
Wayne State University

Wayne State University Theses

4-9-2002

Implementation of Viterbi decoder on Xilinx
XC4005XL FPGA
Nabil Abu-Khader
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Electrical and Computer Engineering Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Abu-Khader, Nabil, "Implementation of Viterbi decoder on Xilinx XC4005XL FPGA" (2002). Wayne State University Theses. 540.
http://digitalcommons.wayne.edu/oa_theses/540

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/540?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages

IMPLEMENTATION OF VITERBI DECODER
ON XILINX XC4005XL FPGA

by

NABIL ABU-KHADER

THESIS

Submitted to the-Graduate School

of Wayne State University,

Detroit, Michigan

In partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2002

MAJOR: ELECTRICAL ENGINEERING

Approved by:

Date

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Pepe Siy for his

encouragements and guidance during my graduate studies. His trust in my capabilities

allowed me to pursue the research of my choice. I thank him for encouraging me to

dwell into the dual topic of Viterbi Decoding and FPGA's.

I would also like to thank Wayne State University for providing all the necessary

support in completing this work. Last but not the least I would like to acknowledge the

constant encouragement and support by my mother throughout the course of my

master's studies.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS '" '" '" '" '" '" ii

LIST OF TABLES '" , v

LIST OF FIGURES , '" '.vi

CHAPTERS

CHAPTER 1 -Introduction ~.1

1.1 Motivation '" '" '" '" '" '" '" 1

2.2 Approach to the solution '" ,' 2

CHAPTER 2 - Preliminaries 1 II 4

2.1 A Model of Digital Communication System ~ .

2.2 Convolutional Codes '" '" '" '" ;

2.3 Mapping the Channel Symbols to Signal Levels , : '" 1

CHAPTER 3 - Viterbi Algorithm .

3.1 How Viterbi Decoder Works?

3.2 Viterbi Decoder Features.................................... . ;

3.3 Design Flow Chart '" .

3.4 The VHDL Code... .

3.5 An Example 24

CHAPTER 4 - Field Programmable Gate Arrays (FPGAs) 31

4.1 What is an FPGA? '" , '"

4.2 What does a logic cell do? .. '" '"

4.3 What does 'Field Programmable' mean?.................

iii

4.4 Xilinx XC4000 Family Logic Block , 32

4.5 More About XC4005XL Board , ., '" ..33

4.6 How To Program The PFGA Board? 34

CHAPTER 5 - Experimental Results 35

5.1 What Did We Do? 35

5.2 Using DrCAD Capture To Implement Viterbi Decoder 35

CHAPTER 6 - Conclusion And Future Work •.••.•........•........•......•.••.•..•. 53

Bibliography I ••••• I •• I •••••••• I •• I. I" I" 11.1 ••••••••• 55

Abstract I •••••••• I' ••••••• I' ••••••••••••••••••••••••••••••• 57

Autobiographical Statement ... I ••• 59

iv

LIST OF TABLES

TABLE PAGE

Table 2.1 A random bit stream of data 8

Table 5.1 The applied random stream of data , , , 39

Table 5.2 Our final optimum results .44

v

LIST OF FIGURES

Figure 1 : A model of digital communication system .4

Figure 2 : An example of a ~ rate convolutional encoder with K=3 (4 states) '" 7

Figure 3 : The state transition diagram for the K = 3, r = 1/2 convolutional encoder. 8

Figure 4a : A window of the trellis diagram showing a sample of data stream 9

Figure 4b : Trellis diagram showing a sample of data stream 10

Figure 5: Possible transitions into state SO 12

Figure 6 : Branch selection based on global and branch distances 13

Figure 7 : Backtracking through the survivor window 15

Figure 8 : A trellis diagram 25

Figure 9 : Encoded message with a couple of bit errors 25

Figure 10 : The trellis diagram between t = 0 and t = 1 '" 26

Figure 11 : The trellis diagram between t = 0 and t = 2 27

Figure 12 : The trellis diagram between t = 0 and t = 3 '" 28

Figure 13 : The trellis diagram between t = 0 and t = 4 '" 28

Figure 14 : The trellis diagram between t = 0 and t = 5 29

Figure 15 : The trellis diagram showing the whole message 29

Figure 16 : The Xilinx XC4000 family CLB 33

Figure 17 : Our Virerbi decoder symbol. 38

Figure 18 : The simulation result after applying the random stream of data 39

Figure 19 : Data moves in the survivor window .40

Figure 20 : The delay for the whole system .40

vi

Figure 21 : A noise inserted at time 192ns .41

Figure 22 : Showing the previous change .41

Figure 23 : Inserting more noise .42

Figure 24 : Inserting more noise '" .42

Figure 25 : Observing a change at the output.. .43

Figure 26 : Showing the change that happened at the output.. .43

Figure 27 : Ie-station LVS check result.. 52

vii

1

CHAPTER 1

INTRODUCTION

1.1Motivation:

The use of error-correcting codes has proven to be an effective way to overcome

data corruption in digital communication channels. The Viterbi decoding algorithm is

used to decode convolutional codes and is found in many systems that receive digital

data that might contain errors. Viterbi decoding, also known as maximum-likelihood

decoding, is comprised of the two main tasks of updating the trellis and trace-back. The

trellis used in Viterbi decoding is essentially the convolutional encoder state transition

diagram with an extra time dimension. The Viterbi Algorithm (VA) was first described in

1967 by Andrew J. Viterbi as a method for efficiently decoding convolution codes. In

most modern communication systems, channel coding is used to increase bandwidth,

add error detection and correction capabilities, and provide a systematic way to

translate logical bits of information to analog channel symbols used in transmission.

Convolutional coding and block coding are the two major forms of channel coding used

today. As their names imply, in convolutional coding the algorithms work on a few bits at

a time while in block coding big chunks of data are processed together [SWA02].

Generally, convolutional coding is better suited for processing continuous data streams

with relatively small latencies. Also, since convolutional forward error correction (FEC)

works well with data streams affected by the atmospheric and environmental noise

(Additive White Gaussian Noise) encountered in satellite and cable communications,

they have found widespread use in many advanced communication systems. Viterbi

2

decoding is one of the most popular FEC techniques used today and is therefore the

main focus here.

Viterbi decoding and sequential decoding are the two main types of algorithms

used with convolutional codes. Although sequential decoding performs very well with

long-constraint based convolutional codes, it has a variable decoding time and is less

suited for hardware implementations. On the other hand, the Viterbi decoding algorithm

has fixed decoding times and is well suited for hardware implementations.

On the trellis of a convolutional code, the VA finds the shortest path that leads to

a particular state. Metrics are associated with each branch and they can be calculated

as the Hamming distance of the corresponding code word over the received word for

hard decoding or as the Euclidean distance (using a quantizer) in the case of soft

decoding. Many paths can lead to the same state. The VA selects the path whose

summation of all metrics is the lowest. This refers to the add-compare-select (ACS)

operation [GARDD].

At the receiver, the stream of data (which may now contain errors) is passed

through a Viterbi decoder, which attempts to extract the most likely sequence of the

transmitted data.

Projects and researches previously done did not follow the new IEEE 802.16

specifications, but here, we followed the specifications as can be seen in chapter (5).

