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CHAPTER 1

INTRODUCTION

1.1 Overview

The rate of 30-day readmission after discharge from the hospital is very high. Accord-

ing to Medicare in 2004, the estimated cost for readmission is $17.5 billion dollars. Nearly

20% of Medicare beneficiaries discharged from a hospital are readmitted within 30 days,

which not only increases billions of expenses each year but also threatens people’s lives.

Readmission could be prevented to some extent if a patient of high risk of readmission

is well predicted and taken good care of.

Many patients are readmitted very quickly after discharge for the reason that the se-

riousness of a patient’s illness is not fully realized. 30-day readmission is a significant

factor to determine the health care performance and it has become a widely accepted

quality performance metric for the patient [34]. It indicates that either the hospital fails

to adequately address the patients’ health issue or the patients are discharged from the

hospital prematurely. Either of these conditions could be avoided if the patients are

examined regularly using some risk prediction techniques.

Heart Failure (HF) is one of the most common syndromes that results in 30-day read-

mission. There are more than 5 million people who are suffering from a heart disease in

the United States, and that number is increasing by 10% each year. Furthermore, the

death rate is rather high. These patients are suffering an estimated one-year mortality

from 5% to 75%.

In order to reduce the 30-day readmission rate, several techniques are introduced to

predict the patient’s readmission probability. Regression and statistical analysis are com-

monly used for classification of clinical data sets. These two methods are widely accepted
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by different institutions to predict the 30-day readmission. However, these traditional

methods have several shortcomings that limit their predicting ability. When analysing a

large number of attributes, the effect of certain important attributes could be ignored due

to the lack of domain knowledge or large amount of attributes. On the other hand, these

methods do not perform well on special cases due to insufficient statistical information.

A better analysis on the factors contributing to 30-day readmission is needed. To this

end, we use data mining techniques to build the classifier. There are four steps in build-

ing predictive classification models, which are data understanding, data preprocessing,

modeling and evaluation. In our experiment, we use the electronic medical records to

build the classifier.

The electronic medical records are obtained from the Henry Ford hospital. When a

patient is admitted to the hospital, his information will be recorded, including the basic

information of the patient, the procedures the patient has received, the medicines he took

and the overall health condition. For each patient, the basic information is recorded and

the patient is assigned an ID. Figure 1.1 gives the process on the data is organized in the

Henry Ford hospital .

From Figure 1.1 we can see that the process of generating the information of each

patient is independent. As a result, the records are different from each other. Some of

the patients may have errors in their information due to the examination mistake. All

these situations lead to the fact that the clinical data is tough to preprocess, and more

methods have to be used for completing the preprocessing. In our study, we use the

datasets where numeric and categorical features are present in a same dataset. The dis-

tribution of the patient information seldom follows any common distribution, and noise is

common to see in the datasets. As a consequence, the clinical data is more complicated,

and before applying a data mining model to the data, it is necessary to pre-process the

dataset, which is to fill the missing values and take some other procedures to make the
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Figure 1.1: Process of Obtaining Real-time Data.

dataset easier to use.

1.1.1 Motivation

Readmission very soon after discharge not only brings a huge burden on public fi-

nance, but also is a great risk to human health. In order to release the social finance

burden and improve the quality of life, it is of great importance to reduce the readmission

rate. Our goal is to reduce the 30-day readmission rate. To this end, we need to look into

the clinical data and use data mining methods to analyse the factors which contribute

most to the 30-day readmission.

By applying proper data mining techniques, the patients who are under a greater risk

of readmission can be taken better care of. As a result, the readmission rate can be

reduced. The expenditure on 30-day readmission can be largely saved. However, the

traditional data mining methods perform bad on predicting 30-day readmission due to

the reason that the composition of the clinical data is complex.
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1.1.2 Overview of our methods

In this thesis, we present two popular methods, SVM (Support Vector Machine)

and Cox PH (Proportional Hazard) model, and use them in the clinical scenario. The

data for this study is the clinical data which is generated into several different data

sources. In each data source, a very diverse patient population with different features are

provided. These two methods have good ability in analysing big datasets and provide a

more accurate way to analyse the clinical data besides the traditional methods.

The regression model is a statistical technique for estimating the relationship among

variables [46]. In general, the variables can be divided in two groups, the indepen-

dent variable (predictor) and the dependent variable (response), and the response is

determined by predictors and their coefficients. The linear regression is widely used in

classification. The linear regression provides a single slope or trend so that it is easy to

interpret, and it can be fit to unbiased data.

SVM can be used to make prediction using a learning algorithm [15]. The SVM can

be applied to different data sources. Before applying SVM to the dataset, the dataset

has to be divided into the training dataset and the testing dataset. The training data is

used to train the predictive model, while the testing data is used to test the performance

of the model. The SVM produces a prediction result with high accuracy, and it also has

the ability of analysing the non-linear data by introducing kernel to it. The availability

of SVM toolbox makes it simple and convenient to be extended to many fields, such as

economy, sociology, medication and psychology.

Survival analysis is a reliable statistic analysis method. In many fields, the survival

analysis is applied to obtain the survival results of a certain group of people during a pe-

riod. In addition to the prediction of 30-day readmission, survival analysis is also widely

used in health care problems. In order to do the analysis, it is required to get a patient’s

censoring time and censoring status.
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In this thesis, our major applications of the Cox PH model are the following

1. Compare the survival distribution of different data sources

2. Feature selection using sparse Cox PH models

3. Implement the Cox-LASSO, COCKTAIL (Cox Elastic Net) algorithms.

1.1.3 Contribution of this Thesis

The major contribution of this thesis are

• We explore the applicability of using different survival and machine learning algo-

rithms to clinical data.

• We provide a comparison among these methods with respect to different standard

metrics such as Area under ROC curve (AUC)

• We explain the importance of clinical variables obtained using shrinkage methods

in survival analysis

1.1.4 Related Work

In this section, we survey different kinds of important 30 day readmission models.

We highlight their importance and also explain their performance on real clinical data.

CMS Medicare conducts a survey on 30-day readmission, which shows the general

readmission conditions from 2007 to 2010. The data sources contains 100% Medicare

claimed data from 2007 to 2010. This survey is focused on all the inpatient hospital

admission that occurs within 30 days of discharging from a previous inpatient hospital

admission. The result shows that during 2010, there are 10 million admissions and ap-

proximately 1.9 million readmissions. The survey is focused on the factors which are

used to divide the population who has readmission.

Table 1.1 shows the readmission rate of each age period. From Table 1.1, we can see
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Age Readmission Rate with Readmission
Age < 65 (17%) 23.1% 1.8%

Age 65 − 74 (39%) 17.9% 3.5%
Age 75 − 84 (29%) 18.6% 8.5%

Age > 85 (15%) 18.4% 5.3%

Table 1.1: Readmission Rate of Different Ages (CMS model)

that people under 65 has the highest risk of readmission. And for all the patients who

have readmission, the African-American has a readmission rate of 24.1%. Many patients

have even more than one readmissions. These patients are in a great risk of health issue,

and should be paid more attention during their next readmission. This statistical results

indicates that a specific group of people have a greater possibility of readmission within

30 days. And for those who have more than one readmissions, more careful examine has

to be done to prevent the next readmission.

There are several studies [32] sharing some common variables with our datasets. Ama-

rasingham et al developed a model in 2010, called ADHERE mortality model [2]. This

model uses the features from automated electronic medical records such as blood pressure

and sociodemographic factors like age, sex, and drug taking conditions of patients. It

is a real-time electronic predictive model that identifies the heart failure patients who

are at high risk of readmission. The 1373 heart failure patients are from major urban

hospitals between 2007 and 2008. The dataset is composed primarily on patients’ elec-

tronic medical records. From this dataset we observe that the 30-day readmission rate is

24.1%, compared to the overall 30-day readmission rate of nearly 20%. This group of pa-

tients has a higher readmission rate than the average. The ADHERE model reports the

outcome with the AUC value between 0.56 and 0.68. The different AUC values suggest

that the medical information incorporated with social factors will increase the model’s

accuracy. In further studies, more social factors should be considered.

Tabak mortality model [45] is a predictive model. The dataset used in this model is
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the laboratory data of 194,903 admissions, from 2003 to 2009 across 71 hospitals. De-

mographics, admission-based labs, ICD − 9 code-based data, vital signs, and altered

mental status are all included in this dataset to predict the mortality of heart failure.

