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CHAPTER 1: INTRODUCTION 

For over a century, understanding the properties of the solid state of matter has been the 

concern for physicists from all around the globe. Since the beginning of the twentieth century the 

field has experienced several revolutionary discoveries and inventions. However, many scientists 

believe that it was the establishment of the field of quantum mechanics that created a paradigm 

shift in our understanding of condensed matter physics [1]. For instance, the study of magnetic 

properties of materials is a major sub-area of condensed matter physics. A firm understanding of 

the field of magnetism is never possible outside the scope of quantum physics. 

 The interaction between humans and magnetic materials goes back to the oldest known 

civilizations, but the onset of understanding the physics of magnetism is only about one hundred 

years old. It is in the light of quantum mechanics that scientists could explain the behavior of 

magnetic materials in terms of the electron spin and orbital motion. With the spin defined as a 

fundamental physics quantity, models of microscopic magnetic ordering could be put in words. 

A description of different known regimes of magnetic ordering is given over the next few pages. 

1.1 TYPES OF MAGNETIC ORDERING 

The magnetic behavior of materials can be qualitatively understood with Bohr’s atomic 

model in mind. According to this model, the negatively charged electrons fill the space around 

the positively charged nucleus in energy levels hierarchy. In this picture, the electrons manifest 

two types of angular momenta; orbital and spin, with each type giving rise to a part of the 

electrons’ magnetic moment. In their arrangement within individual energy levels, the electrons 

are further ordered in sub-levels or orbitals, and each orbital is considered full when it hosts two 

electrons. Furthermore, Pauli exclusion principle dictates that once two electrons share an 
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orbital, they must have opposite spins. The distribution of electrons among atomic levels and 

orbitals is what determines how the material interacts to an external magnetic field. 

1.1.1  LINEAR ORDERING: DIAMAGNETISM AND PARAMAGNETISM 

In response to an applied external magnetic field (H), the sample will develop a 

measurable magnetization (M). Materials can be classified in two broad categories in terms of 

their M vs H plot. If the M-H graph is depicted by a straight line, the material is said to exhibit 

linear magnetic ordering. On the other hand, nonlinear ordering refers to an M-H relation that is 

not a straight line. Nonlinear ordering is discussed in more details in the next section. 

For a linear M-H plot, the slope can be either positive or negative. A negative slope 

denotes a diamagnetic sample (Fig 1.1(a)). Usually, diamagnetic substances would be 

characterized by energy levels and orbitals which are completely filled with electrons [2]. In the 

absence of external magnetic field, the sample would show no measurable magnetization. 

However, when the field is non-zero, the electrons will be oriented to always give rise to a small 

negative magnetization, with respect to the direction of the applied field. Some substances 

belonging to this category are inert gases, water and most covalent compounds.  

 

 

 

 

 

 

Figure 1.1: Schematic M-H plot of (a) a diamagnetic sample and (b) a paramagnetic sample. 

 

It is useful to define the slope of M vs H plot as the magnetic susceptibility χ. For a 

typical diamagnet, χ is negative and in the order of ~10
-6

 [3]. 

M 

H 

M 

H 

(a) (b) 
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Diamagnetism is also found to occur with superconductivity. In fact, superconductors are 

characterized by being perfect diamagnets, with χ = -1. The origin of diamagnetism in 

superconductors, however, is more complicated than the simple saturated orbitals notion [2]. 

It worth noting here that since diamagnetism is synonymous to fully occupied energy 

levels, all of the known elements and compounds in our universe (except for atomic hydrogen) 

show some degree of diamagnetism. But since diamagnetism is such a weak property, it is 

usually screened by other magnetic responses, such as paramagnetism. 

The existence of unpaired electrons, whose accommodation among orbitals is governed 

by Hund’s rules, gives rise to a net atomic magnetic moment. If no interaction occurs between 

the individual atomic moments, these will be randomly oriented, and randomly fluctuating, 

inside the system, and the material on average would have no net magnetic moment. If an 

external magnetic field is applied, the moments align themselves parallel to the external field in 

order to decrease their potential energy, producing a net magnetization in the system. This 

process is governed by Maxwell-Boltzmann statistics; the net moment value increases with 

higher magnetic field (before a saturation value is reached), and decreases with higher 

temperature. This behavior is called paramagnetism. Typical values of paramagnetic 

susceptibility are positive and in the order of 10
-4

 (Fig 1.1(b)). 

At low fields, the paramagnetic susceptibility is related to the absolute temperature by 

Curie’s law (Eq 1.1), where C is called Curie’s constant, and it carries dependence on the 

system’s orbital and spin quantum numbers. 

 
  

 

 
 

(1.1) 

 Generally speaking, any material with atoms having unpaired electrons will be 

paramagnetic unless long range ordering occurs. In some cases, the local magnetic moments on 
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each atom may interact.  These interactions are produced by the overlap of electronic wave 

functions among different atoms in the system, together with the Pauli exclusion principle. If 

such interactions arise, long range ordering of the magnetic moments occurs, and the M-H 

relation is no longer a straight line. 

1.1.2  NONLINEAR ORDERING: FERRO- FERRI- AND ANTIFERRO- MAGNETISM 

The inter-atomic interaction which gives rise to long range order is described by the 

Heisenberg Hamiltonian (Eq 1.2): 

            ∑   ⃑ 

   

  ⃑  
(1.2) 

 ⃑  and  ⃑  are the spin angular momenta of the i
th

 and j
th

 atom. J is called the exchange 

integral and it depends on the pair of atoms involved. When J is positive, an energy minimum is 

achieved through parallel alignment of moments. This phenomenon is known as ferromagnetism. 

Conversely, antiparallel arrangement of moments is favored in systems with negative J values, 

such systems shall be called antiferromagnets when  ⃑  and  ⃑  are equal, or ferrimagnets 

when  ⃑   ⃑ . 

In ferromagnetic systems, we can see from the last expression that minimizing the 

interaction energy requires aligning all the moments in a given sample to be parallel, giving rise 

to a large single domain. However, this normally does not happen in macroscopic systems 

because magnetostatic energy increases linearly with the domain size. This favors the formation 

of multiple small domains rather than a single large one. Nonetheless, smaller domains imply 

larger domain wall area, which increases the domain wall energy. As a result of this contest, real 

systems are divided into magnetic domains separated by domain walls when they order 

ferromagnetically (Fig 1.2). 
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Figure 1.2: Schematic representation of ferromagnetic domains [2]. 

 

These domains are randomly oriented, and the net magnetic field along any direction is 

nearly zero. On applying an external magnetic field, magnetic domains aligned along the field 

direction will grow, eventually producing one large domain, whose magnetization is parallel to 

the external applied field. At this point, the sample is saturated. If the external field is now turned 

off, the sample does not return to complete randomness again, but rather retains a remanent 

magnetization (Mr).  One needs to apply a negative external magnetic field, called the coercive 

field (Hc), to reduce magnetization to zero. The relation between the external magnetic field and 

the sample magnetization in this case depends on the sample’s history and is non-linear, hence 

given the name hysteresis loop (Figure 1.3). 
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Figure 1.3: Schematic representation of a typical hysteresis loop [4]. 

  

A material with a high coercive field value is called a hard magnet. Such behavior is 

useful in memory applications. On the other hand, materials having low coercivity are labeled 

soft magnets, and are suitable in transformers and motor cores. 

Long range ordering interactions given in equation 1.2 prevail only below a certain 

transition temperature. This behavior is parameterized in the light of Landau mean field theory in 

terms of a slight modification to Curie’s law: 

 
  

 

    
 

(1.3) 

Where Tc is a constant called Curie temperature for ferromagnets, and Neel temperature 

for antiferromagnets. Equation 1.3 is called Curie-Weiss law, and it suggests a singularity in 

susceptibility in the vicinity of Tc. Above Tc, the system becomes paramagnetic and displays a 

linear   ⁄  vs T relation, in accordance with equation 1.2. In this regime, applying the appropriate 

units conversion allows us to write Curie’s constant as in equation 1.4 [3]: 

 
  

        
   

 

   
 

(1.4) 
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 Where μo is the permeability of free space, NA is Avogadro’s number, μB is Bohr 

magneton, kB is Boltzmann’s constant and μeff is the effective magnetic moment per ion. Bohr 

magneton is useful to quantify the atomic/ionic magnetic moment, since it equals the moment of 

one electron. Using the above relation, together with equation 1.2, the effective moment μeff can 

be estimated from the   ⁄  vs T plot. 

As mentioned before, the magnetic order pattern depends on the values of the exchange 

integral J. Complicated magnetic structures can arise from different exchange constants between 

different pairs of spins. This will be discussed in more details in section 1.1.4. 

1.1.3  NANOMAGNETS: SUPERPARAMAGNETISM 

A system whose dimensions fall in the order of nanometers is characterized by a high 

surface-to-volume ratio. It is due to this, added to quantum confinement effects, that the 

observable properties of nanostructures of some materials are different to their bulk properties. In 

addition to nanoparticles drawing attention because of their optical properties and their use as 

catalysts in chemical reactions, owing to their large surface area [5], their magnetic properties are 

also remarkable. When materials known to be ferro- or ferri-magnetic in bulk are prepared in the 

form of nanoparticles whose volume is smaller than a certain threshold (figure 1.4), they exhibit 

a set of properties known as superparamagnetism [6]. 

 We discussed above how a bulk specimen of a ferromagnetic materials develops 

magnetic domains separated by domain walls. Dissimilarly, each magnetically ordered 

nanoparticle constitutes one single domain. Due to crystal anisotropy, there will be in general a 

preferred direction –inside each particle- along which magnetization aligns. The ionic spins 

perform a 180
o
 flip along this direction as a result of thermal relaxations, with the average time 

between flips given by equation 1.5 [7, 8]: 
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        (

  

   
) 

(1.5) 

Where ηo is a characteristic relaxation time, and is usually in the order of 10
-10

 sec [7]. It 

is perceived from the above equation that η depends on the temperature, the volume of the 

particle as well as the anisotropy constant K. Also, the equation bears exponential dependence on 

the ratio between two types of energies: The anisotropic energy barrier KV, and the thermal 

energy kBT. 

 

Figure 1.4: Qualitative relation between coercivity and particle size [6]. 

 

For all practical purposes, a measured sample will consist of an astronomical number of 

particles whose sizes express a statistical distribution around some mean value. Since the 

orientation of particles’ moments is described by an average relaxation time, comparing the time 

of measurement to η will be crucial in determining the state of the system. It is important to keep 

in mind that a particle’s relaxation time depends on its size. When the temperature is low, the 

average time between moment flips will be much larger than the measurement time, and the 

system will be in a blocked state. On the other hand, at higher temperatures, the moments will 

have enough time to show several flips within the measurement time, leading to an average 
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magnetization value of zero in the absence of external magnetic field. Such argument enables us 

to define a Blocking Temperature TB, below which the system is blocked. Such temperature is 

marked by wide peak in the zero field cooled – field cooled (abbreviated ZFC-FC) magnetization 

curve of the superparamagnetic sample (figure 1.5). The width of the TB peak originates from the 

size distribution of magnetic nanoparticles in a given system. A detailed explanation of how such 

curve is obtained can be found in the literature [7, 9]. 

 

Figure 1.5: ZFC-FC curves obtained for Fe3O4 nanoparticles [10]. 

 

 Another interesting observation feature in superparamegnetic systems is the non-zero 

coercivity below the TB. This happens because the thermal energy is too low to overcome the 

crystalline anisotropy energy. Therefore, the particles’ magnetic moments tend to rotate back to 

their easy directions, resulting in non-zero magnetization at zero magnetic field. On the other 

hand, above TB the moments are randomized due to high thermal energy, resulting in zero 

coercivity (figure 1.6) [10]. 
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Figure 1.6: M-H curves for Fe3O4 nanoparticles above and below the blocking temperature (200 

K, refer to figure 1.5) [10]. 

 

Several applications aim to utilize magnetic nanoparticles for their unusual properties. 

For instance, they can be utilized in cancer treatment through magnetic hyperthermia [11, 12], in 

waste water treatment [13], chemical catalysis [14] and information storage [15]. 

1.1.4  EXOTIC MAGNETIC ORDERING: SPIRAL AND HELICAL MAGNETS 

It was noted earlier that complex magnetic ordering patterns could be a result of 

competing two or more exchange integral values. The outcome in many cases is a non-collinear 

antiferromagnetic order. Examples on the resulting spin patterns are spiral, triangular and helical 

orders (Fig 1.7(a)). For instance, Ni
+2

 ions in Ni3V2O8 develops a spiral spin structure (Fig 

1.7(b)) due to J for nearest neighbors being different than J for next nearest neighbors [16]. 
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Spiral: 

 

 

Helical: 
 

 

Figure 1.7: (a) Schematic representation of spiral and helical ordering patterns [3] and (b) Spin 

arrangement of Ni
+2

 ions in Ni3V2O8. The red and blue spheres are Nickel ions at two different 

crystallographic locations. Coupling between two ‘red’ Nickel ions is different than coupling 

between ‘red’ and ‘blue’ ones [16]. 

 

Some sort of periodicity can be easily noticed in the above spin arrangement patters. A 

spin wave vector can be associated with this periodicity. If the spin wave vector is represented as 

a rational multiple of one of the lattice vectors, the magnetic structure is called to be 

commensurate. A nonlinear magnetic pattern is incommensurate in general. 

The spiral and helical spin orders are of particular importance because it has been shown 

recently that they could result in the development of a spontaneous ferroelectric polarization 

moment [17]. This finding will be presented in more details along with examples in the coming 

sections. 

(a) 

(b) 
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1.2 MAGNETIC FRUSTRATION 

We have seen before how the alignment of adjacent spins is defined by the exchange 

integral in the Heisenberg Hamiltonian J (Eq 1.2) being positive or negative. We now consider 

the case of a set of Ising spins, waiting to be accommodated on a planar triangular lattice. Unlike 

Heisenberg spins, which are free to assume any direction in the crystal lattice, an Ising spin is 

allowed to point either up or down only, relative to a fixed crystal direction. It can be easily seen 

from figure 1.8 that for three antiferromagnetically interacting Ising spins occupying the corners 

of a triangle, a unique ground state (i.e.: minimum interaction energy state) cannot be reached. 

Once two of the spins are antiparallel to minimize their mutual Hamiltonian, the third spin can 

no longer find a direction that is satisfactory for both of his two neighbors on the triangle’s 

corners. Considering this argument, one can readily say that antiferromagnetic interactions are 

not suited well with triangular lattice symmetry. Such situation is known as geometrical 

frustration [18]. 

 

 

 

(a) (b) 

Figure 1.8: (a) Ising spins on a triangular lattice. It is not possible for each spin to be antiparallel 

with all its neighbors. (b) The ground state of a triangular cluster of Heisenberg spins [18]. 

 

Although the argument presented hereinabove evoked Ising spins on triangular lattice, 

geometrical frustration is not restricted to that case. In real crystals, systems with triangle-based 
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symmetry and antiferromagnetic interactions often show strong geometrical frustration [19]. In 

3-D, triangular lattice translates to face-centered cubic, which can be regarded as edge-sharing 

tetrahedra. Also, kagome lattice in 3-D is analogous to B-site spinel lattice (Pyrochlore Fd3m) or 

a corner-sharing tetrahedra (Figure 1.9). 

 

Figure 1.9: 2D (top) and 3D (bottom) frustrated crystal structures [19]. 

 

Now, it might seem that it is unfeasible for spins on a triangular based lattice to achieve 

equilibrium. In reality, a significant number of magnetically ordered systems with ranging 

degrees of frustration have been identified. This is because real compounds deviate from ideal 

models for a few reasons [19]: 

1- Most of the spins found in real life systems are Heisenberg spins, with x- y- and z-

components, not simple Ising spins with an up-down configuration. 
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2- The strength of interactions varies throughout a crystal, even among equivalent 

crystal sites. This is due to crystal impurities and defects. Typically, geometrical 

frustration gives rise to a degenerate manifold of ground states rather than a single 

stable ground state configuration [18]. The crystal imperfections give rise to slight 

perturbations, which results in breaking the degeneracy. 

Frustration can be identified experimentally from the inverse magnetic susceptibility 

(  ⁄ ) vs temperature (T) plot. For an antiferromagnetic system, the   ⁄  vs T behavior could be 

fit to a straight line above the ordering Neel temperature (TN). The straight line intersection with 

the x-axis, which is called Curie-Weiss temperature (θCW), informs us about the nature of 

interactions in the system under investigation. A positive θCW indicates a ferromagnetic system, 

while an antiferromagnet is distinguished by a negative θCW. A frustrated antiferromagnet is 

characterized by a θCW whose absolute value is higher than TN. The ratio 
|   |

  
 is empirically 

defined as the frustration index f [19]. 