1.2Approach to the solution:

3

Viterbi decoders are generally implemented using programmable digital signal

processors (DSPs) or special purpose chip sets and application-specific integrated

circuits (ASICs) [DUOO].Here, we aim to implement such decoder on an FPGA.

The specific aims are:

- Understand the principles of convolutional coding and Viterbi decoders.

- Design and code parameterisable, behavioural VHDL models for a Viterbi decoder

according to the new IEEE 802.16 specifications.

- Test the VHDL code then Synthesise the decoder onto an FPGA.

Programmable Logic is ideal for implementing error control coding (ECC)

functions for two main reasons. First, PLDs are flexible, easing the modification of

coding methods and improving algorithms. Second, the performance and density of

PLDs align optimally with industry requirements. Unlike Application Specific Standard

Products (ASSPs) designed specifically for ECC, programmable logic devices offer the

designers the speed of hardware and the flexibility of software while implementing ECC

functions.

ECC is a methodology that detects and in some cases corrects errors induced in

digital data during transmission over a noisy channel (digital video/audio broadcast,

satellite communications) or during storage in an unreliable medium (compact disc,

digital tape). Some of the common ECC functions ideally suited for programmable logic

are Reed-Solomon, Viterbi, Trellis Coded Modulation (TCM), etc.

FPGAs can speed time to market for the particular design of telecommunication

applications because of their quick turnaround time [ALT01].

4

CHAPTER 2

PRELIMINARIES

In the following two sections we describe some basics towards our

implementation. The first section describes a model of digital communication system

and where the Viterbi algorithm is applied. The second section describes the

convolutional encoding process.

2.1 A model of digital communication system:

A model of digital communication system is shown in fig (1) [NETCOM]:

This is where the
Viterbl algo operates-:

: a.mtcl I ~malWatar:1 Wavofmm I-J Detector I 1 a.mtcl 1->r,;;;l
L-;;..;;,,;,=";""'-.I -> Enccrler I I Channel I I decoder ~

noise

Fig(1) A model of digital communication system

The discrete source generates information in the form of binary symbols. The

channel encoder adds redundancy to it according to a prescribed rule before

transmission. The channel decoder in the receiver uses this redundancy to decide

which message bits were actually transmitted. The combined goal of the encoder and

decoder is to minimize the effect of channel noise. There are many different error-

correcting codes. They have been classified into "block codes", or "convolutional

5

codes". In block coding, an encoder generates a n - bit code word with a k - bit message

block, so code words are produced on a block-by-block basis. But if we want to process

the incoming bits serially rather than in large blocks, we will use convolutional coding.

2.2 Convolutional codes

Convolutional codes are used to add redundancy to a stream of data. The

addition of redundancy (extra bits) allows for the detection and possible correction of

incorrectly transmitted data.

The input bits are convolved in such a way that each bit influences the output

more than once. Each input bit enters a shift register and the output of the encoder is

derived by combining the bits in the shift register in a way determined by the structure of

the encoder in use. Therefore, every bit transmitted will influence as many of the

outputs as there are stages in the shift reqister, For example if a three bit shift register is

used then, each encoded bit will influence three output bits of the encoder. The input

bits could be fed in more than once at a time and the encoder could produce more than

one output at each step [MEN98].

The output of a convolution encoder is dependent upon the current data and

previously transmitted data. A convolutional code is characterized by its rate, constraint

length, and its generator polynomials.

The code rate (kin) of a convolution code is the ratio of the size of the input

stream to the size of the output stream. The convolutional code used here has a rate of

%, which means that each input bit produces two output bits.

6

Rate = In lOUT highOUTlaw

The constraint length (K) indicates the number of previous input data that must

be examined along with the current input data to determine the output data, or simply,

The number of stages in the shift register. The convolution code used here has a

constraint length of 3. We need 2"{K-1) states. Also, The constraint length K is directly

related to the number of registers in the encoder. These shift registers hold the previous

data values that are systematically convolved with the incoming data bits. This

redundancy of information in the final transmission stream is the key factor enabling the

error correction capabilities that are necessary when dealing with transmission errors.

Systems with higher constraint lengths are generally more robust. However, the

complexity of the Viterbi decoder increases exponentially with the constraint length, so it

is unusual to find constraint lengths greater than nine [MEN98].

The generator polynomials describe how past and current input data are used to

determine the output data. The generating polynomials denote the convolutional

encoder state bits, which are mathematically combined to produce an encoded bit.

There is one generating polynomial per encoded bit. The convolution code used here

uses the following generator polynomials:

OUTlaw= In{t) ffi In{t-2)

OUThigh= In(t) E9In(t-1) E9In(t-2)

Fig(2) shows an example of a % rate convolutional encoder with K=3 (4 states).

7

)__·0

FF

o 1

Fig(2) An example of a Yz rate convolutional encoder with K=3 (4 states)

As shown in the figure inputs enter from the left end and two outputs are

generated for every input bit. The incoming bit as well as the bits in the two f1ipflops

together form the "shift register". One output is produced by XORing all the bits of the

shift register and the other is XOR output of two of them. Initially we can assume that

the flipflops contain zeroes and subsequently they. take on values depending on the

input bits. The bit values represented by theflipflops is called the "state" of the system.

In the example shown, the state of the encoder is "01".

In fig(2) [NETCOM], a particular situation is shown where the incoming bit is a 1

and the two previous bits were 0 and 1. The output of this situation would be 0 at both

the outputs. The output bits are transmitted through a communication channel and are

decoded by employing the Viterbi decoder at the receiving end.

8

The polynomials described above can be represented as a state machine (state

transition diagram). The state transition diagram for the K = 3, r = 1/2 encoder is shown

in fig(3).

1:/10

Fig(3) The state transition diagram for the K = 3, r = 1/2 convolutional encoder

Table 2.1 shows a random bit stream of data along with the output stream and

the next state.

Input Stream 0 0 1 0 1 1 1

Next State 80 SO 81 82 S1 S3 83

Output Stream 00 00 1 1 1 0 00 01 10

Table 2.1 A random bit stream of data

9

The values inside the circle of fig(3) represent the current state. The values along

the arrow represent the input and output bits of the encoder. For example the top circle

indicates State 00. If the next input bit is a a then the output of the encoder will be 00

and the next state will again be 00. If the next input was a 1 instead, then the output of

the encoder would be 11 and the next state would be 10. Each arrow in the above figure

represents a possible transition from one state to another and is called a "branch". The

Viterbi decoder will generate a branch metric value for each of the possible branches

based on the input actually received by the encoder. This branch metric is the Hamming

distance between the received value at the decoder and the output value associated

with the branch. A trellis diagram can be used to represent the operation of a state

machine over time. In a trellis diagram, the states are listed vertically; time advances

from left to right. Fig(4) shows the same input data of table 2.1, represented in a trellis

diagram [MEN98]. Note that upper branches are followed when the input is '0'; lower

branches are followed when the input is '1'.