The distribution of each variable which is in relation to death is examined. This approach

allows the model to use all the patients’ information when making prediction. This model

tries to use laboratory data more and minimally to use the ICD-9 code-based data. The

prediction result shows that laboratory data contributes more to the prediction accuracy

of mortality rate compared to the other data. Mortality can be well predicted using

the proper model and dataset. As a consequence, the 30-day readmission can be well

predicted with a proper dataset and model.

Logistic regression is considered as an important method in predicting the 30-day

readmission. This regression has a good ability in making prediction with categorical

data. A study has been conducted using the data obtained from Centers for Medicare

and Medicaid Services (CMS) hospital [17]. The survey is conducted to evaluate the

impact of race on 30-day readmission. There are three possibilities in race, which are

black, white and others. The dataset used in this survey contains the information of

heart disease and social demography information of a patient. This survey compares the

result of the dataset with race and without race. The result shows that when race is

taken into consideration, the prediction accuracy will be improved, and the black people

under competing has the lowest rate of 30-day readmission. This survey shows some

good results. However, the limitation of this survey is that the dataset of this survey is

unique and only from one hospital, so it is difficult to spread this method.

Cox regression can also be applied to analyse the hospital readmission. A study is

conducted to qualify the association between having a clinical culture positive for 1 of 3

prevalent hospital-associated organisms and time to hospital readmission. All data are

extracted from the UMMC Clinical Data Repository, which are generated by University
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of Maryland Medical System Information Technology Group. More than 130,000 pa-

tients are included in this study. The data sources contain the patients’ administrative,

pharmacy, and laboratory information. The result shows that patients with healthcare-

associated infections may be at increasing risk of readmission. This result indicates that

the readmission rate can be reduced if the hospital has a better infection predicting

method.

Meanwhile, Cox regression is also applied to detect the relationship between 30-day

readmission and one-year mortality of congestive heart failure patients. The data is col-

lected from the Saint Marys Hospital in Rochester, and more than 15,000 patients are

generated in the data sources. Data elements include demographic, clinical, angiographic,

procedural, and follow-up variables. The in-hospital performances of the patients are also

recorded and used as variables for prediction. These data sources are used in the Cox PH

model to detect the effect of 30-day readmission on one-year mortality [34]. In order to

get a better result, logistic regression is applied to estimate the association between de-

mographic, clinical, and procedural variables and 30-day readmission. The result shows

that nearly 1 in 10 patients have been readmitted within 30 days, and these people have

a higher risk of one-year mortality. Also, the study find that the patients who are female

and have a higher education level are at the highest risk of one year-mortality among all

the patients.

However, the problem with these approaches is that there is no global data that suit for

other predictive models. The existing models either perform badly or can only perform

well on specific attributes. Several models and ways of generalizing datasets are proven

suitable for mortality prediction, and whether they will be suit for 30-day readmission

prediction still requires further experiments. The traditional regression model does not

perform well on clinical data. In our approach, we introduce new techniques to generalize

datasets and make predictions on 30-day readmission and survival analysis.
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1.2 Uncertain Patient Mining

In order to improve the accuracy of the prediction results, we set up an algorithm

called UPAD, which uses SVM to remove the uncertain patients from the data sources

so that the prediction accuracy could be improved.

Noise appears in the dataset all the time. It leads to the consequence that even

the ideal SVM will make mistake in predicting. The patient whose readmission risk is

hard to predict. These patients should be picked up and removed from the dataset, and

generalized to a new dataset to do further analysis. To this end, SVM is applied to pick

up those patients and find the characteristics of them.

1.2.1 Uncertain Patient

In clinical datasets, the patients can be divided into two groups: certain patient (CP)

and uncertain patients (UP). Certain patients [26] are the patients whose prediction

result has a strong connection with their support vector. Support vector is built by the

training model based on the characteristics of the patient. They lie on each side of margin

according to the different characteristics of the patients from each class. Hence, it is easy

to define CPs as those who can be easily identified and labelled in the right class. This

is due to their characteristics being highly identical to those who are labelled the same

in the training data.

On the contrary, uncertain patients can be seen as noise [21]. Noise is known as the

irrelevant and erroneous data which affects the performance of the classifier negatively.

In terms of the support vector notion, uncertain patients can be defined as those who

are local outliers with respect to the support vectors near the hyperplane. Our goal is to

pick up the UPs who affect the performance of the classifier negatively.
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1.2.2 UPAD Algorithm

In this section we introduce the Uncertain Patient Detection (UPAD) Algorithm and

provide a flowchart for describing it.

In order to build a better training model, the identification of the uncertain patient

precisely is needed. A good knowledge about the component of the training model will

contribute primarily to picking up the uncertain patients. Hence, before picking up the

uncertain patients, we have to look at the training model first. Nowadays there is no

existing method that can pick up the uncertain patients automatically, and how to define

the uncertain patients largely depends on the model performance. That is to say, different

models may pick up different uncertain patients according to their methods of making

prediction. As a consequence, before detecting the uncertain patients, a training model

has to be built up.

In our approach, the lab data is applied to build the training model. The support

vector obtained from the training model can be used to pick up the uncertain patients.

Figure 1.2 shows the process of detecting uncertain patients. In the case that a

patient is mislabelled, and the support vector suggests that the patient should be put

in the class which he does not belong to, this case is not what we are concerned with.

Otherwise, if the support vector suggests the patient to the right class, but he is still

mislabelled, that patient is the uncertain patient in the dataset. In the next stage, we will

pick up those samples and generate them as a new dataset, and compare the uncertain

patient dataset with the lab data. The comparison result shows the internal relationship

between the values of each variable and the prediction outcome. Next time when a

patient’s information is known, it will help to decide if he can be used as a sample to

train the model.

The rest of the thesis is organized as follows: In chapter 2, we introduce the SVM algo-

rithm and the toolbox of the LS-SVM in matlab. Chapter 3 explains the Cox PH model
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Figure 1.2: Workflow for UPAD algorithm.
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and provides several algorithms to optimize the coefficients of input variables. Chapter

4 demonstrates the experimental results and shows the performance comparison of dif-

ferent models. Finally, Chapter 5 concludes the discussion with future research directions.
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CHAPTER 2

KERNEL BASED METHODS

In this chapter, we will describe the support vector machine and its applications to

detecting uncertain patients. The contents of this chapter are as follows. In Section 2.1.1,

we give the definition associated with SVM. This is followed by a discussion of the least

squares SVM in Section 2.1.2. Later, we give more details about kernels and in Section 2.2

we introduce several popular choices of kernels. Finally in Section 2.3, we give an example

of the SVM toolbox and explain how to apply the SVM.

2.1 Support Vector Machine

In machine learning, Support Vector Machine (SVM) [41] is a prominent and widely

used supervised learning model. This model can perform well on complex data due to

its inherent nature of obtaining maximum margin classifiers. Usually, SVMs are used

for classification and regression analysis. The basic SVM takes a set of input features

together with their associated possible class labels {1,-1} as the training examples. Given

some training data D, D = {(xi, yi)|xi ∈ Rp∗1, yi ∈ {1,−1}}ni=1, where yi is the class and

xi is the p-dimensional vector.

Once the training model is built, new examples can be classified after they are mapped

into the high dimensional space and predicted to belong to a category. The advantages

of applying the SVM are:

1. It has a strong ability to manage large input datasets with kernel methods [28].

2. The SVM is robust when dealing with noisy samples.
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2.1.1 Mathematical Formulation of SVM

The SVM classifier is modeled using a hyperplane [31]. The equation of a hyperplane

is given below

w • x− b = 0 (2.1)

where x is the input dataset, w is the weight vector and b is the bias of the linear model.

The hyperplane will divide the space into two parts. These two spaces are defined as

w • x− b>0

w • x− b<0

A hyperplane is constructed by a SVM in a high dimensional space [1], which is used

for classification, regression and other tasks. A good separation can be achieved when

the points have the largest distance to the nearest training data point of the other class.

In other words, the larger the margin is, the lower will be the generalization error of the

classifier. For instance, in Figure 2.1, H1 does not separate the classes. However, one can

observe that H2 does separate the classes but with a small margin. Finally,H3 separates

the space with the maximum margin.

2.1.2 Least Square SVM

Least Square SVM (LS-SVM) [44] is one of the most popular models of SVM. Com-

pared to the basic SVM, LS-SVM provides a better prediction result by applying the least

square method, a standard approach to obtain an approximate solution, to determine

the Euclidean distance of the vectors and margin [5, 16].

