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A Bayesian analysis was developed with different noninformative prior distributions such 
as Jeffreys, Maximal Data Information, and Reference. The aim was to investigate the 
effects of each prior distribution on the posterior estimates of the parameters of the 
extended exponential geometric distribution, based on simulated data and a real application. 
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Introduction 

Adamidis & Loukas (2005) introduced an extension of the exponential geometric 

distribution (Adamidis & Loukas, 1998), naming it as an extended exponential 

geometric (EEG) distribution, to analyze lifetime data. This distribution provides 

increasing or decreasing hazard functions, depending on the values of its 

parameters. In this way, EEG gives a great flexibility of fit for the data. 

If T is a random variable denoting the lifetime of a component with an 

extended exponential geometric (EEG) distribution, then the probability density is 

given by: 
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with t > 0 and parameters γ > 0 and λ > 0. Let us denote this distribution as 

EEG( γ, λ ). 
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The survival and hazard functions of EEG( γ, λ ) distribution, for a fixed time 

t, is given by 
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respectively. 

The mean and variance of the EEG distribution are given, respectively, by 
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where Ψ( z, s, a ) is known as Lerch transcendental function (Erdelyi et al., 1953), 

given by 
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Adamidis et al. (2005) and Kitidamrongsuk (2010) gave additional properties of 

the EEG distribution. 

Figures 1 and 2 present different forms for the density, survival and hazard 

functions for the EEG distribution considering different values of γ and λ. 

The motivation here is to present a Bayesian analysis when there is little prior 

knowledge available or that reflects mainly the information from the sample.. In 

this situation, it is important to use noninformative priors, however, it can be 

difficult to choose a prior distribution that represent one of this situations. Thus, the 

main aim of this paper is to choose a noninformative prior distribution is for the 

parameters parameters λ and γ of the EEG distribution and to study the effects of 

these different priors in the resulting posterior distributions, especially in situations 

of small sample sizes, a common situation in applications. 
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Figure 1. Probability density functions for the EEG distribution with values for the scale 
and shape parameters given respectively, by λ = 0.5, 1.0, 1.5 and γ = 0.5, 1.5, 2.0, 2.5, 
3.0, 3.5. 

 

 
 

 
 
Figure 2. Survival functions and hazard functions for the EEG distribution with values for 
the scale and shape parameters given respectively, by λ = 0.5, 1.0 and γ = 0.5, 1, 3, 5. 

 

 
 

Commonly used noninformative prior distributions are derived, such as 

uniform (Bayes, 1763; Laplace, 1774), Jeffreys (1967), reference priors (Bernardo, 

1979; Berger & Bernardo, 1992), and the uncommon MDIP prior (Zellner, 1977, 

1984). A simulation study is conducted comparing their performance in terms of 

their summaries and coverage rates of credible intervals. 
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Numerical integration based on stochastic simulation methods as the Markov 

Chain Monte Carlo (MCMC) will be used to simulate samples of the marginal 

posterior distribution of interest. In particular, we will be using the Metropolis-

Hastings algorithm to obtain the posterior summaries of interest (see Gelfand & 

Smith, 1990 or Chib & Greenberg, 1995). 

Methodology 

Maximum Likelihood Estimation 

Let X1, …, Xn be a random sample from EEG( γ, λ ) distribution with density (1). 

The likelihood function for the parameters γ and λ is given by 
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where γ > 0 and λ > 0. 

The logarithm of the likelihood function (4) is given by 
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By setting ∂l(x; γ, λ ) / ∂γ = 0 and ∂l(x; γ, λ ) / ∂λ = 0 and after some algebraic 

manipulations, we obtain the likelihood equations 
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  (6) 

 

whose solutions provide the maximum likelihood estimators of the parameters γ 

and λ. Note that the solutions of the likelihood equations (6) cannot be obtained 

analytically and hence numerical approaches need to be used. 