Fig(4a) A window of the trellis diagram showing a sample of data stream

10

s1

sO

s2

s3

Fig(4b) Trellis diagram showing a sample of data stream

2.3 Mapping the Channel Symbols to Signal Levels

Mapping the one/zero output of the convolutional encoder onto an antipodal

baseband signaling scheme is simply a matter of translating zeroes to +1 and ones to -

1. This can be accomplished by performing the operation y = 1 - 2x on each

convolutional encoder output symbol [ACT97].

11

CHAPTER 3

VITERBI ALGORITHM

3.1 How Viterbi decoder works?

The Viterbi algorithm is based on the fact that there are only a finite number of

possible states of the encoder, and that given two consecutive states we can predict the

input bit(s) that would have caused that state transition.

The Viterbi decoder comprises of three major parts, namely the branch metric

generator (BMG), the add-compare-select unit (AC8) and the survivor memory unit.

The branch metric generator, which is used to calculate the branch metrics for

every stage, is a single unit which is repeatedly used by all the stages of the trellis. The

add-compare-select unit calculates the path metrics of all the states in a stage and the

number of ACS units depends on the constraint length [SWA02]. The survivor memory

unit is used to store the path history of all the surviving paths and is finally used to

retrieve the original input sequence.

A Viterbi decoder attempts to reconstruct a path through a trellis diagram based

on a potentially corrupted stream of data. This is accomplished by selecting the most

likely path through the trellis. In the decoding process, legal transitions are considered

much more likely than illegal transitions. Not all transitions between states are legal. For

example there is no legal transition from state 80 to state 82.

When new input data arrives, a probability value is calculated for every path

between two sets of states. The probability is determined by calculating the distance

between state, which is the number of bits that would have to be incorrect for the path to

be taken. For example, consider the state SO in fig(5) [MEN98]. There are two possible

12

paths to this state: one from state SO and one from state 52. These paths are

highlighted in fig(5).

Fig(5) Possible transitions into state SO

If the input pattern is "00", the distance for the upper branch is 0, since the

pattern associated with this branch is the same as the input pattern. The distance

associated with the lower branch is 2, since the pattern associated with the branch

differs from the input pattern for both bits. In this manner, distances are calculated for all

8 possible branches.

These distances are added to a set of global distances that are maintained for

each state [MEN98]. These values represent the likelihood of being in a particular state

at the time the new input data arrives.

The global distances are added to the branch distances in order to select, for

each state, the most likely branch that would reach that state. The most likely branch is

the branch that has the lowest distance - a larger the distance number indicates that a

13

greater number of errors would have to occur for the path to be the correct one. This

process is best illustrated by an example.

For example, given a set of current global distances and an input pattern, fig(6)

shows the 8 branch distances, the 8 total distances, and the 4 selected branches

[MEN98].

I input pattern = 01 I
Branch Total dIstances Selected
Distances (Branch+global) Branches

.~ ...~.P.P..~.~J!J:.~.~...~~)..::...~..........~ ..~..P.P..~.~...::..~.......
sO lower (from 11)= 1 sO lower = 3 upper

.~.~.Y.P.P..~.~J!J:.~.~...~.~J.::...~.........~.~...~.P.P.~.~..: ...~.......
s1 lower (from 00) = 1 s1 lower = 3 upper

52 upper (from 10) = 2 52 upper= 3

52 lower (from 01) = 0 52lower= 1 lower

53 upper (from 01) = 0 53 upper = 1

53 lower (from 10)= 2 53lower= 3 upper

Global
Distances

o

1

2

1

Fig(6} Branch selection based on global and branch distances

If the metrics of two paths are the same, then we choose one of them arbitrarily (based

on chance).

Once the total distances have been calculated and branches have been

selected, the branch selections are stored in a survivor memory.

The survivor memory stores the most likely branches for some number of

previous input data. The number of previous branch selections stored in the survivor

14

memory. is typically 4 to 5 times the constraint length. This is usually sufficient to

adequately correct errors.

After the branches have been selected, the survivor memory is backtracked to

determine the most likely error free input value. For each state, the survivor memory is

used to determine the most likely previous state.

Since the survivor memory indicates the most likely branch that was used to get

to each state, it similarly indicates the most likely previous state. The Viterbi algorithm

asserts that the process of backtracking will tend to correct input sequences that contain

errors because the paths tend to converge as the survivor memory is traversed.

The backtracking process continues until the beginning.of the survivor memory is

reached. Assuming the paths had all. converged in one path, the direction of the last

branch determines the" decoded value. If the last branch was an upper branch, the

output is '0', otherwise: the output is '1'. If the paths have not converged, then some

other decision-making process must be used to select the output value. At this point, we
.;~ .. ,

might see errors at the output [SCI02].

The backtracking process is best illustrated by an example. For simplicity,

assuming a survivor window depth of 7. There are four values stored for each entry in

the survivor window. These values represent the most likely path (upper or lower) that

was used to reach that state. Backtracking begins at the end of the survivor window and

uses this information to trace backwards.

Fig(7) shows two representations of a trellis [MEN98]. The bottom diagram

shows the backtracked paths and how those paths tend to converge.

15

Fig(7) also shows that all the paths have converged by the forth step in

backtracking. The final branch represents a lower branch, so the output would be a '1'.

sO

51

53

sO

51

52

53

52

Fig(7) Backtracking through the survivor window

Note that the backtracking process introduces a delay between the input data

stream and the output data stream. This delay is equal to the depth of the survivor

memory. In the previous example, the decoded output is delayed by 7 data samples.

After backtracking, the global distance values are updated to reflect the new total

distances to be used for the next input data. Since the global distances represents a

16

running total that steadily increases as data arrives, the values must be periodically

normalized to avoid overflow. This is accomplished by determining the smallest global

distance and subtracting that value from all of the global distances.

For example, if the global distances are 1,2,3, and 2, they would become 0,1,2,

and 1 after normalization. Normalization maintains the relative difference between the

values, but avoids overflow.

Finally, the contents of the survivor memory is shifted to the left in preparation

for the next input data that will enter the survivor memory from the right.

3.2 Viterbi Decoder Features:

• Hard Decision Decoder: This means that the incoming data symbol will be '0' or

'1', l.e, there are two quantization levels in AID converter (normally the received

data is analog, and it will be converted to digital). In a soft decision Viterbi

decoder there are more than two quantization levels. Here we implemented the

hard decision approach [XIL01].

• Trace-back method for survivor memory: This is the method to select the

smallest path. Traceback method means that all the possible paths are stored in

RAM, and this method selects the most likely path.

• Branch Metrics computations can be added for different applications: Branch

metric computation makes the error calculation between the received symbol (2

bits in our case) and the symbol in the table. In hard-decision Viterbi, the

Hamming distance is calculated.

