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Chapter 1. Introduction 

1.1 Prostate Cancer 

 Prostate cancer (PCa) is the most common male malignancy and the second 

leading cause of cancer-related death in men in the U.S. The risks of getting PCa are 

related to ancestry, increasing age as well as the environment and lifestyle, e.g., the 

incidence of PCa in African Americans is twice higher than White Americans and is 15-

20-fold higher than native Asian, and the risk among immigrant Asian is significantly 

higher than native Asian [1]. Besides, Family history of PCa is the only definite risk 

factor for prostate cancer. First-degree relatives of men with prostate cancer have about 

twice higher risk of disease compared to men in the general population [2].  

Prostate-specific antigen (PSA), also known as kallikrein-3 (KLK3), is a 

glycoprotein enzyme encoded in humans by the KLK3 gene. The blood PSA level in men 

with prostate cancer is usually increased and the PSA test was approved by the FDA for 

monitoring the progression of PCa in men who had already been diagnosed with the 

disease. PSA test, as a method for PCa screening, are able to detect the disease at an early 

stage. However, the clinical benefits of this screening are uncertain: the elevated PSA 

level doesn’t necessarily mean cancer, benign prostatic hyperplasia (BPH), or an enlarged 

prostate since prostatitis can also raise PSA levels. Studies indicate that about 70% to 80% 

of men with an elevated PSA do not have cancer as determined by biopsy, and 40% to 56% 

will be affected by over-diagnosis leading to invasive treatment, while about 20% of men 

who have cancer have a normal PSA level [3, 4]. Besides, the value of PSA screening in 

preventing cancer-related death is also contradictory. Randomized Prostate-Cancer 
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Screening Trials showed no significant benefit on decreasing death rate in the U.S.[5], 

but did show a 20% decrease of death rate in PCa patients in Europe [6].   

 Since the first demonstration in 1941 by Huggins and Hodges that androgen 

manipulation in patients with advanced PCa has great influence on the progression of the 

disease [7], androgen deprivation therapy (ADT) has been a standard treatment for men 

with advanced PCa. ADT can be achieved by either surgical castration which removes 

testicles or by chemical castration which uses luteinizing hormone-releasing hormone 

(LHRH) agonists or antagonists to block the production of testicular testosterone via 

negative feedback or competitive inhibition, respectively [8]. Despite the initial 

effectiveness of ADT, PCa cells could develop mechanisms of resistance leading to 

castration-resistant PCa (CRPC) within 2-3 years of ADT [9]. Androgen receptor (AR) 

signaling is a driving force of PCa at all stage, including CRPC. Mechanisms to re-

activate AR signaling under ADT include: 1) AR gene amplification [10, 11] or AR 

protein overexpression [12] to respond to low levels of androgen; 2) AR mutations 

(promiscuous pathway) which broaden the specificity of AR so it can be activated by 

molecules such as corticosteroids or clinically-used AR antagonists other than androgen 

[13, 14]. For example, T877S/H874Y and W741C/W741L mutations  convert flutamide 

and bicalutamide (Figure 1) to AR agonists, respectively [15, 16]; 3) Alternative 

androgen production by increasing intratumoral androgen levels via de novo androgen 

synthesis. [17, 18]. FDA-approved abiraterone blocks androgen biosynthesis within testes, 

adrenal gland and prostate via inhibiting cytochrome P450 17A and shows clinical 

benefits in CRPC patients [19]; 4) Expression of AR splice variants (AR-Vs) without 

ligand binding domain (LBD) also contributes to the development of CRPC [20, 21]: AR-



3 

 

Vs are constitutively active and their biological functions cannot be inhibited by 

conventional AR antagonists targeting LBD or by abiraterone targeting androgen 

biosynthesis; 5) Activation of AR in a ligand-independent manner (outlaw pathway) is 

also an important mechanism of resistance:  examples includes growth-factor-activated 

outlaw pathways [22], receptor-tyrosine-kinase-activated outlaw pathways [23, 24] and 

 

Figure 1. AR antagonists in clinical use or in clinical development. 
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the activation of Akt pathway [25]; 6) CRPC can also be promoted by activation of 

compensatory signaling pathways which bypass AR axis, e.g. PI3K/AKT and AR 

signaling pathways cross-regulate each other by reciprocal feedback which means down-

regulation of one pathway will activate the other [26]. Simultaneous inhibition of both 

pathways synergistically inhibited cancer progression [27] and delayed the emergence of 

resistance [28].  Because AR is the most therapeutically-relevant drug target in PCa 

 

Figure 2. The chemical structures of dietary and synthetic isothiocyanate derivatives. 
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treatment, new AR antagonists, such as enzalutamide [29] , ARN-509 [30] and galeterone 

[31] (Figure 1) have been developed to block AR signaling pathway in CRPC patients. 

1.2 Enzalutamide 

Enzalutamide (Enz, Figure 1) is a potent AR antagonist and was approved for the 

treatment of metastatic CRPC. It has higher AR binding affinity (5-8 fold, [32]) 

compared to last-generation AR antagonists, such as bicalutamide, and doesn’t induce 

AR nuclear translocation. Enz has multiple inhibitory functions on the AR axis: it 

competes androgen for AR binding, inhibits androgen-stimulated AR nucleus 

translocation, and inhibits liganded AR binding to DNA on the androgen response 

elements (ARE). Its approval was based on two successful Phase 3 clinical studies.   

AFFIRM trial was conducted in patients with metastatic CRPC (mCRPC) who have gone 

through docetaxel chemotherapy. The results indicated that Enz prolongs the median 

overall survival for 4.8 months compared with placebo group [33], which led to its 

approved by FDA in 2012 for the treatment of mCRPC after chemotherapy. Another 

phase 3 trial known as PREVAIL trial was focused on chemotherapy naïve mCRPC 

patients. Enz significantly reduced the risk of radiographic progression and significantly 

improved overall survival [34]. FDA further approved enzalutamide for this patient 

population [35]. However, acquired resistance to enzalutamide emerges after short period 

of treatment and patient survival benefit is short-lived. The mechanisms leading to 

enzalutamide resistance include AR mutations (e.g., F876L mutation converted 

enzalutamide into an AR agonist [36]), up-regulation of AR splice variants, 

glucocorticoid receptor overexpression, intracrine synthesis of androgens, crosstalk with 
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growth factor, neuroendocrine transformation, neuroendocrine transformation, and 

immune evasion [37].  

1.3 Dietary Isothiocyanates 

Isothiocyanates (ITCs) (Figure 2) are active metabolites of glucosinolates from 

cruciferous vegetables (e.g. broccoli, cabbage, watercress). Epidemiological studies 

suggest a correlation between high intake of cruciferous vegetables and low incidence of 

PCa [38, 39]. ITCs have been demonstrated as one of the major dietary components 

contributing to this benefit.  

Sulforaphane (SFN) is one of the ITCs that has both chemopreventive and 

therapeutic activities against PCa [40].  It is generated from the myroinase-catalyzed  

hydrolysis of glucoraphanin [41] (Figurer 3). Epithiospecifier protein (ESP), a protein 

also presented in broccoli, leads to the formation of SFN nitrile which has no 

anticarcinogenic activity [42]. Gentle heating decreases ESP activity and could increase 

SFN formation while excessive heating denatures myroinase, thus decreases conversion 

of glucoraphanin to SFN (Figure 3) [43] 

After intake into the body, SFN is metabolized through the mercapturic acid 

pathway. SFN first conjugates with GSH by glutathione S-transferases (GSTs). Then 

with the help of γ-glutamyl-transpeptidase (GTP) and cysteinyl-glycinease (GCase), 

glutamic acid and glycine residues of GSH are removed to form SFN-Cys conjugate. 

Finally, N-acetyltransferase (NAT) acetylates cysteine conjugate to form SFN-NAC 

which is then getting into systemic circulation via active transportation and is excreted in 

urine (Figure 4). 



7 

 

The epidemiological relationship between cruciferous vegetables and PCa 

triggered extensive studies to illustrate the mechanisms behind the anti-prostate cancer 

activity of SFN and other ITCs, such as PEITC, BITC, etc. [44]. A phase 2 clinical study 

testing SFN-rich broccoli sprout extracts in men with recurrent prostate cancer was 

completed recently [45], although the treatment regimen (200 μmoles/day of SFN-rich 

extracts, up to 20 weeks) did not lead to ≥50% PSA declines in the majority of patients, 

the on-treatment PSA doubling time was significantly lengthened (9.6 months vs. 6.1 

months) without Grade 3 adverse events, indicating a promising safety profile and a 

potential for further dose escalation. The biological effects and potential molecular 

targets of SFN (or other ITCs) in prostate cancer cells are briefly reviewed as follows. 

 

Figure 3. Mechanism for the formation of sulforaphane and sulforaphane nitrile in 

broccoli florets and sprouts. Myrosinase catalyzes transformation of glucosinolate to 

SFN. 
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1.3.1. Observed Anticancer Effects of SFN 

Induction of cell cycle arrest 

SFN (20 µM) induced S phase arrest due to down-regulation of cyclin D1, cyclin 

E, Cdk4, and Cdk6 proteins in LNCaP cell [46]. SFN also induced G2/M arrest by 

activation of Chk2-mediated phosphorylation of Cdc25C in PC-3 or JNK-mediated 

signaling in DU145 cells [47, 48].  

Induction of apoptosis 

SFN-induced apoptosis in PC-3 cell was associated with up-regulation of Bax, 

 

Figure 4. Mecaputuric acid pathway. SFN is metalized by various enzymes to 

become SFN-NAC conjugate. 
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down-regulation of Bcl-2 and activation of caspases-3, -9 and -8 [49]. SFN treatment 

results in decreased protein levels for inhibitor of apoptosis (IAP) family members 

(cIAP1, cIAP2 and XIAP) and nuclear factor κB (NFκB) in PC-3 cells, and increased 

protein levels for Apaf-1 in both PC-3 and LNCaP cells [50]. Survivin which is an 

inhibitor of apoptosis and a mitosis regulator is down-regulated by SFN in PC-3 cells 

[51].  

Inhibition of migration and metastasis  

Epithelial-mesenchymal transition (EMT) is a biological process by which 

epithelial cells are polarized to gain enhanced ability of migration, invasion, resistance to 

apoptosis and production of microenvironment extracellular matrices (ECMs) 

components to become mesenchymal cell phenotype [52]. EMT is involved in the cancer 

progression and is responsible for the metastasis of cancer, including PCa[53]. E-

cadherin as a tumor suppressor is critical for the formation and maintenance of adherent 

junctions between epithelial cells. Loss of E-cadherin expression is an important factor 

leads to EMT-associated invasion and metastasis [54]. In cancer cells, overexpression of 

onco-protein ERG causes up-regulation of its downstream target chemokine receptor type 

4 gene (CXCR4) which is positively correlated with the cell motility [55]. CXCR4 has 

recently been identified as a novel target of SFN in PCa cells: treatment of LNCaP, 

22Rv1, C4-2 and PC-3 cells with SFN (5 µM, 12 h) resulted in down-regulation of 

CXCR4 and inhibition of cell migration [56]. Labsch et al. demonstrated that SFN, 

particularly in combination with TNF-related apoptosis-inducing ligand (TRAIL), 

reduces the levels of proteins required for EMT and cell migration in PC-3 and DU145 

cells [57]. A recent study also indicated that SFN inhibits invasion of PCa (DU145 cells) 
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by activating ERK1/2 to up-regulate E-cadherin and down-regulate CD44v6, which 

further leads to reduced matrix metalloproteinase-2 (MMP-2) expression and activity [58].  

Inhibition of cancer stem cells 

Cancer stem cells (CSCs) refers to a subset of tumor cells that possess 

characteristics of normal stem cells but are responsible for tumor initiation, metastasis, 

resistance and relapse due to self-renewal, multi-lineage differentiation and resistance to 

chemotherapy and radiation therapy [59-61]. SFN was reported to inhibit breast CSCs 

both in vitro and in vivo [60]. The aldehyde dehydrogenase (ALDH)–positive breast 

CSCs was decreased by SFN via daily injection (50 mg/kg, 2 weeks) in a mouse model. 

The inhibition of breast CSCs by SFN is potentially due to down-regulation of the Wnt/β-

catenin self-renewal pathway [60]. Kallifatidis et al. indicated that SFN increases drug-

induced toxicity toward CSCs in both prostate and pancreatic cancer. In vivo, the 

combination of SFN and gemcitabine completely abolished growth of pancreatic CSC 

xenografts and tumor-initiating potential without induction of additional toxicity [59]. 

SFN was reported to inhibit prostate CSC properties, e.g.,  inhibiting the expression of  

Nanog, SOX2, CXCR4, Jagged1 and notch 1; it also disrupts TRAIL-caused NF-κB 

binding; a combination of SFN and TRAIL effectively suppressed  tumor engraftment 

and tumor growth without obvious adverse effects in vivo [57].   

1.3.2. Cellular Targets of ITCs 

The pleiotropic anticancer effects of SFN and other dietary ITCs are derived from 

their interactions with various cellular targets. The ITC functionality, which is a 

biological-tolerable electrophile in certain dosage range, is capable of conjugating with 

cellular glutathione (GSH), protein thiols and other nucleophilic amino acid residues. 
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These fundamental chemical properties determine the interactions of ITCs with their 

cellular targets , leading to the aforementioned cellular effects [62]. In the following 

section, we focus on the influence of SFN on histone deacetylase (HDAC) and heat shock 

protein 90 (Hsp90). Both HDAC inhibition and Hsp90 disruption are effective ways to 

antagonize AR functions in PCa cells. 

