Dallas. 

One advantage of using RVUs in our approach as opposed to simple face-to-face visit 

counts lies in its ability to further accommodate workloads that are generated by 

telephone encounters.  

  We designed 5 problem instances in this study. According to the VA administrative 

records, for the sample taken, there were 3 (= 𝐽 ) PCMH team arranged in Detroit 

facility and most of the time four professional lines were working in each team: NP (or 

PCP or Physician’s Assistant), RN, LPN (or equivalent), and medical clerk. However 

there were some cases in which a patient in the sample called for a nutritionist or 

pharmacist during his/her visit. Thus, to be on the safe side, we set the number of 

professions (= 𝑅 ) to 5. To generate data for each problem instance we employed 

multivariate predictions that can take into account the interdependencies among demands 

on professional lines [21]. On our sample such a prediction model produced 8% mean 

absolute percentage error (MAPE) averaged over all five professions. Thus we used those 

predictions to generate healthcare demand scenarios as follows. We used empirical 

prediction errors to populate the scenarios generated. In particular, for each instance we 
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first took a bootstrap sample (with replacement) of 1,000 patients and computed the 

prediction and empirical error vectors (5-dimension) for each record. We repeated this 

process 10 times (= 𝒮 ) and we added the prediction error vectors to the point estimate 

vectors to obtain a demand scenario. Note that the probability of each scenario is equally 

likely, that is, 𝑝! =
!
𝒮
,∀  𝑠 ∈ 𝒮.  

Now we explain how available service times are calculated. It is noted that, in most 

VA PCMH practices, a “basic” member is assigned to a single team and 100% of its time 

(1 Full-Time Equivalent) is devoted to that team alone, that is, they are not shared among 

other teams. These basic positions are NP (or PCP), RN, LPN, and medical clerk. 

However, there are shared positions like nutritionist and pharmacists that are consulted 

on a referral basis as needed by the patient. Simply put, a nutritionist may have patients 

from all of the PCMH teams or from just one or two depending on the needs of the 

patients, not necessarily depending on the teams themselves. Thus, to calculate the 

available annual service time granted in each team, we added hours provided by the 

shared positions to those given by the basic members (= 𝑏!"). Since we have three teams 

in the studied facility, we assumed that a nutritionist (or a pharmacist) grants one-third of 

his/her service times for each team. This assumption is reasonable and in line with the 

VA policy, though it can be modified when applied in other settings. As a result, the RHS 

of (6e) is changed as 𝑏!" ⟵ 𝑏!" +
!
!
𝑏!,!"# +

!
!
𝑏!,!!!"#. For full-time federal employees 

there are approximately 260 working days with approximately 23 days granted for 

vacation, which gives a total of 1890 hours per year. The remaining is related to the 
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maximum RVU values per hour for each profession, which was obtained by the CPT 

codes performed and the Resource-Based Relative Value Unit schema. For example, the 

maximum RVU/hour for a physician was 12 in the Detroit facility, so he/she could 

deliver about 1890×12 RVUs during a year.    

We assumed the cost of initial patient assignment (= 𝑐!" ,∀   𝑖, 𝑗 ∈ 𝐼×𝐽 ) is zero or 

equivalently this is the same for all patients considered so that the total first-stage cost 

becomes constant. Nonetheless, all results and analyses can be applied to non-zero 

first-stage costs as well. We set the cost parameters as relative weights. Based on the VA 

primary care policy, the assignment cost is similar for all PCMH teams but can be 

different for different patient types. There were four distinct types of patients based on 

primary Care Assessment Need (or CAN) score in the sample. The CAN score is a 

general illness severity score that reflects the likelihood of admission or death within a 

specified time period, and it works somewhat similar to diagnostic cost group (DxCG) 

risk score. The score is commonly expressed as a percentile ranging from 0 (lowest risk) 

to 99 (highest risk) and it shows how a VA patient is compared with others pertaining to 

the chances of hospitalization or death. Thus, we set the assignment costs (= 𝑐!") as 1, 1.5, 