Care should be taken in estimating the frustration index from   ⁄  vs T curves. In 

particular, data should be linear at a high temperature range, in the order of θCW. Also, the 

effective moment, estimated through Curie’s constant (equation 1.4) should correspond to the 

expected value of the magnetic ion in the studied system. 

1.3 FERROELECTRICITY 

A single atom or molecule would possess an electric dipole moment if the centers of 

masses of positive and negative charges do not coincide. Such displacement between the 

opposite charges’ centers of masses can arise due to many reasons. For example, such electric 

dipole moment may arise due to unequal charge ordering on different crystal sites [20], or due to 

lattice distortions in the crystal structure [21]. The electric dipole moment resulting from such 
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displacement may be permanent, with the most famous example being the water molecule, or 

may be temporary, occurring only in the presence of external electric field, giving rise to the 

dielectric response. 

We have discussed previously how a ferromagnetic material develops a non-zero 

magnetic moment in the absence of external magnetic field. An analogous behavior exists in 

terms of electric dipole moments. If molecules, or unit cells, have a permanent electric dipole 

moment, there is a chance for interactions to occur between adjacent moments, leading to long 

range order among the dipoles. This ferroelectric order generally occurs in domains, each of 

which having one large electric moment along some direction. Under the influence of external 

electric field, the sample would show the same hysteresis behavior described before in terms of 

magnetism, with the discussion referring to electric field and electric dipole moment instead 

(Figure 1.10). 

 

Figure 1.10: P-E hysteresis measured at room temperature for BaTiO3 300 nm particles [22]. 

 

Ferroelectricity can be quantified in terms of ferroelectric polarization, which is said to be 

the order parameter associated with ferroelectric ordering (the order parameter describing 

ferromagnetism is the magnetic moment). The development of an order parameter is 
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accompanied by a symmetry breaking. Ferroelectric ordering is accompanied by a break in space 

reversal symmetry, while ferromagnetic ordering invokes time reversal symmetry breaking [23].  

There is a number of ways by which such permanent ferroelectric moment arises. For 

examples, the most widely studied ferroelectric materials are those called ‘Perovskites’. 

Perovskite is a name given to materials having a crystal structure ABO3, with A and B 

representing cations. This class of materials was named after Calcium Titanate (CaTiO3). The 

ideal perovskite structure is face centered cubic with the anions at the face centers. Cation B is 

surrounded by an octahedron of anions, and cation A is surrounded by a cuboctahedron of anions 

(Figure 1.11). The size of cation A is larger than B, and the relative ion sizes determine whether 

the structure has an ideal cubic symmetry, or whether some lattice distortions would take place 

[24]. As mentioned before, the absence of inversion symmetry center is a necessary (but not 

sufficient) condition for a spontaneous polarization. Thus, a perfect cubic crystal, which exhibits 

spatial inversion symmetry, is not expected to be ferroelectric. 

 

Figure 1.11: Perovskite ABO3 crystal structure. Yellow and blue spheres depict the locations of 

A and B ions respectively. The oxygen ions are represented by red spheres (photo courtesy of 

chem.yale.edu). 
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The development of ferroelectricity in perovskites can be explained as follows: the local 

electric field generated due to displacement of Ti
4+

 increases much faster than the restoring 

elastic force, leading to a permanent distortion. This process is known as ‘polarization 

catastrophe’. The spontaneous polarization of BaTiO3 at room temperature is about 1500 C/cm
2
, 

and Curie’s temperature is 120 
o
C [25, 26]. 

In the perovskite structure, if the B ion is magnetic, there is a possibility of mutiferroic 

order in the perovskite systems, with the ferroelectric and magnetic properties arising from the 

different cations. BiFeO3 is an example of such a system [27, 28]. Multiferroic ordering is the 

topic of the coming section. 

1.4 MULTIFERROICS 

The word ‘ferromagnetic’ was historically coined to refer to the long range magnetic 

order developing in magnetic iron oxide. Since then, the prefix „ferro‟ has been used to describe 

other types of observable ordering. In addition to ferromagnetism and ferroelectricity, two other 

types of ordering have been identified, namely ferroelasticity, where a material retains 

spontaneous strain in the absence of external stress [29], and ferrotoroidicity, which refers to the 

formation of magnetic vortices [30]. Restrictions on time and space symmetry apply for each of 

these orders, such restrictions are summarized in figure 1.12. 

A material showing two of more ferroic orders simultaneously is called multiferroic [31]. 

Needless to say, such class of materials is the subject of considerable research, not only for the 

promising applications, but also for the rich and fascinating physics concepts behind such 

ordering. Materials which are simultaneously ferroelectric and ferromagnetic are of specific 

importance due to potential applications as -for example- multiple state memory elements where 

data can be stored in both electric and magnetic orders. Also, by providing the ability to 
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simultaneously utilize their magnetic and electric polarizations, they provide an extra degree of 

freedom in device design [32, 33]. Moreover, systems showing concurrent ferroelectric and 

ferromagnetic orders are called magnetoelectrics if magnetic (electric) order can be controlled by 

applying electric (magnetic) field. It should be emphasized, however, that a magnetoelectric 

system needn’t be multiferroic. An example of the latter case is Cr2O3 [34]. 

 

Figure 1.12: Space and time symmetry restrictions on different ferroic orders [30]. 

 

 

Figure 1.13: Schematic representation of different mutiferroic classes, with the corresponding 

order parameters and coupling coefficients [35]. 
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Since the study of ferroelastic and ferrotoroidic systems is beyond the scope of this 

thesis, the term ‘multiferroic’ will be used in reference to systems exhibiting simultaneous 

ferroelectricity and ferromagnetism. 

1.4.1 TYPES OF FERROELECTRIC ORDERING IN MULTIFERROICS 

We discussed earlier the mechanism responsible for ferroelectricity in perovskites. Such 

mechanism is important mainly for pedagogical purposes and is not unique. On the other hand, a 

number of different procedures have been identified as to cause ferroelectric ordering in 

mutiferroic materials. In some cases, the factors developing ferroelectricity are unrelated to the 

magnetic ordering in the system, which results in a generally weak magnetoelectric coupling. 

Such systems with independent magnetic and electric orders are called type I multiferroics. On 

the contrary, the class of type II multiferroics includes systems where the magnetic order 

parameter provides the break in space reversal symmetry needed to create electric ordering [20]. 

In this section we present various mechanisms for ferroelectricity in multiferroics: 

 Lone pair activity: A lone pair of electrons is defined as a pair of valence electrons that is 

not shared with other atoms in the chemical formula [36]. It has been shown that such 

pair is sometimes stereochemically active and produces the needed structural distortion to 

create ferroelectricity. For example, the origin of ferroelectric order in BiMnO3 is shown 

to be the Bi ion 6s
2
 lone pair of electrons [37, 38]. Other compounds where electrons lone 

pair prompt ferroelectricity include Bi2WO6 [39], CsPbF3 [40], and BiFeO3 [41]. It 

should be noted that for all these compounds, the ferroelectric order is triggered by the 

non-magnetic ion. Therefore, lone pair ferroelectricity is observed in type I multiferroics. 

 Charge ordering: The process of charge ordering can be explained with the help of figure 

1.14 [42]. The figure depicts a 1-dimensional chain of ‘sites’; where sites can be atoms, 
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ions or molecules. In (A), the sites are neutral and separated by equal distances. In (B), 

alternate positive and negative charges build on the sites, creating equal and opposite 

electric dipole moments. This situation is referred to as ‘Site-Centered Charge ordering’. 

Since space inversion symmetry is maintained, the state in picture (B) does not have a net 

dipole moment. In figure 1.14(C), certain distortion causes sites dimerization, resulting in 

alternating strong and weak bonds. This situation is referred to as ‘Bond-Centered Charge 

ordering’, and space inversion symmetry is still conserved. In (D) it is shown that a 

combination of Site-Centered and Bond-Centered charge ordering states annihilates 

inversion symmetry, hence giving rise to a net dipole moment. 

 

Figure 1.14: Development of ferroelectric order via charge ordering [42]. 
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Charge ordered ferroelectricity is observed in type I multiferroics, such as Fe3O4 [43] and 

LuFe2O4 [44]. It has been also noted in some type II multiferroics, like TbMn2O5 [45] and 

Ca3Co1.04Mn0.96O6 [46]. 

 Geometrical distortions: Ferroelectric order driven by structural geometric distortions has 

been observed in YMnO3 [47]. In this system, Mn
3+

O5 polyhedra would tilt in such a way 

that forces imbalanced Y ions distribution, with respect to a fixed crystal plane. Such 

distortion induces ferroelectric moment along the c-axis. 

 Spin-Orbit interactions: Another ferroelectricity inducing mechanism that is observed in 

type II mutiferroics is called Dzyaloshinskii-Moriya interaction [48, 49]. This is a three-

fold antisymmetric exchange interaction, which takes place between two magnetically 

ordered spins via a close-by ligand, leading to spin canting (Figure 1.15). It can be 

written as: 

      ⃗⃑⃗   (  
⃗⃗⃗ ⃑    ⃗⃗⃗ ⃑) (1.6) 

Where the direction of  ⃗⃑⃗   is determined by  ⃗⃑⃗    ⃑    ⃑. 

 

Figure 1.15: Vector diagram representation of Dzyaloshinskii-Moriya interaction (Courtesy of 

Wikipedia.org). 

 

Besides inducing spiral magnetic ordering, such distortions, in some cases, lead to small 

shifts in the ligand ions, which in turn break charge distribution symmetry [50]. Since 

symmetry breaking here is induced by magnetic ordering, strong magnetoelectric 
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coupling is anticipated. Multiferroicity in FeVO4 [51] and RMnO3 (where R=Gd, Tb, Dy) 

is attributed to Dzyaloshinskii-Moriya interaction [52]. This effect can also be described 

in terms of the spin current, describing the precession of spins [50]. 

1.4.2 SCARCITY OF MULTIFERROICS 

As mentioned before, multiferroic materials are potential candidates for a wide range of 

applications. Therefore, one aspect of ongoing research on mutiferroics aims to discover and 

synthesize more multiferroic systems. While it is not uncommon to observe one kind of ferroic 

ordering in novel systems, multiferroicity is a relatively rare phenomenon. The reasons behind 

this observation are examined in Ref [32]. Specifically, the article digs into the cause behind the 

rarity of mutual occurrence of ferroelectricity and ferromagnetism, where a number of aspects 

are examined for being responsible for such observation, like crystal symmetry, electric 

properties and d-shell occupancy. The article concludes that while the presence of unpaired 

electrons is essential to generate localized magnetic moments, it eliminates the tendency for a 

distortion that removes the center of symmetry. Furthermore, by examining a number of systems, 

it seems that Jahn-Teller distortions (Figure 1.16) are particularly unfavorable for magnetic ions 

in systems showing ferroelectricity. 
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Figure 1.16: Spontaneous distortion of the oxygen ions octahedron surrounding an Mn
3+

 ion as 

an example on Jahn-Teller effect [3]. Such distortion is sometimes favored because the energy 

cost of increased elastic energy is balanced by a resultant electronic energy saving. 

 

1.5 HEXAFERRITES 

 The term ‘hexa-ferrites’ refer to iron-based magnetic oxides with hexagonal crystal 

structure. The main constituents are iron and oxygen, along with other cations, which make up 

three distinct building blocks. The variation of the stacking sequences of these building blocks 

allows for defining six types of hexagonal ferrites [53]. Besides their use as permanent magnets, 

common applications of hexaferrites include magnetic recording and data storage materials, and 

as components in electrical devices, particularly those operating at microwave/GHz frequencies 

[54].  

 Hexaferrites are also important because of the non-collinear nature of their magnetic 

order, which attracts research interests for potential magneto-electric properties. Recently, a 



24 

 

hexagonal ferrite of M-type was reported to show room temperature electric field-controlled 

magnetization [55]. The M-type class also includes barium hexaferrite (BaFe12O19), which 

possesses a room temperature magnetic saturation moment of about 60 emu/g and a Curie point 

of ~450 
o
C in powder form [56]. However, it was mentioned that in spite of having a conical spin 

state, its low resistivity prevents the observation of room temperature magnetoelectric behavior 

[53]. Some work on barium hexaferrite-polymer hybrid films will be presented in Chapter 4. 

1.6 HYBRID MULTIFERROICS 

 In general, magnetoelectric coupling is experimentally found to be a weak effect in single 

phase systems, a problem which hinders its employment for technological applications. 

Therefore, considerable research efforts are devoted towards coming up with ways to enhance it. 

One way to work around this problem is to design hybrid systems in which magnetoelectricity is 

induced via strain [57]. The main concept in designing such system is to use electric (magnetic) 

field to induce strain in the ferroelectric (ferromagnetic) component of the composite, and the 

strain passes on to the other component through the interface [58]. By following this strategy, 

coupling coefficients which exceed those of singe phase systems by up to 5 orders of magnitude 

have been achieved [59]. However, by considering the change in the free energy of the 

magnetoelectric medium upon applying electric or magnetic fields, it was shown that for the 

system to be thermodynamically stable, the magnetoelectric response coefficient ( ) is bounded 

by the product of the electric permittivity (  ) and magnetic permeability (  ) of the medium 

[60]: 

    (   
    

 )
 
  

(1.7) 

The quantities in equation (1.7) are tensors in general, with the subscripts i and j denoting the 

tensor indices. 
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 A variety of composite systems have been prepared and studied for magnetoelectric 

coupling, including eutectic mixtures [61], nanocomposites [62-64] and laminated structures [65-

67]. Possible applications considered are optical waves amplitude and polarization modulators, 

data storage and AC/DC magnetic field detectors [59]. 

 In chapter 4 of this thesis, some work on polyvinylidene fluoride (PVDF) based 

magnetoelctric composites will be presented. In particular, the effect of loading self-standing 

PVDF films with magnetite nanoparticles, along with different nanofillers, will be considered. 

We also investigate the magneto-dielectric properties of PVDF-Nickel and PVDF-Barium 

Hexaferrite nanocomposites. 

1.7 SCOPE OF THE THESIS 

 With the increasing demand on cheaper and better performance multifunctional materials 

for different applications, it is becoming more crucial to have a better understanding of the 

physics needed to tailor more devices and materials to fit better in every day’s technological 

needs. In a tiny effort for this cause, we explore the multiferroic and magnetoelectric properties 

of a few single phase and multiphase systems in this thesis. 

 In chapter 1, we study FeVO4 as an example on low symmetry multiferroics. We focus 

on the anisotropy in those crystals in an attempt to nail the origin of the ferroelectric and 

magnetoelectric behaviors. For the same purpose, we also study doped single crystals of FeVO4. 

 Our focus in chapter 2 is Gd-doped Fe3O4 nanoparticles, where we study the effect of 

doping on the ferroelectric polarization moment and on the ferroelectric relaxation mechanism. 

We also investigate the structural and dielectric changes accompanying Verway transition. 
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 Finally, we present the magnetoelectric properties of a number of PVDF-based composite 

and self-standing films in chapter 3. The effect of using different magnetic and non-magnetic 

nanofillers on PVDF piezoelectricity is researched.  
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CHAPTER 2: FERROELECTRIC AND MAGNETIC ANISOTROPY IN 
IRON VANADATE (FeVO4) SINGLE CRYSTALS 

2.1 BACKGROUND AND PREVIOUS WORK 

The two types of single phase multiferroic materials have been described in Chapter 1; 

type I and type II. Type II materials are characterized by the origin ferroelectric ordering 

associated with a magnetic structural transition. While this class of multiferroics is characterized 

by strong magnetoelectric coupling, it is also marked by low ordering temperatures, usually 

accessible only via cryogenic cooling. As a result, type II materials have not been considered for 

practical applications. 

In order to develop a functional multiferroic material one needs to understand the physics 

behind ferroic ordering and the factors triggering strong magnetoelectric coupling. One way this 

can be done is by carrying out first principle calculations on a given multiferroic system, given 

its unit cell parameters, to predict its observable quantities, such as its ferroelectric polarization 

moment. 

FeVO4 provides a good example for type II multiferroics. With a   ̅ triclinic crystal 

structure [68, 69], the only symmetry element of the point group is the inversion symmetry. 

Furthermore, this symmetry should be broken once the ferroelectric order develops, giving rise 

to a polar phase with no symmetry constraints on the direction of polarization. As such, FeVO4 is 

an ideal system for testing the results of first principle calculations [69]. 