Inhibition of HDACs 

HDAC are a class of enzymes that remove the acetyl group from lysine residues 

of histones or non-histone proteins. HDACs can be classified into four classes: class I 

(HDAC1, HDAC2, HDAC3, and HDAC8), class II (HDAC4, HDAC5, HDAC7, and 

HDAC9 in the IIa subclass, and HDAC6 and HDAC10 in the IIb subclass), class III 

(Sirt1 to Sirt7), and class IV (HDAC11) [63]. Class I, II and IV are zinc dependent 

enzymes. HDACs are abundantly expressed in prostate cancer [64] and play important 

roles in the regulation of the AR [65]. HDAC1 is up-regulated in both androgen sensitive 

and hormone refractory prostate cancer cells, leading to significant enhancement of cell 

proliferation [66]. It has also been reported that HDAC2, HDAC3 and HDAC8 are 

overexpressed in cancer tissues compared to normal epithelium [67]. Up-regulated SIRT1 

expression was found in androgen-refractory PC-3 and DU145 cells compared to 

androgen-sensitive LNCaP cells [68]. HDAC inhibitor (HDACi) LAQ824 were found to 

decrease AR protein levels in PCa cells via inhibition of HDAC6, which causes increased 

proteasomal degradation of AR [69, 70]. Another HDACi SAHA (Figure 5) inhibits AR 

at the transcriptional level to reduce AR mRNA production [71], Consequently, HDACis 

have been clinically tested for the treatment of CRPC. Although multiple HDACis have 

been approved for the treatment of lymphoma and myeloma, e.g. vorinostat (i.e. SAHA) 
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and romidepsin for cutaneous T cell lymphoma, belinostat for peripheral T cell 

lymphoma and panobinostat for multiple myeloma, all the clinical trials of HDACis for 

solid tumors (including prostate cancer) failed due to lack of efficacy and systemic side 

effects (e.g., cardiovascular toxicity). 

The HDAC inhibition activity of SFN was first reported by Myzak et al.: SFN 

dose-dependently (3, 9, 15 µM) increased TOPflash activity which is inversely correlated 

with the HDAC activity. Both global and localized histone acetylation were increased by 

the treatment of SFN. It was also indicated that the cysteine and N-acetylcysteine  

metabolites of  SFN had HDAC inhibition activity while SFN itself and glutathione 

conjugate didn’t [72]. This work proposed a chemistry foundation of ITC-caused HDAC 

inhibition. The similar effect was found in prostate epithelial cell lines BPH-1, LNCaP 

 

Figure 5. The structures of FDA-approved HDAC inhibitors 
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and PC-3, SFN (15µM) decreased HDAC activity in all the three cell lines by 30-40% 

with 50-100% increase in acetylated histone [73].  

HDACi activity of SFN was also demonstrated in vivo. Significant inhibition of 

HDAC activity and increase in acetylated histones H3 and H4 in the colonic mucosa were 

observed when mice were treated with a single oral dose of 10 µmol SFN. Long-term 

dietary treatment increased acetylated histones and p21
WAF1 

in multiple tissues including 

prostate. Tumor multiplicity in Apc
min

 mice was also suppressed by SFN with increased 

acetylated histones in the promoter regions of the P21 and Bax genes [74].  Besides, daily 

consumption of 7.5 μmol per animal of SFN for 21 days suppressed growth of human 

PC-3 cells in male nude mice as well as HDAC activity in xenografts, prostate and 

mononuclear blood cells (MBC) [75]. A single dose of 68g broccoli sprouts inhibited 

HDAC activity in peripheral blood mononuclear cells (PBMC) in human subjects [75]. 

These works demonstrated bioavailability and tissue accumulation of SFN in 

experimental animal models and in human subjects.  

HDAC6 is a zinc-dependent, class-IIb HDAC enzyme and locates in cytoplasm 

due to the presence of nuclear export signals (NES) and serine-glutamine-containing 

tetradecapeptide modules [76]. A portion of HDAC6 physically associates with Hsp90 

and functions as an Hsp90 deacetylase [77], and deacetylated Hsp90 can chaperone and 

stabilize its client proteins [78]. The mechanism of SFN to antagonize AR was proposed 

by Gibbs et al. Their study found that SFN (10-20µM) can inhibit HDAC6 enzymatic 

activity, reduce HDAC6 protein levels and cause hyperacetylation of Hsp90, leading to 

dissociation of AR from Hsp90. The dissociated AR was subjected for proteasomal 

degradation [79] (Figure 6). 
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Direct interactions between SFN and Hsp90 

In addition to inhibiting HDAC6 and causing Hsp90 hyperacetylation, direct 

interactions between SFN with Hsp90 were also reported. As electrophilic compounds, 

ITCs (including SFN) may covalently modify Hsp90 on surface-exposed nucleophilic 

amino acid residues and disrupt its biological functions. By using nuclear magnetic 

resonance spectroscopy and LC-MS peptide mapping methods, SFN (around 15µM) was 

found to be covalently attached to the N-terminal domain of Hsp90 and this modification 

attenuated the interaction of Hsp90 with a co-chaperone Cdc37, which promoted the 

proteasomal degradation of Hsp90 client proteins such as Akt and Cdk4, resulting in cell 

death in a pancreatic cancer model [80]. In another study, an SFN analogue 6-HITC 

(25µM) was incubated with human recombinant Hsp90β. Proteomics analysis showed 

that 6-HITC formed covalent adduct with Cys-521 amino acid residual of Hsp90. 

Interestingly, through a transthiocarbamoylation mechanism, even conjugation with a 

 

Figure 6. SFN attenuate AR signaling via HDAC6 inhibition. 



15 

 

small molecule thiol cannot abrogate the capability of 6-HITC to modify cysteine 

residues of cellular proteins [81]. SFN mimetic, sulphoxythiocarbamates, were also found 

to form cysteine adducts with recombinant Hsp90β, which caused degradation of client 

proteins in MCF-7 cell (RAF1, HER2, CDK1, CHK1, etc.) and inhibited MDA-MB-231 

breast cancer cell proliferation [82]. These results suggest that electrophilic compounds, 

such as ITC, can be used to target the cysteine residues or other nucleophilic amino acid 

residues of Hsp90, drug-protein adducts formation would lead to degradation of client 

proteins and growth inhibition of cancer cell.  
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Chapter 2． Rationale and Experimental Design 

2.1. Rationale 

 Androgen receptor (AR), especially mutated full length AR and truncated AR-Vs, 

are major driving forces of CRPC. An agent that can effectively compete androgen 

binding, meanwhile down-regulating AR/AR-Vs and AR compensatory pathways will 

certainly advance CRPC treatment. In addition to inducing the degradation of full length 

AR, recent study also suggested that disrupting Hsp90 could down-regulate AR-Vs: 

although AR-Vs are not Hsp90 client proteins, the mRNA splicing process could be 

Figure 7. The structures of proposed Enz-ITC hybrids. 
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negatively influenced by heat shock response, a typical cellular adaption to Hsp90 

inhibition [83].   Considering the biological connections of AR and Hsp90 as well as the 

pharmacological properties of enzalutamide (Enz) and dietary ITCs, we have designed a 

class of Enz-SFN hybrid compound (Figure 7) to target AR-Hsp90-HDAC6 complex as 

a way to achieve aforementioned therapeutic goals, i.e. antagonizing AR function and 

simultaneously down-regulating compensatory onco-proteins, such as Akt which are also 

chaperoned by Hsp90. 

 We hypothesized that an Enz-like, high affinity AR ligand could be used as 

vehicle to concentrate ITC components to AR-overexpressing CRPC tumors and then 

intracellularly deliver ITC to AR-Hsp90-HDAC6 complex.  The locally concentrated ITC 

could more efficiently disrupt Hsp90 by either inhibiting a pool of AR-associated 

HDAC6 or by covalently modifying Hsp90, which further triggers Hsp90 dysfunction 

and degradation of AR and other oncogenic client proteins, such as HDAC6 and Akt 

(Figure 8). The goal of this thesis is to establish an efficient synthetic route toward AR 

 

Figure 8. Proposed mechanism of AR-directed HDAC6/Hsp90 inhibition by Enz-

ITCs. 
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Figure 9. The chemical structures of synthetic targets. 
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ligand (Enz)-ITC hybrids and preliminarily investigate their effects on the growth and the 

function of AR, such as transcriptional activity and expression levels in representative 

prostate cancer cell lines. 

2.2. Experimental Design 

2.2.1. Chemistry 

Previous SAR [84] and our molecular docking of Enz to AR suggested that the 

trifluoromethyl benzonitrile ring points inside the AR binding cavity in LBD and cyano 

group is essential for AR binding by forming hydrogen bonds (H-bonds) with Arg752 

and Gln711. Thiohydantoin ring of Enz is in its optimized form from an extensive SAR 

study [29] and was kept intact in our molecular design. This conformationally restricted 

ring forces the rest of the molecule extend outside the AR pocket and point to a “H11 

pocket”, a region near the C terminus of helix 11 and the loop connecting helices 11 and 

12 [36]. Based on this predicted AR binding mode, we decided to introduce ITC group on 

fluorobenzene ring which points toward the opening of AR binding pocket where enough 

space is available to accommodate ITC moiety. We also replaced fluorobenzene ring of 

Enz with a pyridine ring, supported by the lowered cLogP values (6.29 of compound 12b 

vs 7.93 of compound 30, Figure 9), we hypothesized that this modification would 

improve water solubility of Enz-ITC hybrid drug and would not interfere AR binding.  

 The chemical reactivity of ITC is a critical factor to influence its biological effects. 

A general observation is that the chemical reactivity of an arylalkyl ITC is reduced with 

increasing the length of carbon chain, in another word,  an arylalkyl ITC with a relative 

longer chain (up to six methylene units) is more stable and may achieve better in vitro 
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potency/in vivo efficacy for chemoprevention or anticancer effects [85]. To modulate ITC 

in hybrid drugs, we designed two Enz-ITC hybrids with four-carbon (compound 12a) and 

six-carbon chain (compound 12b), respectively (Figure 9). Since we hypothesized that 

the cellular effects of ITC could be locally directed to Hsp90-AR complex by an AR 

ligand, compound 19 which is a close structural analogue of 12b (C6-ITC) was designed 

to investigate the directing effect of AR. The cyano (CN) group, which forms H-bond 

with AR, was converted to t-Butyl amide to eliminate AR binding property from 

compound 12b. It worth to mention that 19 and 12b have similar LogP values (6.37 and 

6.39, respectively), suggesting similar lipophilicity and potentially close intracellular 

accumulation of these two compounds. If AR affinity plays a role in the cellular effect of 

12b (C6-ITC), 12b should be more effectively disrupt Hsp90 and causes AR degradation 

at a lower concentration compared to 19 and SFN. The comparison of 12b with a 

synthetic intermediate 11b (C6-N3) will also be made using kb2-cell-based ARE 

luciferase assay. 12b and 11b has identical chemical structure except the ITC (N=C=S) 

moiety in 12b and chemically inert azide group (N=N=N) in 11b. We envisioned that 

11b is an ideal 12b analogue to study the AR antagonist activity of the chemical scaffold 

shared by 12b and 11b. Compound 11b is expected to display Enz-comparable AR 

antagonist activity in ARE-luciferase assay. 

 The N-acetyl cysteine (NAC) conjugates are the ultimate metabolites of many 

dietary ITCs. It should be noted that ITC-NAC conjugates are still biologically active, 

comparable to parental ITCs [86, 87]. NAC conjugates could be seen as a carrier of ITC 

in systemic circulation. At least three mechanisms have been proposed to understand the 

bio-effectiveness of ITC-NAC: 1) ITC-NAC and parental ITC forms equilibrium in 
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biological matrix [88], the NAC conjugate acts as a pool to release ITC; 2) The NAC 

conjugate directly acts as a HDAC inhibitor, in contrast to parental compound [72]; and 3) 

ITC-NAC directly modify protein thiols via transthiocarbamoylation reaction [81].  

Based on these reported mechanisms, we also designed and synthesized compound 13, 

the NAC conjugate of 12. In our opinion, there are at least three potential advantages for 

13: 1) increased water solubility; 2) direct HDAC inhibition; and 3) reduced plasma 

protein binding in circulation which may improve in vivo efficacy.  

As a moderate electrophile, the interactions between ITC and cancer cells are 

complicated, multiple cellular targets could be hit. Although this might be a reason for 

 

Figure 10. The chemical structures of proposed Enz-HDACi hybrid and its prodrug. 
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ITCs (e.g., SFN) to display broad anticancer effects in various cancer types (including 

PCa), the lack of specificity of ITC may lead to moderate potency and undesired side 

effects if used at high dose range. In this thesis, we proposed to use an Enz-derived AR 

ligand to localize ITC’s effects at AR-Hsp90-HDAC6 complex as way to improve the 

potency and specificity of ITC. From this angle, another relevant but different strategy to 

target AR-Hsp90-HDAC6 axis is to use a conventional HDACi pharmacophore instead 

of ITC. The comparisons between the two classes of compounds, Enz-ITC vs. Enz-

HDACi on AR degradation, Hsp90 disruption and growth inhibition of PCa cells, will 

enable the mechanistic dissection of the cellular actions of Enz-ITC series. To 

preliminarily explore Enz-HDACi class, we designed compound 1005 and its carbamate 

prodrug 1005pro (29) (Figure 10). A three-carbon cinnamyl linker was used to link the 

Enz moiety with hydroxamic acid, a typical and potent zinc binding group for HDAC 

inhibition.  The cinnamyl linker is frequently used in the design of HDACis, as seen in 

FDA-approved panobinstat and belinostat. Because hydroxamic acid is known to be 

metabolic labile due to phase 2 conjugation and has poor permeability to penetrate solid 

tumor [89], we also converted 1005 to a carbamate prodrug according to a published 

procedure [90] with an intention to avoid these liabilities. The carbamate bond is 

expected to be hydrolyzed by esterases inside the cell to release 1005. The interactions of 

1005 with AR and HDAC6 are supported by our molecular docking results. 