2, and 2.5. The overtime penalty cost (= 𝛽!) for PCP, RN, LPN, Nutrition or Pharmacist, 

and medical clerk was set to 9, 7, 5, 3, and 1, respectively. The reassignment costs were 

set sufficiently large (𝛼! = 20) to trigger “continuity of care” in the solutions implying 

that, unless necessary, a previously established patient assignment should not be changed.    
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4.2.3.2 Value of the Stochastic Solution           

In this section we examine the value of information and benefits of applying our 

stochastic model to the problem instances. The value of stochastic solution (VSS) shows 

the expected loss of ignoring uncertainty when, instead of stochastic model, we solve the 

mean value problem in which all random variables are replaced by their means. Table 9 

presents the solutions for deterministic model, stochastic program TSSPA2 (with 10 

scenarios per each instance), and the VSS for each problem instance. For this, we set the 

algorithmic parameters as 𝜌! = 0.5, 𝜕 = 1.04 , and 𝜀 = 1𝑒 − 2. Note that “Asg. cost” 

and “ReAsg. Cost” denote assignment cost and reassignment cost. As appeared, the use 

of stochastic model saves the cost of 271 units on average. Of interest, the reassignment 

cost and overtime cost move in opposite direction. This happens because when healthcare 

supplies are insufficient to fulfill the demands, we have to either move patients to other 

PCMH teams or ask current staffs to do overtime shifts. The deterministic solutions have 

more assignment costs than stochastic solutions. 

4.2.3.5 Computational experiments            

In this section we evaluate the performance of the proposed algorithm as a function of the 

number of scenarios considered. We keep the algorithmic parameters fixed but we 

performed warm-starting the individual scenario subproblem for iteration 𝜈 ≥ 1 using 

solutions from the previous iterations. A maximum runtime of 2 hours was allowed for 

the algorithm and the cplex branch and bound was terminated at 6 hours. For each case, 

we record the incumbent objective value at the termination, MIP lower bound, and 

optimality gap relative to the objective value. The results displayed in Table 8 point to the  
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difficulty of solving the extensive form of the TSSPA2 problem. In no case was an 

optimality gap less than 0.54% examined. As the number of scenarios increases, the 

problem becomes harder for the algorithm, which cannot solve the problem for any but 

the first smallest instance within the allocated time.       

 

Table 8 Solution quality statistics for the proposed algorithm 

 
 

 

 

 
 

Table 9 Comparison of deterministic solutions and stochastic solution, and VSS  

 

  

 

 

 

# Scenarios Best Objective Value MIP Lower Bound % Gap 
5 11691.3 11628.7 0.54 
10 11335.5 11232.4 0.91 
25 11305 11123.2 1.61 
50 11414.1 11037.3 3.30 
100 11977.7 10946.1 8.61 

 Deterministic solutions  Stochastic solutions  

Instance 
Asg. 
Cost 

ReAsg. 
Cost 

Overtime 
Cost 

Total 
Cost 

 Asg. 
Cost 

ReAsg. 
Cost 

Overtime 
Cost 

Total 
Cost VSS 

1 1619 874 8872.6 11365.6  1583.6 760 8739.1 11089.2 276.4 
2 1624.5 988 8790 11402.5  1610 874 8654.3 11138.3 264.2 
3 1627 912 8934 11473  1612.5 722 8857.4 11191.9 281.1 
4 1638 760 9110.3 11508.3  1613.5 608 9016.5 11238 270.6 
5 1625.5 836 8894.7 11356.2  1617.5 798 8678.2 11093.7 262.5 
Mean 1626.8 874 8920.3 11421.1  1607.4 752.7 8789.1 11150.2 271 
StDev 6.9 85 118.5 67  13.6 98.4 149.4 64.2 8 
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Chapter V: Conclusion 