Least Squares SVM (LS-SVM) is formulated in the following way:

f(x) = (x,w) + b (2.2)
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Figure 2.1: Different Hyperplanes Separating the Feature Space.

where w is the weight vector, and b is the bias of the linear model. To set up the LS-SVM,

two parameters w and b have to be chosen. We can estimate w and b by minimizing the

Lagrange function L(w, b). The Lagrange function can be expressed as

L(w, b) =
n∑
i=1

||f(xi)− yi||22 + C||w||22 (2.3)

where in the Lagrange function, y is the vector of class labels, and C > 0 is the regular-

ization parameter. The minimization of L(w, b) leads to the optimized value of w and b.

LS-SVM works similar to SVM, if f(x) = (x,w)+ b>0, in which the test points, x, are

either assigned to the positive, or the negative classes. The advantage of using LS-SVM

instead of basic SVM are the following:

1. LS-SVM approach makes SVM more generally applicable.

2. LS-SVM reduces the quadratic programming problem of SVM to a linear equation,

which largely improves the computational efficiency of the model [52].
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3. LS-SVM involves fewer tuning parameters compared to the basic SVM.

2.1.3 Advantages of Using SVM

The dataset obtained from distinguished real-world applications might have different

types of data. In our study, the clinical data is used, and the dataset contains both

numeric and categorical data and the SVM is used to make prediction. The advantage

of applying SVMs are given here [3]

1. By introducing kernels to the SVM, it gains flexibility in handling the non-linear

dependencies in the data.

2. SVM can provide a good prediction with high accuracy. By choosing the right

parameter for the kernels, SVMs can be robust to noisy data.

2.2 Kernel Learning

Kernel method is an important data mining technique to deal with the large real-world

datasets efficiently [28]. The kernel method is introduced to deal with the databases

input to SVM, which will increase the efficiency of the computation and also improve the

accuracy of prediction outcome. In this section, we introduce the basic kernel algorithm

with several popular kernels.

2.2.1 Kernel-based Algorithm

For binary classification problems, given some new input data points x ∈ X, we want

to predict the corresponding class y ∈ {±1}. The goal here is to find the y for the testing

data (x,y). To achieve the goal of finding y, the most critical part is measuring the

similarity among the input training dataset and the mapping between X and the class

label {±1}. The targets have only two possible categories, thus making it reasonable to

measure the similarity of class labels. Nevertheless, to measure the similarity among the

input dataset X requires more computation.
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For all the x, x
′ ∈ X, the kernel method can be expressed as

k(x, x
′
) = <Φ(x),Φ(x

′
)> (2.4)

where Φ maps x into dot product space H, which is also known as feature space or Hilbert

space [22]. The similarity measure k is called a kernel, and Φ is called its feature map.

The advantage of using kernel to measure the similarity is given here [43]. The data

is mapped to the feature space with the implementation of the kernel methods, which

simplifies the complex n-dimensional problem. With the help of kernel methods, the

complexity of computation can be reduced. For instance, suppose there is a simple clas-

sification problem which aims to classify the patients into two groups. A group of patients

never readmitted to the hospital is labelled as {+1} while the other group which was

readmitted, is labelled as {−1}. Hence, the label should be Y = {±1}.

The key to separating the different vectors into correct classes is to compute the

mean of each class in the feature space, where c+ = 1
n+

∑
{i:yi=+1}Φ(xi), and c− =

1
n−

∑
{i:yi=−1}Φ(xi) where n+ and n− are the number of examples with positive and neg-

ative target values respectively. The Euclidean distance is calculated between the new

patient and the two centroids. The new patient Φ(x) should be assigned to the class

which has a smaller distance between them. That means, if the new patient is closer to

c+, then he will be readmitted. The above rule can be written as follows

y = sgn(<Φ(x), c+>−<Φ(x), c−>+ b) (2.5)

where b = 1
2
(||c−)||2 − ||c+||2.

Kernel methods are proven to be efficient and robust. We can see that the choice of

kernel will play a significant role in building the accurate classification models.
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2.2.2 Popular Choices of Kernels

In this section, we look at some popular kernels which are widely applied in many

fields. These kernels inherit the basic algorithm and develop their own properties. We

will now describe several kernels such as linear kernel, polynomial kernel, Gaussian kernel

and RBF kernel. In the following, x is the input dataset, y stands for the label matrix,

and α and d are the parameters of the kernel.

Linear Kernel

Linear kernel [29] is the simplest kernel among all the kernel functions. It can be applied

to any linear case. However, if the dataset follows a more complex distribution, the linear

kernel may not work on it well. The key idea of the linear kernel is that it is given by

the inner product <x, y>, and in some situations an optional constant c can be added

as the bias of the linear model. The linear kernel can be written as

k(x, y) = xTy + c (2.6)

Usually the linear kernel is applied to solve simple linear classification problems.

Polynomial Kernel

Polynomial kernel is a kernel which has been used in many machine learning applica-

tions [18]. In most cases, for a d-degree polynomial, the polynomial kernel is defined as

follows:

K(x, y) = (xTy + α)d (2.7)

where x and y are the vectors in the input space. This kernel can prevent some types of

noise and improve the prediction results.

Figure 2.2 shows an example of how a polynomial kernel is applied to map the
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Figure 2.2: Demonstrations of the Kernel Mapping.

data from the original feature space to a high-dimensional space. On the left are the

input samples in the original feature space and on the right are the same samples in the

high-dimensional kernel space.

Gaussian Kernel

Gaussian kernel is a widely used kernel [33], which follows Gaussian distribution to mea-

sure the similarity between points. The following equation describes the Gaussian kernel

k(xi, xj) = e
−||xi−xj ||

2

2σ2 (2.8)

where σ is the variance and will determine the width of the Gaussian kernel. To have

the optimal performance of the kernel, the value of σ needs to be carefully decided.

The Gaussian kernel is a non-linear kernel. It can deal with more complicated non-

linear problems. The Gaussian kernel provides an efficient way when an approximate

result is required.
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RBF Kernel

RBF kernel [10] is a very common kernel used inside SVM. RBF stands for Radial Basis

Function, and is based on the Gaussian distribution. The expression of RBF kernel can

be described as

K(xi, xj) = e−
||x||2

2σ2 (2.9)

where x is the input for testing data points and σ is the parameter to determine the area

under influence, which can be scaled to adapt to the distribution. This kernel computes

the Euclidean distance between the two data points, and the center of the influenced area

will be the support vector.

The performance, or the influence area of RBF kernel highly depends on the value of

σ. In 3-dimensional space, if a RBF kernel has a small σ, there will be some breakout

and peaks on the surface which will be affect the performance negatively. A RBF kernel

has an appropriate σ, the decision surface will be smooth, and there will be no sudden

breakout on the surface. Then the performance of the kernel will be improved.

2.3 SVM Toolbox

In previous sections we described SVM and kernel method, which have proven to be

efficient methods to deal with high-dimensional data. In this section, we will look into

the platform that implements the SVM in a real-world project.

SVM is very efficient for classification because of its robustness to noise and overfitting.

The application of the SVM is in different fields such as machine learning, data mining

[9]. Many toolboxes for SVM are designed for different programming languages, such

as Java, C++, Python, Matlab [40] and so on. We use the LS-SVM toolbox which

has different functions for using SVM kernels in applications, such as classification and

multiple kernel learning.

The LS-SVM toolbox [8] is one of the most popular toolboxes for SVM in Matlab.
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It contains different functions of SVMs and kernels, such as linear kernel, polynomial

kernel and RBF kernel. For the different input data, users can fix the parameter to get a

better training model and well separated support vectors, which will make the new input

testing data separated to each side of the margin as accurate as possible according to

the support vector. The design of the interface for the toolbox allows one to manually

decide the parameter, hence the model possesses great flexibility.

Our kernel experiments are performed using the LS-SVM toolbox. We apply 10-fold

cross validation, which is a technique for estimating the performance of a predictive

model, for the task of prediction. The toolbox accepts the data and gives a promising

prediction outcome. Different datasets with varied parameters have been applied to

several kernel and SVM models in this toolbox. The experimental results are given in

Chapter 4.
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CHAPTER 3

COX PROPORTIONAL HAZARDS MODEL

In this chapter, we introduce the basic Cox proportional Hazards (PH) regression model

and explain its formulation. In Section 3.1, we explain the notions of survival times and

censored status along with providing the equations for Cox Proportional Hazard model.