2.2.2. Biological Evaluation 

To demonstrate AR directing hypothesis, we need to firstly investigate if the 

hybrid scaffold keeps the AR affinity as well as AR antagonistic activity. We planned to 

use dihydrotestosterone (DHT)-stimulated LNCaP cell growth inhibition and MDA-Kb2 
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cell based ARE luciferase assays for this purpose. The growth of androgen-sensitive PCa 

cell line, e.g. LNCaP, is stimulated by androgen such as DHT, and AR antagonist (e.g., 

Enz) would block such growth stimulation. If the Enz-ITC hydroxyl analogue 9 with no 

ITC activity could reverse the stimulation, then the result would partially supports the AR 

antagonist property of the hybrid. A more direct ARE-luciferase assay was utilized to 

characterize the interactions of a small molecule ligand with AR. MDA-kb2 cell line, a 

breast cancer MDA-MD-453 cell line derivative, expresses high levels of AR and is 

permanently transfected with an androgen-responsive luciferase reporter plasmid. It 

responses to androgen and produce luminescence after incubation with a luciferase 

substrate [91]. By measuring the luciferase activity of drug-treated cells in the presence 

of DHT, we could clearly know the influence of drug on the transcriptional activity of 

AR. We intend to use ARE luciferase activity as a readout of the interactions between an 

AR ligand and the receptor. A high-affinity AR antagonist is expected to more effectively 

inhibit luciferase activity compared to a low-affinity antagonist.  

By comparing with SFN and analogues without AR binding, we also investigated 

if the proposed Enz-ITC hybrid could more effectively cause degradation of Hsp90 

clients, such as AR and Akt in AR+ LNCaP cells. Western blot analysis was performed 

to determine the change of protein levels for AR and Akt. In addition to Hsp90 clients, 

because ITCs has been reported to be cellular HDACis [44], acetylated histone 3 (Ac-H3), 

acetylated histone 4 (Ac-H4) and acetylated tubulin (Ac-Tub) which are markers 

representing globe HDACi activity in nuclear and cytosol respectively, was examined via 

western blot analysis and was correlated with the cellular protein levels of AR.  
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Then overall anticancer effects of Enz-ITC hybrid were tested on both androgen-

sensitive (LNCaP) and androgen-insensitive (22Rv1 and PC-3) PCa cell lines using MTT 

assay and compared with those of SFN and Enz, the parental compounds. Among these 

cell lines, LNCaP and 22Rv1, both express full length, mutated AR, while 22Rv1 also 

express AR splice variants (e.g., AR-V7); androgen-insensitive PC-3 doesn’t express AR 

[92]. 

In addition to PCa, Enz has the potential to be used for breast cancer treatment 

[93]. As a starting point to test tolerability of Enz-ITCs in noncancerous cells, we chose a 

noncancerous breast cancer cell line MCF-10A as cell culture model. Comparisons were 

made between Enz-ITCs and SFN in MCF-10A cells using MTT assay.  

2.2.3. Molecular Docking of Enz-ITC with AR  

Molecular docking is an important methodology in modern drug discovery to 

understand the interactions of a ligand with its protein target. We used molecular docking 

to examine the AR binding of proposed hybrid. 

 AR belongs to the nuclear receptors superfamily and consists of five domains: N-

terminal regulatory domain contains the activation function 1 (AF-1) which functions 

independent of ligand biding. DNA-binding domain (DBD) binds to specific androgen 

response elements (ARE) on DNA to transcript target genes upon hormone activation. 

Ligand binding domain (LBD) is responsible for hormone binding, dimerization process 

and includes a ligand dependent transcriptional activity (AF-2). Hinge region is a flexible 

domain that connects the DBD with the LBD which includes a part of the nuclear 

localization signal [94, 95]. Androgen binding activates AR and results in a 

conformational change of the receptor which leads to dissociation of AR from cytosolic 
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heat shock proteins, dimerization and translocation to nucleus. Then DBD interacts with 

ARE as a homodimer to recruit transcription machinery and transcript AR-regulated 

target genes [95]. Revealed by X-ray diffraction structures of several nuclear receptors 

complexed with their antagonists, the receptor antagonism is caused by antagonist-

induced displacement of helix 12 from its hormone-bound configuration and distortion of 

coactivator binding site [84].  It has been suggested that nuclear receptor family shares 

similar structure, function and mechanism, however, the conformation of antagonistic AR 

has not been experimentally resolved. Due to the distinct conformational difference 

between AR agonistic and antagonistic forms, traditional molecular modeling method 

such as “flexible ligand-rigid protein” and “induced fit docking” are not suitable for the 

study of the interactions of AR with a given antagonist. Although molecular dynamic 

(MD) simulation is theoretically competent, dramatic AR conformational transformation 

between agonistic and antagonistic forms make the simulation extremely time and 

computational power consuming.   

 Homology modeling is a method that could achieve a balance between 

computational power and precise result [96]. Homology modeling technique constructs 

an atomic-resolution model of target protein with known amino acid sequence based on 

the three-dimensional structure of homologous protein (template). This method is based 

on the observation that proteins with similar sequences usually possess similar 3D 

structures because protein tertiary structure is better conserved than amino acid sequence.  

Wilkinson’s study [97] suggested that glucocorticoid receptor (GR) and 

mineralocorticoid receptor (MR) are more suitable 3D templates for AR. However, the 

structure of MR in antagonist form is not currently available. Combining with the 
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experience of Pepe’s group [96], we decided to use antagonistic GR structure (PDB code: 

1NHZ) [98] ) as the template for homology modeling. The molecular docking was 

performed by using Glide software (trial version).  
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Chapter 3. Result and Discussion 

3.1. Chemistry 

3.1.1. Synthesis of Enz-ITC (Compound 13) 

The synthesis of Enz-ITC hybrid is described in . Four- or six-carbon chain was 

first introduced to pyridine ring through Sonogashira coupling to generate 3. To prevent 

the potential interferences in following steps, the hydroxyl group of 3 was protected with 

methoxymethyl acetal (MOM) protecting group. Then nitro group and alkyne were 

reduced through catalytic hydrogenation to afford aromatic amine 5 which was alkylated 

by 6 in the presence of sodium acetate in ethanol. Because of the low reactivity of the 

aromatic amine, the alkylation reaction was refluxed for 10 days to achieve a reasonable 

yield (73%). Several methods were reported for the synthesis of thiohydantoin ring [99-

101], here we used 21 which was prepared by mixing 20 with thiophosgene to react with 

7 in DMSO at 80°C to generate the cyclization product 8 with good yield (90%). MOM 

protecting group was removed by using hydrochloric acid, then the free hydroxyl group 

was activated to form methanesulfonate 10. Azide moiety was then installed by 

substitution of the highly active methanesulfonyl group with sodium azide to give 11.  

The azide intermediate 11 was converted to ITC via a one-pot two-step procedure [102]:  

triphenylphosphine (PPh3) reacted with the azide to generate phosphazide or 

iminophosphorane intermediates which  further reacted with carbon disulfide (in excess) 

to afford Enz-ITC 12. Conjugation of 12b with NAC in the presence of sodium 

bicarbonate afforded the NAC conjugate 13.  
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Purification of NAC conjugate 13 was not straightforward. Although the 

Scheme 1. Synthesis of Enz-ITC hybrid 

 



29 

 

conjugation reaction was smooth and clean when NAC was used in excess, it was 

difficult to separate 13 from remained NAC by using either column chromatography or 

preparative TLC. Rf values of NAC and 13 are extremely close on the TLC plate with 

about 80% overlaps. We could not get a clean NMR spectrum even after repetitive 

purifications.  Because of their differences in water solubility, we also dissolved crude 13 

in ethyl acetate or DCM, tried to wash NAC away with water.  The procedure was not 

successful at the beginning: the water and organic phases couldn’t be separated during 

work up despite using different organic phases and long hours of standing. This 

inconvenience was a reflection that 13 might function as an emulsifier due to the 

presence of both lipophilic AR ligand and hydrophilic NAC moieties in the same 

molecule.  To our delight, an unexpected separation was achieved after storage of the 

washing mixture at -20°C overnight. The water phase containing NAC was frozen and 

was removed by pouring organic phase to another flask to evaporate. 13 with desirable 

purity was finally obtained for subsequent biological studies.  

In order to study whether AR affinity plays a role in the biological effects of Enz-

ITC, we proposed to prepare compound 19 as a critical control (Scheme 2). To 

synthesize this molecule, cyano group of intermediate 8b need to be converted to tert-

Butyl amide analogue 19 by tert-Butyl acetate in the presence of sulfuric acid. We 

expected that the acidic condition would also simultaneously remove the acid-labile 

MOM protecting group. Indeed, as shown in proton NMR spectrum, single peak of tert-

Butyl group (δ 1.43, s, 9H, three methyl groups) emerged accompanied by the loss of 

MOM peaks (δ 4.60, s, 2H; 3.34, s, 3H). However, it came to our attention that an extra 

acetyl peak (3H) at 2.00ppm was observed in proton NMR, which made us suspect that 
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the primary alcohol of expected 16 was acetylated by tert-Butyl acetate in an acidic 

Scheme 2. Synthesis of Enz-ITC amide analogue 19 
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reaction mixture. This speculation was further confirmed by 
13

C and high resolution MS 

analysis and we designated the reaction product as acetate 15. Hydrolysis of 15 by 

sulfuric acid in methanol resulted in the ‘true’ hydroxyl intermediate 16. By following the 

same procedures as described for the synthesis of 13, 19 was made as a model compound 

Scheme 3. Synthesis of Enz-HDACi hybrid 
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with ITC group and reduced AR affinity.  

3.1.2. Synthesis of Enz-HDACi 

Synthetic strategy for Enz-HDACi hybrid 1005 and its prodrug 1005pro (29) was 

similar to that of Enz-ITC hybrid as depicted in . We first did the alkylation reaction to 

generate 23 followed by the iodination at the para site of aniline which enabled the 

introduction of linker to construct HDACi. The cyclization reaction was performed as 

described previously to give thiohydantoin intermediate 25. Then a three-carbon chain 

was introduced through Heck reaction by reacting compound 25 with ethyl acrylate in the 

presence of palladium(II) acetate and tri(o-tolyl)phosphine. Acidic hydrolysis of ester 26 

using a mixture of aqueous hydrochloric acid (37% v/v) and acetonitrile afforded 

carboxylic acid 27 which was coupled with tetrahydropyran (THP)-protected hydroxyl 

amine to generate intermediate 28. Final compound 1005 was obtained by removing THP  

using TFA in methanol. Enz-HDACi 1005 was further converted to carbamate prodrug 

29 according to a published procedure by reacting 1005 with carbonyldiimidazole (CDI) 

and isopropylamine [90]. 

3.2. Enz-ITC chemical scaffold inhibits dihydrotestosterone (DHT)-

stimulated LNCaP cell growth 

To test our hypothesis, we first need to demonstrate that the synthesized Enz-

related chemical scaffolds retain AR binding/AR antagonist activity. One convenient way 

for this purpose is to test whether a compound can block DHT-stimulated LNCaP cell 

growth. DHT is a potent endogenous androgen and the growth of AR+ LNCaP cell is 

sensitive to the stimulation of DHT [103]. Compound 9b (C6-OH) was chosen as a 
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representative Enz-ITC scaffold to exclude the potential interference of ITC on the 

viability of cells. LNCaP cells were seeded in RPMI1640 medium supplemented with 10% 

steroid-free charcoal-stripped serum. Measured by using MTT assay, DHT (1nM) 

significantly stimulated cell growth (96h), and this enhanced growth was completely 

inhibited by the treatment of C6-OH (10µM or 20µM) (Figure 11). Enz (10µM) was 

used as the positive control. When cells were grown in charcoal-stripped media without 

DHT, compared to DMSO control, Enz (10µM) or C6-OH (10µM, 20µM) neither 

 

Figure 11. Enz-ITC chemical scaffold inhibied dihydrotestosterone (DHT)-stimulated 

LNCaP cell growth. *** P < 0.0001 
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stimulated cell growth nor reduced the viability of LNCaP cells. These results suggest 

that C6-ITC scaffold is not cytotoxic, the drug-caused counteraction to DHT was due to 

AR antagonist activity of the new chemical scaffold. 

