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1 Introduction

1.1 Motivation

Security and privacy of computer systems and communication protocols have become

the most challenging objectives of modern hardware and software design. In many appli-

cations like healthcare systems, power distribution systems and e-voting systems the leak

of the information flow can be very dangerous. In the past few years, various notions con-

centrate on characterizing the information flow from the system to an external observer.

Opacity is one of the notions defined to study some properties of security and privacy. It

has been shown that for instance, properties like anonymity and secrecy can be studied as

special cases of opacity. Opacity describes the inability for an external observer to know

what happened in a system; therefore, it aims at determining whether a given critical subset

of a system’s behavior is kept opaque to an external observer. In the context of a discrete

event system with partial observation, for example, anonymity is defined as the ability to

hide a set of particular actions among other actions. Through that, anonymity can be inves-

tigated in terms of opacity in the framework of a discrete event system where the occurrence

of events is strongly opaque if an observer cannot determine which events have occurred for

all executions of the system. Consider secrecy, a secret is defined as a particular subset of

trajectories and the observer should not find out that a trajectory of the system belongs

to this subset. In this context, a secret is said to be strongly opaque with respect to the

system if every execution of the secret is confused with other execution from the observer’s

point of view. Consider the case of the e-voting system, which is physically supervised by

independent electoral authorities. A fundamental challenge with any voting mechanism is

assuring that is not possible for an external observer to discover the vote of an elector. In

the context of opacity, this can be defined as it is ensuring strong opacity property. Also,

detecting errors and fraud is important in the e-voting mechanism, therefore ensuring that

every elector votes without fraud is also a concern of opacity properties. The interest in
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verifying security properties is growing, therefore analyzing opacity properties in discrete

event systems become a significant tool to serve the developers for ensuring security and

privacy properties.

Motivated by enforcing opacity properties in many application areas, we investigate

supervisory control for opacity. For a given system that does not satisfy opacity properties,

we may need to investigate if a supervisor can be used to restrict the system’s behavior so

that the supervised system satisfies opacity properties. The supervisor can disable some

controllable events to restrict the behavior of the system. Therefore, supervisor control

problems for opacity involve controllability, observability (or normality). We formally define

the opacity control problem (SOCP), the weak opacity control problem (WOCP), and no

opacity control problem (NOCP). Solutions to SOCP in terms of the largest sublanguage

that is controllable, observable (or normal), and strongly opaque are characterized. Similar

characterization is available for solutions to NOCP.

1.2 Related Work and Contributions

The developments in this dissertation are related to existing work in opacity and its

application [33]. Opacity introduced by [33] is presented through the following definitions:

strong opacity and weak opacity. Given a general observation mapping, a language is strongly

opaque if all strings in the language are confused with some strings in another language, and

it is weakly opaque if some strings in the language are confused with some strings in another

language. A language is not opaque if it is not weakly opaque. It has been showed that

anonymity [44, 46, 55] and secrecy [8, 23] can all be investigated in terms of opacity [33].

Furthermore, it has been shown that three important properties of discrete event system,

observability, diagnosability, and detectability, can all be reformulated as special cases of

opacity [33].

Opacity requires that the system’s secret behavior is opaque to an external observer

who is able to observe some events that occur in the system. Therefore opacity can be a

useful property to prove the security of protocol. The notion of similarity [18, 37, 38] was
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used to prove the property of the security of protocol. In other words, an external observer

is not able to distinguish a run of protocol where the property is satisfied from a run where

it is not.

The notion of opacity in computer security and other information flow security has

been extended in [23] to discrete event systems. In [23] three variants of the opacity have

been introduced: the initial opacity, the final opacity and total opacity. The initial opacity

focuses on the initial information that needs to be kept secret. On the other hand, the final

opacity defines the situation where the final state needs to be kept secret. The total opacity

is more general because it considers that both the initial state and the final state need to

be kept secret. This approach showed how the opacity is related to other concepts used for

information flows security like anonymity and non-interference.

In [24,25] the opacity property was investigated in the framework of Petri nets. Based

on the observation of the locale states of the system as well as the execution of the traces,

opacity was defined as property of certain states of the secure. For a given an observation

mapping and a secure property (states), opacity is defined as the interest of finding out if

the outside observer can determine the secure states.

One of the earliest approaches of the opacity is presented by [50,51]. In this framework

opacity was defined based on the following assumption. The states of the system are parti-

tioned to a secret and non-secret states. This approach is known as the state-based approach.

In this approach opacity requires that secret states need to be kept secret from an observer

who observes events under the natural projection. That is, for any string reaches the secret

state, there must exist at least one other different string that has the same projection and

reaches another state that is not secret.

The language-based approach presented in [8] investigates the system that its secret

is defined by language generated. Opacity requires that none of multiple observers with

different observation capabilities are able to determine whether the actual behavior of the

system belongs to a secret language. Also, it has shown opacity can be enforced by super-

visory control possibly by disabling the least possible of strings to restrict the ability of the
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observer to find out that the actual language belongs to the secret language.

In the last few years, some opacity studies focussed on demonstrating opacity prop-

erties enforced by supervisory control. Opacity enforced by a controller has been studied

in [9, 19–22] where opacity is defined by keeping a secret (language) opaque with respect to

the language generated by the system. Disabling some controllable events can lead to the

restriction of the language generated. The observation mapping is reduced to the natural

projection in these studies.

In this dissertation, we will use the definition of opacity proposed in [33]. The reason

for this is that the system behaviour can be analyzed and studied from the occurrences of

events. To investigate opacity properties we need to analyze the observation mapping by

observing more or less events or controlling a subset of events by enabling or disabling events.

Also, the two definitions of opacity give us more flexibility to satisfy opacity if needed. If

strong opacity cannot be satisfied, then we modify the language to satisfy weak opacity.

The research goals of this dissertation is to study, and to investigate opacity in the

discrete event system. This work considers theoretical analysis of opacity and its applications.

The first contribution of the dissertation is to study opacity properties in discrete

event systems. The second contribution of the dissertation is to evaluate opacity theories

by considering opacity under union, and opacity under intersection to establish a structural

information for computing sublanguages and superlanguages. The third contribution is to

provide formulas for sublanguages and superlanguages. We find the largest sublanguages

and smallest superlanguages that satisfies the properties of opacity. We provide an extended

version of the computed sublanguages and superlanguages in the decentralized framework

of discrete event system, in order to provide a foundation for the case of many observers

are connected to the system. Finally, the dissertation contributes to the construction of a

minimally restrictive supervisor for opacity. We consider opacity under the controllability

and observability restrictions. We show how a supervisor limits the system’s behavior within

a specified behavior that satisfies controllability, observability and opacity requirements.

We characterize solutions to the strong opacity control problem in terms of the largest
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sublanguage that is controllable, observable (or normal), and strongly opaque. We show

that the supremal controllable and normal sublanguage exists. Similar characterization is

available for solutions to no opacity control problem. We also show that there is no solution

to the weak opacity control problem. Generally, the result is a supervisor that achieves the

desired behavior to enforce opacity possibly by disabling, a subset of controllable events, in

a way that system behavior is minimally restricted.

1.3 Methodology

Discrete Event System is a discrete-state, event-driven system of which the state

evolution depends entirely on the occurrence of asynchronous discrete events, where an

event is to be understood as an action without temporal duration. Examples of discrete

event systems include process engineering, communication systems, networks, digital circuits,

traffic networks, and manufacturing systems. Generally the dynamics of a discrete event

system can by be described on the basis of its observed behavior. Internally the dynamics

described by the set of all possible sequences of events, called traces, that the system can

execute starting from its initial state.

In general, from the viewpoint of the properties and the specification of discrete event

systems, it is more convenient to be represented and analyzed in the formal language setting.

Therefore, this dissertation is mainly developed on the basis of the formal language. However,

some examples and proofs are illustrated on the basis of the automata.

For investigating and studying opacity in the framework of discrete event systems we

investigate first the properties of opacity based on the definitions given by [33]. By studying

strong opacity, weak opacity, and no opacity we formulate languages need to be enlarged or

reduced to satisfy opacity properties. In other words, the information needs to be observed

or not observed to satisfy opacity properties. Thus, we will be considering the sublanguages

that represent the desired behavior to satisfy strong opacity, weak opacity and no opacity.

Also we provide formulas for computing sublanguages and superlanguages.

As one of the applications that can be studied and investigated using opacity is
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anonymity properties. We consider anonymity protocol as an application for this disser-

tation. In general anonymity is a notion that arises in activities where the identity of users

involved need to be kept secret. We investigate anonymity protocols using opacity properties

in the framework of discrete event systems. We give initially an analysis of the verification of

protocol using strong opacity and no opacity properties, and then we synthesize anonymity

protocol using opacity properties.

In order to modify the behavior of a system to satisfy opacity some events should

be controlled, or some events should be observed, therefore we investigate opacity theory

related to controllability and observability theories. We compute the superlanguages and

sublanguages under controllability, observability and opacity restrictions.

1.4 Thesis Outline and Publications

The dissertation is divided to 7 chapters including an introduction in Chapter 1 . A

brief outline of the topics discussed in these chapters are given as follows. Chapter 2 focuses

on the introduction of the automata and a formal language model for discrete event systems

proposed by Ramadge, Wonham and Lin in [45] [31] and the presentation of its suitability for

dealing with control-theoretic issues. Notions of supervisory control, controllability, observ-

ability and normality are defined and discussed. In Chapter 3, the definition of the opacity

in the framework of discrete event system is presented. The main theorem of Chapter 3,

establishes the properties of opacity. Chapter 4 presents the formulas for calculating the

sublanguages and superlanguages. In Chapter 5, we extend opacity of the discrete event

system to decentralized systems. We provide computation of the sublanguages and super-

languages in the framework of decentralized discrete event systems . Chapter 6 provides

an introduction to anonymity and the dinning cryptographers problem. The analysis and

the synthesis of the dinning cryptographers protocol are presented. Chapter 7 contains the

results of the supervisory control of opacity. We present a solution to strong, weak, and no

opacity problems.

Many of the results in the dissertation have been published in a journal and in the
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proceedings of conferences. More specifically, the results of Chapter 4 appeared in [3] and

an extended version was published in [5]. The results in Chapter 7 appeared in [4].
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2 Basic Notions and Definitions of Dis-

crete Event Systems
Discrete event systems are systems which are discrete in both time and state space.

The changes in the system states occur based on event transitions. Each event occurs marks

a change of state in the system. Discrete event systems provide useful models for complex

control systems, such manufacturing systems, networks, computer databases, communication

protocols, etc.

Discrete event system theory started with supervisory control theory over twenty years

ago. The must important concepts in supervisory control are controllability introduced by

Ramadge and Wonham [45] and observability introduced by Lin and Wonham [31]. The

notion of controllability introduced by Ramadge and Wonham is a necessary and sufficient

condition for the existence of a supervisor that achieves the desired controlled behavior of a

given discrete event system under the complete observation of events. However, if the system

is under partial observation of events, then an additional condition of observability introduced

by Lin and Wonham should be considered. This condition is necessary and sufficient for the

existence of such a partial observation supervisor. Controllability theory and observability

theory were studied extensively by many other researchers. Several important problems

in discrete event systems such as supervisory control and observation problem were solved

because of these studies.

Other properties of discrete event systems, such as diagnosability [29,34–36,58,59] and

detectability [48, 49] have also been studied. The notion of diagnosability is a necessary

and sufficient condition for the existence of a diagnoser that can perform failure diagnostics.

These conditions can be verified using detection algorithms on the diagnosers and the system.

The detectability problem in a discrete event system has been investigated in [48, 49].

Detectability aims to estimate or to determine the current state of the system based on

the observation mapping. It has presented computable criterions for checking necessary and
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sufficient conditions for detectability. It has also presented the way to construct an ob-

server, whose roles are to estimate the states of a system after a sequence of observation is

very important in some applications. It is shown in [48] that in some medical applications,

determining the state of the system is an important task. Detectability and periodic de-

tectability, both in a strong sense and in a weak sense has been defined. A discrete event

system is strongly detectable if the current state and subsequent states of the system after

a finite number of observations for all trajectories of the system can be determined. A dis-

crete event system is weakly detectable if the current state and the subsequent states of the

system after a finite number of event observations for some trajectories of the system can be

determined.

The general formalism to describe discrete event systems is the formal languages [17,56].

The language is a theoretic-based representation of the systems whose behaviour can be

described by sequences of events. These sequences of events are called strings.

Discrete event systems are often represented by state machine (automata), where tran-

sitions between states are labeled by events. Also a set of regular languages is used to

represent supervisory control for discrete-event systems. Regular language operators such

as choice, concatenation, and Kleene-closure have been defined in the setting of languages

to allow modeling of complex systems in terms of simpler ones. In this work we present

the theoretical analysis in the regular language framework. We present also some of the

theoretical results in the automata framework.

As we mentioned earlier, this chapter focuses on the representation of the discrete event

system. Therefore, the organization of the chapter is as follow. Formal language definitions

and regular expressions are presented in Sections 2.1. The Section 2.2 introduces finite

automata which will be relevant in the dissertation. Supervisory control of discrete event

systems is presented in Section 2.3.
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2.1 Languages

In computer science, the formal language is widely used to define the data formats

and the syntax of programming languages. Therefore, they are playing an important role

in the development of compilers. In addition, formal languages are also used in logic and

in mathematics to represent the syntax of formal theories and algorithms. The behavior of

discrete event systems is studied in this dissertation by formal languages. In this section we

give a comprehensive introduction to formal languages and automata presented in [17,56].

2.1.1 Basic Definitions and Notation

Let Σ = {σ1,σ2, ...,σm},m ∈ N+ be a finite nonempty set of distinct symbols. Σ used

to denote the alphabet.

Definition 2.1.1. [52] A word (or string) over an alphabet Σ is a finite sequence of elements

from an alphabet Σ . A string s can be written as the arbitrary concatenations s= σi1σi2 ...σik

of symbols σi1 ,σi2 , ...,σik ∈Σ with i1, ..., ik ∈ {1, ...,m}, where k > 1 is the length of the string

s.

The set of all finite strings over the alphabet Σ is written as Σ∗. The * operation is

called the Kleene-closure. The empty string (string with no symbols) is ε, where ε 6∈ Σ.

Definition 2.1.1 basically presents the concept of language over analphabet Σ.

Definition 2.1.2. A language over an alphabet Σ is a subset of Σ∗. [56]

This definition includes the empty set ∅ which is a language that has no strings and the

kleene-closure Σ∗.

As strings are the elements of a language. Therefore, the usual operations on sets

like union, intersection, difference and complement with respect to Σ∗, can be applied to

languages. In addition to those already presented operations, there are other important

operations. Kleene-closure, concatenation, and the prefix-closure are the fundamental oper-

ations in generating of strings. The concatenation is a binary operation on Σ∗, where the
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concatenation of α and β, is written αβ. A string s ∈ Σ∗ is a proper prefix of t ∈ Σ∗ if s is

an initial substring of t. The set of prefixes of elements of a language L⊆ Σ∗ is denoted by

L̄. This language is called the prefix-closure of L, and L is said to be prefix-closed if L= L̄.

The Kleene closure of a set L denoted by (L∗) is the set of all strings of finite length, whose

elements are elements of set L.

The technique for constructing languages is to use set operations to construct complex

sets of strings from simple ones. Example 2.1.1 shows Operations on formal languages.

Example 2.1.1. Let Σ = {α,β,γ} be an alphabet and consider the languages L= {αβ+αγ},

K = {βγβ}. s = β and t = γβ are strings over Σ. The concatenation of s and t is given

by st = βγβ. The prefix-closure of K is K̄ = {ε,β,βγ,βγβ}. The kleene-closure of Σ is

Σ∗ = {ε,α,β,γ,αα,αβ,αγ,βα,ββ,βγ, ....}.

In expressions involving several operations, one should apply the operations with the

following order: (1) Closure, (2) Concatenation, and (3)Union, intersection, and set the

difference. Also regarding the empty string ε we present the following observations.

• ε 6∈ {∅}

• {ε} is a nonempty language containing only the empty string

• If L= ∅, then L̄= ∅, and if L 6= ∅ then ε ∈ L̄

• ∅∗ = {ε} and {ε}∗ = {ε}

In [30,31] the natural projection is introduced. We recall the definition and its inverse image

function.

Definition 2.1.3. (Projection) [6]

Let Σs ⊆ Σ. The projection P : Σ∗ −→ Σ∗s is

P (sσ) =

 P (s)σ if σ ∈ Σs,

P (s) Else
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for s ∈ Σ∗ and σ ∈ Σ. The map P is called the natural projection of Σ∗ onto a smaller

set of events Σ∗s. Clearly for s, t ∈ Σ∗ we have P (st) = P (s)P (t) and P (ε) = ε,i.e. P is

concatenating.

The natural projection P deletes events from the string that belong to Σ and do not

belong to Σs. The corresponding inverse natural projection P−1 : Σ∗s −→ 2Σ∗ of a given string

t ∈ Σ∗s returns the set of strings that are projected on t.

Definition 2.1.4. (Inverse Projection) [6]

Let Σs ⊆ Σ. The inverse projection P−1 : Σ∗s −→ 2Σ∗ is

P−1(t) := {s ∈ Σ∗|P (s) = t}

for t ∈ Σ∗s

The projection P and the inverse projection P−1 are generalized to languages by simply

applying them to all the strings in the language [34]. For L ∈ Σ∗ and Ls ∈ Σ∗s:

P (L) := {t ∈ Σ∗s : (∃s ∈ L)[P (s) = t]}

P−1(Ls) := {s ∈ Σ∗ : (∃t ∈ Ls)[P (s) = t]}

The next example shows how to apply the natural projection and its inverse to languages.

Example 2.1.2. Let Σ = {α,β,γ} and consider the languages L1 = {αβ,αβαγ}, L2 = {αγ}.

The alphabet Σs = {α,β} is considered to be the alphabet of the natural projection P : Σ∗→Σ∗s.

The natural projection of the languages are P (L1) = {αβ,αβα} and P (L2) = {α} respectively.

The inverse projection of L1 and L2 is given by P−1P (L1) = {γ∗αγ∗βγ∗,γ∗αγ∗βγ∗αγ∗} and

P−1P (L2) = {γ∗αγ∗}. The concept of the natural projection is illustrated in Figures 2.1

and 2.2. In Figure 2.1 the lines present strings, and the crosses present the concatenated

symbols. The way to read a string is from the left to the right. The projected string P (L1) of

the language L1 and its strings in L1 are linked by dashed lines. Figure 2.2 shows the concept

of the natural projection and its inverse applied to the language. The projection P (L1) of
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Figure 2.1: The illustrated language L1 and its projection P (L1)

Figure 2.2: Illustration of the P (L1) and the inverse P−1P (L1)

the language L1 is presented by a bold line over the axis. The colored (shadow) area shows

the inverse projection P−1P (L1) of L1.

Another operation frequently performed on strings and languages which can be pre-

sented using the inverse projection, is called Parallel Composition or synchronous product.

Definition 2.1.5. Parallel Composition [34]

Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2, and Σ = Σ1 ∪Σ2. The natural projection Pi is given by Pi :

(Σ1∪Σ2)∗→ Σ∗i for i= 1,2, the parallel composition of L1 and L2 is:

L1 ‖ L2 := P−1
1 (L1)∩P−2

2 (L2)
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2.1.2 Regular Language

Within the formal languages, the languages are classified to four formal languages

[17, 34]. This classification is known the Chomsky hierarchy. One type of languages called

the regular language, which is the simplest of four Chomsky formal languages. The regular

expression is one of the ways to describe regular languages.

Definition 2.1.6. (Regular Language) [41]

The language is said to be regular over Σ if it belongs to the set of regular languages defined

recursively as follow:

• Basis Clause: ∅, ε and α for any symbol α ∈ Σ are regular languages

• Inductive Clause: If L1 and L2 are regular languages, then L1 ∪L2,L1L2 and L∗1

are regular languages.

• Extremal Clause: Nothing is a regular language unless it is obtained from the above

two clauses.