3.3 Design Flow Chart

Begin

N.

data oul=O
i= v.indo;;,-lElMgth - 1

survivor_v.indo\'o(I) = 0
i = i·1

No

gbbaLdistanc:e (0) = 0
1=3

gbbaLdistance (I) = 2
1 = i·1

No

End process

_If

data In v =00-

No

No
End process

distance(0) = 0
distance(1) = 1
distance(2) .. 1
distance(3) .. 2

distance(0) .. 1
distance(1) = 0
distance(2) .. 2
distance(3) = 1

distance(0) = 1
distance(1) = 2
distance(2) .. 0
distance(3) = 1

distance(0) = 2
distance(1).. 1
distance(2) .. 1
distance(3) = 0

1=0
upper_branch_distance (I) =

distance (0) + globaLdistance (0)
Io_Lbranch_distance (i) =

distance (3) + global_distance (2)

1= i+ 1
upper_braneh_distance (i) =

distance (3) + global_distance (0)
Iov.er_branch_distance (i) =

distance (0) + global_distance (2)

17

18

i= i + 1
upper_branch_distance (i) =

distance (1) + globaLdistance (1)
Iower_branch_distance (I) =

distance (2) + globaLdistance (3)

1= 1+1
upper_branch_distance (I) =

distance (2) + globaLdistance (1)
Iower_branch_distance (I) =

distance (1) + globaLdistance (3)

1=0

upper_branch_
distance (i)

< = Iower_branch_
distance (i)

No

branch_distance (I) =
upper_branch_distance (i)

survivors (i)• 0

branch_distance (I) =
Iower_branch_dlstance (i)

survivors (i)· 1

I = 1+1

No
1=4

survivo r_window (0) = survivors
minimum_branch = branch_distance (0)

state = 0

1 = 1

branch_distance (I) No
<

minimlJll_branch

v••

minimlJll_branch - branch_distance (I)
state-j

I- i+ 1

v••

1=0

gklbaLdistance (I) =
branch_distance (i). minirrun_branch

1= 1+ 1

No

1=4

i=O

backtrack survivors = survivor v.iroow (I)
branch_di~ion = bacldrack_s.nlvors(state)

connection #2

Yes

19

_ ..

_111

state: 3 state: 2

20

21

3.4 The VHDL code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity viterbi is
port (

clk :in stdjogic;
rst_all :in std_logic;
data ln :in std_logic_vector (1 downto 0);
data_out :out std_logic
);

end viterbi;

architecture behavioral of viterbi is

, begin

process (elk, rsCall)

constant window_length: integer :=32;

.- IEEE802.16 specifies a window length of 32

subtype survivor_elements is stdjogic_veetor (0 to 3);
type survivor_window_type is array Qntegerrange <>) of survivor_elements;
variable survivor_window : survivor_window_type (window_length-1 downto 0);
variable survivors : survivor_elements;
variable backtrack_survivors: survivor_elements;

type distance_array_type is array (0 to 3) of integer range 0 to 3;
variable distance : distance_array-type;
variable globaLdistance : distance_array-type;

: std_logic_vector (1 downto 0);

type branch_distance_array-type is array (0 to 3) of integer range 0 to 7;
variable upper_branch_distance: branch_distance_array_type;
variable lower_branch_distance: branch_distance_array_type;
variable branch_distance : branch_distance_array-type;
variable minimum_branch : integer range 0 to 7;

subtype state_type is integer range 0 to 3;
variable state : state_type;
variable branch_direction : stdjogic;

begin

if rsCall = '0' then
data out <='0"- ,
for i in window_length -1 downto 0 loop

22

sUlVivor_window(i) := (others => '0');
end loop;

for i in 3 downto 1 loop
globaLdistance(i) := 2;
end loop;
globaLdistance(O) := 0;

else

if (clk'event and clk = '1') then
datajn_v := data jn:

-- calculate distances

case data_in_v is
when "00" =>

distance (0) := 0;
distance (1) := 1;
distance (2) := 1;
distance (3) := 2;

when "01" =>
distance (0) := 1;
distance (1) := 0;
distance (2) := 2;
distance (3) := 1;

when "10" =>
distance (0) := 1;
distance (1) := 2;
distance (2) := 0;
distance (3) := 1;

when "11" =>
distance (0) := 2;
distance (1) := 1;
distance (2) := 1;
distance (3) := 0;

when others =>
null:

end case;

-- Add-compare-select (ACS)

for i in 0 to 3 loop

-- calculate distances for upper and lower branches

case i is

when 0 => upper_branch_distance(i) := distance(O) + globaLdistance(O);

lowecbranch_distance (i) := distance(3) + globaLdistance(2);

when 1 => upper_branch_distance(i) := distance(3) + globaLdistance(O);

lower_branch_distance (i) := distance(O) + globaLdistance(2);

23

when 2 => uppecbranch_distance(i) := distance(1) + globaLdistance(1);

lower_branch_distance (i) := distance(2) + globaLdistance(3);

when 3 => upper_branch_distance(i) := distance(2) + globaLdistance(1);

lowecbranch_distance (i) := distance(1) + globaLdistance(3);

end case;

-- select the surviving branch and fill appropriate value
-- into the survivor window

if (upper_branch_distance(i) <= lowecbranch_distance(i)) then

branch_distance(i) := upper_branch_distance(i);
survivors(i) := '0';

else

branch_distance(i) := lowecbranch_distance(i);
survivors(i) := '1';

end if;

end loop;

survivor_window(O) := survivors;

-- find the minimum branch distance and the ending state

minimum_branch := branch_distance(O);
state:= 0;

for i in 1 to 3 loop

if (branch_distance(i) < minimum_branch) then
minimum_branch := branch_distanceQ);
state := i;
end if;

end loop;

.- to avoid overflow we substract the min branch

for i in 0 to 3 loop

globaLdistance(i) := abs (branch_distance(i) - minimum_branch);

end loop;

-- backtrack the survivor window

for i in 0 to window_length -1 loop

24

backtrack_suNivors := sUNivor_window(i);
branch_direction := backtrack_suNivors(state);

case state is

when 0 11 => if (branch_direction ='0') then
state := 0;

else
state := 2;

end if;
when 2 I 3 => if (branch_direction ='0') then

state := 1;
else
state := 3;

end if;
end case;

end loop;

-- shifting the survivor window values to allow the next input
-- to enter the trellis from the right hand

for i in windowJength -1 downto 1 loop

sUNivor_window(i) := sUNivor_window(i -1);

end loop;

-- output generation

data_out <= branch_direction;

end if;

end if;

end process;

end behavioral;

3.5 An Example:

Now let's start looking at how the Viterbi decoding algorithm actually works

[NETCOM]. The main goal of illustrating this example is to show that even if we

received a wrong sequence at the input of the Viterbi decoder, we still get the correct

25

output sequence. We will review the error rate insertion matter in chapter (5). A trellis

diagram is shown in fig(8).

state 10

state 00

state 11

Fig(8) A trellis diagram

For our example, we're going to use hard-decision decoding. Suppose we

received the following encoded message with a couple of bit errors:

t=o t=1 t = 2 t = 3 t = 4 t=~ t" 6 t=7 t = 8 t = S t" t- t- t- t- t-
10 11 12 13 14 17

state 00 • J •

st<de 01 t

st<de 10 •

state 11 •
ENe IN = 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0

ENG OUT= 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10 11

RECEIVED =00 11 11 00 01 10 01 11 11 10 00 00 11 00 11 10 11

ERRORS = X x

Fig(9) Encoded message with a couple of bit errors

Going from t = 0 to t = 1, there are only two possible channel symbol pairs we
could have received: 002, and 1h. That's because we know the convolutional encoder

was initialized to the all-zeroes state, and given one input bit = one or zero, there are

only two states we could transition to and two possible outputs of the encoder. These

26

possible outputs of the encoder are 002 and 112. The Hamming distance is computed

by simply counting how many bits are different between the received channel symbol

pair and the possible channel symbol pairs. The results can only be zero, one, or two.

