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CHAPTER 1

Introduction

This dissertation is denoted to two-time-scale stochastic systems. The systems under

consideration are modeled by stochastic differential equations with regime switching. For-

mulations using regime switching have appeared in a wide variety of situations including

manufacturing systems, communication networks, financial engineering, ecology and biology

modeling, multi-agent control systems etc. One of the main characteristics is the coexistence

of continuous dynamics and discrete events. The continuous dynamics can be formulated

by use of stochastic differential equations, whereas the discrete events have very different

features. The focus in this work is placed on such systems with two-time scales. We consider

the situation that the discrete events have a large state space with large number of elements.

The large state space can however be partitioned into several subspaces. States within each

subspace move rapidly, whereas the transitions from one subspace to another take place in a

relatively slow pace. Using the idea of decomposition and aggregation, we lump all the states

within each subspace into a “super” state. Then the total number of states in the newly

aggregated state space is drastically reduced. The rationale is that using such a formulation,

we can substantially reduce the computational complexity. In the early 1960s, the so-called

nearly completely decomposable system models came into being. In the late 1990s, much

work was done for two-time-scale Markov chains. Expanding on these ideas, this dissertation

examines systems with switching diffusions with two-time scales.

The first part of the work focuses on studying Liénard equations with regime swash-
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ing. The well-known Liénard equations was named after the French physicist Alfred-Marie

Liénard. Such equations have been studied extensively in the literature of dynamic systems

and ordinary differential equations (ODEs). The standard Liénard equation has the form

η̈(t) + f(η(t))η̇(t) + g(η(t)) = 0,

which may be written as a first-order system of equations. During the development of radio

and vacuum tubes, the Liénard equations were used to model oscillating circuits. These equa-

tions have also been used to describe certain mechanical systems in physics and engineering.

Parallel to the development of deterministic systems, there is a large amount of work on

Liénard equations perturbed by white noise.

Recently, much interests are devoted to Liénard systems subject to both white noise

perturbation and random environment influence in which an additional random switching

process is added [35, 40]. Such models belong to a class of Markov processes involving both

continuous states and discrete events. The discrete events are used to model random envi-

ronment and other random factors that cannot be described by differential equations. In [34],

we studied randomly-switching Liénard equations in which the switching process depends

on the continuous states. A number of results including existence and uniqueness of solution

of the underlying equations, regularity, and ergodicity were obtained. Moreover, in Chapter

3, we shall discuss the weak convergence limit of Liénard equations. The model of interest
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can defined as follows:

dXε
1(t) = Xε

2(t)dt,

dXε
2(t) = −

(
Xε

2(t)f(X
ε
1(t), α

ε(t), t) + g(Xε
1(t), α

ε(t), t)
)
dt+ h(Xε

1(t), α
ε(t), t)dw(t),

Xε(0) = x and αε(0) = ι,

where w(t) is a standard one-dimensional Brownian motion. The random process αε(·) is a

continuous-time Markov chain with state space M and it is independent of the Brownian

motion w(·).

The second part of the work is on near-optimal control of two-time-scale switching dif-

fusions. The class of singularly perturbed Markov chain has been studied extensively in

recent years. The notation of relaxed control is introduced for stochastic system in Flem-

ing [9] and for deterministic optimal control problem in Warga [33]. The motivation for the

first study is devoted to singulary perturbed controlled diffusion. The singularly perturbed

problems of control has been considered in both stochastic and deterministic literature in

[2, 15, 16, 18, 17, 22]. In [2] is devoted to studying the role of perturbations in problems

of the optimal control of differential equations. Kokotovic and Khalil make a collection of

reprint of 61 articles including with singular perturbation method to system analysis and

control. The book by Kokotovic, Khalil and OReilly [17] is a good source for example make

the book useful for students of undergraduate and graduate levels. In [22] weak convergence

method and singularity perturbed were used to prove some important results in stochastic

control.
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We consider the following stochastic differential equation with regime switching

xε(t) = x0 +
´ t

0
b(xε(s), αε(s), uε(s))ds+

´ t

0
σ(αε(s), xε(s))dw(s)

αε(0) = i0 ∈ M

where b(·, ·, ·) : Rk ×M× U → Rk, σ(·) : Rk ×M → R2k are given functions. Suppose that

w(·) be a standard one-dimensional Brownian motion and αε(·) is the continuous Markov

chain with state space M such that the random process αε(·) is independent of the Brownian

motion w(·). The cost function has the form

Jε(uε(·)) = Jε(x0, i0, u
ε(·)) = Ex0,i0

´ T
0
C(xε(s), αε(s), uε(s))ds

where Ex0,i0 denotes the expectation taken with xε(0) = x0 and αε(0) = i0.

The next chapter is devoted to Van der Pol oscillator. The Van der Pol is one of an

example of nonlinear oscillators. This model was investigated by Van der Pol (1889-1959)

in 1927 [31] while he was an engineer at Philps company. This model has being extensively

studied in [3, 4, 7, 25, 29, 30, 32]. The Van der Pol oscillator is used a variety of mechanical,

electrical, physics and biological sciences. For example, Van der Pol and Van der Mark

[30, 32] describes the hearts behavior. Fitzhagh [7] and Nagumo et. al. [25] describe the

action potentials of neurons. Further application of Van der Pol oscillator we can found in

[4, 29]. The standard form of the Van der Pol oscillator can defined as follows

ÿ − µ(1− y2)ẏ + y = 0

where x is the dynamical variable and µ > 0 a parameter. In this chapter we investigate the
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behavior of systems of Van der Pol oscillator by introducing the noise. Simulation results are

presented.

Finally, we conclude the dissertation by providing some further remarks. In addition,

some preliminary results are recalled as well.
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CHAPTER 2

Stochastic Liénard Equations with Random Switching

and Two-time Scales

2.1 Introduction

This chapter is concerned with randomly switching Liénard equations. Our main concern

is that the state space of the discrete events or the switching process is large. We focus on

reducing the computational complexity. Treating large-scale systems, Simon and Ando noted

in [27] that in a large-scale system, not all states change at the same rates. Some of them

vary rapidly and others change slowly. In [5], the idea of decomposition and aggregation

was brought in aiming at reducing the computational complexity. In this chapter, we are

dealing with the models in which the state space of the discrete events is rather large. We

use the idea of decomposition and aggregation to treat the problems under consideration.

Denote the switching process by α(t). To highlight the different rates of actions or transition

frequencies, we introduce a small parameter ε > 0 into the system, and write α(t) = αε(t).

So the system under consideration becomes one with two-time scales. Based on time-scale

separation, our effort is then to obtain asymptotic properties of the underlying system.

Specifically, we assume the state space of the discrete events can be decomposed into l weakly

connected subspaces. Within each subspace, the transitions of the discrete events take place

in a fast pace. Among different subspaces, the transition occurs relatively infrequently. We

then aggregate the discrete states in each subspace into one super state and show that such
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aggregations lead to a limit system that can be represented as the average of the original

system with respect to the quasi-invariance measure of the switching process. We analyze

the limit properties by means of martingale problem formulation,

The idea of averaging has played an important role in numerous stochastic systems. For

some of the developments, we mention the work [12, 13] for two-time-scale diffusions, [14] for

singularly perturbed Markov chains, [1] for a class of problems involving switching processes

with the use of diffusion approximation approach, [19, 20] for diffusion approximation in

evolutionary systems using semi-Markov processes, and [26] for two-time-scale manufacturing

systems and hierarchical decision making.

The rest of the chapter is arranged as follows. Section 2.2 presents the precise formulation

of the problem. Section 2.3 concerns the limit properties of the system. Section 2.4 makes

further remarks and concludes the chapter.

2.2 Formulation

Let (Ω,F , P ) be a complete probability space. Consider the usual Lénard equation with an

additional white noise perturbation. Moreover, assume the coefficients of the equation all

depend on a switching process. Use z′ to denote the transpose of z ∈ Rl1×l2 for l1, l2 ≥ 1.

Setting X(t) = (X1(t), X2(t))
′ = (η(t), η̇(t))′, to reflect the ε-dependence, we write X(t) as
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Xε(t) in what follows. We present the model of interest as follows:

dXε
1(t) = Xε

2(t)dt,

dXε
2(t) = −

(
Xε

2(t)f(X
ε
1(t), α

ε(t), t) + g(Xε
1(t), α

ε(t), t)
)
dt+ h(Xε

1(t), α
ε(t), t)dw(t),

Xε(0) = x and αε(0) = ι,

(2.1)

where w(t) is a standard one-dimensional Brownian motion. Often, one considers Liénard

equations that are autonomous. Here, for more generality, we assume t depend in the dy-

namics. So the systems become time-varying. The random process αε(·) is a continuous-time

Markov chain with state space M and it is independent of the Brownian motion w(·). In this

chapter, we consider the case that the state space M is large in that |M|, the cardinality of

M is a large number.

(A1) For each ι ∈ M and each t ∈ [0, T ], the functions f(x1, ι, t), g(x1, ι, t), and h(x1, ι, t)

in (2.1) satisfy the local Lipschitz condition with respect to x1. These functions are

continuously differentiable with respect to t for each x1 and ι ∈ M.

(A2) There exists a positive constant K0 > 0 such that for each ι ∈ M,

inf{f(x1, ι, t) : x1 ∈ R} ≥ −K0 uniformly in t,

ˆ x1

0

g(u, ι, t)du → ∞ as |x1| → ∞ uniformly in t,

(2.2)

and that for each ι ∈ M, h(x1, ι, t) is infinitely differentiable w.r.t. x1 satisfying 0 <

h(x1, ι, t) ≤ K0 for all x1 ∈ R uniformly in t.
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Under the conditions above, we obtain the existence and uniqueness of the solution of

(2.1). We state it as a lemma below and refer the reader to [34] for a detailed proof.

Lemma 2.1. Under conditions (A1) and (A2), (2.1) has a unique strong solution for each

initial condition (Xε(0), αε(0)) = (x, ι).