Example 2.1.3. Let Σ = {α,β}. Then since L1 = {α} and L2 = {β} are regular languages,

L1∪L2 = ({α}∪{β}) and L1L2 = {α}{β} are regular languages. Also since {α} is regular,

{α}∗ is a regular language.

2.1.3 Regular Expression

Regular expressions are used to represent regular languages. They are also used

substantially to represent the defined operations as concatenation, Kleene-closure, and the

union on languages.

Definition 2.1.7. (Regular expressions) [41]

The regular expressions over Σ are defined recursively as below:

• Basis Clause: ∅, ε and α for any symbol α ∈ Σ are regular expressions.
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• Inductive Clause: If s1 and s2 are regular expressions corresponding to languages L1

and L2, then (s1 +s2), (s1s2) and s∗1 are regular expressions corresponding to languages

L1∪L2,L1L2 and L∗1 respectively.

• Extremal Clause: Nothing is a regular expression unless it is obtained from the above

two clauses.

2.1.4 Conventions On Regular Expressions [34,52]

Generally, an infinite number of strings for potentially complex languages can be

easily represented by regular expressions. Regular expressions is a compact way of describing

regular languages with a possibly infinite number of strings. Regular expressions represent

the following defined operations.

• The concatenation of r and s, rs is written as rs.

• The union of r and s, r∪ s is written as r+ s.

• The regular expression (r+ (s(t∗))) is written as r+ st∗

Example 2.1.4. Let Σ = {α,β,γ} be a set of events. The regular expression (αβ+ γ)α∗

denotes the language

L= {αβ,γ,αβα,γα, ,αβαα,γαα, ...}

2.2 Finite Automata

In this section we present a class of machines called finite automata. Finite automata

is used to describe regular languages. As we show that the regular languages can be pre-

sented by regular expressions. Another kind of representing regular languages is the finite

automata. We present the equivalencies and conversions between finite automata and ex-

pression languages. It is shown in [6] that for every regular language, a finite automaton can

be constructed which can recognize the language. We formally present both types of finite

automata, the deterministic as well as in nondeterministic finite automata.
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Definition 2.2.1. (Deterministic automata) [6]

A deterministic automaton, denoted by G, is a six-tuble

G= (X,Σ,f,Γ,x0,Xm)

Where:

1. X is the set of states.

2. Σ is the finite set of events.

3. f : X×Σ→X is the transition function: f(x,σ) = y means that there is a transition

labeled by event σ from state x to state y. It is only defined for a subset of Σ in any

state.

4. x ∈X. Γ :X → 2Σ is the active event function.

5. Γ(x) is the set of events σ for which f(x,σ) is defined.

6. x0 is the initial state.

7. Xm ⊆X is the set of marked states.

To show the concept of the finite automata we use the following example.

Example 2.2.1. Let G= (X,Σ,f,x0,Xm) be a deterministic finite state automaton. Figure

2.3 illustrates the automaton. States are presented by the nodes and events between the states

represented by the arrows. The alphabet of G is Σ = {α,β,γ,µ}, the states set is X = {0,1,2},

x0 = 0 is the initial state and Xm = {0} is the marked state. The transition function f states

that f(0,α) = 1 and f(1,β) = 0 for example.

The function f can be extended to the domain X×Σ∗, defining the function f recur-

sively as follows:

• f(x,ε) = x for each x ∈X.
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Figure 2.3: Automaton Graph of G

• f(x,sσ) = f(f(x,s),σ) for each s ∈ Σ∗ and σ ∈ Σ.

Returning to the automaton in Example 2.2.1, we have, for example, that:

f(0, ε) = 0

f(0,αγµ) = f(f(0,αγ),µ) = f(f(f(0,α),γ),µ) = f(f(1,γ),µ) = f(2,µ) = 0

2.2.1 Languages Generated by Automata

A generative model of a language is used either to recognize or to generate strings.

The full set of strings that can be generated is called the language of the automaton. In

other words, we consider all strings which can be followed in an automaton.

Definition 2.2.2. (Language generated and language marked) [34]

Let G= (X,Σ,f,x0,Xm) be an automaton. The language generated by G is

L(G) := {s ∈ Σ∗|f(x0, s)}

The language marked by G is

Lm(G) := {s ∈ Σ∗|f(x0, s) ∈Xm}

The generated language L(G) contains all strings in the automaton starting from the

initial state. The language marked includes all strings starting from the initial state to the

marked states. The language marked is also called the language recognized by the automaton,
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therefore a given automaton G generates the language L(G) and recognizers the language

Lm(G).

Example 2.2.2. Consider the automaton G in Figure 2.3, the language marked Lm(G) =

{αβ,αγµ,αβαγµ,αβαβαγµ,αβαβαβαγµ, ...} and the L(G) = {ε,α,αγ,αγµ,αβ,αβα,αβαγ, ...}.

Obviously, there are two languages L(G) and Lm(G) can be represented by an automa-

ton G. On the other hand there exist many ways to construct an automata that generate,

or mark, a given language.

Definition 2.2.3. (Language-equivalent automata) [34]

Automata G1 and G2 are said to be language-equivalent if

L(G1) = L(G2) and Lm(G1) = Lm(G2)

That is, if they both recognize the same language generated L(G) and marked language

Lm(G).

Example 2.2.3. Let G1 = (X1,Σ1,f1,x0,1,Xm,1) and G2 = (X2,Σ2,f2,x0,2,Xm,2) shown in

Fig. 2.4 be deterministic automaton. G1 and G2 are language-equivalent, as they generate

the same language and they mark the same language.

Definition 2.2.4. (Nondeterministic automata)

A nondeterministic finite automaton is a 5-tuple Gnd = (X,Σ∪ ε,fnd,x0,Xm), where

1. X is the set of states.

2. x0 ⊆X is the set of initial states.

3. fnd is the transition function fnd :X×Σ∪{ε}→ 2X .

4. Xm ⊆X is the set of marked states.

The important difference between the deterministic and nondeterministic automata is that

f(x,σ) is a (possible empty) set of states rather than a single state. That is, every state in a

deterministic automata always has one σ-transition for every σ ∈ Σ, but in a nondetermin-

istic automata, there could be states that have none, one, two or more σ-transitions.
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Figure 2.4: Language-equivalent automata (Example 2.2.3)

Theorem 2.2.1. (Deterministic Automata for a Nondeterministic Automata)

Let L be a language recognized by a nondeterministic finite automaton, then there exists a

deterministic finite automaton that recognizes L [1].

2.2.2 Regular Language and Finite-State Automata

Finite automata are used to recognize languages, therefore for every regular language,

a finite automaton can be constructed which can recognize the language. However, there are

languages which can not be recognized by finite automata.

Definition 2.2.5. (Finite Automata and Regular Languages) [17, 52]

A language L ∈ Σ∗ is said to be regular, if it can be recognized by a finite automaton.

Definition 2.2.6. A language L over Σ is recognized by a finite automaton if there exists a

finite automaton such that L is the language recognized by this finite automaton.

On the other hand, languages that are not regular require devices other than finite

automata to recognize them. John Myhill and Anil Nerode have studied testing methods for
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regularity. The idea behind these test methods is presented in [39,60].

Definition 2.2.7. (distinguishing string)

Let G= (X,Σ,f,x0,Xm) be a deterministic finite automaton. The string s ∈ Σ∗ is a distin-

guishing string for states x1,x2 ∈X if exactly one of f(x1, s) and f(x2, s) is in Xm.

Intuitively, a distinguishing string s for states x1 and x2 in the automaton G is a string

which is mapped to an accepted state from exactly one of x1 and x2. In other words, the

existence of a distinguishing string for a pair of states x1, x2 ∈ X proves that x1 and x2

are not equivalent. Based on the concept of indistinguishability, Myhill and Nerod give a

criterion for (non)regularity of a language. This criterion is given by the following theorem.

Theorem 2.2.2. (Non-regularity test based on Myhill-Nerode’s) [39]

The language L over alphabet Σ is nonregular if and only if there is an infinite subset of Σ∗,

whose strings are distinguishable with respect to L.

2.2.3 Operation on Automata

As other tools, finite automata requires a set of operation that can be used to analyze

automata. These operations are presented in this section.

Accessible part

States that never can be reached are clearly unnecessary. Also, transitions associated

with such states are unnecessary. Ac(G) denotes the operation for deleting these unnecessary

states and transitions. The Ac(G) operation has no effect on L(G) or Lm(G).

Coaccessible part

A state x of an automaton G is said to be coaccessible if there is a string s that takes

from x to a marked state, that is f(x,s) ∈Xm. We denote the operation of deleting all the

states of L that are not coaccessible by CoAc(G). The CoAc operation may shrink L(G) but

does not affect Lm(G). If G = CoAc(G) then L is said to be coaccessible. If an automaton
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is nonblocking then it also have to be coaccessible. If there is no path from every state to a

marked state then it can’t be nonblocking.

Trim operation

An automaton that is both accessible and coaccessible is said to be trim. The trim

operation is defined as

Trim(G) := CoAc(Ac(G)) = Ac(CoAc(G))

It does not matter in which order Ac and CoAc is applied.

Complement

Suppose we have a trim automaton G = (X,Σ,f,x0,Xm) that marks the language

Lm(G)⊆ Σ∗. We can build another complement automaton that marks Σ∗ \Lm(G), which

we denote Gcomp.

1. Add an unmarked state xd, called “dump” or “dead” state.

2. Complete the transition function fG ofG and make it a total function, f totG , by assigning

all undefined fG(x,σ) in G to xd. Furthermore f totG (xd,σ) = xd for all events σ ∈ Σ.

3. Mark all unmarked states (including xd), and unmark all marked states.

Gcomp = ({X ∪xd},Σ,f tot,x0,{X ∪xd}\Xm)

L(Gcomp) = Σ∗ and Lm(Gcomp) = Σ∗ \Lm(G), as desired .

Composition operations

Combining tow or more automata is considered the most important operation on the

automata, because it plays an important role in problems of synthesis and decomposition

of automata. “The most important and the most frequently used compositions of automata

are the direct product, superposition and feedback” [40]. We define two operations:
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1. Parallel composition, denoted ‖. Also called synchronous composition.

2. The product, denoted ×. Also called a completely synchronous composition.

To illustrate the both operations letG1 = (X1,Σ1,f1,x0,1,Xm,1) andG2 = (X2,Σ2,f2,x0,2,Xm,2).

The parallel composition of G1 and G2 is given by:

G1 ‖G2 := Ac(X1×X2,Σ1∪Σ2,f1‖2,(x0,1,x0,2),Xm,1×Xm,2)

with

f1‖2((x1,x2),σ) :=



(f1(x1,σ1),f2(x2,σ2)) if σ ∈ Γ1(x1)∩Γ2(x2),

(f1(x1,σ1),x2) if σ ∈ Γ1(x1)\Σ2,

(x1,f2(x2,σ2)) if σ ∈ Γ2(x2)\Σ1,

undefined else

The product of G1 and G2 is the automaton

G1×G2 := Ac(X1×X2,Σ1∪Σ2,f1x2,(x0,1,x0,2),Xm,1×Xm,2)

with

f1×2((x1,x2),σ) :=

 (f1(x1,σ1),f2(x2,σ2)) if σ ∈ Γ1(x1)∩Γ2(x2),

undefined else

In the Parallel composition, a common event, i.e.,an event in Σ1∩Σ2, can only be executed if

two automata both execute it simultaneously. Thus, the two automata are “synchronized”on

the common events. For this reason, this operation is also called synchronous composition.

The other events, i.e., those in ({Σ1 \Σ2}∪{Σ2 \Σ1}) are not the subject to such constrain

and can be executed whenever possible. Also note that if Σ1 = Σ2 the parallel composition

reduces to a product.

The parallel composition and the product of automata are more shown in the following

example.
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Figure 2.5: Parallel composition automata and Product automata of (Example 2.2.4)

Example 2.2.4. Consider the following automata G1 and G2 in Figure 2.5, the set of

common events is {α,β}. As in case of G1 ‖ G2, the states of the product are denoted by

pairs. In the case of G1 ‖G2 the state is marked only if it is marked in G1 as well as in G2.

The transitions in G1 ‖G2 can be executed without the participation of G1 and G2 together.

A transition in G1×G2 can be executed only and only if it is a common event in G1 and G2.

Further on,all states in G1 ‖G2 and G1×G2 are reachable from the initial state (y0,x0).

2.3 Supervisory Control of Discrete Event Systems

In this section concepts and results for control of discrete event systems are presented.

It will be discussed in this section the control using complete observations and control us-

ing partial observations. The theory of supervisory control of discrete event systems was

introduced by Ramadge and Wonham [45] for designing controllers so that the controlled

system satisfies certain desired qualitative constraints. Many extensions of the basic super-

visory control problem such as control with partial observations presented by Lin [31]and
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Figure 2.6: The closed-loop of supervisory control

decentralized control have been studied.

2.3.1 Representation of Controlled Discrete Event Systems

In this section we present the concepts of a controlled discrete event system using finite

automata and in a language framework. Control of discrete event systems is based on the

principle of feedback. Therefore, the observation of the system is used by a controller to gen-

erate the input to the system such that the closed-loop system meets control specifications.

Feedback with full observation is illustrated in Figure 2.6. G represents the uncontrolled

system and S is the supervisor (controller). For discrete event systems, supervisory control

refers to design of a controller to satisfy desired specifications. Typically, the control problem

requires constructing a supervisor S for the system G such that the controlled behaviour of

G follows some given specifications. Based on the definition 2.2.2, the language Lm(G) de-

scribes the desirable nonblocking language of the system. L(G) presents the language which

can be generated by the system. Furthermore, the set Σ is partitioned events two classes of

events. The first class is called controllable events (Σc), i.e. events which can be prevented

from occurring. These events can be enabled (allowed to occur) or disabled (prevented from

occurring) in particular instances of time during the system’s evolution. The events in the

second class denote the uncontrollable events (Σuc) which can not be disabled. Enabling and

disabling certain events in a particular state are determined by a control pattern for that
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state.

Definition 2.3.1. (Control Pattern and Set of control Patterns) [6, 52]

Let Σ = Σc∪̇Σuc be an event set with the controllable events Σc and the uncontrollable events

Σuc. A control pattern is a set λ with Σuc ⊆ λ⊆ Σ. The set of all control patterns is given

by

Λ := {λ|Σuc ⊆ λ⊆ Σ} ⊆ 2Σ

The control pattern of the discrete event system is described as follows. The controller

S is controlling the transition function of G by enabling or disabling the controllable events

of G.

Definition 2.3.2. (Supervisor S)

Formally, a supervisor S is a function from the language generated L(G) by G to the power

set of Σ.

S : L(G)→ Λ

Where S(s) represents the set of enabled events after the occurrence of a string s ∈ L(G).

Figure 2.6 shows an illustration of the interaction between the supervisor S and the

control system in a feedback loop. Events occurring in the system G are observed by the

supervisor, but the supervisor can only disable the controllable events after any string s ∈

L(G). Therefore the supervisor S is admissible if for all s ∈ L(G)

{Σ∩λ(f(x0, s))} ⊆ S(s)

where Λ(f(x0, s)) represents the control pattern of the supervisor. That means the supervisor

is not capable to disable uncontrollable events based on the definition of control patterns.

So given G and admissible S , the supervisory controller restrict the behavior of the system

G to a desired behavior S/G. It follows that the generated and the marked languages are

the subsets of L(G) and Lm(G) respectively. Note that those languages contain strings

that remain a subject to control in the presence of the controller. Formally, the language
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generated and the language controlled by S, L(S/G) and Lm(S/G) respectively are defined

as follows:

Definition 2.3.3. (Control System) [6]

Let G be a system, let S be a supervisor. The language generated by S/G is defined as

1. ε ∈ L(S/G)

2. sσ ∈ L(S/G)⇔ s ∈ L(S/G)

∧ sσ ∈ L(G)

∧σ ∈ S(s)

The language marked by S/G, denoted by Lm(S/G) is defined as

Lm(S/G) = L(S/G)∩Lm(G)

The next example illustrates the operation and the concept of supervisory control.

Example 2.3.1. Let G as illustrated in Figure 2.7. Also define the uncontrollable event set

Σuc = {β1,β2} , and the controllable event set Σc = {α1,α2}. Assuming that we don’t want

the system to get to state x = 3. So we design a supervisor which disables the both events

{α1,α2} which bring the system to that state. We define a supervisor S for the control system

G for strings s ∈ L(G) as

S(s) :=

 {β1,β2} if s= {α1α2,α2α1},

{α1,α2} otherwise

That is if s = α1 and σ = α2 then we have sσ = α1α2 ∈ L(G), but sσ 6∈ L(S/G). This

means S disables the event α2 after α1 has occurred, and similarly disables α1 after α2. The

resulting closed-loop behavior S/G is shown in Figure 2.7.

2.3.2 Controllability

In the previous section, the concept of the control system and supervisors were in-

troduced. The main objective of the supervisor is to modify the open-loop behavior of the
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Figure 2.7: The control system G and the supervisor S/G

system so that it satisfies some specified constraints. By describing the system with the

generator G and the language generated L(G) and specifying a supervisor by an automaton

S , the desired system properties are formulated by L(S/G) which is determined by coupling

S and G together. L(S/G) is defined as the subset of possible strings which can be executed

by the supervisor. The language L(S/G) represents the desired behavior of the system. The

desired behavior of the system can be realized using the controllability theory.

The concept of controllability is close to the concept of feedback control. This concept

plays an important role in theoretical and practical aspects of modern control theory. This

concept can be formulated formally as follows.

Definition 2.3.4. (Controllability) [45]

Consider a discrete event system G= (X,Σ,f,Γ,x0,Xm) where Σuc ⊆ Σ is the set of uncon-

trollable events. Let L(G) =L(G) be a prefix-closed language. Let K and L(G) be languages

over an event set Σ. The language K is said to be controllable w.r.t,L(G) and the set of

uncontrollable events Σuc if

KΣuc∩L(G)⊆K

In a more intuitive way, the controllability condition can be written as follows. K is

controllable w.r.t L(G) if an event of uncontrollable events occurs, then the path along which

that event occurred must remain in K. That is
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for all s ∈K, for all σ ∈ Σuc, sσ ∈ L(G)⇒ sσ ∈K

In [6, 45] it has been shown that if the desirable behavior of a system which is described by

the language K, where K is controllable w.r.t L(G) and prefix closed, then there exists a

supervisor S such that L(S/G) =K. In addition to the controllability property of a control

system, the nonblocking behavior is also meaningful for the control system.

Definition 2.3.5. (Nonblocking Control System) [6]

Given a plant G and Lm(G),L(G). Let K ⊆ Lm(G), be the system’s desired behavior lan-

guage. The supervisor S is nonblocking if

Lm(S/G) = L(S/G)

Otherwise, if L(S/G) 6= Lm(S/G) then we say S is blocking.

As we noted in the previous sections, the supervisory control problem refers to design a

supervisor that achieves desired specifications. These specifications require that the system

satisfy a certain progress property, which is equivalent to the system being nonblocking.

Therefore, the supervisor must be fair in a way that it never blocks the system with respect

to any of the specification languages [10]. The following theorem presents the Nonblock-

ing Controllability Theorem, which is an extended version of the controllability theorem to

nonblocking supervisors.

Theorem 2.3.1. (Nonblocking Controllability Theorem) [45]

Consider a discrete event system G = (X,Σ,f,Γ,x0,Xm) where Σuc ⊆ Σ is the set of un-

controllable events. Let the language K ⊆ Lm(G), where K 6= ∅. There exists a nonblocking

supervisor S : L(G)→ Λ such that

Lm(S/G) =K

L(S/G) =K

if and only if the tow following conditions hold:

1. Controllability: K is controllable with respect to L(G).
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2. K =K ∩Lm(G).

A proof of Theorem 2.3.1 is given in [45]. Clearly that the above theorem is applicable

if both conditions are satisfied. If the language K is not controllable with respect to L(G),

then we need to investigate the sublanguage of K to achieve controllability. The class of a

controllable sublanagauges of a given language K are defined as follows.

