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CHAPTER 1: INTRODUCTION 

1.1 General Introduction 

Most of life’s energy consuming processes are fueled by adenosine-5’-triphosphate 

(ATP).  The majority of ATP synthesis takes place inside mitochondria during aerobic 

respiration by the process known as oxidative phosphorylation (OxPhos) in which redox energy 

is used to create a bond between ADP and inorganic phosphate (Pi).  Respiratory substrates are 

oxidized by the components of an electron transport chain (ETC) located in the mitochondrial 

inner membrane that transfer the reducing equivalents to molecular oxygen (O2) forming water.  

There are four different respiratory substrates (NADH, succinate, fatty-acyl CoA, glycerol-3-

phosphate) and separate dehydrogenase enzymes for each.  All four dehydrogenases transfer 

reducing equivalents from the respective substrate to a common acceptor, ubiquinone 

(Coenzyme Q, “Q”), which gets reduced to ubiquinol (QH2).  Electrons are then transferred 

along a linear path to O2 through redox centers in the ubiquinol:cytochrome c oxidoreductase 

(bc1 complex), cytochrome c, and cytochrome c oxidase.  The redox reactions are exergonic and 

part of the energy released is utilized by ETC proteins to translocate protons from the matrix 

compartment to the intermembrane space (IMS).  This action creates a transmembrane 

electrochemical gradient with the IMS more positively charged and acidic relative to the matrix.  

The pressure to counteract the imposed change in proton distribution constitutes an energy 

source called the proton motive force (pmf).  The mitochondrial ATP synthase uses the pmf to 

make ATP (Figure 1, image adapted from “Lehninger Principles of Biochemistry (5E 2008 ISBN 

9780716771081) David L. Nelson, Michael M. Cox).  
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1.2 Advantages of the yeast model to study mitochondrial energy metabolism 

 Most of what we know about the mitochondria originates from studies that were 

conducted in the yeast Saccharomyces cerevisiae. S. cerevisiae has the ability to survive 

mutations in the oxidative phosphorylation (OxPhos) system when provided with a fermentable 

carbon source such as glucoses, thus establishing a genetic system for studying mitochondria 60 

years ago (1).  Studies in S. cerevisiae mutant forms (ρ−/ρ0) revealed that a non mendelian 

genetic element, the ρ factor, is responsible for the control of respiration in yeast, which was 

found later to be a 16 kB DNA (mt DNA) molecule located in the mitochondrion (2).  Due to a 

smaller size and limited coding genes, it was quickly realized that the majority of the 

fundamental genes needed for the process of mitochondrial biogenesis must reside within the 

nuclear DNA (nDNA) and the products transported to the mitochondria.  The role of nDNA in 

Figure 1. The chemiosmotic model.  Electrons from oxidizable substrates pass through a series of electron 
carriers located in the inner mitochondrial membrane (IM). Electron flow is accompanied by the movement of 
protons across the membrane to produce a chemical gradient (∆pH) and an electrical gradient (∆Ψ). Together, these 
gradients comprise a proton motive force (pmf) that allows the protons to re-enter the mitochondrial matrix via a 
polar channel in the FO region, and this action provides the energy for ATP synthesis catalyzed by the F1. 
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the regulation and expression of mitochondrial genes was confirmed by Alexander Tzagoloff by 

establishing the existence of > 200 genetically distinct nuclear loci required for the growth of 

yeast cells on non-fermentable substrates such as glycerol (3).  The construction of whole-

genome deletion-mutant collections and sequencing of the S.cerevisiae genome has led to the 

identification of 265 previously unknown nuclear genes required for optimal growth using 

respiration (4).  Furthermore, proteomic analysis of highly pure yeast mitochondria using mass 

spectroscopy has approximately 1000 total protein species in yeast mitochondria (5, 6).  

Remarkably, on analyzing 14 different mouse tissues, a similar count of mitochondrial proteins 

was estimated, of which greater than 50% had a homolog in yeast (7).  Such observations 

indicate that the mitochondria of single-celled organisms are complex in nature and are highly 

similar to the individual cells of higher eukaryotes.  

 The human mitochondrial genome database (MITOMAP) has identified more than 250 

point mutations that are proven or suspected to be pathogenic (http://www.mitomap.org).  

Mutations in genes that encode a mitochondrial protein primarily affect the complexes to which 

they belong, whereas, mutations in the mitochondrial transfer RNA (mt-tRNA) genes have a 

pleiotropic effect because they impair the entire process of mitochondrial protein synthesis. 

Unique characteristics of mitochondrial genomes (8) and technical challenges have significantly 

hampered genetic experiments with human mtDNA.  The mitochondrial genome is susceptible to 

a rate of mutation that is 10-17 times higher relative the nuclear chromosomes and the 

prevalence of family or population specific polymorphisms makes it difficult to discern between 

a neutral mtDNA variant and one that is disease-causing.  Also, the mitochondrial genome is 

polyploid and can accumulate in hundreds or thousands of copies in a single cell.  This latter 

property has particular consequence for studies of mtDNA mutations in human cells, which are 
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typically heteroplasmic.  A further complication has been the dismal failure in developing a 

practical method to introduce mutagenized mtDNA directly and stably into the mitochondria of a 

mammalian cell (9).   

S. cerevisiae has been invaluable for the investigation of mutations in mtDNA mutations 

for two reasons.  First, since it is unable to stably maintain a heteroplasmic mitochondrial 

genome it is relatively easy to obtain homoplasmic populations of budding yeast in which all 

mtDNA molecules carry a mutation of interest (10).  Second, it is the only species amenable to 

targeted genetic manipulation of mtDNA; mutant DNA sequences can be delivered into yeast 

mitochondria by microprojectile bombardment (biolistic transformation) and subsequently 

incorporated into mtDNA by the highly active homologous recombination machinery present in 

the organelle (11).  The high level of functional conservation between yeast and human 

mitochondrial genes legitimizes the yeast model for revealing the molecular mechanisms of 

pathogenic human mitochondrial gene mutations (10).  Progress to date has included the 

characterization of various mutations in yeast mitochondrial genes encoding the subunits of the 

OxPhos complexes (12) and the mt-tRNAs (13).  Of particular note has been the ability of 

investigators to recapitulate in yeast and study the effects of the human ATP6 mutations that 

cause the mitochondrial myopathies NARP (neuropathy, ataxia, and retinitis pigmentosa) and 

Leigh syndrome (14).  S. cerevisiae has also provided efficient means to study mitochondrial 

diseases that are caused by mutations in the nuclear genome.  Since the first report in 1995 of 

nuclear defect affecting respiratory complex II (succinate dehydrogenase) in sibling patients with 

Leigh syndrome (15), more than 150 nuclear genes have been linked to mitochondrial diseases, 

~70% of which are conserved in yeast (16–18). 
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1.3 ATP Synthase structure 

The structure of the 

ATP synthase is essentially the 

same across the bacterial, 

plant, and animal kingdoms, 

although there are many more 

composite subunits in 

eukaryotes vs prokaryotes 

(Table 1).  The cartoon 

drawings of the yeast mitochondrial ATP synthase in Figure 2 depict the general arrangement of 

the individual subunits (left) and the domain architecture of the protein (right).  Domain 1 (sky 

blue) is hydrophobic and spans the mitochondrial inner membrane.  There is an evolutionarily 

conserved core structure that contains a single a subunit in contact with an oligomer of c 

subunits.  The a/c-ring interface serves as a polar channel that conducts protons across the 

membrane. Domain 2 (green) is hydrophilic and projects into the matrix.  This domain can be 

readily purified from the membrane as a single unit and is named F1.  F1 is the catalytic 

component of the ATP synthase.   

 

 

 

 

Figure 2. Cartoons of the yeast mitochondrial ATP synthase.
The left-hand diagram shows the names of the major subunits and the 
right-hand diagram shows the demarcation of three structural domains.  
See text for details. 
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Table 1. Subunit composition of human, yeast, and Escherichia coli ATP synthase.a 

Five different types of F1 subunits are distributed between two sub-structures:  one is 

spherical with 3α subunits and 3β subunits (dark green) and the other is an elongated rod made 

up of γ, δ, and ε subunits (light green).  The left-hand diagram in Fig. 2 shows that the α subunits 

(red) and the β subunits (gold) alternate with each other in the sphere. Each β subunit contains an 

adenine nucleotide binding site that becomes catalytically active in the assembled enzyme where 

there is contribution from an adjacent α subunit (19).  The rod, which is commonly referred to as 

the “rotor” (see below), is mostly comprised of the γ subunit, part of which extends up inside the 

αβ hexamer.  The δ and ε subunits associate with γ at the base of the structure, and are necessary 

Subdomain Stoichiometry Bacteria Mitochondria 
  E. coli S. cerevisiae H. sapiens 

F1 3 α α α 
 3 β β β 
 1 γ γ γ 
 1 ε δ δ 
 1 - ε ε 
 1 δ OSCPb OSCPb 

FO 1 a a (Atp6p) a 

 10-15 c c (Atp9p) c 

 1-2c b b (Atp4p) b 

 1 - d d 

 1 - h F6 

 1 - 8 (Atp8p) A6L 

 1  f f 

 tbdd - e e 

 tbd - g g 

 1 - i - 

 1 - k - 

Regulators 1  Inh1p IF1 

 tbd  Stf1p  

 tbd  Stf2p  
aThis table is adapted from Rodenberg et al. J Inherit Metab Dis (2012) 35:211–225, Table 1. 
bOligomycin-sensitivity conferring protein.  The mitochondrial OSCP does not co-purify with solubilized F1, 
while its bacterial homolog (δ) does.cd 
cThe E. coli enzyme has two copies of the b subunit, while in mitochondria there is one b-homolog and subunits d 
and h/F6 that fulfill the role the second bacterial b subunit. 
dto be determined. 
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to connect the γ subunit to the c-ring.  Domain 3 (magenta) is a peripheral stalk that is anchored 

in the membrane at one end and connects with the αβ hexamer at the other end.  The best 

characterized proteins of the peripheral stalk are subunits b, d, F6, and OSCP.  Domains 1 and 3 

constitute what has been historically called the FO component of the ATP synthase.   

The stoichiometry of the c-ring varies between species with E. coli (20, 21) and yeast 

(22) having a c10 oligomer, while the Fo domains of Ilyobacter tartaricus (23), Chlamydomonas 

(24) and spinach chloroplasts (25) have c11, c13 and c14 multimers, respectively.  The c-ring of 

the cyanobacterium Spirulina platensis contains 15 subunits and is the largest known (26).  The 

differences between organisms are interesting because the c-ring stoichiometry determines the 

number of protons that pass through the a/c-ring channel per ATP synthesized.  Every 360° 

rotation of the c-ring (plus rotor unit) affords 3 ATPs released from the enzyme.  Accordingly, in 

yeast that have a c10-ring, the proton to ATP ratio would be 3.3 (10/3) while in chloroplasts the 

ratio would be 4.7 (14/3).  The significance of the proton to ATP (H+/ATP) ratio can be 

explained thermodynamically. Under physiological conditions, the energy required for ATP 

synthesis is 50 kJ mol-1 (~520 meV).  The proton motive force ranges between 120-200 mV, and 

is equal to the energy released for every proton that re-enters the mitochondrial matrix.  Hence, 

nearly 3 protons must be transferred through the channel in FO to generate the 520 meV 

necessary to make 1 ATP.  A consensus has been reached among bioenergersists that there are 

10 protons translocated from the matrix to the IMS per NADH oxidized and 6 for either 

succinate, fattyacyl-CoA, or glycerol-3-P, all of which transfer electrons to ubiquinone via redox 

pathways that generate FADH2 along the way.  Assuming these values are universally 

equivalent, the amount of substrate oxidized per ATP would need to increase in concert with the 

c-ring stoichiometry to permit, for example, a comparable amount of ATP synthesis in 
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chloroplasts and in yeast mitochondria.  It follows that the efficiency of oxidative energy 

metabolism correlates inversely with the stoichiometry of the c-ring 

1.4 Assembly of the mitochondrial ATP synthase 

 The biogenesis of eukaryotic ATP synthase involves two separate genomes and three 

sub-cellular compartments.  Most of the subunits are nuclear gene products, which are translated 

in the cytoplasm and imported to destinations in the matrix or the inner membrane of 

mitochondria.  However, 2 or 3 of the most hydrophobic FO proteins are encoded by mtDNA and 

translated inside the organelle; in S. cerevisiae, subunits a, c, and 8 are mitochondrially encoded, 

while in higher eukaryotes the gene for the c-subunit is nuclear.  Adding to the complexity of 

mitochondrial ATP synthase biogenesis is the involvement of “assembly factors” that mediate 

productive associations among unassembled ATP synthase subunits, and the non-conserved FO 

proteins that foster the dimerization of the enzyme in the membrane.  Most of the genes encoding 

these functions were cloned by complementing respiratory-deficient nuclear mutants of the 

Tzagoloff S. cerevisiae collection (3) (see above), and work over the past 25 years has mapped 

these functions to discrete steps along the biogenesis pathway for the yeast enzyme (Figure 3)   

The soluble F1 component of the mitochondria, which includes the α3β3 hexamer and the 

γδε rotor element, is assembled independently from the peripheral stator and the membrane-

embedded FO subunits.  In yeast deficient for either Atp11p or Atp12p, the α and β subunits both 

accumulate as aggregated proteins (27).  Subsequent studies showed evidence of direct protein 

interactions between Atp11p and the β subunit (28), and between Atp12p and the α subunit (29).  

Additional insight to the F1 assembly pathway came from experiments with yeast ∆atp1 and 

∆atp2 mutants lacking either the α or β subunit, respectively.  Only one of the two types of 

hexamer proteins is produced in such yeast and when present by itself, the lone β or α subunit is 
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recovered as insoluble material following fractionation of mitochondria (27).  Cumulatively, the 

data was interpreted to indicate (1) the individual α and β subunits are naturally prone to 

aggregation, (2) Atp11p protects F1 β and Atp12p protects F1 α from aggregation in vivo, (3) the 

level of the assembly factors inside mitochondria is vastly substoichiometric with respect to 

target protein, which would explain the β subunit aggregates in ∆atp1 (or vice versa); there 

simply is not enough Atp11p (or Atp12p) to maintain a full complement of the β subunit (or α 

subunit) in a soluble state (30).  In addition to the normal house-keeping functions fulfilled by 

the Atp11p and Atp12p molecular chaperones, Fmc1p (31) and Hsp90p (32) were identified to 

be required for yeast F1 assembly under conditions of heat stress.  