The accumulated error metrics will be computed by adding the previous accumulated

error metrics to the current branch metrics. At t = 1, we received 002. The only possible

channel symbol pairs we could have received are 002 and 112. The Hamming distance

between 002 and 002 is zero. The Hamming distance between 002 and 112 is two.

Therefore, the branch metric value for the branch from State 002 to State 002 is zero,

and for the branch from State 002 to State 102 is two. Since the previous accumulated

error metric values are equal to zero, the accumulated metric values for State 002 and

for State 102 are equal to the branch metric values. The accumulated error metric

values for the other two states are undefined. The figure below illustrates the results at t

= 1:

t=O t=1

Slate 00 \:

-": \
Slate 10 •

Accumulated
Error Metric ..

o

2

Slate 11 •
ENe IN" 0

ENC our- 00

RECEIVED =00

Fig(10) The trellis diagram between t = 0 and t = 1

At each time instant t, we will store the number of the previuos state that led to

each of the current states at 1.

27

Now let's look what happens at t = 2. We received a 112 channel symbol pair. The

possible channel symbol pairs we could have received in going from t = 1 to t = 2 are
002 going from State 002 to State 002, 112 going from State 002 to State 102, 102 going

from State 102 to State 01 2, and 012 going from State 102 to State 11 2. The Hamming

distance between 002 and 112 is two, between 112 and 112 is zero, and between 102 or

012 and 112 is one. We add these branch metric values to the previous accumulated

error metric values associated with each state that we came from to get to the current

states. At t = 1, we could only be at State 002 or State 102. The accumulated error

metric values associated with those states were 0 and 2 respectively. The figure below

shows the calculation of the accumulated error metric associated with each state, at t =

2.

Accumul..ted
t-O t - 1 t-2 Error Metri c -

stMe 00 0+2-2

stMe 01 • 2+1-3

0+0=0

stMe 11 • 2+1=3
ENC IN:: 0 1

ENe our .. 00 11

RECEIVED =00 11

Fig(11) The trellis diagram between t = 0 and t = 2

Now lets look at the figure for t = 3. Things get a bit more complicated here, since

there are now two different ways that we could get from each of the four states that

were valid at t = 2 to the four states that are valid at t = 3. We compare the accumulated

28

error metrics associated with each branch, and discard the larger one of each pair of

branches leading into a given state.

Accumulated
t-o Error Mtlri c -

state 00 2+2.3-10: 3

state 01 • 0+1,3+1: 1

2+0,3+1: 2

state 11 • 0+1,3+1: 1

ENC IN" 0 1 0

ENe OUT- 00 11 10

RECEIVED =00 11 11

Fig(12) The trellis diagram between t = 0 and t = 3

Note that the third channel symbol pair we received had a one-symbol error. The

smallest accumulated error metric is a one, and there are two of these. Let's see what

happens now at t = 4 [NETCOM]. The processing is the same as it was for t = 3. The
results are shown in the figure:

t=o
state 00 -~,-",~

t .. 4 Accumulated
Error Metri c •
3-+0.1+2: 3

state 01 • 2+1,1+1: 2

3+2,1-10: 1

state 11 •
ENC IN = 0 1

ENC OUT = 00 11

RECEIVED =00 11

2+1.1+1: 2

o
10

11

00

00

Fig(13) The trellis diagram between t = 0 and t = 4

29

Notice that at t= 4, the path through the trellis of the actual transmitted message,

shown in bold, is again associated with the smallest accumulated error metric. Let's look

at t = 5:

t-O

Slate 00-.-......-0:=

t • ~ Accumul ated
Error Metri0 •
3+1.2+'1: 3

Slate 11 •
ENC IN. 0 1

ENC OUT. 00 11

RECEIVED .00 11

Slate 01 • 1+2.2+0: 2

3+1.2-+1: 3

1-+0.2+2: 1

01

Fig(14) The trellis diagram between t = 0 and t = 5

At t = 5, the path through the trellis corresponding to the actual message, shown

in bold, is still associated with the smallest accumulated error metric. This is the thing

that the Viterbi decoder exploits to recover the original message. Now, Let's skip to the

end. At t = 17, the trellis looks like this, with the clutter of the intermediate state history

removed:

t=o t - 6 t - 7 t .. s t - 9
t= t= t= t: t= t=

t=1 t = 2 t = 3 t - 4 t - 5 10 11 12 13 14 17
Shte 00 • • •

Slide 01 t

Slide 10 •

Slide 11 •

ENC IN - 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0

ENC OUT= 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10 11

RECEIVED :00 11 11 00 01 10 01 11 11 10 00 00 11 00 11 10 11

ERRORS = X X

Fig(15) The trellis diagram showing the whole message

30

Here's an insight into how the traceback algorithm eventually finds its way onto

the right path even if it started out choosing the wrong initial state. This could happen if

more than one state had the smallest accumulated error metric, for example. We will

use the figure for the trellis at t = 3 again to illustrate this point. We saw how at t = 3,

both States 012 and 112had an accumulated error metric of 1. The correct path goes to

State 012 -notice that the bold line showing the actual message path goes into this

state. But suppose we choose State 112. The previous state for State 112 , which is

State 102 , is the same as the previous state for State 012! This is because at t = 2,

State 102 had the smallest accumulated error metric. So after a false start, we are

almost immediately back on the correct path. For the 15-bit message example, we built

the trellis. up for the entire message before starting traceback. For longer messages, or

continuous data, this is neither practical or desirable, due to memory constraints and

decoder delay. Research has shown that a traceback depth of (K x 5) is sufficient for

Viterbi decoding with the type of codes we have been discussing [MEN98]. Any deeper

traceback increases decoding delay and decoder memory requirements, while not

significantly improving the performance of the decoder. The exception is punctured

codes, which is not in our scope. They require deeper traceback to reach their final

performance limits.

According to IEEE 802.16 specifications [ALT01], the traceback depth should

equal 32, and that is more than (K x 5) = 15. Here, we tried to follow the specifications.
We also compiled our design with a traceback of 16, and it was sufficient for correcting

the errors.

31

CHAPTER 4

FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

4.1 What is an FPGA?

Before the advent of programmable logic, custom logic circuits were built at the

board level using standard components, or at the gate level in expensive application-

specific integrated circuits. The FPGA is an integrated circuit that contains many (64 to

over 10,000) identical logic cells that can be viewed as standard components. Each

logic cell can independently take on anyone of a limited set of personalities. The

individual cells are interconnected by a matrix of wires and programmable switches. A

user's design is implemented by specifying the simple logic function for each cell and

selectively closing the switches in the interconnect matrix. The array of logic cells and

interconnect form a fabric of basic building blocks for logic circuits. Complex designs are

created by combining these basic blocks to create the desired circuit [XILlNX].

