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Abstract  

Background: Previous studies concerning the relevance of the BDKRB2 gene polymorphisms 

revealed that the absence (–9 allele) of a 9 base pair sequence in exon 1 of the BDKRB2 gene 

is correlated with higher skeletal muscle metabolic efficiency, glucose uptake during exercise,  

as well as endurance athletic performance. Aim: The aim of the study was to investigate the 

association between the BDKRB2 -9/+9 polymorphism and elite athletic status in two cohorts 

of east-European athletes. Therefore, we examined the genotype distribution of the BDKRB2 

9/+9 polymorphic site in a group of Polish athletes and confirmed the results obtained in a 

replication study of Russian	  athletes.. Methods: Three hundred and two Polish athletes and 

684 unrelated sedentary controls as well as 822 Russian athletes and 507 unrelated sedentary 

volunteers were recruited for this study. All samples were genotyped for the -9/+9 

polymorphism within exon 1 of the BDKRB2 gene using a polymerase chain reaction (PCR). 

Significance was assessed by χ2 analysis with Bonferroni’s correction for multiple testing. 

Results: We have not found any statistical difference in the -9/+9 genotype and allele 

frequencies in two groups of athletes divided into four subgroups, i.e. endurance, sprint-

endurance, sprint-strength and strength athletes, when compared with controls. There weren’t 

any significant differences found in allele frequencies (P = 0.477) and genotype distribution 

(P = 0.278) in the initial and replication studies. Conclusion: No association was found 

between the BDKRB2 -9/+9 polymorphism and elite athletic status in two cohorts of east-

European athletes 
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Introduction 

The angiotensin-converting enzyme (ACE) plays a significant role in circulatory 

homeostasis. It is a key component of the renin-angiotensin system (RAS), being responsible 

for the production of a vasoconstrictor, angiotensin II. Moreover, it is a very important part of 

the kallikrein-kinin system (KKS) where ACE degrades kinins into inactive peptide fragments 

(Moreau et al., 2005, Jones and Woods, 2003). One of these is the vasodilator bradykinin, an 

efficacious, short-lived effector of a class of peptides known as kinins, released from 

kininogenes by proteolytic activity of kallikreins (Kammerer et al., 1995; Prado et al., 2002). 

It participates in multiple physiological and pathological processes including vascular 

dilation, increased vascular permeability, angioedema, smooth muscle contraction, pain, 

inflammation, neurotransmission as well as cell proliferation (Kammerer et al., 1995; Braun et 

al., 1995). Regoli and Barabé (1980) suggested that bradykinin acts via two plasma membrane 

receptors, named the bradykinin β 1 receptor (BDKRB1) and the bradykinin β 2 receptor 

(BDKRB2). The majority of bradykinin physiological effects are mediated by activation of 

the cell surface BDKRB2, which exhibit high affinity for kallidin (Lys-bradykinin) and 

bradykinin (Kammerer et al., 1995). 

The activation of the BDKRB2 results in increased skeletal muscle glucose uptake 

during exercise, muscle blood flow and endurance performance (Dietze et al., 1996, 

Henriksen et al., 1999). Additionally, the production of the vasodilator nitric oxide (NO) from 

arginine by the enzyme nitric oxide synthase (NOS) has been observed (Rett et al., 1990; 

Shen et al., 1995; Mayfield et al., 1996). It is indicated, that NO is one of the key substances 

that influences blood pressure and basal vascular tone (Quyyumi et al., 1995; Kimura et al., 

2003). 
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 The bradykinin β2 receptor is encoded by a single-copy of the BDKRB2 gene and is 

expressed in most human tissues (Braun et al., 1995; Kammerer et al., 1995; Prado et al., 

2002). Ma et al. (1994) localized the BDKRB2 gene on chromosome 14q32. A three-exon 

structure for human BDKRB2 gene has been revealed, with the coding region in exons 2 and 3 

(Kammerer et al., 1995). Previous studies on the gene sequence have shown that it is 

characterized by 1 polymorphism in the promoter region and 3 polymorphic sites located in 

each of the three exons (Kammerer et al., 1995; Braun et al., 1995). The insertion/deletion 

polymorphism (-9/+9, rs5810761) in exon 1 has been mainly studied in the context of 

associations between genotypes and physical performance, as well as hypertension and 

cardiovascular diseases (Hallberg et al., 2003; Fu et al., 2004; Saunders et al., 2006; Williams 

et al., 2004). The –9 as opposed to the +9 allele, is associated with increased gene 

transcription and higher receptor mRNA expression (Braun et al., 1996; Lung, et al., 1997).  