Next, we assume that the generator of the switching process is a time-inhomogeneous

Markov chain with the generator given by

Qε(t) =
1

ε
Q̃(t) + Q̂(t), (2.3)

such that

Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)), (2.4)

where diag(A1, . . . , Ak) denotes a block diagonal matrix with entries A1, . . . , Ak of proper

dimensions, that each Q̃i(t) is a generator of suitable dimension and Q̂(t) is another generator

of a continuous-time Markov chain. The rationale is that we decompose the state space into

weakly connected subspaces, M = M1 ∪ · · · ∪ Ml where Mi = {si1, . . . , simi
}. From now

on, we often use a double index sij to denote a state in M. To proceed, we need another

condition.

(A3) For each i ∈ M = {1, . . . , l}, Q̃i(t) ∈ Rmi×mi is weakly irreducible in the sense that

the system of equations

νi(t)Q̃i(t) = 0, 1lmi
νi(t) = 1

has a unique solution, where 1lmi
= (1, . . . , 1)′ ∈ Rmi×1 and νi(t) is termed a quasi-

stationary distribution satisfying νi(t) = (νi
1(t), . . . , ν

i
mi
(t)) ∈ R1×mi with νi

j(t) ≥ 0 for

j = 1, . . . ,mi. Both Q̃(·) and Q̂(·) are bounded and measurable.
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The motivation of the model is that although the state space M is not completely de-

composable into l subspaces, the actions or transitions among different subspaces are weak.

Define αε(t) = i when αε(t) ∈ Mi. Note that αε(·) is not a Markov chain. Nevertheless,

using (A3), we obtain the following weak limit of αε(·) by virtue of [37, Lemma 7.4].

Lemma 2.2. The process αε(·) converges weakly to α(·) that is generated by

Q(t) = diag(ν1(t), . . . , νl(t))Q̂(t)1̃l, (2.5)

where 1̃l = diag(1lm1 , . . . , 1lml
).

Note that in view of our partition, we may write the associated operator corresponding

to the switching diffusion defined in (2.1) as: For each i = 1, . . . , l and j = 1, . . . ,mi, ℓ = sij,

and suitable smooth function V (·, ℓ, ·) ∈ C2,1(R2 × [0, T ];R), and Qε(t) = (qεℓι(t)),

LεV (x, ℓ, t) =
∂V (x, ℓ, t)

∂t
+

1

2
h2(x1, ℓ, t)

∂2

∂x2
2

V (x, ℓ, t) + x2
∂

∂x1

V (x, ℓ, t)

−
[
x2f(x1, ℓ, t) + g(x1, ℓ, t)

] ∂

∂x2

V (x, ℓ, t) +
∑
ι∈M

qεℓι(t)
[
V (x, ι, t)− V (x, ℓ, t)

]
.

(2.6)

2.3 Asymptotic Properties

Consider the pair of processes Y ε(·) = (Xε(·), αε(·)). We aim to show that Y ε(·) converges

weakly to Y (·) = (X(·), α(·)) such that X(·) is the solution of the switching Liénard equation

dX1(t) = X2(t)dt

dX2(t) = −[X2(t)f(X1(t), α(t), t) + g(X1(t), α(t), t)]dt+ h(X1(t), α(t), t)dw(t),

(2.7)
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and that α(·) is a continuous-time Markov chain given by Lemma 2.2. where h(x1, i, t) is the

square root of h
2
(x1, i, t) with

f(x1, i, t) =

mi∑
j=1

νi
j(t)f(x1, j, t),

g(x1, i, t) =

mi∑
j=1

νi
j(t)g(x1, j, t),

h
2
(x1, i, t) =

mi∑
j=1

νi
j(t)h

2(x1, j, t).

(2.8)

Associated with the limit process, for each i ∈ M and a suitably smooth function V (·, i, ·) ∈

C2,1(R2 × [0, T ];R), define an operator L as follows:

LV (x, i, t) =
∂V (x, i, t)

∂t
+

1

2
h
2
(x1, i, t)

∂2

∂x2
2

V (x, i, t) + x2
∂

∂x1

V (x, i, t)

−
[
x2f(x1, i, t) + g(x1, i, t)

] ∂

∂x2

V (x, i, t)

+
∑
j∈M

qij(t)
[
V (x, j, t)− V (x, i, t)

]
,

(2.9)

where Q(t) is given by (2.5).

Theorem 2.3. Assume (A1)–(A3), and suppose that (2.7) has a unique solution in the

sense of in distribution for each initial condition. Then Y ε(·) converges weakly to Y (·) =

(X(·), α(·)) such that X(·) is a solution of (2.7) and α(·) is a continuous-time Markov chain

generated by Q(t) given in (2.5).

Remark 2.4. An equivalent way of stating Theorem 2.3 is: (X(·), α(·)) is a solution of the

martingale problem with operator L.
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Proof. The proof of the theorem will be divided into several steps. These steps are realized by

presenting a number of lemmas. We prove the weak convergence using a martingale problem

formulation.

Step 1: Uniqueness of the martingale problem. The uniqueness in the sense of in dis-

tribution of the limit stochastic differential equation with switching (2.7) implies that the

martingale problem with operator L has a unique solution in the sense in distribution.

Step 2: A truncated process. To continue with the proof of weak convergence, we use a

truncation methods; see [24, p. 284] for details. The idea is that for each 0 < N < ∞, we

work with Xε,N(·) that is equal to Xε(·) up until the first exit from SN = {x ∈ R2 : |x| ≤ N},

the ball with radius N . Such a process Xε,N(·) is known as an N -truncation of Xε(·). Define

a truncation function as a smooth function such that

TN(x) =


1, x ∈ SN ,

0, x ∈ R2 − SN+1.

Note that the truncation is such that it equals 1 when x is in the ball with radius N and is

0 outside the ball of radius N + 1 and is smoothly connected. Consider

dXN
1 (t) = XN

2 (t)dt

dXN
2 (t) = −[XN

2 (t)f
N
(XN

1 (t), α(t), t) + gN(XN
1 (t), α(t), t)]dt

+h
N
(XN

1 (t), α(t), t)dw(t),

(2.10)
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where

ζN(x, i, t) = ζ(x, i, t)TN(x) for ζN(·) = f(·), or g(·), or h(·).

Associated with the truncated process, we define a truncated operator as follows. For each

i ∈ M and a suitably smooth function V (·, i, ·) ∈ C2,1(R2× [0, T ];R), define an operator LN

as follows:

LN
V (x, i, t) =

∂V (x, i, t)

∂t
+

1

2
h
N,2

(x1, i, t)
∂2

∂x2
2

V (x, i, t) + x2
∂

∂x1

V (x, i, t)

−
[
x2f

N
(x1, i, t) + gN(x1, i, t)

] ∂

∂x2

V (x, i, t)

+
∑
j∈M

qij(t)
[
V (x, j, t)− V (x, i, t)

]
,

(2.11)

where we used the notation hN,2(x1, ι, t) = (hN(x1, ι, t))
2.

Proposition 2.5. Under the conditions of Theorem 2.3, (Xε,N(·), αε(·)) converges weakly to

(XN(·), α(·)) such that XN(·) is the solution of the truncated Liénard equation (2.10) and

α(·) is the Markov chain generated by Q(t) given in (2.5).

The proof of Proposition 2.5 is again divided into several steps. We proceed to carry out

the steps in what follows.

Step 2.1: Tightness of (Xε,N(·), αε(·)). This is proved by Lemma 2.6. Denote by D([0, T ] :

R2 × M) the space of functions defined in [0, T ] with values in R2 × M that are right

continuous and have left limits endowed with the Skorohod topology (see [24, p. 228]).

Lemma 2.6. Under the conditions of Proposition 2.5, (Xε,N(·), αε(·)) is tight in D([0, T ] :

R2 ×M).
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Proof of Lemma 2.6. For any δ > 0, t > 0, and s > 0 satisfying 0 < s ≤ δ, we have

Eε
t

∣∣Xε,N(t+ s)−Xε,N(t)
∣∣2

≤ KEε
t

∣∣∣∣ˆ t+s

t

Xε,N
2 (u)du

∣∣∣∣2

+KEε
t

∣∣∣∣ˆ t+s

t

[−Xε,N
2 (u)fN(Xε,N

1 (u), αε(u), u) + gN(Xε,N
1 (u), αε(u), u)]du

∣∣∣∣2

+KEε
t

∣∣∣∣ˆ t+s

t

hN(Xε,N
1 (u), αε(u), u)dw(u)

∣∣∣∣2 .

(2.12)

By virtue of the familiar Hölder inequality and the boundedness fN(·) and gN(·) together

with the choice of δ > 0, it is readily seen that

Eε
t

∣∣∣∣ˆ t+s

t

[−Xε,N
2 (u)fN(Xε,N

1 (u), αε(u), u) + gN(Xε,N
1 (u), αε(u), u)]du

∣∣∣∣2

≤ Ks2 ≤ Kδ2 ≤ Kδ.

(2.13)

Likewise, we obtain

Eε
t

∣∣∣∣ˆ t+s

t

Xε,N
2 (u)du

∣∣∣∣2 ≤ Kδ. (2.14)

where Eε
t denotes the conditional expectation with the σ-algebra of σ{w(s), αε(s); s ≤ t}.
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By using the properties of stochastic integrals, we obtain

Eε
t

∣∣∣∣ˆ t+s

t

hN(Xε,N
1 (u), αε(u), u)dw(u)

∣∣∣∣2

≤ E

ˆ t+s

t

|hN(Xε,N
1 (u), αε(u), u)|2du

≤ Kδ.

(2.15)

Combining (2.13)–(2.15) and applying these to (2.12), taking lim supε followed by limδ, we

obtain

lim
δ→0

lim sup
ε→0

Eε
t { sup

0≤s≤δ
Eε

t

∣∣Xε,N(t+ s)−Xε,N(t)
∣∣2} = 0,

where Eε
t denotes the conditional expectation w.r.t. the σ-algebra generated by {w(u), αε(u) :

u ≤ t}. Thus the tightness of {Xε,N(·)} follows. Furthermore, this tightness together with

the tightness of {αε(·)} implies that of (Xε,N(·), αε(·)}. The lemma is proved.