3.3. Enz-ITC scaffold inhibits AR transcriptional activity 

Results from DHT growth stimulation assay could only indirectly demonstrate 

AR antagonistic binding of C6-OH. To directly measure the influence of Enz-ITC 

scaffold on AR transcriptional activity, we performed ARE luciferase assay in MDA-kb2 

Cells. MDA-kb2 cell line was derived from the breast cancer cell line MDA-MD-453 

which was stably transfected with an androgen-responsive luciferase reporter plasmid 

driven by the mouse mammary tumor virus (MMTV) promoter. MDA-MD-453 and 

MDA-kb2 cell lines express high levels of AR and the androgen responsive feature of 

MMTV promoter has  been well characterized [91]. When DHT binds to AR, the 

liganded AR can further activate the MMTV.neo.luc response element which leads to 

induction of luciferase expression. Since AR antagonist competes with DHT for AR 

binding, the activation of AR by DHT would be diminished in the presence of an 

antagonist, which silences luciferase expression. After adding luciferase substrate, 

fluorescence is generated and the intensity is proportional to the extent of DHT binding. 

Within the same series of antagonist, since they have similar interaction mode with AR, 

luciferase activity can be correlated with the binding affinity of AR: a high-affinity 

antagonist can more effectively inhibit DHT-induced luciferase activity compared to a 

low-affinity analogue. 

In our experiment, DHT treatment (1nM) significantly increased luciferase 

activity (Figure 12A). Enz, as the positive control, inhibited luciferase activity at all 
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concentrations (1-10µM). All the compounds with Enz-ITC scaffold decreased luciferase 

activity in a dose-dependent fashion. 9b (C6-OH), although was not as good as Enz at 

 

Figure 12. Enz-ITC scaffold antagonistically binds to AR (A).  Treatment with 

compounds alone do not reduce luciferase activity (B). *** P < 0.0002 
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1µM, it was comparable to Enz at higher concentrations (2.5-10µM). 9a (C4-OH) which 

has a shorter linker was inferior to C6-OH, suggesting that the length of carbon chain 

influences AR binding. However, two azide analogues C6-N3 and C4-N3 had almost 

identical potency in this assay and were similar to that of C6-OH. C6-ITC (12b) and the 

conjugate C6-ITC-NAC (13) has similar pattern as to that of C6-OH, less effective at 

1µM but comparable to Enz at higher concentrations. Isothiocyanate derivatives, SFN 

and PEITC-NAC which is a NAC conjugate of PEITC, didn’t decrease luciferase activity 

due to lack of AR binding moiety. This also demonstrates that the reduced luciferase 

activity is only related with Enz moiety at the tested concentration range ((1-10µM) and 

 

Figure 13. Superposition of AR and GR in agonistic form. Two entities have very 

similar 3-D structure. 
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time frame (24h). Amide analogues 14 didn’t have AR binding as we expected maybe 

because of missing important H-bond interaction on cyano group. No luciferase activity 

was either reduced or induced when treated with compounds alone at full range of 

concentrations, (Figure 12B) indicating reduced luciferase activity came from the 

inhibition of DHT binding to AR. 

3.4. Molecular Docking of Enz-ITC to AR 

Molecular docking studies were performed to better understand the interactions of 

Enz-ITC with AR.   

 

Figure 14. Superposition of GR in agonistic and antagonistic form. Two entities have 

identical structure except for displaced helix 12 in antagonistic form. 
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By examining the structures of AR and GR in antagonistic form, we found that 

after superposition, the two entities have very similar 3-D structures (Figure 13) which 

supports the use of GR as a suitable homology modeling template for AR. Besides, 

agonistic and antagonistic form of GR had identical 3D structure except for helix 12 

which is pushed away from binding pocket in the antagonist mode (Figure 14), this result 

is consistent with the general antagonistic mechanism of nuclear receptor. When 

superposing agonistic AR (complexed with DHT) (PDB code: 2AMB) [104] with AR in 

antagonistic form obtained from homology modeling, two structures overlapped very 

well and the displaced helix 12 of homologous AR created space to accommodate larger 

 

Figure 15. Superposition of agonistic AR and homologous AR. Helix 12 in 

homologous AR is pushed away from binding pocket to generate antagonistic form of 

AR. 
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antagonist (Figure 15). And all these computational models built the foundation for 

reliable docking studies. 

The surface of binding cavity of agonistic AR with naive ligand (DHT) as 

depicted in (Figure 16) indicates a closed and very limited space for ligand binding. Four 

new pockets were identified in new homologous model (Figure 17 left), two opened 

toward back of helix 11 (not shown in figure), one squeezed into the space between helix 

11 and helix 12 and caused relaxation of helix 11 to form the pocket. Another pocket 

opened toward the space where were originally occupied by helix 12 from agonistic 

conformation (Figure 17 right). 

 

Figure 16. Surface of binding cavity of native ligand (DHT). Space in binding cavity 

is closed and limited. 
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Docking results indicate C6-ITC had the similar binding mode and position to that 

of Enz (Figure 18) in which cyano group on both C6-ITC and Enz formed two H-bond 

with Gln711 and Arg752. This result emphasized the importance of cyano group in AR 

binding of Enz scaffold and might explain why 14 lost its binding ability to AR. Besides, 

Pi-Pi interactions were formed between Phe764 and benzonitrile rings on both C6-ITC 

and Enz. Enz formed an extra H-bond with Phe876 through the hydrogen on amide group. 

New pocket formed by relaxation of helix 11 provided the space for accommodation of 

extended part of Enz as depicted in Figure 17. In conclusion, Enz-ITC scaffold kept the 

antagonistic AR binding activity and potentially had the similar binding mode to that of 

Enz. 

3.5. Enz-ITC hybrid inhibits HDAC and causes downregulation of AR 

 

Figure 17. New binding pockets in homologous AR. Two open toward back of helix 

11 (not shown in figure), one squeezes into the space between helix 11 and helix 12 

(left). Another one opens toward the space (indicated by yellow circle) where were 

originally occupied by helix 12 from agonistic conformation (right). 
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We performed western blot analysis to investigate if the hybrid keeps the HDAC 

inhibition and AR degradation activity of ITC. Acetyl-histone H3 (Ac-H3) and acetyl-

histone H4 (Ac-H4) are associated with HDAC activity in the nucleus, while acetyl-α-

tubulin (Ac-Tub) level is regulated by HDAC6 in the cytosol. Drug-induced HDAC 

inhibition should cause increased globe acetylation of histones H3 and H4 and tubulin. 

As shown in Figure 19., SAHA, as the positive control significantly increased acetylated 

protein levels in a dose-dependent manner. C6-ITC also up-regulated Ac-H3 and Ac-tub 

levels at 20µM, but had no effect on the level for Ac-H4. The C6-ITC-NAC showed 

similar effects as C6-ITC but to a much lesser extent in protein acetylation. SFN also 

increased Ac-tub level at 20µM but its nuclear effect was very weak.  

 

Figure 18. Docking of Enzalutamide and C6-ITC in homologous AR. Two molecules 

have similar binding mode. Both form two H-bonds with AR (Gln711 and Arg752) 

via cyano group and Pi-Pi interaction with Phe764. Enzalutamide forms extra H-bond 

with Phe876. 
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AR level was significantly down-regulated by C6-ITC even at 5µM, in contrast 

SFN was not effective at this concentration. Although C6-ITC-NAC was inferior 

compared to C6-ITC, it still outperformed SFN which only decreased AR level at high 

concentration (20µM). AKT is an Hsp90 client protein and inhibition of Hsp90 leads to 

degradation of Akt [105]. C6-ITC and C6-ITC-NAC decreased Akt level in a dose-

dependent fashion, suggesting that Enz-ITC hybrid disrupted the function of Hsp90. It is 

worth to mention that PI3K/Akt pathway is up-regulated in CRPC and is involved in 

many oncogenic processes. Previous study suggested that the AR and PI3K/AKT 

pathways cross-regulate each other by reciprocal feedback which means inhibition of one 

activates the other, thus maintaining tumor cell survival [26]. Recently, it was reported 

that combination treatment with AZD5363 (an AKT inhibitor) and Enz significantly 

delayed development of Enz resistance via synergistic increases of apoptosis and cell 

 

Figure 19. Enz-ITC hybrid inhibits HDAC and causes downregulation of AR. 
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cycle arrest [28]. Thus, effectively down-regulating both AR and Akt may indicate a 

potential therapeutic advantage which needs to be further verified in other PCa models. 

Whether C6-ITC-caused AR degradation is relevant to AR binding will be further studied 

via the side by side comparison of C6-ITC and its analogue 19 which has just been 

synthesized.  Molecular docking study indicated that cysteine conjugate of C6-ITC has 

similar binding mode with native ligand SAHA and can form four extra H-bond with 

homologous HDAC6 (Figure 20), suggesting the possibility of HDAC6 inhibition 

through forming ITC-Cys conjugate. 

3.6. Enz-ITC inhibits proliferation in both androgen sensitive and insensitive 

prostate cancer cell lines 

We performed MTT assays to test overall antiproliferation activity of Enz-ITC 

 

Figure 20. Binding mode of cysteine conjugate of C6-ITC with HDAC6. 
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hybrids. As indicated in Table 1, all Enz-ITC hybrids were more potent than SFN in all 

the tested cell lines (LNCaP, 22Rv1 and PC-3) and C6-ITC (12b) was more active than 

C4-ITC (12a). Although NAC conjugation reduced its antiproliferation activity, C6-NAC 

(13) was still more effective than SFN. When cells were grown in full medium, as 

expected, androgen insensitive cell lines PC-3 and 22Rv1 showed no response to Enz. 

Because full growth media contains various steroid, such as estrogens that can also 

stimulate LNCaP cells [106], Enz only showed weak growth inhibition effect to LNCaP 

cell under this condition, e.g.,  Enz suppressed growth about 20% at 5μM (Figure 21). 

Because no differences were seen between AR positive and AR negative cell lines (Table 

1), the results from MTT assay seemed to be dominated by the “ITC” group. In order to 

highlight the action of Enz moiety in hybrid, other AR positive, Enz-sensitive CRPC cell 

lines, such as VCaP cells, need to be tested in future experiments.  Results from 

Table 1. In Vitro Inhibitory Activity (IC50). 

Compd. 

IC50(μM) 

LNCaP PC-3 22Rv1 

C6-ITC 4.56 ± 0.34 4.38 ± 0.31 4.59 ± 0.15  

C4-ITC 8.27 ± 0.78 7.34  ± 0.36 8.18 ± 1.12 

C6-NAC 8.82 ± 1.34 7.43 ± 0.52 b 

SFN 19.69 ± 1.47 17.74 ± 2.21 b 

 

a 
Values are the mean of a minimum of three experiments.  

b 
Not tested 
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combination treatment showed that Enz and ITC had no synergistic effect. Interestingly, 

6-ITC treatment was superior than the combination at the same concentration in all the 

three tested cell lines (Figure 21). Increased intracellular concentration might be partially 

responsible for this “conjugation effects”, and whether AR binding also plays a role in 

AR(+) cells, will be further investigated in VCaP cell through the comparison between 

compound 13 (C6-ITC) and its analogue 19 which has reduced AR affinity. 

3.7. Enz-ITC hybrids are more tolerable in MCF-10A cells than SFN 

Figure 21. Comparation of combination treatment with Enz and SFN with Enz-ITC 

hybird in different prostate cancer cell lines. * P < 0.05, ** P < 0.01, *** P < 0.005 
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Our previous experiments have demonstrated the effectiveness of Enz-ITC hybrid 

in PCa cells. The effects on non-cancerous cells is another very important property of an 

anti-cancer agent. Normal breast cell line MCF-10A was chosen to be tested considering 

the promising potential of Enz and its analogues for breast cancer treatment. As shown in 

Figure 22, at concentrations that induce effective AR down-regulation, C6-ITC (12b, 

5µM) and C6-ITC-NAC (13, 10µM) showed certain selectivity between MCF-10A and 

PCa cells. C6-ITC-NAC (13) was also more tolerable than SFN in MCF-10A cells. 

3.8. Enz-HDACi inhibits proliferation in both androgen sensitive and 

insensitive cell lines 

 

Figure 22. Treatment of normal bresat cell (MCF-10A) and PCa cells (LNCaP, PC-3 

and 22Rv1) with Enz-ITC hybrids and SFN. 
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HDAC is one of the potential cellular targets of ITCs. To dissect the anti-PCa 

mechanisms of Enz-ITCs, we synthesized Enz-HDACi to further evaluate if AR can 

direct HDACi to Hsp90 complex.  1005 and its amide prodrug 29 (1005pro) were 

synthesized and accessed in PCa cells by using MTT assay. The results (Figure 23) 

indicate that 1005 has better inhibition activity than C6-ITC and is more potent in 

androgen sensitive cell line, potentially due to AR directing effect. Prodrug 29 (1005pro) 

retains the activity against PCa cells while slightly less effective than the parental drug. 

 

Figure 23. Enz-HDACi inhibits proliferation in both androgen sensitive and 

insensitive cell lines 
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3.9. Summary and future direction 

 In this project, we’ve successfully synthesized two Enz-ITC hybrids and NAC 

prodrug as well as a series of relevant analogues to illustrate the mechanism of bioactivity 

and SAR. MTT and ARE-luciferase assays indicate that the chemical scaffold of Enz-

ITC retains AR antagonist activity. Enz-ITC hybrid induces AR down-regulation more 

effectively than SFN potentially due to HDAC inhibition and/or Hsp90 disruption. In 

addition, the hybrids inhibit proliferation of both androgen sensitive (LNCaP) and 

insensitive cell lines (22Rv1, PC-3). No synergistic antitumor effect is observed in the 

combination of Enz and SFN which is less effective than the hybrids determine by MTT 

assays in the tested cell lines. Enz-ITC-NAC conjugate were more tolerable in MCF-10A 

cells than SFN. We’ve also synthesized Enz-HDACi hybrid and its prodrug to make 

comparison with Enz-ITC hybrids and our MTT results suggest that both compounds 

have anti-proliferation activity against androgen sensitive and insensitive prostate cancer 

cell lines. 