Definition 2.3.6. Supremal Controllable Sublanguage

Let K =K ⊆L(G) be a prefix-closed language and Σuc⊆Σ be the set of uncontrollable events.

The class of controllable sublanguage of K is

Cin(K) = {L⊆K : LΣuc∩L(G)⊆ L}

The set Cin(K) is closed under an arbitrary union. There exist a unique largest lan-

guage in Cin(K) and it is given by:

K↑c = ⋃
L∈Cin(K)

L

Where K↑c is controllable and a subset of K. K↑c is called the supremal controllable sub-

language of K.

Definition 2.3.7. Infimal Closed and Controllable Superlanguage

Let K =K ⊆ Σ∗ be a prefix-closed language and Σuc ⊆ Σ be the set of uncontrollable events.

The class of controllable sublanguage of K is

CCout(K) = {L⊆ Σ∗ :K ⊆ L⊆ L(G)∧L= L∧LΣuc∩L(G)⊆ L}

The set CCout(K) is closed under an arbitrary intersection. There exist a unique

smallest language in CCout(K) and it is given by:

K↓c = ⋂
L∈CCout(K)

L

Where K↓c is controllable and a subset of K. K↓c is called the Infimal closed and controllable

superlanguage of K. The main focus of the previous sections was the understanding of
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controllability in the framework of discrete event system. We have presented the control

of discrete event systems based on the principle of feedback. The supervisor observes all

the system events and used to generate the input of the system. So the closed-loop system

meets control specifications. Now in case if the supervisor does not observe all events that the

system executes. The next section describes the control system under a partial observation

of the system.

2.4 Control Under Partial Observation

We consider the situation, when the supervisor is not able to observe the occurrences

of all events. In this case the existence of the supervisor is no longer guaranteed by con-

trollability alone. Therefore, the concept of observability was introduced in [31]. In such a

situation the event set Σ is partitioned into tow disjoint subsets

Σ = Σo∪̇Σuo

Where

• Σo is the set of events that can be seen by the supervisor (observable events).

• Σuo is the set of events(unobservable events) that the supervisor can not see.

With the set of observable events Σo a projection P is associated such that

P : Σ∗→ Σ∗o

Due to the presence of the projection P in the feedback loop of the controlled system under

partial observation, the feedback loop of supervisory control in this case is shown in Fig-

ure 2.8. As it is depicted in Figure 2.8, the supervisor produces the control on the bases of

the projection P of the string s. If there exist (s, s̀) ∈ L(G) such that P (s) = P (s̀), then the

supervisor will execute the same control action, SP (P (s)). Therefore, the definition of the

partial-observation supervisor is given as the function

SP : P (L(G))→ 2Σ
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Figure 2.8: The closed-loop of supervisory control under partial observation.

Where SP is the supervisor. The supervisor can execute a controllable event only after the

occurrence of an observable event. Furthermore, the language generated by the supervisor

L(SP /G) and language marked Lm(SP /G) are defined in the same way as L(S/G) and

Lm(S/G).

2.4.1 Observability

In the previous section we presented the case of the supervisor being not able to

observe all events generated by the system. The fact that some of the events might not be

observable to the supervisor has to be taken into account while designing the supervisor.

Given the language K ⊆L(G) describing the desired behavior of the controlled system, does

there exist a supervisor SP such that L(SP /G) = K? The existence of such a supervisor is

closely related to the concept of observability [31].

Definition 2.4.1. Observability [31]

Let K ⊆ L(G), and Σo ⊆ Σ be the set of observable events with P : Σ∗→ Σ∗o be the corre-

sponding natural projection. K is said to be observable with respect to L(G) and P if

(∀s, s̀ ∈ Σ∗)P (s) = P (s̀)⇒ (∀σ ∈ Σ)(sσ ∈K ∧ s̀ ∈K ∧ s̀σ ∈ L(G)⇒ s̀σ ∈K)

Intuitively, observability requires that two strings look the same, they must be consis-

tent in control action [31]. In other words, the language K is observable if the projection
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Figure 2.9: Observability Concept

P has to retain sufficient information for a supervisor to decide whether after the enabling

or disabling of a particular event the produced string is in K. Figure 2.9 shows a graphical

representation of the two strings look the same to the supervisor, because they have the

same projection. Therefore the supervisor cannot decide to enable σ or to disable it. In this

case the observability theorem is used to investigate if the system contains such situations

or not. As is mentioned the supervisor Sp exists if and only if the language K is controllable

and observable. This leads to the controllability and observability theorem presented in [31].

Theorem 2.4.1. (Controllability and Observability Theorem) [31]

Consider G with controllable event set Σc and observable event set Σo. Let a language

K ⊆ Lm(G), where K 6= ∅. There exists a nonblocking P-supervisor Sp for G such that

Lm(Sp/G) =K

L(Sp/G) =K

If and only if the following three conditions are satisfied

1. K is controllable with respect to L(G) and Σuc.

2. K is observable with respect to L(G) and P .

3. K is Lm(G)−closed.

A proof of the theory is given in [31].
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The notion of controllability and observability theory plays an important role in the

framework of the discrete event system. However, it is well known that the natural projection

of a discrete event system might create more complexity in the term of the computation.

In hierarchical control of discrete-event systems [12, 13, 26] the concept of the observer in-

troduced, where it was shown to be very important by ensuring the preservation of the

nonblocking property from a high level control synthesis to its low level implementation. A

detailed discerption of the way to construct an observer automaton is given in [6].

Example 2.4.1. Let G and K as depicted in Figure 2.10. Let the controllable event set

Σc = {α1,α2}, and the observable event set Σo = {β1,α2}. Is the language K controllable with

respect to L(G) and Σuc? Is K observable with respect to L(G) and P? The uncontrollable

events should not take the plant G outside the language of K. We see here clearly that

controllability for K depends on the set {α1,α2} which are controllable. Therefore, K is

controllable with respect to L(G) and a set of uncontrollable events Σuc.

To test the observability let construct an observer as follows: In K, we cannot distin-

guish between state (1) and (2) based on the unobservable events. When β1 occurs, we know

we are at state (4). Afterwards, when α2 occurs, then we do not know in which state of the

states (1,2,3,5). If β1 occurs then we will be in either in state (4) or state (6). Same if α2

occurs we are back to one of the states (1,2,3,5). Now we compare the conflicting states in

G and check whether there is any mismatch between in disabling and enabling controllable

events. We see that at states (2,4),(1,4),(1,6),(3,4) and (3,6) the controllable events are

disabled by K and enabled by G, and we can conclude that K is observable.

In case that the language K does not satisfy the observability condition there is again

the possibility to modify K such the sublanguage of K achieves observability. The class of

observable sublanagauges of a given language K are defined as follows.

Definition 2.4.2. The Infimal Observable and Closed Superlanguage

Let K ⊆L(G) be a prefix-closed language and Σuo ⊆Σ be a set of unobservable events. The

class of observable sublanguage of K is
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Figure 2.10: Automaton of G, K and the observer of K
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COout(K) = {L⊆ L(G) :K ⊆ L∧L= L∧ L is observable}

The set COout(K) is closed under an arbitrary intersection. There exist a unique smallest

language in COout(K) and it is given by:

K↓o = ⋂
L∈COout(K)

L

K↓o is called the infimal observable and closed superlanguage of K.

In [6] properties of observability are introduced. It is shown that the property of

observability is preserved under intersection, but not preserved under union. In view of the

results presented in [6], the supremal observable sublanguage of a given language may not

exist, but a maximal element can always be found. Also in view of the properties of the

observability and controllability, the infimal element exists and defined as follows.

Definition 2.4.3. Infimal Closed, Controllable and Observable Superlanguage

Let K ⊆L(G) be a prefix-closed language and Σuc⊆Σ be the set of uncontrollable events. Let

Σuo ⊆ Σ be the set of unobservable events. The class of closed, controllable and observable

superlanguage of K is

CCOout(K) = {L⊆ L(G) :K ⊆ L∧L= L∧ L is controllable and observable}

The set CCOout(K) is closed under an arbitrary intersection. There exist a unique smallest

language in CCOout(K), and it is given by:

K↓c = ⋂
L∈CCout(K)

L

K↓co is called the Infimal closed, controllable and observable superlanguage of K.

As we pointed out earlier that because the lack closure of observability under union,

we cannot find a supremal element. Consequently, the supremal observable and controllable

sublanguage may also not exist. Therefore, a new language property called normality is

presented [6].
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2.4.2 Normality

The property of normality was introduced to solve some supervisory control and

observation problems. The property of normality is closed under arbitrary union, therefore

present a unique solution of basic supervisory control and observation problem.

Definition 2.4.4. A language K ⊆ L(G) is normal with respect to L(G) and natural pro-

jection P if

K = P−1P (K)∩L(G)

The Figure 2.11 shows an illustration of two cases. In one K is not normal and the

other K is normal. Clearly we can see from the Figure 2.11 that K in (a) is not normal

because P−1P (K)∩L(G) is bigger than K, and in (b) P−1P (K)∩L(G) =K.

Theorem 2.4.2. (Normality and Observability) [6]

If K ⊆ L(G) is normal with respect to L(G) and P , then K is observable with respect to

L(G) and P . However, the converse statement is not true.

A proof of the theorem is given in [6].

With the property of normality we present a class of a normal sublanagauges of a given

language K as follows.

Definition 2.4.5. Supremal Normal Sublanguage

Let K ⊆L(G) be a prefix-closed language and Σuo ⊆ Σ be a set of unobservable events. The

class of normal sublanguage of K is

Nin(K) = {L⊆ L(G) :K ⊆ L∧L= L∧ L is normal}

The set Nin(K) is closed under an arbitrary union. There exist a unique largest language in

Nin(K) and it is given by:

K↑N = ⋃
L∈Nin(K)

L

K↑N is called the supremal normal sublanguage of K.
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Figure 2.11: (a)K is not normal and (b) K is normal
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Definition 2.4.6. Supremal controllable and normal sublanguage

Let K ⊆ L(G) be a prefix-closed language, Σuo ⊆ Σ be a set of unobservable events and

Σuc ⊆ Σ be a set of uncontrollable events. The class of controllable and normal sublanguage

of K is

CNin(K) = {L⊆ L(G) :K ⊆ L∧L= L∧ L is controllable and normal}

The set CNin(K) is closed under an arbitrary union. There exist a unique largest language

in CNin(K) and it is given by:

K↑CN = ⋃
L∈CNin(K)

L

K↑CN is called the supremal controllable and normal sublanguage of K.

Both previous definitions lead to an interesting theorem which considers the equivalency

of normality and observability.

Theorem 2.4.3. Equivalence of normality and observability [6]

Assume that Σc ⊆Σo. If K is controllable with respect to L(G) and Σuc and observable with

respect to L(G) and P , then K is normal with respect to L(G) and P .

In other words, if a language is normal and controllable, then it is observable and

controllable under the condition that Σc ⊆ Σo.

The main focus of the previous sections was the understanding of basic control-theoretic

issues such as controllability, observability and normality in the framework of discrete event

systems introduced by Ramadge, Wonham and Lin in [45] [31].
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3 Discrete Event Systems and Opac-

ity
Opacity is a general notion that arises in activities where the users involved wish to

keep their activities secret. In this context, the system behavior is opaque if the evolution of

its string through a set of strings remains opaque to an observer, who is observing activity

in the system. In [33] a new framework to study opacity was proposed. This framework

defines strong opacity, weak opacity, and its negation. Given a general observation mapping

θ, a language is strongly opaque if all strings in the language are confused with some strings

in another language and it is weakly opaque if some strings in the language are confused

with some strings in another language. We say a language is not opaque if it is not weakly

opaque. It is also shown that the three known properties in discrete event systems, namely,

observability, diagnosability, and detectability, can be studied as a special cases of opacity.

In this chapter, we present the opacity in the centralized framework. The centralized

setting presented in this chapter is described as follow. There exists only one agent who

observes the system’s activities through the general observation mapping θ. First, we give

a brief definition of the general mapping θ. Then a discussion about the classification of

opacity followed with the algorithms for checking opacity presented in [33]. Finally, we give

a brief presentation of the properties of opacity. The discussion in this chapter is formal.

As it was noted earlier the theoretical developments in this dissertation are mainly

language-based and automata-based. The system to be monitored or to be controlled is

modeled as an automaton (G)

G= (Σ,X,δ,x0,Xm) ,

3.1 General Observation Mapping

To investigate opacity, we consider a general observation mapping as in [33]:
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Figure 3.1: Framework for centralized opacity

θ : Σ∗ −→ Σ∗.

θ is interpreted as follows: If a string of events s occurs in the system, an agent or controller

will see θ(s). The natural projection P : Σ∗−→Σ∗o is a special case of observation mapping. In

general, however, θ can be any observation mapping, not restricted to the natural projection.

An observation mapping θ can be extended from strings to languages as follows.

For a language L⊆ Σ∗, its mapping under θ is defined as,

θ(L) = {t ∈ Σ∗ : (∃s ∈ L)t= θ(s)} .

For a language J ⊆ Σ∗ , its inverse mapping is defined as

θ−1(J) = {t ∈ Σ∗ : θ(t) ∈ J} .

The considered framework based on one user observation is described by Figure 3.1.

3.2 Definitions of Opacity

The strong opacity requires that the system’s secret behavior is opaque to an external

observer who is observing the events that occur in the system through a general observation

mapping θ. No opacity requires that the system’s behavior should not be opaque to an

observer. Opacity is defined in [33] as follows.
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Figure 3.2: Illustration of the strong opacity

Definition 3.2.1. Strong Opacity

Given two languages L,K ⊆ L(G), L is strongly opaque with respect to K and θ if

L⊆ θ−1θ(K).

In other words, L is strongly opaque with respect to K and θ if every string in L is

confused with some strings in K under observation θ. Both L and K are sublanguages of

L(G), describing two properties or conditions of system G. Figure 3.2 presents a graphical

representation of a strong opacity. In (a) L∩K 6= ∅∧θ(L)⊆ θ(K), and (b) presents the case

where L∩K = ∅ but still θ(L)⊆ θ(K).

Definition 3.2.2. Weak Opacity

Given two languages L,K ⊆ L(G), L is weakly opaque with respect to K and θ if

L∩ θ−1θ(K) 6= ∅.

In other words, L is weakly opaque with respect to K and θ if some string in L

is confused with some strings in K under observation θ. Figure 3.3 presents a graphical

representation of the weak opacity with two cases. In case (a) L∩K = ∅ and θ(L)∩θ(K) 6= ∅.

Case (b) shows L∩K 6= ∅ and θ(L)∩ θ(K) 6= ∅.
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Figure 3.3: Illustration of the weak opacity

Definition 3.2.3. No Opacity

Given two languages L,K ⊆ L(G), L is not opaque with respect to K and θ if

L∩ θ−1θ(K) = ∅

.

In other words, L is not opaque with respect to K and θ if it is not weakly opaque

with respect to K and θ, that is, no strings in L are confused with some strings in K under

observation θ. Figure 3.4 presents a graphical representation of a no-opacity. It shows that

L∩K = ∅ and θ(L)∩ θ(K) = ∅.

3.2.1 Algorithms for Checking Opacity

To check opacity, two theorems are given in [33]. The first theorem says that for any

observation mapping θ and languages L,K ⊆ L(G),

L⊆ θ−1θ(K)⇔ θ(L)⊆ θ(K).

With this theorem, we are able to check the strong opacity by checking whether θ(L)⊆ θ(K).

The second theorem says that for any observation mapping θ and languages L,K ⊆ L(G),

L∩ θ−1θ(K) = ∅⇔ θ(L)∩ θ(K) = ∅.
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Figure 3.4: Illustration of No-opacity

Therefore, checking weak opacity can be done by checking whether θ(L)∩ θ(K) 6= ∅.

With these results, we can investigate the properties of different opacity classifications

and find opaque superlanguages and sublanguages.

3.3 Properties of Opacity

In this section, we investigate the properties of various opacities of discrete event sys-

tems. We consider opacity under union, and opacity under the intersection. We first present

the following two lemmas.

Lemma 3.3.1. For any observation mapping θ and languages Li ⊆ L(G),i = 1,2, · · · , we

have

θ(∩iLi)⊆ ∩iθ(Li)

Proof. For any t ∈ Σ∗,

t ∈ θ(∩iLi)



44
⇔ (∃s)t= θ(s)∧ s ∈ (∩iLi)

⇔ (∃s)t= θ(s)∧ (s ∈ L1∧ s ∈ L2 · · ·)

⇒ ((∃s)t= θ(s)∧ s ∈ L1)∧ ((∃s)t= θ(s)∧ s ∈ L2) · · ·

⇔ t ∈ θ(L1)∩ θ(L2) · · ·

⇔ t ∈ ∩iθ(Li)

Lemma 3.3.2. For any observation mapping θ and languages Li⊆L(G),i= 1,2, · · · we have,

θ(∪iLi) = ∪iθ(Li)

Proof. For any t ∈ Σ∗,

t ∈ θ(∪iLi)

⇔ (∃s)t= θ(s)∧ s ∈ (L1∪L2 · · ·)

⇔ (∃s)t= θ(s)∧ (s ∈ L1∨ s ∈ L2 · · ·)

⇔ ((∃s)t= θ(s)∧ s ∈ L1)∨ ((∃s)t= θ(s)∧ s ∈ L2) · · ·

⇔ t ∈ θ(L1)∪ θ(L2) · · ·

⇔ t ∈ ∪iθ(Li)

Using Lemmas 3.3.1 and 3.3.2, we can derive the following properties for strong

opacity, weak opacity, and no opacity.

Theorem 3.3.1. For any observation mapping θ and languages Li ⊆ L(G),i= 1,2, · · · , and

K ⊆ L(G), if Li is strongly opaque with respect to K, then the intersection ∩iLi is also

strongly opaque with respect to K.

Proof. By the definition, Li is strongly opaque with respect to K means

θ(Li)⊆ θ(K)⇒∩iθ(Li)⊆ θ(K)

From Lemma 3.3.1:

θ(∩iLi)⊆ ∩iθ(Li)

Hence

θ(∩iLi)⊆ θ(K)

that is, ∩iLi is strongly opaque with respect to K.
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Theorem 3.3.2. For any observation mapping θ and languages Li ⊆ L(G),i= 1,2, · · · , and

K ⊆L(G), if Li is strongly opaque with respect to K, the union ∪iLi is also strongly opaque

with respect to K.

Proof. By the definition, Li is strongly opaque with respect to K means

θ(Li)⊆ θ(K)⇒∪iθ(Li)⊆ θ(K)

From Lemma 3.3.2:

θ(∪iLi) = ∪iθ(Li)

Hence

θ(∪iLi)⊆ θ(K)

that is, ∪iLi is strongly opaque with respect to K.

Theorem 3.3.3. For any observation mapping θ and languages L⊆L(G), and Ki⊆L(G),i=

1,2, · · · , if L is strongly opaque with respect to Ki and θ, then L is also strongly opaque with

respect to ∪iKi.

Proof. By the definition, L is strongly opaque with respect to Ki,i= 1,2, · · · means

θ(L)⊆ θ(Ki)⇒ θ(L)⊆ ∪iθ(Ki)

From Lemma 3.3.2:

θ(∪iKi) = ∪iθ(Ki)

Hence

θ(L)⊆ θ(∪iKi)

that is, L is strongly opaque with respect to ∪iKi.

Theorem 3.3.4. For any observation mapping θ and languages Li ⊆ L(G),i= 1,2, · · · , and

K ⊆L(G), if Li is weakly opaque with respect to K and θ, then the union ∪iLi is also weakly

opaque with respect to K.

Proof. By the definition, Li is weakly opaque with respect to K means

θ(Li)∩ θ(K) 6= ∅⇒ ∪i(θ(Li)∩ θ(K)) 6= ∅
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From Lemma 3.3.2:

θ(∪iLi) = ∪iθ(Li)

⇒ θ(∪iLi)∩ θ(K) = (∪iθ(Li))∩ θ(K)

⇒ θ(∪iLi)∩ θ(K) = ∪i(θ(Li)∩ θ(K))

⇒ θ(∪iLi)∩ θ(K) 6= ∅

that is, the union ∪iLi is also weakly opaque with respect to K.