Step 2.2: Characterization of the limit. Since {(Xε,N(·), αε(·))} is tight, we can extract

convergent subsequences by Prophorov’s theorem. Select such a sequence and for notational

simplicity, still denote the sequence by (Xε,N(·), αε(·)). Denote the limit by (XN(·), α(·)).

By Skorohod’s representation, with a slight abuse of notation, we assume (Xε,N(·), αε(·))

converges to (XN(·), α(·)) in the sense of w.p.1. The convergence is uniform in any bounded

interval. We proceed to characterize the limit process. This is done by showing that the limit

is a solution of the martingale problem with operator LN
.

First, we note that the following holds. By the weak convergence of (Xε,N(·), αε(·)) to

(XN(·), α(·)) and the Skorohod representation, for any bounded and continuous function

ρ(·, ·) : R2 ×M 7→ R, any positive integer κ, any t and s > 0 with t+ s ≤ T , and any ti ≤ t
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for any i ≤ κ, we have

lim
ε→0

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)[V (Xε,N(t+ s), αε(t+ s), t+ s)− V (Xε,N(t), αε(t), t)]

= Eρ(XN(ti), α(ti) : i ≤ κ)[V (XN(t+ s), α(t+ s), t+ s)− V (XN(t), α(t), t)].

(2.16)

To proceed, for each ι ∈ M, let V (·, ι, ·) ∈ C2,1
0 (R2 × [0, T ] : R) (that is, C2,1 functions

with compact support). Define

V̂ (x, α, t) =
l∑

i=1

V (x, i, t)I{α∈Mi}. (2.17)

It is readily seen that V (Xε,N(t), αε(t), t) = V̂ (Xε,N(t), αε(t), t). That is, to work with αε(·) is

equivalent to work with αε(·) using the structure of the function V̂ (·). For any (1/2) < ∆ < 1,

subdivide [t, t+ s] into subintervals of length ε1−∆ by choosing Mε = ⌊s/ε1−∆⌋ (the integer

part of s/ε1−∆) and sk = kε1−∆ such that t = s0 ≤ s1 ≤ · · · ≤ sMε = t+ s. Denote

Lε(t, s) := Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

×[V (Xε,N(t+ s), αε(t+ s), t+ s)− V (Xε,N(t), αε(t), t)].

Then we have

Lε(t, s) = Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

×[V̂ (Xε,N(t+ s), αε(t+ s), t+ s)− V̂ (Xε,N(t), αε(t), t)].
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It then follows that

Lε(t, s) = Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

Mε−1∑
k=0

{ˆ sk+1

sk

∂

∂u
V̂ (Xε,N(u), αε(u), u)du

+

ˆ sk+1

sk

[
1

2
hN,2(Xε,N

1 (u), αε(u), u)
∂2

∂x2
2

V̂ (Xε,N(u), αε(u), u)

+Xε,N
2 (u)

∂

∂x1

V̂ (Xε,N(u), αε(u), u)

−[Xε,N
2 (u)fN(Xε,N

1 (u), αε(u), u)

+gN(Xε,N
1 (u), αε(u), u)]

∂

∂x2

V̂ (Xε,N(u), αε(u), u)

+Qε(u)V̂ (Xε,N(u), ·, u)(αε(u))

]}
du.

(2.18)

Step 2.2.1: Piecewise constant approximation. Here, we estimate the difference of Xε,N(u)

and Xε,N(sk) for any u ∈ [sk, sk+1). Using (2.1) with the Xε(·) replaced by Xε,N(·), the

Hölder inequality, the boundedness of Xε,N(·), fN(·), gN(·), and hN(·), and the well-known
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properties of stochastic integrals, we obtain that for any u ∈ [sk, sk+1),

E
∣∣Xε,N(u)−Xε,N(sk)

∣∣2

≤ KE

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ˆ u

sk


Xε,N

2 (r)

−(Xε,N
2 (r)fN(Xε,N

1 (r), αε(r), r) + gN(Xε,N
1 (r), αε(r), r)


dr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+KE

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ˆ u

sk


0

h(Xε,N
1 (r), αε(t), t)dw(r)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ O((u− sk)
2) +K

ˆ u

sk

E|hN(Xε,N(r), αε(r), r)|2dr

≤ O(u− sk) ≤ Kε1−∆.

(2.19)
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Using the above obtained bounds, we further deduce

lim
ε→0

Lε(t, s) = lim
ε→0

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

Mε−1∑
k=0

[ˆ sk+1

sk

∂

∂u
V̂ (Xε,N(sk), α

ε(u), u)du

+

ˆ sk+1

sk

[1
2
hN,2(Xε,N

1 (sk), α
ε(u), u)

∂2

∂x2
2

V̂ (Xε,N(sk), α
ε(u), u)

+Xε,N
2 (u)

∂

∂x1

V̂ (Xε,N(sk), α
ε(u), u)

−
[
Xε,N

2 (sk)f
N(Xε,N

1 (sk), α
ε(u), u)

+gN(Xε,N
1 (sk), α

ε(u), u)
] ∂

∂x2

V̂ (Xε,N(sk), α
ε(u), u)

+Qε(u)V̂ (Xε,N(sk), ·, u)(αε(u))
]]

du.

(2.20)

Step 2.2.2: Further approximation. We begin with the last term in (2.18). The structures
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of the V̂ (·) and Q̃(t) imply that for u ∈ [sk, sk+1),

Qε(u)V̂ (Xε,N(sk), α
ε(u), u)

= Q̂(u)V̂ (Xε,N(sk), α
ε(u), u)

=
l∑

i=1

mi∑
j=1

Q̂(u)V̂ (Xε,N(sk), sij, u)I{αε(u)=sij}

=
l∑

i=1

mi∑
j=1

Q̂(u)V̂ (Xε,N(sk), sij, u)ν
i
j(u)I{αε(u)=i}

+
l∑

i=1

mi∑
j=1

Q̂(u)V̂ (Xε,N(sk), sij, u)[I{αε(u)=sij} − νi
j(u)I{αε(u)=i}].

(2.21)

By virtue of [37, Theorem 7.2],

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

Mε−1∑
k=0

[
l∑

i=1

mi∑
j=1

ˆ sk+1

sk

Q̂(u)V̂ (Xε,N(sk), sij, u)[I{αε(u)=sij}

−νi
j(u)I{αε(u)=i}]

]

≤ K

Mε−1∑
k=0

E1/2

∣∣∣∣ˆ sk+1

sk

[I{αε(u)=sij} − νi
j(u)I{αε(u)=i}]du

∣∣∣∣2

≤ KMεε
1/2 ≤ Kε∆−(1/2) → 0 as ε → 0.

By the weak convergence of (Xε,N(·), αε(·)), the Skorohod representation, and the definition
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of Q(t), we obtain that as ε → 0,

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

Mε−1∑
k=0

[
l∑

i=1

mi∑
j=1

ˆ sk+1

sk

Q̂(u)V̂ (Xε,N(sk), sij, u)ν
i
j(u)I{αε(u)=i}]

]

→ Eρ(XN(ti), α(ti) : i ≤ κ)
[ ˆ t+s

t

Q(u)V (XN(u), α(u), u)du
]
.

This yields that as ε → 0,

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

[
Qε(u)V̂ (Xε,N(u), ·, u)(αε(u))du

]

→ Eρ(XN(ti), α(ti) : i ≤ κ)
[
Q(u)V (XN(u), ·, u)(α(u))du

]
.

(2.22)

Using similar argument, we obtain that as ε → 0,

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

[
−

Mε−1∑
k=0

ˆ sk+1

sk

[Xε,N
2 (u)fN(Xε,N

1 (u), αε(u), u)

+gN(Xε,N
1 (u), αε(u), u)]

∂

∂x2

V̂ (Xε,N(u), αε(u), u)du
]

→ Eρ(XN(ti), α(ti) : i ≤ κ)
[
−
ˆ t+s

t

[XN
2 (u)f

N
(XN

1 (u), α(u), u)

+gN(XN
1 (u), α(u), u)]

∂

∂x2

V (XN(u), α(u), u)du
]
,

(2.23)

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

[Mε−1∑
k=0

ˆ sk+1

sk

1

2
hN,2(Xε,N

1 (u), αε(u), u)
∂2

∂x2
2

V̂ (Xε,N(u), αε(u), u)
]

→ Eρ(XN(ti), α(ti) : i ≤ κ)
[ˆ t+s

t

1

2
h
N,2

(XN
1 (u), α(u), u)

∂2

∂x2
2

V (XN(u), α(u), u)
]
,

(2.24)
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and

Eρ(Xε,N(ti), α
ε(ti) : i ≤ κ)

[Mε−1∑
k=0

ˆ sk+1

sk

∂

∂u
V̂ (Xε,N(u), αε(u), u)du

]

→ Eρ(XN(ti), α(ti) : i ≤ κ)
[ ˆ t+s

t

∂

∂u
V (XN(u), α(u), u)du

]
.

(2.25)

Combining the estimates obtained thus far, (2.16), (2.22), (2.23), (2.24), and (2.25) imply

that

Eρ(XN(ti), α(ti) : i ≤ κ)
[
V (XN(t+ s), α(t+ s), t+ s)− V (XN(t), α(t), t)

−
ˆ t+s

t

LV (XB(u), α(u), u)du
]

is a martingale.

Therefore, (XN(·), α(·)) is a solution of the martingale problem with operator LN
. Thus

Proposition 2.5 is proved.

Proposition 2.7. Under the conditions of Theorem 2.3, (Xε(·), αε(·)) converges weakly to

(X(·), α(·)) that is the solution of the Liénard equation (2.7).

Proof. The proof follows along the line of Step 4 of the proof of Theorem 5.1 [24, p. 285] (see

also [21, p.46]). Let PX(0)(·) and PN(·) be the measures on the Borel subsets of D([0, T ],R2)

induced by the solutionsX(·) andXN(·) of the corresponding Liénard equations, respectively.