The first attempt to determine the crystal structure of FeVO4 was carried out by Levinson 

et al. [70] using X-ray diffraction data on single crystals grown from molten flux. The lattice 

parameters were then confirmed and refined by Robertson et al. [71]. The obtained lattice 

parameters of the triclinic   ̅ space group are listed in table 2.1. It was also reported in [71] that 
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the system hosts Fe
3+

 ions at three symmetry inequivalent sites: two Fe
3+

 ions are surrounded by 

six O
2-

 ions each in a distorted octahedral environment, while the third Fe
3+

 is surrounded by five 

O
2-

 ions in a distorted trigonal bipyramidal environment (figure 2.1). The V
5+

 ions, on the other 

hand, are surrounded by four O
2-

 ions constructing distorted tetrahedrons. The structural 

distortions arise mainly due to Coulomb repulsion between iron ions. 

Lattice 

parameter 

Value 

Lattice 

parameter 

Value 

a 6.719(7) Å α 96.65(8)
o
 

b 8.060(9) Å β 106.57(8)
o
 

c 9.254(9) Å γ 101.60(8)
o
 

Table 2.1: Measured lattice parameters of FeVO4 as given in [71]. The figure in parenthesis 

gives the uncertainty in the last digit. 

 

 

 

 

 

 

 

Figure 2.1: Trigonal bipyramidal (left) and octahedral (right) environments of iron in FeVO4. 

 

 Each three Fe
3+

 occupying nonequivalent sites form an S-shaped cluster (figure 2.2). 

Another way to visualize it is to regard every six Fe
3+

 ions as formed out of two identical Fe3O13 

monomers, related with a center of inversion [72]. The S-shaped clusters themselves are joined 

together by the VO4 tetrahedra (figure 2.3). 

Fe 

O 
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Figure 2.2: Two S-shaped clusters of iron ions (small circles), projected on the a-b plane. The 

Fe-O bonds are represented by solid lines, and oxygen ions are represented by the large spheres 

[71]. 

 

 

Figure 2.3: The three symmetrically inequivalent Fe
3+

 sites (represented by colored solid 

spheres) connected by VO4 tetrahedra (pale blue) [72]. It is important to note that the choice of 

lattice parameters here is different than those in figure 2.2. 

 

 A careful look at figures 2.2 and 2.3 reveals that the local environments of Fe
3+

 and V
5+

 

ions consists of edge-sharing polyhedra, which makes FeVO4 prone to geometrical frustration 

[73, 74]. 
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The magnetic properties of FeVO4 have been reported in a number of articles [68, 72, 75-

78]. It is well established that FeVO4 is paramagnetic above 22 K, and develops collinear 

antiferromagnetic ordering between 22 K and 15 K. Below 15 K, the magnetic structure is non-

collinear antiferromagnetic. In both cases, the magnetic order parameter is incommensurate with 

the crystal lattice parameters.  

 There are two different types of magnetic interactions here: inter-cluster and intra-cluster 

interactions. The prefix ‘intra’ means inside or within. The intra-cluster interactions are between 

Fe
3+ 

and
 
Fe

3+
 (direct exchange), and Fe

3+
—O—Fe

3+ 
(super exchange). Both of these interactions 

are antiferromagnetic, and are represented by the thick red lines in figure 2.3. On the other hand, 

the inter-cluster interactions are along the Fe
3+

—O—O—Fe
3+

 chains, and are portrayed by the 

thin colored lines in figure 2.3 [72]. The inter- and intra-cluster interactions engage an odd 

number of Fe
3+ 

ions in closed loops, making it impossible to satisfy antiferromagnetic collinear 

arrangements throughout the whole structure, and introducing potential for frustration. 

 The magnetic structure of FeVO4 was determined at different temperatures by neutron 

diffraction, and reported in reference [72]. It is revealed that the magnetic propagation vector  ̅ 

generates an incommensurate magnetic moment that is a function of position inside different unit 

cells   ̅  , given by: 

 ̅   ̅    ̅    (   ̅   ̅   ̅ )   ̅        ̅   ̅   ̅   (2.1) 

 Equation 2.1 describes an ellipse with  ̅  and  ̅  being the major and minor axes 

irrespectively. With reference to figure 2.4, it can be seen that the magnetic phase developing 

between 15 K and 22 K is collinear with  ̅   , while the phase forming below 15 K is helical. 

The magnetic structure calculated by neutron diffraction refinement suggests that the two halves 
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of the S-shaped clusters referred to before are centrosymmetric with regards to magnetic vector 

amplitude only, but the phases, on the other hand, do not maintain the same relation. 

 

Figure 2.4: Magnetic structure inside the centrosymmetric S-shaped clusters pair in FeVO4 [72]. 

 

 The absence of centrosymmetry in both magnetic phases suggests that the motive for 

ferroelectricity developing below 15 K is not the break of space inversion symmetry, but rather 

the transition to a non-collinear magnetic structure.  

The connection between non-linear spin structures and ferroelectricity was brought up in 

chapter 1. It was shown by Katsura et. al. [17] that ferroelectric polarization moment does not 

always necessitate inversion symmetry breaking to arise, but can be the result of non-collinear 

spin structures. To shed some light on this situation, consider the three atom model shown in 

figure 2.5, in which two transition metal ions, M1 and M2, are bonded through an Oxygen atom 

O. The spins at M1 and M2, labeled    and     respectively, are non-collinear, giving rise to what 

can be called ‘spin current’    . The direction of     is obtained by the cross product of the two unit 

vectors  ̂ and  ̂ . 
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Figure 2.5: A model representing the vector relation between spins    ,    , the resulting spin 

current and electric polarization [17]. 

 

 There is a charge hopping process taking place between the M d-orbitals and the O p-

orbital, which contributes to the total Hamiltonian of the system. Applying second-order 

perturbation theory yields the resulting ferroelectric polarization in the form: 

 ⃗  (
 

 
)  ̂       (2.2) 

Where V is called the charge transfer integral and      is the unit vector connecting M1and M2. 

 Doped FeVO4 samples were also studied to investigate the effect of magnetic and 

nonmagnetic doping on the multiferroic properties [76, 79]. Magnetic and heat capacity 

measurements showed the two magnetic transitions to persist for up to 20% doping fraction of 

Zn, Cr and Mn dopants. Some of the doped samples were also shown to retain ferroelectricity 

below 15 K. 

Motivated by the previous work on type II multiferroics in general, and on FeVO4 in 

particular, the aim of the current work is to investigate the fundamental mechanisms responsible 

for magnetically induced ferroelectricity in low symmetry multiferroics. Our target is to correlate 

changes in the ferroelectric polarization vector with modifications in selected spin-charge 
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coupling mechanisms, produced by chemical substitution, in order to identify the specific 

interactions responsible for the multiferroic order. 

 In this chapter, the procedure to prepare FeVO4 single crystals is described, followed by a 

detailed survey of structural and multiferroic characterization, highlighting the anisotropic 

behavior in FeVO4 single crystals. Afterwards, studies on doped FeVO4 single crystals are 

reported. 

2.2 EXPERIMENTS AND RESULTS 

2.2.1 FeVO4 SINGLE CRYSTALS PREPARATION 

Single crystals of FeVO4 were grown from molten flux following the standard procedure 

described in [68, 70, 71]. The method of growing single crystals from molten flux, known as 

flux-growth method, will be presented in more details in the appendix of this thesis. The used 

reagents were iron (II) oxalate dihydrate FeC2O4.2H2O (CAS# 6047-25-2) and vanadium (V) 

oxide V2O5 (CAS# 1314-62-1). The powders were mixed in a molar ratio of 1:1; with the excess 

V2O5 to act as a solvent medium. After thorough mixing, the powder was kept in a platinum 

crucible and covered with a platinum cap (figure 2.6 (a)). The platinum crucible was in turn kept 

inside a bigger alumina crucible, covered, and heated in a conventional muffle furnace to 975 
o
C 

at a rate of 40 
o
C/hour. The mixture was kept at 975 

o
C for 6 hours to achieve a homogenous 

melt, after which it was cooled to 650 
o
C at a rate of 8 

o
C/hour. The crucible was then rapidly 

cooled to room temperature at a rate of ~5 
o
C/min (figure 2.7).  

The obtained crystals were needle-shaped, with ~1 cm length and a few millimeters cross 

section (figure 2.6(b,c)). The larger crystals found on the flux surface could be separated 

mechanically, and the flux was kept under hot dilute nitric acid for several hours to free more 

crystals. 
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Dilute nitric acid was used also to clean the platinum crucibles from any residual flux. In 

the few cases where some of the flux persisted, the crucible was filled with potassium 

pyrophosphate K4P2O7 (CAS# 7320-34-5) and heated at 1050 
o
C for two hours. The residual flux 

after this process could be washed with tepid water. 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 2.6: (a) The platinum crucible inside the alumina crucible. (b) and (c) A few retrieved 

single crystals showing their length scale. 

 

 

 

 

 

 

 

 

Figure 2.7: Illustration of the annealing process applied to grow FeVO4 single crystals. 
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2.2.2 STRUCTURAL CHARACTERIZATION 

 The FeVO4 triclinic P ̅ structure was first confirmed by grinding a few washed crystals 

into powder and getting a powder X-ray diffraction (XRD) spectrum using a Bruker Rigaku 

Miniflex-600 diffractometer with Cu K-α (λ = 1.54 Å) X-rays. The obtained peaks were matched 

with those listed in the standard powder diffraction file (Joint Committee for Powder Diffraction 

#38-1372). The recorded spectrum is shown in figure 2.8(a), where the grey lines at the bottom 

of the plots represent the standard peak positions. The (hkl) indices of the highest peaks are also 

indicated. 

Raman spectrum was also recorded on single crystals using a Renishaw inVia Raman 

microscope spectrometer, utilizing a 785 nm line from a diode laser source and a 50X objective. 

The resolution of the spectrometer using 1200 grooves per mm grating was ~3.5 cm
-1

. The 

spectrum recorded for FeVO4 single crystals, given in figure 2.8(b), matches earlier reports [77, 

80], with the peaks at 958, 887, 824, 728 cm
-1

 corresponding to symmetric and asymmetric 

stretching of the V═O bond. The peaks at 361 and 318 cm
-1

 represent the bending vibrations of 

the (VO4)
3-

 tetrahedra. Finally, the modes between 136 and 210 cm
-1

 are due to the presence of 

bridging V—O—Fe bonds in FeVO4 [80]. 
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Figure 2.8: (a) Powder XRD diffraction pattern obtained for ground FeVO4 single crystals and 

(b) Raman spectrum for FeVO4 single crystals. 

 

The lattice parameters of were estimated by applying Rietveld refinement on its XRD 

spectrum. Figure 2.9 shows the fitted data plot, and table 2.2 lists the obtained lattice parameters. 

(a) 

(b) 
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Figure 2.9: Rietveld fitting for the XRD spectrum of the undoped FeVO4 sample. 

 

To get more insight into the structure, a single crystal XRD Bruker D8 diffractometer 

was used to measure the lattice parameters. The obtained values (at 100 K) are also included in 

table 2.2, and are in good agreement with the previously reported values [68, 71]. The long axis 

of the needle shaped crystals is matched to the crystallographic a-axis, which also agrees with 

the previous work by He et al. where the same growth routine was used [68]. 

  

5 

2θ (
o
) 

FeVO4 
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Lattice 

parameter 

Reported 

Value 

From Single 

crystals XRD 

From Rietveld 

fitting 

a 6.719(7) Å 6.7032(3) Å 6.7330(7) Å 

b 8.060(9) Å 8.0486(4) Å 8.079(1) Å 

c 9.254(9) Å 9.3301(4) Å 9.3691(9) Å 

α 96.65(8)
o
 96.643(2)° 96.566(6)

o
 

β 106.57(8)
o
 106.613(2)° 106.644(8)

o
 

γ 101.60(8)
o
 101.471(2)° 101.56(1)

o
 

Table 2.2: Lattice parameters of undoped FeVO4, measured by single crystal XRD, estimated 

using Rietveld fitting and as reported by Robertson et al. [71]. 

 

 

Figure 2.10: FeVO4 unit cell, constructed from the single crystal diffractometer data. 

  

Fe1 
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2.2.3 MAGNETIC MEASUREMENTS 

Magnetic measurements were carried out using a Quantum Design Superconducting 

Quantum Interference Device (SQUID) magnetometer (MPMS-5S). Since the mass of individual 

crystals is small (~4 mg at most), the absolute magnetic moment of each crystal would be 

insufficient to obtain accurate results. To work around this problem, several crystals are arranged 

in parallel with the help of an optical microscope, and attached to a piece of cardboard with GE 

Varnish (GE-7031). The cardboard could be oriented to set the crystals’ long axis perpendicular 

and parallel to the applied magnetic field. Measurements of magnetic moment versus 

temperature confirm the antiferromagnetic nature of the formed crystals (figure 2.11), with the 

AFM transition showing at ~21.5 K, both along a (H || a) and perpendicular to a (H ⊥ a). 

However, the non collinear AFM transition manifests itself in magnetic data only when the 

applied field is directed perpendicular to a, in agreement with the data reported earlier by Daoud-

Aladine et al. [72], signifying a as an easy magnetic axis. 
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Figure 2.11: Magnetic susceptibility and inverse magnetic susceptibility versus temperature data 

for FeVO4 single crystals, with the crystals oriented perpendicular to and parallel to the 

crystallographic axis a. 

 

The high temperature portion of 1/χ vs T plots can be fit to a straight line following the 

Curie-Weiss law: 

 

 
 

 

 
 

   

 
 (2.3) 

Here C is Curie’s constant and     is Curie-Weiss temperature. By fitting the 1/χ vs T graph to a 

straight line, one can obtain an estimate of      as the quotient of dividing the intercept by the 

slope. The estimated values for      from figure 2.11 are 98 K (H || a) and 108 K (H ⊥ a). 

On the other hand, the linear portion can be traced by equation 2.4: 
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 (2.4) 

Where    is the molar magnetic susceptibility,    is the free space permeability,    is 

Avogadro’s number and    is Boltzmann’s constant. Also,    is the Bohr magneton, and is used 

to quantify the ionic magnetic moment since it corresponds to the magnetic moment produced by 

a single electron in the 1s orbital in the hydrogen atom (                   

     
) [3].  

With reference to equation 2.4,      is called the effective magnetic moment, and is a 

good measure of the magnetic properties since it is independent of temperature in materials 

obeying Curie-Weiss law [81]. Upon rearranging equation 2.4, one obtains: 

     √
   

      
  √    (2.5) 

By putting in the appropriate values of constants in cgs units, and keeping in mind that the slope 

of    ⁄  vs T graph equals 
 

   
, we reach 

     √
 

     
    (in cgs units) (2.6) 

Based on equation 2.6, the effective moment (    ) is calculated from the FeVO4 

magnetic data to be 5.92 μB and 5.96 μB for H || a and H ⊥ a respectively. These numbers are 

consistent with the theoretical value for Fe
3+

 ion calculated from equation 2.7, with s= 
 

 
, 

considering contribution from electrons’ spins only with Landé g-factor of 2. 

                   √         (2.7) 

The frustration index, defined as   
    

  
 [19], is found to be a little smaller along a. 

This suggests the existence of weaker interactions between magnetic Fe
3+

 ions in this direction, 
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that is, the super-super exchange interaction between the iron ions on the different S-shaped 

clusters depicted in figure 2.2. 

2.2.4 DIELECTRIC AND FERROELECTRIC MEASUREMENTS 

When a specimen of a dielectric material is subject to an external electric field, bound 

charges will displace giving rise to electric dipole moments, defined as (lowercase p): 

   | ⃑| (2.8) 

Where  ⃑ is the displacement vector of bound charge ‘q’. For a specimen with charge density nq, 

one can define the polarization density as (uppercase P): 

    | ⃑| (2.9) 

A ferroelectric specimen kept below its ferroelectric transition temperature (Curie’s 

temperature) develops spontaneous dipole moments and polarization density, the values of which 

will be greater if the sample is cooled down under an external electric field because individual 

moments will seek a minimum potential energy configuration (i.e.: will align parallel to the 

external field). On the other hand, warming up a ferroelectric specimen to the Curie point will 

eliminate its polarizability. In such process, the bound charges are regarded as effectively 

moving to neutralize the dipoles which existed in the ferroelectric before (i.e.: below the Curie 

point). Such motion of charges takes place over a very short time period, generating a current 

density:  

  

  
   

 | ⃑|

  
 

    

 
 

(2.10) 

Here, I(t) is dubbed the ‘Pyrocurrent’ because it is generated as a result of heating the specimen. 

