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Life Testing Analysis of Failure Censored 
Generalized Exponentiated Data 

Anwar Hassan 
King Saud University 

Riyadh, Saudi Arabia 

Mehraj Ahmad 
Directorate of Economics and Statistics 
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A generalized exponential distribution is considered for analyzing lifetime data; such 
statistical models are applicable when the observations are available in an ordered manner. 
This study examines failure censored data, which consist of testing n items and terminating 
the experiment when a pre-assigned number of items, for example r ( < n), have failed. 

Due to scale and shape parameters, both have flexibility for analyzing different types of 
lifetime data. This distribution has increasing, decreasing and a constant hazard rate 
depending on the shape parameter. This study provides maximum likelihood estimation 
and uniformly minimum variance unbiased techniques for the estimation of reliability of a 
component. Numerical computation was conducted on a data set and a comparison of the 
performance of two different techniques is presented. 
 

Keywords: Generalized exponential distribution, lifetime data, censored data, 
uniformly minimum variance unbiased estimation  

 

Introduction 

Usually observations made on a random variable do not become available in an 

ordered manner. If n items are taken from a machine and measured for some 

characteristics such as diameter, it would be an anomaly – as well as a cause for 

concern – if the first item taken had the smallest diameter; the second item, the 

second smallest diameter, etc. However, there exist numerous practical situations, 

for example, life testing fatigue and other kinds of destructive test situations, where 

the data become available in this way. If n radio tubes are put through a life test, 

for example, then the weakest will fail first in time, the second weakest one fails 

next, etc. Based on this pattern, it seems clear that observations will naturally occur 

in an ordered manner in life test situations, regardless of whether the test is the life 

of electric bulbs, life of radio tubes, life of ball bearings, life of various kinds of 
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physical equipment or length of life after some treatment performed on animals or 

human beings. There are other situations – for example, testing the current needed 

to blow out a fuse, the voltage needed to break down a condenser, the force needed 

to rupture some physical material, etc. – where observations become available in 

order if the test is arranged in such a way that every item in the sample is subjected 

to the same stimulus (current, voltage, stress, dosage, etc.), so that the first weakest 

item fails, then the second weakest item fails, and so on. 

Put in general terms, if n items drawn at random from some generalized 

exponential population are tested, and the data become available in such a way that 

the smallest observation comes first, the second smallest second, and so on until 

finally the largest observation is last, then it is possible to discontinue 

experimentation after observing the first r failures in a life test. The two principal 

advantages associated with the possibility of stopping before all n observations are 

made stem from the observations occurring in an ordered manner and the ability to 

reach a decision in a shorter time or with fewer observations than if utilizing a 

procedure that involves observing what happens to all items being tested. Thus, this 

study is devoted to failure censored data, which consists of putting n items on test 

and terminating the experiment when a pre-assigned number of items, for example 

r (< n), have failed. The data obtained from such experimentation is almost 

mandatory in dealing with high cost sophisticated items such as televisions. 

The Generalized Exponential Distribution (GED), which more accurately 

represents time to failure, is used instead of the more commonly used exponential 

distribution. Although incorporation of the GED in life testing modeling adds to 

the complexity of modeling and estimation, it fits life data more accurately than the 

exponential distribution due to its flexibility. 

The two parameter GED was proposed and studied extensively by Gupta and 

Kundu (1999, 2001a, 2001b, 2002), Raqab (2002), Raqab and Ahsanullah (2001) 

and Zheng (2002) and the two parameter GED distribution has: density function 
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Here α > 0 and λ > 0 are the shape and scale parameters respectively. For different 

values of the shape parameter, the density function can take different shapes. 

Hereafter, the GED with shape parameter α and scale parameter λ will be denoted 

by GE(α,λ). This article focuses on the maximum likelihood estimate and the 

minimum variance unbiased estimate of the shape parameter when the scale 

parameter is known. 

Estimation Based on MLE 

Maximum Likelihood Estimation 

Suppose n items are subjected to test without replacement and the test is terminated 

after r items have failed. If the failure censored data consist of the lifetimes of the 

r items that failed (X(1) < X(2) < … < X(r)) and the fact that (n − r) items have 

survived beyond X(r). The likelihood of the ordered sample failure times is given 

below if the failure times are generalized exponentially distributed with pdf (1). 