The measure PN(·) is unique owing to the uniqueness of the solution to (2.10). Note that

PX(0)(·) and PN(·) agree on all Borel subsets of the set of paths in D([0, T ],R2) whose values

are in SN . Note PX(0)(supt≤T |X(t)| ≤ N) → 1 as N → ∞. These together with the weak

convergence of Xε,N(·) to XN(·) imply the weak convergence of Xε(·) to X(·). Since the
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limit is unique owing to the argument in Step 1 of the proof of Theorem 2.3, the chosen

subsequence is irrelevant. Thus Xε(·) converges weakly to X(·).

By Proposition 2.7, we have established the desired convergence of (Xε(·), αε(·)). There-

fore, the proof of Theorem 2.3 is complete.

Remark 2.8. We have developed a weak convergence result Theorem 2.3. Here we consider

a couple of specializations. First, suppose that there is no white noise perturbations involved.

We consider instead

dXε
1(t) = Xε

2(t)dt,

dXε
2(t) = −

(
Xε

2(t)f(X
ε
1(t), α

ε(t), t) + g(Xε
1(t), α

ε(t), t)
)
dt,

Xε(0) = x and αε(0) = ι.

(2.26)

Thus we have fully degenerate case to deal with. Using the martingale problem formulation,

we obtain that (Xε(·), αε(·)) converges weakly to (X(·), α(·)) such that X(·) is a solution of

the averaged limit switching ODEs

dX1(t) = X2(t)dt,

dX2(t) = −
(
X2(t)f(X1(t), α(t), t) + g(X1(t), α(t), t)

)
dt,

(2.27)

where f(·) and g(·) are as defined in (2.8). Such switched ODEs have become more important

tools in modeling of networked systems in various situations.

The second specialization is: Suppose that the generator Q̃(t) itself is weakly irreducible.

Denote its quasi-stationary distribution by ν(t) = (ν1(t), . . . , νm(t)). That is, all of its states
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belong to the same weakly irreducible class. In this case, αε(·) acts like a noise. The rationale

is that as ε → 0, the system changes more rapidly resulting in an average take place. Thus,

we obtain

dX1(t) = X2(t)dt,

dX2(t) = −(X2(t)f(X1(t), t) + g(X1(t), t))dt,

(2.28)

where

f(x1, t) =
m∑
j=1

f(x1, j, t)νj(t),

g(x1, t) =
m∑
j=1

g(x1, j, t)νj(t).

(2.29)

If m is a rather large number, then substantial reduction of complexity is achieved. The

original system is one with m discrete components, whereas the limit is a single Liénard

equation.

2.4 Further Remarks

We have considered Liénard equations under white noise perturbation and regime switching.

A limit system is obtained by means of martingale problem formulation. There are several

extensions and generalizations. We mention them in what follows.

2.4.1 Inclusion of Transient States

The developments of the previous sections treat such Markov chains having only recurrent

states. It is a natural generalization to examine stochastic Liénard equations with Markov
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switching in which the Markov chain also has transient states. To begin, let αε(t) ∈ M =

M1 ∪M2 · · · ∪Ml ∪M∗, where Mi for i = 1, . . . , l are as before and M∗ = {s∗1, . . . , s∗m∗}

represents the transient states. The corresponding generator is still of the form (2.3), but

Q̃(t) =



Q̃1(t)

. . .

Q̃l(t)

Q̃1
∗(t) · · · Q̃l

∗(t) Q̃∗(t)



. (2.30)

(A4) For all t ∈ [0, T ], and i = 1, . . . , l, Q̃i(t) are weakly irreducible, and all eigenvalues of

Q̃∗(t) have negative real parts. Both Q̃(·) and Q̂(·) are bounded and measurable.

Using the approach as in [37], partition

Q̂(t) =


Q̂11(t) Q̂12(t)

Q̂21(t) Q̂22(t)


,

where

Q̂11(t) ∈ R(m−m∗)×(m−m∗), Q̂12(t) ∈ R(m−m∗)×m∗ ,

Q̂21(t) ∈ Rm∗×(m−m∗), and Q̂22(t) ∈ Rm∗×m∗ ,
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and define

Q∗(t) = diag(ν1(t), . . . , ν l(t))(Q̂11(t)1̃l + Q̂12(t)(am1(t), . . . , aml
(t)))

Q(t) = diag(Q∗(t), 0m∗×m∗),

(2.31)

where

1̃l = diag(1lm1 , . . . , 1lml
), 1lmj

= (1, . . . , 1)′ ∈ Rmj×1,

and

ami
(t) = −Q̃−1

∗ (t)Q̃i
∗(t)1lmi

, for i = 1, . . . , l. (2.32)

Using essentially the same argument but with modification on the transient part with the

help of using asymptotic results in [38], we obtain the following result.

Theorem 2.9. Under the conditions of Theorem 2.3 with (A3) replaced by (A4), (Xε(·), αε(·))

converges weakly to (X(·), α(·)) such that X(·) is a solution of (2.7) and α(·) is a continuous-

time Markov chain generated by Q∗(t) given in (2.31).

2.4.2 Wide-band Noise Perturbations

In lieu of (2.1), we can consider

dXε
1(t) = Xε

2(t)dt,

dXε
2(t) = −

(
Xε

2(t)f(X
ε
1(t), α

ε(t), t) + g(Xε
1(t), α

ε(t), t)
)
dt+

1

ε
h(Xε

1(t), α
ε(t), t)ξε(t),

Xε(0) = x and αε(0) = ι,

(2.33)
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where ξε(t) = ξ(t/ε2) and ξ(·) is a stationary process with Eξ(t) = 0, Eξ2(t) = 1, and

Eξ2+δ(t) < ∞ for some δ > 0 such that ξ(·) is independent of the Markov chain αε(·). What

we have here is to replace the white noise by a wide-band noise process so that it “approx-

imates” the white noise. Recall that a wide-band noise process is one whose bandwidth is

large and as ε → 0, it approximates the white noise. This is a physical realization of the

ideal white noise. It often appears in many applications. Under such a setup, we can still

derive the desired limit result. We omit the details, but state the main result below.

Theorem 2.10. Assume the conditions of Theorem 2.3 with the modification that the Brow-

nian motion is replaced by ξε(t)/ε. Then the conclusion of Theorem 2.3 continuous to hold.

That is, (Xε(·), αε(·)) converges weakly to (X(·), α(·)) such that α(·) is a continuous-time

Markov chain with generator Q(t) and X(·) is a solution of (2.7).

2.4.3 Future Study

For future study, we may consider the case that the generator Qε(·) is also x dependent.

Specifically, we may consider that Qε(x, t) has similar form as (2.3), but

Qε(x, t) =
1

ε
Q̃(x, t) + Q̂(x, t), (2.34)

where Q̃(x, t) have the same diagonal block form as (2.4) but are also x-dependent. We

assume that for each i = 1, . . . , l, Q̃i(x, t) is weakly irreducible in the sense that the system

of equation νi(x, t)Q̃i(x, t) = 0 and νi(x, t)1l = 1 has a unique solution. Assume that Q̃(x, t)

and Q̂(x, t) are bounded and continuous functions. In this case, we expect the averaged
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functions to have the forms

f(x, i, t) =

mi∑
j=1

νi
j(x, t)f(x1, j, t),

g(x, i, t) =

mi∑
j=1

νi
j(x, t)g(x1, j, t),

h
2
(x, i, t) =

mi∑
j=1

νi
j(x, t)h

2(x1, j, t).

(2.35)

Then it seems that we could proceed as in the previous case. Nevertheless, we note that

αε(t) is no longer a Markov chain due to the x-dependence of its generator. Care needs to

be exercised to handle such cases.
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CHAPTER 3

Near-optimal Controls of Stochastic Differential

Equations

3.1 Introduction

This chapter is devoted to the study of near-optimal controls of singularly perturbed control

systems. This chapter is arranged as follows. We first give the problem formulation in Section

3.2. To proceed we use relaxed control formulation in Section 3.3. Finally, Section 3.4 proves

the limit systems and shows that the optimal control for the original singular perturbed

problem.

3.2 Problem Formulation

Consider a stochastic dynamical system with the states xε(t) ∈ Rk and a feedback control

u(·) such that u(t) ∈ Γ, t ≥ 0 where Γ is a compact subset of Euclidean space. Let w(·) be

a standard one-dimensional Brownian motion on a probability space (Ω,F , P ) with respect

to the filtration Ft. Suppose that αε(·) is a continuous-time Markov Chain with ε being a

small parameter with a finite-state space M = {1, 2, ..., l}. Consider b(·, ·, ·) : Rk×M×U →

Rk, σ(·, ·) : Rk × M → R2k are given suitable functions. Assume that αε(·) and w(·) are
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independent. Consider the SDE with regime switching as follows

xε(t) = x0 +
´ t

0
b(xε(s), αε(s), uε(s))ds+

´ t

0
σ(xε(s), αε(s))dw(s)

αε(0) = i0 ∈ M

(3.1)

Consider the cost function Jε(x0, i0, u
ε(·)) as

Jε(uε(·)) = Jε(x0, i0, u
ε(·)) = Ex0,i0

ˆ T

0

C(xε(s), αε(s), uε(s))ds (3.2)

where Ex0,i0 denotes the expectation taken with xε(0) = x0 and αε(0) = i0. Our objective is

to find the optimal control uε(·) that minimizes Jε(uε(·)).

Throughout the chapter we need the following assumption

(A1) Assume that the generator of the Markov Chain has the form

Qε(t) =
1

ε
Q̃(t) + Q̂(t), (3.3)

such that

Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)) (3.4)

with all Q̃i(t) ∈ Rmi×mi are irreducible generators for k = 1, ..., l. Both Q̃(t), Q̂(t)

are generators, bounded and measurable. To reduce the computational complexity we

decompose the state space into connected subspace, the state space of αε(·) is given

by M = M1 ∪ · · · ∪Ml = {s11, ..., s1m1 , ..., sl1, ..., slmi
}. We use a double index sij to

denote a state.