Individuals with the +9 /+9 genotype were characterized by the lowest levels of the 

BDKRB2 and showed the greatest increase in left ventricular mass as well as less left 

ventricular mass regression compared with other genotypes (Halberg et al., 2003). The 

presence of the BDKRB2 +9 allele was related with cardiovascular risk and increase in 

blood pressure associated with hypertension (Dhamrait et al., 2003). Increased activity of 

the BDKRB2 what is observed for the -9 allele carries may be involved in determining 

endurance performance (Saunders et al., 2006). 

 These conclusions seem to be supported by Williams et al. (2004), who have 

demonstrated that the absence (-9), rather than the presence (+9), of a 9 base pair (bp) 

sequence in exon 1 of the BDKRB2 gene is strongly associated with higher skeletal muscle 

metabolic efficiency, as well as endurance athletic performance. Additionally, Saunders et al. 

(2006) have confirmed that variants of the BDKRB2 gene which contribute to increased the 

KKS activity are associated with the endurance performance of South African triathletes. 
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Previous studies have also shown that the +9/+9 genotype is strongly associated with left 

ventricular (LV) growth response in normotensive males undergoing physical training and 

change in LV mass in response to antihypertensive treatment (Hallberg et al., 2003).  The aim 

of the study was to investigate the association between BDKRB2 -9/+9 polymorphism and 

elite athletic status in two cohorts of east-European athletes. Therefore, we examined the 

genotype distribution of BDKRB2 9/+9 polymorphic site in a group of Polish athletes and 

confirmed the results obtained in a replication study of Russian athletes. The	   athletes were 

divided into four groups, covering a spectrum from the more endurance-oriented to the more 

strength-oriented (power-oriented) disciplines, according to the following values: relative 

aerobic/anaerobic energy system contribution, time of competitive exercise performance and 

intensity of exertion in each sport. 

 

Materials and Methods 

 The experimental procedures were conducted in accordance with the set of guiding 

principles for reporting the results of genetic association studies defined by the STrengthening 

the REporting of Genetic Association studies (STREGA) Statement (Little et al. 2009). 

Subjects and controls  

 The initial association study was done in a group of 302 Polish athletes of the highest 

nationally competitive standard (age 27.8 ± 7.1. yr, male n = 221 and female n = 81). The 

athletes were prospectively stratified into four groups according to the values of relative 

anaerobic/aerobic energy system contribution, time of competitive exercise performance and 

intensity of exertion in each sport. The first group, designated as endurance athletes, consisted 

of athletes (n = 26) with predominantly aerobic energy production (duration of exertion over 

30 minutes, intensity of exertion moderate). This group included triathletes (n = 4), race 
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walkers (n = 6), road cyclists (n = 14) and 15-50 km cross-country skiers (n = 2). The second 

group, designated as strength-endurance athletes (n = 66), was comprised of athletes whose 

sports utilise mixed anaerobic/aerobic energy production, with a duration of exertion ranging 

from 5 to 30 minutes and a moderate to high intensity of exertion. This group included rowers 

(n = 41), 3-10 km runners (n = 17) and 800-1500 m swimmers (n = 8). The third group 

(sprint-strength athletes; n = 110) also included athletes with mixed energy production, but 

when compared to the second group, the time of competitive exercise performance was 

shorter (1-5 minutes; in the case of combat sports, the duration of a single bout of competition 

was taken into account), while the intensity of exertion was higher and the balance between 

anaerobic/aerobic energy production was shifted towards the anaerobic system. This group 

was comprised of kayakers (n = 10), 800-1500 m runners (n = 7), 200-400 m swimmers (n = 

3), judokas (n = 13), wrestlers (n = 41), boxers (n = 19) and fencers (n = 17). The fourth 

group (strength athletes) consisted of athletes (n = 100) with predominantly anaerobic energy 

production (duration of exertion < 1 minute, intensity of exertion submaximal to maximal): 

100-400 m runners (n = 29), powerlifters (n = 22), weightlifters (n = 20), throwers (n = 14) 

and jumpers (n = 15).  