Mitochondrial FO assembly occurs in stages that are characterized by unique sub-

assemblies (33).  The c-ring forms as a distinct entity that binds the F1 oligomer before 

interacting with any other FO protein (34) (Fig. 3, red arrow).  The other two major integral 

membrane proteins, subunits a and 8, form a binary complex that matures into a larger complex 

INAC e,g,k,b

Figure 3. Model of ATP synthase assembly in yeast mitochondria. The cartoon in this figure was adapted 
from Lesiter et al, Assembly of F1Fo ATP Synthase, Biochim Biophys Acta (2015), Figure 1A. 
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(blue arrows) through binding 2 or 3 stator stalk subunits (b, d and probably h).  The later steps 

are coordinated by an entity called the mitochondrial inner membrane assembly complex (INAC, 

yellow shading), which mediates binding in the matrix compartment between F1, the membrane-

associated stator stalk proteins, and OSCP, and in the membrane between the a subunit and c-

ring to create the proton channel (35).  The ramifications of postponing subunit a association 

with the c-ring until OSCP can bind and secure F1 to the membrane domain cannot be overstated.  

This temporal relationship ensures that the rotor element is engaged when the proton channel is 

formed and avoids the risk of pmf dissipation without ATP generation 

The ability of mitochondrial ATP synthase to form dimers (36) is an interesting feature 

because there have been experimental observations that link this phenomenon to mitochondrial 

cristae development (36, 37).  Work that has included Blue-native gel electrophoresis (38) to 

separate membrane complexes in samples of digitonin-treated yeast mitochondria has associated 

three of the non-conserved FO subunits of eukaryotes (e, g, and k) (see Table 1) with dimer 

formation, though none of these proteins are essential for ATP synthase activity (37).  There is 

also a eukaryotic-specific transmembrane domain at the N-terminus of the b subunit that has 

been shown to bind the g subunit, which implicates also this protein in dimer formation (39).  A 

structure of the ATP synthase dimer at 3.7 nm resolution has been obtained using electron 

cryotomography, which reveals a V-like structure with the two monomers separated by an angle 

of 86° at the long axes (40). 

1.5 Mechanism of ATP synthesis 

 Investigators in the bioenergetics field concur on the point that the ATP synthesis and the 

ATP hydrolysis reactions catalyzed by the ATP synthase proceed according to the same 

mechanism, albeit in opposite directions.  Most of what is known about this mechanism has 
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come from studies of the hydrolysis reaction because it is so much easier to measure this activity 

in vitro.  The measurements of rate constants in Dr. Harvey Penefsky’s laboratory (41, 42) and of 

the patterns of 18O exchange for substrates and products by Dr. Paul Boyer and colleagues (43) 

constituted seminal work during the early 1980’s that revealed the three catalytic sites of F1 

operate cooperatively during enzyme turnover; the catalytic rate at one CS was shown to be 

increased by substrate binding to at least one additional CS in the enzyme.  This feature was 

verified a decade later from the first high resolution X-ray structure of mitochondrial F1 (19) 

(Figure 4), which showed that the 3 catalytic sites differed in structure and nucleotide occupancy.  

Moreover, the catalytic sites were located to every other subunit interface around the perimeter 

of the α3β3 hexamer, with the cavity in the β subunit and critical side-chain contribution from the 

α subunit.  The features of the CS asymmetry are modeled in the cartoons shown in Fig. 4; the 

TP site has a closed conformation with nucleotide triphosphate bound, the DP site (with bound 

ADP) is looser in comparison, and the E site is wide open and empty.  The γ subunit, which is 

observed in the center of the α3β3 hexamer, is connected at the other end to the c-ring of FO in 

the assembled F1FO 

 To explain the mechanism of ATP synthesis it is convenient to begin with the 

hypothetical situation in which there is no respiratory substrate in mitochondria.  Under such 

circumstance the F1 would likely resemble the cartoon at the top of Fig. 4, in which ATP is 

trapped in the closed TP site, ADP ± Pi is bound to the DP site, and an empty third site. 
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 When reducing equivalents are provided, the respiratory chain translocates protons out of 

the mitochondrial matrix, generating the proton motive force that drives ATP synthesis.  In an 

effort to release the pmf, protons flow down the energy gradient from the IMS to the matrix 

through the a/c-ring channel in the membrane (Fig. 4, lower).  Ion entry protonates the 

negatively charged carboxyl group of the c-subunit exposed to the polar environment in the 

channel.  Neutralization of the charge enables the c-ring to rotate such that the newly protonated 

c-subunit moves to the lipid bilayer, the adjacent c-subunit moves to the polar channel and loses 

its proton, which is then transferred to the other side of the membrane.  The attached γ subunit 

rotates with the c-ring (see Fig. 4, upper, orientation of triangle), and this brings about 

conformational changes at the catalytic sites.  The final result is that what was formerly a TP site 

Figure 4. The mechanism of ATP synthesis. Upper, Views looking down on the top of the bovine 
mitochondrial F1 are shown with side by side images of the 2.8 Å structure model (1BMF.pdb) and a cartoon.  The 
three catalytic subunits are the βTP, βDP, and βE sites, and the γ subunit is portrayed by the yellow triangle with the 
orientation highlighted red.  Lower, Cartoon view of mitochondrial IM cross-section showing the proton channel 
(white) at the a/c-ring interface.  Subunit c-carboxylate can be ionized inside the polar channel but must be 
protonated when exposed to surrounding lipid. 
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releases the bound ATP to become an E site, the DP site locks in the Pi to form a TP site and the 

E site binds an ADP to form a DP site. 

1.6 Human pathologies linked to the mitochondrial ATP synthase 

 OxPhos deficiency caused by genetic defects in the human ATP synthase (complex V) 

are much less common compared with those that have been linked to the respiratory proteins of 

the ETC.  According to the diagnostic data that has been collected for human mitochondria, the 

frequencies at which genetic mutations have been linked to disease are 8% for complex I 

(NADH:ubiquinone reductase), 5% for complex IV (cytochrome c oxidase), 3% for complex III 

(ubiquinol:cytochrome c oxidoreductase), 2% for comlex II (succinate:ubiquinone reductase) and 

1% for complex V (1%) (44).  Mutations in ATP6 and ATP8, encoded by human mtDNA, are the 

most common sites of genetic lesions linked to complex V deficiency.  To date there have been 

only three nuclear genes (ATPAF2, TMEM70, ATP5E) for which mutations linked to complex V 

deficiency have been reported.  The features of complex V-linked diseases of OxPhos are 

described briefly in the following sub-sections of this topic.  

1.6.1 ATP synthase αααα mutations: ATP5A1 

 Two missense mutations in the human nuclear gene, ATP5A1, were identified in two 

separate cases.  In the first case a mutation was observed that converted a Tyr278Cys in an infant 

(45).  The symptoms of the mutation were similar to severe mitochondrial diseases leading to the 

death of child at age 3.  The patient had a sister with similar symptoms and died at age 15. Both 

patients had combined respiratory chain deficiency.  The effect of the mutation was more severe 

in the muscle and the liver of the patient with depletion of the mitochondrial DNA.  Studies in 

yeast has revealed that this α subunit mutation uncouples the F1 ATP synthase.  In the second 

case an Arg286Cys was observed in the α subunit of two siblings (46).  The mutation caused 
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severe cerebral damage leading to death of both siblings within the first few weeks of birth.  In 

addition, damage to the kidney, lungs, and skeletal muscle was also observed.  The Arg286Cys 

mutation caused a dramatic decrease in the ATP production levels as measured by ATP 

activities.  While the father was a heterozygote carrier of the mutation, the mother had another 

mutation that caused the loss of expression of the gene coding the α subunit.  Both patients were 

heterozygous for the Arg286Cys mutation and did not express any wild-type form of the α 

subunit.  This mutation did not manifest any pleiotropic effects on the mitochondrial DNA or 

other respiratory chain enzymes. 

1.6.2 ATP synthase subunit a mutations: ATP6 

The first and the most frequently reported complex V genetic defects are due to mutations 

in the mitochondrial encoded ATP6 gene (47).  The most common mutations that affect ATP6 are 

m.8993T>G/C, and m.9176T>G/C, and the symptoms of this mutation varies between isolated 

ataxia, NARP, bilateral striatal necrosis, to Leigh or Leigh-like syndromes (48–50).  Also, other 

clinical mutations have been associated with ATP6 (www.mitomap.org). The m.8993T>G 

mutation leads to NARP (<90-95%) or MILS (>95%) depending upon the level of heteroplasmy.  

The m.8993T>G point mutation leads to the substitution of arginine for leucine at position 156 in 

the protein.  L156 is highly conserved in eukaryotes (51, 52).  The mutation has no effect on 

complex V assembly, but does replace a neutral for a positive charge at the a/c-ring ring 

interface slowing proton translocation through the channel (53).  Clinically the symptoms of 

m8993T>C are similar to m.8993T>G, but the effects are milder (54, 55).  The former leads to 

the substitution of proline for L156, which in a manner not understood, correlates with a higher 

production of reactive oxygen species (ROS) that is believed to be the primary cause of 

pathogenicity (51).  ROS is known to be a major player in the pathogenesis of many different 
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neurological disorders that are related to mitochondrial dysfunctions (56).  The m.9176T>G/C is 

characterized by familial bilateral striatal necrosis (FBSN) and Leigh syndrome (57).  These 

mutations convert L217 to R217 (m.9176T>G) or to P117 (m.9176T>C), which is another a 

subunit residue that is located proximal to the c-ring.  However, studies in yeast have shown that 

this mutation blocks, almost completely, the incorporation of the a subunit in the ATP synthase 

and impacts complex V assembly unlike the m.8993T>G/C mutations described above. 

1.6.3 ATP Synthase subunit A6L mutation: ATP8 

 A m.8529G>A homoplasmic mutation was observed in the mitochondrial genome of a 

16-year old patient, which caused apical hypertrophic cardiomyopathy and neuropathy (58).  It 

overlaps a region between ATP6 and A6L, and leads to a silent change in ATP6 but introduces a 

premature stop codon in a conserved region of A6L.  This mutation led to an assembly defect and 

decreased ATP production by complex V. The m.8528T>C mutation was observed in four 

infants from unrelated families who presented with isolated hypertrophic cardiomyopathy and 

congestive heart failure, leading to multisystem disease (59).  m.8528T>C causes the substitution 

W55R at a highly conserved tryptophan in A6L.  Another A6L mutation, m.8411A>G, was 

reported in a patient suffering from psychomotor delay, epilepsy, tetraplegia, congenital 

deafness, central blindness, and swallowing difficulties, which correlated with 97% 

heteroplasmy. 

1.6.4 ATPAF2 

 A homozygous T>A missense mutation was identified in ATPAF2 (60), which is the 

nuclear gene that encodes the human Atp12p homolog.  The mutation causes the replacement of 

an evolutionarily conserved tryptophan with arginine at position 94 of the mature protein with 

devastating consequences; the patient exhibited severe neonatal encephalopathy that led to basal 
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ganglia atrophy shortly after birth and death at 14-months.  There was a significant decrease in 

the amount, and therefore the activity of ATP synthase in the patient.  Plasmid-borne human 

ATPAF2 had been shown to rescue the respiratory defect of ∆atp12 yeast (61).  Members of our 

laboratory took advantage of this fortunate circumstance and used the yeast model to 

characterize the effects of the W94R mutation in human Atp12p (62).  The mutation was shown 

to alter the structure of Atp12p in a manner that compromised its solubility in mitochondria.  

1.6.5 TMEM70 

 Transmembrane protein 70 is a mitochondrial protein that is encoded by the human 

TMEM70 gene.  Frameshift and splice site mutations in the TMEM70 gene have been reported 

for patients among the homogenous ethnic group of Romani people (63).  The common clinical 

manifestations of mutations in TMEM70 include lactic acidosis, dysmorphic features, and 

encephalocardiomyopathy.  There have also been additional complications such as early-onset 

cataract, gastrointestinal dysfunction, congenital hypertonia, and a fetal presentation of the 

syndrome associated to particular mutations (64).  A milder version of the symptoms was 

observed in a patient with harboring splice site and missense mutations (65).  Limited 

experiments have been interpreted to suggest that transmembrane protein 70 might regulate how 

much FO protein gets incorporated in the membrane, though the actual function of this protein in 

complex V biogenesis remains to be determined (66).  

1.6.6 ATP synthase subunit epsilon: ATP5E 

 When an A>G homozygous missense mutation in exon 2 of human ATP5E (F1 ε subunit) 

was reported in a patient, it was the first genetic lesion discovered in a nuclear gene that codes 

for a structural subunit of the ATP synthase.  The resultant Y12C substitution in the ε subunit 

caused a decrease in mitochondrial complex V that was associated to neonatal onset of lactic 
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acidosis, 3-methylglutaconic aciduria, and mild mental retardation.  In contrast to all of the other 

complex V mitochondrialopathies that have been described, the mutation in ATP5E was 

additionally correlated with the accumulation of the c-subunit in the membrane.  Perhaps this is 

not surprising in view of work that has focused on the ε subunit of humans (67) and yeast (68), 

and the homologous δ subunit of bacteria (69), which revealed how important this protein is for 

the interactions between F1 and the FO proton channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

18

CHAPTER 2: MATERIALS AND METHODS 

This section provides only the experimental details of work done by me with the atp1 and 

atp2 mutants.  The PCR conditions and the oligonucleotide primers used by Dr. Xu to identify 

the nucleotide changes reported in the tables shown in Figure 5A are given in Appendix #. 

 Cells and Media 

The atp1 and atp2 mutants were derived from the respiratory-competent haploid strain of 

S. cerevisiae, D273-10B/A1 (MATα met6).  Yeast were grown in the following media:  YPD 

(2% glucose, 2% peptone, 1% yeast extract), YPGal (2% galactose, 2% peptone, 1% yeast 

extract), YEPG (3% glycerol, 2% ethanol, 2% peptone, 1% yeast extract), WO (2% glucose, 

0.67% yeast nitrogen base without amino acids (Difco)).  Amino acids and other growth 

requirements were added at a final concentration of 20 μg/ml.  Escherichia coli TB1 (hsdR ara 

∆(lac-pro AB) rpsL [Φ80d lac (∆lac Z)M15]) was the host bacterial strain for recombinant 

plasmid constructions.  Non-transformed bacteria were grown in LB (% glucose, % tryptone, % 

NaCl).  Plasmid-bearing E. coli was grown in AMP medium (% antiobiotic medium (Difco) plus 

Ampicllin at 40 µg/ml final concentration.  Solid media included 2% agar. 