In Section 3.2, we explain the properties of Cox PH model and give some examples. In

Section 3.3, we delve into the corresponding regularization methods that can be used

to obtain the optimized coefficients, and provide examples of implementation of these

methods.

3.1 The Cox Proportional Hazard Model

The Cox Proportional Hazard model is a prediction model that is widely used by

biostatistic researchers for modeling survival analysis [14]. It can predict the survival

time of each individual according to their predictors. Suppose that a dataset consists of

n individuals, say x1, x2,. . ., xn. The time to event is represented as the survival time

which measures the time for the event to occur. The censored status δ is the set for each

patient which is 1 if the event of interest has occurred in the given time frame, and it

is 0 if the patient drops out. For each individual, the task is to assess the relationship

between the time to event and the predictor variables. To this end, we introduce the Cox

Proportional Hazard model (Cox PH model), which is given by

h(t,X) = h0(t) • exp(
p∑
j=1

xijβj) (3.1)

where h0(t) is called the baseline function, the set X=(x1, x2, . . ., xn) is the set of

n feature vectors, and βj is the coefficient for the jth predictor variable. The baseline

function is an unspecified function, so that the Cox PH model is a semi-parametric model.
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The advantage of being a semi-parametric model such as the exponential model over

other models can be understood through the formulation. The advantage compared to the

fully parametric model is that it does not ask for user opinion on developing the baseline

function, so that it makes no assumption about the shape of the baseline function. It

means that the baseline function only depends on the survival time and the status from a

dataset. This will make the Cox PH model more robust than other parametric regression

models. While at the same time, the Cox PH model also enables the user to control

several covariates. For example, the coefficient of each predictor could be decided before

applying the model. This is an advantage compared to other non-parametric methods.

The Cox PH model has several properties:

1. The baseline hazard, h0(t), does not depend on X but only on the time to event.

When the baseline model is determined, it only changes with time, and is inde-

pendent of the predictor variable entered. Consequently, when it works with the

clinical data, no assumption about the distribution of the baseline is needed once

the time distribution is determined.

2. The predictor set X is time independent. That is, the predictor variables have

nothing to do with the time distribution.

In order to have a better understanding of the Cox PH model, we will now discuss some

of the related concepts of the model and more details about applying the model to the

clinical data. Hazard Ratio (HR) is the ratio which is used to describe the corresponding

hazard rates between two levels of a predictor variable [42]. It is widely used to obtain

the results in clinical trials involving survival data. When used in survival analysis, it

should be noted that hazard ratio does not provide guidance to avoid the death rate or

prolong living time, but only reflects the corresponding time between the censored event

and survival time. A hazard is the rate indicating the probability of an event happening

in a short time period. The hazard could be varied with time.
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The PH assumption is a method to measure whether a problem can be solved with

the PH model. It requires the hazard ratio for each individual to be proportional to the

hazard for other individuals. Intuitively, when we apply a dataset to the PH model and

draw the graph of the hazards for each patient, the hazards for different individuals will

not cross. If the hazards cross at some point, that means that the PH assumption can

not be met, indicating that the Cox PH model is inappropriate for this dataset. In Table

3.1 we present an example to show how the time dependent model works to estimate the

survival time and censored status.

3.2 Cox Regression

The log partial likelihood is defined as

l(β) = −
n∑
i=1

δix
T
i β − δilog(

∑
j∈Ri

exp(xTj β)) (3.2)

where Ri is the set of all the individuals in the dataset whose survival time is greater than

or equal to a survival time of the ith patient [12]. The utilization of partial log-likelihood

is valid and when no ties between the survival times exist in the given dataset. If the

ties exist in the dataset, two extra approximation methods are needed to optimize the

partial log-likelihood [11]. These methods make the partial log-likelihood robust under

different conditions.

The Cox PH model is efficient at incorporating the effect of any factor on a time-to-

event outcome. The survival prediction outcome of the Cox PH model could be affected

by the input covariates, and the average effects on the prediction outcome can be quan-

tified by the hazard ratio.

We now provide an example where we apply the Cox PH regression model on one

of the famous datasets in Cox hazards literature, which is called the Acute Myelogenous

Leukemia (AML) dataset, to do the survival analysis. This dataset has the information
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of whether a patient keeps undergoing chemotherapy, the information of one’s censoring

time and one’s censoring status.

The Cox PH model is given as h0(t)exp(βxi), where h0(t) is the baseline hazard. The

task is to find the optimized β̂c, which is the notation of the Cox partial likelihood es-

timator for β. We apply the Cox regression to the AML dataset. This dataset has

the information of whether a patient keeps undergoing chemotherapy, the information

of one’s censoring time, and one’s censoring status. The dataset has 23 patients with

6 features in total. Here is a description of each feature Time: survival or censoring

time; Status: censoring status, X: maintenance chemotherapy given, age: the age of

the patients; race: the race of the patients; prior: number of prior convictions. The

Cox regression gives the coefficient, z-value and p-value of each variable, and it produces

the value of partial likelihood. Table 3.1 shows the output

The maximum likelihood ratio obtained from this dataset is 8.48. From Table 3.2

Table 3.1: Example of Cox regression
Variable coef exp(coef) se(coef) z p
X 0.916 2.5 0.512 1.79 0.074
age -0.064 0.833 0.036 -3.13 0.011
race 0.412 1.432 0.216 1.75 0.281
prio 0.133 1.287 0.324 4.299 0.001

it is obvious to see that each variable has a different coefficient, based on the different

z− value of each variable. This indicates each variable has a different weight in the Cox

regression model. This dataset focus on the effect of whether a patient is given main-

tenance chemotherapy on survival situation, so that X is given the highest coefficient,

and it should carry on the most weight in predicting the survival situations. The vari-

ables are assigned with the coefficients according to the correlation between them and

the prediction result. However, in some datasets, some variables contribute little or even

bring negative effect to the prediction result. Those variables should be removed or give
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a small coefficient to reduce their influence to the prediction results.

The Cox regression can be applied in many different fields. We explain the differ-

ent kinds of scenarios where Cox regression has been used effectively: (1)Earthquake

study [7]: the hazard function can be used in earthquake forecasting. The information

of earthquake is provided to the Cox regression model, and it gives the probability if an

earthquake will happen in the coming future; (2)Clinical data analysis: the most famous

application of Cox regression. The patients are censored in this study, and several med-

ical information are provided so that the Cox regression can predict the death rate of

these patients; (3)Economic study [38] the hazard function can be applied to detect the

unemployment duration. The economic factors are applied as the variables and the un-

employment is used as the censored status. This study will report the unemployment in

the coming future for certain places;(4)Sociology [13]: the Cox regression can be applied

to determine the marital instability. The age difference between husband and wife, how

old the couple is when they got married and the education level of the husband, are all

considered significant in making prediction of marital instability.

3.2.1 Evaluation Metrics

The standard evaluation metrics for classifiers are not used for evaluating survival

models. Since the data on which Cox models are applied typically include a notion

of censored time, so we also need different measures to actually evaluate these models.

There are several widely accepted indicators that measures a specific method’s perfor-

mance, such as c-index [49], concordance probability [23] and AUC (Area under ROC

curve).

The concordance probability is used to evaluate the discriminatory power and the

predictive accuracy of non-linear statistical models. In Cox PH model, the proposed

estimator is a function of the regression parameters, and the covariate distribution does

not use the observed event and censoring time. This makes the concordance probabil-
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ity asymptotically unbiased in comparison with the c-index when dealing with the Cox

regression. As mentioned before, AUC is widely accepted as the standard measure for

describing and comparing the prediction accuracy for many different models. Unlike the

concordance probability which is designed for Cox regression, AUC can be used as the

measure for different models and suitable for many situations.

The concordance probability is designed to evaluate the predictive accuracy of non-

linear models. Suppose there are two patients in the Cox regression, (X1, t1) and (X2, T2),

the concordance probability is defined as follows

KX,T = pr(T2>T1|X2 ≥ X1) (3.3)

If X is binary and T is ordinal, then the concordance probability can be treated as

AUC. A concordance probability of 1 shows that a model has a perfect performance on

certain data; On the contrary, a value around 0.5 indicates that the model performs

poorly on the data.

In the meanwhile, c-index is calculated as the sum of concordance value divided by all

possible pairs

c− index =
(concordant+ 1

2
ties)

allpairs
(3.4)

where concordant stands for two individuals being compared.