31

(A2) There exist a positive constant K such that for each α ∈ M, each c ∈ U , and x, y ∈ Rk,

|b(x, α, c)− b(y, α, c)| ≤ K|x− y|,

|σ(x, α)− σ(y, α)| ≤ K|x− y|.

(A3) There exist a positive constants K and positive integer κ such that for each α ∈ M

and any c ∈ U ,

|C(x, α, c)| ≤ K(1 + |x|κ).

In our setup, M is rather large in that the cardinality |M| of M is a large number.

Treating reduction of dimensionality, in [37], it is illustrated that we can aggregate the

elements corresponding to each Mi into a single state. Then the total number of states in

the aggregated process will be l. Denote the reduced space by M̄ = {1, . . . , l}, and define

ᾱε(t) = i if αε(t) ∈ Mi.

3.3 Relaxed Control Formulation

In this subsection we discuss the basic relaxed control and rewrite the control problem

using relaxed control formulation. The relaxed stochastic control was inaugurated in [9] for

stochastic system. The relaxed control was used in [33] for variational problem. The Near

optimal state feedback controls for stochastic systems with wideband noise disturbance was

discussed in [23]. Singularity perturbed stochastic control is devoted in [2]. Lately, much

interests are devoted to perturbed stochastic control and filtering problems is added [22].

Recall that the control space U is a compact set in some Euclidean space. Assume that
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B(S) is the σ-algebra of Borel subset of S. Suppose that

M∗ = {m̃(·); m̃(·) is a measure on B(U × [0,∞)) and

m̃(U × [0, t]) = t for all t ≥ 0}.

A random M∗-valued measure m(·) is an admissible relaxed control if for each B ∈ B(U),

the function defined by m̃(B, t) ≡ m̃(B× [0, t]) is Ft measurable. An equivalent formulation

reads that m̃(·) is a relaxed control if

´ t

0
f(s, c)m̃(ds× dc)

is progressively measurable with respect to Ft for each bounded and continuous function

f(·).

It then follows that, if m̃(·) is an admissible relaxed control, then there is a measure-

valued function m̃t(·) (the “derivative”) such that m̃t(dc)dt = m̃(dt × dc) and for smooth

functionf(·),

´
f(s, c)m̃(ds× dc) =

´
ds
´
f(s, c)m̃s(dc).

To proceed, we topologize M∗ as follows. Let {fni
(·); i < ∞} be a countable dense (under

the sup-norm) set of continuous functions on U × [0, n] for each n. Let

⟨m̃, f⟩ =
ˆ

f(s, c)m̃(ds× dc), and

d(m̃1, m̃2) =
∞∑
n=1

2−ndn(m̃1, m̃2),
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where

dn(m̃1, m̃2) =
∞∑
i=1

2−i |(m̃1 − m̃2, fni
)|

1 + |(m̃1 − m̃2, fni
)|
.

m̃n(·) ⇒ m̃(·) for a sequence of measures means the weak convergence in M∗.

By using the relaxed control we can rewrite the switching diffusion defined in (3.1) as

follows

xε(t) = x0 +
´ t

0

´
U
b(xε(s), αε(s), c))m̃ε

s(dc)ds+
´ t

0
σ(xε(s), αε(s))dw(s)

αε(0) = i0 ∈ M

(3.5)

and the cost function defined in (3.2) as

Jε(m̃ε(·)) = Jε(x0, i0, u
ε(·)) = Ex0,i0

ˆ T

0

ˆ
U

C(xε(s), αε(s), c)m̃ε
s(dc)ds (3.6)

where m̃ε
s is the relaxed control. Our objective is to find the optimal control m̃ε(·) that

minimizes Jε(m̃ε(·)).

The associated operator for the switching diffusion defined in (3.5) is defined as follows;

for each i ∈ M, and for any twice continuously differentiable function g(·, i) define L by

Lg(x, α) = 1

2
tr[σ(x, α)σ′(x, α)∇2g(x, α)] +

ˆ
U

b′(x, α, c)∇g(x, α)m̃t(dc)

+Qε(t)g(x, ·)(α), α ∈ M

(3.7)

where

Qε(t)g(x, α)(·) =
∑
β

qεαβ(t)g(x, β),

∇g(x, i) and ∇2g(x, i) denote the gradient and Hessian of g(x, i), respectively. Note that the

operator L in fact is control and ε dependent. So we could write it as Lε,m̃. However, for
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notational simplicity, we suppressed these dependence henceforth. To proceed, we state a

couple of preliminary results.

Lemma 3.1. The following assertions hold:

(a) Let m̃(·) be an admissible relaxed control for the limit problem (3.1) with x = x(0).

Then there is an Ft = σ{x(s), α(s); s ≤ t} adapted solution x(·) of the limit problem

such that

sup
0≤t≤T

E|x(t)|2 ≤ K(1 + |x|2). (3.8)

(b) Let m̃n(·) converge weakly to m(·), where m̃n(·) are admissible w.r.t. some Brownian

motion w(·). Let x(m̃n(·), ·) be the trajectory satisfying (3.5) with m̃n(·) used. Then

(xn(m̃n, ·), m̃n(·)) converges weakly to (x(m̃(·), ·), m̃(·)) satisfying (3.5) for some Brow-

nian motion w(·) such that m̃(·) is admissible with respect to w(·).

Lemma 3.2. Assume that (A2) and equation (3.10) has a unique (in the weak sense) solution

for each initial condition for the admissible triple (m̃(·), w(·)). Consider the cost function

(3.18). Given T > 0 and ∆ > 0, there are a finite set {a∆1 , . . . , a∆k∆} = U∆ ⊂ U , a δ > 0, and

a U∆-valued ordinary admissible stochastic control u∆(·) that is constant on each interval

[iδ, iδ + δ) and is such that for all m,

P m̃
x,i0

(sup
t≤T

|x(t, u∆)− x(t, m̃)| > ∆) ≤ ∆,

|J(x, i0, m̃)− J(x, i0, u
∆)| ≤ ∆.

(3.9)

If the solution to (3.10) is unique in the weak sense for each admissible m̃(·), then (3.9)

holds for all m̃(·) simultaneously.
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The proof of Lemma 3.1 (a) can be found in [39], and the proofs of Lemma 3.1 (b) as

well as Lemma 3.2 can be proved using the same techniques as in [8, 22, 23]. We thus omit

the details. Note that in Lemma 3.1, we can prove a strong result

E sup
0≤t≤T

|xε(t)|2 < ∞.

However, for our current problem, Lemma 3.1 is sufficient.

3.4 Limit Results and Near-Optimal Control

In this section, we show that the weak limits defined in (3.1). We will use the ideal of

martingale problem. Finally, we present the existence of the optimal control.

Theorem 3.3. Assume (A1)-(A3). Let ∆ε → 0 as ε → 0 and let m̃ε(·) be a δ-optimal ad-

missible relaxed control for (3.1) with the cost defined in (3.2). Then the following assertions

hold:

(a) {xε(m̃ε, (·)), ᾱε(·), m̃ε(·)} is tight in D([0, T ] : Rk ×M×M∗).

(b) (xε(m̃ε(·), (·)), ·), ᾱε(·), m̃ε(·)) converge weakly to (x(m̃(·), ᾱ(·), m̃(·)) such that x(·) is

solution of the switching diffusion

x(t) = x0 +
´ t

0

´
U
b̄(x(s), ᾱ(s), c)ms(dc) +

´ t

0
σ̄(x(s), ᾱ(s))dw(s)

(3.10)

where

b̄(x, i, u) =

mi∑
j=1

νi
j(t)b(x, sij, u)

σ̄(x, i)σ̄′(x, i) =

mi∑
j=1

νi
j(t)σ(x, sij)σ

′(x, sij).

(3.11)
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Proof. We divided the proof of the theorem into several steps.

Step 1. Tightness. First note that Since the space of relaxed control M∗ is compact,

{m̃ε(·)} is tight in M∗. By virtue of [37, Theorem 7.4], {ᾱε(·)} is tight.

Next, we work with xε,N(·). We use a truncation device. For any 0 < N < ∞, let xε,N(·)

be the N -truncation of xε(·), which is xε,N(t) = xε(t) up until the first exit from the sphere

SN = {x : |x| ≤ N}. Define a sufficiently smooth truncation ρN(x) as follows: ρ(x) = 1 if

x ∈ SN and ρ(x) = 0 when x ∈ Rk − SN+1. Define

ϕN(x, α, c) = ϕ(x, α, c)ρN(x) for ϕ = b or σ.

Then we can rewrite the differential equation as

xε,N(t) = x0 +

ˆ t

0

ˆ
U

bN(x
ε,N(s), αε(s), c))m̃ε

s(dc)ds+

ˆ t

0

σN(x
ε,N(s), αε(s))dw(s). (3.12)

By using the N -truncation and hence the boundedness of xε,N(·), the linear growth of the

b and σ, the Hölder inequality, the basic properties of stochastic integration, and Lemma 3.1,

we have that for any δ > 0 and ε > 0, and for any t, s ≥ 0 with s ≤ ∆, there is a random
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variable γε(δ) > 0 such that

Eε
t |xε,N(t+ s)− xε,N(t)|2

≤ KEε
t

∣∣∣∣ˆ t+s

t

ˆ
U

bN(x
ε,N(r), αε(r), c))m̃ε

r(dc)dr

∣∣∣∣2

+KEε
t

∣∣∣∣ˆ t+s

t

σN(x
ε,N(r), αε(r))dw(r)

∣∣∣∣2

≤ KsEε
t

ˆ t+s

t

∣∣∣∣ˆ
U

bN(x
ε,N(r), αε(r), c))m̃ε

r(dc)

∣∣∣∣2 dr
+KEε

t

ˆ t+s

t

|σN(x
ε,N(r), αε(r))|2dr

≤ Eε
t γ

ε(δ).

Taking lim sup as ε → 0 followed by limδ→0, we obtain

lim
δ→0

lim sup
δ→0

Eγε(δ) = 0.