4.2 What does a logic cell do?

The logic cell architecture varies between different device families. Generally

speaking, each logic cell combines a few binary inputs (typically between 3 and 10) to

one or two outputs according to a Boolean logic function specified in the user program.

In most families, the user also has the option of registering the combinatorial output of

the cell, so that clocked logic can be easily implemented. The cell's combinatorial logic

may be physically implemented as a small look-up table memory (LUT) or as a set of

32

multiplexers and gates. LUT devices tend to be a bit more flexible and provide more

inputs per cell than multiplexer cells at the expense of propagation delay.

4.3 What does 'Field Programmable' mean?

Field Programmable means that the FPGA's function is defined by a user's

program rather than by the manufacturer of the device. A typical integrated circuit

performs a particular function defined at the time of manufacture. In contrast, the

FPGA's function is defined by a program written by someone other than the device

maufacturer. Depending on the particular device, the program is either 'burned' in

permanently or semi-permanently as part of a board assembly process, or is loaded

from an external memory each time the device is powered up. This user

programmability gives the user access to complex integrated designs without the high

engineering costs associated with application specific integrated circuits.

4.4 Xilinx XC4000 family Logic Block

Figure (16) shows the CLB (Configurable Logic Block) used in the XC4000 series

of Xilinx FPGAs. This is a fairly complicated basic logic cell containing 2 four-input

LUTs that feed a three-input LUT. The XC4000 CLB also has special fast carry logic

hard-wired between CLBs. MUX control logic maps four control inputs (C1-C4) into the

four inputs: LUT input H1, direct in (DIN), enable clock (EC), and a set I reset control

(SIR) for the flip-flops. The control inputs (C1-C4) can also be used to control the use

of the F' and G' LUTs as 32 bits of SRAM.

33

tOlliom adjacent CLB

callY
out

caltY
logic

cany
logic

K >-+~I--_-=g:;.:..lob:.:;;aI:.:;cl,;;.;;oc,;.;,.k --.I

callY cany
in eut

tOlliom adjacent CLB
[;J= pl'Ogr.lmmable MUX

Fig(16) The Xilinx XC4000 family CLB

The Xilinx CLB is the functional element from which user logic is constructed in

an FPGA. I/O blocks (lOB) serve as the interface between the external package pin of

the device and the internal user logic.

4.5 More about XC4005XL board

The XS4005XL Board is perfect for experimenting with FPGA designs,

microcontroller programming, or hardware/software codesign [XESS]. The 9,OOO-gate

XC4005XL FPGA operates at 5V so we can connect it to commonly available TTL

chips. Digital logic designs can be loaded into the FPGA. The microcontroller can use

the FPGA as a coprocessor. The 32-KByte SRAM can store microcontroller

programs/data or serve as general-purpose storage for FPGA-based designs.

-

34

4.6 How to program the FPGA board?

Individually defining the many switch connections and cell logic functions would

be a hard task. Fortunately, this task is handled by special software. The software

translates a user's schematic diagrams or textual hardware description language code

then places and routes the translated design. Most of the software packages have

hooks to allow the user to influence implementation, placement and routing to obtain

better performance and utilization of the device [XILlNX].

Using the appropriate software tool, a (.bit) file was generated. This file contains

all the information that the FPGA needs to be programmed. Using XSTOOLS software

package, we should drag the (.bit) file into the GXSLOAD area. Also, In the "build"

process, we should specify the pin assignment file, which defines the pins that the

FPGA will use to connect to the outside world. Our FPGA has 84 pins. The pin

assignment file is stored as (.ucf) file. Our (.ud) file is shown below:

net elk loe =p13;
net rst_allloe=p44;
net data_in(O) loe=p45;
net data_in(1) loe=p46;
net data_out loe=p25;

This file means that the clock input is pin number 13 of the PFGA, and the rst_all

pin is number 44. Also, the encoded data will enter the FPGA through pins 45 and 46,

and the output is pin number 25 of the FPGA.

35

CHAPTERS

EXPERIMENTAL RESULTS

5.1 What did we do?

We used VHDL hardware description language to implement the algorithm

[SKA96]. We also used OrCAD Capture V9.1 to implement and find the simulation

results. In our design, we tried to meet with IEEE 802.16 standard. IEEE 802.16

standard specifies the air interface of fixed point-to-multipoint broadband wireless

access (BWA) systems providing multiple services. This standard is intended to enable

rapid worldwide deployment of broadband wireless access products. The new IEEE

802.16 specifications requires a Viterbi decoder with constraint length of 3, traceback

length of 32, and minimum throughput requirement of 44.8 Mbps.

Our specifications are a constraint length of 3, traceback length of 32, and a

throughput of 45.4 Mbps.

We wrote down a random bit stream of data, then using the generator

polynomials mentioned in chapter 2, we encoded these bits to get a randomly encoded

input for our design. Random errors were then inserted into the encoded data stream.

This represents the errors that might occur during transmission of the data through the

wires or through the airwaves. The data stream, with errors, was processed by the

Viterbi decoder. Finally, we compared the results to check whether or not the output of

our Viterbi decoder (data_out) is the same as the original signal.

5.2 Using OrCAD Capture to implement Viterbi Decoder:

36

The Build tool automates the translation of schematics and/or VHDL into the

programming files required for the programmable device and provides an interface to

Xilinx Alliance Series software. Placement and routing may be run at anytime after

design entry is complete. The Build tool detects source VHDL or schematic files that

may be "out of date" relative to the post-route simulation model file and if necessary,

reruns logic synthesis to refresh the EDIF 2 0 0 (Electronic Data Interchange Format)

netlist [ORCAD].

The Build tools uses the settings specified by the dialog box to build a Xilinx

Alliance Series command file (with the extension .CMD) and series of command lines

for the Xilinx Alliance Series NGDBuild program. The Build tool creates a subdirectory

called TIMED below the subdirectory of the OrCAD project file (OPJ), copies all EDIF 2

o 0 netlist files from the COMPILED subdirectory, then runs NGDBuild. All results and

reports are saved into the TIMED subdirectory and referenced by the project.

Each Xilinx place and route stage automated by the Build tool is described here:

Translate - converts the EDIF 200 files created by logic synthesis into a binary

database used by the Xilinx software. This option causes the build process to stop after

the Xilinx EDIF2NGD netlist translation program and writes one or more NGO files into

the .\TIMED subdirectory. The translation report is saved as a .BLD file.

MAP - structures the incoming logical design to the target device we specify on

the Part Type field of the NGDBuild tab. This option causes the build process to stop

37

after the Xilinx MAP program allocates CLBs, lOBs, and other Xilinx FPGA resources to

logical elements of a design. Results are reported in the MRP file.

Place and Route - places and routes the physical design. This option causes

the build process to stop after the Xilinx PAR program optimizes the layout using the

timing constraints we may specify. Results of the timing analysis performed by PAR are

available in the TIMED.DLY file and pin assignments in the TIMED.PAD file.

Re-entrant Place and Route - runs the Xilinx PAR program independently of

Translate, MAP, and Implement. This option is useful to experiment with logic

optimization and guide modes to arrive at a superior implementation.