Preparation of yeast mitochondria 

 Yeast were grown aerobically in liquid YPEG or YPGal at 30° C to early stationary 

phase.  The method of Faye et al (70) was used to prepare mitochondria with the exception that 

Zymolase, instead of Glusulase was added to digest the cell wall.  Digestion was monitored 

using a light microscope to examine small aliquots, which had been diluted on the slides with 

water, for changes in morphology (e.g. clumping) and hypo-osmotic lysis (e.g. excessive cell 

debris).  In brief, the isolation of mitochondria from spheroplasts proceeded with mechanical 

shearing of cells in 30 ml volumes of buffered 0.5 M sorbitol using a Waring blender equipped 
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with a stainless steel 50 ml mini-cup.  Phenylmethylsulfonyl fluoride (PMSF) dissolved in EtOH 

was added to 10 μg/ml final concentration just prior to homogenization to minimize proteolysis.  

The homogenate was centrifuged at ~ 2500xg to remove nuclei and unbroken cells and the 

clarified suspension was then centrifuged at 15,000xg to pellet mitochondria.  After washing 

twice, mitochondria were suspended routinely using a dilute Tris-HCl buffer (10 -20 mM) 

buffered at pH 7.5.  Protein concentration was estimated using the Lowry procedure (71).  The 

final yield of mitochondria from an 800ml culture was 10-13 mg (0.5-0.6 ml at 20 mg/ml).  The 

yields from mutant cultures were variable, but typically did not dip below 3-4 mg.  

ATPase assays 

ATPase activity was measured, in the absence and presence of oligomycin, using a 

coupled enzyme assay (72) (Scheme 1). 

 

              

 

 

Assays were performed with a Cary 100 UV/VIS spectrophotometer and monitored the sample 

for absorbance change at 340 nm.  A Fisher Scientific (Model Isotemp 3016) circulating water 

bath attached to the instrument maintained the temperature of the sample compartment constant 

at 30° C.  The sample cuvette contained 1 ml of reaction mixture ( 2 mM Phosphoenol pyruvate, 

4 mM ATP, 0.3 mM NADH, 320 µg Pyruvate kinase, and 130 µg Lactate dehydrogenase).  

Following the addition of 5 µl EtOH (minus oligomycin conditions) or 5 µl oligomycin (stock 

concentration) (plus oligomycin conditions), the assay was initiated by the addition of 

mitochondria (volume range 1-50 µl) and data collected for 2 minutes.  Slopes (∆O.D./min) were 

ATP ADP + Pi

ADP + PEP

F1

Pyruvate + ATP
PK

Pyruvate + NADH
LDH

Lactate + NAD+

Scheme 1
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calculated from the linear region of the traces (CARY software version) and the decrease in 

NADH concentration was determined by dividing the slopes by the extinction coefficient (6.23 

mM-1).  Since all of the reaction components are present at 1:1 stoichiometry, µmole NADH 

consumed per minute is equal to µmole Pi produced per minute (reaction velocity; expressed as 

U (standard unit of enzyme activity)).  F1 activity is reported as Specific Activity (µmole min-1 

mg-1 or U mg-1), which was calculated by dividing the velocities by the total amount of 

mitochondrial protein (mg) in the 1 ml assay. 

Extraction of F1Fo from mitochondria 

 Mitochondria were suspended at 5 mg/ml in a buffer containing 10 mM Tris-HCl, pH 

8.0, 4 mM ATP and 1 mM EDTA at volumes ranging from 150 - 200 µl.  Triton X-100 was 

added to a final concentration of 0.25%, and PMSF (final concentration 10 μg/ml) was added to 

minimize proteolysis of the solubilized proteins.  After removing an aliquot (30-40 µl) to a 4X 

SDS solubilization (Laemmli) solution, the rest of the mixture was incubated at 0° C on ice and 

then centrifuged at 100,000 g for 30 min at 4° C.  The supernatant was removed to a fresh tube 

and the insoluble material was suspended in buffer back to the pre-centrifugation volume.  

Samples of the freshly isolated soluble and particulate fractions were mixed with 4X Laemmli 

solution and stored at -20° C.  The remaining fractionated material was kept frozen at -70° C. 

Step sucrose centrifugation analysis of F1-ATPase subunits 

 Mitochondria were suspended at 5 mg/ml in a buffer containing 10 mM Tris-HCl, pH 

8.0, mM ATP and 1 mM EDTA at a volume of 200 µl. Triton X-100 was added to a final 

concentration of 0.25%, and PMSF (final concentration 10 μg/ml) was added to minimize 

proteolysis of the solubilized proteins.  An aliquot of the sample (30 µl) was added to a 4X SDS-

sample buffer solution (Laemmli).  The remaining mixture was incubated at 0° C on ice for 20 
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min, and the entire volume was overlaid on top of a discontinuous gradient of 10 mM Tris HCI 

(pH 7.5)-buffered sucrose built from 1.2 ml of 80%, 0.9 ml of 60%, 0.9 ml of 50%, 0.9 ml of 

30%, and 0.9 ml of 20% sucrose. The gradients were centrifuged at 36,000 g for 2 hr 30 min in a 

Beckman SW-55Ti rotor, and 10 fractions were collected from the bottom of the tube. 

Equivalent volumes (45 µl) of each fraction were mixed with 4X Laemmli solution and stored at 

-20° C for western analysis.  The remaining volumes of the sucrose gradients were stored at -80° 

C.  

Linear sucrose centrifugation analysis of soluble F1Fo 

 Linear sucrose gradients were used to evaluate the size of the F1FO complex in 

mitochondrial supernatants. Mitochondria were suspended at 5 mg/ml in a buffer containing 10 

mM Tris-HCl, pH 8.0, mM ATP and 1 mM EDTA at volume ranges of 600-800 µl.   Triton X-

100 was added to a final concentration of 0.25%, and PMSF (final concentration 10 μg/ml) was 

added to minimize proteolysis of the solubilized proteins.  The entire mixture was incubated at 

0° C on ice for 20 min and centrifuged at 100,000xg for 30 min at 4° C.  An aliquot of the 

supernatant fraction (30 µl) was mixed with 4X SDS-sample buffer (Laemmli), and the 

remaining volume (0.6 ml) was loaded onto a 4.4 ml 6-20% sucrose gradient prepared in 0.1% 

Triton X-100 supplemented TEA buffer.  The gradients were centrifuged at room temperature for 

1.5 h at 36,000 g in a Beckman SW55Ti rotor.  For all the experiments, twenty fractions of 

equivalent volumes were collected from the bottom of the tube and 15 µl of the sample  was 

analyzed to detect the F1 α and β subunits by western analysis as outlined in the “Western 

blotting analysis” section. 
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Western blotting analysis 

 Mitochondrial samples mixed with 4X SDS-sample buffer containing 60 mM Tris pH 

6.8, 50% glycerol, 10% SDS, and 14.4 mM β-mercaptoethanol was heated at 95° C for 5 min.  

30 µg of protein samples were resolved electrophoretically using a 12% SDS- polyacrylamide 

reducing gel in a buffer containing 250mM Tris base, 1.9 M glycine, and 10% SDS.  Following 

electrophoresis, the SDS gels, nitrocellulose membranes (0.45 µm, Amersham Protran), and 

filters papers of equivalent sizes were immersed in a transfer buffer (25 mM Tris base, 191 mM 

glycine, and 200 ml methanol) for 15 min to equilibrate.  A transfer sandwich was prepared and 

the proteins were transferred from the gel to nitrocellulose membrane in the same transfer buffer 

at a constant voltage of 100 V for 40 min.  The transferred proteins were stained with Ponceau S 

to visualize the bands.  The desired bands were marked for identification and destained by 

washing with Tris-buffered saline containing 20 mM Tris-HCl, 0.5 M NaCl, and 0.1% Tween 20 

(TBS-T) for 5 min.  The nitrocellulose membrane was incubated with 10 ml of 1.5% (w/v) non-

fat dry milk in TBS-T for one hour to eliminate non-specific binding.  The membranes were  

probed with a primary antibody for 1 h with shaking at 25° C, followed by 3 washes of TBS-T 

(10 min per wash) to remove any unbound primary antibody.  It was then incubated with the 

corresponding secondary antibody conjugated to horseradish peroxidase (HRP) for 30 min with 

shaking at 25° C.  After the secondary antibody treatment, the membrane was washed 3 times 

with TBS-T (10 min per wash) to eliminate any unbound antibody that may contribute to a 

background signal.  The blot was incubated in a solution containing luminol (Clarity Western 

ECL) for 5 min.  The oxidation of luminol by HRP produces 3-aminonapthalate, which on decay 

emits light and produces a signal when exposed to an X-ray film. 
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 For the analysis of the F1 subunits from the linear sucrose gradient fractions, the proteins 

were precipitated using trichloroacetic acid (TCA) prior to western analysis.  Briefly, 1 volume 

of TCA (66.6 µl) was added to 4 volumes (~250 µl) of the protein sample and incubated at 0° C 

on ice for 20 min.  The protein samples were centrifuged at 13,000 rpm for 5 min in a benchtop 

centrifuge (Biofuge).  The supernatant fraction was discarded and the pelleted fractions were 

washed with 200 µl of ice-cold Acetone.  The samples were centrifuged at 13,000 rpm for 5 min 

to discard the acetone.  This wash step was repeated twice to rid the protein samples of any 

residual TCA.  The pellets were dried by placing the tubes in a 95° C heat block for 2 min to 

drive off the acetone.  The samples were mixed with 25 µl of 1X SDS-sample buffer and 

resolved on a 12% SDS-polyacrylamide reducing gel electrophoretically.  The remainder of the 

procedure for western analysis is as described above.   

Yeast transformations 

Yeast strains were inoculated on a fresh YPD plate and incubated for 1-2 days at 30 ° C.  

After a substantial amount of growth on the YPD plate, a loopful of the yeast strain was 

transferred aseptically in 10 ml of TE buffer containing 10 mM Tris-HCl pH 7.5, and 1mM 

EDTA.  The yeast cells were centrifuged at 5000 g (Sorvall GLC) for 5 min to wash off any 

contaminants that may be present.  The cells were re-suspended in 10 ml TEL (10 mM Tris pH 

7.5, 1 mM EDTA, 0.1 M lithium acetate).  The cells were centrifuged in a Sorvall SA-600 rotor 

at 17,000 g for 5 min and the supernatant was discarded.  A carrier DNA (Salmon sperm DNA) 

is essential for the transformation of plasmids into yeast cells and the Lithium Acetate (LiAc) 

protocol requires it to be single stranded.  To achieve this, salmon sperm DNA (10 mg/ml)  was 

warmed at 90 ° C for 2 min to denature the DNA and then put at 0° C on ice to avoid the DNA 

from re-annealing.  The cell pellets were suspended in 0.1 ml TEL and transferred to a sterile 1.5 
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ml microcentrifuge tube.  Transforming DNA (1-10 µg) was added directly to 5 µl of the carrier 

DNA and mixed well with the yeast cells followed by incubation at 25° C for 30 min without 

shaking.  After incubation,  40% of polyethylene glycol 4000 (700 µl) was added to the cells and 

mixed with a pipettor.   The mixture was incubated at 25° C for 1 h and then heat shocked at 45° 

C for 10 min.  Li2+, PEG, and heat shock are absolutely necessary for the entry of the plasmid 

into yeast cells (73).  The cells were centrifuged at 13,000 rpm for 1 min and the supernatant was 

discarded.  They were re-suspended in 200 µl of sterile TE and centrifuged at 13,000 rpm for an 

additional 1 min (2 times).  The yeast pellets were finally re-suspended in 400 µl of TE and 200 

µl was spread on a selective medium and incubated at 30° C for 2 days. 

 In the case of Geneticin (G418) as a selection media, the protocol for yeast 

transformation is similar to the one described above, except for the last step which is modified as 

follows: The yeast cells that were washed with 200 µl of TE were re-suspended in 1 ml YPD 

media and incubated at 30° C with shaking for 16 h.  100  µl of the cultured cells were spread on 

a G418 plate (YPD with 0.2 mg/ml G418) and incubated at 30° C for 2 days. 

Lactate dehydrogenase (LDH) assay 

 LDH was used as a molecular weight marker to determine the size of the αβ dimers in 

the linear sucrose fractions of the atp2 yeast mutant E323.  Mitochondria were suspended at 5 

mg/ml in a buffer containing 10 mM Tris-HCl, pH 8.0, mM ATP and 1 mM EDTA at volume 

ranges of 600-800 µl.   Triton X-100 was added to a final concentration of 0.25%, and PMSF 

(final concentration 10 μg/ml) was added to minimize proteolysis of the solubilized proteins.  

The entire mixture was incubated at 0° C on ice for 20 min and centrifuged at 100,000xg for 30 

min at 4° C.  An aliquot of the supernatant fraction (30 µl) was mixed with 4X SDS-sample 
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buffer (Laemmli).  To the remaining volume (0.6 ml), 1 µl (2.75 U/ µl ) of LDH was added from 

a stock solution of 5 mg/ml (550 U/mg) and mixed well.  The entire volume was loaded onto a 

4.4 ml 6-20% sucrose gradient prepared in 0.1% Triton X-100 supplemented TEA buffer.  The 

gradients were centrifuged at room temperature for 1.5 h at 36,000 g in a Beckman SW55Ti 

rotor.  For all the experiments, twenty fractions of equivalent volumes (250 µl) were collected 

from the bottom of the tube.  The reaction for the LDH assay is depicted below (Scheme 2). 

 

 

 Assays were performed with a Cary 100 UV/VIS spectrophotometer and monitored for 

absorbance change at 340 nm.  A Fisher Scientific (Model Isotemp 3016) circulating water bath 

attached to the instrument maintained the temperature of the sample compartment constant at 30° 

C.  Before initiating the assay, the sample and the reference compartments were blanked using 

20 mM Tris-HCl, pH 7.5.  The sample cuvette containing 1 ml of reaction mixture (0.2 M Tris-

HCl, 0.2 mM NADH, 1 mM Pyruvate) shows an O.D. of 1.25 which corresponds to the 

concentration of NADH in the reaction mixture.  The assay was initiated by the addition of the 

eluted soluble fractions (volume range 1-10 µl) and data collected for 2 minutes.  Slopes 

(∆O.D./min) were calculated from the linear region of the traces (CARY software version) for 

each of the 20 fractions.  To determine the peak of the LDH in the linear sucrose gradient, a 

graph of slope (∆O.D./min) v/s fraction number was plotted.  The fraction number that shows the 

highest slope for the reaction indicates the position of the LDH in the gradient.  