Adamidis et al. (2005) propose to use the EM algorithm (Dempster et al., 

1977) to solve the nonlinear equations (6) and find the MLE of γ and λ. The EM 

iterations are given by 
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Kitidamrongsuk (2010) shows in detail the computations of the expected 

Fisher information matrix Ι(γ,λ) of the EEG distribution, given by 
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is a polygarithmica function (Erdelyi et al., 1953). The maximum likelihood 

estimates for γ and λ are biased for small sample problems. In the case of large 

samples they become unbiased and asymptotically efficient. Such estimates are 

asymptotically Normal distributed with joint distribution given by 
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Bayesian Analysis  

In this section we consider the Bayesian estimation of the unknown parameters λ 

and γ. 

First, a prior distribution which expresses little information on the parameters 

γ and λ can be obtained from uniform densities, which do not favor any particular 

value of λ and γ. In this case, the joint prior distribution for λ and γ is given by 

 

  ,  constant.U      (11) 

 

Another widely-used method to specify prior information is through the product of 

independent gamma distributions for each parameter λ and γ, since γ > 0 and λ > 0, 

that is, γ ~ Gamma(α1, β1) and λ ~ Gamma(α2, β2), where Gamma(a,b) denotes a 

gamma distribution with mean a/b and variance α/b2; and α1, α2, β1 and β2 are 

known hyperparameters. Thus, the joint prior distribution for λ and γ is given by 

 

    1 21 1

1 2, exp .G

          
     (12) 

 

Assume α1 = α2 = β1= β2 = 0.01, that is, a non-informative prior given by (12). 

An another well-known existing non-informative prior, which represents a 

situation with little a priori information on the parameters was introduced by 

Jeffreys (1967), also known as the Jeffreys rule. The Jeffreys prior has been widely 

used due to the invariance property for one to one transformations of the parameters. 

The Jeffreys prior is defined as 

 

    , det , .J     I   (13) 

 

where Ι(γ, λ) is the Fisher information matrix defined in (8) and (9). 

From the equation (13), we get 
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  (14) 

 

It is interesting to observe it was found in (14) independent priors for the 

parameters λ and γ, but this joint prior has a dependence structure. 

Zellner (1977, 1984) proposed a non-informative prior based on the 

Shannon's entropy (1948). The idea is to maximize the information from the data 

in relation to the prior information on the parameters. This non-informative prior 

distribution known as "Maximal Data Information Prior" is obtained from the 

solution of the equation 
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For the EEG distribution given in (1) the resulting non-informative prior is 

given by 
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where Ψ(z,s,a) is defined in (5). 

The proposed Zellner prior distribution (15) has limited invariance properties, 

where invariance is only verified under linear transformations of the vector (γ, λ) 

and not for all differentiable one by one transformations. Bernardo (1979) and 

Berger & Bernardo (1992) use the Kullback-Liebler distance between the posterior 

distribution p (θ | x) the prior distribution π (θ) to maximize the information from 

the data in relation to the known prior information for the parameters to find a non-

informative prior. Additional information about the reference prior can be found in 

Bernardo (2005). 
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An important feature in this approach is the different treatment for interest 

and nuisance parameters when θ is a vector of parameters. In the presence of 

nuisance parameters, a typical case in this paper, one must establish an ordered 

parameterization with the parameter of interest singled out and then follow the 

procedure below. The algorithm of Berger and Bernardo (1992) to derive the 

reference prior can be described in four steps, as follows. We will present here the 

two-parameters case in details. 

Let θ = (θ1, θ2) be the two parameters vector; θ1 will be considered the 

parameter of interest and θ2 is the nuisance parameter. The algorithm used to obtain 

the reference prior is given by 

 

Step 1:  Find the conditional reference prior π2 (θ2 | θ1), assuming that θ1 is 

given by 

 

    2 2 1 22 1 2| , ,     I   (17) 

 

where I22 (θ1, θ2) is the term of order (2,2) of the information Fisher matrix. 

 

Step 2:  Normalize π2 (θ2 | θ1). If π2 (θ2 | θ1) is improper, choose a sequence 

of sets Ω1 ⊆ Ω2 ⊆  ⋯→ Ω, where π2 (θ2 | θ1) is proper. Find 
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Step 3:  Find the reference prior for θ1. The result is given by the solution of 
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Step 4:  Find the prior distribution for (θ1, θ2), when θ2 is the nuisance 

parameter 
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where *

1  is any fixed point within the positive density for all πm. 