Thus, the tightness criterion [21, Theorem 3, p. 47], {xε,N(·)} is tight. We thus obtain that

(xε,N(·), ᾱε(·), m̃ε(·)) is tight.

Step 2. Characterization of the limit. To begin, define a truncated operator by

LNg(x, α) =
1

2
tr[σN(x, α)σ

′
N(x, α)∇2g(x, α)] +

ˆ
U

b′N(x, α, c)∇g(x, α)m̃ε
t(dc), α ∈ M.

(3.13)

Again, we suppressed the ε and control dependence in LN . Since (x
ε,N(·), ᾱε(·), m̃ε(·)) is tight,

by Prohorov’s theorem, it has a convergent subsequence. For notational simplicity, we still

denote the sequence by {xε,N(·), ᾱε(·), m̃ε(·)} and denote the limit by (xN(·), ᾱ(·), m̃(·)). By
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Skorohod representation, with a slight abuse of notation, we may assume that the convergence

is in the sense of w.p.1. The convergence is uniform on any finite time interval. We proceed

to characterize the limit process.

For each ι ∈ M̄, each f(·, ι) ∈ C2
0 (C2 functions with compact support), any bounded

and contiguous function h(·), any 0 ≤ t, s < T , any positive integers p, q, and any ti ≤ t, we

aim to show that

Eh(xN(ti), ᾱ(ti), ⟨φj, m̃⟩ti , i ≤ q, j ≤ p)

×
[
(f(xN(t+ s), ᾱ(t+ s))− f(xN(t), ᾱ(t)))−

ˆ t+s

t

Lf(xN(τ), ᾱ(τ))dτ
]
= 0.

(3.14)

We start with the process index by ε. By the weak convergence and the Skorohod repre-

sentation,

lim
ε→0

Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)(f(xε,N(t+ s), ᾱε(t+ s))− f(xε,N(t), ᾱε(t))

→ Eh(xN(ti), ᾱ(ti), ⟨φj, m̃⟩ti , i ≤ q, j ≤ p)(f(xN(t+ s), ᾱ(t+ s))− f(xN(t), ᾱ(t))).

(3.15)

To proceed, define

f̂(x, α) =
∑
i∈M̄

f(x, i)I{α∈Mi}.
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Note that f(xε(t), ᾱε(t)) = f̂(xε(t), αε(t)). It follows that

Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)

×
[
(f(xε,N(t+ s), ᾱε(t+ s))− f(xε,N(t), ᾱε(t))

]

= Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)

×
[
(f̂(xε,N(t+ s), αε(t+ s))− f̂(xε,N(t), αε(t))

]

= Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)

×
[ ˆ t+s

t

LN f̂(x
ε(τ), αε(τ))dτ

]
.

Direct computation reveals that

ˆ t+s

t

LN f̂(x
ε,N(τ), αε(τ))dτ

=

ˆ t+s

t

ˆ
U

∇f̂ ′(xε,N(r), αε(r))bN(x
ε,N(r), αε(r), c)m̃r(dc)dr

+
1

2

ˆ t+s

t

tr[σN(x
ε,N(r), α(r))σ′

N(x
ε,N(r), αε(r))∇2f̂(xε,N(r), αε(r))]dr

+

ˆ t+s

t

Qε(r)f̂(xε,N(r), αε(r))dr.
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Note that

ˆ t+s

t

ˆ
U

∇f̂ ′(xε,N(r), αε(r))bN(x
ε,N(r), αε(r), c)m̃r(dc)dr

=
l∑

ι=1

mι∑
ℓ=1

ˆ t+s

t

ˆ
U

∇f̂ ′(xε,N(r), sιℓ)bN(x
ε,N(r), sιℓ, c)m̃r(dc)I{αε(r)=sιℓ}dr

=
l∑

ι=1

mι∑
ℓ=1

ˆ t+s

t

ˆ
U

∇f̂ ′(xε,N(r), sιℓ)bN(x
ε,N(r), sιℓ, c)m̃r(dc)ν

ι
ℓ(r)I{ᾱε(r)=ι}dr

+
l∑

ι=1

mι∑
ℓ=1

ˆ t+s

t

ˆ
U

∇f̂ ′(xε,N(r), sιℓ)bN(x
ε,N(r), sιℓ, c)m̃r(dc)ν

ι
ℓ(r)

×[I{αε(r)=sιℓ} − νι
ℓ(r)I{ᾱε(r)=ι}]dr.

Using integration by parts and [37, Lemma 7.14] (see also [36, Theorem 3.6]), it can be shown

that

Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)

×
[ l∑

ι=1

mι∑
ℓ=1

ˆ t+s

t

ˆ
U

∇f̂ ′(xε,N(r), sιℓ)bN(x
ε,N(r), sιℓ, c)m̃r(dc)ν

ι
ℓ(r)

×[I{αε(r)=sιℓ} − νι
ℓ(r)I{ᾱε(r)=ι}]dr

]

→ 0 as ε → 0.
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Moreover, we can show that

Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)

×
[ l∑

ι=1

mι∑
ℓ=1

ˆ t+s

t

ˆ
U

∇f̂ ′(xε,N(r), sιℓ)bN(x
ε,N(r), sιℓ, c)m̃r(dc)ν

ι
ℓ(r)I{ᾱε(r)=ι}dr

]

→ Eh(xN(ti), ᾱ(ti), ⟨φj, m̃⟩ti , i ≤ q, j ≤ p)

×
[ l∑

ι=1

mι∑
ℓ=1

ˆ t+s

t

ˆ
U

∇f̂ ′(xN(r), sιℓ)bN(x
N(r), sιℓ, c)m̃r(dc)ν

ι
ℓ(r)I{ᾱ(r)=ι}dr

]

= Eh(xN(ti), ᾱ(ti), ⟨φj, m̃⟩ti , i ≤ q, j ≤ p)

×
ˆ t+s

t

ˆ
U

∇f̂ ′(xN(r), ᾱ(r))b̄N(x
N(r), ᾱ(r), c)m̃r(dc).

Using similar techniques, we can prove that

Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)

×1

2

ˆ t+s

t

tr[σN(x
ε,N(r), αε(r))σ′

N(x
ε,N(r), αε(r))∇2f̂(xε,N(r), αε(r))]dr

→ Eh(xN(ti), ᾱ(ti), ⟨φj, m̃⟩ti , i ≤ q, j ≤ p)

×
[1
2

ˆ t+s

t

tr[σN(x
N(r), ᾱ(r))σ′

N(x
N(r), ᾱ(r))∇2f(xN(r), ᾱ(r))]dr

]
.
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For the switching part, we have as ε → 0,

Eh(xε,N(ti), ᾱ
ε(ti), ⟨φj, m̃

ε⟩ti , i ≤ q, j ≤ p)

×
[ ˆ t+s

t

Qε(r)f̂(xε,N(r), αε(r))dr
]

→ Eh(xN(ti), ᾱ(ti), ⟨φj, m̃⟩ti , i ≤ q, j ≤ p)

×
[ ˆ t+s

t

Q̄(r)f(xN(r), ᾱ(r)dr
]
,

where

Q̄(t) = diag(ν1, . . . , νl(t))Q̂(t)diag(1lm1 , . . . , 1lml
).

It can be thought of as an average of Q̂(t) with respect to the stationary measures ν1(t), . . . , νl(t)).

Combing the estimates obtained so far, we have the weak convergence of (xε,N(·), ᾱε(·), m̃ε(·))

to (xN(·), ᾱ, m̃(·)). Finally, using the uniqueness of the limit problem and the techniques in

[21, p. 46], we conclude that the untruncated process (xε(·), ᾱε(·), m̃ε(·)) also converges. Ef-

fectively, we have shown that (x(·), ᾱ(·), m̃(·)) is a solution of controlled martingale problem

with operator

L̄g(x, i) = 1

2
tr[σ̄(x, i)σ̄′(x, i)∇2g(x, i)] +

ˆ
U

b̄′(x, i, c)∇g(x, i)m̃t(dc)

+Q̄(t)g(x, ·)(i), i ∈ M̄.

(3.16)

Thus the desired result follows.

Theorem 3.4. Assume the conditions of Theorem 3.3. Let m̃ε(·) be admissible relaxed control
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and m̃(·) is admissible with respect to w(·), then

Jε(m̃ε) → J(m̃) as ε → 0 (3.17)

where

J(m̃) = J(x, i0, m̃(·)) = Em
x0,i0

ˆ T

0

ˆ
U

C(x(t), α(t), c)m̃t(dc)dt,
(3.18)

and

C(x, i, c) =

mi∑
j=1

νi
j(t)C(x, sij, c).

Proof. By the weak convergence of xε(·) to x(·) together with the Skorohod representation,

it can be seen that

lim
ε→0

Jε(x0, i0,m
ε)

= Emε

x,i0

ˆ T

0

ˆ
U

C(xε(t), αε(t), c)mε
t(dc)dt

= lim
ε→0

l∑
i=1

mi∑
j=1

Emε

x0,i0

ˆ T

0

ˆ
U

C(xε(t), sij, c)I{αε(t)=sij}m
ε
t(dc)dt

= lim
ε→0

l∑
i=1

mi∑
j=1

Emε

x0,i0

ˆ T

0

ˆ
U

C(xε(t), sij, c)[I{αε(t)=sij} − νi
j(t)I{αε(t)=i}]m

ε
t(dc)dt

+ lim
ε→0

l∑
i=1

mi∑
j=1

Emε

x0,i0

ˆ T

0

ˆ
U

C(xε(t), sij, c)ν
i
j(t)I{αε(t)=i}m

ε
t(dc)dt

(3.19)
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By using Hölder’s inequality and a [15, Theorem 7.29], we have

E

∣∣∣∣ˆ T

0

ˆ
U

C(xε(t), sij, c)[I{αε(t)=sij} − νi
j(t)I{αε(t)=i}]m

ε
t(dc)dt

∣∣∣∣2

≤
[ ˆ T

0

[1 + E|xε(t)|2n0 ]dt
]
E
[ˆ T

0

[I{αε(t)=sij} − νi
j(t)I{αε(t)=i}]dt

]2

≤ O(ε) → 0 as ε → 0.