In this study, we use AUC as the way to describe the prediction model, since the AUC

is a widely accepted measure for different models. The results of the Cox regression in our

study is used to compare with other models, and the AUC is the best metrics to measure

the performance of the model. The AUC of the Cox PH model is different from the

traditional models. In traditional cases, the AUC is the accuracy of a prediction result.

However, in Cox regression, AUC shows the prediction accuracy during a particular

period of time. Different AUC values forms a curve and each point on the curve represent
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the AUC at that time point. The AUC at each point is similar to traditional cases,

showing the prediction accuracy of that moment. Hence, when dealing with the Cox

regression, a good result requires both an overall good AUC curve and a high AUC at

some specific points.

3.3 Regularized Cox Models

In this section, we look at the usage of regularization methods in the Cox model.

The regularization methods can yield models that are more efficient and robust. Due

to the recent advancements in the medical field, high-dimensional data appears in many

applications. The traditional way of maximizing partial likelihood estimator does not

work well in the high-dimensional data where the number of predictors are large. In such

cases, we need a robust method for feature selection which can effectively identify impor-

tant features. In order to solve this problem, we introduce several shrinkage methods to

combine with the Cox PH model in order to get better optimization results [47]. These

shrinkage methods are used to solve the optimization problem in high-dimensional spaces

instead of using the traditional method to maximize the partial likelihood.

3.3.1 Regularization Methods

• LASSO: LASSO is an application of the shrinkage method, and is standard for least

absolute shrinkage and selection operator. LASSO achieves a better prediction

outcome by applying shrinkage method, and meanwhile, it gives a sparse solution,

which means that some coefficients for the predictor are set to zero. Hence, LASSO

can also be used to perform feature selection. The main idea of LASSO is to

use the L1 norm constraint to obtain the estimator by minimizing the empirical

risk in partial log-likelihood. A positive constant, S, is used as the threshold

for the L1 norm. To generalize LASSO, some special optimization techniques are

required. Tibshirani [20] used a method called quadratic programming (QP) method

for regression.
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Though LASSO provides a good method to deal with the high-dimensional

constraint optimization, there are several limitations of LASSO.

1. In the p >n case, the LASSO can only select n features during the process of

feature selection.

2. If there is a group of variables with a high correlation, the LASSO tends to

select only one of them and leaves the rest.

3. In standard cases, if the variables have a high correlation, the prediction per-

formance of the LASSO will be very close to ridge regression.

• Ridge: Ridge regression uses the L2 norm penalty. Ridge regression cannot zero

out any coefficients. That means it cannot achieve feature selection. As a result,

after applying ridge regression to the dataset, one could only keep all the variables

or discard all of them.

• Elastic Net: This uses a convex combination of the L1 and L2 norms in the penalty.

3.3.2 Cox-LASSO

Cox-LASSO is a popular survival model that determines the coefficient of different

variables [48]. Instead of using the least squares method to maximize the partial log-

likelihood in Cox PH model, the LASSO method subjects the partial log-likelihood to

a certain constant using shrinkage method. The shrinkage method is an estimation and

prediction method in regression problems. In general terms, the shrinkage method im-

proves the estimate by combining the original estimate with other information. This

means that the value of the improved estimate will be approximately closer to the ’other

information’ offered by the input dataset.

In order to get the estimator β̂ that maximizes the partial log-likelihood, suppose X

denotes the input variables and η = Xβ, then we can define u = ∂l
∂η

, A = ∂2l
∂ββ2 and
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z = η + A−1u. Then a one-term Taylor expansion for the partial log-likelihood can be

expressed as

l(β) + λ
p∑
j=1

|βj| (3.5)

Hence the procedure of using the shrinkage method to maximum the partial log-likelihood

can be summarized as shown in Algorithm 1.

The last value of β̂ is the coefficient derived from the Cox-LASSO method. A proper

Algorithm 1 Cox-LASSO Method

1. Initialize β̂0 = 0 and find a proper value for the boundary constant s.
2. Find out the value of η, u, A and z based on the current β̂.
3. Minimize the Equation 3.5 according to the constraint and record the value of new
β̂.
4. Repeat steps 2 and 3 until the value of β̂ stops changing.

value for the boundary s can often make some of the solution coefficients to zero, so

that the best subset of the variables are selected. This makes the final model more

interpretable and stable. There are two advantages of this method compared to the

traditional methods.

1. Better Prediction Accuracy: the traditional estimates often have low bias but

large variance, in this case, shrinking or setting some coefficients to 0 can improve

the prediction accuracy.

2. Ease of Interpretation: the shrinkage method can determine a smaller subset

from the large number of the variables. By doing this the variables are displayed

in a better manner.

3.3.3 Cox-Elastic Net

Elastic net is a regularized regression method that combines the LASSO’s L1 and

Ridge’s L2 penalties [53]. This method is suitable for the linear regression models, es-
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pecially when there are several highly correlated variables. Similar to the LASSO, the

elastic net can be set up like this, assuming that the predictors are standardized, the

estimates from the elastic net method can be obtained as α ‖ β ‖1 +(1 − α) ‖ β ‖2,

where we can see that the elastic net method includes both LASSO and Ridge regres-

sion. When α is set to 1, the elastic net will be same as LASSO. On the other hand, if α

is 0, the elastic net behaves as ridge regression. Hence, the elastic net has the following

advantages:

1. It results in a sparse model of selected variables.

2. It can eliminate the bad effect of high correlations between several variables in a

group, which encourages grouping effects.

3. The l1 path will be robust by applying the elastic net.

Figure 3.1 shows a 2-dimensional illustration of ridge, LASSO, and elastic net. In

Figure 3.1, α = 0.5. In this Figure, it is obvious that the path in the middle is the

elastic net regularization path. Experimental results on different kinds of datasets also

prove the effectiveness of the elastic net penalty over the LASSO and Ridge [27]. The Cox

Proportional Hazard model can also use the elastic net penalty. We provide a formulation

of this approach, which is called the Cocktail algorithm [51].

Cocktail Algorithm

The shrinkage method is an efficient method to deal with multiple linear regression, while

the Cox PH model is a linear regression model. Instead of maximizing the partial log-

likelihood, a faster and more reliable algorithm called Cocktail is introduced to compute

the coefficients of the Cox PH model. This algorithm is the application of the elastic net

penalized Cox PH model. Compared with other algorithms, the Cocktail Algorithm is

faster and gives better solutions in terms of its robust and high efficient.
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Figure 3.1: Comparison of LASSO, Ridge and Elastic Net.

The Cocktail Algorithm combines the strengths of coordinate descent and the majorization-

minimization principle [19]. This combination can be generated into a new coordinate-

majorization-descent (CMD) algorithm, which is used to minimize the following function

Cocktailformulation = l(β) +
p∑
j=1

λ[αwj|βj|+
1

2
(1− α)β2

j ] (3.6)

where l(β) is the likelihood (In Equation 3.5) and wjs are the non-negative weights making

estimate more flexible. Cocktail uses the weighted L1 norm in the elastic net penalty.

The parameters λ, α are provided by the user. It has been proved that the Coordinate

descent is a promising method of solving LASSO penalized models. Coordinate descent

can be used to obtain a solution for the formulation in Equation 3.6.

The Cocktail Algorithm is shown in Algorithm 2

Algorithm 2 cocktail algorithm

Require: Features Feat, Censored Status Stat, Survival Times Time, λ regularization
parameter, α elastic net parameter
1. Use Feat, Stat, Time to build the cox likelihood using Equation 3.5
2. Formulate the convex optimization problem as given in Equation 3.6
3. Use unconstrained iterative optimization methods such as coordinate descent for
solving Equation 3.6
4. Output the coefficient vector β̂ to obtain the AUC and important features
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3.3.4 FASTCOX

A package called ’fastcox ’ is used to implement Cocktail algorithm for Cox elastic net

method in R [24]. The package is available on the CRAN fastcox site.

Here we have an example on utilizing fastcox. Dat is a sample dataset to demon-

strate the commands of this package.

0. Load fastcox library and Dat.
library(fastcox)
data(dat)

1. fit the solution paths
m1 ← cocktail(x = Dat$x, y = Dat$y, d = Dat$status, alpha = 0.5)

2. make a plot for solution paths.
plot(m1)

3. compute the coeffcient of each variable.
predict(m1,type=”coefficients”)
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we demonstrate the performance of the proposed models using several

performance metrics such as classification accuracy, AUC value and efficiency. Initially,

in section 4.1, we describe the dataset used along with the pre-processing methods. In

section 4.2, we compare the result of different kernels and the performance of SVM with

other models applied on our data. Then, in section 4.3, we show the results of uncertain

patient detection, and finally, in section 4.4, we show the results of Cox Proportional

Hazard model and model comparison.