 

For the EEG distribution given in (1), the reference prior when λ is the 

parameter of interest is given by 
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The reference prior when γ is the parameter of interest is given by 
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Finally, derive the prior distributions for the parameters the resulting joint 

posterior distributions for γ and λ is proportional to the product of the likelihood 

function (4) and the prior distributions π (γ, λ) given in (11), (12), (14), (16), (22) 

and (23), that is 
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By using any prior distribution proposed is not possible to derive the marginal 

posterior distributions in an analytical form for the parameters γ and λ. Thus, to 

obtain the posterior information on the parameters of interest as the point estimator 

and Bayes credibility intervals, we use MCMC algorithms to simulate samples of 

the values of γ and λ from the joint posterior distributions. 

Results 

Two applications of the theoretical results discussed in the previous sections are 

presented. The first involves a comparison of the estimation methods based on 

simulated data; the second shows an application of the EEG distribution to real data.  

Analysis via numerical simulation 

In this example, some simulations are performed via the Monte Carlo method. The 

goal is to study the effect of different non-informative prior distributions on the 

posterior summaries and also to compare these results with the obtained results 

using classical inference analysis. Posterior summaries of interest are evaluated 

using Monte Carlo Markov Chain (MCMC) methods. The influence of sample size 

on the accuracy of the obtained estimators is also examined. The following 

procedure was adopted: 

 

1. Determine the values of γ and λ. 

2. Specify the sample size n. 

3. Generate values of a distribution EEG(γ,λ) with size n. 

4. Using the data obtained in Step 3, calculate the estimates for the 

parameters γ and λ using MCMC in the Bayesian approach and MLE 

in the classical approach. 

5. Repeat the steps 3 and 4 N times. 

 

Consider two set of the true values for the parameter (γ, λ) given by 

(γ, λ) = (0.5, 2) and (γ, λ) = (2, 4) representing decreasing and increasing hazard 

functions, respectively. The simulated data are generate from EEG distribution with 

the parameter values above for different sample sizes, as n = 10, 25 and 50. 

Tables 1 and 2 show the posterior mean and median, respectively, by considering 

the non-informative priors proposed in this paper for the parameters. The maximum 

likelihood estimates (MLE) are also available.  
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Table 1. Posterior medians and MLE for λ = 2 and γ = ½ for 1000 samples of sizes 10, 

25 and 50. 
 

λ = 2 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 

n=10 2.98(1.62) 2.80(0.84) 2.96(0.87) 2.88(0.81) 3.61(1.54) 1.15(1.06) 3.44(2.61) 

n=25 2.62(1.10) 3.00(1.05) 2.93(0.88) 2.92(0.83) 2.95(1.00) 2.01(1.06) 2.54(1.26) 

n=50 2.17(0.76) 2.52(0.70) 2.58(0.67) 2.71(0.67) 2.56(0.72) 2.07(0.77) 2.26(0.80) 

        

γ = ½ Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  

n=10 1.01(0.43) 1.31(0.77) 1.12(0.17) 1.13(0.14) 1.50(0.77) 0.35(0.49) 1.51(2.02) 

n=25 0.87(0.39) 0.92(0.42) 0.95(0.23) 0.99(0.21) 0.97(0.46) 0.56(0.41) 0.81(0.68) 

n=50 0.63(0.32) 0.71(0.27) 0.81(0.27) 0.89(0.26) 0.76(0.32) 0.56(0.29) 0.64(0.36) 

 
 
Table 2. Posterior medians and MLE for λ = 4 and γ = 2 for 1000 samples of sizes 10, 25 

and 50. 
 