 To investigate if AR binding plays a role in hybrid drug-induced AR down-

regulation and growth suppression, Enz-ITC and Enz-HDACi will be compared with 

their counterparts with reduced AR affinity, respectively. In addition, to understand 

chemical reactivity of ITC hybrids, analysis of ITC conjugation with GSH and ITC-NAC 

decomposition to release ITC will be performed by using HPLC. Since inhibition of both 

prostate and breast cancer stem cells by SFN has been reported [60, 107], it is interesting 

to test whether Enz-ITCs has similar effects against prostate and/or breast cancer stem 

cells.  
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Chapter 4. Experimental 

4.1. Chemistry 

All reagents and solvents were purchased from commercial suppliers and used 

without further purification unless otherwise stated. All of the reported yields are for 

isolated products and are not optimized. The reactions were monitored by thin layer 

chromatography (TLC) on precoated silica gel UV254 plates (SORBTECH) and 

visualized under UV light or after staining by dip into a solution of phosphomolybdic 

acid or Potassium permanganate and then heating on a hot plate. All NMR spectra were 

obtained using Varian INOVA 600 MHz NMR spectrometer. Chemical shifts are 

expressed in ppm as a δ value, and singlet (s), doublet (d), triplet (t), quartet (q), multiplet 

(m) and broad singlet (br s) are used as abbreviations.  

4-(5-Nitropyridin-2-yl)but-3-yn-1-ol (3a). In argon atmosphere, to a mixure of 

2-bromo-5-nitropyridine (10.0g, 50mmol) and 3-butyn-1-ol (4.55g, 65mmol) in 

acetonitrile were added copper iodine (190mg, 1mmol), bis(triphenylphosphine) 

palladium(II) chloride (175mg, 0.25mmol) and TEA(34mL, 250mmol) slowly. The 

reaction was stirred at room temperature overnight. Solvent was removed under reduced 

pressure. The crude product was purified by flash chromatography (Hex/EA: 1:1) to 

afforded brown oil (8.34g, 87%). 
1
H NMR (600 MHz, CDCl3) δ 9.33 (d, J = 3.0 Hz, 1H), 

8.42 (dd, J = 8.4 and 2.4 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 3.88 (m, 2H), 2.76 (t, J = 6 

Hz, 2H). 

6-(5-Nitropyridin-2-yl)hex-5-yn-1-ol (3b). In argon atmosphere, to a mixture of 

2-bromo-5-nitropyridine (13.2g, 65mmol) and 5-hexyn-1-ol (4.9g, 50mmol) in 

acetonitrile (70mL) were added copper(I) iodide (190mg, 1mmol), 
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bis(triphenylphosphine) palladium(II) chloride (175mg, 0.25mmol) and TEA (34mL, 

250mmol) slowly at 0°C. The reaction was stirred at room temperature for 3hrs. Solvent 

was removed under reduced pressure, mixture was diluted with EtOAc, the organic phase 

was washed with water and brine, dried over anhydrous sodium sulfate and concentrated. 

The crude product was purified by flash chromatography (Hex:EA=2:1) to afford brown 

oil (10.5g, 95%). 
1
H NMR (600 MHz, CDCl3) δ 9.34 (d, J = 2.4 Hz, 1H), 8.40 (dd, J = 

8.4 and 3 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 3.70 (t, J = 12 Hz, 2H), 2.54 (t, J = 12 Hz, 

2H), 1.77-1.72 (m, 4H). 
13

C NMR (150 MHz, CDCl3) δ 149.10, 145.27, 142.41, 131.26, 

126.74, 97.12, 62.19, 31.79, 24.38, 19.36. 

2-(4-(Methoxymethoxy)but-1-yn-1-yl)-5-nitropyridine (4a). In argon 

atmosphere, to a solution of 3a (8.34g, 43.4mmol) in THF(80mL) were added DIPEA 

(18mL, 108.6mmol), then bromo(methoxy)methane (7.2mL, 90%, 78mmol) was added 

slowly. Reaction was stirred at room temperature overnight. Precipitate was filtered, the 

solvent was evaporated away under reduced pressure, mixture was diluted with EtOAc, 

the organic phase wash by water and brine. The crude product was purified by flash 

chromatography (Hex/EA: 6:1→4:1) to afford orange solid (6.3g, 61%). 
1
H NMR (600 

MHz, CDCl3) δ 9.73 (s, 1H), 8.81 (s, 1H), 7.94 (s, 1H), 5.06 (s, 2H), 4.17 (d, J = 5.4Hz, 

2H), 3.77 (s, 3H), 3.19 (d, J = 5.4 Hz, 2H). 

2-(6-(Methoxymethoxy)hex-1-yn-1-yl)-5-nitropyridine (4b). In argon 

atmosphere, to a mixture of 3b (10.5g, 47.7mmol) in THF (80mL) were added DIPEA 

(12.5mL, 75.7mmol), then bromo(methoxy)methane (10.5g, 90%, 78mmol) was added 

dropwise at 0°C. Reaction was stirred at room temperature for 6hrs. Solvent was removed 

under reduced pressure, mixture was diluted with EtOAc, the organic phase was washed 
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with water and brine, dried over anhydrous sodium sulfate and concentrated. The crude 

product was purified by flash chromatography (Hex:EA=4:1) to afford brown oil (10.69g, 

85%). 
1
H NMR (600 Mhz, CDCl3) δ 9.34 (d, J = 2.4 Hz, 1H), 8.40 (dd, J = 8.4 and 2.4Hz, 

1H), 7.51 (d, J = 8.4 Hz, 1H), 3.70 (t, J = 12 Hz, 2H), 2.54 (t, J = 12 Hz, 2H), 1.77-1.72 

(m, 4H). 
13

C NMR (150 MHz, CDCl3) δ 149.10, 145.27, 142.41, 131.26, 126.74, 97.18, 

80.04, 62.19, 31.79, 24.38, 19.36. 

6-(4-(Methoxymethoxy)butyl)pyridin-3-amine (5a). To a solution of 4a (8.40g) 

in methanol, palladium on carbon (200mg) was added. Reaction was stirred at 

pressurized hydrogen atmosphere (60 psi) overnight. during that time reaction was filled 

with Hydrogen several times. After the mixture was filtered, solvent was evaporated 

away under reduced pressure to afforded brown oil (7.81g, 95%). 
1
H NMR (600 MHz, 

CDCl3) δ 8.00 (s, 1H), 6.90 (m, 2H), 4.59 (s, 2H), 3.56 (br s, 2H), 3.52 (t, J = 6.6 Hz, 2H), 

3.32 (s, 3H), 2.68 (t, J = 7.2 Hz, 2H), 1.70-1.76 (m, 2H), 1.59-1.64 (m, 2H). 
13

C NMR 

(150 MHz, CDCl3) δ 152.04, 140.11, 136.83, 122.61, 122.49, 96.35, 67.62, 55.09, 37.01, 

29.34, 26.69. 

6-(6-(Methoxymethoxy)hexyl)pyridin-3-amine (5b). To a solution of 4b 

(10.68g, 40.4mmol) in methanol was added palladium on carbon (250mg). Reaction was 

stirred under hydrogen atmosphere (60 psi) overnight. After the mixture was filtered, 

solvent was removed under reduced pressure to afford brown oil (9.05g, 94%). 
1
H NMR 

(600 MHz, CDCl3) δ 8.00 (m, 1H), 6.90 (m, 2H), 4.59 (s, 2H), 3.54 (br s, 2H), 3.48 (t, J = 

6.6 Hz, 2H), 3.33 (s, 3H), 2.65 (t, J = 15.6 Hz, 2H), 1.68-1.63 (m, 2H), 1.59-1.55 (m, 2H), 

1.40-1.32 (m, 4H). 
13

C NMR (150 MHz, CDCl3) δ 152.46, 140.00, 136.77, 122.57, 

122.54, 96.35, 67.79, 55.07, 37.26, 30.10. 29.64, 29.09, 26.07. 
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Methyl 2-((6-(4-(methoxymethoxy)butyl)pyridin-3-yl)amino)-2-

methylpropanoate (7a). To a solution of 5a (7.81g, 37.2mmol) and 6 (33.7g, 186mmol) 

in ethanol was added sodium acetate (30.5g, 372mmol). Reaction was refluxed for 5 days. 

Reaction was filtered, the solvent was evaporated away under reduced pressure. Mixture 

was diluted with EtOAc, the organic phase washed by water and brine. Product was 

purified by flash chromatography (Hex/EA: 1:2→EA) to afforded red oil (3.78g, 34.3%). 

1
H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 3 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.81 (dd, 

J = 8.4 and 3 Hz, 1H), 4.59 (s, 2H), 3.97 (br s, 1H), 3.70 (s, 3H), 3.52 (t, J = 6.6 Hz, 2H), 

3.33 (s, 3H), 2.68 (t, J = 7.8 Hz, 2H), 1.70-1.78 (m, 2H), 1.59-1.66 (m, 2H), 1.53 (s, 6H). 

13
C NMR (150 MHz, CDCl3) δ 176.16, 152.20, 139.31, 138.32, 123.06, 122.34, 96.36, 

67.62, 57.70, 55.01, 52.56, 36.98, 29.38, 26.58, 26.12 (2C). 

3-((4-(6-(Methoxymethoxy)hexyl)phenyl)amino)-3-methylbutan-2-one (7b). 

To a solution of 5b (3g, 12.6mmol) and 6 (22.8, 126mmol) in ethanol was added sodium 

acetate (15g, 189mmol). Reaction was refluxed for 13 days. After the mixture was 

filtered, solvent was evaporated away under reduced pressure. Mixture was diluted with 

EtOAc, the organic phase was washed with water and brine, dried over anhydrous 

sodium sulfate and concentrated. The crude product was purified by flash 

chromatography (Hex:EA=1:2) to afford yellow oil (3.1g, 73%). 
1
H NMR (600 MHz, 

CDCl3) δ 7.90 (d, J = 3 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.78 (dd, J = 8.4 and 3 Hz, 1H), 

4.56 (s, 2H), 4.00 (br s, 1H), 3.67 (s, 3H), 3.60 (t, J = 6.6 Hz, 2H), 3.48 (t, J = 6.6 Hz, 

2H), 3.30 (s, 3H), 2.62 (t, J = 8.1 Hz, 2H), 1.66-1.60 (m, 2H), 1.58-1.52 (m, 2H), 1.50 (s, 

6H), 1.38-1.29 (m, 4H). 
13

C NMR (150 MHz, CDCl3) δ 176.17, 152.53, 139.25, 138.21, 
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123.09, 122.27, 96.31, 67.76, 57.67, 55.03, 52.51, 37.18, 29.96. 29.61, 29.11, 26.09 (2C), 

26.04. 

4-(3-(6-(4-(Methoxymethoxy)butyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-

thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile (8a). In argon atmosphere, to 

a solution of 7a (3.78g, 12.8mmol) in DMSO (25mL), 21 (8.78g, 38.5mmol) was added. 

Reaction was stirred at 80℃ overnight. The mixture was diluted with EtOAc, the organic 

phase washed by water and brine, dried over anhydrous sodium sulfate and concentrated. 

The crude product was purified by flash chromatography (Hex:EA=2:1→1:1) to afforded 

brown oil (5.8g, 90%). 
1
H NMR (600 Mhz, CDCl3) δ 8.45 (d, J = 2.4 Hz, 1H), 7.96 (d, J 

= 8.4 Hz, 1H), 7.94 (s, 1H), 7.82 (d, J = 7.8, 1H), 7.54 (dd, J = 8.4 and 2.4 Hz, 1H), 7.33 

(d, J = 8.4 Hz, 1H), 4.60 (s, 2H), 3.56 (t, J = 6.0Hz, 2H), 3.34 (s, 3H), 2.90 (t, J = 8.4Hz, 

2H), 1.84-1.90 (m, 2H), 1.66-1.72 (m, 2H), 1.58 (s, 6H). 
13

C NMR (150 MHz, CDCl3) δ 

180.32, 174.67, 163.64, 149.58, 137.44, 136.95, 135.26, 133.56 (q, J = 33.2 Hz), 132.16, 

129.60, 127.04 (q, J = 4.7 Hz), 123.42, 121.82 (q, J = 273 Hz), 114.76, 110.24, 96.43, 

67.43, 66.35, 55.16, 37.82, 29.44, 26.12, 23.71 (2C). 

4-(3-(6-(6-(Methoxymethoxy)hexyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-

thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile (8b). In argon atmosphere, to 

a solution of 7b (3g, 8.86mmol) in DMSO (15mL) was added 21 (6g, 26.3mmol). 