All Polish athletes recruited for this study were ranked in the top 10 nationally in their 

respective discipline. The study population included 63 athletes classified as ‘top-elite’ (gold 

medallists in the World and European Championships, World Cups or Olympic Games) and 

149 athletes classified as ‘elite’ (silver or bronze medallist in the World and European 

Championships, World Cups or Olympic Games). The others (n = 90) were classified as ‘sub-

elite’ (participants in international competitions). Various methods were used to obtain the 

samples, including: targeting national teams and providing information to national coaching 

staff and athletes attending training camps. 
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 Control samples were prepared from 684 unrelated, sedentary volunteers (students of 

the University of Szczecin, aged 19–23; 153 females and 531 males; age 24.3 ± 0.2 yr). All 

athletes and controls were Caucasian to reduce the possibility of racial gene skew and to 

overcome any potential problems due to population stratification. The procedures followed in 

the study were approved by the Pomeranian Medical University Ethics Committee. All 

participants gave informed consent to genotyping with the understanding that it was 

anonymous and obtained results would have confidential status. 

The replication study was done in 822 Russian athletes of a nationally competitive 

standard (286 females and 536 males; age 25.3 ± 0.2 yr). The athletes were divided into four 

groups according to the parameters established for the initial association study. The group of 

endurance athletes (n = 100) included biathletes (n = 39), cross-country skiers (n = 44) and 

long-distance (5-25 km) swimmers (n = 17). The group of strength-endurance athletes (n = 

95) consisted of rowers (n = 76), 3-10 km runners (n = 5), 800-1500 m swimmers (n = 9) and 

5-10 km skaters (n = 5). The group of sprint-strength athletes (n = 530) was comprised of 

kayakers (n = 34), 800-1500 m runners (n = 3), 200-400 m swimmers (n = 37), boxers (n = 

25), wrestlers (n = 112), alpine skiers (n = 19), short trackers (n=22), 1,5-3 km speed skaters 

(n = 7), fencers (n = 60), football players (n = 82), ice hockey players (n = 70) and artistic 

gymnasts (n = 59). The strength athletes group (n = 97) consisted of 100-400 m runners (n = 

10), 500-1000 m skaters (n = 13), 50-100 m swimmers (n = 28), weightlifters (n = 34), 

throwers (n = 5), jumpers (n = 7). There were 364 athletes classified as ‘elite’ (ranked in the 

top 10 nationally), of whom 105 were ‘top-elite’ athletes (award winners of the World and 

European Championships, World Cups or Olympic Games). There were 272 athletes 

classified as ‘sub-elite’ (participants in international competitions). The others (n = 186) were 

classified as ‘non-elite’ athletes, being regional competitors with no less than four years 

experience participating in their sports. 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ to acquire final version.



	   8	  

Controls were 507 healthy, unrelated citizens (354 females and 153 males; age 22.1 ± 

0.2 yr) of St. Petersburg and Surgut without any competitive sport experience. The geographic 

ancestry of the athletes and control groups was self-reported.  The athletes and control groups 

were all Caucasian (predominantly Russians). The University of St. Petersburg Ethics 

Committee approved the study, and written informed consent was obtained from each 

participant. 

Genetic Analyses 

 In the Polish study, genomic DNA was extracted from the buccal cells using a 

GenElute Mammalian Genomic DNA Miniprep Kit (Sigma, Germany) according to the 

manufacturer’s instructions.  

 In the Russian study, genotyping was performed on DNA samples obtained from 

epithelial mouth cells by alkaline extraction (Bolla et al., 1995) or with a DNK-sorb-A sorbent 

kit according to the manufacturer’s instructions (Central Research Institute of Epidemiology, 

Russia), depending on the method of sample collection (buccal swab or scrape). 

 All samples were genotyped for the -9/+9 polymorphism within exon 1 of the 

BDKRB2 gene using a polymerase chain reaction (PCR). The 100 and/or 91 bp fragments of 

the gene were amplified by PCR using the forward primer 5’-

TCTGGCTTCTGGGCTCCGAG-3’ and the reverse primer 5’-

AGCGGCATGGGCACTTCAGT- 3’ as recommended by Williams et al. (2004). The 

reaction was carried out in a total volume of 10 µl containing: 1.5 mM MgCl2, 0.75 nM of 

each dNTP (Novazym, Poland or Sibenzyme, Russia), 4 pM of each primer (Genomed, 

Poland or Lytech, Russia), 0.5 U of Taq DNA polymerase (Sigma, Germany or Sibenzyme, 

Russia), and 1 µl (30–50 ng) of genomic DNA. After the first 5 min step at 94 °C, 35 cycles 

of amplification were performed by using denaturation at 94 °C for 30 s, annealing at 62 °C 
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for 1 min, and elongation at 72 °C for 30 s and a final cycle at 72 °C for 10 min. The 

amplified PCR fragments were separated by 7.5 % polyacrylamide gel electrophoresis, 

stained with ethidium bromide, and visualized in UV light. 