λ = 4 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 

n=10 4.85(1.21) 4.62(1.50) 5.31(1.55) 4.73(0.99) 5.08(1.25) 5.08(1.25) 4.86(2.03) 

n=25 4.56(0.81) 4.02(0.77) 3.82(0.71) 3.90(0.73) 4.77(0.87) 3.50(0.84) 4.41(1.42) 

n=50 3.76(0.57) 3.98(0.61) 3.51(0.41) 3.56(0.40) 3.40(0.64) 3.67(0.65) 4.22(0.94) 

        

γ = 2 Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  

n=10 3.07(0.50) 1.81(0.40) 3.25(0.42) 3.33(0.40) 3.26(0.42) 3.26(0.42) 3.65(3.23) 

n=25 2.70(0.49) 1.76(0.34) 1.62(0.25) 1.74(0.27) 2.94(0.53) 1.52(0.56) 2.87(2.06) 

n=50 1.71(0.45) 1.90(0.41) 1.53(0.29) 1.60(0.32) 1.95(0.45) 1.70(0.52) 2.43(1.16) 

 
 

From Tables 1 and 2, it is observed that when the hazard function is 

decreasing (0 < γ < 1) the prior distribution given by product of independent 

gamma distributions gives the best estimation for the parameters while for the 

increasing hazard function (γ > 1) the MDIP prior distribution provides the best one 

for all sample sizes considered. 

A criterion for comparison of the prior distributions consists on checking the 

frequentist coverage probabilities of the posterior intervals. We therefore compare 

the frequency at which the true values of γ and λ are included in their 95% posterior 

intervals. This frequency should be close to 95% for large numbers of repeated 

experiments.  
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Table 3. Coverage probabilities for λ = 2 and γ = ½ for 1000 samples of sizes 10, 25 and 

50. 
 

λ = 2 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 

n=10 98.50% 99.10% 95.70% 96.70% 90.60% 96.50% 95.20% 

n=25 95.20% 91.60% 89.70% 90.00% 93.40% 97.20% 95.00% 

n=50 97.50% 94.30% 95.00% 91.30% 92.20% 96.60% 94.70% 

        

γ = ½ Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  

n=10 99.20% 98.00% 95.70% 94.80% 90.60% 97.10% 94.60% 

n=25 95.50% 97.80% 97.90% 97.70% 95.00% 97.80% 95.50% 

n=50 97.60% 97.90% 96.00% 95.50% 93.70% 97.70% 95.40% 

 
 
Table 4. Coverage probabilities for λ = 4 and γ = 2 for 1000 samples of sizes 10, 25 and 

50. 
 

λ = 4 Jeffreys MDIP Ref. λ Ref. γ Uniform Gamma MLE 

n=10 95.50% 96.60% 88.10% 98.00% 91.20% 91.20% 96.60% 

n=25 94.60% 98.20% 96.80% 97.00% 94.00% 95.60% 94.30% 

n=50 97.30% 98.40% 96.00% 97.60% 98.50% 96.60% 95.00% 

        

γ = 2 Jeffreys  MDIP Ref. λ Ref. γ Uniform Gamma MLE  

n=10 97.10% 99.50% 93.80% 97.00% 96.60% 96.60% 92.50% 

n=25 98.50% 99.10% 99.50% 99.90% 98.50% 97.10% 92.00% 

n=50 98.20% 98.90% 97.00% 99.50% 98.80% 96.50% 93.90% 

 

An example with literature data 

Now consider a lifetime dataset related to an electrical insulator subjected to 

constant stress and strain, introduced by Lawless (1982). The dataset does not have 

censored values and represents the lifetime (in minutes) to failure: 0.96, 4.15, 0.19, 

0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 16.03, 4.85, 2.78, 4.67, 1.31, 12.06, 

36.71 and 72.89.  

Assume that the EEG distribution is appropriated to analyze this dataset, and 

then it will be compared with other lifetime distributions such as Weibull, Gamma, 

and Lognormal. As shown, the efficiency of the different non-informative prior 

distributions changes with the shapes of the hazard functions, therefore, to get good 

inferences on parameters of interest it is necessary to have some prior information 

on how the hazard function behaves for the Lawless data set. In this way, Barlow 

& Campo (1975) proposed a simple graphical technique that has been widely used 

to verify the behavior of the risk function called TTT plot (total time for testing). 

The graph is constructed with the plot of the consecutive quantities [r/n, G (r/n)], 

where G (r/n) is a function given by 
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where r = 1, ..., n and t(i), i = 1, …, n are the order statistics in the sample. 