Theorem 3.3.5. For any observation mapping θ and languages Li ⊆L(G), i= 1,2, · · · , and

K ⊆ L(G), if Li is not opaque with respect to K and θ, then the union ∪iLi is also not

opaque with respect to K.

Proof. By the definition, Li is not opaque with respect to K means

θ(Li)∩ θ(K) = ∅⇒ ∪i(θ(Li)∩ θ(K)) = ∅

From Lemma 3.3.2:

θ(∪iLi) = ∪iθ(Li)

⇒ θ(∪iLi)∩ θ(K) = ∪iθ(Li)∩ θ(K)

⇒ θ(∪iLi)∩ θ(K) = ∪i(θ(Li)∩ θ(K))

⇒ θ(∪iLi)∩ θ(K) = ∅

that is, the union ∪iLi is not opaque with respect to K.

Theorem 3.3.6. For any observation mapping θ and languages Li ⊆L(G), i= 1,2, · · · , and

K ⊆ L(G), if Li is not opaque with respect to K and θ, then the intersection ∩iLi is also

not opaque with respect to K.

Proof. By the definition, Li is not opaque with respect to K means

θ(Li)∩ θ(K) = ∅

⇒ ∩i(θ(Li)∩ θ(K)) = ∅

From Lemma 3.3.1:

θ(∩iLi)∩ θ(K)⊆ ∩i(θ(Li)∩ θ(K))

⇒ θ(∩iLi)∩ θ(K) = ∅

that is, ∩iLi is also not opaque with respect to K.
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Figure 3.5: System G and observation mapping θ used in Remarks 3.3.1 and 3.3.2

Generally speaking, opacity is closed under union but may not be closed under in-

tersection. The following remarks provide counter-examples for cases where opacity is not

closed under the intersection.

Remark 3.3.1. For any observation mapping θ and languages L,K1,K2 ⊆L(G), even if L

is strongly opaque with respect to K1 and θ; and L is strongly opaque with respect to K2 and

θ, L might be not strongly opaque with respect to (K1∩K2).

This can be seen from the following example. Consider the system in Figure 3.5, where

Σ = {α,β,µ,σ}. Let θ be the observation mapping as defined in Figure 3.5, where the unob-

servable transitions are replaced by ε.

L= αβ

K1 = αα(β+µ)

K2 = βαµ(β+σ)

Clearly

θ(L) = αβ

θ(K1) = α(β+µ)

θ(K2) = α(β+σ)
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By the definition L is strongly opaque with respect to K1 and θ; and L is strongly

opaque with respect to K2 and θ, because

θ(L)⊆ θ(K1)

θ(L)⊆ θ(K2)

However, L is not strongly opaque with respect to (K1∩K2) and θ because

(K1∩K2) = ∅

⇒ θ(K1∩K2) = ∅

⇒ θ(L) * θ(K1∩K2).

Remark 3.3.2. For any observation mapping θ and languages L1,L2,K ⊆ L(G), even if

both L1 and L2 are weakly opaque with respect to K, (L1∩L2) might be not weakly opaque

with respect to K.

Consider the same system and observation mapping as in Remark 3.3.1. Let

L1 = αβ

L2 = βαµ(β+σ)

K = αα(β+µ)

Clearly

θ(L1) = αβ

θ(L2) = α(β+σ)

θ(K) = α(β+µ)

By the definition, both L1 and L2 are weakly opaque with respect to K and θ, because

θ(L1)∩ θ(K) = {αβ} 6= ∅

θ(L2)∩ θ(K) = {αβ} 6= ∅

However (L1∩L2) is not weakly opaque with respect to K and θ, because

(L1∩L2) = ∅

⇒ θ(L1∩L2) = ∅

⇒ θ(L1∩L2)∩ θ(K) = ∅.
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4 Opaque Superlanguages and Sub-

languages
In the previous chapter we show that opacity is closed under arbitrary union, but may

not be closed under the intersection. Based on these properties, we discuss how to modify

languages to satisfy the strong opacity, weak opacity, and no opacity by investigating the

class of opaque sublanguage and the class of opaque superlanguage. In particular, we would

like to find the unique smallest language as well as the unique largest language that satisfies

the opacity properties. This would allow us to modify the language in order to satisfy opacity

properties with a unique language. In this context, results presented in Chapter 3 are used to

obtain general formulas for computing the opaque superlanguage and opaque sublanguage.

4.1 Preliminaries and Notations

The study of the “largest” and the “smallest” sublanguage of the specification lan-

guages in discrete event systems framework is very important. It is shown in the literature

that the solutions for supervisory control problems are always characterized in terms of the

largest sublanguage or the smallest superlanguage that meets the specifications. However,

we do not just want to find any such language; the empty language, for instance, is always

a solution, though not a very satisfactory one. What we want to find is the largest possible

such language, if such a language exists.

The notion in finding the “largest” or the “smallest” possible objects in some set under

a given ordering is phrased in the term of Zorn’s Lemma. In this chapter we will state first

some of set theory definitions as well as Zorn’s lemma and use it later to prove some results

in opacity control problems.

Definition 4.1.1. A partial ordering on a non-empty set M is a binary relation on M,

denoted ≤, which satisfies following properties:
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• For all m ∈M,m≤m

• if m≤ ḿ and ḿ≤m then m= ḿ

• if m≤ ḿ and ḿ≤ t then m≤ t

Definition 4.1.2. LetM be a non-empty partially ordered set. A non-empty subset R⊆M

is said to be a totally ordered subset with respect to ≤, if

(∀r, t ∈R) r ≤ t or t≤ r

Definition 4.1.3. For any subset R⊆M, an element m ∈M is the upper bound of R, if

(∀r ∈R) r ≤m

A maximal element m of a partially ordered set R is an element which is not below any

element to which it is comparable, that is, for all r ∈ R to which m is comparable, r ≤m.

Equivalently, m is maximal element when the only r ∈ R satisfying m ≤ r is r = m. This

does not mean r ≤m for all r in R since we don’t insist that maximal elements are actually

comparable to every element of R. A partially ordered set could have many incomparable

maximal elements.

A minimal element m of a partially ordered set R is an element which is below any element

to which it is comparable, that is, m ∈ R is a minimal if m≤ r for all r ∈ R to which m is

comparable.

Theorem 4.1.1. (Zorn’s lemma) Let R be a partially ordered set. If every totally ordered

subset of R has an upper bound, then R contains a maximal element.

Zorn’s lemma can be stated in terms of minimal elements: if any totally ordered subset

of a partially ordering set R has a lower bound in R, then R has a minimal element.
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4.2 Opaque Superlanguages and Sublanguages: Exis-

tence and Properties

If a language is not opaque with respect to another language, then we must modify one

of the two languages to satisfy opacity. There are several ways to do modifications. We can

reduce or shrink a language, that is, consider its sublanguage, or we can enlarge a language,

that is, consider its superlanguage. We will consider all possibilities for strong opacity, weak

opacity, and no opacity.

4.2.1 Strong opacity

In this section we discuss how to modify languages in order to satisfy strong opacity. If

a language L⊆L(G) is not strongly opaque with respect to K ⊆L(G), that is, θ(L) * θ(K),

then we may want to modify L or K in order to satisfy strong opacity. There are two ways

to do the modification: (1) Reduce L and (2) Enlarge K.

To reduce L, we want to find the largest sublanguage of L that is strongly opaque with

respect to K. Using Theorem 3.3.2, we can show that this sublanguage exists and is unique.

To see this, let us define the set of sublanguages of L that are strongly opaque with respect

to K as

SsubK (L) = {Li ⊆ L(G) : Li ⊆ L∧ θ(Li)⊆ θ(K)}

By Theorem 3.3.2, if

Li ∈ SsubK (L), i= 1,2, · · ·

then ⋃
iLi ∈ SsubK (L)

Therefore, the supremal element of SsubK (L) exists and is given by

supSsubK (L) = ⋃
Li∈Ssub

K (L)Li

To enlarge K, we want to find the smallest superlanguage of K, so that L is strongly
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opaque with respect to the superlanguage. Using Remark 3.3.1, we can show that this

superlanguage might not be unique. To see this, let us define the set of superlanguages of

K such that L is strongly opaque with respect to them as

SsuperL (K) = {Ki ⊆ L(G) :K ⊆Ki∧ θ(L)⊆ θ(Ki)}

By Remark 3.3.1.

K1 ∈ SsuperL (K)∧K2 ∈ SsuperL (K)

; (K1∩K2) ∈ SsuperL (K)

Therefore it is not difficult to show that there may not exist a unique smallest language in

SsuperL (K). In other words, the infimal element infSsuperL (K) may not exist. However, we can

always find some minimal elements in SsuperL (K), which will be denoted by minSsuperL (K).

To illustrate this we use the following Example

Example 4.2.1. Consider the system in Figure 4.1, where Σ = {α,β,γ}. Let the observa-

tion mapping θ be defined as illustrated in the figure, where the unobservable transitions are

replaced by ε. Let

L= αβαγ

K = αγ

Clearly

θ(L) = αβγ

θ(K) = α

L is not strongly opaque with respect to K, because

θ(L) * θ(K)

There are two ways to enlarge K:

K1 = αγ+αβαγ

K2 = αγ+αβγβ

Clearly

θ(K1) = θ(K2) = α+αβγ

L is strongly opaque with respect to K1 and K2, because

θ(L)⊆ θ(K1) = θ(K2)
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Figure 4.1: System G and observation mapping θ used in Example 4.2.1

Thus, it is not difficult to see that both K1 and K2 are minimal elements in SsuperL (K). That

is:

K1 =minSsuperL (K)

K2 =minSsuperL (K)

It is also not difficult to see that the infimal element infSsuperL (K) does not exist. In partic-

ular,

θ(K1∩K2) = α+αβ

⇒ θ(L) * θ(K1∩K2)

⇒K1∩K2 6∈ SsuperL (K)

4.2.2 Weak opacity

If L⊆L(G) is not weakly opaque with respect to K ⊆L(G), that is, θ(L)∩θ(K) = ∅,

then we may want to enlarge L or K in order to satisfy weak opacity. Since L and K are

symmetric, we discuss only how to enlarge L. Denote the set of superlanguages of L that

are weakly opaque with respect to K as

W super
K (L) = {Li ⊆ L(G) : L⊆ Li∧ θ(Li)∩ θ(K) 6= ∅}
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By Remark 3.3.2.

L1 ∈W super
K (L)∧L2 ∈W super

K (L)

; (L1∩L2) ∈W super
K (L)

Therefore, it is not difficult to show that there may not exist a unique smallest language

in W super
K (L). In other words, the infimal element infW super

K (L) may not exist. How-

ever, we can always find some minimal elements in W super
K (L), which will be denoted by

minW super
K (L).

Again, we illustrate this using the following Example

Example 4.2.2. Consider the system in Figure 4.2, where Σ = {α,β,γ,σ}. Let the obser-

vation mapping θ be defined as illustrated in the figure, where the unobservable transitions

are replaced by ε. Let

K = βαβγ

L= ασβσ

Clearly

θ(K) = αβγ

θ(L) = αβσ

K is not weakly opaque with respect to L because

θ(K)∩ θ(L) = ∅

There are two ways to enlarge L:

L1 = ασβσ+ασβαγ

L2 = ασβσ+ασβγ

Clearly

θ(L1) = θ(L2) = αβσ+αβγ

K is weakly opaque with respect to L1 and L2, because

θ(L1)∩ θ(K) = θ(L2)∩ θ(K) 6= ∅

It is not difficult to see that both L1 and L2 are minimal elements in W super
K (L):

L1 =minW super
K (L)

L2 =minW super
K (L)
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Figure 4.2: System G and observation mapping θ used in Example 4.2.2

It is also not difficult to see that the infimal element infW super
K (L) does not exist. In par-

ticular,

θ(L1∩L2) = αβσ

⇒ θ(L1∩L2)∩ θ(K) = ∅

⇒ L1∩L2 6∈W super
K (L)

4.2.3 No opacity

For L,K ⊆ L(G), L is not opaque with respect to θ and K if θ(L)∩ θ(K) = ∅. If this

is not true, that is θ(L)∩ θ(K) 6= ∅, then we may want to shrink L or K in order to satisfy

no opacity. Since L and K are symmetric, we discuss only how to shrink L.

To shrink L, we want to find the largest sublanguage of L that is not opaque with

respect to K. By Theorem 3.3.5, we can show that this sublanguage exists and is unique.

To see this, let us define the set of sublanguage of L that is not opaque with respect to K as

Nsub
K (L) = {Li ⊆ L(G) : Li ⊆ L∧ θ(Li)∩ θ(K) = ∅}

By Theorem 3.3.5, if

Li ∈Nsub
K (L), i= 1,2, · · ·

then ⋃
iLi ∈Nsub

K (L)
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Therefore, the supremal element of Nsub

K (L) exists and is given by

supNsub
K (L) = ⋃

Li∈Nsub
K (L)Li

4.3 Formulas for Calculating Opaque Superlanguages

and Sublanguages

In this section, we will derive formulas for (1) supremal strong opaque sublanguages,

(2) minimal strong opaque superlanguages, (3) minimal weak opaque superlanguages, and

(4) supremal not opaque sublanguages. These formulas can be used to calculate various

opaque superlanguages and sublanguages so that system behaviors can be properly modified

to satisfy opacity properties.

4.3.1 Strong Opacity

Supremal strong opaque sublanguage supSsubK (L)

As discussed in the previous section, the supremal strong opaque sublanguages supSsubK (L)

is given as the union of all sublanguages Li that are strong opaque with respect to K. To

actually calculate supSsubK (L), we will derive a formula for it. Since a language L⊆ L(G) is

not strongly opaque with respect to K ⊆L(G) , that is, θ(L) 6⊆ θ(K), then θ(L)−θ(K) 6= ∅.

Intuitively θ(L)− θ(K) are bad strings and θ−1(θ(L)− θ(K)) are the strings that need to

be removed from L in order to get the largest strong opaque sublanguage of L. Thus, the

formula for supSsubK (L) is presented in the following theorem.

Theorem 4.3.1.

supSsubK (L) = L− θ−1 (θ(L)− θ(K))

Proof. (⊆): First we show that

supSsubK (L)⊆ L− θ−1 (θ(L)− θ(K))
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Since supSsubK (L)⊆ L, we only need to show that

supSsubK (L)∩ θ−1 (θ(L)− θ(K)) = ∅

Assume the contrary

supSsubK (L)∩ θ−1 (θ(L)− θ(K)) 6= ∅

Then

(∃s ∈ Σ∗)s ∈ θ−1 (θ(L)− θ(K))∧ s ∈ supSsubK (L)

⇒ (∃s ∈ Σ∗)θ(s) ∈ (θ(L)− θ(K))∧ s ∈ supSsubK (L)

⇒ (∃s ∈ Σ∗)θ(s) ∈ θ(L)∧ θ(s) 6∈ θ(K)∧ s ∈ supSsubK (L)

Since supSsubK (L) is strongly opaque, that is, θ(supSsubK (L))⊆ θ(K), we have

θ(s) ∈ θ(supSsubK (L))

⇒ θ(s) ∈ θ(K)

This leads to a contradiction:

θ(s) ∈ θ(K) and θ(s) 6∈ θ(K).

(⊇): Next we show that

supSsubK (L)⊇ L− θ−1 (θ(L)− θ(K))

By the definition of supSsubK (L), we need to show the following.

1. L− θ−1 (θ(L)− θ(K))⊆ L

2. L− θ−1 (θ(L)− θ(K)) is strongly opaque w.r.t K.

Condition 1 is obviously true. To show that condition 2 is also true, we need to prove

θ(L− θ−1 (θ(L)− θ(K)))⊆ θ(K)

This can be done as follows.

s ∈ θ(L− θ−1(θ(L)− θ(K)))

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ (L− θ−1(θ(L)− θ(K))

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L∧ t 6∈ θ−1(θ(L)− θ(K))

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L∧ θ(t) 6∈ (θ(L)− θ(K))
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Figure 4.3: System G and observation mapping θ used in Example 4.3.1

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L∧ (θ(t) 6∈ θ(L)∨ θ(t) ∈ θ(K)

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L∧ θ(t) ∈ θ(K)

Therefore, s ∈ θ(K)

Example 4.3.1. Consider the system in Figure 4.3, where Σ = {α,β,γ,σ,η,δ}. Let the

observation mapping θ be defined as illustrated in the Figure 4.3, where the unobservable

transitions are replaced by ε. Let

L= ασβγδ∗+ηβσγδ∗+ηασγδ∗

K = ασβγδ∗

Clearly

θ(L) = ασγδ∗+βσδ∗

θ(K) = ασγδ∗

L is not strongly opaque with respect to K because

θ(L) * θ(K)

θ(L)− θ(K) = βσδ∗

θ−1(θ(L)− θ(K)) = ηβσγδ∗

Therefore

supSsubK (L) = L−ηβσγδ∗

supSsubK (L) = ασβγδ∗+ηασγδ∗
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Minimal strong opaque superlanguage minSsuperL (K)

In the previous section we show that the infimal strong opaque superlanguage infSsuperL (K)

may not exist, but we can always find some minimal strong opaque superlanguageminSsuperL (K).

To this end, assume that a language L ⊆ L(G) is not strongly opaque with respect to

K ⊆ L(G) , that is, θ(L) * θ(K). We want to enlarge K to satisfy strong opacity. In-

tuitively, strings that look like θ(L)−θ(K) need to be added to K in order to ensure strong

opacity. However, adding θ−1 (θ(L)− θ(K)) to K will enlarge K more than the minimal that

is needed. In order to add only the minimal, for any t ∈ θ(L)−θ(K), pick one s ∈L(G) such

that θ(s) = t and denote it by s= θ̂−1(t). Define

θ̂−1(θ(L)− θ(K)) = ⋃
t∈(θ(L)−θ(K)) θ̂

−1(t)

Using this notation, the formula for minSsuperL (K) is presented in the following theorem.

Theorem 4.3.2.

minSsuperL (K) =K ∪ θ̂−1(θ(L)− θ(K))

Proof. We need to show the following

1. K ∪ θ̂−1(θ(L)− θ(K)) is a superlanguage of K

2. L is strongly opaque with respect to K ∪ θ̂−1(θ(L)− θ(K)).

3. Remove any string in K ∪ θ̂−1(θ(L)− θ(K)) will violate either (1) or (2).

Condition 1 is clearly true. Condition 2 is true because

θ(K ∪ θ̂−1(θ(L)− θ(K)))

= θ(K)∪ (θ(L)− θ(K))

= θ(K)∪ θ(L)

⊇ θ(L)

Condition 3 is also true because (1) if a string in K is removed, then the resulting language
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is not a superlanguage of K, and (2) if a string in θ̂−1(θ(L)−θ(K)) is removed, then strong

opacity is violated. To see (2), suppose s1 = θ̂−1(t1) where t1 ∈ (θ(L)−θ(K) is removed then

θ(K ∪ θ̂−1(θ(L)− θ(K))−{s1})

= θ(K ∪ θ̂−1(θ(L)− θ(K)))−{t1}

= θ(K)∪ (θ(L)− θ(K))−{t1}

= θ(K)∪ θ(L)−{t1}

Since t1 ∈ (θ(L)− θ(K))

θ(K)∪ θ(L)−{t1}+ θ(L),

that is, strong opacity is violated

Example 4.3.2. Consider the system in Figure 4.1

L= αβαγ

K = αγ

Clearly

θ(L) = αβγ

θ(K) = α

(θ(L)− θ(K)) = αβγ

Pick θ̂−1(αβγ) = αβγβ, then

θ̂−1(θ(L)− θ(K)) = αβγβ

Therefore,

minSsuperL (K) =K ∪ θ̂−1(θ(L)− θ(K))

= αγ+αβγβ.