Statistical Analysis 

 The STATISTICA statistical package, version 7.0, was used to perform all statistical 

evaluations. A χ2 test was used to compare the BDKRB2 -9/+9 alleles and genotype 

frequencies between athletes and control subjects. Bonferroni’s correction for multiple testing 

was performed by dividing the p value (0.05) with the number of tests. 

 

Results 

 The results of the genotype distribution of the -9/+9 BDKRB2 in Polish and Russian 

athletes and controls met Hardy-Weinberg expectations (P > 0.05 in all groups tested 

separately). BDKRB2 genotype distribution results of the Polish control group (+9/+9 – 

28.8%; +9/–9 – 50.7%; –9/–9 – 20.5%) and Russian control group (+9/+9 – 29.4%; +9/–9 – 

49.5%; –9/–9 – 21.1%) were similar to those reported in previous studies on Caucasian 

populations (Braun et al., 1996; Brull et al., 2001; Lung et al., 1997; Williams et al., 2004). 

There were no significant differences in the BDKRB2 genotype and allele frequencies 

between males and females amongst both athletes and controls of both ethnic groups (data not 

shown). 

The initial association study done in the Polish athlete group (Table 1) revealed that the 

genotype distributions (P = 0.739) and allele frequencies (47.02 % vs. 45.83 %; P = 0.626) of 

the BDKRB2 -9/+9 did not differ between athletes and sedentary controls. Any observed 

differences were not statistically significant when considering the frequency of the –9 allele in 
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the four groups of athletes separately, i.e. endurance athletes (42.31%; P = 0.616), strength-

endurance athletes (45.45%; P = 0.933), sprint-strength athletes (47.73%; P = 0.601) and 

strength athletes (48.50%; P = 0.479).  

Statistically significant differences in genotype distribution were also not observed in 

the whole cohort of Polish athletes (+9/+9 – 26.50%, +9/–9 – 53.00%, –9/–9 – 20.50%; P = 

0.626 ) nor in each group separately, i.e. groups of endurance athletes (P = 0.812), sprint-

endurance athletes (P = 0.940), sprint-strength athletes (P = 0.763) and strength athletes (P = 

0.442)  when compared with controls.   

The same conclusion to the initial study was obtained in the replication study (Table 2). 

The differences in the –9 allele frequencies between all Russian athletes and controls did not 

reach statistical significance (46.90% vs. 45.86 %; P = 0.321). The differences in the –9 allele 

frequencies were also not statistically significant in the endurance athletes (45.50%; P = 

0.938), strength-endurance athletes (45.80%; P = 1.000), sprint-strength athletes (46.89%; P = 

0.670) and strength athletes (49.48%; P = 0.353) compared to controls group separately.  

The genotype distributions of the BDKRB2 +9/–9 in all Russian athletes (+9/+9 – 

26.4%, +9/–9 – 53.4%, –9/–9 – 20.2%; P = 0.404) were not different to controls, nor were 

endurance athletes (P = 0.804), sprint-endurance athletes (P = 0.932), sprint-strength athletes 

(P = 0.257) and strength athletes P = 0.648)  when compared with controls (+9/+9 – 29.4%; 

+9/–9 – 49.5%; –9/–9 – 21.1%). 

Taking the results of the initial and replication studies into consideration together (Table 

3), significant differences in the frequency of the –9 allele were not found in the whole cohort 

of Polish and Russian athletes when compared with the controls (46.93% vs. 45.84%; P = 

0.477). The same situation was observed when comparing the differences of genotype 

distribution between all Polish and Russian athletes and controls (+9/+9 – 26.4%; +9/–9 – 
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53.3%; –9/–9 – 20.3% vs. +9/+9 – 29.1%; +9/–9 – 50.2%; –9/–9 – 20.7%; P = 0.278). Within 

the four groups of athletes, the –9 allele frequency and the genotype distribution of the 

BDKRB2 -9/+9 no statistical significance differences were observed when compared with 

controls. 

 To recognize the correlation between the -9/+9 BDKRB2 polymorphism and athletic 

status we investigated the genotype distribution and allele frequency in four subgroups of 

athletes, i.e. top elite, elite,  sub-elite and non-elite athletes (Table 4). There were no 

significant differences in the BDKRB2 genotype and allele frequencies between each Polish 

and Russian subgroup, nor among controls of either ethnic group. 