Using the TTT curve in an empirical scale, one can determine the shape of 

the hazard function for the lifetime data. A diagonal line indicates that the data have 

a constant hazard function; if the curve is convex the risk is decreasing; if it is 

concave, there is an indication that the risk is increasing; if first is convex and after 

this is concave then there is an indication that there is a bathtub shape for the hazard 

function; if it is first concave and after this convex, there is an indication of inverse 

form of the bath for the hazard function. The Figure 3 shows how to verify the 

behavior of the hazard function. 
 
 

 
 
Figure 3. TTT plots for different distributions indicating the shape of the hazard function. 

 

 
 

Some TTT transformations can be studied to solve other problems. Nair et al. 

(2008) show some of these transformations applied in survival analysis. Figure 4 

shows the TTT plot for the Lawless data set. 
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Figure 4. TTT plot for the dataset lifetime related to an electrical insulator subjected to 

constant stress and strain (Lawless data). 

 

 
 

It is observed in Figure 4 that the TTT plot is convex; then it can be concluded 

that the risk is a decreasing function. When the hazard function is decreasing, it was 

observed from the results of section 4.1, that non-informative priors obtained 

through the product of independent gamma distributions is the best prior with little 

prior information about the parameters of interest. The joint posterior distribution 

of λ and γ (24) is obtained by replacing π(γ, λ) by (12). It is necessary to use 

numerical methods to extract information from the marginal posterior distributions 

λ and γ. MCMC methods are used to simulate samples for the joint posterior 

distribution; that is, also for the marginal posterior distributions of interest. 

It was generated 110,000 iterations with a “burn-in“ of 10,000 values and 

jumps of size 10; so we get chains of the marginal posterior distributions for λ and 

γ of size 10,000 obtained using MCMC methods. To verify the convergence of the 

chains, we have used Geweke (1992) diagnosis, which indicated the convergence 

of the two chains. The convergence and autocorrelations is also observed in the 

trace-plots of the simulated series given in Figure 5. 

To verify the performance of other lifetime distributions we also consider as 

non-informative prior, the product of independent gamma distributions 

γ ~ Gamma (0.01, 0.01), λ ~ Gamma (0.01, 0.01) assuming the following lifetime 

distributions: EGE, Weibull, Gamma and Lognormal distribution. The results are 

compiled in Tables 5 and 6, respectively. 
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Figure 5. Trace-plots and autocorrelation graphs for the generated values of λ and γ. 

 

 
 
Table 5. Posterior estimates (means) for γ and λ considering different probability 

distributions for the Lawless data set. 
 

Parameters EGE Weibull Gamma Log-normal 

γ 0.0482 (0.0161) 0.7629(0.1356) 0.6725(0.1870) 1.6880(0.3969) 

λ 0.4513 (0.1649) 7.8250(4.2250) 0.0474(0.0183) 2.6410(1.0200) 

 
 
Table 6. Obtained results for the DIC, BIC and AIC criteria for the different probability 

distributions for the Lawless data set. 
 

Criteria EGE Weibull Gamma Log-normal 

DIC 138.96 140.70 141.30 141.30 

BIC 140.55 148.06 143.13 151.62 

AIC 142.44 149.95 141.24 149.73 

 
 

Based on any of the criteria used by the table it can be concluded that EGE 

was the best fit to the offered data. 

Conclusion 

The use of extended exponential geometric (EEG) distributions showed a good 

flexibility of fit for lifetime data applications and could be an alternative 
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distribution to other usual distributions in Survival analysis. The great number of 

existing non-informative prior distributions can cause difficulties in the choice of 

an adequate prior with little information a priori, mainly when these prior 

distributions do not produce similar posterior summaries. In this way, the 

development of a general theory for the construction of non-informative prior 

distributions is an important topic to be investigated by researchers in the Bayesian 

inference. 

The results showed the effects of different non-informative prior distributions 

related to the changes in the risk function using extended exponential geometric 

(EEG) distributions. Therefore, we recommend the product of gamma distributions 

Gamma (0.01, 0.01) when the hazard function is decreasing and the non-

informative MDIP prior distribution when the hazard function is increasing. With 

these choices of prior we surely get better inferences for the parameters. 
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