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Abstract 

Acid phosphatase (ACP1) is a polymorphic enzyme which catalyzes the conversion of flavin-

mononucleotide (FMN) to riboflavin and regulates the cellular concentration of flavin-adenine-

dinucleotide (FAD) and, consequently, energy metabolism. Its activity is modulated by 

adenosine deaminase (ADA1) genotype. Aim of our work is to verify whether individuals with a 

high proportion of ACP1 f isozyme and carrying ADA*2 allele, displaying the highest 

phosphatase activity, may have a higher life expectancy. 

Genomic DNA was extracted from peripheral blood of 569 females and 509 males (18-106 

years) randomly recruited from Central Italy. These samples were subdivided into three sex-

specific age groups (the ages of  women are in square bracket): Class 1:age <66 [<73]; Class 2: 

age 66-88 [73-91]; Class 3: age >88 [>91]. ACP1and ADA1 SNPs were genotyped by RFLP-PCR 

methods and statistical analyses were performed using SPSS 14.0. The results showed a larger 

proportion of Class 3 individuals displaying high ACP1 f isozyme concentration and carrying 

ADA1*2 allele than those of Class 2 and Class 2+1. Thus, we postulate that in Class 3 individuals 

the high phosphatase activity, resulting from the combined presence of high ACP1 f isozyme 

concentration and the ADA1*2 allele, lowers the rate of glycolysis which may reduce the amount 

of metabolic calories and, in turn, activate Sirtuin genes that protect cells against age-related 

diseases.  
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Introduction 

ACP1 gene (gene map locus 2p25) encodes for the ACP1 polymorphic enzyme also called 

Low Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP). Two functions have been 

suggested for ACP1: flavin-mononucleotide (FMN) phosphatase and tyrosine phosphatase. As 

flavin–mononucleotide phosphatase, ACP1 catalyzes the conversion of FMN to riboflavin, thus 

regulating cellular flavin-adenine-dinucleotide (FAD) concentration, flavo-enzyme activity and 

energy metabolism. As phosphotyrosine phosphatase, ACP1 may modulate the glycolytic rate 

controlling insulin receptor activities and band 3 protein status.  

ACP1 shows three common codominant alleles, ACP1*A, ACP1*B and ACP1*C, whose 

combinations define six phenotypes characterized by different enzyme activity (in the order, 

A<B/A<(B, C/A)<C/B). The ACP1 C phenotype is very rare being present only in Caucasian people 

and it displays the highest enzyme activity (Boivin and Galand 1986; Bottini et al. 2002; Fuchs et 

al. 1992; Spencer et al. 1964).  

  Low ACP1 activity makes an individual more susceptible to allergic disorders, to Th1-

immune diseases, to type 1 diabetes and Crohn’s disease, and lowers the age at onset (≤ 6yr) of type 

1 diabetes. ACP1 *A/*A and *B/*A genotypes are over-represented in children with idiopathic 

generalized tonic-clonic seizures, suggesting a detrimental role of low ACP1 activity also in central 

nervous system. ACP1*A allele has the highest frequencies in the population of northern latitudes 

and it has been associated with greater body size and with adaptation to cold stress. ACP1 A and 

ACP1 B/A phenotypes are also associated with severe body mass increase in obese adult subjects, in 

obese diabetic pregnant women and in normal children (Bottini et al. 1990; Bottini et al. 2002a; 

Bottini et al. 2002b; Bottini et al. 2007; Gloria-Bottini et al. 2007; Greene et al. 2000; Lucarini et al. 

1990; Paggi et al. 1991). 
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The ACP1 gene expresses two isozymes (f and s) showing different concentrations among 

the six ACP1 phenotypes. These isozymes are expressed simultaneously in many tissues and they 

are characterized by different biological functions. ACP1 f isozyme is the main responsible of the 

total ACP1 activity (Dissing and Svensmark 1990; Fujimoto et al. 1988; Stefani et al. 1993). Since 

different effects on f and s isozymes activity result from modulation of ACP1 enzymatic activity, C, 

CA and A phenotypes - characterized by lower concentrations of f isozymes - could be more 

susceptible to damage by oxidative events compared to the other phenotypes. Notably, leiomyoma 

size is negatively correlated with ACP1 f isozyme concentrations regulating negatively cell 

proliferation and growth of leiomyomas through dephosphorylation of the PDGF receptor 

(Ammendola 2009). 