 

Discussion  

 The present report is a genetic case-control association study in which we examined 

the genotype distribution of the BDKRB2 9/+9 polymorphism in a group of Polish athletes 

and confirmed the results obtained in a replication study of Russian athletes. Our main 

findings were 1) neither the BDKRB2 -9 and +9 alleles nor the BDKRB2 -9/+9 genotypes 

were significantly more frequent among four groups of Polish and Russian athletes of 

different metabolic demands than in controls and 2) a lack of association between athletes of 

different competitive levels was observed when genotype and allele frequencies were 

compared among the top-elite, elite and sub-elite athletes and controls in initial and 

replication studies.  

 Reports regarding the connection between the BDKRB2 +9/–9 polymorphism and 

sport performance level are still limited. Prior to this study, only a few reports were 

concerned with the role of the BDKRB2 gene for sport performance. The literature data 

showed that the -9 allele of a BDKRB2 gene is linked with increased gene transcription and 
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higher receptor mRNA expression (Braun et al., 1996; Lung, et al., 1997). Williams et al. 

(2004) suggested that the –9 allele of BDKRB2 gene is associated with higher skeletal muscle 

metabolic efficiency. What is more, the analysis revealed a linear trend of increasing –9 

allele frequency with distance run in 81 Olympic standard track athletes, which seems to 

prove the importance of the –9 allele of BDKRB2 gene for endurance athletic performance. 

 This finding seems to be supported by Saunders et al. (2006), who found statistically 

significant differences in -9/+9 distribution between 443 male Caucasian triathletes and 

203 healthy Caucasian male controls. In this case, the –9/–9 genotype of BDKRB2 gene was 

over- represented in the whole cohort of athletes compared to controls. However, when 

divided into tertiles according to their finishing times, the –9/–9 genotype was only over-

represented in the fastest tertile. There were no significant differences in the frequencies 

of the allele distributions between any of the triathletes and controls. 

 A report concerning the role of the BDKRB2 gene in sport was also published 

by Tsianos et al. (2010). They investigated the genotype distribution and allele frequency 

of 8 chosen genetic polymorphisms in 438 athletes participating in the 2007 and 2008 

annual running events, the Olympus Marathon (inter alia C58T BDKRB2 polymorphism 

rs1799722). Although they evaluated only single nucleotide polymorphisms (SNPs), their 

findings seem to support the reports of Williams et al. (2004) and Saunders et al. (2006). 

They found results consistent with previous studies:  the high transcription allele was 

over-represented in this group of endurance athletes, and even more so among those who 

were habitual runners. 

 Another aspect of the +9/–9 BDKRB2 polymorphism that warrants further study is 

the possible interaction with other genetic and environmental factors. For example, it 

was proven that levels of bradykinin are dependent inter alia on ACE genotype (Murphey 

et al. 2000). Knowing this fact, Williams et al. (2004) investigated the role of the ACE 
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and BDKRB2 genotype combination for predisposition to sport performance. In their 

findings, ACE and BDKRB2  analysis  demonstrated  a  significant  relationship  with  

distance  run  (≤5,000  vs. ≥5,000 m), both overall and for Caucasians only, with a 

greater proportion of “low kinin receptor activity” (ACE D allele, BDKRB2 +9 allele) in 

events <5,000 m and, conversely, a greater proportion of “high kinin receptor activity” 

haplotypes (ACE I allele, BDKRB2 –9 allele) competing in events >5,000 m (Williams et 

al., 2004). 

 Another example concerned the correlation of the  BDKRB2 gene with the NOS3 

gene. Saunders et al. (2006) pointed out that the effect of the genotype NOS3 GG, 

advantageous for endurance performance, appeared only in connection with the genotype 

(–9/–9) of the gene BDKRB2. In other combinations of genotypes of both genes (NOS3 

and BDKRB2), the genotype GG did not show any positive correlation with an increase in 

sport endurance. 

 Contrary to these findings, Eynon et al. (2011) showed no association between the 

polymorphism (C825T) in the gene GNB3 coding for the guanine nucleotide binding 

protein β-polypeptide 3 and BDKRB2 -9/+9 polymorphic site, despite the fact that the 

C825T polymorphism within the GNB3 gene was itself previously correlated with elite 

athletic performance (Eynon et al., 2009). 