Pyruvate + NADH
LDH

Lactate + NAD+

Scheme 2
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CHAPTER 3: CHARACTERIZATION OF MUTATIONS IN NUCLEAR 

GENES ENCODING THE αααα-SUBUNIT OR ββββ-SUBUNIT OF YEAST 

MITOCHONDRIAL F1 

Summary 

  ATP1 and ATP2 are yeast nuclear genes that code for the α subunit and the β subunit, 

respectively, of the mitochondrial F1 component, which is the catalytic domain of the ATP 

synthase.  Despite sharing only ~20% sequence identity, the three-dimensional fold of these 

proteins is essentially the same.  Both proteins are synthesized in the cytoplasm as longer 

precursors with a targeting signal at the amino terminus that is removed once they have been 

imported to the mitochondrial matrix.  In the assembled ATP synthase, the α and β subunits 

occupy alternating positions in the globular sub-domain of the F1 α3β3γδε oligomer (see Fig. 3 

above).  Chaperone-mediated assembly of the hexamer brings together amino acid side chains 

from each of the two proteins to create shared adenine nucleotide binding sites in cavities located 

at the six interfaces.  Every other adenine nucleotide binding site is located primarily inside the β 

subunits, and these coincide with the active sites for F1 catalysis.  The other 3 sites reside largely 

in the α subunits, and are non-catalytic.  Both the α and β subunits contain short spans of 

sequence called P-loops, also known as Walker motifs (74), which are essential to the adenine 

nucleotide binding capacity of the proteins.  Among the conserved amino acids in these cavities, 

3 P-loop amino acids in the β subunit are critical for the catalytic properties of this protein (19, 

75, 76).  In yeast, these correspond to G161, K162, and T163, and the only known functional 

variation has serine in place of the threonine residue (77).  Another invariant amino acid is E188, 

which serves as the catalytic base for the ATP hydrolysis reaction (19).  Notably, Q208 occupies 

the position in the α subunit that aligns with β-E188.  Without the carboxylate group, Q208 
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cannot accept a proton, which explains why the adenine nucleotide binding sites in the α subunit 

are not catalytically competent (19). 

The Tzagoloff collection of respiratory deficient yeast nuclear mutants includes 

complementation groups that were assigned to ATP1 and ATP2 (3).  A former graduate student 

in the laboratory, Yueling Liang, cloned the mutant genes from 6 of the available 22 atp2 

mutants by colony hybridization, sequenced the mutations herself, and characterized the 

F1 αααα subunit mutants 

a
Nucleotide sequence is numbered according to the 

wild type ATP1 gene of S. cerevisiae strain S288c 
(NCBI accession number NM_001178339.2).  
b
Amino acids are numbered beginning with the 

initiator methionine residue. 

F1 ββββ subunit mutants 

a
Nucleotide sequence is numbered according to the 

wild type ATP2 gene of S. cerevisiae strain S288c 
(NCBI accession number NM_001181779.3).  
b
Amino acids are numbered beginning with the 

initiator methionine residue.  
c
Poor cell growth precluded studies with isolated 

mitochondria.  

Figure 5A. Mutant genes cloned and sequenced from atp1 and atp2 yeast strains belonging to 

complementation groups (G50, G1) of respiratory-deficient nuclear mutants. 
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properties of the corresponding mutant strains (78).  Since then, the only significant work with 

the atp1 and atp2 strains was done by a former postdoctoral researcher in the lab, Dr. Xingie Xu.  

Dr. Xu used the polymerase chain reaction (PCR) to isolate the mutant genes from the atp1 

strains, as well as the remaining atp2 mutants, and provided the DNA fragments to external 

vendors for sequencing.  The mutations are described in the tables shown in Figure 5A. 

It was at this stage that I began work on this project.  My goal has been to determine the 

biochemical characteristics of the ATP synthase in the mutants and to determine if the 

overproduction of Atp12p in atp1 yeast, or of Atp11p in atp2 mutants, restored respiratory 

competence to any of them. 
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Results 

Determination of oligomycin-sensitive ATPase activity in the atp1 and atp2 mutants 

 ATP synthases are able to catalyze phosphoryl transfer between ADP and water in both 

directions.  Under normal physiological, the reaction runs only in the direction of ATP synthesis 

 

 

 

due to the presence of an inhibitory protein, IF1 in humans and Inh1p in yeast (Table 1), which 

prevents the enzyme from hydrolyzing ATP and wasting energy.  The F1 inhibitors associate 

stably with the enzyme under the mildly basic conditions that exist at the matrix face of the 

mitochondrial inner membrane.  However, the association is lost during mitochondrial isolation 

from cells.  Since it is much easier to measure ATP hydrolysis than ATP synthesis in vitro, 

investigators routinely employ an ATPase assay to evaluate the activity of the mitochondrial 

ATP synthase.  Just as protons flow through FO during ATP synthesis in the F1 domain, they do 

as well when ATP is hydrolyzed, albeit in the opposite direction (Figure 5B).  In fact, the partial 

activities of proton transfer across the membrane and ATP hydrolysis are obligatorily linked; one 

cannot occur without the other.  This relationship is commonly referred to as “coupling”, and 

Figure 5B. Oligomycin distinguishes F1 that is coupled FO from uncoupled F1.  The cartoon image of 
the F1FO from (99) was duplicated and modified to make this figure.  

Activity of coupled F1 is 
sensitive to oligomycin.  
 

Activity of 
uncoupled F1 is 
not sensitive to 
oligomycin.  
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ATP hydrolysis by membrane-bound F1 is described as being coupled to proton translocation.  

Oligomycin, a natural macrolide isolated from Streptomyces diastatochromogenes, is a highly 

specific inhibitor of mitochondrial ATP synthases.  Oligomycin binds directly to the c-ring (79) 

in the membrane and prevents the translocation of protons through FO.  ATP hydrolysis by the F1 

domain is likewise inhibited because of the coupling phenomenon (Fig. 5B, middle).  Instead, if 

not bound to the membrane sector, the ATPase activity of free, soluble F1 is completely resistant 

to oligomycin.  Since oligomycin sensitivity is observed only if the F1 domain is physically 

connected to the FO sector, oligomycin-sensitive ATPase activity is indicative that the ATP 

synthase is properly assembled.  The ATPase activity was measured in preparations of 

Minus    Oligomycin Plus    Oligomycin

D273  1.62 ± 0.23 0.47 ± 0.15

E552 0.22 ± 0.01 0.14 ± 0.01

E594 0.21 ± 0.02 0.15 ± 0.01

E559 0.30 ± 0.03 0.12 ± 0.01

P78 0.11 ± 0.07 0.05 ± 0.04

P13 0.12 ± 0.01 0.07 ± 0.02

P26 0.09 ± 0.01 0.04 ± 0.01

E793 0.26 ± 0.01 0.15 ± 0.03

C273 0.17 ± 0.01 0.08 ± 0.01

N112 0.10 ± 0.03 0.06 ± 0.01

C231 0.10 ± 0.01 0.07 ± 0.02

C67 0.10 ± 0.04 0.05 ± 0.01

P263 0.31 ± 0.01 0.14 ± 0.03

P164 0.21 ± 0.04 0.04 ± 0.01

C258 0.27 ± 0.02 0.09 ± 0.01

Strain

ATPase    activity

μmole of NADH consumed/min/mg

aThe mean values are reported ± the standard error of the mean.  See text 
for details. 

Table 2. ATPase activities of atp1 mutantsa
. 
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mitochondria from the atp1 mutants (Table 2) and from the atp2 mutants (Table 3) as described 

under “Materials and Methods”.  Each assay was done in duplicate, in the absence and presence 

of oligomycin, and the minus” and “plus” oligomycin values were averaged.  The assays were 

performed with three independent mitochondrial preparations for each mutant, and the averaged 

values from each preparation were used to calculate the mean values (± the standard error of the 

mean) reported in Tables 2 and 3.  The amount of oligomycin added to the assay was sufficient 

to inhibit ~70% of ATP hydrolysis in samples from the wild type yeast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With one exception, the amount of ATPase activity, in the absence of inhibitor, was at or 

barely above the background level and this was interpreted to indicate these yeast have no 

functional mitochondrial F1, coupled or uncoupled.  N15, which is an atp2 mutant, was the 

Minus    Oligomycin Plus    Oligomycin

D273 (WT) 1.62 ± 0.23 0.47 ± 0.15

E133 0.08 ± 0.01 0.05 ± 0.02

E636 0.10 ± 0.04 0.07 ± 0.02

E802 0.04 ± 0.01 0.04 ± 0.01

N115 0.09 ± 0.01 0.06 ± 0.02

E312 0.07 ± 0.02 0.04 ± 0.01

E397 0.14 ± 0.04 0.08 ± 0.01

C166 0.09 ± 0.02 0.05 ± 0.02

N294 0.34 ± 0.09 0.19 ± 0.01

N189 0.13 ± 0.02 0.08 ± 0.01

E892 0.11 ± 0.03 0.08 ± 0.02

E618 0.11 ± 0.01 0.07 ± 0.01

E677 0.14 ± 0.01 0.09 ± 0.02

E58 0.23 ± 0.03 0.11 ± 0.02

E323 0.04 ± 0.02 0.03 ± 0.01

N15 0.75 ± 0.12 0.31 ± 0.01

ATPase    activity

μmole of NADH consumed/min/mg

Strain

aThe mean values are reported ± the standard error of the mean.  See 
text for details.   

Table 3. ATPase activities of atp2 mutantsa. 
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outlier and showed nearly 40% the level of oligomycin-sensitive ATPase relative to wild type. 

N15 was among the mutant strains that were shown to harbor two mutations in the ATP2 gene 

(G227D and D469N, see tables in Fig. 5A).  The former (G227D) was identified as the sole 

mutation in the ATP2 gene from two independent isolates in the same complementation group 

(E58 and E677) where it was correlated with a profound defect in ATP synthase assembly 

(described below).  A model that shows how the D469N substitution might suppress the 

deleterious effect of the G227D mutation is presented under the Discussion. 

Effects of mutations in ATP1 or in ATP2 on F1FO solubility from the membrane 

 The ATPase assays revealed that nearly all of the atp1 and atp2 mutants were completely 

deficient for a catalytically-active ATP synthase, but provided no information about the status of 

ATP synthase assembly in the mutants.  An easily tested characteristic of assembled F1FO is that 

30-40% of the enzyme can be solubilized from the mitochondrial membrane with 0.25% Triton 

X-100.  A brief description of how this assay was adapted to characterize the ATP synthase in 

the atp1 and atp2 mutants is presented here; additional details are provided under the appropriate 

subheadings of Materials and Methods.  Samples of mitochondria from the wild type (D273) and 

mutant yeast strains were adjusted to 5 mg/ml with 10 mM Tris-HCl, pH 8.0, 4 mM ATP, 1 mM 

EDTA, 0.25% Triton X-100 in a final volume of 200 µl, incubated on ice for 20 min, and 

centrifuged in thick-walled 3 ml tubes in a Beckman 70.1 Ti rotor at 4° C (100,000 g, 30 min).  

Equivalent volumes of SDS-denatured total mitochondria (M), supernatant (S) and resuspended 

pelleted (P) fractions were run on 12% polyacrylamide gels (SDS-PAGE).  The resolved proteins 

were transferred to nitrocellulose and the blots were incubated with polyclonal F1 antibodies 

(isolated from chicken egg), washed, and treated with HRP conjugated secondary antibody 

(goat/anti-chicken).  Finally, the blots were incubated with a chemilumenscent substrate for HRP 
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and used to expose X-ray film to locate the position of immunoreactive proteins.  The 

experiments were performed with samples from at least two independent mitoochondrial 

preparations for each yeast strain.  Representative examples of the F1 solubility profile are shown 

for the atp1 mutants (Figure 6) and for the atp2 mutants (Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Western blots of F1 αααα and ββββ subunits in Triton X-100 extracted mitochondria 

from atp1 mutants.  
Aliquots of total mitochondrial protein (M), and equivalent volumes of the particulate (P) and soluble (S) 
fractions collected after treatment with 0.25% Triton X-100, were analyzed in Western. Blots using 
polyclonal antibodies against the yeast α and β subunits.  The migration of the F1 proteins is indicated top 
left for the data from the D273 wild type. 
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Compared with the results for the wild type, which showed near equal distribution of the 

F1 α and β subunits between the supernatant and the pellet, there was essentially no F1FO 

partitioned to the soluble fraction in the samples from yeast that harbor a subset of the atp1 

missense mutations (G186D (strains P26 and P78); E202K (strain E594); G291D (strain C231); 

G356R (strain C273)) or a nonsense mutation (Q467* (N112) and Q478* (N177, data not 

shown)).  The results with the sample from P13 (R13K+G244E mutations) was less obvious, but 

the fact that the α:β subunit ratios in the solubilized protein fraction was consistently found to be 

not stoichiometric suggests that also in this mutant the F1 component is not assembled properly.  

The results for mitochondrial samples from the atp2 yeast were even more dramatic in this 
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Figure 7. Western blots of F1 αααα and ββββ subunits in Triton X-100 extracted mitochondria 

from atp2 mutants.  
Aliquots of total mitochondrial protein (M), and equivalent volumes of the particulate (P) and soluble (S) 
fractions collected after treatment with 0.25% Triton X-100, were analyzed in Western. Blots using 
polyclonal antibodies against the yeast α and β subunits.  The migration of the F1 proteins is indicated top 
left for the data from the D273 wild type. 



 

 

35

respect, with all but 3 of the 14 newly identified mutant alleles correlating with the absence of F1 

protein in Western blots of Triton X-100 extracts (Fig. 7, rows 1-3, excluding wild type). 

 Overall, the F1FO solubility profile for the 7 atp1 mutants shown in the upper half of Fig. 