Another choice is θ̂−1(αβγ) = αβαγ. For this choice,

minSsuperL (K) =K ∪ θ̂−1(θ(L)− θ(K))

= αγ+αβαγ.
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4.3.2 Weak Opacity

Minimal weak opaque superlanguage minW super
K (L)

We know that the infimal weak opaque superlanguage infW super
K (L) may not exist,

but we can always find some minimal weak opaque superlanguage minW super
K (L). To this

end, if θ(L)∩ θ(K) = ∅, we will enlarge L, so that θ(L)∩ θ(K) 6= ∅. This can be done by

adding any string in θ−1θ(K). Thus, the formula for minW super
K (L) is presented in the fol-

lowing theorem.

Theorem 4.3.3. If θ(L)∩ θ(K) = ∅, then

minW super
K (L) = L∪{s},

where s is any string such that s ∈ θ−1θ(K).

Proof. To prove the theorem, we need to show the following

1. L∪{s} is a superlanguage of L

2. L∪{s} is weakly opaque with respect to K.

3. Remove any string in L∪{s} will violate either (1) or (2).

Condition 1 is clearly true. Condition 2 is true because

θ(L∪{s})∩ θ(K)

= (θ(L)∪{θ(s)})∩ θ(K)

= (θ(L)∩ θ(K))∪ ({θ(s)}∩ θ(K))

= {θ(s)}∩ θ(K)

= {θ(s)} 6= ∅

Condition 3 is also true because (1) if a string in L is removed, then the resulting language is

not a superlanguage of L, and (2) if s is removed, then the weak opacity is violated, because

θ(L)∩ θ(K) = ∅
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Example 4.3.3. Consider the system in Figure 4.2. Let

K = βαβγ+ασβγ

L= ασβσ

Clearly

θ(K) = αβγ

θ(L) = αβσ

θ(L)∩ θ(K) = ∅

Let us enlarge L by picking s= βαβγ ∈ θ−1θ(K). Therefore,

minW super
K (L) = L∪{s}= ασβσ+βαβγ

4.3.3 No Opacity

Supremal not opaque sublanguage supNsub
K (L)

To derive a formula for the supremal not opaque sublanguages supNsub
K (L), we inves-

tigate how to shrink L. Intuitively, θ(L)∩ θ(K) are bad strings and θ−1(θ(L)∩ θ(K)) are

the strings that wil be observed as θ(L)∩ θ(K). Therefore, they have to be removed from

L. Thus, the formula for supNsub
K (L) is presented in the following theorem.

Theorem 4.3.4.

supNsub
K (L) = L− θ−1 (θ(L)∩ θ(K))

Proof. (⊆): First we show that

supNsub
K (L)⊆ L− θ−1 (θ(L)∩ θ(K))

Since supNsub
K (L)⊆ L, we only need to show that

supNsub
K (L)∩ θ−1 (θ(L)∩ θ(K)) = ∅

Assume the contrary. Then
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(∃s ∈ Σ∗)s ∈ θ−1 (θ(L)∩ θ(K))∧ s ∈ supNsub

K (L)

⇒ (∃s ∈ Σ∗)θ(s) ∈ (θ(L)∩ θ(K))∧ θ(s) ∈ θ(supNsub
K (L))

⇒ θ(L)∩ θ(K)∩ θ(supNsub
K (L)) 6= ∅

⇒ θ(K)∩ θ(supNsub
K (L)) 6= ∅

This contradicts the fact that supNsub
K (L) is not opaque with respect to K.

(⊇): Next we show that

supNsub
K (L)⊇ L− θ−1 (θ(L)∩ θ(K))

This requires us to prove the following

1. L− θ−1 (θ(L)∩ θ(K))⊆ L

2. L− θ−1 (θ(L)∩ θ(K)) is not opaque w.r.t K.

Condition 1 is obviously true. To prove that condition 2 is also true, we need to prove

θ(L− θ−1 (θ(L)∩ θ(K)))∩ θ(K) = ∅

This can be done as follows. Assume the contrary. Then there exist s ∈ Σ∗,

s ∈ θ(L− θ−1 (θ(L)∩ θ(K)))∧ s ∈ θ(K)

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ (L− θ−1 (θ(L)∩ θ(K))∧ s ∈ θ(K)

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L∧ t 6∈ θ−1 (θ(L)∩ θ(K))∧ s ∈ θ(K)

⇒ (∃t ∈ Σ∗)θ(t) = s∧ θ(t) ∈ θ(L)∧ θ(t) 6∈ (θ(L)∩ θ(K))∧ s ∈ θ(K)

⇒ (∃t ∈ Σ∗)θ(t) = s∧ s ∈ θ(L)∧ s 6∈ (θ(L)∩ θ(K))∧ s ∈ θ(K)

This leads to a contradiction:

(s ∈ θ(L)∧ s 6∈ (θ(L)∩ θ(K))∧ s ∈ θ(K))

Example 4.3.4. Consider the system in Figure 4.3.

L= ασβγδ∗+ηβσγδ∗+ηασγδ∗

K = ασβγδ∗
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Clearly

θ(L) = ασγδ∗+βσδ∗

θ(K) = ασγδ∗

(θ(L)∩ θ(K)) = ασγδ∗

θ−1(θ(L)∩ θ(K)) = ασβγδ∗+ηασγδ∗

Therefore,

supNsub
K (L) = L− θ−1 (θ(L)∩ θ(K))

= ηβσγδ∗.
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5 Opacity of Discrete Event Systems

in a Decentralized Framework
Investigating opacity in the decentralized structure lays the foundation to solve impor-

tant problems in advanced networking technologies. These problems are related to security

and privacy of computer systems, communication protocols, and distributed systems that

are used in a decentralized manner by several users (observers) located at different nodes.

Each has partial information about the system evolution.

This chapter presents an extended version of the formulas presented in the pervious

chapter. We present formulas for calculating the sublanguages and superlanguages in a

decentralized framework. Our investigation is based on the approach presented in [42]. We

consider a system observed by many agents, who observe the system behaviour using their

own observation mapping. We consider the system described in Figure 5.1. The agents do

not communicate each other and no coordination between them exists.

Figure 5.1: Framework of the decentralized opacity
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5.1 Definitions of Decentralized Opacity

Through the observation mapping set Θ = {θ1, · · · , θn} every agent can only com-

municate with G, so no communication or any kind of coordination exists between agents.

With this configuration the definitions of the decentralized opacity are extended from the

centralized opacity as follows.

Definition 5.1.1. (Decentralized strong opacity)

Given two languages L,K ⊆ L(G), L is strongly decentralized opaque with respect to K and

Θ if

(∀j ∈ J)L⊆ θ−1
j θj(K).

Definition 5.1.2. (Decentralized weak opacity)

Given two languages L,K ⊆L(G), L is weakly decentralized opaque with respect to K and Θ

if

(∀j ∈ J)L∩ θ−1
j θj(K) 6= ∅.

Definition 5.1.3. (Decentralized no opacity)

Given two languages L,K ⊆L(G), L is not decentralized opaque with respect to K and Θ if

(∃j ∈ J)L∩ θ−1
j θj(K) = ∅.

Based on the above definitions, we present the following algorithms to check decentral-

ized strong opacity and decentralized weak opacity.

5.2 Checking Decentralized Opacity

Similarly to checking the centralized opacity, decentralized opacity can be also checked

using Theorems given in the Section 3.2.1. In order to check decentralized opacity, we need

to check opacity for each agent j ∈ J where J = {1,2, · · · ,n}. This can be done as follow:

For the observation mapping set Θ = {θ1, · · · , θn} and languages L,K ⊆ L(G)

(∀j ∈ J)L⊆ θ−1
j θj(K).
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⇔ (∀j ∈ J)θj(L)⊆ θj(K)

With this Theorem, is it possible to check the strong opacity by checking ∀j ∈ J whether

θj(L)⊆ θj(K). Similarly, for any observation mapping Θ = {θ1, · · · , θn} and languages L,K ⊆

L(G),

(∀j ∈ J)L∩ θ−1
j θj(K) = ∅

⇔ (∀j ∈ J)θj(L)∩ θj(K) = ∅.

Therefore, checking weak opacity can be done by checking ∀j ∈ J whether θj(L)∩θj(K) 6= ∅.

It follows that checking no opacity can be done by checking ∀j ∈ J whether θj(L)∩θj(K) = ∅.

With these results, we can investigate the properties of opacity in the decentralized

framwork and find decentralized opaque superlanguages and sublanguages.

5.3 Decentralized Opaque Superlanguages and Sublan-

guages

The goal of this section is to present the definitions of superlanguages and sublan-

guages in the decentralized framework. Similar to centralized opacity the modifications of

the languages in the decentralized framework will be considered based on the properties

of decentralized opacity and the observation mapping set Θ. The properties of decentral-

ized opacity are similar to the properties of centralized opacity. Essentially, if we study the

opacity for each agent, then we can derive the following corollary from Theorem 3.3.1:

Corollary 5.3.1. For any observation mapping set Θ = {θ1, · · · , θn} and languages Li ⊆

L(G),i= 1,2, · · · , and K ⊆L(G), if (∀j ∈ J)Li is strongly opaque with respect to K, then the

intersection ∩iLi is also strongly opaque with respect to K.

Similarly, from Theorem 3.3.2, Theorem 3.3.3, Theorem 3.3.4, Theorem 3.3.5, and

Theorem 3.3.6 we have the following corollaries respectively:
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Corollary 5.3.2. For any observation mapping Θ = {θ1, · · · , θn} and languages Li⊆L(G),i=

1,2, · · · , and K ⊆ L(G), if (∀j ∈ J)Li is strongly opaque with respect to K, the union ∪iLi
is also strongly opaque with respect to K.

Corollary 5.3.3. For any observation mapping Θ = {θ1, · · · , θn} and languages L ⊆ L(G),

and Ki ⊆ L(G),i= 1,2, · · · , if L is strongly opaque with respect to (∀j ∈ J)Ki and θ, then L

is also strongly opaque with respect to ∪iKi.

Corollary 5.3.4. For any observation mapping Θ = {θ1, · · · , θn} and languages Li⊆L(G),i=

1,2, · · · , and K ⊆ L(G), if (∀j ∈ J)Li is weakly opaque with respect to K and θ, then the

union ∪iLi is also weakly opaque with respect to K.

Corollary 5.3.5. For any observation mapping Θ = {θ1, · · · , θn} and languages Li⊆L(G), i=

1,2, · · · , and K ⊆ L(G), if (∀j ∈ J)Li is not opaque with respect to K and Θ = {θ1, · · · , θn},

then the union ∪iLi is also not opaque with respect to K.

Corollary 5.3.6. For any observation mapping θ and languages Li ⊆L(G), i= 1,2, · · · , and

K ⊆ L(G), if (∀j ∈ J)Li is not opaque with respect to K and Θ = {θ1, · · · , θn}, then the

intersection ∩iLi is also not opaque with respect to K.

Clearly from the above corollaries we conclude that decentralized opacity is also closed

under union, but may not be closed under the intersection.

With these notations, we define the decentralized opaque suprelanguages and sublan-

guages based on the various sets of superlanguages and sublanguages presented in Chapter 4.

Strong opacity

For any observation mapping Θ = {θ1, · · · , θn} and languages L,K ⊆L(G), if L⊆L(G)

is not decentralized strongly opaque with respect to K ⊆ L(G), that is, (∀j ∈ J)θj(L) *

θj(K), then we may want to modify L or K in order to satisfy decentralized strong opacity.

There are two ways to do the modification: (1) Reduce L and (2) Enlarge K.

To reduce L, we want to find the largest sublanguage of L that is decentralized strongly

opaque with respect to K. Using Corollary 5.3.2, we can show that this sublanguage exists
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and is unique. To see this, let us define the set of sublanguages of L that are decentralized

strongly opaque with respect to K as

DSsubK (L) = {Li ⊆ L(G) : Li ⊆ L∧ (∀j ∈ J)θj(Li)⊆ θj(K)}

By Corollary 5.3.2, if

(∀j ∈ J)Li ∈DSsubK (L), i= 1,2, · · ·

then ⋃
iLi ∈DSsubK (L)

Therefore, the decentralized supremal element of DSsubK (L) exists and is given by

supDSsubK (L) = ⋃
Li∈DSsub

K (L)Li

To enlarge K, we want to find the smallest superlanguage of K, so that L is decentral-

ized strongly opaque with respect to the superlanguage. let us define the set of superlan-

guages of K such that L is decentralized strongly opaque with respect to them as

DSsuperL (K) = {Ki ⊆ L(G) :K ⊆Ki∧ (∀j ∈ J)θj(L)⊆ θj(Ki)}

By the results presented in Chapter 4a unique smallest language in DSsuperL (K). How-

ever, we can always find some minimal elements in DSsuperL (K), which will be denoted by

minDSsuperL (K).

Weak opacity

If L ⊆ L(G) is not decentralized weakly opaque with respect to K ⊆ L(G), that

is, (∀j ∈ J)θj(L)∩ θj(K) = ∅, then we may want to enlarge L or K in order to satisfy

decentralized weak opacity. Since L and K are symmetric, we discuss only how to enlarge

L. Denote the set of superlanguages of L that are weakly opaque with respect to K as

DW super
K (L) = {Li ⊆ L(G) : L⊆ Li∧ (∀j ∈ J)θj(Li)∩ θj(K) 6= ∅}

Similar to DSsuperL (K) the unique smallest language in DW super
K (L) may not exist. In other

words, the infimal element infDW super
K (L) may not exist. However, we can always find some

minimal elements in DW super
K (L), which will be denoted by minDW super

K (L).
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No opacity

For L,K ⊆ L(G), L is not decentralized opaque with respect to Θ = {θ1, · · · , θn} and

K if (∀j ∈ J)θj(L)∩ θj(K) = ∅. If this is not true, that is (∃j ∈ J)θj(L)∩ θj(K) 6= ∅, then

we may want to shrink L or K in order to satisfy decentralized no opacity. Since L and K

are symmetric, we discuss only how to shrink L.

To shrink L, we want to find the largest sublanguage of L that is not decentralized

opaque with respect to K and Θ. By Corollary 5.3.5, we can show that this sublanguage

exists and is unique. To see this, let us define the set of sublanguage of L that is not

decentralized opaque with respect to K as

DNsub
K (L) = {Li ⊆ L(G) : Li ⊆ L∧ (∃j ∈ J)θj(Li)∩ θj(K) = ∅}

By Corollary 5.3.5, if

Li ∈DNsub
K (L), i= 1,2, · · ·

then ⋃
iLi ∈DNsub

K (L)

Therefore, the supremal element of DNsub
K (L) exists and is given by

supDNsub
K (L) = ⋃

Li∈DNsub
K (L)Li

With these definitions, we are now ready to compute the formulas for decentralized opaque

superlanguages and sublanguages.

5.4 Formulas and Algorithms for Decentralized Opaque

Superlanguages and Sublanguages

In this section we present formulas for decentralized opaque superlanguages and sub-

languages. Using the following formulas is useful to calculate various opaque superlanguages

and sublanguages in the decentralized framework. We first consider DSsubK (L).

Theorem 5.4.1. For any observation set Θ, languages Li ⊆ L(G), i = 1,2,3, · · · and K ⊆

L(G), if Li is strongly decentralized opaque with respect to K, then the union ⋃
iLi is also
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strongly decentralized opaque with respect to K. Therefore, the supremal element of DSsubK (L)

exist. It is given by

supDSsubK (L) = L∩ (
⋂
j∈J

(θ−1
j θj(K)).

Proof. To prove supDSsubK (L)⊆ L∩ ( ⋂
j∈J

(θ−1
j θj(K)), we need to show

(1) supDSsubK (L)⊆ L.

(2) (∀j ∈ J)supDSsubK (L)⊆ θ−1
j θj(K).

Both are obvious.

To prove supDSsubK (L)⊇ L∩ ( ⋂
j∈J

(θ−1
j θj(K)), we need to show

1. L∩ ( ⋂
j∈J

(θ−1
j θj(K))⊆ L.

2. L∩ ( ⋂
j∈J

(θ−1
j θj(K)) is strongly decentralized opaque with respect to K and Θ.

Condition 1 is obviously true. To prove Condition 2 is true, we need to prove

(∀i ∈ J)θi(L∩
⋂
j∈J

(θ−1
j θj(K)))⊆ θi(K)

This can be done as follows. For all i ∈ J

s ∈ θi(L∩ ( ⋂
j∈J

(θ−1
j θj(K))))

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ (L∩ ( ⋂
j∈J

(θ−1
j θj(K))))

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ L∧ t ∈ ⋂
j∈J

θ−1
j θj(K)

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ L∧ (∀j ∈ J)θj(t) ∈ θj(K)

⇒ s= θi(t) ∈ θi(K).

We next consider DSsuperL (K). Since centralized opacity is a special case of decentral-

ized opacity, it is easy to conclude that the infimal element of DSsuperL (K) may not exist. But

we can always find a minimal element of DSsuperL (K), which is denoted by minDSsuperL (K).

The procedure, however, is more complex for the decentralized case. We define for j ∈ J ,

θ̂−1
j (t) and θ̂−1

j (θj(L)− θj(K)) similarity to θ̂−1(t) and θ̂−1(θ(L)− θ(K)). Let

Bj = θj(L)− θj(K)

Aj = θ̂−1
j (Bj).
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Figure 5.2: Illustration of satisfying minDSsuperL (K)

If we add A1∪ . . .∪An to K, then we can ensure that decentralized strong opacity is satisfied.

However, adding all A1∪ . . .∪An toK may be too much. To show that we consider the system

in Figure 5.2. Let strings s1 ∈A1 and s2 ∈A2 such that θ1(s1) = t1 ∈B1 and θ2(s2) = t2 ∈B2.

Clearly, to ensure decentralized strong opacity with respect to θ1 and θ2 we add A1 and A2

to K. However, we may have the case that θ1(s2) = t1 ∈ B1. That means, adding only s2

can also satisfy decentralized strong opacity with respect to θ1 and θ2. In view of the case

mentioned, if for j 6= i, θj(Ai)∩Bj 6= ∅, then some strings in Aj can be removed without

violating decentralized strong opacity. The following algorithm removes these strings by

updating Aj as follows.

Aj = Aj− θ−1(θj(Ai)∩Bj).

We need to do this for all i 6= J . The formal algorithm to calculate minDSsuperL (K) is given

below.

Algorithm 5.4.1. (To calculate minDSsuperL (K))

Input: L(G),K,L, and Θ = {θ1, θ2, . . . , θn}.
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Output: minDSsuperL (K).

Step 1 For all i= 1,2, . . . ,n, do

Bi = θi(L)− θi(K);

Ai = θ̂−1
i (Bi);

Step 2 For all i= 1,2, . . . ,n do

For all j 6= i, do

Aj = Aj− θ−1
j (θj(Ai)∩Bj);

Step 3 A=
n⋃
i=1

Ai;

Step 4 minDSsuperL (K) =K ∪A.

Theorem 5.4.2. For any observation set Θ, languages K,L ⊆ L(G), the computational

complexity of Algorithm 5.4.1 is minDSsuperL (K).

Proof. We need to show the following

1. K ∪A is a superlanguage of K, that is, K ⊆K ∪A

2. L is decentralized strongly opaque with respect to K ∪A and Θ, that is,

(∀j ∈ J)θj(L)⊆ θj(K ∪A).

3. Removing any string in K ∪A violates either Condition 1 or Condition 2.

Condition 1 is obvious true. Condition 2 can be proved in two steps. First, for all j ∈ J , we

prove

Bj ⊆ θj(A1∪ . . .∪An) = θj(A)

by contradiction. Suppose Bj * θj(A1∪ . . .∪An), that is, there exists t such that

t ∈Bj ∧ t 6∈ θj(A1∪ . . .∪An).