 Our results and the results of Eynon et al. (2011) are in opposition to the 

observations of Williams et al. (2004) and Saunders et al. (2006). In our study, w e  

d i d  n ot find any statistical difference in +9/–9 genotype and allele frequencies in any 

of four investigated athletes groups (i.e. endurance athletes, sprint-endurance athletes, 

sprint-strength athletes and strength athletes) compared to sedentary controls. Notably, we 

obtained the same results both in the Polish and Russian athletes (the same in the initial 

a s  i n  t h e  replication study – totally 1124 athletes in total). Eynon et al. (2011) found 
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that allele frequencies and genotype distribution were similar both in athlete and control 

groups. They also found no statistical differences between the subgroups of elite and 

national-level athletes. 

 The discrepancy between results described above may be due to differences in sample 

size, study designs and elite athletes' phenotype classification. The positive findings have 

emerged from relatively smaller cohorts (Saunders et al., 2006) or from studies of a different 

study design (Wiliams et al., 2004). In our study, we were able to recruit large enough 

samples of elite athletes (over 1100 athletes) in an attempt to overcome the sample size 

limitation making our study unique. Moreover, all participants were of similar ethnic and 

geographic backgrounds as evidenced by similar Minor Allele Frequencies (MAF). In our 

opinion this enabled us to reach sufficient statistical power and obtain reliable conclusions. 

The same methodological approach was applied in our previous work (Eynon et al. 2012) and 

our results should be considered valid, since all STREGA criteria were met (Little et al 2009): 

all athletes represented an elite level of competition; participants within each cohort were 

ethnically-matched; genotyping was accurate and unbiased; and genotype distributions were 

in HWE both in athletes and the control group of the two analyzed east-European cohorts. 

 However, our study is not without limitations. Elite athletic status is a 

complex polygenic trait involving complex gene-gene interactions as well as gene-

environment interactions (Lucia et al. 2010). Thus, the numerous polymorphic sites in 

candidate genes should be analyzed to explain individual variation of elite athletic status. It 

must be kept in mind that even if the -9/+9 BDKRB2 polymorphism is not correlated with 

a predisposition to athletic performance, there may be other polymorphisms in the BDKRB2 

gene which could hypothetically influence elite athlete status. 

. 
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Perspectives 

 Athletic ability is a trait that involves genes which are influenced by environmental 

factors. Genetic components include numerous candidate genes whose natural allelic variants 

occur in the general population. Identifying these polymorphisms that could have an impact 

on athletic performance is a matter of investigation worldwide. However, one of the main 

deficiencies of association studies is an inadequate number of subjects and/or a lack of 

replication studies. In this study, we demonstrate that there is no significant association 

between the +9/–9 polymorphic site in the candidate gene of the BDKRB2 and athletic 

performance in two independent studies of large cohorts of Polish and Russian athletes. Our 

results are contrary to the hypothesis that the BDKRB2 -9/+9 polymorphism is associated with 

athletic ability. Our finding does not mean that other polymorphisms in BDKRB2 gene do not 

have any beneficial effect on performance parameters. There might also be possible 

interactions with other genetic factors, because sports related phenotypes are highly polygenic 

and more than 79 polymorphisms are suggested to influence the athletes’ results (Ahmetov 

and Fedotovskaya, 2012; Williams and Folland, 2008). In our opinion there is a need for 

further investigation in the field using independent cohorts of athletes of the same, as well as 

different ethnic backgrounds to replicate the obtained results and thus clarify the potential role 

of polymorphic variants of candidate genes in determining sport performance abilities.  
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Table 1. The BDKRB2 genotype distribution and frequencies of the BDKRB2 gene -9 allele in Polish athletes stratified by the values of relative aerobic/anaerobic energy 
system contribution, time of competitive exercise performance and intensity of exertion in each sport (Initial study). 

Sport n 
Genotypes (n) 

P -9 allele (%) P 
+9/+9 +9/-9 -9/-9 

1. Endurance athletes  

Triathlon  4 2 1 1 0.554 37.50 0.637 

Race walking 6 2 2 2 0.645 50.00 0.773 

Road cycling 14 4 8 2 0.831 42.86 0.754 

Cross-country skiing  2 1 1 0 0.697 25.00 0.403 

Total  26 9 12 5 0.812 42.31 0.616 

2. Strength-endurance athletes  

Rowing 41 11 21 9 0.953 47.56 0.761 

Running 3-10 km 17 6 7 4 0.734 44.12 0.842 

Swimming 800-1500 m 8 3 4 1 0.796 37.50 0.505 

Total 66 20 32 14 0.940 45.45 0.933 

3. Sprint-strength athletes  

Kayaking 10 2 3 5 0.073 65.00 0.087 

Running 800-1500 m 7 3 3 1 0.709 35.71 0.449 

Swimming 200-400 m 3 1 1 1 0.802 50.00 0.838 

Judo 13 5 4 4 0.354 46.15 0.974 
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Wrestling 41 8 25 8 0.369 50.00 0.462 