Adenosine deaminase locus 1 (ADA1) is a polymorphic enzyme catalyzing the irreversible 

deamination of adenosine to inosine. It is present in all mammalian tissues and it is controlled by a 

locus on the long arm of chromosome 20 with two co-dominant alleles ADA1*1 and ADA1*2 having 

different associated enzymatic activities. ADA1*1 allele displays 30% higher enzymatic activity 

than ADA1*2 allele (Battistuzzi et al. 1974). Experimental studies have also shown that adenosine, 

acting via adenosine 1 receptor, increases insulin sensitivity in isolated adipocytes and decreases 

insulin sensitivity in isolated muscle fibers (Challis et al. 1992; Dunwiddie and Masino 2001; 

Vannucci et al. 1992 ). Interest has been focused on a wide variety of effects produced by adenosine 

through the activation of cell surface adenosine receptors (Richardson 1997; Xu et al. 1998; Yasuda 

et al. 2003). Transient activation of adenosine receptors protects against damage following hypoxic 

or ischemic events in brain and in other excitable tissues such as heart. Variation in energy states, 

cardiac stress or other stimuli induce the release of adenosine which by its receptors can lead to a 

more efficient balance between energy utilization and energy supply, also protecting cardiac cells 

under extreme stress conditions (Headrick et al. 2011). 
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ACP1 enzyme activity is modulated by ADA1 genotype: in carriers of ADA1*2 allele, 

ACP1 A, BA, CA and CB activity is lower than in homozygous for ADA1*1 allele (Lucarini et al. 

1989). A positive association of the genotype ACP1*A/*A and ADA1*2 allele with type 1 

diabetes and a negative correlation between the frequency of this gametic type with past malarial 

morbidity in Sardinia (Gloria-Bottini et al. 2010) have been already reported. Moreover, a 

significant association between ACP1 and ADA1 has been found in Caucasians living in 

Australia and in a Brazil (Engràcia et al. 1991)  

Since ACP1 f isozyme is the main responsible of ACP1 activity modulated by ADA1 we 

tested whether the subjects with a high proportion of ACP1 f isozyme and carrying ADA1*2 allele 

have an higher life-expectancy. 
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Materials and Methods 

Subjects 

Peripheral blood was obtained from 1072 (569 females and 503 males) unrelated 

individuals, 18–106 years old, randomly recruited from the same geographical area of Central 

Italy (Marche region) on the eastern side of the Apennines. The whole population studied was 

composed by Caucasian individuals all descendants of an ancient pre-Roman Italian population 

called the Piceni (Cavalli-Sforza et al. 1994). The same donors provided information concerning 

their health condition. No  pathological condition existed (e.g. cancer, diabetes, heart diseases, 

hypertension, obesity, and chronic inflammatory diseases). The sample study was divided into 

three sex-specific age classes ( the age classes of women are written in square bracket)  The first 

age class was made by men with age <66  [<73], the second class by men  with age 66-88  [73-

91], and the third class by men with an age  >88  [>91]. These gender-specific age classes were 

defined according to demographic information and accounted for different survivals of men and 

women in Italian population (Passarino et al. 2006). The study protocol was approved by the 

Joint Ethical Committee (JEC) University of Camerino-Azienda ASUR Marche ZT-10 

Camerino, in accordance with the Declaration of Helsinki in its revised edition and with 

international and local regulatory requirements. 

 

Genotyping 

Genomic DNA extraction was carried out from peripheral blood through standardized 

salting out method and DNA was stored at −20 °C until gene analysis.  

ACP1 and ADA1 SNPs were genotyped according to RFLP-PCR methods previously 

published (Lazaruk 1995; Napolioni and Lucarini 2010). For ACP1, all PCRs were set up in 30 

µl and 0.2 µmol/L of both primers, 0.1 mmol/L dNTPs, 1.5 mmol/L MgCl2, 0.5 U of Taq 
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polymerase (AmpliTaq, Applied Biosystem, Mannheim, Germany), 1X AmpliTaq buffer (PE), 

and 50 ng of DNA template. The amplification conditions consisted of an initial denaturation at 

94°C for 2 minutes, followed by 35 cycles of 94°C for 45 seconds, 54°C for 45 seconds, 72°C 

for 45 seconds, and a final extension at 72°C for 5 minutes. The annealing temperature, 

extension time, and primer concentration for the 2-kb amplification product were 57°C, 120 

seconds, and 0.1 µmol/L, respectively. Oligonucleotides used for PCR amplification are reported 

in Table 1. The C>T transition at codon 43 and the A>G transition at codon 105 generate a CfoI 

and a TaqI restriction site that, together, were used for PCR-based genotyping, respectively. A 

341-bp segment spanning the entire exons 3 and 4 was amplified using primers 263 to 264 