Implement - generates a bitstream (.bit) file, which is required to program the

FPGA. This option causes the build process to stop after the Xilinx BitGen program

creates a configuration bitstream from the fully routed NCD (Native Circuit Description)

created by PAR. Results from the BitGen run are available in the BGN and ORe files.

The Build tools uses the Xilinx Alliance Series program NGD2VHDL to create

simulation models for timing simulation and adds them to the Timed folder of the

Simulation Resources after place and route. The files required for a timing simulation

include the netlist and standard delay format (with extension .SDF) file. Delay

characteristics and performance rules of the SDF are applied by the simulator to

emulate the propagation delays introduced by routing and logic block delays.

At this stage we simulate the post-place and route state of the project (Timed) to

confirm that the PLD will meet our performance specifications. We apply input stimuli to

the design. Our Viterbi decoder looked as follows after gererating the part:

38

U1

Fig(17)Our Virerbidecoder symbol

The applied random stream of data is shown below as a table:

Time (ns) 0... 82 104 126 148 170 192 214 236 258 280 302 324 346 368

Transmitted Data 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0

Encoded Data 00 00 1 1 1 0 00 01 10 01 1 1 1 1 1 0 00 1 0 1 1 00

cont.

Time (ns) 390 412 434 456 478 500 522 544 566 588 610 632 654 676 698

Transmitted Data 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1

Encoded Data 1 1 01 01 00 01 10 01 1 1 00 00 1 1 01 01 00 01

cont.

Time (ns) 720 742 764 786 808 830 852 874 896 918 940 962 984 1006 1028

Transmitted Data 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1

Encoded Data 1 0 01 00 10 1 1 1 1 01 01 1 1 00 1 1 01 01 00 01

cont.

Time (ns) 1050 1072 1094 1116 1138 1160 1182 1204 1226 1248 1270 1292 1314 1336 1358

Transmitted Data 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1

Encoded Data 01 1 1 00 00 00 1 1 01 01 1 1 00 1 1 1 0 1 1 00 1 1

39

cont.

Time (ns) 1380 1402 1424 1446 1468 1490 1512 1534 1556 1578 1600 1622

Transmitted Data 1 0 1 0 1 0 0 1 1 0 0 0

Encoded Data 01 01 00 1 0 00 1 0 1 1 1 1 01 01 1 1 00

Table 5.1 The applied random stream of data

The clock period was set to 22ns (45.4 MHz). Also the rst_all input was set to be

a until 70ns to reset the system, then we forced it to be 1 after that time to skip the reset

operation. The applied random stream of data is shown below with the most important

signals in the system:

o

VITERBI DATA IN o [§]iltljJJj!ijf;jilJmii!ti).Yf:fj;fJJiyJtilJi.fii.Xt~Jlii'f/:lJjj/il£···· ..····························0..····..··················)

DATA_IN [1]

DATA_IN [0] '0'

VITERBI CLK '0'

VITERBI DATA OUT • 0' ~=======~~~~~~~:::...::::::...:~::::..::::::=.:..=:::::...:==
VITERBI RST ALL '1' u· .

~~ l':: "''''' "f\IU.:tltlt "'./Ii" _"""':R.1. 11." 1. A,o; " 1Ii"," 1. "''''!Ii'' "'IIiA:R.t: A,. " AI: 1':11 '" ,."ft. ~
VITERBI SURVIVOR _WINDOOO~9.~9..9, •• " ••.. • •• •• ,. Y. • •• •••••• • ., [~ ••':.:::::.~

VITERBI GND '0' I .
'1' , .VITERBI vec

Fig(18) The simulation result after applying the random stream of data

As it appears, the output data is delayed by the depth of the memory. The first bit

to come out from the traceback window is at time 807ns.

40

[32 (traceback window) +1 (clock cycle to generate the output)] x 22 (period) +76ns

(delay to allow reset) + 5ns (output delay shown in fig(20)) = 807ns. Another graph

showing how the data moves through the survivorwindow:

VITERBI DATA IN

VITERBI eLK

VITERBI DATA OUT '0'•........•.•..•.•....................•.•.•.••.

VITERBI RST ALL ' 1" .•...•••..••..•.............•....•••.•..••..•....•...•

VITERBI B 2 u::x 1 ~ 2 X 0 Xl)
B[2] '1'·•................. , ~ .

B[l] '0'-.:.:..1·· · · \ ·1··· .
VITERBI A 0 <:?::X J X ~ X ~ X ? X ~)

A[2] 'O'~ ••••••••••••••••.•• f ·1· , ·1· .
A[l] 'o'..:J ·1· ·1· ·1· f .

~rnRm W~IW~O~ ~~~£~~~~ X ~£~~~~!~ X~~~~~~~~~

Fig (19) Data moves in the survivor window

Now showing the delay for the whole system:

:::: ~m ~~.~~~:~~~~~~:~~
VITERBI DATA_OUT' 0' ixxxxxx~ .

VITERBI RST ALL ' 0 'I, .
~TE~I W~IW~O~ ..._~~~~?~£~~--------__--------)

Fig(20) The delay for the whole system

41

We did the following cases:

1. Inserting a noise to the signal (Datajn(1» at 192ns (from 0 to 1):

DATA_IN [1) , , , , , , , , , , , , , , , , , ,

DATA_IN [0) '0'

VITERBI eLK ' 0'

VITERBI DATA OUT ' 0' ~===========..:~~~~~~~~::::::::::VITERBI RST ALL ' 0' .:J ' , .. , , , . , . , , , , , , . , . , , . , . , , . , . , , . , , , . , , , , , , . , , ,
VITERBI SURVIVOR_ WINDOOOQO·o·o·o·~.·••" ~: "'''11K " ...)lJ(1l :... :-'ll."" ,. 11M. Il, ".. ,. ll.K "!' !' M. .. KJl;,1l JC, r· · ·..· · · · · · · · · · · · · ·

.. "'''' :t -.: "y :I\:\: ""'''1'11 ,,'Ii,,- \: "' ,,:.:- \: vv \: \:;~. \: .,,,,';ii);; ¥:I \:, v ~ >1"''J -.: ooood
VITERBI GND ' 0' """"""""""""""""""""""""",

VITERBI vee '1' """"""""""""""""""""""" """"" "" """",,,,, """""""""""""""

Fig(21) A noise inserted at time 192ns

We observe no change at the output. Zooming the change that we did:

DATA_IN [1] •0' I, , , , , , , , , , , , , , , , , , "Fl' ,,,,,,,F ' , , , , , , , , , , , , , , , , , , I:

Fig(22) Showing the previous change

DATA_IN [0)

VITERBI eLK

VITERBI DATA OUT ' 0' l2it ' , , , , , , , , , , • , , , •. , . , • , , , , , , . , , , , , , , , • , , , , , , , , , , • , ,
VITERBI RST_ALL ' 0' I . , . , , , .. , , , , I ' . , . , , . , , , , , , , , , , , , . , , , , , , . , . , , , , , , . , ,
VITERBI SU~IVOR~INDOOO~ ~~~2~2~2~2~2~2~£~9~2Q~2~~~~2~£~2~~Q~~~~~
VITERBI GND

VITERBI vee '1' I"""",""""""""""""" " .",. " ".""