The integration of I(t) yields the polarization moment per unit volume: 

  ∫
    

 
   

(2.11) 
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In this work, we utilize equation 2.11 to get the ferroelectric polarization moment as a 

function of temperature by integrating the pyrocurrent data with respect to time. First, we select a 

relatively large FeVO4 crystal for the ease of making aluminum foil masks. Then, gold electrodes 

were deposited on both sides of the crystal, to which gold wires were attached by conductive 

silver paint. The sample is then cooled down to T < 10 K under high voltage (±200 V) provided 

by a Keithely 6517A electrometer, while the temperature control is provided through a Quantum 

Design Physical Property Measurement System (PPMS). The field applied was high enough to 

ensure the sample is saturated. The poling high voltage creates an electric field in the order of 

kV/cm, and acts to align the ferroelectric domains which form below the ferroelectric transition 

temperature. Once the target low temperature is reached, the high voltage is turned off and the 

sample is warmed up to 25 K at a rate of 5 K/minute while recording the pyrocurrent signal using 

the same Keithely electrometer. The signal is recorded versus temperature while keeping track of 

the time change as well. 

The ferroelectric transition in FeVO4 crystals is marked by a sharp peak in the 

pyrocurrent data, which is observed with the electric field parallel to the crystallographic axis a 

(E || a) as well as normal to it (E ⊥ a). The reversibility of the generated polarization moment is 

shown by repeating the measurement after reversing the poling voltage. Integration of the 

pyrocurrent signal with respect to time gives the ferroelectric polarization moment, which is 

found to be about three times larger when measured along the crystal a-axis (figure 2.12), with 

values of 9 μC/m
2
 and 27 μC/m

2
 for E ⊥ a and E || a respectively. The observation of such large 

anisotropy along different directions is significant, because it is the first time to measure the 

ferroelectric polarization moment in FeVO4 single crystals. These measurements were repeated a 

few times on different crystals to be confirmed (figure 2.13). The obtained values for the E ⊥ a 
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case are found to be a little higher than those reported earlier for polycrystalline pellets [77] and 

thin films [82], and significantly higher for E || a. It should be noted that applied voltage in our 

measurements corresponds to an electric field of ~350 kV/m, which is an order of magnitude less 

than the one applied in thin films measurements in reference [82]. The observation of our 

polarization values being higher, in spite of applying a lower electric field, strongly supports the 

ferroelectric anisotropy in FeVO4 single crystals. 
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Figure 2.12: Reversible ferroelectric polarization perpendicular to the crystal long axis (a) and 

parallel to it (b). The insets in (a) and (b) represent the recorded pyrocurrent signals. 

(a) 

(b) 
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(a) 

 

(b) 

Figure 2.13: Repeated measurements of ferroelectric polarization on different FeVO4 crystals 

perpendicular a (a) and along a (b). The different curve colors represent different runs. 

 

The dielectric constant of the FeVO4 crystals as a function of temperature was extracted 

from capacitance data recorded using an HP 4284A Precision LCR meter. The data were 

recorded at 100 kHz and 1 V peak-to-peak voltage value. The temperature control was again 

provided by the PPMS, where the temperature was scanned from 12 K to 18 K at 1 K/minute. By 

knowing the area of the electrodes ‘A’ and the thickness of the sample ‘d’, the dielectric constant 

is calculated from the capacitance with the help of equation 2.8: 

   
   

   
 

(2.12) 

  Figure 2.14 represents the relative dielectric constant of FeVO4 single crystals when 

measured along two normal directions with respect to the crystal a-axis. The measured values are 

much higher when compared with dielectric constant of powder samples reported in literature 

[75, 77, 82], owing to the absence of grain boundary effects. The data show a more significant 

change along a axis here as well, indicating that the charge distribution within the individual S-

shaped clusters contributes more to the macroscopic polarization moment. 
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Figure 2.14: Relative dielectric constant of FeVO4 single crystals measured perpendicular to the 

a-axis (left, black scale) and parallel to the a-axis (right, red scale). The inset shows the relative 

change in the parallel and perpendicular components of εr. 

 

2.2.5 MAGNETO-DIELECTRIC COUPLING 

In general, the free energy for the magnetically ordered phase can be written as [82]: 

          (2.13) 

Where FM and FE represent the magnetic and dielectric contributions to the free energy, 

respectively. V, on the other hand, represents the magneto-electric coupling term. According to 

the Landau treatment of the Mean Field Theory, the free energy can be written as a power series 

of the order parameter (or parameters) [83]. For simplicity, it is usually assumed the order 

parameters are small to allow keeping only the lower powers of expansion. Accordingly, the 

term V from equation 2.13 can be written in terms of the two magnetic order parameters       

and       as: 
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  ∑[      ⃑     ⃑ 
    

     ⃑ 
     ⃑ ]

 

   
(2.14) 

Where q is called the ordering wave vector, Pγ is the ferroelectric polarization component in the 

γ-direction and aγ are the expansion coefficients. Note that V has to be inversion invariant, which 

disallows terms such as |    ⃑ |
  and |    ⃑ |

 . Furthermore, the effect of the space inversion 

operator   on the vectors  ⃑⃗ and     ⃑  is given in equations 2.15: 

 ( ⃑⃗)    ⃑⃗ 

      ⃑        ⃑  
  

(2.15-a) 

(2.15-b) 

Which implies that the coefficients aγ are pure imaginary (i.e.:       ), allowing us to write V 

as: 

   ∑  |    ⃑     ⃑ |             
 

 
(2.16) 

With θ1 and θ2 denoting the phases of the order parameters ζ1 and ζ2. Equation 2.16 is important 

because it indicates that the two order parameters have to be out of phase for magneto-electric 

coupling to occur [82]. 

We investigate the synthesized FeVO4 single crystals for magneto-electric coupling by 

measuring the relative change in dielectric constant as a function of magnetic field at several 

fixed temperatures. The samples were kept at a fixed temperature while the magnetic field was 

swept between ±8 Tesla. The data shows a negative magneto-capacitive coupling, which 

generally increases at lower temperatures (figure 2.15) similar to what was reported before on 

Ni3V2O8 single crystals [84]. This effect is attributed to field induced spin reorientation, as 

proposed by Dixit et at. [82]. The coupling also originates at lower field values along the a-axis, 

which could be linked to the observation that the a-axis is a magnetically easy direction. 
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Figure 2.15: Magneto-dielectric coupling perpendicular (a) and parallel (b) to a. The abscissa is 

the change in dielectric constant with reference to the value at H = 0 Tesla. 

 

To investigate the basis of such coupling, we recorded the crystals’ M-H behavior at 

fixed temperatures. The proposed magnetic field-induced spin orientations would have been 

shown as anomalies in isothermal M-H behavior. On the contrary, the data show linear 

(a) 

(b) 
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paramagnetic response at temperatures above and below the two Néel transitions. The isothermal 

magnetic susceptibility values, estimated from the M-H plots in figure 2.16 are represented in 

figure 2.17. 

  

Figure 2.16: Isothermal M vs H data for FeVO4 single crystals. 

 

  

Figure 2.17: The magnetic susceptibility values estimated from the isothermal M-H plots in 

figure 2.16. 

 

2.3 DOPED FeVO4 SINGLE CRYSTALS 

Doped FeVO4 single crystals were prepared following the same procedure, aiming to 

replace some of the iron content with zinc and manganese. Divalent zinc is chosen with the 

intension to explore the role of exchange striction in FeVO4 ferroelectricity. By substituting Fe
3+
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(   

 
) with non-magnetic Zn

2+
 (   ), we reduce the average spin at the iron site, which would 

modify the exchange striction along with the resulting ferroelectric moment [50]. On the other 

hand, Mn
3+

 (   ) was used for having single-ion anisotropy, hence altering the strength of 

spin-orbit coupling allowing for examining the role of Dzyaloshinskii-Moriya interaction [85]. 

The Zn and Mn ions were introduced in the form of oxalates; zinc oxalate dihydrate 

ZnC2O4.2H2O (CAS# 4255-07-6) and manganese oxalate dihydrate MnC2O4.2H2O (CAS# 6556-

16-7). The precursors were mixed in the proper stoichiometric amounts aiming for 5%, 10% and 

20% substitution percentages. Table 2.3 lists the masses (in grams) of precursors used for each 

composition. 

Fe1-xZnxVO4 Iron oxalate Zinc Oxalate 

Manganese 

Oxalate 

Vanadium Oxide 

x=0 25 --- --- 25.30 

x=0.05 23.49 1.30 --- 25 

x=0.1 22.25 2.60 --- 25 

x=0.2 19.78 5.20 --- 25 

Fe1-xMnxVO4     

x=0.05 23.49 --- 1.23 25 

x=0.1 22.25 --- 2.46 25 

x=0.2 19.78 --- 4.92 25 

Table 2.3: Masses (in grams) of precursors used to prepare undoped, Zn- and Mn-doped FeVO4 

single crystals. 

 

EDAX analysis was used to study the stoichiometry of the synthesized crystals. The 

spectra were recorded using a JSM-7600 field-emission scanning electron microscope. The data 
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revealed significant discrepancies between the aimed stoichiometries and the actual ones, 

indicating that most of the dopant ions are not incorporated into the structure. The dopant 

contents reported by EDAX are listed in table 2.4. 

Aimed 

Stoichiometry 

Measured by 

EDAX 

Aimed 

Stoichiometry 

Measured by 

EDAX 

Fe1-xZnxVO4  Fe1-xMnxVO4  

x=0.05 0.032±0.009 x=0.05 0.013±0.006 

x=0.1 0.051±0.020 x=0.1 0.008±0.001 

x=0.2 0.041±0.011 x=0.2 0.016±0.002 

Table 2.4: Aimed and measured stoichiometric ratios for Zn- and Mn-doped FeVO4 crystals. 

 

XRD and Raman analysis were used to confirm the structure of doped crystals. Some 

washed crystals were ground to obtain powder XRD patterns (figure 2.18). The formation of 

secondary phases can be ruled out within the XRD detection limits. On the other hand, Raman 

spectra for the Zn-doped samples are quite similar to the undoped one (figure 2.19), except for 

the expected slight change in peak intensities of the weak modes associated with the V—O—Fe 

bonds between 136 and 210 cm
-1

. This observation confirms the substitution of some Fe
3+

 ions 

by Zn
2+

. 

 

 



53 

 

 

 

Figure 2.18: XRD spectra for undoped FeVO4 and (a) Zn-doped samples and (b) Mn-doped 

ground crystals. The grey lines at the bottom indicate the positions of the lines listed in the 

standard powder diffraction file. 

(a) 

(b) 



54 

 

 

Figure 2.19: Raman spectra of undoped and Zn-doped FeVO4 crystals. 

 

 Magnetic measurements carried out on doped crystals reveal similar behavior to that of 

the undoped ones. All samples become antiferromagnetic below ~22 K, and the collinear-to-non-

collinear transition observed only when magnetization is measured along the a-axis (figure 2.20). 
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Figure 2.20: Inverse susceptibility versus temperature data for doped FeVO4 single crystals 

recorded along the crystallographic axis a and perpendicular to it. The insets highlight the lack of 

signals to the collinear-to-non-collinear AFM transition around 15 K in case H is parallel to a. 

 

 The effective moment        and Curie-Weiss temperature       values are estimated 

from the linear portions (T >100 K) in figure 2.20 plots and listed in table 2.5. 

 

 

 

 



56 

 

 Effective Moment         Curie-Weiss Temperature       

 H ⊥ a H || a  H ⊥ a H || a 

FeVO4 5.96±0.01 5.92±0.01  108±0 98±0 

Fe1-xZnxVO4      

x=0.032 6.14±0.08 6.06±0.02  113±1 100±1 

x=0.041 6.02±0.01 6.04±0.01  95±1 98±1 

x=0.051 5.87±0.01 5.75±0.01  100±0 85±1 

Fe1-xMnxVO4      

x=0.008 5.94±0.01 5.96±0.01  104±0 100±0 

x=0.013 5.98±0.02 5.94±0.01  104±1 100±0 

x=0.016 6.15±0.02 5.99±0.02  105±0 92±0 

Table 2.5: Effective moment        and Curie-Weiss temperature       values for pristine and 

doped FeVO4 single crystals. The listed values for      are in Bohr magneton     , and values 

of     are in kelvin. 

 

 The effective moment per magnetic ion is expected to get reduced upon substitution of 

magnetic Fe
3+

 ion     

 
  with Zn

2+
       and Mn

3+
      . However, the evolution of      

shown in table 2.5 does not support such expectation;      is seen to be highest for the Zn-doped 

sample having the lowest zinc content (x=0.032) and shows a steady decrease with increasing 

zinc content. This can be due to disturbances in local symmetry upon replacing Fe
3+

 with Zn
2+

, 

which leads to changes in d-orbitals degeneracy and electrons’ occupancy in these orbitals, 

giving rise to a non-zero orbital angular momentum. Increasing Mn
3+

 content, on the other hand, 

results in a higher effective moment per magnetic ion. 
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 The collinear-to-non-collinear AFM transition marking the onset of ferroelectric ordering 

is observed in dielectric data of the doped crystals as well. The relative change in dielectric 

constant is shown in figure 2.21 as a function of temperature for some of the compositions, 

where the y-axis represents the relative change in the dielectric constant with respect to its value 

far away from the transition (at T = 12 K). We note that doping drastically reduced the amplitude 

of the relative change. Also, since the doped crystals tend to grow smaller compared to the 

undoped ones, the dielectric data could only be obtained for a few compositions; for crystal 

whose facets were big enough to make electrodes without shorting the sample. 

 
 

Figure 2.21: Relative change in dielectric constant of (a) Zn-doped and (b) Mn-doped FeVO4 

single crystals, recorded with an electric field perpendicular to the crystallographic axis a. 

 

 The low temperature AFM transition was proven to mark a ferroelectric transition by 

recording the pyrocurrent signals for the crystals with different dopant contents (figure 2.22 

(a,b)). The measurements were carried out in a similar manner to the undoped samples, with a 

poling voltage of -200 V.  The ferroelectric polarization moments were calculated by integrating 

the pyrocurrent signals with respect to time (figure 2.22(c,d)). The polarization moment is shown 

to decrease in Zn- and Mn-doped samples. In the Zn-doped samples, this is attributed to the 

(b) (a) 
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difference in valency between Zn
2+

 and Fe
3+

 resulting in increased leakage in the doped crystals. 

On the other hand, the polarization values reported for Mn-doped polycrystalline samples [76] 

are slightly higher than the ones we report here on single crystals, which we attribute to the 

inherent imperfections observed in the doped crystals. Finally, the ferroelectric nature of the Zn-

doped crystals is further confirmed by reporting the reversibility of the polarization moment in 

figure 2.23.  

 
 

 

 

Figure 2.22: Pyrocurrent (a,b) and polarization moment (c,d) data for the Zn- and Mn-doped 

FeVO4 crystals. 

 

(a) 

(c) 

(b) 

(d) 
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Figure 2.23: Reversible ferroelectric polarization of Zn-doped FeVO4 crystals. 

 

 The dependences of the magnetic effective moment ‘μeff’ and ferroelectric polarization 

„P‟ on the zinc content are plotted in figure 2.24. The plot suggests an inverse relation between 

‘μeff’ and ‘P‟. More data points between 0% and 3% are needed to confirm such behavior. 

 

Figure 2.24: The the magnetic effective moment ‘μeff’ and ferroelectric polarization „P‟ as 

functions in zinc content in FeVO4 single crystals. 
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2.4 CONCLUSIONS AND FUTURE WORK 

 Undoped single crystals of triclinic FeVO4 are synthesized from molten flux by flux-

growth method for the purpose of studying the anisotropy in magnetic and ferroelectric 

properties. Measurements were performed along two orthogonal directions with respect to the 

crystals’ direction of growth, which was revealed to be the crystallographic a-axis. It is shown 

from the temperature dependence of the inverse susceptibility data below the AFM-paramagnetic 

transition at 22 K that the relative change in susceptibility is higher along the a-axis than when 

recorded perpendicular to the a-axis (figure 2.11). This denotes a as a magnetically easy axis and 

favorable for magnetic moments alignment. As a consequence, the non-collinear-to-collinear 

transition around 15 K is not revealed in the magnetic data perpendicular to the a-axis. 

 The components of ferroelectric polarization moment of FeVO4 single crystals along a 

and normal to a were calculated by integrating the pyrocurrent signals. The polarization moment 

density of FeVO4 was shown to be higher in the direction of a (figure 2.12), denoting this 

direction to be favorable from the electric polarization viewpoint as well. This is supported by 

noting that the relative change in dielectric constant versus temperature (figure 2.14) is larger 

along the a-axis. 