6, and for the 12 atp2 mutants in the top 3 rows of Fig. 7, is similar to what has been observed 

for ∆atp1, ∆atp2, ∆atp11, and ∆atp12 yeast, the latter of which were shown previously to 

accumulate the F1 α and/or β subunits as aggregated proteins inside mitochondria (27); 

(described under section 1.4 of the Introduction).  Density gradient centrifugation confirmed the 

presence of such aggregates in these subsets of atp1 and atp2 mutants.  For these experiments, 

samples of Triton X-100 treated whole mitochondria (200 µl) were loaded on top of 4.8 ml step 

gradients comprised of buffered sucrose solutions that were dispensed, from bottom to top, in 

layers of increasing concentration:  80%, 60%, 50%, 30%, 20%.  The gradients were prepared in 

ultra-thin 5 ml tubes designed for the Beckman SW55 Ti swinging bucket rotor.  These 

centrifuge tubes offered the advantage of permitting fractions to be collected by gravity through 

a small hole made in the bottom, after centrifugation was performed at 36,000Xg for 2.5 h.  

Samples for SDS-PAGE were prepared from the 10 fractions (500 µl) collected for each gradient 

and analyzed in duplicate Western blots.  One blot was probed with the antibody against F1 and 

the other with polyclonal anti-cytochrome c1 rabbit serum.  Cytochrome c1 is an integral 

membrane protein subunit of respiratory complex III that remains embedded in the membrane 

when mitochondria are exposed to 0.25% Triton X-100.  As such, the position of cytochrome c1 

in the step sucrose gradient marks the position of inner membrane vesicles, which have the 

opportunity to reach the point of equal density (ρ<1.20) at the applied g-force.  When present, F1 

protein aggregates are so large in comparison to normal Triton X-100-extracted F1FO (550 kDa) 
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that they reach the point of equilibrium for pure protein (ρ>1.26; 60-80% sucrose boundary) 

within the time frame of the experiment (27).   

 The sedimentation profile for α and β subunits of F1 in step sucrose gradients was 

practically identical for the mitochondrial samples from the atp1 mutant strains P26, P78, E594, 

C231, C273, P13, and N112, and the atp2 strains N294, E618, C166, E636, E397, E677, E58, 

E312, E873, N189, N115, and E133.  The results for one of the mutant (E677) is presented here, 

along with the wild type control, to illustrate the concepts (Figure 8).  The F1 α and β subunits 

were observed to co-migrate with cytc1 when Triton X-100 treated whole mitochondria from the 

wild type was centrifuged through a step sucrose gradient (Figure 8, left blots).  There is only 1 

peak for these proteins despite the fact the sample contains both solubilized and membrane-

bound F1FO.  The F1 protein sedimentation pattern was quite different for the detergent-treated 

mitochondria from the atp2 mutant E677 (right blots).  In this case the entire signal for F1 protein 

was detected at the 60-80% sucrose boundary.  This result shows that there is no F1FO at all 

assembled in E677 mitochondria, and that all of the F1 α and β subunit protein is aggregated. 

Figure 8.  Western blots of step sucrose gradient fractions.  Triton X-100 treated whole 
mitochondria from the wild type D273 (left) and the atp2 mutant E677 (right) were centrifuged through a 
step sucrose gradient, and the 10 fractions obtained were analyzed on Western blots with antibodies 
against yeast F1 or cytochrome c1. 
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 One final point about these experiments deserves mention.  The temperature of the rotor 

was maintained at 25° C during the centrifugation of the samples.  This condition was chosen 

because, on its own, the isolated mitochondrial F1 oligomer is cold-sensitive and denatures 

rapidly at 4° C (72).  Hence, the sucrose gradient centrifugation methods that have been 

developed to investigate ATP synthase assembly are commonly carried out at room temperature 

(27, 80). 

Novel assembly-defective phenotypes in atp1 and atp2 mutants 

Two atp2 mutants (E323 and E892) and approximately half of the atp1 strains were 

found to be completely deficient for mitochondrial ATPase activity, but nonetheless showed 

evidence of F1 protein that was released to the soluble fraction following the exposure of 

mitochondria to 0.25% Triton X-100.  For these cases, the size of the solubilized protein was 

determined in experiments that evaluated its sedimentation through a linear gradient of sucrose 

(6-20%).  Samples (600 µl) of the supernatants, obtained after Triton X-100 treated mitochondria 

were centrifuged at 100,000Xg for 30 min, were carefully overlaid 4.4 ml gradients and 

centrifuged in a Beckman SW55Ti rotor at the specified g-force.  Twenty fractions (250 µl) were 

collected from the bottom of the centrifuge tubes, and the protein in each fraction was 

12 10 14 16 18 S 2 

 

sucrose 

Figure 9.  Sedimentation analysis of the F
1
 protein in Triton 

X-100 extracts of mitochondria from the wild type D273.   
Western blots of fractions from 6-20% linear sucrose gradients.  An 
aliquot of the solubilized protein sample (S), pre-centrifugation, was 
loaded in the left-most lane to mark the position of the F1 α and 
βsubunits.   
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precipitated with 5% TCA to concentrate the samples.  The precipitates were washed with 

acetone before being suspended in 25 µl 1X SDS gel sample buffer.  One microliter of 

unneutralized Tris was added to gel samples that were yellow to counter the residual acid.  Equal 

volumes of the gel samples were evaluated in Western blots for the position of the F1 α and β 

subunits.  When the Triton X-100 solubilized proteins from wild type mitochondria were 

centrifuged at 36,000Xg for 1.5 h, the F1FO complex peaked near the middle of the gradient in 

fraction 12 (Figure 9).  

 Instead, when the experiment was performed under identical conditions with the sample 

from E323, the F1 protein peak was detected in a region of much lower sucrose density in 

fractions 16-20 (Figure 10A).  The monomeric molecular weight of F1 α and β is ~55 kDa and 

~52 kDa, respectively, whereas an αβ dimer is ~110 kDa.  To better estimate the size of the 

soluble F1 protein in mitochondria from E323, the experiment was repeated exactly the same 

way except that 2.75 units/µl of porcine heart lactate dehydrogenase (140,000 kDa) was mixed 

with the soluble protein sample before it was loaded on the gradient and the fractions were 

Figure 10.  Sedimentation analysis of the F
1
 protein in Triton X-100 extracts of mitochondria from 

atp2 mutant E323.   
A, Linear sucrose sedimentation profile of soluble fractions from atp2 mutant E323. An aliquot of the solubilized 
protein sample (S), pre-centrifugation, was loaded in the left-most lane to mark the position of the F1 α and β 
subunits.  B, LDH assay to determine the relative size of the αβ dimers that are observed in the linear sucrose 
gradients 
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probed for LDH activity as described under “Materials and Methods”.  In the presence of 

pyruvate and NADH, LDH catalyzes pyruvate reduction to lactate concomitant with NADH 

reduction to NAD+.  LDH activity in each fraction was determined spectrophotmetrically by 

following the decrease in NADH absorbance at 340 nm for 2 min and the slopes (∆O.D./time) 

were plotted versus fraction number (Fig. 10B).  The LDH peak was detected in fraction 14, just 

ahead of the F1 protein.  This finding is consistent with an estimated size in the 100-120 kDa 

range for the F1 protein in E323 mitochondria, and supports the idea that the atp2 mutation 

G323D in E323 yeast causes F1 assembly to stall at the point where αβ dimers are formed.  This 

was the first time an assembly defect of this type has been observed in our laboratory and it has 

not been reported in the literature. 

 When a linear sucrose gradient was performed with the sample from E892 (Figure 11A), 

the pattern of F1 protein distribution was very different from both wild type (Fig. 9) and the E323 

mutant (Fig. 10).  There appeared to be one peak in fractions 8 and 9, and perhaps another 

accumulation in fraction 3.  Moreover, the experiment had not captured protein complexes that 

were significantly larger than a single F1FO molecule.  The sieving action of linear gradients is 

similar to a gel filtration column in which proteins separate according to mass, with larger 

proteins eluting first.  The intensity of the Western blot signals in the fractions from the bottom 

of the tube (lowest numbers) indicated that at the applied g-force, protein had passed all the way 

through the 20% sucrose solution and was out of the detectable range.  Therefore, to ensure the 

full complement of F1 protein would be visualized in the fractions collected, the preparation of 

the gradient was modified and a 3.9 ml linear 6-20% gradient was built on top of 0.5 ml 80% 

sucrose deposited at the bottom the tube.  Since the density of 80% sucrose is greater than the 

density of pure protein (see above), F1 protein complexes large enough to have passed through 
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20% sucrose under the previous centrifugation conditions were captured in fraction 3 at the 

20/80% sucrose interface (Fig. 11B).  Moreover, all of the Western blot signal was concentrated 

in a single peak in fractions 3-5. 

 Among the atp1 mutants that showed evidence of detergent extractable F1FO, further 

experiments showed that the biochemical phenotype of E793 (Figure 12) was very similar to 

E892, an atp2 mutant.  Under the same conditions of applied g-force, the E793 F1FO peak 

migrated much further in a 6-20% sucrose gradient (Fig. 12A), compared to wild type F1FO (Fig. 

9), and could be condensed at the 20/80% sucrose interface (Fig. 12B).  It is important to recall 

here that the E892 and E793 samples, which were analyzed on 6-20% linear gradients, had been 

first recovered in the soluble fraction after detergent-treated mitochondria was centrifuged to 

pellet membranes and large, particulate material such as the large insoluble aggregates of α and 

β subunits that were described above.  The sedimentation patterns for solubilized F1FO from 

E892 and E793 were different from anything that has been observed in our lab or reported by 

others.  The effect of the D207Y mutation in the F1-α subunit or of the G193D mutation in the 

F1-β subunit appears to alter the structure of the F1FO in a manner that leads to its 
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E892

(G193D), 80% plug

Figure 11.  Sedimentation analysis of the F
1
 protein in Triton X-100 extracts of 

mitochondria from atp2 mutant E892.   
A, Western blot of fractions collected after the solubilized protein from mutant E892 was 
centrifuged through a 6-20% sucrose gradient. B, Same as A except that the 6-20% linear gradient 
was built on top of 0.5 ml 80% deposited at the bottom of the centrifuge tube.   
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oligomerization in detergent extracts to structures that are larger than dimers.  Particularly 

interesting is that each mutation maps to the P-loop subdomain in the adenine nucleotide binding 

cavity of the respective protein, which in the α subunit is between residues 206-213 

(GDRQTGKT) and in the β subunit between residues 190-197 (GGAGVGKT).  The 

ramifications of these findings with respect to the fact that the cavity locations correspond to the 

αβ interfaces in the F1 hexamer are presented below under the Discussion. 

 The sedimentation patterns for the F1FO that partitioned to the soluble fraction following 

Figure 12.  Sedimentation analysis of the F
1
 protein in Triton X-100 extracts of 

mitochondria from atp1 mutant E793.   
A,Western blot of fractions collected after the solubilized protein from mutant E793 was centrifuged 
through a 6-20% sucrose gradient. B, Same as A except that the 6-20% linear gradient was built on top of 
0.5 ml 80% deposited at the bottom of the centrifuge tube.   
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Fig. 9 

Figure 13.  Sedimentation analysis of the F
1
 protein in Triton X-100 extracts of 

mitochondria from additional atp1 mutants. 
Western blots of fractions collected after the solubilized protein from the atp1 mutants P164, C67, and 
P263 were centrifuged through a 6-20% sucrose gradient.  The image showing the result for D273 (pink 

box) was reproduced here from Fig. 9 for comparison. An aliquot of the solubilized protein sample (S), 
pre-centrifugation, was loaded in the left-most lane to mark the position of the F

1
 α and β subunits.   
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centrifugation of Triton X-100 extracted mitochondria from the remaining atp1 mutants (C258, 

P263, C67, P164, E594, E552, and E559) were similar to each other but different from wild type 

(Figure 13); to avoid redundancy, data is reported for 3 of the 7 mutants.  The wild type profile 

reported in Fig. 9 was repeated in this figure (pink box) to facilitate its comparison with the 

mutants.  The F1FO complexes in these latter 7 strains were larger than wild type yet significantly 

smaller than the multimers observed for E793 and E892 (Figs. 11 and 12 above). 

The G227D mutation in the atp2 mutant N15 is suppressed partially by the additional 

D469N substitution in the protein 

 There was ~40% the normal amount of ATPase activity (Table 3) measured with 

mitochondria from the atp2 mutant, N15, and extraction of the mitochondria with 0.25% Triton 

X-100 revealed wild type-like characteristics for F1FO solubilization (Fig. 7).  Furthermore, the 

sedimentation of detergent solubilized N15 F1FO was shown to be comparable to the wild type 

protein (Figure 14).  Nonetheless, N15 does not respire as indicated by the inability of this yeast 

to grow on non-fermentable carbons (EG plates).  Previous work reported in the literature has 

shown that yeast displaying as little as 15% wild type levels of mitochondrial ATPase activity 

can grow on EG plates (81).  Presumably such yeast also synthesize ATP at 15% the wild type 

rate and this is sufficient to confer growth on the selective medium.  N15 harbors the same 

N15
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Figure 14.  Sedimentation analysis of the F
1
 protein in Triton X-

100 extracts of mitochondria from atp2 mutant N15.  The N15 
sedimentation profile is similar to the wild type protein and the F

1
 subunits 

peak in the middle of the sucrose gradient. 
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mutation (G227D) as two other atp2 mutants (E58, E677, see tables in Fig. 5A), the latter of 

which accumulate the F1 α and β subunits in insoluble aggregates (Fig. 7).  The difference is the 

presence of a second mutation (D469N) in the ATP2 gene of N15.  Cumulatively the results 

suggest that the D469N second-site mutation confers to N15 the assembly of an F1FO complex 

that is structurally comparable to wild type, and partially catalytically competent.  However, the 

EG minus phenotype indicates that ATP synthesis in this strain is below the threshold needed to 

support non-fermentative growth, and is not equivalent in magnitude to the level of ATP 

hydrolysis observed for the mutant enzyme. 

Overexpression of ATP11 and ATP12 genes 

 Yeast plasmids were constructed that over-express the ATP11 and ATP12 genes in the 

atp2 and atp1 mutants respectively.  The wild type ATP11 (pG13/ST4) and ATP12 (pG57/ST4) 

DNAs cloned in a high copy-number yeast expression plasmid were available in the laboratory.  