Then there exists u such that θj(u) = t and u is removed from θ̂−1
j (Bj) in Step 2. By Step

2; u is removed from θ̂−1
j (Bj) because θj(u) ∈ θj(Ai) for some i 6= j. this contradicts the

assumption t 6∈ θj(A1∪ . . .∪An). Next, we have

θj(L)⊆ θj(K)∪ θj(L) = θj(K)∪ (θj(L)− θj(K)) = θj(K)∪Bj ⊆ θj(K)∪ θj(A) = θj(K ∪A).
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To prove Condition 3, we note that removing any string from K will violate Condition 1 and

removing any string from A will violate Condition 2 because all strings that can be removed

have already been removed in Step 2.

The following example illustrates Algorithm 1.

Example 5.4.1. Let Σ = {α,β}, L(G) = Σ∗, and Θ = {θ1, θ2, θ3}. Suppose that θ1 can see

only β, θ2 can see only α and θ3 can see γ. Let

L= {αβ,αγ}

K = {βαγγβ}.

Clearly L is not strongly decentralized opaque with respect to K and Θ. Let us calculate

minDSsuperL (K) using Algorithm 5.4.1.

Step 1

B1 = θ1(L)− θ1(K) = {ε,β}−{ββ}= {ε,β}

B2 = θ2(L)− θ2(K) = {α}−{α}= ∅

B3 = θ3(L)− θ3(K) := {ε,γ}−{γγ}= {ε,γ}

A1 = θ̂−1
1 (B1) = {α,γβ}

A2 = θ̂−1
2 (B2) = {∅}

A3 = θ̂−1
3 (B3) = {α,βγ}

Step 2

For i= 1, j = 2

A2 = A2− θ−1
2 (θ2(A1)∩B2) = ∅

For i= 1, j = 3

A3 = A3− θ−1
3 (θ3(A1)∩B3) = {α}

For i= 2, j = 1

A1 = A1− θ−1
1 (θ1(A2)∩B1) = {α,γβ}

For i= 2, j = 3

A3 = A3− θ−1
3 (θ3(A2)∩B3) = {α}

For i= 3, j = 1
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A1 = A1− θ−1
1 (θ1(A3)∩B1) = {γβ}

For i= 3, j = 2

A2 = A2− θ−1
2 (θ2(A3)∩B2) = ∅

Steps 3 and 4

minDSsuperL (K) =K ∪A1∪A2∪A3 = {βαγγβ,γβ,α}

Similarly to DSsuperL (K), the centralized weak opacity W super
K (L) is a special case of

decentralized weak opacity DW super
K (L). Therefore, the infimal element of DW super

K (L) may

also not exist. However, a minimal element of DW super
K (L) always exists and is denoted

by minDW super
K (L). To calculate minDW super

K (L), we proceed as follows. For all j ∈ J , if

θj(L)∩ θj(K) 6= ∅, then let Cj = ∅, else pick one string tj ∈ θj(K) and let

Cj = θ̂−1
j ({tj}).

If we add C1∪ . . .∪Cn to L, then we can ensure that decentralized weak opacity is satisfied.

However, adding all C1∪ . . .∪Cn to L may be too much. This can be seen using the system

presented in Figure 5.3. Let strings s1 ∈ C1 and s2 ∈ C2 such that θ1(s1) = t1 ∈ θ1(C1) and

θ2(s2) = t2 ∈ θ2(C2). Clearly, to ensure decentralized weak opacity we add C1 and C2 to L.

However, we may have the case that θ1(s2) = t1 ∈ θ1(C1). That means, adding only s2 can

satisfy decentralized weak opacity. It follows that for j 6= i, tj ∈ θj(Ci), sj does not need to

be added in order to ensure decentralized weak opacity. The formal algorithm to calculate

minDW super
K (L) is given below.

Algorithm 5.4.2. (To calculate minDW super
K (L))

Input: L(G),K,L, and Θ = {θ1, θ2, . . . , θn}.

Output: minDW super
K (L).

Step 1 For all j = 1,2, . . . ,n, do

If θj(L)∩ θj(K) 6= ∅, then

Cj = ∅;

Else
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Figure 5.3: Illustration of satisfying minDW super
K (L)

pick tj ∈ θj(K);

Cj = θ̂−1
j ({tj});

Step 2 For all i= 1,2, . . . ,n do

For all j 6= i, do

Cj = Cj− θ−1
j (θj(Ci)∩{tj});

Step 3 C =
n⋃
i=1

Ci;

Step 4 minDW super
K (L) = L∪C.

Theorem 5.4.3. For any observation set Θ, languages K,L ⊆ L(G), the computational

complexity of Algorithm 5.4.2 is minDW super
K (L).

Proof. We need to show the following

1. L∪C is a superlanguage of L, that is, L⊆ L∪C

2. K is decentralized weakly opaque with respect to L∪C and Θ, that is,

(∀j ∈ J)θj(K)∩ θj(L∪C) 6= ∅.
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3. Removing any string in L∪C violates either Condition 1 or Condition 2.

Condition 1 is obvious true. To prove Condition 2, we consider two possible cases. Case 1:

Cj = {sj} 6= ∅. In this case,

θj(K)∩ θj(L∪C) ⊇ θj(K)∩ θj(Cj)

= θj(K)∩ θj({sj})

= θj(K)∩{tj}

= {tj}.

Hence θj(K)∩θj(L∪C) 6= ∅. Case 2: Cj = ∅. There are two possibilities. The first possibility:

θj(K)∩θj(L) 6= ∅. which implies θj(K)∩θj(L∪C) 6= ∅. The second possibility: sj is remove

from Cj is Step 2. By Step 2, sj is remove from Cj because there exist i ∈ J such that

sj ∈ θ−1
j (θj(Ci)∩{tj})

⇔ tj ∈ θj(Ci)∩{tj}

⇔ tj ∈ θj(Ci).

Therefore,

θj(K)∩ θj(L∪C) ⊇ θj(K)∩ θj(Ci)

⊇ θj(K)∩{tj}

= {tj}.

Hence θj(K)∩ θj(L∪C) 6= ∅. To prove Condition 3, we note that removing any string from

L will violate Condition 1 and removing any string from C will violate Condition 2 because

all strings that can be removed have already been removed in Step 2.

The following example illustrates Algorithm 2.

Example 5.4.2. Let Σ = {α,β}, L(G) = Σ∗, and Θ = {θ1, θ2, θ3}. Suppose that θ1 can see

only β, θ2 can see only α and θ3 can see {γ}. Let

L= {ααγββ,γααββ,γααββγ}

K = {αγβ,γαβ,γαβγ,γαγβγ}.
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L is not decentralized weakly opaque with respect to K and Θ because θ1(L)∩ θ1(K) = ∅

and θ2(L)∩ θ2(K) = ∅. Let us calculate minDW super
K (L) using Algorithm 2.

Step 1

pick t1 = β, C1 = {αγβ}

pick t2 = α, C2 = {αβγ}

C3 = ∅

Step 2

For i= 1, j = 2

C2 = C2− θ−1
2 (θ2(C1)∩{t2}) = ∅

The rest of iterations will not change C1,C2,C3

Steps 3 and 4

minDW super
K (L) = L∪C1∪C2∪C3 = {ααγββ,γααββ,γααββγ,αγβ}

Finally, let us consider DNsub
K (L).

Theorem 5.4.4. For any observation set Θ, languages Li ⊆ L(G), i = 1,2,3, · · · and K ⊆

L(G), if Li is not decentralized opaque with respect to K, then the union ⋃
iLi is also not

decentralized opaque with respect to K. Therefore, the supremal element of DNsub
K (L) exist.

It is given by

supDNsub
K (L) = L−

⋃
j∈J

θ−1
j θj(K).

Proof. First we show that supDNsub
K (L) ⊆ L− ⋃

j∈J
θ−1
j θj(K). Since supDNsub

K (L) ⊆ L, we

only need to show that supDNsub
K (L)∩ ( ⋃

j∈J
θ−1
j θj(K)) = ∅. Assume the contrary, then

(∃s ∈ Σ∗)s ∈ supDNsub
K (L)∧ s ∈ ⋃

j∈J
θ−1
j θj(K)

⇒ (∃s ∈ Σ∗)s ∈ supDNsub
K (L)(∃j ∈ J)s ∈ θ−1

j θj(K)

⇒ (∃j ∈ J)(∃s ∈ Σ∗)s ∈ supDNsub
K (L)∧ s ∈ θ−1

j θj(K)

⇒ (∃j ∈ J)(∃s ∈ Σ∗)θj(s) ∈ θj(supDNsub
K (L))∧ θj(s) ∈ θj(K)

⇒ (∃j ∈ J)θj(K)∩ θj(supDNsub
K (L)) 6= ∅

This contradicts the fact that supDNsub
K (L) is not decentralized opaque.

To prove supDNsub
K (L)⊇ L− ⋃

j∈J
θ−1
j θj(K), we need to show
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1. L− ⋃

j∈J
θ−1
j θj(K)⊆ L.

2. L− ⋃
j∈J

θ−1
j θj(K) is not decentralized opaque with respect to K and Θ.

Condition 1 is obviously true. To prove that Condition 2 is also true we assume the contrary,

then there exist i ∈ J

θi(L−
⋃
j∈J

θ−1
j θj(K))∩ θi(K) 6= ∅

⇒ (∃s ∈ Σ∗)s ∈ θi(L−
⋃
j∈J

θ−1
j θj(K))∧ s ∈ θi(K)

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ (L− ⋃
j∈J

θ−1
j θj(K))∧ s ∈ θi(K)

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ L∧ t 6∈ ⋃
j∈J

θ−1
j θj(K)∧ s ∈ θi(K)

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ L∧ (∀j ∈ J)θj(t) 6∈ θj(K)∧ s ∈ θi(K)

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ L∧ (∀j ∈ J)θj(t) 6∈ θj(K)∧ θi(t) ∈ θi(K)

⇒ (∃t ∈ Σ∗)θi(t) = s∧ t ∈ L∧ θi(t) 6∈ θi(K))∧ θi(t) ∈ θi(K)

This leads to a contradiction: (θi(t) ∈ θi(K)∧ θi(t) 6∈ θi(K)).
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6 Dining Cryptographers

6.1 Dining Cryptographers Problem

In this Chapter we illustrate the introduced concept of opacity in the framework of

discrete event system to the property of anonymity. Particularly we apply the proposed

opacity to verify and to synthesize the dining cryptographers protocol. Generally speaking,

anonymity is described as keeping the identity of agents participating in a certain action

secret. Anonymity is one of the properties that is widely needed, for instance, in electronic

voting and web browsing.

As one of the wide used security properties, anonymity differs from other properties like

non-interference, confidentiality and privacy where anonymity property means the identity

of the user of a certain action be kept secret for an observer who does not have a full access

to the system. To describe anonymity more accurately we use the voting system as an

example. In this case anonymity means that the identity of the voter associated with each

vote must be hidden, and not the vote itself or the candidate voted for [2]. The difference

between anonymity and other information-hiding properties were discussed in [14], [15]. The

characterisation of anonymity is usually relative to the capabilities of the user to observe the

activities associated.

The capabilities of the observer is usually considered one of the most important spec-

ifications that characterize the anonymity. For example, the case of an anonymous bulletin

board, a posting by one member of the group be kept anonymous to the other members;

however, it may be possible that the administrator of the board has access to some privileged

information that may allow him to infer the identity of the member who posted it [2,27,28].

In such cases, a protocol is necessary to specify the set(s) of members or agents that have

to be kept anonymous. In other words, the secret set is defined as a group of members in

which any user can test their membership in the group but can determine neither the other

group members nor the size of the group.
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For analyzing anonymity many definitions and frameworks have been developed in the

literature. The major concept of analyzing anonymity is based on the principle of confusion.

In [14,47,53,57], many approaches have been presented. In general, all approaches indicate

to the principle of confusion. Another concept to analyze anonymity is presented in [55].

Using a discrete-time Markove chain a degree of anonymity is described and proved. This

approach presents a group members and the adversary participating in Web browsing as a

discrete time Markove chain model. In this case, the security properties are easily identified

using probabilistic logic formulas.

In [54] the degree of anonymity is presented using a discrete event system. It is shown

that a system is anonymous for a set of events R ⊂ Σ if it is possible to permute them

and if it is undetectable for an observer. The strong anonymous is defined as follows; if it is

impossible for an observer to make a difference between any two occurred strings. Otherwise,

a system is weak anonymous if it is impossible to identify a string but possible to detect the

occurrence of all events in the same string. In other words, with weak anonymity the sets

of messages have the same user can be determined, but the identity of the user is still kept

secret.

In [33] anonymity was defined in the framework of opacity. Based on the properties

of strong and weak anonymous, anonymity can be studied using opacity definitions. By

properly defining two languages corresponding to each action, a set of actions is strongly

anonymous if and only if for each action, the two corresponding languages are strongly

opaque. Similarly, a set of actions is weakly anonymous if and only if the languages are

weakly opaque.

6.2 System Description

We now introduce the dining cryptographic protocol described by Chaum in [7]. “Three

cryptographers are having dinner. Their waiter informs them that arrangements have been

made with the maitre d’hotel for the bill to be paid anonymously. One of the cryptographers

might be paying for a dinner, or it might have been NSA (U.S. National Security Agency).
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Figure 6.1: Dining Cryptographers Topology

The cryptographers respect each other’s right to make an anonymous payment, but want to

find out whether the NSA paid. So they decide to execute the following protocol”.

A possible solution to this problem, described in [7], is that each cryptographer flips

an unbiased coin behind his menu, between him and the cryptographer on his left, so that

only the two of them can see the outcome as shown in Figure 6.1. The cryptographer1 can

see only the coin12 and coin13, the cryptographer2 sees coin12 and coin23, and finally the

cryptographer3 is able to see only the coin23 and coin13. Each cryptographer then states

aloud agree and disagree based on the sides of the coins. If a cryptographer is not paying, he

will state disagree if the tow sides are not the same and agree if-they are. If a cryptographer

is paying, he will state the opposite. In [7] it is proved that if the number of disagrees is

even then NSA is paying; otherwise, one of the cryptographers is paying.

The intuition behind the protocol is best introduced with the following description.

Suppose that three participants in a network possess k-bit messages. Each participant shares

a secret key (1-bit random message) with others separately. Clearly, for i= 1,2,3 participant

1 has two secrets k31 and k12 in common with the two other participant 3 and 2 respectively.

In addition, each participant has a secret 1− bit message that is equal to 1 in the case

that the participant is paid, and 0 otherwise [16]. All participants broadcast the value bi =

ki;i−1
⊕
ki;i+1

⊕
mi, where ⊕ denotes the exclusive OR operation (bitwise addition modulo

2). Every observer of all broadcast can reconstruct the message by summing up the keys
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and add secret messages to the sum b1

⊕
b2

⊕
b3. Only one of the participants should send

a message at the same time. Since there exist only one payer and if broadcast bi contained

for i = 1,2,3 and j = 1,2,3 ki;j then by the protocol bj must contain kj;i. As ki;j = kj;i, it

must be the case that ki;i+1
⊕
kj;j−1 = 0. Therefore all ki;j cancel out:

b1
⊕
b2

⊕
b3 = (k1;2

⊕
k1;3

⊕
m1)⊕(k2;1

⊕
k2;3

⊕
m2)⊕(k3;1

⊕
k3;2

⊕
m3)

=m1
⊕
m2

⊕
m3

Assuming that the participant2 is paying, then m2 = 1 and m1 = m3 = 0. Therefore

b1
⊕
b2

⊕
b3 = m2. This refers to no-opacity property where if one of the participants sends

a message should not be opaque. In the same time if participant2 payes than no one from

other participants know who is the payer. This refers to strong opacity where if participant1
knows all three values bi for i = 1,2,3 as well the keys k1;2 and k1;3, then he cannot know

who of both sent the message. Similarly for participant3 he cannot know who of both sent

the message.

In this section, we use the dining cryptographers problem to illustrate strong opacity

and no opacity. We first verify the dining cryptographers protocol and then see if we can

synthesize the protocol.

6.3 Verification

To formulate the dining cryptographers problem in the discrete event system frame-

work, let us define the following events.

• Pi : the event that the cryptographeri is paying, for i= 1,2,3.

• Ni : the event that the cryptographeri is not paying, for i= 1,2,3.

• hij : the event that the outcome of the coinij was a head.
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• tij : the event that the outcome of the coinij was a tail.

• Ai : the event that the cryptographeri states agree, for i= 1,2,3.

• Di : the event that the cryptographeri states disagree, for i= 1,2,3.

The complete behavior (all possible strings) of the system without protocol is given by the

automaton G in Figure 6.2. The set of events that observable to cryptographer1 is given by

Σ1,o = {P1,N1,h13, t13,h12, t12,Ai,Di, i = 1,2,3}. The correspondence observation mapping

is denoted by θ1. Σ2,o, θ2, Σ3,o, θ3 are defined similarly.

Under the protocol, the behavior of cryptographer1 when he is not the payer is described

by language K1. The automaton for K1 is shown in Figure 6.3. Similarly to K1 the language

K2 is shown in Figure 6.4,and the language K3 is presented in Figure 6.5. The behavior of

cryptographeri when he is the payer under the protocol is described by language Li ,i= 1,2,3.

The automaton for L1 is shown in Figure 6.6. The languages L2,L3 and their automata can

be defined similarly. Figures 6.7 and 6.8 are showing the automaton L2 and L3 respectively.

Let us verify the protocol using strong opacity and no opacity. First, we want to show

that if no cryptographer is paying, then all three cryptographers know. In other words, the

language K1∩K2∩K3 (no cryptographer is paying) is not opaque with respect to L1∪L2∪L3

( one of cryptographer is paying) and θi, i= 1,2,3. That is

θi(L1∪L2∪L3)∩ θi(K1∩K2∩K3) = ∅, i= 1,2,3.

To show this, the automaton for K1∩K2∩K3 is computed and shown in Figure 6.9. The

automaton for L1∪L2∪L3 is computed and shown in Figure 6.10. The observed behavior
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Figure 6.2: Dining Cryptographers Automaton G
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Figure 6.3: K1 : Cryptographer1 is not paying
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Figure 6.4: K2 : Cryptographer2 is not paying
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Figure 6.5: K3 : Cryptographer3 is not paying
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Figure 6.6: L1 : Cryptographer1 is paying
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Figure 6.7: L2 : Cryptographer2 is paying
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Figure 6.8: L3 : Cryptographer3 is paying
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Figure 6.9: Automaton for K1∩K2∩K3

θ1(L1∪L2∪L3) and θ1(K1∩K2∩K3) for cryptographer1 are shown in Figure 6.11. From

Figures 6.9, 6.10 and 6.11 it is not difficult to see θ1(L1∪L2∪L3)∩ θ1(K1∩K2∩K3) = ∅.

Similarly, we can show θ2(L1∪L2∪L3)∩θ2(K1∩K2∩K3) = ∅ and θ3(L1∪L2∪L3)∩θ3(K1∩

K2∩K3) = ∅

Next, let us show that if cryptographer1 is paying, then neither cryptographer2 or

cryptographer3 knows who is the payer. In other words, for cryptographer2 (with respect to

θ2), L1 is strongly opaque with respect to L3 and L3 is strongly opaque with respect to L1,

that is

θ2(L1)⊆ θ2(L3)∧ θ2(L3)⊆ θ2(L1)

⇔ θ2(L1) = θ2(L3)

To see this, Figure 6.8 shows L3 and Figure 6.12 shows the calculated θ2(L1) = θ2(L3). For

cryptographer3 (with respect to θ3), L1 is strongly opaque with respect to L2 and L2 is
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Figure 6.10: Automaton for L1∪L2∪L3

strongly opaque with respect to L1, that is

θ3(L1)⊆ θ3(L2)∧ θ3(L2)⊆ θ3(L1)

⇔ θ3(L1) = θ3(L2)

To see this, Figure 6.7 shows L2 and Figure 6.13 shows the calculated θ3(L1) = θ3(L2).