(3.20)

Combining (3.19) and (3.20), we conclude that

lim
ε→0

Jε(x, i0,m
ε)

=
l∑

i=1

mi∑
j=1

Em
x0,i0

ˆ T

0

ˆ
U

C(x(t), sij, c)ν
i
j(t)I{α(t)=i}mt(dc)dt

=
l∑

i=1

mi∑
j=1

Em
x0,i0

ˆ T

0

ˆ
U

C(x(t), i, c)I{α(t)=i}mt(dc)dt

= Em
x0,i0

ˆ T

0

ˆ
U

C(x(t), α(t), c)mt(dc)dt

The proof is complete.

Let Rε be the set of all admissible controls, i.e.,

Rε = {m̃ε(·) ∈ M∗; m̃ε(·) is F adapted }

and use R to denote the set of admissible controls for the limit problem,

R = {m(·) ∈ M∗;m(·) is Ft adapted }

where Ft = σ{x(s), α(s); s ≤ t}.
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Theorem 3.5. Assume that (A1)-(A3). Then there is δ-optimal control uδ(·) of the limit

control (3.10) such that the cost function

lim sup
ε→0

[Jε(uδ)− inf
Rε

Jε(m)] ≤ δ. (3.21)

Proof. By the weak convergence of Theorem 3.3 it follows that

xε(uδ, ·) → x(uδ, ·) and Jε(uδ) → J(uδ) as ε → 0 (3.22)

Since uδ is a δ-optimal control

inf
m∈R

J(m) + δ ≥ J(uδ) (3.23)

By virtue of Theorem 3.3 there exist mε ∈ R such that

inf
m∈Rε

Jε(m) + ∆ε ≥ Jε(mε) (3.24)

and

Jε(uδ) = J(uδ) + ∆1(ε) (3.25)

for some ∆1(ε) → 0 as ε → 0. Combining (3.23)-(3.25), we have

Jε(uδ)− inf
m∈Rε

Jε(m) ≤ ∆ε −∆1(ε) + δ. (3.26)

Letting ε → 0 in (3.26). The proof is complete.
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CHAPTER 4

Numerical Experiments on Van Der Pol Oscillator

4.1 Introduction

This chapter is concerned with the Van der Pol oscillator. This chapter is organized as

follows. Section 4.2 contains the problem formulation. Section 4.3 presents some numerical

experimental results. Finally, Section 4.4 makes further remarks.

4.2 Problem Formulation

The traditional Van der Pol oscillator is a non-conservative oscillator with nonlinear damping.

The differential equation is

ÿ − µ(1− y2)ẏ + y = 0 (4.1)

where y is real valued and µ is a positive constant. This model was originally proposed by

the Dutch electrical engineer and physicist Balthasar Van der Pol in 1920. The Van der Pol

oscillator has been used in both physical and biological sciences. Some noticeable properties

include that it has decreasing oscillating solutions for y2 < 1 and exponentially growing

solution for y2 > 1.

For the problem that we are interested in, we assume that it is also subject to random

perturbations. We write the problem as a first-order system. Then the Van der Pol oscillator
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can be written in its two dimensional form. Set x = (x1, x2) = (y, ẏ), therefore (4.1) becomes

ẋ (t) = b (x (t)) where b (x) =


x2

−µ (x2
1 − 1)x2 − x1


. (4.2)

We consider the Van der Pol equation driven by a white noise of constant intensity σ2 of the

following Itô equation

dx (t) = b (x (t)) dt+ λσ (x (t)) dw (t)

x (0) = x0

(4.3)

λ > 0 is a parameter. We are interested in the asymptotic behavior as λ ↓ 0.

4.3 MATLAB Simulation for Van Der Pol Oscillator

In this section we present the numerical experiments of Van der Pol equations. First, for small

value µ = 0.1. We test this model for a variety of λ to observes its behaviors. We obtain the

following simulation results for the same initial conditions with x(0) = 0, y(0) = 0.5. The

values of λ simulate are 0, 0.0001, 0.1 and 1.

We note that when x is plotted against time t, its observed that the shape of the signal

becomes less sinusoidal as µ increased and more fuzzy as λ increased. Next, for µ = 1 we

test the effect of different values of λ on the shape of the limit circle for the same initial

condition with x(0) = 0, y(0) = 0.5.

We can see that when y is plotted against x and µ is small, the limit cycle is close to a
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sinusoidal oscillation with small λ. Moreover, we can see that the limit cycles become fuzzy

as λ is increased from 0.0001, 0.1 and 1. Fig. 1 - Fig. 10 provide some simulation results.
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Figure 1: MATLAB Simulation for Van Der Pol Oscillator: µ = 0.1, λ = 0.0001
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Figure 2: MATLAB Simulation for Van Der Pol Oscillator: µ = 0.1, λ = 0.1
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Figure 3: MATLAB Simulation for Van Der Pol Oscillator: µ = 0.1, λ = 1
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Figure 4: MATLAB Simulation for Van Der Pol Oscillator: µ = 1, λ = 0.0001
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Figure 5: MATLAB Simulation for Van Der Pol Oscillator: µ = 1, λ = 0.1
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Figure 6: MATLAB Simulation for Van Der Pol Oscillator: µ = 1, λ = 1
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Figure 7: MATLAB Simulation for Van Der Pol Oscillator: µ = 5, λ = 0.0001
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Figure 8: MATLAB Simulation for Van Der Pol Oscillator: µ = 5, λ = 0.1
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Figure 9: MATLAB Simulation for Van Der Pol Oscillator: µ = 5, λ = 1

4.4 Remarks

The numerical examples considered in the last section can be thought of as random perturba-

tions of deterministic dynamic systems. The solution of the stochastic differential equation
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may be written as xλ(t). Using the weak convergence methods, it can be shown that as

λ → 0, xλ(·) converges weakly to x(·) such that x(·) is the solution of the deterministic

differential equation

ẋ(t) = b(x(t)), x(0) = x0.

That is, averaging principle holds. It can further be demonstrated that

lim
λ→0

P ( sup
0≤t≤T

|xλ(t))− x(t)| > δ) = 0

for any T > 0 and δ > 0. It can also be shown that as λ → 0, (xλ(t) − x(t))/
√
λ converges

weakly to a diffusion process. Furthermore, one may use the methods of Freidlin and Wentzel

[10] to show that for any T > 0, P (|xλ(t)− x(t)| > δ) is exponentially small.

Recently, there have been much effort in studying regime-switching dynamic systems.The

basic premise is that the underlying system has both continuous dynamics and discrete event

in which the discrete events cannot be modeled by the usual notion of differential equation.

The switching process, for example, is a continuous-time Markov chain with a time-varying

generator and state space M = {1, . . . ,m}. Associated with (4.2), we may consider a model

dxλ(t) = b(xλ(t), α∆(t), t)dt+ λσ(xλ(t), α∆(t), t)dw(t), xλ(0) = x0, (4.4)

where ∆ → 0 as λ → 0, α∆(t) is a continuous-time Markov chain with generator Q(t)/∆,

and Q(t) is an irreducible generator. Note that in the above, the b and σ are allowed to

depend on t as well. In [11] it was shown that xλ(·) converges weakly to x(·) as λ → 0 such

that the limit is given by

ẋ(t) = b̄(x(t), t), x(0) = x0
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where

b̄(x, t) =
m∑
i=1

νi(t)b(x, i, t)

and νi(t) is the quasi-stationary distribution associated with Q(t). Moreover, three different

cases

lim
λ→0

∆

λ
=



constant ∈ (0,∞), case 1

∞, case 2

0, case 3

were treated. We describe one case below, namely, ∆ = λ.

Suppose that for each i ∈ M, b(·, i, t) grows at most linearly in x and is Lipschitzian in

x,

|b(x, i, t)| ≤ K(1 + |x|) ∀x ∈ R2, i ∈ M

and that σ(·, i, t) is bounded and Lipschitz continuous. Suppose also Q(t) is irreducible. Then

it was proved in [11] that there exists a function H(·, ·, ·) : [0,∞]× R2 × R2 → R satisfying

lim
λ→0

λ logE exp

(
1

λ

ˆ T

0

⟨
b(x, αλ(s), s)ds+

1

2

ˆ T

0

a(x, αλ(s), s)β, β
⟩
ds

)

=

ˆ T

0

H(x, β, s)ds.
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Suppose that β(t) is a step function on [0, T ]. Then

lim
λ→0

λ logE exp

{
λ−1

ˆ T

0

⟨
b(x, αλ(s), s)ds+

1

2

ˆ T

0

a(x, αλ(s), s)β(s), β(s)
⟩
ds

}

=

ˆ T

0

H(x, β(s), s)ds,

where a(x, i, t) = σ(x, i, t)σ′(x, i, t). Moreover, as λ → 0, for any s, δ, h > 0, ϕ ∈ C([0, T ],R2),

and ϕ(0) = x,

P{ρ0T (xλ, ϕ) < δ} ≥ exp{−1

λ
(ST (ϕ) + h)},

P{ρ0T (xλ,Φx(s)) > δ} ≤ exp{−1

λ
(s− h)},

where C([0, T ],R2) denotes the space of continuous functions defined on [0, T ] taking values

in R2, ρ0T (·) is the distance function

ρ0T (x, y) = sup
0≤t≤T

|x(t)− y(t)|, (4.5)

Φx(s) = {ϕ ∈ C([0, T ],R2) : ϕ(0) = x, ST (ϕ) ≤ s},

and

ST (ϕ) =



ˆ T

0

L(ϕ(s), ϕ̇(s), s)ds, if ϕ ∈ C([0, T ],R2) is absolutely continuous,

∞ otherwise,

L(x, γ, s) = sup
β∈R2

[
⟨
γ, β

⟩
−H(x, β, s)].

In fact, more general case with x(t) ∈ Rk was considered in [11].
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We next present the simulation result for this case.