However, these plasmids have a URA3 marker gene, which is not suitable for selection of the 

plasmids in strains derived from D273-10B/A1 (MATα met6).  Therefore, the plasmids 

pG13/ST4 and pG57/ST4 were modified to include the genetic module (KanMX) that confers 

resistance of yeast to G418, a drug that is similar to the antibacterial agent kanamycin.  Both 

plasmids were digested with an enzyme that creates blunt ends (pG13/ST4 with EcoRV, and 

pG57/ST4 with StuI).  The KanMX module was excised as a 1586 bp blunt ended DNA 

fragment from PvuII, EcoRV digested pUG6 (gift from Amy Roth, Department of 

Pharmacology), ligated with the linearized ATP11 and ATP12 plasmids, and used to transform 

E.coli TB1.  Bacterial clones were selected on kanamycin and the plasmid maps were verified 

using restriction enzymes.  The methods used to transform yeast with these plasmids and select 

on G418 media is described under “Materials and Methods”. 
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 To ensure the new plasmids produced functional Atp11p or Atp12p proteins, 

pG13/ST4/KanMX and pG57/ST4/KanMX were used to transform the ∆atp11 and ∆atp12 

deletion mutants, respectively, and shown to rescue the respiratory deficient phenotypes.  

However, neither Atp11p overproduction in atp2 mutants nor Atp12p overproduction in atp1 

yeast conferred the ability to grow on EG plates at any of the temperatures tested (23°C, 30°C, 

37°C) for a period up to one week. 

 Discussion 

 The main goal of the research described here was to provide information at the molecular 

level about mutations in the F1 α subunit or β subunit that conferred a respiratory deficient 

Fig. 15 Yeast F
1
 αααα

C
 subunit.  

2HLD.pdb chain C rendered 
as a cartoon with surface 
shown at 70% transparency.  
The color scheme is yellow 

for the β-barrel domain, 
lime green for the NBD, and 
cyan for the α-helix bundle.  
The P-loop (206-
GDRQTGKT-213) is colored 
black.  AMP-PNP (red) is 
bound in the non-catalytic site. 

 MLS 

Table 4. Mutations in the αααα  subunit of yeast F1. 
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phenotype to S. cerevisiae.  There were 12 mutant atp1 alleles identified in 15 independent 

isolates of yeast complementation group G50 (Table 4) and 14 atp2 alleles among 15 strains 

belonging to complementation group G1 (Table 5).  There was no mitochondrial ATPase 

measured for any of the mutants, except for the atp2 strain N15 (Tables 2 and 3).  Moreover, 

none of the mutants (including N15) grew on EG plates incubated at the optimal temperature 

(30°C) for two days.  However, there were several atp1 mutants that exhibited a leaky phenotype 

on EG plates, which showed evidence of slow growth beginning after 3 days of incubation 

(discussed below). 

 The mutations were grouped according to the principal defect they impose on the ATP 

synthase.  Four distinct classes of mutations were distinguished based on the features of the 

Fig. 16 Yeast F
1
 ββββ

D
 subunit.  

2HLD.pdb chain D rendered 
as a cartoon with surface 
shown at 70% transparency.  
The color scheme is slate 

blue for the β-barrel domain, 
pink for the NBD, and 
yellow-orange for the α-
helix bundle.  The P-loop 

Table 5. Mutations in the ββββ  subunit of yeast F1. 
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assembly defects that were observed.  Class 1 mutations (red filled stars) define mutant proteins 

that cannot assemble with its partner to form the α3β3 hexamer, leading to aggregation of both 

the α and β subunits.  What is labeled here as a Class 1 assembly defect is the signature 

phenotype that has been described in detail for ∆atp1 and ∆atp2 deletion strains and for yeast 

that are deficient for one of the F1 associated chaperone proteins (e.g. atp11 or atp12 mutants).   

 Approximately one-half of the missense mutations in ATP1 and most of the missense 

mutations in ATP2 were assigned to Class 1 based on the work reported here.  Class 2 (purple 

filled stars) were the next most represented mutations, observed in atp1 mutants harboring the 

mutations E202K, G211D, T381I, P400S, G458D, and denote cases in which the F1FO structure 

was assembled, but showed sedimentation properties that suggest it dimerizes in Triton X-100 

extracts.  Note that two Class 2 mutations (G211D and T381I) were identified in two separate 

yeast isolates of G50.  Class 3 mutations (green filled stars) correlate with the assembly of F1FO 

complexes that oligomerize in Triton X-100 extracts to form multimers that are larger than those 

observed for Class 2.  There was one Class 3 mutation among the members of complementation 

groups G50 (strain E793) and G1 (strain E892).  Remarkably, the atp1 Class 3 mutation 

(D207Y) maps to the P-loop in the non-catalytic nucleotide site (NCS) of the α subunit, and the 

atp2 Class 3 mutation (G193D) maps to the P-loop in the catalytic site (CS) of the β subunit.  

The designation Class 4 mutation (aqua filled star) was assigned to distinguish the one case 

(atp2 strain E323) in which α/β dimers were observed in soluble mitochondrial extracts.  Finally, 

there were two mutations in the atp2 allele of strain N15 (red/white star), one of which (G227D) 

was shown here (strains E58, E677) and in work published previously (strain N123) (78) to 

completely prevent F1 assembly and cause the unassembled F1 α and β subunits to accumulate as 

aggregated proteins.  The biochemical phenotype of mitochondria from N15 supports the notion 
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that the 2nd mutation (D469N) can partially suppress the deleterious effect of the G227D 

mutation.  Several of the mutations are described in greater detail in following sections of the 

discussion. 

The 3D models of the α and β subunits (Figures 15 and 16, respectively) shown adjacent 

to Tables 4 and 5 (and in other figures throughout this section) were made with Pymol® (82) 

using the coordinates for the 2.8 Å resolution X-ray structure of the yeast F1 oligomer 

(2HLD.pdb).  Both proteins have nearly identical folds comprised of 3 subdomains, N-terminal 

b-barrel, C-terminal bundle of a-helices, and nucleotide binding domain (NBD) in between.  

Figs. 15 and 16 are further annotated to show the position of the P-loops relative to bound 

nucleotide in the non-catalytic site of α and in the catalytic site of β. 

Class 1 assembly defect 

 

G186
D 

G244E 

E244 

K310 
G244 

K310 

G186 D186 

N222 N222 

G356R 

G356 R386 

D296 D296 

G291D 

G291 D291 

V239 

I303 I303 

L358 L358 
V239 

B 

C D 

A 

Figure 17.  atp1 mutations correlated with Class 1 assembly defects.  The αC subunit (2HLD.pdb, 
chain C) was rendered as a cartoon colored cyan.  See text for details. 
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 Aggregated F1 α and β subunits were observed in mitochondria from the yeast that 

harbor a nonsense mutation in either the atp1 allele (strains N112, N177, Table 4) or the atp2 

allele (strains E873, E133, Table 5).  These mutant genes code for the respective α or β subunit 

missing part or all of the C-terminal helical domain and will not be discussed further.  Four atp1 

missense alleles (G244E, G186D, G291D, and G356R) were shown to encode an α subunit with 

a Class 1 mutation.  The position of the wild type amino acid that is targeted by each of the 

mutations was located in the α subunit structure (Figure 17, left-side of panels A-D; lettering and 

side-chain colored yellow).  Next, Pymol commands were issued to locate amino acids (colored 

blue) with atoms that were within 4 Å of the substituted amino acid.  The pdb files were then 

modified to replace the wild type with the relevant mutant amino acid (Figure 17, right-side of 

panels A-D; lettering and side-chain colored yellow).  Visual inspection identified, in most cases, 

only one vicinal amino acid (white lettering) that was most likely affected by the substitution in 

the α subunit.  The suggested structural perturbations are due to interference by E244 with K310 

in strain P13; by D186 with N222 in strains P26 and P78; by D291 with L358, V239, and/or I303 

in strain C231; by R386 with D296 in strain C273.  There is a 2nd mutation (R13K) encoded by 

the atp1 allele of strain P13 (Table 4).  However, it is a conservative substitution in the 

mitochondrial leader sequence (MLS) that maintains the (+) charge character of the leader 

peptide and is not expected to be of significant consequence. 

Class 2 assembly defect 

 The Class 2 assembly defect is defined by the association of F1FO in “small” oligomers 

(possibly dimers) in soluble fractions recovered after mitochondria have been extracted with 

0.25% Triton X-100 (Fig. 13).  Thus far only atp1 mutants have been assigned to class 2 (Table 

4).  An explanation of the effect elicited by the linked mutations in strains E594, E552, E559, 
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C258, P268, P67, and P164 is complicated by the fact that all of these of these yeast exhibit a 

leaky respiratory deficient phenotype, which is indicated by all showing growth eventually on 

YEPG plates.  Cumulatively the observations suggest that the mutations in this class exert a 

relatively modest effect and no further work was done to characterize them further. 

Class 3 assembly defect 

 The Class 3 assembly defect is manifest by F1FO complexes that associate in “large” 

multimers in soluble fractions recovered after mitochondria have been extracted with 0.25% 

Triton X-100 (Figs. 11,12).  Remarkably, there were two yeast strains identified with this defect, 

E793 (atp1 mutation D207Y) and E892 (atp2 mutation G193D), and in both cases the mutation 

caused an amino acid substitution in the P-loop that is essential for these proteins to bind 

nucleotide triphosphates.  The glycine-rich P-loop is a conserved primary structure motif that is 

observed both in proteins that bind ATP, such as adenylate kinase (83), as well as those that bind 

GTP, including ras (84) and the elongation factor Tu (85). 

The biochemical characteristics of F1FO complexes with the G193D P-loop mutation in 

the β subunit was found to be very different from that of another atp2 yeast that makes the 

mutant protein harboring an A192V substitution in the P-loop (78).  In the latter case, the 

mutation correlates with the assembly of an F1FO with normal physical features, which 

nonetheless is completely deficient for catalytic activity.  Instead, the G193D mutation in the β 

subunit and the D207Y mutation in the α subunit both alter the F1FO structure in a way that leads 

to oligomerization of the complexes.  It is not known at this time what effect either mutation has 

on nucleotide binding to the catalytic site (CS) of the β subunit or to the non-catalytic site (NCS) 

of the α subunit.  However, it is important to recall the nucleotide binding cavities are all located 

at interfaces between α and β subunits in the α3β3 hexamer (Figure 18).  It is reasonable to 
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suggest that either by preventing nucleotide binding or through structural perturbation of the 

shared sites (or both) might lead to a partial opening of the structure at the interfaces and that this 

could expose hydrophobic side chains leading to abnormal associations among the F1FO 

complexes.  

 

 

 

 

 

Class 4 assembly defect 

 The Class 4 assembly defect was assigned to the atp2 mutant E323.  When mitochondria 

from this strain were extracted with 0.25% Triton X-100, there was evidence of soluble F1 α and 

β (Fig. 7).  However, these proteins displayed an abnormal profile when the solubilized material 

was centrifuged through a 6-20% (Fig. 10), as they were detected at a much lower sucrose 

A B 

Figure 18.  Location of the adenine nucleotide binding sites in F
1
.  A, Inside view of the NCS 

in αC (rendered exactly as shown in Fig. 15, with the P-loop in black and bound AMP-PNP 

in red).  This NCS is shared with the βF subunit (2HLD.pdb chain F), which here is rendered 

as a cartoon in white with the surface shown at 70% transparency. B, Inside view of the CS 
in βD (rendered exactly as shown in Fig. 16 with the P-loop in black and bound ADP in red).  

This CS is shared with the αC subunit., which here is rendered as a cartoon in white with the 

surface shown at 70% transparency.   
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density than the 550 kDa wild type F1FO complex (Fig. 9), or the 360 kDa F1 oligomer (78), or 

even lactate dehydrogenase (140 kDa), which was included as a marker protein in the study.   

αααα
A

 ββββ
D

 

AMP-PNP 
in NCS 

Figure 19.  Model of the atp2 mutation G323D. 
A, Outside view of the α

A
 and the β

D 
subunits in yeast F

1
 (2HLD.pdb, chains A and D, respectively).  The β

D
 and 

α
A 

subunits are both rendered as surface-filled molecules.  β
D 

is shaded pink and α
A
 is shaded lime green except, 

for the NCS cavity that is white.  The black arrow points to AMP-PNP (stick drawing) in the NCS.  B, The 
object in panel A was rotated 20° to right, zoomed, and clipped for better visualization of G323 and surrounding 
amino acids.  The F

1
 subunits are rendered as cartoons.  G323 in β

D
 is highlighted yellow (see also yellow-filled 

arrow).  The thick black arrow points to a loop in the α
A
 subunit; the side-chains of A273 and S274 are shown as 

sticks.  C, Same as panel B, except G323 in β
D
, and A273 and S274 in the α

A 
loop are rendered as spheres.  D, 

Same as panel C, except G323 is substituted by aspartic acid. 

A 

B 

C 

D 
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 Since the position of the protein peak is consistent with where an αβ dimer would 

sediment, the results were interpreted to suggest that the G323D mutation permits the β subunit 

to assemble with an α subunit, but that F1 assembly does not proceed beyond that point.  G323 is 

located at the NCS interfaces in F1; for example shown in Fig. 19 between the βD and αA 

subunits in the yeast F1 structure model.  Viewed from outside the F1, the AMP-PNP in the NCS 

is partially visible (Fig. 19, Panel A).  The view in panels B-D was optimized to observe position 

323 in the β subunit, which is further up the interface and outside the NCS.  Panels B and C 

show β-G323 proximal to a loop in the adjacent α subunit that is comprised of α-A273 and α-

S274, in which the amino acid residues are either rendered as sticks or spheres.  Panel D shows 

the steric interference that might result when the glycine is replaced by aspartic acid (D323).  

There was no other point of overlap with D323 in the structure.  It remains highly speculative to 

hypothesize that the structural perturbation modeled in panel D could cause the biochemical 

phenotype observed for the F1 subunits in strain E323.  However, it is extremely interesting to 

consider the possibility that an intermediate in the F1 assembly pathway is the αβ dimer in which 

the NCS is located. 

Model of the F1 in the atp2 mutant N15 

Four independent isolates of complementation group G1 carry mutant atp2 alleles that 

encode the G227D mutation (E58, E677, N15 Table 5; and strain N123 in ref. (78)).  This 

mutation has a severe effect on F1 assembly in all but strain N15, which bears a second mutation 

asparagine replacing aspartic acid at position 469 in the β subunit.  Though compromised for 

catalytic activity, the F1FO in N15 mitochondria appears to be assembled correctly (Fig. 14).  