Reaction was stirred at 80℃ overnight. The mixture was diluted with EtOAc, the organic 

phase was washed with water and brine, dried over anhydrous sodium sulfate and 

concentrated. The crude product was purified by flash chromatography 

(Hex:EA=1:1→1:2) to afford yellow oil (4.2g, 90%). 
1
H NMR (600 Mhz, CDCl3) δ 8.46 

(d, J = 2.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 1.8 Hz, 1H), 7.83 (dd, J = 8.4 
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and 1.8Hz, 1H), 7.54 (dd, J = 8.4 and 2.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 4.60 (s, 2H), 

3.51 (t, J = 6.3Hz, 2H), 3.34 (s, 3H), 2.87 (t, J = 8.1Hz, 2H), 1.83-1.73 (m, 2H), 1.65-

1.56 (m, 2H), 1.59 (s, 6H), 1.46-1.40 (m, 4H). 
13

C NMR (150 MHz, CDCl3) δ 180.33, 

174.69, 164.01, 149.52, 137.42, 136.93, 135.25, 133.61 (q, J = 33.2 Hz), 132.14, 129.50, 

127.04 (q, J = 4.7 Hz), 123.38, 121.82 (q, J = 273 Hz), 114.74, 110.30, 96.39, 67.71, 

66.35, 55.10, 38.10, 29.60, 29.47, 29.22, 26.05, 23.73 (2C).  

4-(3-(6-(4-Hydroxybutyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-

thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile (9a). To the solution of 8a 

(5.8g, 11.4mmol) in methanol, Hydrogen Chloride (4N, in 1,4-dioxane) (15mL, 60mmol) 

was added dropwise. Reaction was stirred at room temperature overnight. Mixture was 

neutralized by saturated sodium bicarbonate, extracted with EA and washed by water and 

brine, dried over anhydrous sodium sulfate and concentrated. The crude product was 

purified by flash chromatography (Hex:EA=1:2→1:4 →EA) to afforded brown oil  

(4.95g, 94%). 
1
H NMR (600 MHz, CDCl3) δ 8.40 (d, J = 2.4 Hz, 1H), 7.93 (d, J = 8.4 Hz, 

1H), 7.92 (s, 1H), 7.80 (d, J = 8.4, 1H), 7.53 (dd, J = 8.4 and 2.4 Hz, 1H), 7.31 (d, J = 8.4 

Hz, 1H), 3.63 (t, J = 6.6 Hz, 2H), 2.99 (br s, 1H), 2.86 (t, J = 7.8 Hz, 2H), 1.78-1.86 (m, 

2H), 1.58-1.66 (m, 2H), 1.54 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 180.34, 174.67, 

163.58, 149.43, 137.65, 137.02, 135.31, 133.37 (q, J = 33.2 Hz), 132.27, 129.70, 127.06 

(q, J = 4.7 Hz), 123.62, 121.85 (q, J = 273 Hz), 114.81, 110.07, 66.39, 62.02, 37.45, 

32.16, 25.66, 23.62 (2C). 

4-(3-(6-(6-Hydroxyhexyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-

thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile (9b). To a solution of 8b 

(1.68g, 3.14mmol) in methanol (15mL) was added hydrogen chloride (4N, in 1,4-dioxane) 
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(4mL) dropwise. Reaction was stirred at room temperature for 3hrs. Mixture was 

neutralized by saturated sodium bicarbonate, extracted with EtOAc and washed by water 

and brine, dried over anhydrous sodium sulfate and concentrated. The crude product was 

purified by flash chromatography (Hex:EA=1:1→1:2) to afford yellow foam (1.4g, 91%). 

1
H NMR (600 MHz, CDCl3) δ 8.42 (d, J = 2.4 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.93 (d, 

J = 1.2 Hz, 1H), 7.81 (dd, J = 8.4 and 1.2Hz, 1H), 7.53 (dd, J = 8.4 and 2.4 Hz, 1H), 7.31 

(d, J = 8.4 Hz, 1H), 3.58 (t, J = 6.6 Hz, 2H), 2.84 (t, J = 7.8 Hz, 2H), 2.16 (br s, 1H), 

1.80-1.72 (m, 2H), 1.56 (s, 6H), 1.58-1.50 (m, 2H), 1.44-1.36 (m, 4H); 
13

C NMR (150 

MHz, CDCl3) δ 180.35, 174.71, 163.92, 149.40, 137.62, 136.96, 135.29, 133.53 (q, J = 

33.2 Hz), 132.19, 129.60, 127.052 (q, J = 4.7 Hz), 123.52, 121.81 (q, J = 273 Hz), 114.75, 

110.18, 66.38, 62.50, 37.88, 32.43, 29.44, 29.00, 25.42, 23.66 (2C). HR-ESI-MS m/z 

Calcd for C24H25F3N4O2S [M+H]
+
 491.1729, found 491.1724. 

6-(5-(3-(4-Cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-

thioxoimidazolidin-1-yl)pyridin-2-yl)hexyl methanesulfonate (10b). In argon 

atmosphere, to a stirred solution of 7 (1.35g, 2.75mmol) and triethylamine (1.15mL, 

8.25mmol) in dichloromethane (15mL) was added methanesulfonyl chloride (0,42mL, 

5.47mmol) at 0°C dropwise. Reaction was stirred at room temperature for 30min. Solvent 

was removed under reduced pressure. The crude product was purified by flash 

chromatography (Hex:EA=1:1→1:2) to afford white foam (1.47g, 94%).  

4-(3-(6-(4-Azidobutyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-thioxoimidazolidin-

1-yl)-2-(trifluoromethyl)benzonitrile (11a). In argon atmosphere, to a stirred solution of 

9a (820mg, 1.77mmol) in DCM and triethylamine (1.23mL, 8.87mmol) was added 

Methanesulfonyl Chloride (0.55mL, 7.1mmol) dropwise at 0°C. Reaction was stirred at 
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0°C for 30min and warm to room temperature for 1h. Mixture was washed by water and 

brine, the solvent was evaporated away under reduced pressure. Mixture was redissolved 

in DMF(15mL), sodium azide (345mg, 5.3mmol) was added. Reaction was stirred at 

room temperature overnight. Mixture was diluted with EA, washed by water and brine. 

The crude product was purified by flash chromatography (Hex:EA=1:2) to afforded 

transparent oil  (194mg, 25%). 
1
H NMR (600 Mhz, CDCl3) δ 8.48 (d, J = 1.8 Hz, 1H), 

7.98 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H), 7.83 (d, J = 7.8Hz, 1H), 7.57 (dd, J = 8.4 and 2.4 

Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 3.44 (t, J = 7.2 Hz, 2H), 2.91 (t, J = 7.8 Hz, 2H), 1.86-

1.92 (m, 2H), 1.68-1.74 (m, 2H), 1.59 (s, 6H); 
13

C NMR (150 MHz, CDCl3) δ 180.35, 

174.65, 163.10, 149.67, 137.60, 136.89, 135.26, 133.65 (q, J = 33.3 Hz), 132.12, 129.78, 

127.03 (q, J = 4.7 Hz), 123.47, 121.81 (q, J = 273 Hz), 114.72, 110.34, 66.35, 51.19, 

37.43, 28.52, 26.47, 23.75 (2C). HR-ESI-MS m/z Calcd for C22H20F3N7OS [M+H]
+
 

488.1491, found 488.1497 

4-(3-(6-(6-Azidohexyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-thioxoimidazolidin-

1-yl)-2-(trifluoromethyl)benzonitrile (11b). To a solution of 7 (1.47g, 2.59mmol) in 

dimethylformamide (12mL) was added sodium azide (506mg, 7.8mmol). Reaction was 

stirred at room temperature for 6hrs. Mixture was diluted with EtOAc, the organic phase 

was washed with water and brine, dried over anhydrous sodium sulfate and concentrated 

to afford yellow oil (1.5g). 
1
H NMR (600 Mhz, CDCl3) δ 8.45 (d, J = 2.4 Hz, 1H), 7.95 

(d, J = 11.4 Hz, 1H), 7.95 (s, 1H), 7.82 (dd, J = 8.4 and 1.8Hz, 1H), 7.54 (dd, J = 8.4 and 

2.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 3.24 (t, J = 7.2 Hz, 2H), 2.85 (t, J = 7.8 Hz, 2H), 

1.81-1.73 (m, 2H), 1.62-1.55 (m, 2H), 1.57 (s, 6H), 1.45-1.38 (m, 4H); 
13

C NMR (150 

MHz, CDCl3) δ 180.33, 174.67, 163.77, 149.55, 137.46, 136.99, 135.26, 133.50 (q, J = 
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33.3 Hz), 132.19, 129.57, 127.05 (q, J = 4.7 Hz), 123.41, 121.84  (q, J = 273 Hz), 114.77, 

110.20, 66.36, 51.35, 37.97, 29.28, 28.87, 28.67, 26.49, 23.68 (2C). HR-ESI-MS m/z 

Calcd for C24H24F3N7OS [M+H]
+
 516.1785, found 516.1807 

4-(3-(6-(4-Isothiocyanatobutyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-

thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile (12a). To a solution of 11a 

(194mg, 0.40mmol) in THF (5mL) was added triphenylphosphine (225mg, 0.86mmol). 

Reaction was refluxed overnight. Then 3mL carbon disulfide was added, refluxed 

overnight. Solvent was removed under reduced pressure. Mixture was washed by water 

and brine. The crude product was purified by flash chromatography (Hex/EA: 1:1), 

afforded transparent oil (53mg, 26%).
1
H NMR (600 MHz, CDCl3) δ 8.47 (d, J = 1.8 Hz, 

1H), 7.97 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.57 (dd, J = 8.4 and 

1.8 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 3.57 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 7.8 Hz, 2H), 

1.86-1.98 (m, 2H), 1.72-1.86 (m, 2H), 1.59 (s, 6H); 
13

C NMR (150 MHz, CDCl3) δ 

180.35, 174.64, 163.67, 149.73, 137.66, 136.94, 135.28, 133.56 (q, J = 33.2 Hz), 132.18, 

129.88, 127.05 (q, J = 4.5 Hz), 123.52, 121.83 (q, J = 273 Hz), 114.77, 110.26, 66.38, 

44.87, 37.03, 29.73, 29.52, 26.24, 23.74 (2C). 

4-(3-(6-(6-Isothiocyanatohexyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-

thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile (12b). To a solution of 8 

(1.5g 2.9mmol) in THF (10mL) was added triphenylphosphine (1.52g, 5.8mmol). 

Reaction was refluxed overnight. Then carbon disulfide (9mL) was added, mixture was 

refluxed for another 5hrs. Solvent was removed under reduced pressure. The crude 

product was purified by flash chromatography (Hex:EA=1:1) to afford yellow 

foam(905mg, 59%). 
1
H NMR (600 MHz, CDCl3) δ 8.45 (d, J = 2.4 Hz, 1H), 7.96 (d, J = 
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9.0 Hz, 1H), 7.95 (s, 1H), 7.83 (dd, J = 8.4 and 1.8Hz, 1H), 7.55 (dd, J = 8.4 and 2.4 Hz, 

1H), 7.32 (d, J = 8.4 Hz, 1H), 3.48 (t, J = 6.6 Hz, 2H), 2.86 (t, J = 7.8 Hz, 2H), 1.82-1.76 

(m, 2H), 1.72-1.65 (m, 2H), 1.57 (s, 6H), 1.49-1.38 (m, 4H); 
13

C NMR (150 MHz, CDCl3) 

δ 180.33, 174.67, 163.62, 149.57, 137.52, 136.99, 135.27, 133.49 (q, J = 33.2 Hz), 

132.22, 129.62, 127.06 (q, J = 4.5 Hz), 123.47, 121.84 (q, J = 273 Hz), 114.77, 110.20, 

66.37, 44.97, 37.87, 29.74, 29.16, 28.49, 26.33, 23.70 (2C). HR-ESI-MS m/z Calcd for 

C25H24F3N5OS2 [M+H]
+
 532.1453, found 532.1478.  

N-acetyl-S-((6-(5-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-

2-thioxoimidazolidin-1-yl)pyridin-2-yl)hexyl)carbamothioyl)-D-cysteine (13). To a 

solution of 9 (300mg, 0.56mmol) in acetonitrile (3mL) was added N-acetyl-cysteine 

(60mg, 0.37mmol) and Sodium bicarbonate (240mg, 2.86mmol). Reaction was stirred at 

room temperature overnight. Then heated to 45°C overnight.  Solvent was removed under 

reduced pressure. The crude product was purified by flash chromatography (Hex:EA = 

2:1 → 1:1 → DCM:MeOH:AcOH = 10:1:1%) . Purified product was washed by water to 

get rid of remaining NAC and afford white foam (162.2mg, 63%). 
1
H NMR (600 MHz, 

CDCl3) δ 8.64 (s, 1H), 8.54 (d, J = 1.8 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 1.2 

Hz, 1H), 7.83 (dd, J = 8.4 and 1.8Hz, 1H), 7.67 (dd, J = 8.4 and 2.4 Hz, 1H), 7.40 (d, J = 

8.4 Hz, 1H), 4.70 (q, J = 5.4 Hz, 1H), 3.78 (dd, J = 14.4 and 6.0 Hz, 2H), 3.70 (t, J = 6.6 

Hz, 2H), 2.86 (t, J = 7.8, 2H), 1.99 (d, J = 7.8Hz, 3H), 1.82-1.71 (m, 2H), 1.71-1.63 (m, 

2H), 1.59 (s, 6H), 1.50-1.36 (m, 4H); 
13

C NMR (150 MHz, CDCl3) δ 196.52, 180.46, 

174.58, 172.53, 171.71, 163.15, 148.45, 139.13, 136.94, 135.36, 133.53 (q, J = 33.2 Hz), 

132.29, 130.35, 127.09 (q, J = 4.5 Hz), 124.31, 121.83 (q, J = 273 Hz), 114.77, 110.28, 
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66.50, 53.71, 47.69, 36.83, 35.68, 29.36, 28.54, 27.67, 26.21, 23.75 (2C), 22.96. HR-ESI-

MS m/z Calcd for C30H33F3N6O4S3 [M+H]
+
 695.1756, found 695.1743  

4-(5-(3-(4-(Tert-butylcarbamoyl)-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-

oxo-2-thioxoimidazolidin-1-yl)pyridin-2-yl)butyl acetate (14). To a solution of 9a 

(108mg, 0.23mmol) in tert-butyl acetate (3mL) was added sulfuric acid (0.2mL) at 0°C. 