A key factor in the success of medical homes in delivering quality and coordinated 

care lies in their teams’ ability to handle uncertainties that can be caused by different 

sources such as patient/physician appointment scheduling, care logistics, and more 

importantly patients’ health demands. This paper addresses the problem of clinical 

demand prediction in the presence of nested sources of variation at different operational 

levels. We collected outpatient visit data from a large sample of Veterans Affairs 

hospitals and investigated the relationship between risk factors at three operational levels 

and total care demands on a yearly basis. We propose a multivariate multilevel 

generalized linear model in a Bayesian framework to predict the care demand portfolio in 

medical home practices. The proposal can fit heteroscedastic variances and unstructured 

covariance matrices for nested random effects and residuals as well as their interactions 

with categorical and continuous covariates simultaneously.  

We find that utilizing a multilevel analysis with nested random components can 

greatly contribute to model fit in hierarchical healthcare systems. Further, we show that 

risk-adjustment for patient disease conditions and their comorbidities extensively 

enhance the prediction power of our model. Our results confirm that using a multivariate 

as opposed to a univariate approach can significantly shrink the correct credible intervals 

for workload predictions thus allowing for a more precise estimation of either outcome. 

The approach used in this paper has a general application and could also be employed for 

analysis of multiple health outcomes in a variety of health analytics contexts.    
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Turning to specific results from recent VA data, we see that overall, the primary care 

is positively associated with the non-primary care after accounting for all studied sources 

of variability. We find the association between patient-level predictors such as age and 

the care workloads varies considerably among PCMH teams within a hospital. Further, 

the effect of patient non-adherence on care demands is subject to change from one 

hospital to another. Moreover, it is found that patient oldness can contribute to the 

increased care demands required for heart, nutritional, and gastrointestinal diseases.    

There are some limitations to this research that need to be mentioned. First, the data 

in our study are collected solely from a veteran population (with fewer female and more 

senior patients) who receives support from government budgets. Thus the results from 

our study may not fully generalize to other health care systems. Second the data used is 

administrative and not real time, so some issues such as model tuning and calibration 

should be taken into account when dealing with online prediction efforts.    

Our work can further be extended in some fronts. One challenging direction would be 

to modify the proposed approach to handle longitudinal observations from past history of 

care demands for a specific patient profile. This may be done by expanding the 

multivariate distribution of outcomes to include a temporal dimension which requires 

great care in model specification and implementations thanks to various 

inter-correlations. Alternatively, one can combine some autoregressive terms to the 

variance structure introduced in this work. Another issue worth exploring is related to the 

way that one can adjust for patient risk or comorbidities. Although several algorithms 

such as Clinical Risk Group (CRG), veriskhealth DxCG [82], and CMS’s HCC software 
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have been used in the literature, no scientific study is available to systematically evaluate 

the impacts of each algorithm on prediction modeling of care demands.   

Moreover, we propose a Bayesian function selection approach based on spike and 

slab priors for the hierarchical structured additive models with a multivariate response. 

The prior setting adopted in our work is a Bayesian hierarchical structure with a bimodal 

density on the hyper-variance of the coefficient blocks with one part being a narrow spike 

around the origin and the other part being a wide slab. We demonstrate how one can 

parameterize a special class of multi-response hierarchical structured additive model, that 

is, a multivariate linear multilevel spline model, within a standard structural equation 

modeling framework, and thus bridge the connection between multivariate multilevel 

STAR models and generalized latent variable models. We then apply our methods to 

patient centered medical home data obtained from a large number of VA medical 

facilities during fiscal years 2011–12. Our work is the first attempt to develop a portfolio 

based demand prediction model for patient centered medical home within the OR/MS or 

IE community. We aggregate three levels of hierarchical data including information from 

outpatients, the medical team responsible to render the care to the patients, and the VA 

facilities. We find that the sets of chosen predictors introduced by the model are different 

for the primary care and the non-primary workloads. Our findings also confirm that 

taking hierarchical heterogeneity into account is associated with better prediction 

accuracy, especially when the data has more than two levels. Moreover, in this research 

we prposed we presented a balanced patient assignment model under healthcare demand 

uncertainty with application to patient centered medical home. The model was formulated 
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as a two stage stochastic integer program with mixed 0-1 recourse. An assignment of 

patients to medical home teams is decided a priori, and once the actual demand is 

revealed, reassignments can be performed if there are overloaded team members. 