4.1 Experimental Setup

For our experiment, we obtained the EMR data from the Henry Ford Health System

in Detroit, MI. This dataset contains the information of 8692 heart failure patients from

the year 2001 − 2010. For each patient, more than 100 different features are selected

for further analysis. The data is used for the prediction of 30-day readmission for heart

failure. Table 4.1 summarizes the six different data sources used in our experiments with

the 8692 patients.

Table 4.1: Summary Statistics of the EMR Data Used in our Experiments

No. of attributes Min Value Max Value Average Value
Demographics 86 0 1096 276.72

Admissions 2 0 72 3.01
Medications 6 0 246 3.75
Procedures 10 0 94 1.92

Labs 48 0 8261 302.65
Furosemide 4 0 113 4.54
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4.1.1 Data Description

The data is collected from six different data sources. In general, the dataset

contains the patients’ information: Demographics, Admission, Medications, Procedures,

Labs, and Furosemide.

1. Demographics: this shows the demographic information of a patient, such as

gender, age, and race.

2. Admission: this data shows the number of times and exact date of readmission

for each patient after the discharge date.

3. Medications: it shows the drugs each patient received during their hospitalization.

4. Procedures: this data shows the procedures each patient had received during

hospitalization.

5. Labs: this data gives the basic health information about different labs for each

patient and their results.

6. Furosemide: this data covers the drugs each patient received during their hospi-

talization.

Among the 8692 patients, 5890 of them were readmitted to the hospital. Those pa-

tients are the ones that will be considered for the further analysis. The rest of the

patients are not recorded because they were discharged from the hospital after their

first hospitalization. The features of each patient come in three different forms of data

types: numerical data, categorical data or mixed value data. The composition of each

data source is different, and it directly influences the performance of the results. The

demographics is composed of mixed value data; procedure, medication and furosemide

datasets are composed of categorical data, while the lab file is composed of numerical

data. As a result, different data mining methods are applied to different data sources.
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4.1.2 Performance Metrics

Area under ROC curve is a method to evaluate the performance of a model [36, 6].

Receiver Operating Characteristic curve, famous for diagnostic studies in Clinical data

processing, has been accepted widely as the standard metric for describing and comparing

the prediction accuracy of many different models. If the curve rises from the left-corner

rapidly towards the right-corner, or in other words, the area under the curve (AUC) is

large, we can concluded that the model performs well on this dataset. On the contrary,

if the curve goes directly towards the right-corner, it will be obvious that the model

performs poorly on this dataset. Theoretically, the ideal model will have an area close

to 1, indicating a model’s perfect performance. On the other hand, if the area is close to

0.5, it shows that the model performs badly. When the curve goes below the diagonal

line, the model performs worse than the random classifier.

ROC can be measured by some parameters. For every point in the dataset, there are

four different possibilities.In some cases, when the data points are classified, the patients

with diseases are correctly classified (TP), while other patients are classified into the

wrong class, the class without any diseases (FN). On the other hand, some healthy cases

are classified correctly to the group without the disease (TN), while yet again in some

cases the healthy people are classified into the group with diseases (FP). Those four

notations denote the four possibilities of a prediction model. An ideal model will have

TP + TN close to 1. That is, the AUC will approach 1. Table 4.2 demonstrates the

relationship among the four categories.

The confusion matrix acts as the basic element to form the ROC curve. The two

Table 4.2: Confusion Matrix

Predicted

Actual
TP FP
TN FN
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axis of the ROC curve depend on this matrix.

The ROC curve is determined by sensitivity and specificity. Sensitivity is an index

indicating the positive identifying ability. In the field of clinical information, it is used to

show the proportion of a group of people who are diagnosed with disease and classified

positive. It can be expressed as

sensitivity =
(TP)

(TP) + (FN)
(4.1)

It is obvious when a model has high sensitivity, it has a better ability to pick up the

right people and place them in the correct class. It is important, however, to notice that

when calculating the sensitivity, the indeterminable results are not taken into account.

All the indeterminable data points have to be excluded or treated as false or negative.

Specificity refers to the model’s ability to identify the negative results in a study. In

the field of clinical information, it is used to present the proportion of people who are

healthy and also classified them as such. It can be expressed as

specificity =
(TN)

(TN) + (FP)
(4.2)

If a model has a result with high specificity, then this model can perform well on this

dataset.

The ROC curve is widely accepted as a tool to judge how good the prediction results

are. In many studies, varied variables are applied to raise the AUC value. The most

common variable is the socio-demographic factors. Almost all the studies include this as

a variable. However, the overall health and function is considered the least significant so

that only a few studies take it into consideration. In this thesis, AUC will be used as the

method to measure and compare the performance of different models.
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4.1.3 Data Preprocessing

Since the original datasets contain many missing values of patients that failed to

return to the hospital in a certain period of time, some data were not collected. As a

result, we used Weka to replace all the missing value and get statical results of traditional

machine learning algorithms. Weka is an open source data mining tool [25], that collects

most of the popular algorithms for data mining tasks. We use Weka’s inbuilt function

’ReplaceMissingValue’ to replace all the missing value in the datasets. If a column has

more than 60% missing value, then that column was removed.

The next step is to generate the labels for each patient. In most studies, the label is

built according to the 30-days readmission. The fact that 30-day readmission rate is the

most significant performance quality measure method is publicly accepted. For the SVM

model, we create the label class depending on the 30-day readmission rates as well as

with the survival status. The patients are divided into two classes {1,−1}, which means

that if a patient is readmitted within 30 days from discharge for heart failure, whether

dead or alive, this patient will be put into class {1}; or if the patient have not been

readmitted within 30 days but is still alive, he will be put into class {−1}; otherwise if

one have not been readmitted within 30 days but is dead, this patient will be removed

from the dataset. When the missing values are filled, the datasets are integrated into a

single large dataset to use the useful attributes for classification.

For the Cox PH model, we label it using a different method. The baseline function of

Cox PH model is determined by the censored time and censored status. The censored

time is the length of time from the start of the censoring or study, till the end of it. If

a patient is censored, in another words, dead or never returned to the hospital during

the censoring period, that patient is put into class {1}, otherwise he will be put into

class {0}. It is important to note that the censored time and censored status are all the

indexes during the study, and should be distinguished from the real-world time.
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Before further analysis conducted on these labelled datasets, Weka’s machine learning

algorithm such as decision tree (DT), Adaboost and logistic regression are applied to

analyse the datasets. Table 4.3 demonstrates the results of Weka’s algorithm. These

results will show the original performance of each dataset.

Demographics and Lab data sources gave the best results among all the datasets,

Table 4.3: AUC Values for Different Sources

Datasets ROC
Source # of attributes DT Adaboost Logistic

Demographics 86 0.57 0.58 0.64
Medications 6 0.51 0.51 0.51
Procedures 10 0.5 0.53 0.43

Labs 48 0.51 0.51 0.57
Furosemide 4 0.50 0.54 0.53

and these two data sources are especially used in the experiments to follow later on.

Medications, Procedures and Furosemide, however contain few attributes. These three

data sources should be integrated with other data sources during further analysis.

4.2 Detecting Uncertain Patient

In this section, we show the SVM result and the application of SVM in the uncertain

patient detection using the proposed UPAD algorithm. SVM is a powerful model for

solving non-linear classification problems, and the recent development of kernels makes

the performance of SVM even better. LS-SVM uses the least square method for imple-

menting SVM. The results of LS-SVM compared with basic SVM are more accurate.

This model is robust and efficient in our clinical datasets.
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Kernel Name kernel parameter
RBF kernel σ =1 σ =10 σ =50 σ =100

Linear kernel 0 0 0 0
Polynomial kernel d=1 d=10 d=50 d=100

Table 4.4: Kernel Parameters Used in Our Work

Figure 4.1: AUC of RBF kernel. Figure 4.2: AUC of Polynomial kernel.

4.2.1 Experimental Setup

Five data sources are used in LS-SVM to make prediction. A patient will be removed

from the dataset if 60% of the attributes have missing values. Hence, there are 7788

patients left in each dataset. We use WEKA to fill in the missing values. 10-fold cross

validation is applied to obtain the AUC (Area under ROC curve). The training data

contains 7008 patients and the rest of the 779 patients are contained in the testing data.