 In an attempt to reveal the origin of multiferroic coupling in FeVO4, we recorded the 

relative change in dielectric constant as a function of magnetic field at various temperature 

values, chosen around the two Néel points; 15 K and 22 K. The data manifest a strong 

dependence of the dielectric behavior on magnetic field, with the onset of change in dielectric 

constant occurring at higher magnetic field values perpendicular to the a-axis. This behavior 

could not be attributed field-induced spin reorientations as suggested earlier [82], with the single 

crystals isothermal M vs H data showing primarily a paramagnetic linear response. 
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 Zinc-doped FeVO4 single crystals were prepared to investigate the role of magnetically 

induced lattice distortions in creating the spontaneous ferroelectric moment. Substituting Fe
3+

 

with Zn
2+

 aims to reduce exchange striction between the two ions, since the latter has a lower 

spin magnetic moment. On the other hand, manganese-doped crystals were also prepared to test 

for the role played by Dzyaloshinskii-Moriya interaction (i.e.: spin-orbit coupling) in FeVO4 

ferroelectricity. Estimating the crystals’ stoichiometries by EDAX indicated the difficulty of 

incorporating zinc and manganese elements in the FeVO4 structure, which is mainly due to the 

insolubility of these metals in the flux material used, V2O5. The doped crystals were also found 

to be smaller in size than the undoped ones, which rendered it hard to carry out the desired 

ferroelectric characterization on some compositions. 

 The magnetic susceptibility dependence on temperature was measured for the doped 

crystals, where the data were found to be qualitatively similar to the undoped FeVO4, in being 

antiferromagnetic below 22 K. The effective moment per magnetic ion values were found to be 

higher than undoped FeVO4 for some Zinc contents, unlike theoretical expectations. We attribute 

this to doping-induced asymmetries in Zn
2+ 

environments, leading to a non-zero orbital quantum 

number. The ferroelectric nature of doped crystals was confirmed for some compositions through 

measuring the polarization moments, where it showed dramatic decrease for the doped samples, 

owing to induced imperfections and leakage effects. Finally, we note that the ferroelectric 

transition showed slight shifts towards lower temperatures upon doping.  

 In the future, we suggest looking for a more suitable method to incorporate the selected 

dopants in the FeVO4 matrix, by adjusting the used times and temperature values in flux growth 

or by choosing another synthesis route; floating zone method for example. It will also be useful 

to look into substituting iron with gadolinium (Gd
3+

) instead of manganese (Mn
3+

); because rare 
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earth ions are also characterized by single ion anisotropy beside gadolinium having a better 

solubility in V2O5 flux than manganese. 

 We also should look into introducing changes in phonon modes by substituting vanadium 

(V
23

) with heavier transition ions from the same group in the periodic table, namely niobium 

(Nb
41

) or tantalum (Ta
73

). This will give us a better understanding of the role of spin-phonon 

coupling in FeVO4 multiferroicity. However, achieving V
5+

 doping using the herein reported 

synthesis method will be difficult; since V2O5 is used as the solvent for precursors. Different 

crystal growth routes may be explored. 
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CHAPTER 3: DIELECTRIC AND MAGNETO-DIELECTRIC 
PROPERTIES OF Gd-DOPED Fe3O4 NANOPARTICLES 

3.1 BACKGROUND AND PREVIOUS WORK 

In chapter 1, different mechanisms of ferroelectricity were presented. We discussed how 

the long range ordering of charges distribution in an array of atoms or molecules breaks spatial 

inversion symmetry and creates a net dipole moment (figure 1.14). In type-II multiferroics, the 

magnetic ordering and charge ordering mechanisms and can have the same origin and set in at 

the same temperature. On the other hand, magnetism and ferroelectricity in type-I have different 

origins and often occur at different temperatures. Among the materials belonging to the latter 

type is magnetite (Fe3O4), which is probably one of the most studied transition metal oxides. 

Fe3O4 is known to be the first magnetic material discovered by mankind. It crystallizes in 

face-centered cubic lattice structure, and belongs to the inverse spinel group (Space group: 

Fd3m) [86]. A normal spinel structure has the formula AB2O4, with the cations A
2+

 and B
3+

 

surrounded by oxygen anions in tetrahedral and octahedral environments respectively. Such 

configuration of cations is not unique, and a situation can be found where the A
2+

 ions occupy 

the octahedral sites along with half of the B
3+

 ions, while the other half rests at the tetrahedral 

sites. Such arrangement is named inverse spinel, of which Fe3O4 is one example with A
2+

 and 

B
3+

 representing Fe
2+

 and Fe
3+

 ions respectively. 
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Figure 3.1: Representation of the tetrahedral and octahedral sites in the spinel structure [2]. 

 

 Two types of magnetic interactions exist in Fe3O4; Fe
2+

 and Fe
3+

 ions on the octahedral 

sites are parallel aligned due to double exchange interaction, while Fe
3+

 ions on the tetrahedral 

sites couple to their likes on the octahedral sites via super exchange interaction, arranging 

antiferromagnetically and cancelling out each other [87]. Thus, the observed net moment in bulk 

Fe3O4 is due to Fe
2+

 ions, making magnetite a ferrimagnetic material with Curie temperature 

around 850 K [88]. Furthermore, when magnetite is prepared in nanoparticles form with an 

average particle size below a certain threshold, it shows superparamagnetic behavior [89]. 
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A hopping mechanism of electrons is going on among the Fe
2+

 and Fe
3+

 ions occupying 

the octahedral sites, which can be effectively described as Fe
2+

 and Fe
3+

 are exchanging 

positions. Fe3O4 undergoes an electronic and structural transition around 120 K, known as 

Verway transition [90-92], at which this hopping of charges among the octahedral sites ceases to 

take place. This marks the onset of a charge-ordered phase, and triggers an abrupt rise in 

resistivity, changing the system from being a conductor to an insulator [93]. 

As noted earlier, Fe3O4 forms an inverse spinel cubic structure, with the octahedral B 

sites hosting an equal number of Fe
2+

 and Fe
3+

 ions, making up to two thirds of the iron ions in 

the composition. The B sites by themselves form a pyrochlore lattice by building up a network of 

corner-sharing tetrahedral (figure 3.2). 

 

Figure 3.2: Pyrochlore lattice made up by the B sites of the spinel structure. The iron ions are 

found at the corners of the tetrahedra. The oxygen ions are not shown here for simplicity [42]. 

 

 Each pyramid in figure 3.2 would have a mixture of Fe
2+

 and Fe
3+

 ions. Density 

functional theory calculations [94] for the charge-ordered phase revealed that one-fourth of the 

pyramids has an equal number of Fe
2+

 and Fe
3+

 (i.e.: 
    

    
 

 

 
), satisfying what is known as 

Anderson’s criterion [95], which is proposed as a necessary condition for charge ordering to take 
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place in spite of inherent geometrical frustration in the spinel structure. The calculations also 

showed that the other three-fourth of the tetrahedra host either 
    

    
 

 

 
 or  

 

 
 in a violation to 

Anderson’s criterion. These calculations [94] also show that the structure below Verway 

transition is monoclinic with    ⁄  space group, although a concern arises regarding the 

centrosymmetric nature of the    ⁄  space group precluding the possibility of ferroelectric 

ordering [42]. Another study [96] based on magnetoelectric measurements on Fe3O4 single 

crystals deduced a triclinic structure for the ferroelectric phase. 

 The ferroelectric behavior in Fe3O4 doesn’t manifest itself until low temperatures, even 

lower than Verway transition. Fe3O4 thin films prepared by pulsed laser deposition technique 

were shown to have non-zero polarization moment only below around 40 K [93]. The disruption 

of long range charge order above 40 K was attributed to the failure of molecular dipoles to 

follow the applied low frequency driving field, which is referred to as Debye relaxation. This 

was supported by the observed dependence of   vs T peak positions on signal frequency, where 

  is the imaginary component of the dielectric constant, and T is the temperature. Such 

frequency dependence is not observed in conventional ferroelectrics, and indicates a dynamical 

process, rather than a phase transition. 

 The observed frequency dependence in dielectric constant data is characteristic or either a 

relaxor ferroelectric or Maxwell-Wagner-Sillars effect (MWS). The latter was ruled out because 

similar behavior was seen in dielectric data of Fe3O4 single crystals [97]. Since MWS behavior is 

due to accumulation of charges at the interface between two regions with different dielectric 

constant, it should not be observed in homogenous single crystals. 

 The in-phase and out-of-phase components magnetic susceptibility (   and   ) 

dependence on temperature is also reported in reference [93]. Besides the observed discontinuity 
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around 120 K marking Verway transition, broad peaks are also observed at lower temperatures –

between 40 K and 60 K– in    vs T plots. These peaks also point towards Debye relaxation 

model. In such model, the system is considered to consist of non-interacting electric dipoles, 

with no restoring forces, hence no resonance. The relaxation effect results from the failure of 

heavy molecular dipoles to follow the applied low frequency driving electric field. Since the 

ferroelectric order in Fe3O4 is disrupted by relaxation effects –rather than a crystal phase 

transition– far below the Verway transition, it is classified as a relaxor ferroelectric. 

 Motivated by the ambiguity of the microscopic origin of ferroelectric order in Fe3O4, 

Yamauchi et at. [98] studied the differences between the monoclinic centrosymmetric    ⁄  and 

the non-centrosymmetric Cc structures using first-principles calculations. They conclude that the 

spontaneous ferroelectricity in Fe3O4 is a result of the combination of site-centered charge 

ordering and modulation in Fe―Fe bond lengths, as argued in [42]. Such situation can be better 

understood with the help of figure 3.3, where the difference in charge-ordering between the two 

monoclinic space groups is depicted. Such difference breaks the space inversion symmetry and 

allows the creation of ferroelectric polarization. The accompanied modulation in the Fe―Fe 

bond lengths results in a displacement of ~0.1 Å for some iron ions, creating a net polarization 

moment along the monoclinic b-axis [42]. 
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Figure 3.3: Iron ions positions in the paraelectric monoclinic    ⁄  (left) and the ferroelectric Cc 

(right) structures. The red arrows indicate the direction of electric dipole moments created by 

charge ordering [98]. 

 

 In this chapter, we present a brief summary of the magnetic characterization work done 

on gadolinium (Gd
64

) doped Fe3O4. We follow by detailed presentation of the dielectric and 

ferroelectric characterization carried out on undoped and Gd-doped Fe3O4 nanoparticles. The 

choice of Gd as a dopant is based on its use in magnetic resonance imaging (MRI) as a contrast 

agent [99, 100]. On the other hand, the use of Fe3O4 nanoparticles in cancer treatment via 

induced hyperthermia is being established [11, 101]. It has been found that Fe3O4 nanoparticles 

doped with 2% Gd show a specific power adsorption rate (SAR) that is four-times higher than 

undoped Fe3O4 [102]. Moreover, the use of magnetoelectric nanoparticles in drug delivery has 

been studied in vitro [103], where the application of a small amplitude (10 Oe) oscillating 

magnetic field was used for on-demand release of anti-HIV drug. In general, the use of 
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nanoparticles in drug delivery is promising for their ability to cross the highly selective blood-

brain barrier [104]. From physics point of view, first-principle calculations suggest Gd to prefer 

octahedral site occupancy when introduced as a dopant to Fe3O4 inverse spinel environment 

[105]. Considering the reported ionic radii of Gd
3+

 and Fe
3+

 in octahedral coordination, 0.938 Å 

and 0.645 Å respectively [106], one expects Gd dopants to induce high chemical pressure on 

Fe3O4 structure. 

3.2 EXPERIMENTS AND RESULTS 

3.2.1 NANOPARTICLES PREPARATION AND CHARACTERIZATION 

 Undoped Fe3O4 samples were prepared via a standard co-precipitation chemical route, 

starting with the appropriate stoichiometric ratios of iron(II) chloride and iron(III) chloride. The 

Gd dopant was introduced to substitute iron Fe
3+

 by adding the proper quantity of 

gadolinium(III) chloride. The target stoichiometry is              
        , with x = 0.03, 

0.075 and 0.15, which correspond to Gd:Fe ratios of 1%, 2.5% and 5% respectively. More details 

on the preparation process are presented in reference [99]. The samples will be referred to herein 

as Gd-0, Gd-1, Gd-2.5 and Gd-5 in the order of increasing Gd content. 

 The Fe3O4 spinel structure was confirmed by recording XRD diffraction pattern for the 

undoped and doped samples, for which the formation of secondary phases is also ruled out 

within the limits of the XRD sensitivity. The data show a monotonic increase in crystallite size 

with increasing Gd content, as estimated by Scherrer formula [107]. EDS analysis indicate that 

the actual doping percentages are 1.3%, 3.0% and 5.5%; slightly higher than what was aimed for. 

3.2.2 MAGNETIC DATA (SUMMARY) 

 Detailed magnetic analysis presented in [99] confirm the superparamagnetic nature of the 

synthesized nanoparticles, with the Blocking temperature falling in the range between 150 K and 
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200 K for different compositions. The saturation magnetization at room temperature, as well as 

the anisotropy constant K, showed a uniform decrease with increasing Gd content. The 

anisotropy constant K is defined through equation 3.1: 

         (3.1) 

Where E is the difference between the magnetic energies (per unit volume) needed to achieve 

saturation along the crystal’s easy and hard axes, and θ is the angle between the direction of 

magnetization and the easy direction. 

3.2.3 DIELECTRIC PROPERTIES 

 The temperature dependence of the dielectric constant is determined by recording the 

capacitance of cold-pressed pellets made of the synthesized nano-powders. Silver paste is 

applied to both sides of disk-shaped pellets, to which gold wires are attached, creating a parallel-

plate capacitor setting. The driving AC signal delivered to the pellets is generated using HP 

4284A Precision LCR meter, controlled by a LabVIEW program to monitor and record the data. 

The temperature control is provided by Quantum Design Physical Property Measurement System 

(PPMS). In this set of measurements, we report the temperature dependence of the relative 

dielectric constant (εr) and the loss tangent (tan δ), which is defined by equation 3.2: 

     
     

     
 

(3.2) 

Where ε
‟ 
and

 
ε

”
 are the real and imaginary parts of the material’s dielectric constant. The loss 

tangent is in general written as the sum of two parts: losses due to conduction and losses due to 

polarization [108]. Also, we note the relation between ε
‟
 and εr:         , where ε0 is the 

permittivity of free space. 

The dielectric behavior of different samples is presented in figures 3.4. The monotonic 

rise in the loss tangent at higher temperatures (i.e.: T > 200 K) is due to increase in the number 
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and root mean square speed of the thermally activated Fermi electrons. The high temperature 

feature observed in the Gd-0 data coincides with the ice-water transition (~273 K) and could be 

originating from adsorbed water molecules on the pellet’s surface [109]. The most interesting 

feature in figure 3.4 is perhaps the broad peaks observed in dielectric loss, whose positions shift 

with temperature. Such peaks are a signature of relaxor ferroelectrics, confirming the 

ferroelectric nature of the Gd-doped samples. On the same note, the dielectric loss peaks’ heights 

being frequency independent is indicative of Debye relaxation mechanism. 

In Debye process, the relaxation mechanism stems from the conformation of molecular 

dipoles, whose charge centers are the iron (or gadolinium) and oxygen ions in case of Fe3O4. 

Since this dipolar rearrangement is driven by thermal agitations, the needed activation energy 

(U) is estimated with the help of Arrhenius equation [110]: 

      
  

  ⁄  (3.3) 

Where fp is the loss peak frequency, f0 is a constant, k is Boltzmann’s constant and T is the 

temperature. The semi-log plots in figure 3.5 were generated after extracting the curve 

frequencies and the corresponding peak temperatures from figure 3.4. The activation energy is 

found to increase from 0.1 ev for undoped Fe3O4 to ~0.12 ev for the Gd-5 sample. This increase 

is expected as a result of substituting some Fe transition metal ions with the heavier Gd 

lanthanide ions. 
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Figure 3.4: Change in relative dielectric constant (εr) and dielectric loss of Fe3O4 and Gd-doped 

Fe3O4 nanoparticles versus temperature. The data for Gd-2.5 sample was recorded only up to 

80K. 
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Figure 3.5: Semi-log straight line fits of dielectric loss peak frequencies vs temperature 

reciprocal for pure and Gd-doped Fe3O4. 

 

 We also report the frequency dependence of the dielectric constant and loss on Gd-0 and 

Gd-5 pellets at room temperature (i.e.: 300 K) in figure 3.6. The data were recorded only 

between 10 kHz and 1 MHz because the dielectric loss of the Gd-0 sample was higher than 10 

below this range, which made it outside the measurable range of the used LCR meter. The 

presented curves exhibit a steady non-linear decrease in both quantities for the two samples, 

which is in part due to aging effects –triggered by reorientation of defect dipoles– usually 

observed in ferroelectrics [111]. Such effects cause the measured capacitance to depend on the 

time waited before commencing the data acquisition process, which is why the values reported in 

figure 3.6 are discrepant from those seen in the temperature dependent plots (figure 3.4). Besides 



74 

 

the time drift effect, the decrement in dielectric constant and loss values is described as the 

‘universal’ dielectric response [110, 112], and is attributed to slowly hopping mobile charge 

carriers. 