For given ordered failures times when it is desired to estimate α when λ is 

known: 
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The log likelihood function of the observed sample is 
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The MLE of α, for example, ̂  for known λ is 
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Unbiasedness of ̂   

If the n items are tested and observation continues until r units have failed then (T(1), 

T(2), …, T(r)) are the transferred failure time from exponential population with mean 

life α. Because X1, X2, …, Xr are independently and identically distributed (iid) 

GED(α,λ), then T(i), the transformed ordered failures, are iid as Expo(α). In this plan 

the number of items exposed at any time is n, the joint distribution of T(1), T(2), …, 

T(r), that is, the number of failed items out of n items tested is given by 
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Using transformation Zi = (n – i + 1)(T(i) – T(i–1)), i = 1,2,3, …, r, with T(o) = 0, 

then 
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This results in the joint distribution of Z1, Z2, …, Zr as g(Z1, Z2, …, Zr | α) =

1
r
i izre  , thus Z1, Z2, …, Zr are iid as g(z | α) = αe−αz; z, α ≥ 0 
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 follows inverted gamma density of Raiffa and Schlaifer 

(1961) as 
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and the pdf of ̂  is  
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Moments of ̂  

It is necessary to extract the first two moments of ̂ , to find in general the kth 

moment of ̂  as 
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Thus  ˆE   , which clearly shows that the MLE of α is not an unbiased estimate 

of α, but instead it is asymptotically unbiased estimate of α. 

Sufficiency of ̂  
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Using the transformation as in Lemma 1 (see Appendix A) results in, 
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which is independent of the unknown parameter α, thus ̂  is a sufficient estimator 

for α. 
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MLE of Reliability 

Because the MLE of α i,e 
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 has been calculated 

using a property of MLE, that function of an MLE is also an MLE, thus the MLE 

of reliability of GED is denoted by  R̂ t  and is given as    
ˆ

ˆ 1 1 tR t e
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Expectation of Reliability and its Standard Error 

To evaluate the expectation of reliability and its standard error, results from Watson 

(1952)  
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modified Bessels function of the second kind of order r. 

 

       2
2ˆ 1 ln 2 ln

r
r r

o r oE R t A K A
r

  

 


  

 

and 

         
2

2 22
2ˆ ˆ2 ln 2 ln 1

r
r r

o r oE R t E R t A K A
r

  

  


.  

Estimation Based on Minimum Variance Unbiased Estimate 

Minimum Variance Unbiased Estimate 

The Minimum Variance Unbiased Estimate (MVUE) approach is now considered. 

Note that ̂  is biased, but the bias can be easily corrected as 
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Recall the proven result that 1

r

i iZ   follows Gamma(r) and 

  1

1

1 r

i i

Y
r Z



  

 
 

 follows the inverted gamma density of Raiffa and 

Schlaifer (1961) as 
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Clearly    ˆV V  . However, equality holds for r = ½ which is not an integer, 

thus it implies that this inequality never holds for integral value of n. 
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Sufficiency of   
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which is independent of the unknown parameter α and, thus,   is a sufficient 

estimator for α. 

Completeness 

A family of density functions  , ,f X H   (Parametric Space) is called 

complete if E (u(x)) = 0 for all H  implies u(x) = 0 with probability 1, for all 

H . 

That is, there are no two different functions of X which have the same 

expected value for all H . Thus, for example, if a sufficient statistic is complete, 

there will be only one unbiased estimator of α which is a function of the sufficient 

statistic. 
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where  *   includes all other terms. 

Now using Laplas transformation that    
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Thus   is also a complete estimate of α because E( ) = α, it follows that   is a 

uniformly minimum variance unbiased estimate (UMVUE) of α. 