Figure 20 shows structural models of the βD subunit of yeast F1 (panel A, top), to explain how 
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the second-site mutation, D469N, partially suppresses the assembly defect imposed by the 

G227D primary mutation in yeast strain N15.   

 

 The proximity of G227 to F218 is shown at the bottom of panel A and at the top of panels 

B and C.  The position of the two mutations in strain N15 (D227 and N469) are annotated in the 

structure shown at the bottom of panel B.  Panel C is a zoomed view of position 227, in the wild 

type (G227) at the top, and in the mutant (D227) at the bottom.  There is evidence in the latter 

that the substitution of aspartic acid for glycine would likely perturb the protein structure due to 

side-chain overlap with F218.  One way to accommodate the crowding would be to rearrange the 

G227 

F218 

ββββ
D

 

A 

 
G227 

F218 

F218 

G227 

D227 

F218 

D227 
D469 

D227 

F218 

N469 D469 
E497 

E168 

D227 

B C D 

Figure 20.  Structure models showing the relative positions of 
the G227D and D469N mutations in the yeast F

1
 ββββ subunit.  A, 

Top:  Side-view of yeast F
1
 rendered as space-fill model.  The α 

subunits and β subunits are colored gray and yellow, respectively, and 
the γ, δ, and ε subunits are respectively orange, teal, and pale blue. 
Bottom: The structure shown at the top was tilted and clipped 80Å to 
permit a partial view inside rendered as a cartoon. The white arrows 

point to G227  
(magenta spheres) and F218 (yellow spheres). The β

D
 subunit (labeled) was used to make all of the images 

shown in panels B, C and D.  Panels B and D show views of the β
D
 subunit in the same orientation as the 

bottom of panel A.  B, Top:  The β
D
 subunit is shown by itself, rendered as a cartoon, with G227 and F218 

annotated in black.  Bottom:  The β
D
 subunit bearing the G227D mutation, with D227 colored cyan.  The 

smaller black arrow points to N469 (stick rendering), which is the second mutation that was identified in the 
atp2 gene cloned from strain N15.  C, The view of the β

D
 subunit was rotated and zoomed to show the 

juxtaposition of F218 versus G227 (top, magenta spheres) or D227 (bottom, cyan spheres).  D, Top, Same 
view of the β

D
 subunit bearing the G227D mutation as in the bottom of panel B, with the red arrow pointing 

to D469, which is the wild type amino acid at this position in the yeast β subunit.  Bottom, same as at the top 
of the panel, with the addition of two more red arrows that point to glutamate residues (E168, E497) that are 
each 7Å away from D469.  See text for details.   
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protein structure.  On this point, the zoomed-out images in panel D show the structures of the β 

subunit bearing only the G227D mutation, pointing out that there is normally an aspartic acid 

residue at position 469.  There are two additional acidic amino acids within 7 Å of D469 (bottom 

of panel D), either of which could impose an ionic barrier to the adjustment in the protein 

structure that is necessary to counter the G227D mutation.  The replacement of D469 with 

asparagine would avoid such overlap of acidic side chains. 

Overexpression of the ATP11 and ATP12 genes  

Molecular chaperones not only help to restore the native state of the protein during stress 

conditions but also maintain the activity of protein that is destabilized by a mutation.  In the 

bacteria, Buchnera, elevated levels of the GroEL type of chaperone is observed in cells that have 

higher levels of destabilized proteins due to mutations (86).  Laboratory E.coli strains that have 

accumulated multiple deleterious mutations are rescued by an induced overexpression of the 

chaperones, GroEL or the DnaK (87, 88).  Furthermore, overexpression of the chaperone, Hsp70, 

in fruit flies has suppressed the neurodegeneration caused by proteins with expanded 

polyglutamine tracts (89).  Therefore, it was deemed worthwhile to overproduce the assembly 

factors Atp12p and Atp11p in the atp1 and atp2 mutant strains, respectively, in an attempt to 

rescue the respiratory defects.  Plasmids were constructed with a suitable genetic marker and 

verified by showing that they each conferred respiratory function to the respective ∆atp11 or 

∆atp12 yeast.  However, neither the atp1 nor the atp2 mutants were rescued by overproduction 

of Atp12p or Atp11p. 
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CHAPTER 4: ACCOUNTING FOR POLYMORPHISMS IN THE HUMAN 

ATP12 GENE (ATPAF2) THAT AFFECTS F1 BIOGENESIS 

Summary 

 The nuclear gene, ATP12, in S. cerevisiae encodes a ~36 kDa pre-protein.  The first 32 

amino acids make up the mitochondrial leader sequence (MLS), which is proteolyticaly cleaved 

to generate a ~33 kDa mature protein.  This protein is required for the assembly of the F1 moiety 

of the mitochondrial ATP synthase.  Experiments in yeast has established that the Atp12 is 

required to assemble the α subunit and absence of Atp12p leads to F1 aggregated proteins.  Using 

atp12 yeast mutants, our lab was instrumental in identifying domains important for the 

functioning of the Atp12p.  An important outcome of this study was the identification of an 

E289K mutation that compromises the function of the Atp12p.  A human homolog of the yeast 

ATP12 gene was identified as ATPAF2.  A plasmid bearing the human Atp12p (Atpaf2p) was 

shown to complement the atp12 yeast mutant.  Furthermore, a substitution from a Glutamate to a 

Lysine at the corresponding position in the recombinant Atpaf2p had a similar effect as its yeast 

counterpart.  

In 2004 De Meirleir et. al reported a W94R mutation in the ATPAF2 gene that led to the 

death of a 14-month old.   Since the Atpaf2p complements an atp12 yeast mutant, the yeast 

model provided an excellent opportunity to study a clinically isolated variant of Atpaf2p.  

Characterization of the Atpaf2p harboring a W94R mutation revealed that the mutation affects 

the protein solubility. These observations intrigued us to investigate missense mutations in the 

SNP database (dbSNP) predicted to be deleterious to a cell, based on amino acid substitution 

(AAS) models.  Our observations led to the identification of two missense mutations, G170V and 

E241G, that could affect the Atpaf2p activity causing an ATP synthase deficit.  The rationale 

behind choosing these missense mutations are 1) The G170V mutations has low SIFT and 
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PANTHER scores suggesting greater damage to cells 2) The E241G mutation is adjacent to the 

E240 residue that is important for functioning of the Atpaf2p.  We took advantage of the ∆atp12 

yeast model to characterize these missense mutations in vivo.  The goal of this project was to 

determine how haplo insufficiency in genes involved in metabolism affects the health of an 

individual. 

Results and discussion 

Characterization of yeast strains harboring missense mutations in the ATPAF2 gene 

 The yeast plasmid that produces Atpaf2p harboring the E241G and G170 mutations was 

creating by mutagenesis and sub-cloning.  The plasmid pG57/ST20 that produces the wild-type 

Atpaf2p was already available in the laboratory.  A 599 bp XmaI-PstI containing the entire 

reading frame of the wild-type ATPAF2 gene from the CEN vector, pRS314, was transferred to a 

pUC19 vector which was linearized using the same restriction sites.  Following the 

manufacturer’s protocol, QuikChange site-directed mutagenesis kit was used with the plasmid 

pUC19 to induce the G170V and the E241G mutations in the ATPAF2 gene.  The plasmids were 

sequenced to verify that only the desired mutations were introduced in the reading frame.  The 

ATPAF2 genes harboring the missense mutations in the pUC19 plasmid were digested with 

XmaI-PstI and purified.  These fragments were ligated to the pRS314 TRP plasmid using the 

same restriction sites. Introduction of the plasmids harboring the mutant forms of the ATPAF2 

gene in an ∆atp12 yeast does not rescue the respiratory deficit phenotype as it shows an EG- 

phenotype.  Also, yeast producing the mutant forms of the Atpaf2p show no ATPase activity 

when compared to yeast producing plasmid encoded wild-type Atpa2p, suggesting the missense 

mutations affects its chaperone activity (Table 6).    
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 The mitochondria from strains shown in Fig. 21 were treated with Triton X-100 to 

evaluate the nature of F1 defect.  The mitochondrial proteins present in the supernatant and 

particulate fractions were resolved on a SDS-polyacrylamide gel, transferred to nitrocellulose, 

and probed with antibodies against the F1 protein to examine its distribution between the 

fractions Yeast producing the Atp12p and plasmid encoded Atpaf2p show comparable solubility 

profiles.  This indicates that the wild-type Atpaf2p is active and is capable of assembling the F1 

in a yeast model.  However, in the mutant variants of Atpaf2p, all of the F1 partition in the  

Minus Oligomycin

Wild type 3.25 ± 0.89

Δatp12p 0.24 ± 0.12

Δatp12p  + Atpaf2p 1.21 ± 0.21

Δatp12p  + Atpaf2p (E241G) 0.36 ± 0.06

Δatp12p  + Atpaf2p (G170V) 0.27 ± 0.04

Strain

µmole of NADH consumed/min/mg

0.17 ± 0.04

Mitochondrial ATPase Activity

Plus Oligomycin

0.56 ± 0.06

0.11 ± 0.04

0.52 ± 0.01

0.17 ± 0.07

M      S      P

aW303

(WT)

M      S      P

Δatp12

M      S      P

Δatp12 + Atpaf2p

M      S      P

Δatp12 + Atpaf2p

(E241G)

M      S      P

Δatp12 + Atpaf2p

(G170V)

αααα

ββββ

Figure 21. Western analysis showing solubilization of the F1Fo from yeast mitochondria. 
Mitochondrial samples prepared from yeast strains shown were extracted with 0.25% TritionX-100 and 
centrifuged as mentioned under “Materials and Methods”. Aliquots of total mitochondrial protein (M) and 
equivalent volumes of the particulate (P) and soluble (S) fractions were analyzed by Westerns. The type of atpaf2

mutation is given in parenthesis. 

Table 6. ATPase activities of yeast producing plasmid-borne Atpaf2p. 
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Figure 22. Western analysis of step sucrose gradient fractions. Mitochondria prepared from the wild 
type strain, aW303, and from mutants, were permeabilized using 0.25% TritonX-100 and centrifuged through 20–
80% step sucrose gradients as described under “Materials and Methods.” Ten fractions of equivalent volume were 
collected from the bottom of the tube, and 15 µl of each fraction were run on a 12% SDS-polyacrylamide gel. 
Following transfer to nitrocellulose, the blot was exposed to antibodies against the F1 α and β subunits and 
cytochrome c1 (Cyt c1). The positions of the α, β, and Cytochrome c1 protein bands are indicated in the left-hand 
margin. 
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particulate fraction.  The aggregated F1 subunits suggests that the missense mutations in Atpaf2p 

abolishes its activity and is unable to assemble the F1Fo.  This phenotype is similar to F1 

assembly defective yeast that that are missing the Atp11p or Atp12p required for F1 assembly.  A 

step sucrose gradient was performed to investigate if the F1 is associated with the inner 

mitochondrial membrane.  The yeast capable of producing the wild-type Atpaf2p shows two 

peaks for the F1 protein.  One peak is at the 50-60% sucrose interface and co-migrates with 

cytochrome c1, indicating that the F1Fo is membrane bound.  The second peak is observed at the 

60-80% interface indicative of higher molecular weight aggregates (Fig. 22).  This observation 

suggests that the Atpaf2p is capable of assembling F1Fo in an ∆atp12 yeast but may not be 

efficient as its yeast counterpart (Fig 22).   A similar analysis performed with yeast producing 

missense mutations in the Atpaf2p show aggregated F1 in the 80% sucrose fraction recapitulating 

an assembly defective phenotype. 

 The goal of this project was to evaluate the effect of missense mutations in the Atpaf2p 

genes from the SNP database.  We identified two missense mutations, G170V and E241G, that 

were of interest and observe that these mutations affect the activity of the Atpaf2p producing an 

F1 assembly defect.    
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CHAPTER 5: THE N-TERMINAL DOMAINS OF ATP11P 

Summary 

 The nuclear gene (ATP11) for S. cerevisiae Atp11p encodes a ~39 kDa pre-protein with 

318 amino acids.  The first 39 residues encompass the mitochondrial leader sequence (MLS), 

which when removed generates a ~32 kDa (Fig. 23, panels A and B) (90).  Work published 20 

years ago (91) disclosed the sequence between D112 and A300 to be the minimal boundary of 

the functional domain of yeast Atp11p (Fig. 23, B). 

 

In brief, ∆atp11 yeast were transformed with plasmids bearing partial fragments of 

Atp11p and evaluated for growth on EG plates.  Next, mitochondria were prepared from each 

transformant and analyzed by Western for Atp11p and by enzyme assay for oligomycin-sensitive 

ATPase activity.  Finally, based on the assumptions that the level of ATP synthase activity 

reflected the level of assembled enzyme and that this value correlated with the amount of Atp11p 

in mitochondria, the activity retained by each truncated protein, relative to wild type, was 

estimated by dividing the percent ATPase activity by the percent of immuno-detectable Atp11p.  

The most interesting observation from this work was obtained with the 11p∆40-111 

A B

Figure 23. Structure and domains of Atp11p. (A) The cartoon in the figure indicates the different domains in 
the Atp11p (B) Variants of Atp11p that are encoded by a plasmid.  Yeast strains producing the deleted forms of 
Atp11p were evaluated for its respiratory growth properties, proteins levels, and ATP synthase activities. 
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transformant, which showed that the region extending from E40 and L111 could be removed 

from Atp11p with essentially no impact on the protein activity (Fig. 23 B); i.e. the amount of 

assembled F1 correlated well with the amount of the 23 kDa Atp11p variant in mitochondria.  

These results identified the first 72 amino acids of mature Atp11p (post import/processing) as a 

separate domain at the N-terminus of the protein (Fig. 23, colored blue).  

 Interest in the N-terminal domain (NTD) of Atp11p was heightened by fortuitous 

observations made by members of the laboratory who were trying to determine the protein 

structure at atomic resolution.  Initial work was done using recombinant Atp11p (Rc11p) 

comprised of the sequence extending from E40 to N318, which mimicked the mature, 

mitochondrial form of the protein (90).  Highly purified preparations of S. cerevisiae Rc11p 

failed to crystallize and the 15N,2H-labeled recombinant protein produced a poorly resolved 2-D 

nuclear magnetic resonance (NMR) spectrum, typical of proteins not stably resided in a single 

conformation.  Remarkably, the NMR data improved dramatically with a form of Rc11p that was 

cleaved in vitro to remove the NTD (92).  In a similar vein, while the full-length RcAtp11p from 

Candida glabrata eventually afforded well-diffracting protein crystals, the NTD is missing from 

the high resolution X-ray structure (93), which includes only the green and brown shaded 

regions of the cartoon rendering shown in panel A of Fig. 23.  The blue helix was modeled using 

the Scratch Protein Predictor at http://scratch.proteomics.ics.uci.edu/. (94) to analyze the NTD 

amino acid sequence of C. glabrata Atp11p.   