Reaction was stirred at 42°C for 2hrs. Mixture was neutralized by saturated sodium 

bicarbonate at 0°C, extracted with EtOAc and washed by water and brine, dried over 

anhydrous sodium sulfate and concentrated. The crude product was purified by flash 

chromatography (Hex:EA=1:1) to afford transparent oil (121mg, 91%). 
1
H NMR (600 

MHz, CDCl3) δ 8.45 (s, 1H), 7.71 (s, 1H), 7.60 (m, 2H), 7.55 (dd, J = 8.4 and 2.4 Hz, 

1H), 7.30 (d, J = 8.4 Hz, 1H), 5.77 (s, 1H), 4.07 (t, J = 6.6 Hz, 2H), 2.87 (t, J = 7.8 Hz, 

2H), 2.00 (s, 3H), 1.87-1.80 (m, 2H), 1.75-1.68 (m, 2H), 1.54 (s, 6H), 1.41 (s, 9H); 
13

C 

NMR (150 MHz, CDCl3) δ 181.29, 175.01, 171.15, 165.94, 163.00, 149.65, 137.68, 

137.45, 133.88, 132.02, 129.99, 129.49, 127.93 (q, J = 32.6 Hz), 126.64(q, J = 5.3 Hz), 

123.41, 123.06 (q, J = 273 Hz), 66.22, 64.12, 52.41, 37.53, 28.44 (3C), 28.35, 25.81, 

23.66 (2C), 20.96.  

6-(5-(3-(4-(Tert-butylcarbamoyl)-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-

oxo-2-thioxoimidazolidin-1-yl)pyridin-2-yl)hexyl acetate (15). To a solution of 8b 

(1.2g, 2.24mmol) in tert-butyl acetate (20mL) was added sulfuric acid (2mL) at 0°C. 

Reaction was stirred at 42°C for 2hrs. Mixture was neutralized by saturated sodium 

bicarbonate at 0°C, extracted with EtOAc and washed by water and brine, dried over 

anhydrous sodium sulfate and concentrated. The crude product was purified by flash 

chromatography (Hex:EA=2:1 → 1:1) to afford light yellow foam (810mg, 60%). 
1
H 



60 

 

NMR (600 MHz, CDCl3) δ 8.45 (d, J = 1.8 Hz, 1H), 7.72 (s, 1H), 7.62 (m, 2H), 7.54 (dd, 

J = 8.4 and 2.4 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 5.70 (s, 1H), 4.03 (t, J = 6.6 Hz, 2H), 

2.84 (t, J = 7.8 Hz, 2H), 2.01 (s, 3H), 1.80-1.74 (m, 2H), 1.65-1.59 (m, 2H), 1.55 (s, 6H), 

1.43 (s, 9H), 1.45-1.34 (m, 4H); 
13

C NMR (150 MHz, CDCl3) δ 181.30, 175.03, 171.21, 

165.92, 163.63, 149.62, 137.54, 137.45, 133.90, 132.03, 129.79, 129.51, 127.97 (q, J = 

32.7 Hz), 126.65 (q, J = 4.5 Hz), 123.31, 123.06 (q, J = 273 Hz), 66.22, 64.44, 52.43, 

38.02, 29.35, 29.00, 28.46 (3C), 28.43, 25.71, 23.69 (2C), 20.99. HR-ESI-MS m/z Calcd 

for C30H37F3N4O4S [M+H]
+
 607.2566, found 607.2263. 

N-(tert-butyl)-4-(3-(6-(6-hydroxyhexyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-

thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzamide (16). To a solution of 15 

(415mg, 0.68mmol) in methanol (10mL) was added sulfuric acid (1mL). Reactio   n was 

stirred at 50°C for 1h. Mixture was neutralized by saturated sodium bicarbonate, diluted 

with EtOAc and washed by water and brine, dried over anhydrous sodium sulfate and 

concentrated to afford transparent oil (351mg, 91%). 
1
H NMR (600 MHz, CDCl3) δ 8.46 

(d, J = 2.4 Hz, 1H), 7.73 (s, 1H), 7.64 (m, 2H), 7.55 (dd, J = 8.4 and 2.4 Hz, 1H), 7.31 (d, 

J = 8.4 Hz, 1H), 5.67 (s, 1H), 3.62 (t, J = 6.6 Hz, 2H), 2.86 (t, J = 7.8 Hz, 2H), 1.82-1.75 

(m, 2H), 1.62-1.53 (m, 2H), 1.57 (s, 6H), 1.44 (s, 9H), 1.47-1.37 (m, 4H); 
13

C NMR (150 

MHz, CDCl3) δ 181.32, 175.07, 165.97, 163.73, 149.56, 137.59, 137.45, 133.92, 132.07, 

129.77, 129.50, 127.95 (q, J = 32.6 Hz), 126.68 (q, J = 5.3 Hz), 123.38, 123.07 (q, J = 

273 Hz), 66.25, 62.71, 37.97, 36.56, 32.52, 29.44, 29.05, 28.46 (3C), 25.45, 23.68 (2C). 

HR-ESI-MS m/z Calcd for C28H35F3N4O3S [M+H]
+
 565.2460, found 565.2466  

6-(5-(3-(4-(Tert-butylcarbamoyl)-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-

oxo-2-thioxoimidazolidin-1-yl)pyridin-2-yl)hexyl methanesulfonate (17). To a stirred 
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solution of 16 (351mg, 0.62mmol) in dichloromethane (5mL) was added triethylamine 

(0.7mL, 8.25mmol) and methanesulfonyl chloride (0.3mL, 5.47mmol). Reaction was 

stirred at room temperature for 30min. Solvent was removed under reduced pressure. The 

crude product was purified by flash chromatography (Hex:EA=1:1→1:2) to afford white 

foam (360mg, 90%).  

4-(3-(6-(6-Azidohexyl)pyridin-3-yl)-4,4-dimethyl-5-oxo-2-thioxoimidazolidin-

1-yl)-N-(tert-butyl)-2-(trifluoromethyl)benzamide (18). To a solution of 17 (360mg, 

56mmol) in dimethylformamide (5mL) was added sodium azide (182mg, 2.8mmol). 

Reaction was stirred at 50°C overnight. Mixture was diluted with EtOAc, the organic 

phase was washed with water and brine, dried over anhydrous sodium sulfate and 

concentrated to afford yellow oil (359mg). 
1
H NMR (600 MHz, CDCl3) δ 8.46 (d, J = 2.4 

Hz, 1H), 7.73 (s, 1H), 7.63 (m, 2H), 7.55 (dd, J = 8.4 and 2.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 

1H), 5.67 (s, 1H), 3.24 (t, J = 6.6 Hz, 2H), 2.85 (t, J = 7.8 Hz, 2H), 1.83-1.75 (m, 2H), 

1.63-1.58 (m, 2H), 1.56 (s, 6H), 1.44 (s, 9H), 1.46-1.39 (m, 4H); 
13

C NMR (150 MHz, 

CDCl3) δ 181.31, 175.04, 165.93, 163.58, 149.63, 137.56, 137.46, 133.90, 132.05, 129.81, 

129.53, 127.98 (q, J = 32.1 Hz), 126.66 (q, J = 5.3 Hz), 123.34, 123.06 (q, J = 273 Hz), 

66.23,  52.45, 51.36, 37.99, 29.30, 28.90, 28.68, 28.47 (3C), 26.51, 23.70 (2C). HR-ESI-

MS m/z Calcd for C28H34F3N7O2S [M+H]
+
 590.2525, found 590.2520. 

N-(tert-butyl)-4-(3-(6-(6-isothiocyanatohexyl)pyridin-3-yl)-4,4-dimethyl-5-

oxo-2-thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzamide (19). To a solution of 

18 (180mg, 0.31mmol) in THF (5mL) was added triphenylphosphine (400mg, 1.55mmol). 

Reaction was refluxed for 1h. Then Carbon disulfide (1.7mL) was added, mixture was 

refluxed for another 1h. Solvent was removed under reduced pressure. The crude product 
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was purified by flash chromatography (Hex:EA=2:1→1:1) to afford transparent 

oil(107mg, 57%). 
1
H NMR (600 MHz, CDCl3) δ 8.44 (d, J = 2.4 Hz, 1H), 7.71 (s, 1H), 

7.61 (s, 2H), 7.54 (dd, J = 8.4 and 2.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 5.66 (s, 1H), 

3.47 (t, J = 6.6 Hz, 2H), 2.84 (t, J = 7.8 Hz, 2H), 1.74-1.81 (m, 2H), 1.64-1.71 (m, 2H), 

1.55 (s, 6H), 1.41 (s, 9H), 1.37-1.48 (m, 4H); 
13

C NMR (150 MHz, CDCl3) δ 181.28, 

175.03, 165.93, 163.41, 149.64, 149.64, 137.59, 137.42, 133.90, 132.05, 129.84, 129.48, 

127.93 (q, J = 32.1 Hz), 126.66 (q, J = 5.3 Hz), 123.38, 123.06 (q, J = 272 Hz), 66.22,  

52.42, 44.96, 37.87, 29.74, 29.16, 28.50, 28.46 (3C), 26.33, 23.69 (2C). HR-ESI-MS m/z 

Calcd for C29H34F3N5O2S2 [M+H]
+
 606.2184, found 606.2183. 

Methyl 2-((3-fluorophenyl)amino)-2-methylpropanoate (23). To a mixture of 

3-flouroaniline (22)(10g, 90mmol) and methyl α-bromoisobutyrate (6)(27g, 14.9mmol) in 

ethanol (70mL) was added sodium acetate (14.8g, 180mmol). Reaction was refluxed 

overnight. Mixture was filtered, solvent was evaporated under reduced pressure. Mixture 

was diluted with EtOAc, the organic phase was washed by water and brine, dried over 

anhydrous sodium sulfate and concentrated. The crude product was purified by flash 

chromatography (Hex:EA=15:1→10:1) to afford red oil (12.1g, 64%).  
1
H NMR (600 

MHz, CDCl3)  7.03-7.09 (m, 1H), 6.39-6.43 (m, 1H), 6.22-6.31 (m, 2H), 4.21 (br s, 1H), 

3.71 (s, 3H), 1.56 (s, 6H). 

Methyl 2-((3-fluoro-4-iodophenyl)amino)-2-methylpropanoate (24).  To a 

mixture of 23 (4g, 19.0mmol) in H2O/dioxane (30mL/2mL) was added sodium 

bicarbonate (6.37g, 75.8mmol) and iodine (5.8g, 22.7mmol). Reaction was stirred at 

room temperature for 3h. Mixture was quenched by saturated sodium thiosulfate, and 

extracted with EtOAc, washed by water and brine, dried over anhydrous sodium sulfate 
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and concentrated. The crude product was purified by flash chromatography 

(Hex:EA=10:1) to afford yellow solid (5.73g, 89%). 
1
H NMR (600 MHz, CDCl3) δ 7.30 

(t, J = 8.4 Hz, 1H), 6.21(dd, J = 10.8 and 2.4 Hz, 1H), 6.06 (dd, J = 8.4 and 2.4Hz, 1H), 

4.45 (br s, 1H), 3.63 (s, 3H), 1.47 (s, 6H); 
13

C NMR (150 MHz, CDCl3) δ 175.95, 162.08 

(d, J = 240.3 Hz), 147.76 (d, J=9.6Hz), 138.75 (d, J=2.3Hz), 112.66, 101.76 (d, 

J=27.5Hz), 64.85 (d, J=25.8Hz), 57.22, 52.71, 25.93. 

Ethyl (E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-

thioxoimidazolidin-1-yl)-2-fluorophenyl)acrylate (26). In argon atmosphere, to a 

mixture of 25 (4g, 7.9mmol), palladium(II) acetate (420mg, 1.88mmol) and tri(o-

tolyl)phosphine (1.25g, 4.11mmol) in DMF/DIPEA (20mL/7mL) was added ethyl 

acrylate (1.04mL, 9.76mmol). Reaction was stirred at 80°C overnight. Mixture was 

diluted with EtOAc, the organic phase was washed by water and brine, dried over 

anhydrous sodium sulfate and concentrated. The crude product was purified by flash 

chromatography (Hex:EA=10:1) to afford brown solid (1.51g, 53%).  
1
H NMR (600MHz, 

CDCl3):  7.96-7.99 (m, 2H), 7.79-7.85(m, 2H), 7.70(t, J=8.2Hz, 1H), 7.11-7.17 (m, 2H), 

6.61(d, J=16.4Hz, 1H), 4.29(q, J=7.2Hz, 2H), 1.62(s, 6H), 1.36(t, J=7.2Hz, 3H).    
13

C 

NMR (150MHz, CDCl3): 179.74, 174.48, 166.28, 161.14 (d, J=255.5Hz), 137.36(d, 

J=10.2Hz), 136.86, 135.51(d, J=1.0Hz), 135.24, 133.59(q, J=33.3Hz), 132.12, 129.98(d, 

J=4.0Hz), 127.03(q, J=4.7Hz), 125.86(d, J=3.7Hz), 123.16, 122.85(d, J=6.5 Hz), 120.44, 

117.91(d, J=23.6Hz), 114.68, 110.31(d, J=2.0Hz), 66.57, 60.88, 23.76, 14.21.   