For the training data of each data source, we implement linear kernel, polynomial kernel

and RBF kernel to obtain the kernel matrix. The parameter of each kernel can be ad-

justed to achieve the best performance of kernel. Table 4.4 demonstrate the parameter

we tested on each kernel.

In order to get the best parameter for each kernel, we integrate the five data sources

and apply different kernels on it. Figure 4.1 and Figure 4.2 demonstrate the AUC of each

kernel’s performance on the integrated dataset.

From the experiment we discover that when σ= 10, the RBF kernel gives a result



41

with the highest AUC value, while the result of linear kernel will not change. Table 4.5

shows the results of the performance of kernels on each dataset.

The datasets for this study are the non-linear datasets, hence the linear kernel can

not produce a good result using linear method, while the RBF kernel gives a good result.

Due to this, when we select the RBF kernel and σ= 10, the highest accuracy results are

obtained.

From Table 4.5, we observe that LS-SVM results have been improved compared to

Table 4.5: LS-SVM Results

parameter=10
Source Linear Kernel Polynomial Kernel RBF Kernel

Demographics 0.52 0.53 0.56
Medication 0.51 0.51 0.53
Procedure 0.52 0.51 0.52

Lab 0.53 0.53 0.57
Furosemide 0.51 0.53 0.53

the Weka results. For LS-SVM results, the RBF kernel produces the best results and the

Lab data source as well as Demographics data source, have the highest AUC value. The

attributes in these two data sources are considered significant in diagnosing a patient.

Lab data source have several significant indices for a patient which includes variables such

as BUN and CRET. Lab data source generate the variables associated with the overall

health condition, and is considered important since the attributes of lab data directly

shows the health condition of a patient, while Demographics data source shows the basic

information (age, sex and race) of a patient. Figure 4.3 and Figure 4.4 give the ROC

curve of the result of RBF kernel on Lab and HF sources.

Table 4.6 and Table 4.7 gives the confusion matrix of RBF kernel applying on both

Demographics and Lab sources.

Kernel methods perform better than standard machine learning algorithms, such
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Figure 4.3: ROC for Demographics with
RBF kernel. Figure 4.4: ROC for lab with RBF kernel.

Table 4.6: CM for RBF(HF)

Actual
True False

Prediction
Positive 0.804 0.009
Negative 0.183 0.004

Table 4.7: CM for RBF(Lab)

Actual
True False

Prediction
Positive 0.811 0.003
Negative 0.187 0

as decision tree, adaboost and logistic regression. SVM classifier performs well on non-

linearly separable datasets. LS-SVM is better suited for this problem. RBF kernel

follows the Gaussian distribution, while the other two kernels are linear kernels. Hence,

RBF kernel obtains the best results. Kernel methods are designed for SVM, when using

kernels in SVM there is a higher probability to get a better result using kernel matrix

instead of using the original datasets.
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Figure 4.5: Certain Patients Distribution. Figure 4.6: Uncertain Patients Distribution.

4.2.2 Uncertain Patient Detection

Noise is defined as the irrelevant and erroneous data which affects the performance

of the classifier negatively, and is unavoidable in many real-world applications. Noise

patients are considered to be those that are hard to predict into the right class. These

patients are known as uncertain patients. To improve the performance of the model, the

noise should be removed from the dataset. We provide the results obtained from our

UPAD (Uncertain Patient Detection) algorithm.

Among the training data, 121 patients are identified as uncertain patients (UP) and

7008 are certain patients (CP) in our experiments. Figure 4.5 and Figure 4.6 show the

distribution of CP and UP.

Using our UPAD approach we obtain some plots for certain lab attributes of the

patients. We compare the lab attributes distributions for the set of uncertain patients

(noisy patients) and certain patients.

Figure 4.7-4.12 show the distribution of three attributes of certain patient and

uncertain patient. These three attributes are MG, CRET and BUN. These attributes are

highly related to the patient’s health condition. MG stands for Magnesium, which affects

one’s muscle behaviour. CRET means Creatinine, and is a very important indicator of
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Figure 4.7: MG for uncertain patient. Figure 4.8: MG for certain patient.

Figure 4.9: CRET for uncertain patient. Figure 4.10: CRET for certain patient.

Figure 4.11: BUN for uncertain patient. Figure 4.12: BUN for certain patient.
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a person’s health condition. BUN represents Blood Urea Nitrogen. Our test measures

the amount of nitrogen in patient’s blood that comes from the waste product urea and

it directly indicates whether one’s kidneys are working normally.

From these plots, we observe that the distributions of the value in a certain feature has

a big distinguish in the two group of patients. The UP (uncertain patient) usually has a

distribution focusing on a certain area while the distribution of CP (certain patient) is

more emanative; and in most cases, comparing to CP, the UP does not have the ’extreme’

values, which means the minimum or maximum value of an attribute. In the meanwhile,

for all the attributes, the values of the attributes of CP have a certain distribution.

However, the values of the attributes of UP may distribute orderless. For instance, the

attribute value distribution of an UP who readmits after discharge may be more likely

to a patient who never readmits.

4.3 Results on Survival Analysis

In this section, we introduce the survival analysis results obtained from using Cox

regression, Cox Lasso and Cocktail algorithm.

Survival analysis is a reliable statistics method which deals with physiological char-

acteristics and censored failure time in medical system. Cox PH model is suitable to

interpret censored data., and it performs better on a regularized dataset. As a conse-

quence, our datasets will be regularized before applying the model.

In machine learning, regularization is a method to prevent overfitting via introducing

additional penalty terms to the model. The additional information is a constraint of

the model, such as the boundary of a parameter. Regularization is also applied to do

feature selection. It penalizes models based on their parameters. In order to have a

better survival analysis result, we regularize the dataset before applying it to the Cox

model. The algorithm to regularize the model is called Cocktail. It is a Cox-elastic

algorithm which uses shrinkage method to optimize the coefficient instead of maximizing
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the partial log-likelihood. This algorithm gives us the authority to control the parameter

α while keeping the results robust at the same time. When α = 0, the model turns to

Cox-LASSO model and when α = 1, the model becomes Cox-Ridge model.

4.3.1 Experimental Setup

We use a package called ’survival ’ in ’R’ language [30]. After loading the clinical

data, the survival library is loaded using the command ’coxph’ and survival analysis is

performed on the clinical data.

The result gives the coefficient of each variable in the dataset and the maximum

likelihood. We apply the Cox PH model to the integrated dataset to make the survival

analysis. Table 4.8 shows the results of the Cox PH model. The input dataset is the

original dataset and the processed ones which is regularized by different regularization

methods such as Cox-LASSO (CL), Cocktail (Algorithm for Cox Elastic Net) and Cox-

Ridge (CR).

Table 4.8: AUC of Cox PH model

Data Source Cox CL COCKTAIL(α = 0.2) CR
Integrated dataset 0.58 0.65 0.65 0.56

4.3.2 Experimental Results

Survival curve is a graph showing the proportion of a population living at a given

time after contracting a serious disease or receiving a radiation dose. The survival curve

displays the predicting ability of each attribute. Figure 4.13 and Figure 4.14 show the

survival curves of Cox PH model and the Cox PH model with regularization.

From Table 4.8 we can observe that Cox-LASSO and Cocktail give the best result. For

Cocktail, many experiments have been conducted to test the best value of α. The number

of attributes is decreasing with the value of α increasing, for that the more coefficients

are set to zero as the α is increasing. When α = 0.2, the proper number of attributes
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Figure 4.13: Survival Curve for Cox PH
Model.

Figure 4.14: Survival Curve for COCKTAIL
(α = 0.2).

are maintained, and for each attribute, a proper coefficient is given to make the best

result. Figure 4.15 and Figure 4.16 demonstrate the ROC curve of Cox regression and

COCKTAIL.

The survival curves for both methods are plotted by obtaining the coefficient values

from the shrinkage methods, and then the Cox survival function in R package is ap-

plied. The X-axis represents the time in days and the Y-axis represents the survival rate.

Cox model prediction is based on MLE (Maximum Log-likelihood Estimation), and this

model does not have sparsity. By using the sparse methods, we obtain the correct set of

predictors, which result in building a more superior model.