Similarly to the previous cases, cryptographer1 (with respect to θ1), L3 is strongly opaque

with respect to L2 and L2 is strongly opaque with respect to L3, that is

θ1(L3)⊆ θ1(L2)∧ θ1(L2)⊆ θ1(L3)

⇔ θ1(L3) = θ1(L2)

To see this, Figure 6.6 shows L1 and Figure 6.14 shows the calculated θ1(L3) = θ1(L2).
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Figure 6.11: (a) Automaton for θ1(L), (b)Automaton for θ1(K) clearly θ1(L)∩ θ1(K) = ∅
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Figure 6.12: Automaton for both θ2(L1) and θ2(L3)

Figure 6.13: Automaton for both θ3(L1) and θ3(L2)
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Figure 6.14: Automaton for both θ1(L3) and θ1(L2)

6.4 Synthesis

The above verifies the dinning cryptographers protocol. Let us now try to see if

we can synthesize the protocol. Synthesize is much more difficult than verification. We

only manage to solve half of the problem. That is given Ki, i = 1,2,3, we can synthesize

Li, i = 1,2,3 using formulas for decentralized strong opacity and decentralized no opacity

discussed in Chapter 5.

Since it is known that if one of the cryptographers is paying then the others are not

paying. This leads us to drive the initial automata of L1,L2 and L3. Let the initial language

for L1 be L̂1 which is given in Figure 6.15. The initial languages L̂2 and L̂3 are given in

Figure 6.16 and in Figure 6.17 respectively. L = (L1 ∪L2 ∪L3) must be not opaque with

respect to K =K1∩K2∩K3.

Using the formula given in the previous section, we have

supDNsub
K (L̂i) = L̂i− (θ−1

1 θ1(K)∪ θ−1
2 θ2(K)∪ θ−1

3 θ3(K))

= L̂i−
3⋃
i=1

(θ−1
i θi(K)∩L(G))
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Figure 6.15: The Automaton for the initial L1



98

Figure 6.16: The Automaton for the initial L2
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Figure 6.17: The Automaton for the initial L3
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θ1(K) is shown in Figure 6.11(b) and θ−1

1 θ1(K)∩L(G) is shown in Figure 6.18. θ−1
2 θ2(K)∩

L(G) and θ−1
3 θ3(K)∩L(G) can be computed similarly.

Using formula

supDNsub
K (L̂1) = L̂1−

3⋃
i=1

(θ−1
i θi(K)∩L(G))

We have supDNsub
K (L̂1) = L̃1, which is shown in Figure 6.19. Similarly, we can show

supDNsub
K (L̂2) = L̃2, supDNsub

K (L̂3) = L̃3. similarly, to supDNsub
K (L̂1), supDNsub

K (L̂2) and

supDNsub
K (L̂3) are given by:

supDNsub
K (L̂2) = L̂2− (θ−1

1 θ1(K)∪ θ−1
2 θ2(K)∪ θ−1

3 θ3(K))

= L̂2−
3⋃
i=1

(θ−1
i θi(K)∩L(G))

supDNsub
K (L̂3) = L̂3− (θ−1

1 θ1(K)∪ θ−1
2 θ2(K)∪ θ−1

3 θ3(K))

= L̂3−
3⋃
i=1

(θ−1
i θi(K)∩L(G))

Clearly from the formalization of the protocol, Li shall satisfy no-opacity and strong opacity

properties. Now we know that no-opacity is satisfied for all Li by synthesization of L̃i. The

second step is the synthesization of Li from L̃i such that strong opacity is satisfied. That is

θ2(L1) = θ2(L3), θ1(L2) = θ1(L3) and θ3(L1) = θ3(L2).

To achieve the equality θ2(L1) = θ2(L3) we reduce L̃1 to L1 and L̃3 to L3 using formula

supsub
L̃1

(L̃1) = L̃3∩ θ−1
2 θ2(L̃1)

supsub
L̃3

(L̃3) = L̃1∩ θ−1
2 θ2(L̃3)

supsub
L̃1

(L̃1) = L1 is shown in Figure 6.19. Similarly, we have supsub
L̃3

(L̃3) = L3. We could now

check that strong opacity is satisfied by showing θ2(L1) = θ2(L3). Figure 6.20 shows that

θ2(L1) = θ2(L3).

For the equality θ1(L2) = θ1(L3) we reduce L̃2 to L2 and L̃3 to L3 using formula

supsub
L̃2

(L̃2) = L̃3∩ θ−1
1 θ1(L̃2)

supsub
L̃3

(L̃3) = L̃2∩ θ−1
1 θ1(L̃3)
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supsub
L̃2

(L̃2) = L2 is shown in Figure 6.21. Similarly, we have supsub
L̃3

(L̃3) = L3. We could now

check that strong opacity is satisfied by showing θ1(L2) = θ1(L3). Figure 6.22 shows that

θ1(L2) = θ1(L3).

For the equality θ3(L1) = θ3(L2) we reduce L̃1 to L1 and L̃2 to L2 using formula

supsub
L̃1

(L̃1) = L̃1∩ θ−1
3 θ3(L̃2)

supsub
L̃2

(L̃2) = L̃2∩ θ−1
3 θ3(L̃1)

supsub
L̃1

(L̃1) = L1 is shown in Figure 6.19. Similarly, we have supsub
L̃2

(L̃2) = L2. We could now

check that strong opacity is satisfied by showing θ3(L1) = θ3(L2). Figure 6.23 shows that

θ3(L1) = θ3(L2). This proves the anonymity of the payer in case of one of the cryptographers

is the payer, and also proves that if the NSA is the payer then the cryptographers will find

out.
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Figure 6.18: Automaton for θ−1
1 θ1(K)∩L(G)
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Figure 6.19: Automaton for L̃1 = L1

Figure 6.20: Automata for θ2(L1) and θ2(L3)
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Figure 6.21: Automaton for L̃2 = L2
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Figure 6.22: Automata for θ1(L2) and θ1(L3)
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Figure 6.23: Automata for θ3(L1) and θ3(L2)
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Figure 6.24: Automaton for L̃3 = L3
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7 Supervisory Control for Opacity
The supervisory control problem for opacity consists of designing a supervisor that

restrict the activities of the system such that opacity properties are satisfied. Therefore the

goal in this chapter is to investigate properties of opacity under controllability restriction.

Based on theories presented in [45] and [30], the objective of supervisory control is to enforce a

specific property on a discrete event system to achieve a desired behaviour. In this framework

some of the events called controllable events, that can be disabled, and the control problem

is to suitably interact with the process, by disabling of controllable events, so the desired

behaviour is within the specification.

In this chapter, we use supervisory control to achieve opacity. The idea is that if a

system does not satisfy opacity, then we investigate if a supervisor can be used to restrict

the system’s behavior so that the supervised system satisfies opacity. We assume that the

supervisor is internal to the system and hence can observe events that may not be observable

to external observers. The supervisor can disable some controllable events to restrict the

behavior of the system. From [31], we know that such a supervisor exists if and only if the

desired closed-loop language is controllable and observable. From [32], we know that if all

controllable events are observable to the supervisor, then observability can be replaced by

normality.

In this context we characterize the solution for the supervisory control problem for

strong opacity in terms of the largest sublanguage or smallest superlanguage that satisfies

controllability, observability and strong opacity. Similar characterization for supervisory

control problem for weak opacity, and no opacity is investigated.

7.1 System Description

The formulation of the supervisory control problem considered in this section is as

follows. Given a finite deterministic system G, two regular languages L,K ⊆ L(G), and
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an observation mapping θ based on the set of events that can be observed by an external

observer, Σex,o ⊆ Σ. If L and K do not satisfy opacity properties, we would like to design a

controller or supervisor, if possible, to restrict the behavior of G so that opacity properties

are satisfied. The supervisor can disable a subset of controllable events Σc ⊆ Σ. We assume

that the supervisor is internal to the system, so that it can observe more events than the

external observer. The set of event that can be observed by the supervisor is denoted by

Σin,o ⊆ Σ. We assume Σex,o ⊆ Σin,o and the equality may not hold in general.

Our goal is to enforce opacity properties of L and K using a supervisor S. The language

generated by the supervised system is denoted by L(S/G). Under the control of S, L and K

are restricted to L∩L(S/G) and K∩L(S/G) respectively. We want S to be as less restrictive

as possible. Therefore, the goal is equivalent to find a largest language M = L(S/G) such

that L∩M and K ∩M satisfy opacity properties.

It is shown by Lin and Wonham [31] that a supervisor exists such that M = L(S/G)

if and only if M is controllable and observable. Therefore, we want to find the largest

sublanguage M of L(G) such that M is controllable w.r.t. L(G) and Σc, and observable

w.r.t. L(G) and Σin,o, and furthermore, L∩M and K ∩M satisfy opacity properties.

Based on the properties of opacity studied in Chapter 3, let us consider the strong

opacity control problem (SOCP), the weak opacity control problem (WOCP), and no opacity

control problem (NOCP), respectively.

7.2 Strong Opacity Control Problem (SOCP)

If L ⊆ L(G) is not strongly opaque with respect to K ⊆ L(G), that is θ(L) 6⊆ θ(K),

then we want to design a controller S to restrict the language of the system from L(G) to

L(S/G) = M such that in the closed-loop or the controlled system, strong opacity holds,

that is, θ(M ∩ L) ⊆ θ(M ∩K). Therefore, our goal is to find a language M ⊆ L(G) such

that

1. M is controllable w.r.t. Σc and L(G).
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2. M is observable w.r.t. Σin,o and L(G).

3. M ∩L is strongly opaque w.r.t. M ∩K, that is, θ(M ∩L)⊆ θ(M ∩K).

4. M is as large as possible, that is, for any other language Ḿ ⊆L(G) satisfying the above

three conditions, M 6⊂ Ḿ .

Let us focus on strong opacity first. Our first objective is to find M satisfying Con-

ditions 3) and 4). Our solution is inspired by Chapter 4, where the goal is to find the

largest sublanguage of L to ensure opacity. Obviously, our goal here is different: Here we

want to find the largest sublanguage of L(G) to ensure opacity. Intuitively to find such a

sublanguage, we need to remove all bad strings θ−1(θ(L)− θ(K)) from L(G) that are in L.

Therefore, we have the following theorem.

Theorem 7.2.1. Given two languages L,K ⊆ L(G) . Let

M = L(G)− (θ−1(θ(L)− θ(K))∩L).

Then M satisfies the following conditions: (1) M ∩L is strongly opaque w.r.t. M ∩K and

θ, that is θ(M ∩L) ⊆ θ(M ∩K). (2) M is the largest sublanguage of L(G) satisfying (1),

that is, for any other Ḿ ⊆ L(G) satisfying (1), Ḿ ⊆M .

Proof. We first show that M ∩L is strongly opaque w.r.t M ∩K, that is, θ(M ∩L) ⊆

θ(M ∩K). This can be done as follows.

s ∈ θ(M ∩L)

⇒ s ∈ θ((L(G)− (θ−1(θ(L)− θ(K))∩L))∩L)

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ ((L(G)− (θ−1(θ(L)− θ(K))∩L))∩L)∧ t ∈M

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ (L(G)− (θ−1(θ(L)− θ(K))∩L))∧ t ∈ L∧ t ∈M

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L(G)∧ t 6∈ (θ−1(θ(L)− θ(K))∩L)∧ t ∈ L∧ t ∈M

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L(G)∧ t 6∈ θ−1(θ(L)− θ(K))∧ t ∈ L∧ t ∈M

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L(G)∧ θ(t) 6∈ (θ(L)− θ(K))∧ t ∈ L∧ t ∈M
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⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L(G)∧ (θ(t) 6∈ θ(L)∨ θ(t) ∈ θ(K))∧ t ∈ L∧ t ∈M

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L(G)∧ t ∈ L∧ t ∈M ∧ θ(t) ∈ θ(K)

⇒ (∃t ∈ Σ∗)θ(t) = s∧ t ∈ L(G)∧ t ∈ L∧ t ∈M ∧ (∃t́ ∈ Σ∗)θ(t́) = θ(t)∧ t́ ∈K ∧ t́ ∈ L(G)

⇒ (∃t́ ∈ Σ∗)θ(t́) = s∧ t́ ∈ L(G)∧ t́ ∈K

⇒ (∃t́ ∈ Σ∗)θ(t́) = s∧ t́ ∈ L(G)∧ t́ ∈K ∧ θ(t́) ∈ θ(K)

⇒ (∃t́ ∈ Σ∗)θ(t́) = s∧ t́ ∈ L(G)∧ t́ ∈K ∧ θ(t́) 6∈ θ(L)− θ(K)

⇒ (∃t́ ∈ Σ∗)θ(t́) = s∧ t́ ∈ L(G)∧ t́ ∈K ∧ t́ 6∈ θ−1(θ(L)− θ(K))

⇒ (∃t́ ∈ Σ∗)θ(t́) = s∧ t́ ∈ L(G)∧ t́ ∈K ∧ t́ 6∈ θ−1(θ(L)− θ(K))∩L

⇒ (∃t́ ∈ Σ∗)θ(t́) = s∧ t́ ∈M ∧ t́ ∈K

⇒ (∃t́ ∈ Σ∗)θ(t́) = s∧ t́ ∈M ∩K

⇒ s ∈ θ(M ∩K).

Next, we show that M is the largest language such that θ(M ∩L)⊆ θ(M ∩K). Assume

the contrary, that is,

(∃Ḿ ∈ L(G))θ(Ḿ ∩L)⊆ θ(Ḿ ∩K), and M ⊂ Ḿ.

Then

(∃t ∈ L(G)) such that t ∈ Ḿ ∧ t 6∈M .

We have,

t ∈ Ḿ ∧ t 6∈M

⇒ t ∈ Ḿ ∧ t 6∈ L(G)− θ−1(θ(L)− θ(K))∩L)

⇒ t ∈ Ḿ ∧ t ∈ θ−1(θ(L)− θ(K))∩L)

⇒ t ∈ Ḿ ∧ t ∈ θ−1(θ(L)− θ(K))∧ t ∈ L

⇒ t ∈ Ḿ ∧ θ(t) ∈ (θ(L)− θ(K))

⇒ t ∈ (Ḿ ∩L)∧ θ(t) ∈ θ(L)∧ θ(t) 6∈ θ(K)

⇒ t ∈ (Ḿ ∩L)∧ θ(t) ∈ θ(L)∧ θ(t) 6∈ θ(Ḿ ∩K)

a contradiction! Therefore, no such Ḿ exists.
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Figure 7.1: System G and observation mapping θ used in Example 7.2.1

Let us now consider controllability and observability. If M obtained in Theorem 7.2.1

is not controllable and observable, then we need further reducing M to make it controllable

and observable. Unfortunately, reducing M may violate strong opacity. This is because

θ(M ∩L)⊆ θ(M ∩K) and M ′ ⊆M does not imply θ(M ′∩L)⊆ θ(M ′∩K).

Example 7.2.1. We consider the system G in Figure 7.1. where Σ = {α,β,σ,δ,γ,µ}. Let

the observation mapping θ be defined as illustrated in the figure, where the unobservable

transitions are replaced by ε. Let Σc = {α,µ,σ,δ}, Σin,o = Σ, and Σex,o = {α,β,γ,µ}. Let

L= σαβ+αδγ and K = αδβ+µ. The observation mappings of L and K are θ(L) = αβ+αγ

and θ(K) = αβ+µ respectively. L is not strongly opaque with respect to K and θ, because

θ(L) * θ(K). By Theorem 7.2.1, we have

M = σαβ+αδβ+µ

Clearly θ(M ∩L) ⊆ θ(M ∩K). M is not controllable because γ is not controllable. Let

M ′ = σαβ+α+µ, then M ′ is controllable, M’ is also observable because Σin,o = Σ.

It is not difficult to see θ(M ′∩L) * θ(M ′∩K).

From the above example, we know that we may need to repeat the process of reducing

a language to satisfy controllability, observability, and strong opacity. For the convenience of

iteration, let us define an operator to ensure opacity on languages as follow. For a language
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H ⊆ L(G), define

H↑(K,L) =H− (θ−1(θ(H ∩L)− θ(H ∩K))∩L).

Then H↑(K,L) has the following properties.

Proposition 7.2.1.

(1) H↑(K,L) ensures strong opacity, that is,

θ(H↑(K,L)∩L)⊆ θ(H↑(K,L)∩K).

(2) H↑(K,L) is the largest such sublanguage, that is,

(∀H́ ⊆H)θ(H́ ∩L)⊆ θ(H́ ∩K)⇒ H́ ⊆H↑(K,L).

(3)(.)↑(K,L) is a monotonic operator, that is,

H ⊆ H́⇒H↑(K,L) ⊆ H́↑(K,L).

Proof. (1) The proof of this part is similar to that of Theorem 7.2.1.

(2) The proof of this part is similar to that of Theorem 7.2.1.

(3) We need to prove that if H ⊆ H́, then

H− θ−1(θ(H ∩L)− θ(H ∩K))∩L

⊆ H́− θ−1(θ(H́ ∩L)− θ(H́ ∩K))∩L.

Indeed,

t ∈H− θ−1(θ(H ∩L)− θ(H ∩K))∩L

⇒ t ∈H ∧ t 6∈ (θ−1(θ(H ∩L)− θ(H ∩K))∩L)

⇒ t ∈H ∧ (t 6∈ θ−1(θ(H ∩L)− θ(H ∩K))∨ t 6∈ L)

⇒ t ∈H ∧ (θ(t) 6∈ (θ(H ∩L)− θ(H ∩K))∨ t 6∈ L)

⇒ t ∈H ∧ (θ(t) 6∈ θ(H ∩L)∨ θ(t) ∈ θ(H ∩K)∨ t 6∈ L)

⇒ t ∈ H́ ∧ (θ(t) 6∈ θ(H́ ∩L)∨ θ(t) ∈ θ(H́ ∩K)∨ t 6∈ L)
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⇒ t ∈ H́ ∧ (θ(t) 6∈ (θ(H́ ∩L)− θ(H́ ∩K))∨ t 6∈ L)

⇒ t ∈ H́ ∧ (t 6∈ θ−1(θ(H́ ∩L)− θ(H́ ∩K))∨ t 6∈ L)

⇒ t ∈ H́ ∧ t 6∈ (θ−1(θ(H́ ∩L)− θ(H́ ∩K))∩L)

⇒ t ∈ H́− θ−1(θ(H́ ∩L)− θ(H́ ∩K))∩L.

With this operator, we will consider controllability and observability. We will consider

two cases. The first case is when Σc ⊆ Σin,o. In this case, Lin and Wonham show that con-

trollability and observability are equivalent to controllability and normality [32]. Therefore

Condition 2) in the strong opacity control problem becomes

2’) M ⊆ L(G) is normal w.r.t. Σin,o and L(G).

The advantage of requiring normality is that Lin and Wonham [30] show that the

supremal controllable and normal sublanguage of a given language exists and formulas to

compute the supremal controllable and normal sublanguage are given in [43]. Therefore,

if the language M obtained in Theorem 7.2.1 is not controllable and normal, then we can

compute its supremal controllable and normal sublanguage, denoted by M↑(CN). Unfortu-

nately, reducing M to satisfy controllability and observability may violate strong opacity.

This means that the process may need to be reiterated. Formally, the following algorithm

computes a solution to the strong opacity control problem.

Algorithm 7.2.1. (Solution to SOCP)

Step 1. Initially, set

i= 0;

M0 = L(G);

Step 2. Set

Mi+( 1
2 ) =M

↑(K,L)
i ;

Step 3. Set

Mi+1 =M
↑(CN)
i+( 1

2 ) ;

Step 4. If θ(Mi+1∩L)⊆ θ(Mi+1∩K), then stop; else set
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i= i+ 1;

go to Step 2.

The convergence of the above algorithm depends on the nature of the observation map-

ping and the languages involved. If L(G), K, and L are all regular, and θ preserves regularity

(that is, for any regular language J , θ(J) and θ−1(J) are regular), then we can prove that

the above algorithm converges. To this end, let us first prove the following proposition.

Proposition 7.2.2. For the sequence

M0 = L(G),

Mi+1 = (M↑(K,L)
i )↑(CN),

if there exist a finite k such that Mk+1 =Mk, then for any i > k Mi =Mk.