(Table 1). A 299-bp segment including exon 6 was amplified using primers 267 and 268. Ten 

microliters of the 341-bp exon 3 amplicon was fully cleaved by CfoI  at 37°C for 1 hour 

according to the manufacturer’s instructions and then electrophoresed on 1.8% agarose gels. The 

digestion created two fragments of 255 and 86 bp for the ACP1*A and ACP1*B haplotype, 

whereas the ACP1*C haplotype was not cut. Similarly, the 299-bp PCR product was digested by 

TaqI at 65°C for 1 hour according to the manufacturer’s instructions, generating 2 fragments of 

100 and 199 bp for the ACP1*A haplotype but not for the *B and *C haplotypes. 

Briefly, for ADA1, PCR was performed with primers flanking the 22G>A polymorphic region: 

5’-GCCCGGCCCGTTAAGAAGAGC-3’ as sense primer, and 5’-

GGTCAAGTCAGGGGCAGAAGCAGA-3’ as antisense primer. The PCR products were 

digested with TaqI endonuclease for 90 min at 65°C, and the samples were electrophoresed in a 

1.8% agarose gel.  ADA1 22*A (ADA1*2) allele was identified by the lack of a TaqI restriction 

site.  

 

Statistical analysis 

Haplotype and genotype frequency were calculated by genotype counting method. 

Hardy–Weinberg Equilibrium (HWE) was assessed by comparing the genotype frequencies with 
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the expected values using a contingency table χ 2 statistics. Means and T-test for difference 

between means were carried out by using the SPSS programs.  
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Results 

Table 2 shows the frequency of ACP1 genotypes in relation to ADA1 genotypes and 

classes of age in males and females separately. All age classes are in Hardy-Weinberg 

Equilibrium. In both sexes ACP1 *A/*B and *B/*B – ADA1 genotypes have a greater frequency 

in all age classes. 

Table 3 shows f and s ACP1 genotype isozyme concentrations according to Dissing 

(Dissing 1987, 1993). The data of Dissing are reported to clarify the procedure to obtain the data 

reported in Table 4. 

Table 4 shows the concentration of ACP1 f isozyme - ADA1*2 allele along the three age 

classes studied. The mean value of ACP1 f isozyme amount among the various ACP1-ADA1*2 

genotypes is reported for each class (Dissing 1987, 1993). It is also reported the T test for 

differences between means. The concentration of ACP1 f  isozyme - ADA1*2 allele  in Class 3 

subjects is higher than the one in Class 2 and Class 1, but, compared to the Class 1, it does not 

reach statistical significance (p=0.053). ACP1 f isozyme - ADA1*2 allele concentration of 

subjects in Class 1 is not different from that of subjects in Class 2 while the differences between 

the concentration in Class 3 and Class 2 and between Class 3 and Class 2 + Class 1 are highly 

significant.  
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Discussion 

In Class 3 compared to Class 2, or to Class 2 plus Class 1, there is a significant excess of 

individuals displaying higher amount of ACP1 f isozyme – ADA1 *2 allele (table 4). Boivin and 

Galand (1986) demonstrated that ACP1 dephosphorylates the tyrosine residues of the erythrocyte 

membrane protein 3 (B3P). The phosphorylation of B3P tyrosines prevents the binding of several 

glycolytic enzymes, causing high glycolytic rates in erytrocytes (Harrison et al. 1991; Low et al. 

1987). Furthermore, Stefani et al. (1993) demonstrated that the phosphotyrosine of a syntethic 

peptide corresponding to the sequence 5-16 of the B3P is much more efficiently hydrolyzed by the 

ACP1 f isozyme than s isozyme. Therefore, as the ACP1 f amount is strongly related to ACP1 

activity (Dissing and Svensmark 1990; Stefani et al. 1993) and its activity is enhanced by ADA1*2 

(Lucarini et al. 1989), it is conceivable that this fact may result in a significantly dephosphorylation 

of tyrosine residue of B3P, slowing glycolytic rates in erythrocytes. Therefore, this may affect the 

Krebs cycle resulting in a lesser amount of metabolic calorie. Moreover, the highest ACP1 activity 

can dephosphorylate insulin receptor, counteracting the action of insulin and decreasing glucose 

utilization.  