The Cocktail algorithm also has the function to do feature selection. Table 4.9 and

Table 4.10 report 13 attributes with the highest weight, respectively. From Table 4.9 and

Table 4.10, we observe that ckd, heart failure, Hx ESRD, FU status and cva tia appear

in both tables. Those attributes are considered more important in survival analysis.

Table 4.9 shows the top ranked features obtained from Cocktail algorithm. It gives

the attributes from four data sources. This data consists of a mixed binary and real value

attributes. These attributes carry the information of the medical usage, present health

condition and socio-demographic information of a patient. The results show that there

is a strong correlation between the information of a patient and the censored status.
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Figure 4.15: ROC of the Standard Cox model.

Figure 4.16: ROC of the COCKTAIL Algorithm with α = 0.2.
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Table 4.9: Top Ranked Attributes Obtained Using the COCKTAIL Algorithm

Data Source Attribute z-value p-value Description
Demographics cva tia 3.77 <0.05 transient ischaemic attack
Demographics heart failure 8.30 <0.05 heart failure diagnosis
Demographics chd 2.08 <0.05 coronary artery disease

Lab MG 1.43 0.15 Magnesium
Demographics cardiac cath 0.39 0.70 cardiac catheterization
Demographics ckd 3.47 <0.05 chronic kidney disease

Procedure constrast.dye 0.11 0.91 HF Procedure
Medication nesiritide 1.25 0.21 HF Medication

Lab CRET 3.11 <0.05 Creatinine
Demographics WRF GE 25pct dischg 1.00 0.32 increased creatinine measurement
Demographics FU status 4.84 <0.05 patient follow up
Demographics race -3.47 <0.05 Race of patient
Demographics RHC -0.03 0.98 whether patient received RHC

Table 4.10 presents the top ranked features of Cox-LASSO algorithm. These selected

attributes primarily come from lab and demographics data sources. Those attributes

mainly carry the information of a patient’s health condition. The average p-value of

these attributes is around 0.5, meaning these attributes contribute significantly to the

prediction result.

ADHERE and TABAK are two popular models used in the domain of clinical in-

formation. They select the predictors which carry the information of a patient’s health

condition and social background from different hospitals in a large set of patients. The

two models are used to give the result of 30-day readmission prediction. We observe

that the attributes chosen by these Cox methods fit well with the famous set of predic-

tors used in the heart failure readmission. All comorbidities variables are detected by

these models, which are considered to be very important predictors for readmission in

heart failure. Labs such as Creatinine and BUN are also established indicators which are

ranked by these models.
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Table 4.10: Top Ranked Attributes Obtained Using the CL Algorithm

Data Source Attribute z-value p-value Description
Demographics ckd 3.43 <0.05 chronic kidney disease
Demographics heart failure 7.71 <0.05 heart failure
Demographics Hx ESRD 1.60 0.11 history of ESRD
Demographics pvd 3.10 <0.05 peripheral vascular disease
Demographics cva tia 3.73 <0.05 transient ischaemic attack
Demographics FU status 4.93 <0.05 last known follow up
Demographics htn 6.29 <0.05 hypertension
Demographics hemodialysis -0.155 0.88 hemodialysis
Demographics diabetes 2.37 <0.05 diabetes
Demographics afib 1.13 0.26 atrial fibrillation
Demographics WRF GE pt5 0.04 0.96 increase in creatinine measurement
Demographics min RF -1.37 0.17 NKF Renal classification

Lab BUN 0.41 0.68 Blood Urea Nitrogen

As mentioned in the related work, several studies build models which perform well

on clinical data. We have similar data with two of the models, ADHERE model and

TABAK model. Those two models have the information of a patient’s medical condition

and the procedures taken during hospitalization. As a consequence, the datasets proce-

dure and furosemide are integrated to make up the attributes for two models. Table 4.11

demonstrates the performance of each model using our datasets. For CL and Cocktail,

we demonstrate the AUC at the best point.

Lab data gives the health condition and drug information of a patient but lacks

Table 4.11: AUC Comparison of Different Individual Sources

Source ADHERE TABAK CL Logistic COCKTAIL
Demographics 0.579 0.552 0.65 0.663 0.65

Lab N/A 0.632 0.65 0.611 0.64
Medication 0.543 0.516 0.61 0.516 0.58
Pro + Fur 0.551 0.542 0.58 0.519 0.57
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several significant attributes for the ADHERE model. As a consequence, lab data does

not have the result for the ADHERE model, and we mark N/A to show it. From Table

4.11, it is obvious that Cox-LASSO has a higher AUC over other models in general. This

model uses the shrinkage method to generalize the coefficient of each attribute, which is

more suitable for clinical data. The shrinkage method provides a promising way to deal

with the different types of data. As a consequence, after several iterations, a better opti-

mization result will be obtained comparing to logistic regression method in clinical data.

For the Demographics data, the logistic regression gives a better result. Demographics

data is a mixed dataset of both numeric data and binary data. In this case, logistic

regression has a better ability to deal with mixed data, thus the logistic regression gives

a better result.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

In this section, we highlight the main inferences we obtained from conducting different

kinds of experiments in this thesis. We analyzed clinical data and integrated it across

different sources. We modelled this as a regression problem and conducted survival anal-

ysis on this dataset. We understand that survival models are extremely useful in clinical

data studies and they tend to select important features.

We applied the SVM and Cox PH models to the clinical data. We used machine

learning package to fill the missing values in the data sources. Then, we applied logistic

regression models, SVM models and Cox Proportional Hazard models to test the perfor-

mance of different methods on our data.

Sparse methods were used to optimize the performance of Cox PH model. These meth-

ods obtain a trade-off between the goodness measure and sparsity of the result. These

methods not only focus on the accuracy or any other performance measure, but also aim

to obtain more interpretable results. Sparse methods are effective for clinical data, it

is useful in the understanding of large data sources. LASSO is applied to optimize the

coefficients for Cox PH model, which makes the result more accurate and interpretable.

Cox regression model is applied for the survival analysis. It is a statistical technique

for exploring the relationship between the survival of a patient and several explanatory

variables. It has a reliable performance on clinical data. A Cox model provides an esti-

mate of the treatment effect on survival after adjustment for other explanatory variables.

The sparse methods are utilized to optimized the coefficients of the Cox regression model

and achieve feature selection. The selected attributes can be explained by domain knowl-
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edge and utilized in further research.

We also propose a unique problem in finding uncertain patients presented in this dataset.

We define the notion of uncertainty in patients and explore the difference in behaviour of

these patients with respect to certain labs. Such patients can be identified by our UPAD

algorithm. The UPAD algorithm uses a SVM framework in its formulation.

SVM is used to build the classifier. We use LS-SVM to build the classifier, and the

prediction results are compared with traditional machine learning results. The results

show that demographic data source and lab data source perform better than other data

sources, and in general, LS-SVM has better results compared to the traditional methods.

The results are used to detect the noisy instances in the datasets. The SVM model is

robust in identifying noisy instances in the dataset. Noisy (or uncertain) patients are

distributed different with CPs (certain patient). Without the negative effect of such noisy

patients, the prediction results can be improved.

5.2 Future Work

In the future, we plan to use Cox regression models within an ensemble framework.

Ensemble forecasting is a method to do better prediction in an adaptive manner. This

method will improve the prediction accuracy significantly and can potentially make the

Cox regression model suitable for more formats of data sources. We also plan to build

transfer learning models over healthcare clinical data which can be used on longitudinal

data for further analysis.

In addition, we plan to also study the use of different kernels within SVM. Single

kernel has a limited ability in dealing with complexed data. The multiple kernels can

largely improve the accuracy and efficiency of SVM by introducing different kernels to

different types of variables in a large dataset.
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Hospital readmissions are not only expensive but are also potentially harmful, and

most importantly, they are often preventable. Providing special care for a targeted

group of patients who are at a high risk of readmission can significantly improve the

chances of avoiding rehospitalization. Despite the significance of this problem, not many

researchers have thoroughly investigated it due to the inherent complexities involved in

analysing and estimating the inherent predictive power of such complex hospitalization

records. In this thesis, we propose using support vector machines and survival analysis

methods to analyse data collected from Electronic Medical Records (EMR). We define the

notion of abnormal patients and understand how they affect the performance of classifiers.

We use sparse methods with survival regression models to build clinical models which

are suitable to apply on such complex clinical data. These models are compared with

existing readmission models such as ADHERE, TABAK and logistic regression models.

Finally, we provide inferences and conclusions on how to extend this work to build better

regression models.
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