UMVUE of Reliability 
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reliability  R t  is derived next. The general method of finding the UMVUE is to 

search for any unbiased statistics  1 2, , , nT x x x  and a complete and sufficient 

statistic if one exists. Consider a function  1 2, , , nT x x x  such that  1 1T x   if 

1x t  and = 0 otherwise. Thus, T is a function of x1 alone, denoted by  1T x . 
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and define  2
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Because t(1) and y  are independently distributed, the joint distribution of T  and 

T(1) can be obtained by using the transformation 
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The conditional distribution of t(1) is then obtained as      
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Expectation of MVUE Reliability and Its Standard Error 

   
 1

0

1
!

j
r

j

A
E R t

j





    

 

         
2 2

2

0

1 2 2
2 1

r
j

j

r
E R t E R t r j A

r j






 
     

  
   



HASSAN & AHMAD 

319 

Data Analysis 

Sixty items were tested and the test was terminated after the first 10 items failed. 

The failure times (in months) were recorded as 0.12, 0.21, 0.39, 0.52, 0.68, 0.72, 

0.87, 0.99, 1.14, 1.27. Assume that failure times are distributed as generalized 

exponentially distributed.  

The mean value of failure times is 0.69 months. The parameter α and 

reliability was estimated using the MLE and MVUE for various known values of λ 

and the behavior of two different estimations on the estimation of reliability and 

parameter estimation was studied; results are shown in Tables 1 and 2 (see 

Appendix A). 

Acknowledgements 

The project was supported by the Research Center, College of Science, King Saud 

University, Saudi Arabia. 

  



LIFE TESTING ANALYSIS OF FAILURE CENSORED DATA 

320 

References 

Gupta, R. D., & Kundu, D. (1999). Generalized exponential distributions. 

Australian and New Zealand Journal of Statistics, 41(2), 173-188. 

Gupta, R. D., & Kundu, D. (2001a). Generalized exponential distribution: 

Different methods of estimation. Journal of Statistical Computation and 

Simulation, 69, 315-338. 

Gupta, R. D., & Kundu, D. (2001b). Generalized exponential distribution: 

An alternative to gamma or Weibull distribution. Biometrical Journal, 43, 117-

130. 

Gupta, R. D., & Kundu, D. (2002). Generalized exponential distribution: 

Statistical inferences. Journal of Statistical Theory and Applications, 1, 101-118. 

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate 

distribution, Vol. 1 (2nd ed.). New York: John Wiley and Sons. 

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate 

distribution, Vol. 2 (2nd ed.). New York: John Wiley and Sons.  

Mann, N. R., Schafer, R. E., & Singpurwalla, N. D. (1974). Methods for 

statistical analysis of reliability and life time data. New York: John Wiley and 

Sons. 

Raiffa, H. & Schlaifer, R. (1961). Applied statistical decision theory. 

Cambridge, MA: Harvard University Press. 

Raqab, M. Z. (2002). Inference for generalized exponential distribution 

based on record statistics. Journal of Statistical Planning and Inference, 104, 339-

350. 

Raqab, M. Z., & Ahsanullah, M. (2001). Estimation of the location and scale 

parameters of the generalized exponential distribution based on order statistics. 

Journal of Statistical Computation and Simulation, 69, 109-124. 

Watson, G. N. (1952). Treatise on the Theory of Bessel Functions (2nd ed.). 

Cambridge, UK: Cambridge University Press.  

Zheng, G. (2002). On the Fishers information matrix in type-II censored 

data from the exponentiated family. Biometrical Journal, 44, 353-357. 

  



HASSAN & AHMAD 

321 

Appendix A 

Lemma 1 

Part 1  If Xi are random variables independently and identically generalized 

exponentially distributed GED(α,λ), with λ known, then 
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 follows inverted gamma density (Raiffa & Schlaifer, 1961) as 
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Tables 1 and 2 

 
Table 1. Estimate of parameter α and reliability using the MLE for various known values 