Proof. Suppose that there exist a finite k such that Mk+1 =Mk, then for i= k+ 2,

Mi+2 = (M↑(K,L)
k+1 )↑(CN) = (M↑(K,L)

k )↑(CN) =Mk+1 =Mk.

By repeating the above reasoning, we conclude that for any i > k, Mi =Mk.

We now prove the convergence of Algorithm 1.

Theorem 7.2.2. If L(G), K, and L are all regular, and θ preserves regularity, then Algo-

rithm 1 converges.

Proof. We prove the theorem by contradiction. If the sequence

M0 = L(G),

Mi+1 = (M↑(K,L)
i )↑(CN),

does not converge, then by Proposition 7.2.2, there exist infinite many distinct Mi such that
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M0 ⊃M1 ⊃M2 ⊃ ...⊃Mi ⊃ ....

On the other hand, since L(G), K, and L are all regular; θ preserves regularity; and all

other operations in computing ↑(K,L) and ↑(CN) also preserves regularity, all Mi are regular.

Let |Mi| denotes the number of states in the minimal automaton generating Mi. Then there

exists an integer N such that for all Mi, |Mi|<N . But there are only finite distinct Mi such

at |Mi|<N . This leads to a contradiction.

The following theorem shows the correctness of Algorithm 1.

Theorem 7.2.3. Assume that Σc ⊆Σin,o. Suppose Algorithm 1 converges after k steps, that

is, Mk+1 =Mk. Then the result obtained by Algorithm 1, M =Mk+1 =Mk, is a solution to

the SOCP. In other words, M satisfies the following.

1. M is controllable w.r.t. Σc and L(G).

2. M is normal w.r.t. Σin,o and L(G).

3. M ∩L is strongly opaque w.r.t. M ∩K, that is, θ(M ∩L)⊆ θ(M ∩K).

4. M is largest, that is, for any other language Ḿ ⊆ L(G) satisfying the above three

conditions, Ḿ ⊆M .

Proof. Since M = (M↑(K,L))↑(CN), by properties of the supremal controllable and normal

sublanguage, M is controllable and normal.

Since M = (M↑(K,L))↑(CN)⊆M↑(K,L)⊆M , M =M↑(K,L). By Proposition 7.2.1, M ∩L

is strongly opaque w.r.t. M ∩K.

We now prove that M is largest, that is, for any language Ḿ ⊆ L(G) satisfying the

three conditions, Ḿ ⊆M .

By properties of ↑(K,L) and ↑(CN), if Ḿ satisfying the three conditions, then Ḿ =

(Ḿ↑(K,L))↑(CN).
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Ḿ ⊆L(G) and M0 =L(G) implies Ḿ ⊆M0. Since both ↑(K,L) and ↑(CN) are monotonic,

Ḿ ⊆M0

⇒ (Ḿ↑(K,L))↑(CN) ⊆ (M↑(K,L)
0 )↑(CN) =M1

⇒ Ḿ ⊆M1.

By repeating the above reasoning, we conclude that Ḿ ⊆Mk =M .

Example 7.2.2. We consider the system G in Figure 7.2. Let Σin,o = Σ = {α,β,γ,σ,δ},

and Σex,o = {α,β,γ,δ}. Let θ be defined as illustrated in the figure, where the unobservable

transitions are replaced by ε. Let Σc = {β,δ} ⊆ Σo,in. Let

L= σαβγ; K = αβ.

Then

θ(L) = αβγ; θ(K) = αβ.

L is not strongly opaque with respect to K because θ(L) * θ(K). Apply Algorithm 1, we have

M0 = L(G);

M1 = αβ+σαδβ;

M2 =M1;

Therefore,

M = αβ+σαδβ.
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Figure 7.2: System G and observation mapping θ for Example 7.2.2

7.3 Weak Opacity Control Problem (WOCP)

If L⊆L(G) is not weakly opaque with respect to K ⊆L(G), that is, θ(L)∩θ(K) = ∅,

then no control can help to achieve weak opacity. In other words, there is no controller

S generating L(S/G) = M such that the controlled system satisfies weak opacity, namely,

θ(M ∩ L)∩ θ(M ∩K) 6= ∅. This is obvious: If θ(L)∩ θ(K) = ∅, then for any M ⊆ L(G),

θ(M ∩ L)∩ θ(M ∩K) = ∅. Therefore, there is no solution to WOCP.

7.4 No Opacity Control Problem (NOCP)

If L⊆L(G) is opaque with respect to K ⊆L(G), that is, θ(L)∩θ(K) 6= ∅, then we want

to design a controller S to restrict the language of the system from L(G) to M =L(S/G) such

that in the controlled system, no opacity holds, that is, θ(M ∩L)∩θ(M ∩K) = ∅. Therefore,

our goal is to find a language M ⊆ L(G) such that

1. M ⊆ L(G) is controllable w.r.t. Σc and L(G).

2. M ⊆ L(G) is observable w.r.t. Σin,o and L(G).
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3. M ∩L is not opaque w.r.t. M ∩K, that is, θ(M ∩L)∩ θ(M ∩K) = ∅.

Let us again consider no opacity first, that is, finding a language M ⊆L(G) satisfying Con-

ditions (3). Intuitively, to ensure no opacity, we need to remove strings violating no opacity,

that is, θ−1(θ(L)∩ θ(K)) from L(G). To remove as less strings as possible, we remove only

the strings in (K ∪ θ−1θ(K−L))∩L or (L∪ θ−1θ(L−K))∩K from L(G). Therefore, there

are two possible solutions.

Theorem 7.4.1. Given two languages L,K ⊆ L(G). Let

M1 = L(G)− (K ∪ θ−1θ(K−L))∩L.

M2 = L(G)− (L∪ θ−1θ(L−K))∩K.

Then M1∩L is not opaque w.r.t M1∩K that is θ(M1∩L)∩ θ(M1∩K) = ∅ and M2∩L is

not opaque w.r.t M2∩K that is θ(M2∩L)∩ θ(M2∩K) = ∅ .

Proof. We first show thatM1∩L is not opaque w.r.tM1∩K that is θ(M1∩L)∩θ(M1∩K) = ∅

than M2∩L is not opaque w.r.t M2∩K that is θ(M2∩L)∩θ(M2∩K) = ∅. This can be done

by contradiction. Suppose the above is not true, then there exists s ∈ Σ∗ such that
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s ∈ θ(M1∩L)∧ s ∈ θ(M1∩K)

⇔ (∃t ∈M1∩L)(∃t′ ∈M1∩K)θ(t) = θ(t′) = s

⇔ (∃t, t′ ∈ Σ∗)θ(t) = θ(t′) = s

∧t ∈ L∧ t ∈ L(G)∧ t 6∈ (K ∪ θ−1θ(K−L))∩L

∧t′ ∈K ∧ t′ ∈ L(G)∧ t′ 6∈ (K ∪ θ−1θ(K−L))∩L

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ L∧ (t 6∈ (K ∪ θ−1θ(K−L))∨ t 6∈ L)

∧t′ ∈K ∧ (t′ 6∈ (K ∪ θ−1θ(K−L))∨ t′ 6∈ L)

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ L∧ t 6∈ (K ∪ θ−1θ(K−L))

∧((t′ ∈K ∧ t′ 6∈ (K ∪ θ−1θ(K−L)))∨ (t′ ∈K ∧ t′ 6∈ L))

Because (t′ ∈K ∧ t′ 6∈ (K ∪ θ−1θ(K−L))) = false

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ L∧ t 6∈K ∧ t 6∈ θ−1θ(K−L)

∧t′ ∈K ∧ t′ 6∈ L

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ L−K ∧ θ(t) 6∈ θ(K−L)∧ t′ ∈K−L

⇒ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧θ(t) 6∈ θ(K−L)∧ t′ ∈K−L

⇒ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧θ(t) 6∈ θ(K−L)∧ θ(t′) ∈ θ(K−L)

a contradiction!(s 6∈ θ(K−L)∧ s ∈ θ(K−L))
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Similar to the previous proof θ(M2∩L)∩ θ(M2∩K) = ∅ can be proved as follow.

s ∈ θ(M2∩L)∧ s ∈ θ(M2∩K)

⇔ (∃t ∈M2∩L)(∃t′ ∈M2∩K)θ(t) = θ(t′) = s

⇔ (∃t, t′ ∈ Σ∗)θ(t) = θ(t′) = s

∧t ∈ L∧ t ∈ L(G)∧ t 6∈ (L∪ θ−1θ(L−K))∩K

∧t′ ∈K ∧ t′ ∈ L(G)∧ t′ 6∈ (L∪ θ−1θ(L−K))∩K

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ L∧ (t 6∈ (L∪ θ−1θ(L−K))∨ t 6∈K)

∧t′ ∈K ∧ (t′ 6∈ (L∪ θ−1θ(L−K))∨ t′ 6∈K)

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ L∧ t 6∈ (L∪ θ−1θ(L−K))∨ t 6∈K)

∧t′ ∈K ∧ t′ 6∈ ((L∪ θ−1θ(L−K))∨ (t′ ∈K ∧ t′ 6∈K))

Because (t ∈ L∧ t 6∈ (L∪ θ−1θ(L−K))) = false

and (t′ ∈K ∧ t′ 6∈K) = false

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ L∧ t 6∈K)

∧t′ ∈K ∧ t′ 6∈ (L∪ θ−1θ(L−K))

⇔ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧t ∈ (L−K)

∧t′ ∈K ∧ t′ 6∈ L∧ t′ 6∈ θ−1θ(L−K))

⇒ (∃t, t′ ∈ L(G))θ(t) = θ(t′) = s

∧θ(t) ∈ θ(L−K)∧ θ(t′) 6∈ θ(L−K)

a contradiction!(s 6∈ θ(L−K)∧ s ∈ θ(L−K))

If the languages M1 or M2 obtained in Theorem 7.4.1 are not controllable and observ-

able, then we need to reduce M1 or M2 further to compute M↑(CN)
1 or M↑(CN)

2 . Unlike the

case for strong opacity, the reduced language M↑(CN)
1 or M↑(CN)

2 are not opaque as shown

in the following proposition.
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Proposition 7.4.1. Given three languages L,K,M ⊆ L(G). If θ(M ∩L)∩ θ(M ∩K) = ∅,

then for any Ḿ ⊆M ,

θ(Ḿ ∩L)∩ θ(Ḿ ∩K) = ∅.

Proof. The result follows from the fact

θ(Ḿ ∩L)∩ θ(Ḿ ∩K)⊆ θ(M ∩L)∩ θ(M ∩K).

From Proposition 7.4.1, we know that no iteration is needed to solve the NOCP.

Theorem 7.4.2. Given two languages L,K ⊆ L(G). Let

M1 = (L(G)− (K ∪ θ−1θ(K−L))∩L)↑(CN),

M2 = (L(G)− (L∪ θ−1θ(L−K))∩K)↑(CN)

Then M1 and M2 are solutions to the NOCP. That is, M1 and M2 satisfy the following.

1. M1,M2 ⊆ L(G) are controllable w.r.t. Σc and L(G).

2. M1,M2 ⊆ L(G) are observable w.r.t. Σin,o and L(G).

3. M1∩L is not opaque w.r.t. M1∩K, that is, θ(M1∩L)∩θ(M1∩K) = ∅. M2∩L is not

opaque w.r.t. M2∩K, that is, θ(M2∩L)∩ θ(M2∩K) = ∅.

Proof. Hence M1 and M2 are controllable and observable. Therefore, items 1) and 2) hold.

Since M1 ⊆ L(G)− (K ∪ θ−1θ(K −L))∩L and M2 ⊆ L(G)− (L∪ θ−1θ(L−K))∩K.

By Theorem 7.4.1 and Proposition 7.4.1, M1∩L is not opaque w.r.t. M1∩K and M2∩L is

not opaque w.r.t. M2∩K.

We illustrate the result in the following example.

Example 7.4.1. We consider the system G in Figure 7.3. Let Σ = {α,β,γ,σ,δ,π}, Σin,o =

Σ, and Σex,o = {α,β,γ,δ,π}. Let Σc = {α,β,σ}. Let the observation mapping θ be defined

as illustrated in the figure, where the unobservable transitions are replaced by ε. Let
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Figure 7.3: System G and observation mapping θ used in Example 7.4.1

L= αβσγ+σαδγ+ασπβ;

K = σγαβ+ασδγ+σαπβ.

Then

θ(L) = αβγ+αδγ+απβ;

θ(K) = γαβ+αδγ+απβ.

L is (weakly) opaque with respect to K and θ, because θ(L)∩θ(K) = αδγ+απβ. By Theorem

7.4.2, we can solve the NOCP as follows.

M = (L(G)− (K ∪ θ−1θ(K−L))∩L)↑(CN)

= σγαβ+ασδγ+σαπβ+αβσγ. It is not difficult to check that M is controllable,

observable, and θ(M ∩L)∩ θ(M ∩K) = ∅.
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8 Conclusions

8.1 Summary

For discrete event systems under partial observation, opacity and its control is studied

in this dissertation. In this dissertation we investigated the properties of the opacity and the

behaviour of the opaque languages in the framework of discrete event systems. In the light

of these investigations, an intensive study was conducted to the opacity in the framework of

discrete event systems proposed in [33]. The goal is to come up with a formal basis and the

theoretical foundation to formalize opacity in the modelling and analysis process.

As shown in the dissertation, such strong opacity, weak opacity, and no opacity can

be a key for efficient behavioural analysis in complex systems. This analysis improves the

understanding of different interests, such as security concerns or providing software engineers

with a deeper understanding of any opaque behaviour in order to have a robust system. We

presented the properties of opacity that can be used to find a solution to the problems of

modification of a language to satisfy strong opacity, weak opacity, and no opacity respectively.

We showed that the supremal strongly opaque sublanguage exists and it is unique; the

minimal strongly opaque superlanguage exists, but may not be unique. We showed that

the minimal weakly opaque superlanguage exists, but may not be unique. Also we showed

that the supremal not opaque sublanguage exists and it is unique. Formulas were derived to

compute these sublanguages and superlanguages.

We investigated the verification of the dining cryptographers problem in discrete event

system framework. We verified the protocol using strong opacity and no opacity properties.

We show that we can synthesize the protocol by managing to solve half of the problem using

formulas for decentralized strong opacity and decentralized no opacity.

We end the dissertation by investigating the supervisory control problem of opacity

of discrete event system. We proposed several approaches for solving these problems. If

opacity properties are not satisfied originally, supervisors can be used to restrict the system’s
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behavior to ensure opacity if possible. Also, conditions have been established for solutions of

supervisory control problems of opacity. Algorithms and formulas were derived to compute

the largest controllable and observable sublanguage such that the opacity properties hold for

an external user of the system.

8.2 Future Research

In this thesis, many important aspects on behavioural analysis of opacity have been

addressed. However, much research remains to be done to address other important aspects.

8.2.1 Stochastic Systems

The presented work is done in the framework of discrete event systems which has been

restricted to non-stochastic systems. “theory of stochastic discrete event systems on the

other hand has been well developed and understood. Such a stochastic discrete event system

can clearly be represented by an automaton with probabilities associated with transitions

such that the probabilities of all transitions from any state add up to at most one” [11].

Formally, the probabilistic language is used to describe the behavior of stochastic discrete

event systems. Such systems are also represented as nondeterministic automata with prob-

abilities associated with transitions. Intuitively we define probabilistic strong opacity and

probabilistic weak opacity as follows. Given a general observation mapping, a language is

probabilistic strongly opaque if the probability of all strings in the language are belonging

to another language and it is weakly opaque if the probability of some strings in the lan-

guage are belonging to another language. In the context of opacity we consider a scenario

where we are given a stochastic discrete event system that can be modeled as a probabilistic

finite automaton with an observation mapping θ, and languages L,K ⊆ L(G). If L is not

probabilistic strongly opaque w.r.t K and θ, then we may enlarge K or shrink L. We de-

fine the probabilistic strong opacity, where it considers the probability that the enlarged K

such that L is probabilistic strongly opaque w.r.t K and θ, if this probability lies below a
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predetermined threshold in the system, other wise we consider the probabilistic weak opacity.

8.2.2 Decentralized Supervisory Control of Opacity

So far we have restricted our attention to the problem of centralized control of opacity

under partial observation. However, in many applications such as manufacturing systems,

communication networks, energy management systems, etc., it is desirable to have decen-

tralized controllers, where each controller is able to control a certain set of events and is

able to observe a certain set of events in order to achieve opacity properties. The problem of

decentralized opacity control may vary on the basis of opacity properties need to be achieved.

For instance, strong opacity can be investigated without losing of generality by considering

the case of tow controllers. Given a finite deterministic system G, two regular languages

L,K ⊆L(G), and an observation mapping θ based on the set of events that can be observed

by an external observer, Σex,o ⊆ Σ. The system G is observed by a set J = {1,2} of agents

Aj , each one of them observes the system G using its own observation mapping θj(j ∈ J).

If L and K do not satisfy opacity properties, we would like to design a set of controllers or

supervisors S = {S1,S2}, if possible, to restrict the behavior of G so that opacity properties

are satisfied. Each supervisor can disable a subset of controllable events Σc,j ⊆ Σc ⊆ Σ. We

assume that the supervisors are internal to the system, so that they together can observe

more events than the external observer. The set of events that can be observed by the

supervisors are denoted by Σin,o,j ⊆ Σ for (j ∈ J). We assume Σex,o ⊆
n⋃
j∈J

Σin,o,j and the

equality may not hold in general.

8.2.3 Software Implementation

A software implementation of opacity algorithms and theories in the framework of

discrete event systems would help for verification and validation of models, and designing

simulation experiments. Verification and supervisory control of opacity procedures described

in this thesis can be directly translated into software functions within widely used tools. Such

software tool is essential to bring the result of this dissertation to potential non-specialist
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users. Clearly implementation of opacity algorithms and theories require special arrangement

in the input interface that might still not be able to use the general observation mapping

properties. On the hand interaction of the corresponding operations (composition, decom-

position, abstractions, ... etc.) are already known in many discrete event system tools.
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The exchange of sensitive information in many systems over a network can be manip-

ulated by unauthorized access. Opacity is a property to investigate security and privacy

problems in such systems. Opacity characterizes whether a secret information of a system

can be inferred by an unauthorized user. One approach to verify security and privacy prop-

erties using opacity problem is to model the system that may leak confidential information

as a discrete event system. The problem that has not investigated intensively is the enforce-

ment of opacity properties by supervisory control. In other words, constructing a minimally

restrictive supervisor to limit the system’s behavior so an unauthorized user cannot discover

or infer the secret information.

We describe and analyze the complexity of opacity in systems that are modeled as a

discrete event system with partial observation mapping. We define three types of opacity:

strong opacity, weak opacity, and no opacity. Strong Opacity describes the inability for

the system’s observer to know what happened in a system. On the other hand, No-opacity

refers to the condition where there is no ambiguity in the system behavior. The definitions

introduce properties of opacity and its effects on the system behavior. Strong opacity can be

used to study security related problems while no opacity can be used to study fault, detection

and diagnosis, among many other applications. In this dissertation, we investigate the largest

opaque sublanguages and smallest opaque superlanguages of a language if the language is

not opaque. We present formulas for calculating the sublanguages and superlanguages in

centralized framework as well as in a decentralized framework. We illustrate the concept of
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opacity in the framework of discrete event system to the property of anonymity by applying

the proposed opacity to verify and to synthesize the dining cryptographers protocol. We

studied how to ensure strong opacity, weak opacity and no opacity by supervisory control. If

strong opacity, weak opacity or no opacity is not satisfied, then we can restrict the system’s

behavior by a supervisor so that strong opacity, weak opacity or no opacity is satisfied. We

investigate the strong opacity control problem (SOCP), the weak opacity control problem

(WOCP), and no opacity control problem (NOCP).

As illustrated by examples in the dissertation, the above properties of opacity can be

used to characterize the security requirements in many applications, as anonymity require-

ments in protocols for web browsing. Solutions to SOCP in terms of the largest sublanguage

that is controllable, observable (or normal), and strongly opaque were characterized. Similar

characterization is available for solutions to NOCP.
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