Boxing 19 3 15 1 0.047 44.74 0.893 

Fencing 17 6 8 3 0.839 41.18 0.590 

Total  110 28 59 23 0.763 47.73 0.601 

4. Strength athletes  

Running 100-400 m 29 5 18 6 0.365 51.72 0.378 

Powerlifting 22 6 11 5 0.964 47.73 0.804 

Weightlifting 20 3 13 4 0.353 52.50 0.404 

Throwing events 14 6 6 2 0.507 35.71 0.287 

Jumping events 15 3 9 3 0.723 50.00 0.650 

Total  100 23 57 20 0.422 48.50 0.479 

All Polish athletes 302 80 160 62 0.739 47.02 0.626 

Polish controls 684 197 347 140 1.000 45.83 1.000 

P values are calculated by χ2 test for comparisons between groups of athletes and control group. 

A Bonferroni corrected alpha level was set at 0.0021. No statistically significant differences between athletes and controls were found. 
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Table 2. The BDKRB2 genotype distribution and frequencies of the BDKRB2 gene -9 allele in Russian athletes stratified by the values of relative aerobic/anaerobic energy 
system contribution, time of competitive exercise performance and intensity of exertion in each sport (Replication study). 

Sport n 
Genotypes (n) 

P -9 allele % P 
+9/+9 +9/-9 -9/-9 

1. Endurance athletes  

Biathlon 39 8 26 5 0.116 46.15 0.959 

Cross-country skiing  44 17 18 9 0.412 40.91 0.435 

Swimming 5-25 km 17 3 9 5 0.508 55.88 0.248 

Total 100 28 53 19 0.804 45.50 0.938 

2. Strength-endurance athletes  

Rowing 76 24 44 8 0.092 39.47 0.162 

Running 3-10 km 5 0 1 4 0.006 90.00 0.005 

Swimming 800-1500 m 9 1 3 5 0.042 72.20 0.032 

Speed skating 5-10 km 5 2 1 2 0.387 50.00 0.793 

Total  95 27 49 19 0.932 45.80 1.00 

3. Sprint-strength athletes  

Kayaking 34 12 15 7 0.753 42.65 0.606 

Running 800-1500 m 3 1 1 1 0.825 50.00 0.839 

Swimming 200-400 m 37 8 22 7 0.477 48.65 0.641 
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Speed skating, 1,5-3 km 7 3 4 0 0.371 28.60 0.281 

Boxing 25 5 14 6 0.600 52.00 0.468 

Wrestling 112 22 58 32 0.063 54.40 0.022 

Alpine skiing 19 5 14 0 0.045 36.84 0.273 

Artistic gymnastics 59 16 32 11 0.785 45.76 0.984 

Short track 22 5 10 7 0.468 54.55 0.257 

Fencing  60 16 32 12 0.850 46.70 0.923 

Football 82 22 53 7 0.011 40.50 0.238 

Ice hockey 70 22 34 14 0.935 44.30 0.786 

Total  
530 137 289 104 

0.257 46.89 0.670 

4. Strength athletes  

Running 100-400 m 10 2 3 5 0.089 65.00 0.089 

Speed skating 500-1000 m 13 3 8 2 0.691 46.15 0.976 

Swimming 50-100 m 28 13 12 3 0.123 32.14 0.044 

Weightlifting 34 6 17 11 0.184 57.35 0.065 

Throwing events 5 0 5 0 0.087 50.00 0.793 

Jumping events 7 1 3 3 0.345 64.29 0.169 

Total  97 25 48 24 0.648 49.48 0.353 

All Russian athletes 822 217 439 166 0.357 46.90 0.629 

Russian controls 507 149 251 107 1.000 45.86 1.000 
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P values are calculated by χ2 test for comparisons between groups of athletes and control group. 

A Bonferroni corrected alpha level was set at 0.0016. No statistically significant differences between athletes and controls were found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ to acquire final version.



	   24	  

Table 3. The BDKRB2 genotype distribution and frequencies of the BDKRB2 gene –9 allele in Polish and Russian athletes stratified by the values of relative 
aerobic/anaerobic energy system contribution, time of competitive exercise performance and intensity of exertion in each sport (Combined study). 