(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-

thioxoimidazolidin-1-yl)-2-fluorophenyl)acrylic acid (27). To a solution of 26 (1.51g, 

2.99 mmol) in acetonitrile (35mL) was added HCl (37%, 25mL). Reaction was refluxed 
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overnight. Mixture was diluted with EtOAc, the organic phase was washed by water and 

brine, dried over anhydrous sodium sulfate and concentrated. The crude product was 

purified by flash chromatography (Hex:EA:AcOH=2:1:0.5%) to afford orange solid 

(1.31g, 92%). 
1
H NMR (600MHz, Acetone-d6)  8.28 (d, J = 8.0Hz,1H), 8.20 (d, J = 

1.6Hz,1H), 8.08 (dd, J = 8.4Hz, 2.0Hz,1H), 8.01 (t, J = 8.4Hz, 1H), 7.83(d, J = 16Hz, 

1H,), 7.37-7.42 (m, 2H), 6.71 (d, J = 16Hz, 1H), 1.68 (s, 6H). 
13

C NMR (150MHz, 

Acetone-d6)  181.38, 175.66, 167.21, 161.77 (d, J = 251.8Hz), 139.59 (d, J = 10.6Hz), 

139.03, 136.66, 136.29 (d, J = 3.1Hz), 134.28, 132.89 (q, J = 32.7Hz), 130.69 (d, J = 

3.9Hz), 128.50 (q, J = 4.9Hz), 127.52 (d, J = 3.5Hz), 124.66, 124.23 (d, J = 11.6Hz), 

123.34 (d, J = 5.8Hz), 118.96 (d, J = 23.6Hz), 115.62, 110.29, 67.63, 23.65 (2C).  

(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-

thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-((tetrahydro-2H-pyran-2-

yl)oxy)acrylamide (28). In argon atmosphere, to a mixture of 27 (1.31mg, 2.75mmol), 

NH2OTHP (0.35g, 3.1mmol) and BOP (1.34g, 3.1mmol) in DMF (15mL) was added 

DIPEA (0.96mL, 5.50mmol). Reaction was stirred at room temperature overnight. 

Mixture was diluted with EtOAc, the organic phase was washed by water and brine, dried 

over anhydrous sodium sulfate and concentrated. The crude product was purified by flash 

chromatography (DCM:EA=4:1) to afford white solid (730mg, 46%). 
1
H NMR (600MHz, 

DMSO-d6): 11.42 (s, 1H), 8.37 (d, J=7.8Hz, 1H), 8.27(s, 1H), 8.05(d, J = 8.4Hz, 1H), 

7.84(t, J = 7.8Hz, 1H), 7.56(d, J = 16Hz, 1H), 7.40 (d, J = 11Hz, 1H),  7.30 (d, J = 8.4Hz, 

1H), 6.68 (d, J = 16Hz, 1H), 4.91 (s,1H), 3.94 (t, J  = 8.4Hz, 1H), 3.52 (m, 1H), 1.65 (br s, 

3H), 1.52 (br s, 9H).  
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(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-

thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-hydroxyacrylamide (1005). To the 

solution of 28 (672mg, 1.30mmol) in methanol (15mL) was added TFA (1.74mL, 

22.7mmol). Reaction was stirred at 0°C for 6hrs. Mixture was diluted with EtOAc, the 

organic phase was washed by water and brine, dried over anhydrous sodium sulfate and 

concentrated. The crude product was purified by flash chromatography (Hex:EA=1:2) to 

afford white solid (510mg, 89%). 
1
H NMR (600MHz, Methanol-d4)  8.15 (s, 1H), 8.13 

(d, J = 8.4Hz, 1H), 7.97 (dd, J=8.4 and 1.2Hz, 1H), 7.74 (t, J=8.4Hz, 1H), 7.71 (d, 

J=16.2Hz, 1H), 7.30 (dd, J = 10.8 and 1.8Hz, 1H), 7.26 (dd, J = 8.4 and 1.8Hz, 1H), 6.67 

(d, J=16.2Hz, 1H), 1.57 (s, 6H). 
13

C NMR (150MHz, Methanol-d4)  180.29, 175.08, 

164.11, 160.90 (d, J=257.0Hz), 137.86, 135.95, 134.86, 133.89 (q, J=37.3Hz), 132.91, 

130.90, 128.86 (q, J=4.8Hz), 127.70 (d, J=3.7Hz), 125.22 (d, J=11.7Hz), 125.01, 122.83, 

122.30, 119.34 (d, J=23.8Hz), 114.55, 109.39, 66.62, 22.30 (2C). HR-ESI-MS m/z Calcd 

for C22H17F4N4O3S [M+H]
+
 493.0958, found 493.0960.   

(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-

thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-((isopropylcarbamoyl)oxy)acrylamide 

(29). To a solution of 1005 (58mg, 0.12mmol) in acetonitrile (5mL) was added 1,1′-

Carbonyldiimidazole (29mg, 0.18mmol) at 0°C. Reaction was stirred at room 

temperature for 2h. Then isopropylamine (21mg, 0.36mmol) was added and stirred for 

another hour. Solvent was evaporated under reduced pressure. The crude product was 

purified by Flash chromatography (Hex:EA=1:2→DCM:MeOH=20:1) to afford yellow 

solid (32.7mg, 49%).
1
H NMR (600MHz, Methanol-d4)  8.16 (s, 1H), 8.15 (d, J = 8.4Hz, 

1H), 7.98 (dd, J=8.4 and 1.8Hz, 1H), 7.82 (t, J = 8.4Hz, 1H), 7.79 (d, J=18.6Hz, 1H), 
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7.33 (dd, J = 10.8 and 1.8Hz, 1H), 7.29 (dd, J = 7.8 and 1.8Hz, 1H), 6.75 (d, J=16.2Hz, 

1H), 3.30 (m, 1H), 1.58 (s, 6H), 1.19 (d, J = 6.6Hz, 6H). 
13

C NMR (150MHz, Methanol-

d4)  180.30, 175.08, 164.34, 161.03 (d, J=257.0Hz), 154.58, 137.92, 135.97, 134.86, 

133.58 (q, J=37.3Hz), 132.91, 130.56, 128.45 (q, J=4.8Hz), 127.65 (d, J=3.7Hz), 125.10 

(d, J=11.7Hz), 125.01, 122.83, 122.30, 119.34 (d, J=23.8Hz), 114.53, 109.42, 66.62, 

43.60, 22.30 (2C), 21.27 (2C). HR-ESI-MS m/z Calcd for C26H23F4N5O4S [M+H]
+
 

600.1305, found 600.1307.   

4.2. Cell Cultures 

LNCaP, PC-3, 22Rv1 cell lines were maintained in RPMI1640 supplemented with 

10% FBS and 1% anti-biotic and grown at 37 °C in a humidified air with 5% CO2. MCF-

10A cell line were maintained in DMEM/F12 supplemented with 5% horse serum, 

20ng/mL EGF, 0.5mg/mL hydrocortisone, 100ng/mL cholera toxin, 10µg/mL insulin, 1% 

anti-biotic at 37 °C in a humidified air with 5% CO2. 

4.3. MTT Assay 

LNCaP, PC-3, and 22Rv1 cells (6 × 10
3
 cells/well) were seeded into 96-well plate 

overnight in RPMI 1640 containing 10% FBS and 1% anti-biotic (10A in DMEM/F12 

supplemented with 5% horse serum, 20ng/mL EGF, 0.5mg/mL hydrocortisone, 

100ng/mL cholera toxin, 10µg/mL insulin, 1% anti-biotic) and then incubated with 

indicated concentrations of compounds for 72h or 96h. Then 20µl 5mg/mL MTT were 

added to each well and incubated for 3.5h at 37 °C. Following the incubation, 100µl 

DMSO was added and incubated for 30min at 37 °C. After that, Microplate reader 

(BioTek) was used to measure absorbance of each well at 570 nm.  
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For DHT growth stimulation assay, LNCaP cells (6 × 10
3
 cells/well) were seeded 

into 96-well plate overnight in RPMI supplemented with 10% charcoal stripped FBS and 

1% anti-biotic and then incubated with indicated concentration of compounds with or 

without 1nM DHT for 96h. The rest follow the procedure as described previously. 

4.4. Luciferase Assay 

MDA-kb2 cells were incubated in Leibovitz's L-15 supplemented with 10% 

charcoal stripped FBS and 1% anti-biotic for 24h. Then MDA-kb2 (1 × 10
4
 cells/well) 

were seeded into opaque 96-well plate for 24h and incubated with indicated concentration 

of compounds with or without 1nM DHT for 24h. For all procedure, cells were incubated 

at CO2 free condition. After that, 125µl medium was removed and 75µl Steady-Glo® 

reagent (Promega) was added.   Plate was shacked for 10min and microplate reader 

(BioTek) was used to measure fluorescence. 

4.5. Western Blotting 

LNCaP cells (4 × 10
5
 cells/well) were seeded into 6-well plate overnight in RPMI 

1640 containing 10% FBS and 1% anti-biotic and then incubated with indicated 

concentrations of compounds for 16h. The cells were detached and collected by 

centrifugation at 14000rpm for 10min, then pellets were lysed with RIPA buffer 

containing protease inhibitors and incubated on ice for 30 minutes. Protein concentrations 

were determined by the Lowry assay. Protein were heated at 95°C for 5 minutes and 

resolved by electrophoresis on SDS-PAGE and transferred to PVDF membrane. The 

membrane was blocked by 5% milk for 1h, followed by incubation with primary antibody 
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overnight at 4°C. Then membrane was incubated with secondary antibody for 2h at room 

temperature.  Then membrane was visualized by ImageQuant™ LAS 4000 Imager (GE). 

4.6. Homology Modeling and Molecular Docking 

4.6.1 Androgen Receptor 

Homology model for AR was constructed by using the antagonistic form of GR 

structure (PDB code 1NHZ) as template [96]. The amino acid sequence of AR (PDB 

code 2AMB) was aligned with that of 1NHZ. Homology model was built by using Prime 

of Schrödinger followed by loop refinement, sidechain prediction, and minimization of 

non-conserved residues. Molecular docking was performed by using Glide, during which 

cyano group was set as constraint, all results were generated by XP model and flexible 

docking, while the rest of setting were kept default. Docking poses were viewed and 

displayed by Schrödinger Maestro.  

4.6.2 HDAC6 

Homology model for HDAC6 was constructed by using 1ZZ1 as template
 
[108]. 

Amino acid sequence of human HDAC6 was aligned with that of 1ZZ1. Homology 

model was built by using Prime of Schrödinger followed by loop refinement, sidechain 

prediction, and minimization of non-conserved residues. Molecular docking was 

performed by using Glide, during which zinc ion was set as constraint, all results were 

generated by XP model and flexible docking, while the rest of setting were kept default. 

Docking poses were viewed and displayed by Schrödinger Maestro. 
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ABSTRACT 

DESIGN AND SYNTHESIS OF ENZALUTAMIDE-ISOTHIOCYANATE 

HYBRID DRUG AS ANTI-PROSTATE CANCER AGENT  

by 
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August 2016 

Advisor: Dr. Zhihui Qin 

Major: Pharmaceutical Sciences 

Degree: Master of Science 

 Isothiocyanate (ITC), such as sulforaphane (SFN), is an active metabolite of 

dietary glucosinolate from cruciferous vegetables. SFN-rich extracts have been recently 

tested in recurrent prostate cancer (PCa) patients and notably prolonged PSA doubling 

time without Grade 3 adverse events. One of the anti-PCa mechanisms of SFN is to inhibit 

HDAC6, which further triggering androgen receptor (AR) degradation. We have 

incorporated ITC to the chemical scaffold of enzalutamide (Enz) to create Enz-ITC hybrid 

molecules with an intention to intracellularly deliver ITC to AR-Hsp90-HDAC6 complex 

and therefore improving anti-PCa efficacy of both parental drugs. Two Enz-ITCs and one 

Enz-ITC N-acetyl cysteine (NAC) conjugate, i.e. compound 12b (C6-ITC), 12a (C4-ITC) 

and 13 (C6-NAC) were successfully synthesized. Our results support that Enz-ITCs 

inhibit AR transcriptional activity, induce AR protein down-regulation (more effective 

than SFN) and suppress proliferation of both androgen-sensitive and insensitive prostate 

cancer cells. The AR antagonist activity of Enz-ITC was confirmed by the results of MTT 

and ARE-luciferase assays. We’ve also synthesized amide analogue of Enz-ITC 19 with 
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reduced AR affinity while keeps the activity of ITC for future mechanistic studies.  As a 

relevant strategy to study AR-directed HDAC inhibition, a representative Enz-HDAC 

inhibitor (HDACi) hybrid, compound 1005 was synthesized. 1005 and its prodrug 29 

suppressed proliferation of both androgen-sensitive and insensitive prostate cancer cells. 
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