 
 

Figure 3.6: Frequency dependence of the dielectric constant (left axes) and dielectric loss tangent 

(right axes) for Gd-0 and Gd-5 samples at 300 K. 

 

3.2.4 MAGNETO-DIELECTRIC COUPLING 

 The effect of magnetic field on the dielectric properties was studied. In general, spin-

charge coupling is possible in systems which are simultaneously magnetic and piezoelectric due 

to the strain induced by magnetic anisotropy. Consider the free energy (F) expansion in terms of 

ferroelectric polarization (P) and magnetization (M) [84]: 

                      (3.4) 

The ‘other terms’ are generally forbidden due to symmetry considerations [84, 113]. The scalar 

P
2
M

2
 term has been used to explain magneto-electric behavior in a number of systems (see [114] 

for example). 

 For the Fe3O4 set of samples at hand, the dielectric constant and loss were recorded as a 

function of magnetic field at a number of fixed temperature values. LabVIEW interface was used 
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to record the data while providing the needed control over the PPMS and LCR meter. In an 

attempt to eliminate the steady time dependent decrease in capacitance caused by aging effects, 

the magnetic field was swept in steps rather than continuously. That is, the magnetic field 

strength was held constant at the desired value before recording the capacitance and loss for one 

minute. The capacitance/loss raw data was then averaged after subtracting a linear background. 

The process was repeated at different magnetic field values, and the whole routine was carried 

out at T = 10 K, 50 K and 300 K. The averaged magneto-dielectric data are presented in figure 

3.7. 

 

Figure 3.7: Relative change in dielectric constant and dielectric loss tangent as a function of 

magnetic field for Gd-0 and Gd-5 samples. 

 

 The quantities shown on the y-axes in figure 3.7 are the percent discrepancies in the 

dielectric constant and loss; with the reference values ε0 and D0 are chosen as the dielectric 

constant and loss tangent –respectively– at H=0 Oe. In spite of the step-wise routine followed, 
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the obtained data are still influenced by time drift effects to some extent, observed in the 

skewness of some plots. In addition, the data also involve spurious magneto-capacitive signals 

[84], making it difficult to comment on the significance of the obtained numerical values. It can 

be noted, though, that the asymmetry in coupling curves could be either due to magnetostriction 

or due to magnetic hysteresis. While the reported Fe3O4 magnetostriction values in literature 

[115] are typically in the order of 10
-4

%, which is three orders of magnitude smaller than the 

observed change in figure 3.7, magnetite nanoparticles have been recently reported to exhibit 

giant magnetostriction [116] in the order of 10
-1

%. With the probability of such immense change 

in the pellets’ thickness in picture, it is not possible to explain the physics behind figure 3.7 plots. 

3.2.5 FERROELECTRIC PROPERTIES 

 We attempt to measure the ferroelectric polarization moment for Gd-0 and Gd-5 samples 

by integrating the recorded pyrocurrent signal with respect to time. The samples were cooled 

from 150 K down to 10 K under a poling voltage of 100 V, which corresponds to an electric field 

in the order of kV/cm considering the thicknesses of the used pellets. Higher voltage values 

could not be applied as the Gd-0 sample had a relatively low resistivity at 150 K. A linear 

background was subtracted from the pyrocurrent signal prior to integrating with respect to time. 

The obtained polarization moments, shown in figure 3.8, are two orders of magnitude smaller 

than previously reported values [93, 117, 118]. We attribute this in part to the inherent defects in 

our pressed nanoparticle pellets samples, compared to thin films [93, 117] and single crystals 

[118] which, by definition, have better crystallinity. Moreover, polarization measurements 

carried out on nanoparticles are usually averaged on the randomly oriented crystallites, in 

contrast to thin films which have preferred growth orientation. 
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 The calculated polarization moment for the Gd-5 sample is more than double that of 

pristine Fe3O4. This is ascribed to Gd
3+

 having a larger ionic radius compared to Fe
3+

, which 

leads to effectively decreasing the bond length between the cation and the oxygen anion, hence 

increasing the absolute value of ferroelectric lattice distortions. 

 

 

Figure 3.8: Calculated ferroelectric polarization moment for Gd-0 and Gd-5. The measured 

pyrocurrent signals are included in the insets. 
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3.2.6 TEMPERATURE DEPENDENT XRD AND HEAT CAPACITY 

 It was discussed above how the charge ordering mechanism needed for generating 

ferroelectricity is triggered by Verway transition. With this motivation, we investigate the 

structural changes around Verway transition by recording the XRD diffraction pattern at 

different temperatures in that vicinity for Fe3O4. The obtained data are presented in figure 3.9. 

While all the major peaks were indexed to Fe3O4, crystalline NaCl was also identified, with the 

corresponding peaks marked by ‘*’ in figure 3.9. The NaCl impurity is a result of using sodium 

hydroxide to trigger precipitation of magnetite during the preparation process. It should be noted 

that the spectra in figure 3.9 are obtained for a different batch than that was used in other 

measurements. 

 

Figure 3.9: XRD patterns recorded at different temperatures in the vicinity of Verway transition 

for Fe3O4. The curves are vertically displaced for clarity. 

 

 The reported theoretical calculations [94] inform us of an expected Bravais lattice change 

accompanying Verway transition (~120 K). Such change will definitely exhibit itself in XRD 
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spectra as a change in the peaks’ pattern. Surprisingly, no difference is seen upon crossing 120 K 

in our data. We propose the reason behind this to be the diminished nature of lattice distortion 

(~0.1 Å) accompanying the long range ferroelectric order. The distortion is too small to have a 

noticeable effect on XRD peak positions. 

 Finally, the heat capacity at constant pressure was measured for sample Gd-0 in Quantum 

Design PPMS. For this purpose, a few milligrams of the sample were mixed with an equal mass 

of silver powder and pressed into a disk-shaped pellet. Silver was used to ensure proper thermal 

conductivity throughout the pellet. Details on the heat capacity measurement routine can be 

found in Ref. [119]. 

 The molar heat capacity values obtained for sample Gd-0 –shown in figure 3.10– agree 

with earlier reported data [118]. However, there’s no clear signature of any phase transition 

around 120 K. This observation coincides with earlier measurements on nanocrystalline 

magnetite [120], where the absence of heat capacity anomaly was attributed to Verway transition 

being particle-size dependent. It has been reported also [121] that the sample’s stoichiometry 

affects the clarity by which the transition is manifested in magnetic remanence curves. 
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Figure 3.10: Heat capacity of sample Gd-0. The inset shows a 
 

   vs T plot. 

 

 For metal oxides, the heat capacity is generally given by:  

         (3.5) 

Where a and b are proportionality constants. The linear term represents electronic contribution, 

and is exhibited only in conductors. The ~T
3
 term, on the other hand, is due to phonons. It is 

noticed in the inset of figure 3.10 that 
 

   vs T is not a straight line, as expected from equation 

3.5. Instead, the curve peaks around 40 K, which indicates contribution from the ferroelectric 

phonon modes. The plot also shows slight deviation from linearity above 40 K, a behavior which 

is due to magnon (spin wave) excitations [118]. 

3.3 CONCLUSIONS AND FUTURE WORK 

 We investigated the dielectric and ferroelectric properties of Gadolinium-doped Fe3O4 

nanoparticles. While Fe3O4 nanoparticles have been utilized in cancer treatment research via 
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hyperthermia, Gd-based compounds also find popularity as MRI contrast agents. In addition, 

magnetoelectric nanoparticles are within the research interests for drug delivery applications. 

Fe3O4 is a multiferroic material, with the ferroelectric property attributed to long-range 

charge ordering among the octahedral B-sites in the magnetite inverse spinel lattice. Partial 

substitution of Fe
3+

 with Gd
3+

 aims to induce chemical pressure, based on the considerable 

difference in ionic radii. The formation of secondary phases was ruled out based on XRD 

spectra, and the precise Gd compositions were estimated using EDS technique. 

Increasing Gd content was linked to a decrease in saturation magnetization and the 

magnetic anisotropy constant. On the other hand, Debye activation energy –estimated from 

temperature dependent dielectric loss plots– was found to be higher in samples with more Gd 

content. Also, frequency dependent dielectric constant and loss showed a common dielectrics 

behavior of charge carriers hopping, besides revealing a time dependent drift which is 

characteristic to ferroelectrics and is caused by the reorientation of defect dipoles. 

The magneto-dielectric plots told us a little about the nature of magnetoelectric coupling 

in this system because of the persistence of aging effects, which manifested itself in significant 

skewness. Furthermore, spurious magneto-capacitive signals also affected the outcome of our 

measurements. The magneto-dielectric plots showed some asymmetry, owing to 

magnetostriction and magnetic hysteresis. 

The ferroelectric polarization moment for the undoped and 5%Gd-doped were calculated 

by integrating the pyrocurrent signal. The data showed an increase in polarization moment upon 

doping, although the obtained values were two orders of magnitude smaller than reported on thin 

films and single crystals because of being averaged on the randomly oriented crystallites. The 

increase in polarization moment was attributed to the larger ionic size of Gd
3+

 leading to 
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enhanced lattice distortions. Finally, a contribution of phonon modes associated with the 

ferroelectric order was detected in specific heat capacity data of undoped Fe3O4. 

 Overall, a complete understanding of the ferroelectric order mechanism in Fe3O4 is yet to 

be understood. Our structural characterization attempts (XRD at different temperatures) were not 

conclusive about the nature of structural transition taking place at Verway transition, which is 

possibly due to the sample’s stoichiometry being unbalanced. A step towards a better 

understanding of this system will be to have a better control on the stoichiometry while 

introducing the dopants. 

On the other hand, while studying nanoparticles is attractive for the herein introduced 

biomedical applications, their inherent structural defects are unavoidable. A better understanding 

of the physics behind ferroelectricity in this system requires preparing higher quality samples; 

sputtered thin films and single crystals will be considered.  
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CHAPTER 4: MAGNETO-DIELECTRIC COUPLING IN 
POLYVINYLIDENE FLUORIDE (PVDF)-BASED NANOCOMPOSITE 

FILMS 

4.1 OVERVIEW AND PREVIOUS WORK 

 There has been an increase in the research activity aiming to design suitable magneto-

electric systems for different room temperature applications. Among the materials being the 

focus of a significant number of research articles in this concern is Polyvinylidene Fluoride 

(PVDF), which is produced by polymerization of (CH2―CF2) monomers. 

 PVDF, which is commercially available under other names (e.g.: Foraflon, Kynar, Hylar) 

fits in a wide range of applications, owing to its corrosion resistance, thermal stability (melting 

point: 170 
o
C) and mechanical strength [122] (Young’s Modulus: 2.4 GPa). In addition, reported 

piezoelectricity in PVDF [123] widened the scope of possible applications. With its lightweight 

(density: 1.78 g/cm
3
), flexibility and ability to form self-standing films, PVDF is a potential 

candidate for different biomedical sensors [124]. 

The vinylidene difluoride monomer shown in figure 4.1 has a natural electric polarity; 

due to the difference in electronegativity between the hydrogen and fluorine ions. Instead of 

forming amorphous solid structure, PVDF polymer chains tend to arrange in semi-crystalline 

configurations, where some chains will retain long range alignment, while others are trapped due 

to entanglement. Five different crystalline forms have been reported for PVDF so far [125], 

which are defined based on the orientation of successive monomers on the polymer chain. 
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Figure 4.1: Structure of vinylidene difluoride, the PVDF monomer. 

 

 The different orientations (formally called conformations) arise due to different possible 

orientations of the two hydrogen atoms and the two fluorine atoms with respect to each other 

around the C―C bond. When the hydrogen and fluorine pairs are farthest from each other, the 

conformation is called ‘trans’. On the other hand, ‘gauche’ conformation denotes a situation 

where the hydrogen and fluorine pairs are closest to each other. The different crystalline forms of 

PVDF represent different possible iterations of trans (T) and gauche (G) conformations along 

the polymer chain. 

 The two most common crystallographic phases of PVDF are shown in figure 4.2. The α-

phase, shown in figure 4.2(a), is the most stable phase [126], and is characterized by the 

polymeric chain having the (TG
+
TG

-
) conformation. As a result of this alternation, the molecular 

dipoles end up being anti-parallel, resulting in a non-polar structure. The polar β-phase, on the 

contrary, has the (TTTT) conformation, resulting in a net non-zero dipole moment that is 

perpendicular to the polymer chain’s axis [127]. Other known polymorphs of PVDF include the 

polar γ- [128] and δ- [129] phases, and the anti-polar ε-phase [125]. 
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Figure 4.2: (a) The non-polar α-PVDF phase and (b) the polar β-PVDF phase [127]. 

 

 The piezoelectricity and the non-zero diploe moment of β-PVDF make it the most 

desirable phase for technological applications. As a result, researchers aim to come up with 

techniques to convert from α- to β-PVDF with higher ease and efficiency. For instance, the effect 

of using different solvents on the polymorphism of grown PVDF films has been reported [130]. 

In other instances, it was found that PVDF favors nucleation in the polar β-phase upon addition 

of some nanofillers [131-133]. In particular, a significant number of reports have been dedicated 

to studying the effect of loading PVDF with zinc oxide nanoparticles [134-137], where an 

enhancement in the optical and dielectric properties of PVDF has been reported. Another well 

studied nanofiller is reduced graphene oxide (RGO), which is obtained by reduction of graphene 

oxide (exfoliated graphite oxide). RGO attracts attention of materials scientists due to its high 

theoretical specific surface area (2600 m
2
/g) and high electric and thermal conductivities [138]. 

An earlier study on RGO–loaded PVDF has shown an increase in its dielectric constant [139]. 

 In this chapter, we report the effect of loading PVDF-Fe3O4 hybrid films with RGO and 

ZnO on the dielectric and ferroelectric properties. Magnetic Fe3O4 nanoparticles are added as 

fillers to introduce ferromagnetism and induce magneto-dielectric coupling in composite films. 
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We also study the effect of using graphene oxide on PVDF-Fe3O4 films. At the end, we present 

the results of using surface modified nickel nanoparticles and barium hexaferrite –non-

simultaneously– on PVDF matrix. 

4.2 EXPERIMENTAL WORK 

4.2.1 PVDF–Fe3O4 HYBRID FILMS WITH REDUCED GRAPHENE OXIDE (RGO) AND 

ZINC OXIDE (ZnO) NANOFILLERS  [140] 

 Composite films were prepared by solvent casting method, where calculated amounts of 

the Fe3O4, RGO and ZnO nanofillers were mixed with PVDF solution in dimethyl formamide 

(DMF) at room temperature. The fillers were prepared beforehand; Fe3O4 was synthesized by co-

precipitation of Fe
2+

 and Fe
3+

 in alkaline medium, ZnO nanorods were grown by solvothermal 

method and RGO was prepared by reduction of commercially available graphene oxide via 

sonication in DMF and hydrazine hydrate. The nanofillers constituted 5% by weight of PVDF. 

The mixture was then poured on a glass slide and heated at 80 
o
C to evaporate DMF. The dried 

films of PVDF, PVDF-RGO, PVDF-RGO-Fe3O4 and PVDF-RGO-Fe3O4-ZnO could then be 

peeled off glass and had a thickness of ~50 μm. 

  The structure and morphology of the prepared films were studied by X-ray diffraction 

(XRD), Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning 

electron microscopy (SEM) and Transmission electron microscopy (TEM). The dielectric and 

ferroelectric measurements were carried out in parallel plate capacitor configuration using an 

Agilent 4284A LCR meter and an aixACCT TF Analyzer-2000. 

 The X-ray diffraction patterns of the prepared films are shown in figure 4.3, along with 

the patter of a commercial PVDF film for reference. Commercial PVDF consists predominantly 

of α-phase, with the peaks at 2θ = 17.6
o
, 18.4

o
 and 19.9

o
 and 26.6

o
 represent reflections from 
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(100), (020), (110) and (021) respectively. The films prepared or this study show mainly a broad 

peak around 2θ = 20.6
o
, corresponding to (110) peak [141, 142]. The broadening in the films’ 

peaks implies the presence of semi-crystalline mixtures of α-, β- and γ-phases. Characteristic 

peaks of Fe3O4 and RGO nanoparticles are weak and just lead to some broadening, owing to the 

small concentrations added (5%). On the contrary, ZnO nanorods possess a highly crystalline 

nature, and corresponding peaks are easily detected, indicated by ‘*’ in figure 4.3. 