Sport n 
Genotypes (n) 

P –9 allele %  P 
+9/+9 +9/–9 –9/–9 

1. Endurance athletes  

Biathlon 39 8 26 5 0.127 46.15 0.956 

Triathlon  4 2 1 1 0.565 37.50 0.636 

Race walking 6 2 2 2 0.659 50.00 0.773 

Road cycling  14 4 8 2 0.813 42.86 0.752 

Cross-country skiing 5-10 km 46 18 19 9 0.323 40.21 0.339 

Swimming 5-25 km 17 3 9 5 0.500 55.88 0.243 

Total  126 37 65 24 0.903 44.84 0.812 

2. Strength-endurance athletes 

Rowing 117 35 65 17 0.264 42.31 0.333 

Running 3-10 km 22 6 8 8 0.186 54.55 0.251 

Swimming 800-1500 m 17 4 7 6 0.342 55.88 0.321 

Speed skating 5-10 km 5 2 1 2 0.367 50.00 0.792 

Total 161 47 81 33 0.997 45.65 0.996 

3. Sprint-strength athletes 

Kayaking 44 14 18 12 0.425 47.73 0.727 
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Running 800-1500 m 10 4 4 2 0.734 40.00 0.601 

Swimming 200-400 m 40 9 23 8 0.608 48.75 0.607 

Speed skating. 1.5-3 km 7 3 4 0 0.373 28.6 0.305 

Short track 22 5 10 7 0.435 54.55 0.251 

Judo 13 5 4 4 0.371 46.15 0.974 

Wrestling 153 30 83 40 0.037 53.27 0.017 

Boxing 44 8 29 7 0.117 48.86 0.653 

Fencing 77 22 40 15 0.949 45.45 0.992 

Football 82 22 53 7 0.011 40.50 0.238 

Ice hockey 70 22 34 14 0.935 44.30 0.786 

Alpine skiing 19 5 14 0 0.049 36.84 0.269 

Artistic gymnastics 59 16 32 11 0.829 45.76 0.986 

Total  640 165 348 127 0.206 47.03 0.514 

4. Strength athletes 

Running 100-400 m 39 7 21 11 0.256 55.13 0.105 

Speed skating 500-1000 m 13 3 8 2 0.717 46.15 0.974 

Swimming 50-100 m 28 13 12 3 0.108 32.14 0.041 

Powerlifting 22 6 11 5 0.968 47.73 0.803 

Weightlifting 54 9 30 15 0.117 55.56 0.047 

Throwing events 19 6 11 2 0.546 39.47 0.434 
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Jumping events 22 4 12 6 0.494 54.55 0.251 

Total  197 48 105 44 0.400 48.98 0.246 

All Polish and Russian athletes 1124 297 599 228 0.278 46.93 0.477 

Polish and Russian controls 1191 346 598 247 1.000 45.84 1.000 

P values are calculated by χ2 test for comparisons between groups of athletes and control group.                                                                                                                                                       

A Bonferroni corrected alpha level was set at 0.0014. No statistically significant differences between athletes and controls were found. 
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Table 4. The BDKRB2 genotype distribution and frequencies of the BDKRB2 gene -9 allele in Polish and Russian athletes stratified by sports status, i.e. top elite, elite, 
sub-elite and non-elite (Combined study). 

Sport n 
Genotypes (n) 

P -9 allele %  P 
+9/+9 +9/-9 -9/-9 

1. Polish athletes  

Top elite 63 16 33 14 0.820 48.41 0.573 

Elite  149 35 85 29 0.251 47.99 0.484 

Sub-elite 90 26 45 19 0.996 46.11 0.945 

2. Russian athletes 

Top elite 105 33 49 23 0782 45.24 0.866 

Elite  259 70 127 62 0.500 48.45 0.302 

Sub-elite 272 65 154 53 0.133 47.79 0.438 

3. Polish and Russian athletes 

Top elite 168 49 82 37 0.916 46.43 0.840 

Elite  408 105 212 91 0.423 48.28 0.244 

Sub-elite 362 91 199 72 0.242 47.37 0.495 

Polish and Russian controls 1191 346 598 247 1.000 45.84 1.000 

P values are calculated by χ2 test for comparisons between groups of athletes and control group.                                                                                                                                                       

A Bonferroni corrected alpha level was set at 0.0056. No statistically significant differences between athletes and controls were found. 
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