Different penalties were considered for reassigning patients with positive demands and 

calling for personnel to do overtime services. The objective is to minimize the total 

expected costs. We proposed an efficient scenario decomposition strategy inspired by the 

Rockafellar and Wets progressive hedging approach to address the problem. We also 

presented a lower bound for mixed integer case that can be found in every iteration of the 

algorithm. The algorithm outperforms the commercial solver when directly applied to the 

multiscenario formulations in both solution quality and computational time. We applied 

our methods to an empirical study for outpatient assignment in patient centered medical 

home at John D. Dingell VA medical center. Problem instances were generated using a 

multivariate prediction model that estimated correlated demands with an acceptable error 

rate. Our findings indicate that solving the stochastic problem, as compared to the mean 

value problem, would save the cost of 271 units on average. We conducted numerical 

tests to evaluate the effect of number of scenarios and quality of lower bounds on the 

performance of the proposed algorithm. We found that significant amount of computing 

is pertained to solving the scenario subproblem which can be saved by parallel 

computation of the subproblem. 
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Recently the patient-centered medical home (PCMH) model has become a 

popular team-based approach focused on delivering more streamlined care to patients. In 

current practices of medical homes, a clinical-based prediction frame is recommended 

because it can help match the portfolio capacity of PCMH teams with the actual load 

generated by a set of patients. Without such balances in clinical supply and demand, 

issues such as excessive under and over utilization of physicians, long waiting time for 

receiving the appropriate treatment, and non-continuity of care will eliminate many 

advantages of the medical home strategy. In this research, we formulate the problem into 

two phases. 

At the first phase we proposed a multivariate version of multilevel structured 

additive regression (STAR) models which involves a set of health care responses defined 

at the lowest level of the hierarchy, a set of patient factors to account for individual 

heterogeneity, and a set of higher level effects to capture heterogeneity and dependence 
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between patients within the same medical home team and facility. We show how a 

special class of such models can equivalently be represented and estimated in a structural 

equation-modeling framework. A Bayesian variable selection with spike and slab prior 

structure is then developed that allows including or dropping single effects as well as 

grouped coefficients representing particular model terms. We use a simple parameter 

expansion to improve mixing and convergence properties of Markov chain Monte Carlo 

simulation. A detailed analysis of the VHA medical home data is presented to 

demonstrate the performance and applicability of our method. In addition, by extending 

the hierarchical generalized linear model to include multivariate responses, we develop a 

clinical workload prediction model for care portfolio demands in a Bayesian framework. 

The model allows for heterogeneous variances and unstructured covariance matrices for 

nested random effects that arise through complex hierarchical care systems. We show 

that using a multivariate approach substantially enhances the precision of workload 

predictions at both primary and non-primary care levels. We also demonstrate that care 

demands depend not only on patient demographics but also on other utilization factors, 

such as length of stay. Our analyses of a recent data from Veteran Health Administration 

further indicate that risk adjustment for patient health conditions can considerably 

improve the prediction power of the model. 

For the second phase, with the help of the model developed in first phase, we are able 

to estimate the annual workload demand portfolio for each patient with given attributes. 

Together with the healthcare service supply data, and based on the principles of balancing 

supply and demand, we developed stochastic optimization models to allocate patients to 
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all PCMH teams in order to make balance between supply and demand in healthcare 

system. We proposed different stochastic models and two solution approaches such as 

Progressive Hedging and L shaped Benders Decomposition. We described the application 

of the two mentioned algorithms and finally we compared the performance of the two 

methods. 
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