 

Figure 4.3: XRD patterns of commercial PVDF film, prepared pristine PVDF and composite 

films. 

 

 The average size of the Fe3O4 nanoparticles is estimated from TEM images to be ~12 nm. 

Similarly, ZnO nanorods are found to be ~10 μm in length on average. Low resolution SEM 

images of the composite films (figure 4.4) show that PVDF film is smooth and dense with no 

visible voids, whereas nanoparticle-loaded PVDF composite films have rough surfaces with 

granular particles distributed homogenously in the film. 
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Figure 4.4: Low resolution SEM images for PVDF films. 

 

 The Raman spectra shown in figure 4.5(a) are used to estimate the relative quantities of 

α- and β-phases in the prepared pristine PVDF film. The spectra of PVDF films loaded with 

nanofillers are dominated by D- and G- bands characteristic of RGO [143], making the weak 

PVDF characteristic bands barely discernible. On the other hand, the Raman spectra of pure 

PVDF samples show distinct bands. Specifically, the bands observed at 795 cm
-1

 and 839 cm
-1

 

correspond to α- and β-phases [144] and can be used to quantify those phases in PVDF film. We 

have estimated the relative amounts of α- and β-phases in the solvent cast PVDF film prepared 

for this study and in the commercial film, by fitting the Raman spectra in the 700-950 cm
-1

 

region with Lorentzian-Gaussian line profiles (figure 4.5(b)). Our estimates yield α- and β- 

percentages of 18% and 82% respectively for our PVDF film, whereas the estimated numbers for 

the commercial film are α: 74% and β: 26%.Thus, the solvent cast film is β-phase predominant. 

Since the other samples are dark colored (i.e.: show high absorbance in the visible region) they 

tend to burn when incident laser power is increased in an attempt to obtain good Raman spectra 
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outside the RGO D- and G-band regions. Therefore, we used FTIR spectra to estimate the phase 

composition of those films. 

 

Figure 4.5: (a) Raman spectra for the PVDF films prepared for this study and the commercial 

PVDF film. (b) Lorentzian-Gaussian peak fits to the PVDF films spectra. 

 

 The FTIR spectra –recorded in attenuated total reflection setting- of the studied PVDF 

samples are shown in figure 4.6. The commercial PVDF film shows the expected bands of the α-

phase at 762 and 795 cm
-1

, while the pure PVDF film prepared for this study shows mainly the 

β-phase bands at 840 and 878 cm
-1

 [145-147] with a minor fraction of α. The bands at 762 and 

840 cm
-1

 were used in estimating the fractional composition in the samples utilizing equation 4.1 

[148]: 
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(4.1) 

Where   and   are the IR absorbances at 762 and 840 cm
-1

. The fractions of β-phase 

determined for different samples are listed in table 4.1. Both Raman and IR spectral analyses 

yield the same value for the fraction of β-phase in the commercial as well as the solvent cast 

PVDF films, implying either technique can be used to determine the fraction of the β-phase in 

these films. 

 Fraction of β-phase (%) 

Film From IR From Raman 

PVDF-Commercial 27 26 

PVDF 81 82 

PVDF-RGO 77 ― 

PVDF-ZnO (spectrum not shown) 58 ― 

PVDF-RGO-Fe3O4 53 ― 

PVDF-RGO-Fe3O4-ZnO 49 ― 

Table 4.1: PVDF composite films and their β-phase fractions. 

 

It is found that the PVDF and PVDF-RGO films possess the highest β-phase percentage 

(≈80%), whereas films which carry Fe3O4 and ZnO nanofillers have the lowest β content 

(≈50%). Such decrease in β-phase content upon addition of nanofillers is contrary to earlier 

observations reported in literature [149]. It has been shown that the dispersion of nanoparticles in 

polymer composites is enhanced when polymer films are confined to nanometer size thickness 

[150]. However, in the present study the self-standing film thickness is large (~50 μm) and the 

nanoparticles may not be well dispersed, forming larger aggregates. The inclusion of Fe3O4 and 
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ZnO nanofillers will likely induce crystallographic texture, disrupting the all-trans planar zigzag 

conformation of the PVDF backbone in the β-phase leading to an increase in the α-phase in the 

vicinity of the nanoparticles. 

The dielectric, magnetic and ferroelectric characterization data are collectively shown in 

figure 4.6. The dielectric constant dependence on frequency is plotted in figure 4.6(A), where the 

nanofillers loaded films show enhance dielectric constant compared to the pure PVDF film. 

Since the polymer matrix and the inorganic fillers have different dielectric constant, a large 

number of charge carriers accumulate on these interfaces leading to strong Maxwell-Wagner-

Sillars (MWS) polarization [139]. On the other hand, films loaded with Fe3O4 show a reduced 

dielectric constant compared to PVDF-RGO and PVDF-ZnO. We attribute this to increased 

electrical conduction in Fe3O4 aggregates in the PVDF composite films containing Fe3O4. The 

PVDF–RGO film, which contains a high percentage of β-phase, shows a lower dielectric loss 

(figure 4.6(E)) and a higher dielectric constant compared to pure PVDF and other composite 

films. This results in a higher electrical polarization as described below. Generally, the dielectric 

loss arises from several contributions, including direct current conduction, MWS relaxation and 

the Debye loss factor: 

             (4.2) 
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Figure 4.6: (A) Dielectric constant vs frequency plots, (B) P-E curves, (C) M vs H curves, (D) 

MD coupling and (E) Dielectric loss vs frequency of (a) PVDF, (b) PVDF-RGO, (c) PVDF-

RGO-Fe3O4, (d) PVDF-RGO-Fe3O4-ZnO and (e) PVDF-ZnO. Inset in (C) shows FC and ZFC 

curves for PVDF-RGO-Fe3O4-ZnO. 

 

(E) 
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 Figure 4.6(B) shows room temperature ferroelectric (P-E) loops of the studied films. The 

highest polarization observed was for PVDF-RGO (0.13 μC cm
-2

) at poling field 60 kV/cm. The 

polarization seems to be affected by both the dielectric constant and the percentage of the 

piezoelectric β-phase in the film. Although the fraction of β-phase is similar (~80%) in both 

PVDF and PVDF–RGO films, the increase in polarization in PVDF–RGO seems to be due to the 

accumulation of the charges at the interface of the conducting and dielectric phases, facilitating 

the heterogeneous polarization in the systems. However, both PVDF–RGO–Fe3O4 and PVDF–

RGO–Fe3O4–ZnO films show lower polarization because of significant reduction in β-phase 

(~50%) as well as reduced dielectric constant. 

 The magnetic nature of the Fe3O4-loaded films is confirmed by the magnetization curves 

at room temperature shown in figure 4.6(C). Furthermore, ZFC-FC curves in the inset confirm 

the superparamagnetic nature of the used Fe3O4 nanoparticles. The magneto-dielectric behavior 

of the films is measured at room temperature (Figure 4.6(D)). The magneto-dielectric coupling 

MD(%) is defined as 
     

  
       , where    and    are the dielectric constants with and 

without magnetic field, H. Clearly, only the Fe3O4-loaded films show dielectric constant 

dependence on magnetic field. The curves can be fitted using a parabolic equation: MD = γH
2
, 

which originates from the lowest-order coupling terms in the free energy expansion as discussed 

before in section 3.2.4 (refer to equation 3.4). As mentioned before, symmetry considerations 

allow the scalar term P
2
M

2 
in Ginzburg-Landau free energy expansion [151], where P and M are 

the electric polarization and magnetization of the system. A similar quadratic dependence of MD 

coupling on magnetic field has been observed in other multiferroics [84, 152]. 

 The origin of magneto-dielectric coupling in these samples could be attributed to the 

effect of magnetostriction in magnetic Fe3O4 causing piezoelectricity in ferroelectric PVDF. 
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Upon application of magnetic field, the magnetic domains of Fe3O4 align in such a way which 

can cause stress on neighboring PVDF phase via magnetostriction, which eventually leads to 

accumulation of some surface charge due to the piezoelectric effect. The elastic interaction 

between the magnetic (Fe3O4) and ferroelectric (PVDF) phases strongly depends on the 

microstructure and coupling interaction between the magnetic and ferroelectric interfaces. 

4.2.2 PVDF FILMS LOADED WITH Fe3O4 AND GRAPHENE OXIDE (GO) [153] 

 Here, we report the effect of loading PVDF matrix with graphene oxide (GO) and Fe3O4 

nanoparticles on the dielectric and MD coupling of PVDF self-standing thin film composites. 

The films were prepared using a solvent casting routine similar to the one reported in the 

previous section. GO was used because of its high surface area, mechanical strength and thermal 

conductivity [154]. In addition, it has been reported in a previous study [155] that the dielectric 

constant of the PVDF composites can be increased by loading it with GO by the solvent casting 

method.  

 Structural characterization carried out using XRD and FTIR spectroscopy revealed a 

decrease in α-phase characteristic peaks and modes, on the expense of the piezoelectric β-phase 

in the GO-loaded films (figure 4.7). This is attributed to strong interaction between carbonyl 

groups in graphene oxide and fluorine ions in PVDF, causing a transformation of the α-phase’s 

TG
+
TG

-
 conformation into the TTTT conformation characteristic of the β-phase [132].   
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Figure 4.7: (A) XRD spectra of PVDF composite films. The inset highlights the GO 

characteristic peak at 2θ = 9.6
o
. (B) FTIR spectra for PVDF (a), PVDF-GO (b), PVDF-Fe3O4 (c) 

and PVDF-GO-Fe3O4 (d). 

 

 The room temperature ferroelectric loops of the composite films are shown in figure 4.8. 

It should be noted that samples with no GO content exhibit banana-shaped ferroelectric loops, 

which is indicative of lossy behavior [156]. However, the other composite films show higher 

polarization values compared to the pristine PVDF film. This is due to the accumulation of 

charges at the interfaces of the conducting Fe3O4 and the dielectric GO, which enhances the 

formation of electric dipoles. The increase in ferroelectric polarization values in films loaded 

with GO can also be attributed to the increase in the β-phase content of those films. 

(A) (B) 
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Figure 4.8: Room temperature P-E loops at 100 Hz of undoped PVDF and composite films. 

 

 The dielectric constant of the studied films is measured at room temperature as a function 

of frequency (figure 4.9(a)). It was found that the dielectric constant generally drops at higher 

frequencies, which is due to molecular dipoles being unable to follow the driving signal 

oscillations. The addition of Fe3O4 and GO particles to the polymer matrix leads to increasing 

permittivity due MWS polarization brought up earlier; where the charge carriers accumulate at 

the polymer-nanofillers interface. 

  

Figure 4.9: (a) Dielectric constant and (b) dielectric loss dependence on frequency at room 

temperature. 
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 The dielectric loss (figure 4.9(b)) shows a similar decreasing trend as a function of 

frequency. The factors contributing to dielectric loss in composite films were brought up in 

section 4.2.1 (refer to equation 4.2).  

 The room temperature MD coupling curves for PVDF composite films are compiled in 

figure 4.10(a). In resemblance to the pervious set of PVDF-RGO composites reported in section 

4.2.1, the samples loaded with magnetite show variation in dielectric constant upon applying 

magnetic field. The obtained curves have a quadratic dependence on magnetic field „H‟ as 

allowed by symmetry (refer to section 4.2.1). The observed MD coupling is extrinsic in part, 

resulting of magnetostriction of Fe3O4 particles and the piezoelectricity of PVDF β-phase. Figure 

4.10(b) depicts the MD coupling behavior of the PVDF-GO-Fe3O4 film at different temperatures. 

Considering the temperatures examined, we note that the MD coupling peaks at 100 K and it 

becomes lower at higher temperatures. This can be explained with the help of the film’s ZFC-FC 

curves shown in figure 4.11, where the blocking temperature is found to between 50 K and 100 

K. As mentioned in chapter 1, the magnetite nanoparticles –being responsible for the blocking 

behavior– will have just the enough thermal energy to flip in response to an external magnetic 

field at the blocking temperature. This will result to maximum magnetization value and the 

strongest magnetostriction effect, which implies highest MD coupling. 
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Figure 4.10: (a) MD coupling for composite films at room temperature and (b) MD coupling for 

the PVDF-GO-Fe3O4 film at different temperatures. 

 

 

Figure 4.11: ZFC-FC curves for the PVDF-GO-Fe3O4 film. 

 

4.2.3 PVDF-Ni NANOHYBRIDS [149] 

 In this work, MD coupling between magnetic nickel nanoparticles and piezoelectric 

PVDF films was studied. Before being dispersed in the PVDF matrix, Ni nanoparticles were 

subject to surface functionalization using hydrogen peroxide (H2O2) with the aim of attaching 
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hydroxyl functional groups (OH
-
) to the particles’ surface. The goal was to enhance the strain 

transfer efficiency among the magnetic and piezoelectric phases. 

The composite films were prepared by solvent casting route, and characterized with XRD 

and FTIR techniques. In particular, absorption bands characteristic to Ni―OH bonds were 

detected in FTIR spectra. Also, PVDF crystallographic composition of the Ni-doped films 

showed an enhancement in the β-phase to α-phase ratio. 

PVDF films loaded with a 10% weight ratio of surface modified Ni nanoparticles showed 

higher polarization values in measured P-E loops compared to films hosting non-functionalized 

Ni. The PVDF-modified Ni composite films also had higher the breakdown voltage, as well as 

lower leakage current. It is noted that the amount of Ni used was below the percolation threshold 

reported for PVDF-Ni system. Therefore, the leakage current has low effect on polarization. The 

improvement in ferroelectric polarization in hybrid films utilizing functionalized Ni is attributed 

to improved interface between the two phases due to the strong dipolar interaction between the 

OH
-
 groups and fluorine ions on the PVDF chain. Such interaction improves the dispersion of Ni 

nanoparticles in the PVDF matrix. 

The MD coupling for the PVDF-Ni (modified) and PVDF-Ni (non-modified) films are 

compared in figure 4.12. The obtained data for both samples show parabolic behavior 

proportional to the square of applied field (~γH
2
). Again, the MD coupling behavior is attributed 

to the strain induced on piezoelectric PVDF due to magnetostriction manifested by magnetic Ni 

nanoparticles. The effect is stronger for functionalized Ni because of hydroxyl groups inducing 

better coupling. 
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Figure 4.12: MD coupling of the (a) PVDF-Ni and (b) PVDF-functionalized Ni films. 

 

4.2.4 MAGNETO-DIELECTRIC PROPERTIES IN PVDF-BARIUM HEXAFERRITE 

(BaFe12O19) COMPOSITE FILM [157] 

In this work, barium hexaferrite (BHF) was used as a filler due to its high 

magnetocrystalline anisotropy. BHF nanoparticles synthesized via sol-gel route were used to 

make PVDF-(x volume %) of BHF –with x ranging between 2.5 and 15– by solvent casting 

method. In addition, pure PVDF film and BHF pellet were made and measured for comparison. 

Structural characterization was carried out by XRD and FTIR, where it was found that all 

the films –including the undoped PVDF– consist of a mixture of α and β polymorphs. The ratio 

of β to α was estimated from FTIR spectra where it was found to increase in the BHF loaded 

films up to x = 5%. 

An increase in the electric conductivity with frequency has been observed in all samples. 

It was noticed also that the conductivity increases with increasing BHF amount in an agreement 

with the standard conductor-insulator percolative systems. Additionally, the dielectric constant 

and loss decrease with increasing frequency, and films with higher BHF content show a higher 

dielectric constant at fixed frequency. The enhanced dielectric constant is mainly attributed to 

(a) (b) 
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interfacial polarization, with a minimal contribution to the increased β-phase. The ferroelectric 

moment and leakage current also showed an enhancement with BHF content up to x = 15%. 

The quality of MD coupling data for heavily BHF loaded PVDF films is found to be poor 

because of high dielectric loss (figure 4.13). On the other hand, samples with low BHF content 

show linear MD behavior, suggesting the possibility of spin-charge coupling. 

 

Figure 4.13: MD coupling of undoped and lower BHF percentage PVDF films. 

 

4.3 CONCLUSIONS 

 Improving extrinsic magneto-electric coupling in hybrid systems is becoming the focus 

of many researchers owing to the promising room temperature uses. An attractive system in this 

research area is polyvinylidene difluoride (PVDF) based film composites, on account of the ease 

to prepare the thermodynamically stable at room temperature piezoelectric β-phase of PVDF. In 

this chapter, four systems of solvent-cast PVDF composite films were presented. 