Cumulatively, the information about the NTD of Atp11p suggested it might be a member 

of a recently-recognized protein class that is distinguished on the basis of intrinsic disorder (95).  

The high intra-molecular flexibility of intrinsically disordered polypeptide domains imposes 

unique functional properties with respect to well-ordered proteins.  If, in fact, the NTD of 
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Atp11p was not required to support assembly of F1 in vivo, perhaps it served a regulatory 

purpose.  However, before embarking on a full-scale investigation of this hypothesis, it was 

deemed important to first clarify a point of uncertainty with respect to how the data for the 

11p∆40-75 and 11p∆40-111 yeast transformants (Fig. 23, B) was interpreted (96).  The level of 

activity attributed to the N-terminally deleted variants of Atp11p produced in these yeast 

assumed that the relative amount of the protein detected in Western blots reflected how much 

protein was actually produced from the plasmids (see above).  This was a valid assumption 

provided that the antigenic determinants for the polyclonal antibody raised against Rc11p are 

distributed evenly along the primary amino acid sequence.  If, on the other hand, the majority of 

antigenic sites are clustered in the NTD, the amount of a protein from which a part (∆40-75) or 

all (∆40-111) of this sequence was missing would be underestimated by Western analysis.  An 

affinity tag fused to the C-terminus of the N-terminally truncated Atp11p proteins would enable 

its amount in protein blots to be measured using a read-out that was independent of Atp11p 

features.  Based on the success in previous work (97) that employed avidin conjugates to detect a 

biotinylated Atp11p-carboxylase fusion protein in mitochondria (abbreviated here as Bt11p), the 

plasmid to produce 11p(∆40-75) was re-engineered to include an in-frame fusion at the 3’ end of 

the gene to the DNA coding for a peptide that gets biotinylated in yeast.  Studies were then 

pursued with yeast transformants that produced either Bt11p or Bt11p(∆40-75). 

Results and Discussion 

Characterization of yeast strain producing biotinylated Atp11p 

  The yeast vector to produce Bt11p(∆40-75) was created by sub-cloning fragments from 

plasmids that were already available in the laboratory.  One of them, pG13/ST16, directs the 

production of Bt11p from a gene fusion between yeast ATP11 and the DNA coding for the biotin 
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attachment peptidyl region of a transcarboxylase enzyme from Priopiobacterium shermanii (97).  

The other, pBSE, carries the modified gene used to produce 11p(∆40-75), (91).  First, a 1427 bp 

SacI-HindIII fragment from the 2µ plasmid pG13/ST16 was transferred to a CEN vector, 

pRS316 (98), which had been linearized using the same restriction enzymes.  The intermediate 

plasmid was digested with SacI and NcoI, which removed the codons for Bt11p up to the NcoI 

site near the 3’ end of the gene.  The larger of the two generated fragments was purified and 

ligated with a 973 bp SacI-NcoI fragment from pBSE, which replaced the wild type ATP11 

sequence, upstream from the internal NcoI site, with the DNA coding for the ∆40-75 deletion 

and generated a single copy URA3 plasmid.  The introduction of this plasmid in ∆atp11 yeast 

partially rescued the respiratory defect as judged by the change from an EG- to a slow EG+ 

phenotype.  However, there was no oligomycin-sensitive ATPase activity detected in 

mitochondria purified from the transformant (Table 7).  Also the percentage of ATP synthase 

that partitioned to the soluble fraction following Triton X-100 treatment of mitochondria was 

less in samples from yeast that produce Bt11p(∆40-75) versus the transformant that makes 

regular 11p(∆40-75) from a plasmid (Fig. 24).  

 

Minus Oligomycin Plus Oligomycin

Atp11p 1.32 ± 0.02 0.26 ± 0.04
Δatp11p 0.29 ± 0.11 0.16 ± 0.02

11p(Δ40-75) 0.40 ± 0.03 0.20 ± 0.02

Bt11p 1.62 ± 0.16 0.40 ± 0.03

Bt11p(Δ40-75) 0.20 ± 0.03 0.12 ± 0.02

Strain

ATPase activity

µmole of NADH consumed/min/mg

Table 7. ATPase activities of yeast producing plasmid-borne Atp11p variants. 
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Figure 24. Western analysis showing F1FO extraction from yeast producing Atp11p from 

plasmids. Mitochondrial samples prepared from yeast strains shown were extracted with 0.25% 
TritionX-100 and centrifuged as mentioned under “Materials and Methods”. Aliquots of total 
mitochondrial protein (M) and equivalent volumes of the particulate (P) and soluble (S) fractions were 
analyzed by Westerns. 
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Strain Protein level % ATPase activity level % Protein activity level

Atp11p 100 100 100

11p(Δ40-75) 20 20 100

Bt11p 80 ≥100 ≥80

Figure 25. Protein blots of mitochondria from yeast transformants that produce Atp11p 

proteins from plasmids. Upper, mitochondria were prepared from non-transformed ∆atp11 and   
the transformants that carried the relevant plasmid to produce the various Atp11p proteins indicated in 
the figure.. Equivalent amounts of total mitochondrial protein (20 µg) were loaded in each lane of a 
12% SDS-polyacrylamide gel. Gel separation and transfer to nitrocellulose were done as described in 
“Materials and Methods”. Each of the samples were probed with Anti-Atp11p to quantify how much 
Atp11p was present, and with and HRP-Avidin to determine if the biotin tag was present.  Lower, the 
Western signals for Atp11p were quantified by densitometry to determine the % vs. wild type, and the 
latter values were divided by the % oligomycin-sensitive ATPase activity detected to estimate the 
activity of the proteins. 



 

 

65

 The mitochondria from the 5 strains shown in Table 7 and Fig. 24 were also evaluated for 

the level of Atp11p.  The mitochondrial proteins were resolved in SDS-polyacrylamide gels, 

transferred to nitrocellulose, and the blots were treated with polyclonal anti-Atp11p serum or 

horse-radish peroxidase (HRP) conjugated avidin (Fig. 25).  The Western blot showed immune-

reactive full-length Atp11p and 11p(∆40-75) proteins (blue arrows) of the expected sizes and 

Bt11p was detected with both the antibody and HRP-avidin (red arrows).  However, there was no 

Bt11p(∆40-75) picked up with either probe.  A densitometry analysis was performed using the 

Kodak 1D imaging system to determine the relative amounts of the proteins that were detected 

by Western, and these values were used in combination with the oligomycin-sensitive ATPase 

activities in each sample to estimate the level of Atp11p as described above for Fig. 23.  Whereas 

a similar analysis performed previously had indicated 11p(∆40-75) was only 46% active (Fig. 

23), the more recent results showed that the transformed yeast  produced 20% the wild type level 

of 11p(∆40-75) protein, and this correlated with ~20% oligomycin-sensitive ATPase, which 

suggests the non-biotinylated truncated protein is, in fact, fully active. 

 The goal of these experiments was to examine the amount of 11p(∆40-75) relative to wild 

type in mitochondria in a manner that was  independent of its physical characteristics.  We 

conclude that combining a C-terminal biotinylation sequence with the ∆40-75 deletion 

dramatically reduces the stability of the protein and made it impossible to detect Bt11p(∆40-75).  

No further work targeting the NTD of Atp11p was pursued.  
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CHAPTER 6: SCOPE OF THE STUDY AND LIMITATIONS 

 The ATP synthase is a multimeric enzyme that consists of nineteen different 

polypeptides.  Broadly the ATP synthase is divided into three separate structures.  1) An FO 

region that is embedded in the mitochondrial matrix. 2) A hydrophilic F1 region that is facing the 

mitochondrial matrix. 3) A peripheral stalk or “stator” area that connects helps connect the F1 to 

the FO.  Our laboratory has always been interested in the assembly of the mitochondrial F1-

ATPase and therefore more emphasis will be given to it.  The F1 subunit of the mitochondrial 

ATP synthase consists of α3, β3, γ, δ, and ε.  The F1 subunits are encoded by the nucleus and are 

imported into the mitochondrial matrix for the assembly of the F1.  Many of these subunits were 

identified by chemical mutagenesis of wild-type yeast, D273, and selected for respiratory growth 

defect on a non-fermentable source such as ethanol-glycerol medium.  The α and β subunits 

form an alternating structure with the  subunits containing the nucleotide binding domains that 

become catalytically active when there is a contribution from the neighboring subunits. The 

absence of either the α or β the  subunits results in the aggregation of the corresponding subunits 

as insoluble proteins in the mitochondrial matrix.  A similar effect is observed with yeast strains 

lacking the assembly factors for the α and β subunits, Atp12p and Atp11p respectively.   

Mutagenesis of wild-type yeast led to the identification of independent isolates harboring 

mutations in the F1 α (G50) or β subunit (G1).  Studies with six of the 22 atp2 mutants by our 

laboratory have shown that mutations in the β subunit affect the activity of the ATP synthase or 

is assembly defective.  The aim of this thesis was to study the biochemistry of the ATP synthase 

in the remainder of the atp2 mutants and all of the atp1 mutants.  Our studies reveal "novel" 

phenotypic characteristics in the atp1 and atp2 mutants that have not been observed or reported 

previously.  The atp2 mutant, N15, shows 40% wild-type levels of enzyme activity and presence 
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of an assembled F1FO.  This mutant harbors two mutations in the reading frame of the atp2 gene 

(G227D, D469N).  It has been observed that yeast isolates harboring only the G227D are 

defective for the enzyme assembly.  Therefore, it suggests that the D469N mutation suppresses 

the effects of the G227D mutation.  We have explained this suppressor effect using a structural 

model as described in the "Discussion" section.  However, molecular dynamics simulation and 

site-directed mutagenesis will provide greater insight into the phenotypic characteristic of the 

atp2 mutant N15.   

Two yeast mutants that showed similar biochemical properties were E793 (atp1) and 

E892 (atp2).  These mutants show no enzyme activity but demonstrate the presence of soluble α 

and β subunits.  Using linear sucrose gradients, we observed that these mutants produce large 

oligomers of the F1FO.  Surprisingly each of these mutations maps to the P-loop region of the 

alpha and beta subunits.  Study in our laboratory of an atp2 mutant (A192V) with a P-loop 

mutation shows a solubility profile similar to the wild-type yeast with the loss of an enzyme 

activity and therefore this result was unexpected.  At present, we are unable to explain 

satisfactorily why these yeast mutants form higher order oligomers of F1FO when extracted from 

the membrane using a detergent.  We suggest that these P-loop mutations expose certain 

hydrophobic surfaces within the nucleotide binding regions causing it to oligomerize.  It would 

be interesting to investigate whether the oligomerization phenomenon is unique to individual 

amino acids in the P-loop region.   

Another novel phenotype that we observed was in the atp2 mutant E323.  This mutant 

yeast produces αβ dimers but is incapable of F1 assembly.  We have not been able to ascertain at 

what point during assembly the process is hindered.  Immuno co-precipitation will allow us to 

identify if other subunits of the F1 are associated with the αβ dimers. 
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Our study opens new avenues in understanding the structure and the mechanism of the 

ATP synthase.  Although similar work has been carried out with the bacterial ATP synthase in 

various domains, it is not an ideal system because the yeast mitochondrial ATP synthase shares 

structural and functional homology with the human ATP synthase.  Mutational studies allow us 

to observe how the biochemistry of the ATP synthase is affected.  With polymorphisms found in 

different human populations, one can predict if a missense mutation has an effect on the structure 

or the activity of the enzyme.  It also allows us to identify if a mutation in the ATP synthase has 

a pleiotropic effect on other respiratory chain proteins or other mitochondrial proteins. 
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  The F1 domain is the catalytic subunit of the mitochondrial ATP synthase. Studies with 

respiratory-deficient yeast identified ATP1 and ATP2 as nuclear genes encoding the alpha and 

beta subunits, respectively, of the mitochondrial F1-ATPase. The mutations in the atp1 and atp2 

genes were cloned and sequenced, and they appear to affect the ATP synthase. Most yeast strains 

with mutations in the β or the α subunit primarily show an F1 assembly defective phenotype. 

This feature is similar to the assembly-defective mutants missing the chaperones required for 

assembly of the F1 oligomer or either the alpha/beta subunits.  

Some of the atp2 and atp1 yeast mutants are interesting because they show evidence of a 

soluble F1 oligomer with "new" phenotypic characteristics. The yeast strains E892 and E793 with 

a mutation in the P-loop are capable of assembling the F1 in vivo, but extraction of the F1Fo from 

the inner mitochondrial membrane using detergent renders it unstable forming oligomeric 

structures. The yeast mutant E323 has a phenotypic characteristic that resembles F1 assembly 

defective mutants. However, the defect is not because the mutation affects the structural stability 

of the protein but due to the inability of the αβ dimers to assemble a soluble F1. The yeast mutant 
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N15 presents two mutations (G227D, D469N) in the beta subunit with impaired catalytic 

activity. Work in our lab has shown that atp2 yeast mutants with the G227D mutation are 

incapable of assembling the F1Fo. We suggest that the D469N mutation rescues the deleterious 

phenotypic effect of the G227D mutation. 

The F1-α and β subunits are assembled into a soluble hexamer with the aid of two 

nuclear-encoded chaperones Atp12p and Atp11p respectively. Chaperones maintain the activity 

of proteins that are destabilized by mutations. Prokaryotes show increased levels of chaperones 

to alleviate the deleterious effects of mutations. To explore this possibility, we overexpressed the 

ATP11 and ATP12 genes to determine if it rescues the mutant phenotype. Our efforts so far have 

proved unsuccessful. 

Thus, to summarize, we biochemically evaluated the effect of mutations in the atp1 and 

atp2 genes of the F1-ATPase. The work presented here will give valuable insight into the role of 

individual amino acids in the functioning of the ATP synthase. Mutational studies combined with 

structural data will allow us to completely understand the mechanism of the ATP synthase. 
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