of λ 
 

λ ̂  S.E( ̂ ) ˆ ( )R t  ˆ( ( ))E R t  ˆ. ( ( ))S E R t  

0.01 0.03697 0.01452 0.68107 0.82608 0.08094 

0.02 0.04362 0.01714 0.70618 0.82435 0.08484 

0.03 0.04872 0.01914 0.72496 0.82303 0.08778 

0.04 0.05309 0.02086 0.74074 0.82192 0.09027 

0.05 0.05704 0.02241 0.75471 0.82091 0.09248 

0.06 0.06071 0.02385 0.76745 0.81999 0.07015 

0.07 0.06418 0.02521 0.77928 0.81912 0.07197 

0.08 0.06750 0.02652 0.79041 0.81830 0.07369 

0.09 0.07070 0.02778 0.80099 0.81751 0.07533 

0.10 0.07382 0.02900 0.81111 0.81675 0.07690 

0.12 0.07987 0.03137 0.83027 0.81530 0.07989 

0.14 0.08573 0.03368 0.84830 0.81391 0.08273 

0.15 0.08862 0.03481 0.85697 0.81324 0.08409 

0.18 0.09716 0.03817 0.88194 0.81127 0.08805 

0.20 0.10279 0.04038 0.89786 0.80999 0.09059 

0.30 0.13107 0.05149 0.90123 0.80388 0.06835 

0.40 0.16051 0.06305 0.90110 0.79796 0.07581 

0.50 0.19190 0.07539 0.85735 0.79209 0.08300 

0.60 0.22575 0.08868 0.85331 0.78618 0.09004 

0.70 0.26245 0.10310 0.84784 0.78022 0.09695 

0.80 0.30232 0.11876 0.84001 0.77419 0.07782 

0.90 0.34569 0.13580 0.82882 0.76812 0.08284 

1.00 0.39284 0.15432 0.80001 0.76201 0.08778 

2.00 1.12735 0.44286 0.71003 0.70934 0.01114 

3.00 2.42090 0.95102 0.63922 0.70982 0.00853 

4.00 4.15967 1.63407 0.60843 0.59425 0.10358 

5.00 6.12946 2.40788 0.45982 0.63671 0.23600 

10.00 19.33348 7.59491 0.24577 0.39212 0.20864 

20.00 90.37409 35.50230 0.24575 0.35531 0.28917 

30.00 338.40470 132.93700 0.24565 0.29058 0.29601 
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Table 2. Estimate of parameter α and reliability using the UMVUE for various known 

values of λ 
 

λ   S.E( ) ( )R t  ( ( ))E R t  . ( ( ))S E R t  

0.01 0.03327 0.01176 0.53961 0.52654 0.08460 

0.02 0.03926 0.01388 0.56303 0.54956 0.08372 

0.03 0.04385 0.01550 0.58055 0.56679 0.08306 

0.04 0.04778 0.01689 0.59529 0.58126 0.08251 

0.05 0.05134 0.01815 0.60834 0.59408 0.08202 

0.06 0.05464 0.01932 0.62023 0.60577 0.08157 

0.07 0.05776 0.02042 0.63129 0.61662 0.08115 

0.08 0.06075 0.02148 0.64169 0.62684 0.08076 

0.09 0.06363 0.02250 0.65158 0.63655 0.08039 

0.10 0.06644 0.02349 0.66104 0.64584 0.08004 

0.12 0.07188 0.02541 0.67896 0.66344 0.07936 

0.14 0.07716 0.02728 0.69583 0.68000 0.07873 

0.15 0.07975 0.02820 0.70396 0.68797 0.07842 

0.18 0.08744 0.03091 0.72733 0.71091 0.07755 

0.20 0.09251 0.03271 0.74224 0.72553 0.07699 

0.30 0.11796 0.04171 0.81143 0.79338 0.07439 

0.40 0.14446 0.05107 0.87503 0.85569 0.07200 

0.50 0.17271 0.06106 0.93523 0.91465 0.06974 

0.60 0.20318 0.07183 0.94094 0.97121 0.06757 

0.70 0.23620 0.08351 0.94992 0.90141 0.06548 

0.80 0.27209 0.09620 0.95738 0.89999 0.06345 

0.90 0.31112 0.11000 0.96834 0.89320 0.02318 

1.00 0.35356 0.12500 0.95637 0.81830 0.02318 

2.00 1.01461 0.35872 0.82882 0.79209 0.02318 

3.00 2.17881 0.77033 0.80001 0.78618 0.02318 

4.00 3.74370 1.32360 0.61843 0.78022 0.02318 

5.00 5.51652 1.95038 0.49867 0.43011 0.02318 

10.00 17.40010 6.15188 0.36759 0.42673 0.02318 

20.00 81.33660 28.75680 0.32793 0.33867 0.02318 

30.00 304.56400 107.67900 0.27546 0.31526 0.02318 
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