The work on PVDF-Fe3O4 hybrid films loaded with reduced graphene oxide (RGO) 

powder and zinc oxide (ZnO) nanorods showed a reduction in the β-phase composition in the 
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PVDF matrix upon loading with Fe3O4 and ZnO nanofillers. The relative α and β composition 

was estimated from FTIR and Raman spectra using Lambert-Beer’s law. All nanofillers-loaded 

PVDF films show an increase in the dielectric constant but the electric polarization depends on 

the percentage of polar ferroelectric β-phase in the films. Fe3O4-loaded hybrid PVDF films 

exhibit multiferroic behavior with a magneto-dielectric (MD) coupling constant of ~0.04%. The 

low MD feature was attributed in part to agglomeration of Fe3O4 particles in the PVDF polymer 

matrix, suggesting that improving the efficiency of nanofillers dispersion in PVDF film 

composites is a step towards make them suitable for room temperature MD device applications. 

On the other hand, using graphene oxide (GO) as a nanofiller in PVDF matrix was shown 

to increase the β-phase content, which was attributed to better dispersity owing to the functional 

groups attached to the nanofiller’s lattice. Nevertheless, the PVDF-GO based composite films 

also showed an increase in dielectric constant and polarization moment compared to pristine 

PVDF. MD coupling measurements on ternary PVDF-GO-Fe3O4 films showed a maximum 

coupling value around the Fe3O4 nanoparticles’ blocking temperature, in accordance with the 

thermally induced spin flip mechanism as expected from ZFC-FC data. 

The effect of using nickel (Ni) and barium hexaferrite (BHF) as PVDF nanofillers was 

also reported. In both cases, the amount of polar β-phase of PVDF was found to increase in 

PVDF composites compared to pristine films. It was also found that modifying the Ni 

nanoparticles to carry ―OH
-
 functional groups prior to dispersion in PVDF improved the 

ferroelectric polarization and reduced the leakage current. MD measurements show that surface 

functionalized nickel-PVDF composites exhibit a higher coupling factor than that of the 

unmodified one, which was again attributed to the functional groups improving the film 

homogeneity and resulting in better strain-transfer efficiency. In case of using BHF, the 
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dielectric permittivity of the system increases nearly eight fold upon addition of 12.5% BHF by 

volume without much compromising the dielectric loss. Moreover, small magnetoelectric 

coupling in this system is detected, suggesting the possible tunability of the dielectric 

permittivity with external magnetic field. 

In conclusion, it seems that improving the dispersity of nanofillers in PVDF film is a 

critical factor in enhancing the dielectric and ferroelectric properties. One seemingly successful 

way to achieve better dispersity is via surface functionalization, suggesting such direction for 

future research activities. Also, the dependence of MD coupling coefficient is plotted as a 

function of magnetostriction coefficients and magnetic saturation (listed in table 4.2) in figure 

4.14 (a,b). It seems from the plot that nanofillers with a higher magnetostriction coefficient 

(Fe3O4 in this case) would induce higher MD coupling in loaded PVDF films. 

  

Figure 4.14: MD coupling in nanofillers loaded PVDF films as a function of magnetostriction 

and saturation magnetization of the magnetic nanofillers. 
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Magnetic 

Nanofiller 

Magnetostriction 

Coefficient [Ref] 

Saturation Magnetization 

emu/g [Ref] 

BHF -1.5 10
-5

 [158] 58 [157] 

Ni -0.34 [159] 18 [149] 

Fe3O4 0.04 [116] 60 [160] 

Table 4.2: Magnetostriction and saturation magnetization values of the magnetic nanofillers 

reported in this chapter, along with the reference in which each values is reported. 

  



105 

 

CHAPTER 5: SUMMARY AND FUTURE WORK 

The topics of multiferroicity and magnetoelectricity were the focus of this thesis. Two 

intrinsic multiferroic systems: Iron (III) vanadate (FeVO4) as an example of type II mutiferroics, 

and magnetite (Fe3O4) as a ferromagnetic material where charge ordered ferroelectricity is 

observed. Also, polyvinylidene difluoride (PVDF)-based film composites were studied as 

extrinsic, strain-induced magnetoelectric systems, where PVDF served as the ferroelectric phase 

while the magnetic constituent was Fe3O4, nickel or barium hexaferrite nanoparticles. 

In chapter 2, we investigated the magnetic and ferroelectric anisotropy in undoped single 

crystals of triclinic FeVO4 synthesized by flux-growth method. It was revealed that the 

crystallographic a-axis as a magnetically easy axis and favorable for magnetic moments 

alignment. Our ferroelectric measurements also showed the polarization moment density of 

FeVO4 be higher in the direction of a, denoting this direction to be favorable from electric 

polarization viewpoint also. This is supported by noting that the relative change in dielectric 

constant versus temperature is larger along the a-axis. 

 The relative change in dielectric constant as a function of magnetic field was also 

presented. The data manifested a strong dependence of the dielectric behavior on magnetic field, 

in a similar manner to what was observed before in Ni3V2O8 system, suggesting field-induced 

spin reorientations. Unlike Ni3V2O8, the isothermal M vs H data showed a paramagnetic linear 

response, unsupportive to the assumption of spin reorientations. 

 FeVO4 single crystals doped with zinc and manganese were also prepared. The choice of 

Zn aimed to reduce exchange striction between the Fe
3+

 and Zn
2+

, and to investigate the role of 

magnetically induced lattice distortions in creating the spontaneous ferroelectric moment. On the 
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other hand, Mn-doped crystals were also prepared to test for the role played by Dzyaloshinskii-

Moriya interaction in FeVO4 ferroelectricity. 

 The magnetic susceptibility dependence on temperature for the doped crystals was found 

to be qualitatively similar to the undoped FeVO4. However, unexpectedly, the effective moment 

per magnetic ion increased for some zinc contents, which was assigned to Zn
2+

 induced 

asymmetries. The doped crystals were shown to retain the ferroelectric nature as well.  

 A better route for doping FeVO4 single crystals shall be considered in the future work, to 

gain better control on the dopant percentages. Doping on the vanadium site may be investigated 

as well.  

The dielectric and ferroelectric properties of gadolinium-doped Fe3O4 nanoparticles were 

investigated in chapter 3 for better understanding of charge-ordered ferroelectricity in this 

system, besides the potential biomedical applications. Samples with higher Gd content were 

found to have higher activation energy for Debye relaxation process. Also, pellets made of Gd-

doped nanopowder showed higher ferroelectric polarization moment which we attribute to the 

larger ionic size of Gd
3+

 leading to enhanced lattice distortions. Heat capacity data of undoped 

Fe3O4 carried some contribution around 40 K of phonon modes which are possibly associated 

with the ferroelectric order. 

 For better understanding of ferroelectricity in Fe3O4, finer control on the sample’s 

stoichiometry should be achieved to rule out possible perturbations in oxygen content. 

Strain induced magnetoelectric coupling in (PVDF)-based film composites was the focus 

of the last chapter. The effect of various nanofillers on PVDF piezoelectricity and on the 

resulting magnetoelectric coupling was investigated. For instance, the use of reduced graphene 

oxide and zinc oxide as nanofillers in PVDF-Fe3O4 hybrid films was found to reduce the β-phase 
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content, which is ferroelectric and piezoelectrically active phase of PVDF. The films still 

exhibited weak magneto-dielectric behavior, owing in part to agglomeration of Fe3O4 particles in 

the PVDF polymer matrix. Using graphene oxide, on the other hand, as a nanofiller was shown 

to increase the β-phase content, which we attribute to better dispersity as a result of the 

functional groups attached to the graphene oxide lattice.  

The effect of using nickel (Ni) and barium hexaferrite (BHF) as PVDF nanofillers was 

also reported. It was found PVDF films which carry surface-functionalized Ni nanoparticles 

show enhanced ferroelectric polarization and higher magneto-dielectric coupling as compared to 

films with non-functionalized Ni. On the other hand, an enhancement in the dielectric 

permittivity and magneto-dielectric behavior was seen in BHF-loaded films. 

Dielectric studies of PVDF hybrid films suggested that improving the dispersity of 

nanofillers in PVDF film is a critical factor in enhancing the dielectric and ferroelectric 

properties. One seemingly successful way to achieve better dispersity is via surface 

functionalization, suggesting such direction for future research activities. 
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APPENDIX: SINGLE CRYSTALS SYNTHESIS USING FLUX GROWTH 
METHOD 

 From scientific and technological points of view, single crystals are preferred over 

powder or ceramic samples for the following reasons [161]: 

 Powder samples have a higher surface to volume ratio, which affects and interferes with 

manifestation of intrinsic properties. 

 Inter-granular composition and porosity effects. 

 Anisotropy measurements are not possible on powder samples. 

 Single crystals generally have a higher purity; many macroscopic and microscopic probes 

can only be effectively utilized in the form of single crystals. 

Several methods are available for crystal growth from melts. Examples are: 

 Zone melting: in which a small melting zone is moved along the crystal. 

 Crystal pulling: where a seed crystal is pulled very slowly out of a molten flux of the 

same material. 

 Bridgmann cooling: Here, a seed crystal is placed at the side of the container with the 

molten flux. The container is cooled slowly from the side. 

All of the above techniques are suitable for materials which melt consistently or 

uniformly, and have other limitations. Such limitations can be handled via growth from ‘molten 

metal flux’ technique, which is known for short as ‘flux growth’. In this method, powder 

precursors are mixed and kept in a non-reactive container, brought to melting and cooled down at 

a slow rate. The precursors are chosen so that they melt congruently, and sometimes mixed in 

non-stoichiometric ratios to account for one precursor volatility or to use one as a solvent for the 

other(s). 
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Advantages of this technique include growing crystals below their melting point, which 

results in fewer defects and less thermal strain. Also, it is a relatively cheap technique, and it 

offers a clean environment for crystal growth. 

One of the technique’s disadvantages is the possibility of the flux entering the growing 

crystal as impurity, or the crystal growing around pockets of flux. This can be handled by 

adjusting the growth rate. 

It is important to understand the binary phase diagram of the materials involved before 

growing the crystal. For example, to grow silicon crystals, choosing zinc as a solvent is not a 

good idea; since the Si-Zn solution becomes homogenous (technical term: eutectic) only at 

99.955% Zn content [162]. Also, Zn has a high vapor pressure hence is volatile. 

Among the parameters which need to be decided is the soak period. The kinetics of many 

solutions is slow, and the soak time needed to blend the solute and the solvent needs 

experimentation. Another parameter is the cooling time; in general, the slower the cooling rate 

the better (i.e.: higher quality) is the crystal growth and the fewer flux inclusions. For furnaces 

with no temperature controllers, a good trick to slow down the cooling rate is to increase the 

thermal mass. For example, the crucible could be packed in sand (SiO2) for a slower natural 

cooling rate. 

To separate the product crystals from the flux, chemical leaching may be used. Heating 

on a hot plate can speed the process of washing away the solvent. The formed crystals should be 

visible on the surface of the flux before leaching. It worth noting that, whenever leaching is not 

possible for chemical considerations, centrifugation of molten flux may be applied. 

The reactivity of the involved materials has to be taken in account. Some materials may 

be reactive with the crucible, which will result in discoloration or deformation of the crucible. 
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Such problem becomes more profound at higher temperatures. Also, it is important to consider 

the thermal chock resistance of the crucible material while making the crucible choice. 

When the phase diagram involves more than one solid phase, the product of flux growth 

process will depend on the compositions involved. It is usually the case that getting a specific 

phase would be bounded by certain compositions. 

Generally, it is helpful to start with diagnostic trials in case of new systems. Such 

diagnosis involved growing several batches at fairly fast rates. The grown crystals will be small 

in this case, which is why it becomes hard to separate them. In this case, sewing through the flux 

and looking at the cross section under a microscope would be a useful trick. 

A suitable container for the process should be chosen. Some fluxes work better with 

certain materials. Likewise, some crucibles are better with certain fluxes and metals. It can be the 

case where the reactants attack the crucible. In some cases, welding the crucible shut is necessary 

to maintain the correct stoichiometry. 

Flux incorporation in the final product is a common problem, sometimes identifiable by 

visual inspection. It can be avoided or minimized by including nucleation sites (i.e.: smaller-

sized crystals). Another possible problem is getting one of the elements in the forming crystals 

partially substituted by the flux. This can happen if the flux element is similar to one of the 

solutes chemically or in atomic size. 

The formed crystals can be separated from flux either chemically of mechanically. A 

suitable chemical reagent should be used to dissolve the flux while not affecting the formed 

crystals. In some cases, the crystals start reacting with the reagent once they are separated from 

the flux. Therefore, removal from reagent is preferred as soon as separation occurs. In other 
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instances, chemical separation of crystals can take as long as one month, to avoid damaging the 

crystals. 

One specifically useful technique is dissolving the flux metal in another metal. This 

would be possible once a suitable solvent is available. For example, indium flux can dissolve in 

mercury. 

In such cases where chemical separation is not possible, one is left only with cutting the 

crystals from the melt, or any other appropriate mechanical route. 

A problem that is usually encountered upon attempting to grow crystals from flux is the 

slow solution kinetics. In other words may have slow solubility in a specific solvent, much 

slower than the other components, that it gets substituted by other elements. Such problem can 

be addressed by pre-reacting the desired compound and using it in the growth charge (i.e.: the 

flux), rather than using the forming elements. Also, longer soaking time at the maximum 

temperature is required to increase the solubility. 

Because of the popularity and ease of the flux growth technique, some modifications are 

sometimes incorporated to meet specific needs or address encountered issues. Among these 

modifications: 

 Using temperature gradient: In this technique, one compound hasa very low solubility in 

the used solvent. An arc-melted pellet would be placed in the flux which is then brought 

up to the maximum temperature. Then, a temperature gradient would be kept between the 

top and bottom parts of the crucible. After several days, crystals will start forming at the 

cooler end of the crucible. 
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 Evaporation growth: Done by super-saturating the inside environment of the crucible 

with vapors of the flux material, which has to be the most volatile constituent in the 

mixture. One disadvantage is the formation of too many small crystals on the surface. 

 Traveling solvent method: This method, discussed by Wolff and Mlavsky [163], is 

specifically useful when larger sized crystals are desired. 
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ABSTRACT 

MULTIFERROICITY IN IRON VANADATE, MAGNETITE AND 
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 With the increasing demand on cheaper and better performance multifunctional materials 

for different applications, it is becoming more crucial to have a better understanding of the 

physics needed to tailor more devices and materials to fit better in every day’s technological 

needs. Materials which show more than one ferroic order simultaneously –namely, 

multiferroics– are of particular importance for their potential applications as multiple state 

memory elements, transducers and electrically tunable microwave devices. 

In this work, we studied FeVO4 single crystals as an example on low symmetry 

multiferroics. We focused on the anisotropy in those crystals in an attempt to nail the origin of 

the ferroelectric and magnetoelectric behaviors. Our data suggest the crystallographic a-axis to 

be a favorable direction for magnetic and ferroelectric alignment. FeVO4 single crystals doped 

with Zn and Mn were also prepared to investigate the role of magnetically induced lattice 

distortions (in case of Zn) in creating the spontaneous ferroelectric moment, and to test for the 

role played by Dzyaloshinskii-Moriya interaction (in case of Mn) in FeVO4 ferroelectricity. 

Doped crystals were shown to retain the ferroelectric nature as well. 
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 Gd-doped Fe3O4 nanoparticle system –a charge ordered ferroelectric– was also studied. 

Partial substitution of Fe
3+

 with Gd
3+

 aims to induce chemical pressure, based on the 

considerable difference in ionic radii. The dielectric constant of Fe3O4 was found to increase 

upon doping with Gd. Also, the ferroelectric polarization moment was found to be higher for the 

5% Gd-doped sample. Our magneto-dielectric data were not conclusive about the nature of 

magnetoelectric coupling in this system. 

Strain induced magnetoelectric coupling in polyvinylidene difluoride (PVDF)-based film 

composites was investigated as well. The use of reduced graphene oxide (RGO) and ZnO as 

nanofillers in PVDF-Fe3O4 hybrid films was found to reduce the piezoelectric β-phase (i.e.: the 

ferroelectric phase) content, even though PVDF-RGO composite films showed the highest 

ferroelectric polarization moment in the measured set. Using graphene oxide (GO), on the other 

hand, was shown to increase the β-phase content and to enhance the ferroelectric response as 

well. We also show that PVDF films carrying surface-functionalized Ni nanoparticles show 

enhanced ferroelectric polarization and higher magneto-dielectric coupling as compared to films 

with non-functionalized Ni. Finally, an enhancement in the dielectric permittivity and magneto-

dielectric behavior was seen in barium hexaferrite (BHF)-loaded films. 
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