Example 4.1. Consider the stochastic Van der Pol equation switching diffusion (x(t), z(t))

with state M = {1, 2} and λ = ∆ = 0.0001 as follows

dx1(t) = x2(t)dt

dx2(t) = −
(
α(z(t))x2(t)(x

2
1(t)− 1) + β(z(t))x2(t)

)
dt+ λσdw

where w is a one-dimensional standard Brownian motion, α(1) = 1, α(2) = 2, β(1) = 1 and

β(2) = 2 with

Q(t) =


−1 1

3 −3


.

Fig. 10 and Fig. 11 provide some simulation results.
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Figure 10: MATLAB Simulation for Van Der Pol Oscillator
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Figure 11: MATLAB Simulation for Van Der Pol Oscillator
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APPENDIX A

Weak Convergence

In this section, we present a number of definitions of weak convergence including tightness,

Prohorov’s theorem, martingale problem and Skorohod representation.

Definition 1.1. (Weak Convergence). Let P and Pk, k = 1; 2; ...., be probability measures

defined on a metric space S. The sequence Pk converges weakly to P if

´
fdPk →

´
fdP

for every bounded and continuous function f(·) on S. Suppose that Xk and X are random

variables associated with Pk and P , respectively. The sequence Xk converges to X weakly if

for any bounded and continuous function f(·) on S, Ef(Xk) → Ef(X) as k → 1.

Definition 1.2. Let D([0,∞),Rr) be the set of all right continuous functions with left hand

limits on [0,∞),i.e

x : [0,∞) → Rr, lim
s↓t

x(s) = x(t) & lim
s↑t

x(s) = x(t−) exist , for all t > 0

Definition 1.3. Let L′ be the collection of strictly increasing functions λ : [0,∞) → [0,∞)

such that the map is onto with λ(0) = 0, lim
t→∞

λ(t) = ∞ and λ is continuous. Let L be the set

of Lipschitz continuous functions λ ∈ L′ such that

γ(λ) = sup
0≤s<t

∣∣∣ log (λ(t)− λ(s)

t− s

)∣∣∣ < 0

Definition 1.4. (Skorohod Topology). For ζ, η ∈ D([0;∞);Rr), the Skorohod topology

d(·; ·) on D([0;∞);Rr) is defined as
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d(ζ, η) = inf
λ∈L

{
γ(λ) ∨

ˆ ∞

0

e−ρ sup
t≥0

(
1 ∧ |ζ(t ∧ ρ)− η(λ(t) ∧ ρ)|

)
dρ

}
Definition 1.5. (Tightness). A sequence of probability measures Pn on metric space S is

tight if for every δ > 0 there exist a compact K ⊆ S and n0 such that

Pn(K) > 1− δ for all n > n0

Theorem 1.6. (Prohorov’s Theorem) Suppose that Pn is tight. Then it contains a weakly

convergent subsequence Pnk ⇒ P .

Theorem 1.7. (The Skorohod representation (Ethier and Kurtz [6])). Let Xk and

X be random elements belonging to D([0,∞);Rr) such that Xk converges weakly to X. Then

there exists a probability space (Ω̃, F̃, P̃ ) on which are defined random elements X̃k, k =

1, 2, ..., and X̃ such that for any Borel set B and all k < 1, P̃ (X̃k ∈ B) = Pn(B), and

P̃ (X̃ ∈ B) = P (B) such that

lim
n→∞

X̃k = X̃ w.p.1.

Definition 1.8. Let S be a metric space and A be a linear operator on B(S) (the set of all

Borel measurable functions defined on S). Let X(·) = {X(t) : t ≥ 0} be a right-continuous

process with values in S such that for each f(·) in the domain of A:

f(X(t))−
´ t

0
Af(X(s))ds

is a martingale with respect to the filtration σ{X((s) : s ≤ t}. Then X(·) is called a solution

of the martingale problem with operator A.
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Theorem 1.9. (Ethier and Kurtz [6, p. 174]). A right-continuous process X(t), t ≥ 0, is a

solution of the martingale problem for the operator A if and only if

E
[ i∏
j=1

hj(X(tj))
[
f(X(ti+1))− f(X(ti))−

ˆ ti+1

ti

Af(X(s))ds
]]

= 0

whenever 0 ≤ t1 < t2 < ... < ti+1, f(·) in the domain of A, and h1, ..., hi ∈ B(S), the

Borel field of S.

Theorem 1.10. (Uniqueness of Martingale Problems, Ethier and Kurtz [6, p.

184]). Let X(·) and Y (·) be two stochastic processes whose paths are in D([0;T ];Rr). Denote

an infinitesimal generator by A. If for any function f ∈ D(A) (the domain of A),

f(X(t))− f(X(0))−
´ t

0
Af(X(s))ds, t ≥ 0,

and

f(Y (t))− f(Y (0))−
´ t

0
Af(Y (s))ds, t ≥ 0,

are martingales and X(t) and Y (t) have the same distribution for each t ≥ 0, X(·) and Y (·)

have the same distribution on D([0;∞);Rr).



66

REFERENCES

[1] V.V. Anisimov, Switching processes: Averaging principle, diffusion approximation and

applications, Acta Appl. Math., 40 (1995), 95–141.

[2] A. Bensoussan, Perturbation Method in Optimal Control, J. Wiley, Chichester, 1988.

[3] M.L. Cartwright M.L., Balthazar Van der Pol, J. London Math. Soc., 35, 367-376,

(1960).

[4] J. Cartwright, V. Eguiluz, E. Hernandez-Garcia, and O. Piro, Dynamics of elastic ex-

citable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9, pp. 21972202, (1999)

[5] P.J. Courtois, Decomposability: Queueing and Computer System Applications, Academic

Press, New York, NY, 1977.

[6] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence, J.

Wiley, New York, NY, 1986.

[7] R. Fitzhugh, Impulses and Physiological in Theoretical Models of Nerve Membranes,

Biophysics J, 1, 445-466, (1961).

[8] W.H. Fleming, Generalized solution in optimal stochastic control in Proc. URI Conf. on

Control, 147-165, Kingston, Ri, 1982.

[9] W.H. Fleming and M. Nisio, On stochastic relaxed controls for partially observable dif-

fusions, Nagoya Math. J. 93 (1984), 71–108.

[10] M.I. Freidlin and A.D. Wentzel, Random Perturbations of Dynamical Systems, 3nd Ed.,

Springer, Heidelberg, 2012.



67

[11] Q. He and G. Yin, Large deviations for multi-scale Markovian switching systems with

a small diffusion, to appear in Asymptotic Analysis.

[12] R.Z. Khasminskii and G. Yin, Asymptotic Series for Singularly Perturbed Kolmogorov–

Fokker–Planck Equations, SIAM J. Appl. Math., 56 (1996), 1766–1793.

[13] R.Z. Khasminskii and G. Yin, On averaging principles: An asymptotic expansion ap-

proach, SIAM J. Math. Anal., 35 (2004), 1534–1560.

[14] R.Z. Khashinskii, G. Yin, and Q. Zhang, Asymptotic Expansions of Singularly Perturbed

Systems Involving Rapidly Fluctuating Markov Chains, SIAM J. Appl. Math., 56 (1996),

277–293.

[15] P. Kokotovic, Application of Singular Perturbation Techniques to Control Problems,

SIAM Rev.26 (1984), 501–550.

[16] P. Kokotovic, A. Bensoussan and G. Blankenship, EDs., Singular Perturbations and

Asymptotic Analysis in Control Systems, Vol. 90, Lect. Notes in Control and Information

Science, Springer, Berlin, 1987.

[17] P. Kokotovic, H. Khalil and J. O’Reilly, Singular Perturbation Methods in Control:

Analysis and Design, Academic Press, New York, 1096.

[18] P. V. Kokotovic and H. K. Khalil, Singular Perturbations in Systems and Control, IEEE

Press Selected Reprint Series. IEEE Press, New York, 1986.



68

[19] V.S. Korolyuk and N. Limnios, Diffusion approximation with equilibrium of evolutionary

systems switched by semi-Markov processes,translation in Ukrainian Math. J. 57 (2005),

1466–1476.

[20] V.S. Korolyuk and N. Limnios, Stochastic Systems in Merging Phase Space, World Sci.,

Hackensack, NJ, 2005.

[21] H.J. Kushner, Approximation and Weak Convergence Methods for Random Processes,

with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.

[22] H.J. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control

and Filtering Problems, Birkhäuser, Boston, MA, 1990.
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This dissertation focuses on two-time-scale stochastic systems represented by switching

diffusions. In the model, a continuous-time Markov chain serves as a modulating force that

enables the system to switch among a finite number of diffusion processes. A two-time-scale

formulation is used to reduce the computational complexity. Liénard equations are examined.

Then near-optimal controls of switching diffusions are treated. Then near-optimal controls

for stochastic differential equation with regime switching. In addition, numerical experiments

are performed for a class of Van der Pol equations.

The motivation of our study stems from modeling of complex systems in which both

continuous dynamics and discrete events are present. In Chapter 2, the continuous component

is a solution of a stochastic Liénard equation and the discrete component is a Markov chain,

whereas in Chapter 3, the continuous component is a controlled diffusion and the discrete

component is a Markov chain. In both cases, the Markov chains have a large state space.

A distinct feature is that the processes under consideration are time inhomogeneous. Based

on the idea of nearly decomposability and aggregation, the state space of the switching
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process can be viewed as “nearly decomposable” into l subspaces that are connected with

weak interactions among the subspaces. Using the idea of aggregation, we lump the states in

each subspace into a single state. Considering the pair of process (continuous state, discrete

state), under suitable conditions, we derive a weak convergence result by means of martingale

problem formulation. The significance of the limit process is that it is substantially simpler

than that of the original system. Thus, it can be used in the approximation and computation

work to reduce the computational complexity. Finally, we investigate the system behavior of

Van der Pol oscillator by introducing the noise. The system have been performed numerically

and results are shown using Matlab. Simulations show that the proposed model gives limit

cycles are more accurate as the noise decreased which the limit cycle is close to a sinusoidal

oscillation and the shape of the signal becomes less sinusoidal as the noise increased.
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