Calorie restriction in mammals activate the Sirtuin genes (Baur et al. 2010; Bordone and 

Guarente 2005; Civitarese et al. 2007; Cohen et al. 2004; Imai and Guarente 2010; Kelly 2010; Qiu 

et al. 2010) which protect cells against age-related diseases such as, cancer, atherosclerosis, 

cardiovascular diseases, neurological disorders and diabetes (Haigis and Guarente 2006; Haigis and 

Sinclair 2010; Kim and Um 2008; Kim et al. 2007; Lagouge et al. 2006; Milne et al. 2007; 

Westphal et al. 2007). We suggest that subjects displaying higher amount of ACP1  f isozyme and 

carrying ADA1*2 allele probably display a higher life-expectancy for a lower amount of metabolic 

calories. Moreover, higher concentration of both circulating and intra-cellular adenosine (Battistuzzi 

et al. 1974) can enjoy positive effects on neural and cardiac tissues during hypoxic or ischaemic 
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events (Cohen and Downey 2008; Headrick et al. 2011; Latini and Pedata 2001; Mubagwa and 

Flameng 2001; Peaeson et al 2003; Pedata et al. 2007). 
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Table 1. Primers used for ACP1 SNPs analysis 

 

Primer Target Amplification Nucleotide Sequence 5’-3’ 
#263 Exon 3 AGGCCACCTGAACTCCTCT 
#264 Exon 3 CCTGTCTTGTTTATGGGCT 
#267 Exon 6 TTCAGAAGACCCTAGCAGATG 
#268 Exon 6 TGGCAAAACCTGCATAACAA 

 

Abbrevation: SNPs, single-nucleotide polymorphisms. 
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Table 2. Distribution of ACP1 genotype in relation to ADA1  and classes of age in females and males 

 

  ADA1 *1/*1 ADA1 *2 carriers 

Sex ACP1 Age Classes Age Classes  

  1 2 3 1 2 3 

Females *A/*A 4.8% 14.7% 7.2% 7.0% 11.4% --- 

 *B/*A 47.3% 41.5% 42.2% 34.9% 34.1% 41.2% 

 *B/*B 41.1% 41.9% 41.0% 44.2% 43.2% 52.9% 

 *C/*A 2.1% 2.5% 2.4% 7.0% 4.5% --- 

 *C/*B 4.8% 9.3% 7.2% 7.0% 6.8% 5.9% 

 *C/*C --- --- --- --- --- --- 

Total n°  146 236 83 43 44 17 

ACP1 Hardy-Weinberg Equilibrium (p) Class 1  0.226; Class 2  0.325; Class 3  0.730   

ADA1 Hardy-Weinberg Equilibrium (p) Class 1  0.270; Class 2  0.513; Class 3  0.845   

 

Males *A/*A 6.3% 5.8% 6.5% --- 11.8% --- 

 *B/*A 38.3% 35.6% 37.0% 50.0% 41.2% 25.0% 

 *B/*B 43.0% 43.3% 42.4% 37.5% 41.2% 75.0% 

 *C/*A 6.3% 6.7% 3.3% 6.3% 3.9% --- 

 *C/*B 4.7% 8.7% 10.9% 6.3% 2.0% --- 

 *C/*C 1.6% --- --- --- --- --- 

Total n°  128 208 92 16 51 8 

ACP1 Hardy-Weinberg Equilibrium (p) Class 1  0.057; Class 2  0.115; Class 3  0.936   

ADA1 Hardy-Weinberg Equilibrium (p) Class 1  0.896; Class 2  0.268; Class 3  0.953   
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Table 3. f and s isozyme concentrations in relation to ACP1 genotype (as reported in Dissing  1987, 1993). 

The quantities of enzyme are given per millilitre of packed red cells, RBC indicates red blood cells. 

 

 

 

 

 

 

	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total quantity of f (µg/mL 
RBC) 

Total quantity of s (µg/mL 
RBC) 

    *B/*B 16.4      *C/*C 20.6 

     *B/*A 12.0      *C/*A 12.7 

     *C/*B 11.3      *C/*B 12.1 

     *A/*A  7.9      *B/*B  3.9 

     *C/*A  7.5      *B/*A  3.4 

     *C/*C  5.7      *A/*A  3.3 
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Table 4.  Concentration of ACP1 f isozyme-ADA1*2 allele in relation to age classes 

 

 

 ACP1 f isozyme-ADA1*2 allele 

Age classes Mean S.D. S.E. Total n° 

Class 1 13.3 2.99 0.39 59 

Class 2 13.16 3.12 0.32 95 

Class 3 14.61 2.24 0.45 25 

T-test for differences between means (p) 

Class 2 vs. Class 1                      0.777 

Class 3 vs. Class 1                      0.053 

Class 3 vs. Class 2                      0.031 

Class 3 vs. Class 2+1                  0.030     
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