2. Changing the status at the following times for datajn (1) : To 1 @ 192ns, to 0

@ 522ns, to 1 @ 676ns, to 1 @ 918ns, to 1@ 1248 ns.

DATA_IN[!]

DATA_IN [0]

VITERBI CLK

VITERBI DATA_OUT

VITERBI RST _ALL

42

VITERBI GND

VITERBI SURVIVOR WINDOOO 00'0'0" • •• • • • "~'.' ~. Wlf-M/yVNtJW.JO·OOO·O·"),
_ YV \: \:'llvv ':I lo; 11\1 :n: v :I \: ,",If :I \: ., ~ y " ... \I ~ \: " v 'it 1I11iIIMiJ!iltIJ~

'O'U··· .

VITERBI VCC

'0' I .
'1' \ .

Fig(23) Inserting more noise

Weobserve no change at the output.

3. Now, inserting up to 8 errors in dat~in (0) by Changing the status at the

following times: To 1 @ 214ns, to 0 @ 390ns, to 1 @ 566ns, to 1 @ 588ns, to 1 @

852ns, t01 @ 874ns, to 0 @ 1072ns, to 1 @1336ns.

VITERBI DATA IN

DATA_IN[!]

DATA_IN [0]

VITERBI CLK 'x'

X V·O·YJ!ffItI3w.N1fu'WWl£.,w;wwm.'3"yw;.o.;:.;;VOVf}N#NWNI:~'1W.·"""'-""·"""·"'''··''·''··''''·0· ·· ·..···..·..·..·..···•
~ ttilftN-Jt:l'f~,Ya/c}~JldfJf.l#t~}lI~ }

"""""""""",

VITERBI DATA OUT 'u' ~======~~~~::.::...~...::.::~.:::::::==
VITERBI RSTALL 'X' U I •••••• I • I • I •••• I •••••••••• I ••

~l~' • ~~OO~A~ig~'~'~'~';"'~~'~., . . ." 1}'~r.Jj' '~"!~(~~~'~:'f!l~ .VITERBI SURVIVOR WIND X 1000er wJt/ll(.lll1)ll"j\ . . . rllmn> 000000009
_ M ':f'J ~lI: It.. \: ~)C v .. '\"'1C~ lot 'If v t'l: .,., ..~ .,. 1I ~~ ~ v Ir: II' " __ • .._

VITERBI GND

VITERBI vee

Fig(24) Inserting more noise

As we can see the output signal still keeping its shape, even though we changed

the input signal.

43

4. Now, Adding 3 more errors to the previous change ; to 0 @ 1490ns, to 0 @

1512ns, to 0 @ 1534ns (Total number of errors introduced = 11 error). In this case we

observe a 1 bit change in the output at time 2237ns.

VITERBI DATA IN r;:;-w.,Wr::;V-lMN;;ltNi·JI~NX#~v..'"V;;;~Wlrrtw;.r::;v'
2 1.9...~}JWIItJf.:NfM('jRJ#'~.? ..}~h\'::A~j;.,~NH'!f'.¥'!J.N"':fo..~.}.t. 9. J

DATA_INC1] '1'

DATA_IN CO] '0'

VITERBI CLK '1'

.......................

VITERBI DATA OUT '0'

VITERBI RST ALL '1'U~=· =. =.=.=.=.=.=. =.=.=.=.=.=.~.~. .:.~.~.=.~.~..:.=.~.~.~.~.:..=.:..~..:.=.:...:.:..=.:..~.~.~.~.=.=.=.=.=.=.=.
VITERBI SURVIVOR_WIND0FFf§§§!J..WIfI#I#Jf.f:Jf:Jt:lIlIlJifl.jlf.jitl.:Ji/ ..'fI:JiJJlilfljjiJ/.t'f#lIJiiJ:f.llflfAYl.tlflJfl.:Iif.ttltf.Jf//I../@o 00000000}J
VITERBI GND '0I I· .
VITERBI vcc '1'I .

Fig{25} Observing a change at the output

Zooming in the change that happened to the output signal:

VITERBI DATA IN 0 C___._..__.. ._o _.__ __ ._.._ _)

DATA_INC1] '0' .

DATA_INC0] '0'....:....:.....:.....:.....:.....:.....:.....:....:....:....:....: _

VITERBI CLK

VITERBI DATA OUT

VITERBI RST ALL 11'

VITERBI SURVIVOR_WINDOOO~20F27XOF277XF2774X27747X77471~4710~OOOoooooooooooooqo

VITERBI vce '1' .

...'0' .VITERBI GND

Fig(26} Showing the change that happened at the output

44

As can be seen above in the simulation samples, the Viterbi decoder does an

adequate job at correcting errors that were introduced into the data stream. The error

rate in the last sample was set to more than 15% (= 15.27%), so for 72 data points, 11

errors were introduced. Of those errors, all but 1 were fixed. This means that 90.9% of

the errors that were introduced could be fixed by Viterbi decoding. Of course, different

error rates would produce different results as can be seen in the following table:

No. of data points No. of errors introduced Error Rate No. of errors at the output Accuracy %

72 1 1% 0 100

72 2 3% 0 100

72 3 4% 0 100

72 4 6% 0 100

72 5 7% 0 100

72 6 8% 0 100

72 7 10% 0 100

72 8 11% 0 100

72 9 12.50% 0 100

72 10 13.80% 0 100

72 11 15% 1 90.9

Table 5.2 Our final optimum results

Some of the output files in the (Timed) directory are shown below:

Ti.med.d1y

Wed Mar 20 02:50:53 2002

45

The 20 Worst Net Delays are:

I Max Delay (ns) I Netname

5.972 nx3706

5.929 nx3702

5.760 nx3704

5.140 nx3708

4.893 D_dup_4473

4.788 D_dup_4467

4.493 a (2)_dup_3400

4.260 rst all int

4.135 a (1)_dup_3353

3.890 global_distance (2) (1)

3.672 a (0)_dup_3502

3.671 global_distance (3) (0)

3.506 survivor_window(l) (1)

3.432 global_distance (1) (0)

3.431 global distance (2) (0)

3.343 global distance (0) (0)

3.320 a (2)_dup_3364

3.314 a (1)_dup_3764

3.296 D_dup_4470

3.107 b(0)_dup_3417

viterbi. dre

DRC detected 0 errors and 0 warnings.

Viterbi.mrp

46

Xilinx Mapping Report File for Design 'viterbi'

Copyright (c) 1995-1999 Xilinx, Inc. All rights reserved.

Design Information

Command Line

Target Device

Target Package

Target Speed

Mapper Version

m1map -em area -gm exact -oe normal -p 4005XLPC84 VITERBI

x4005xl

pc84

-09

xc4000xl -- C.16

Design summary

Number of errors:

Number of warnings:

Number of CLBs:

CLB Flip Flops:

CLB Latches:

4 input LUTs:

3 input LUTs:

Number of bonded lOBs:

o

4

123 out of 196 62%

132

o

123

106 (60 used as route-throughs)

5 out of 65 7%

lOB Flops: 1

lOB Latches: 0

Number of clock lOB pads: 1 out of 12 8%

Number of BUFGLSs: 1 out of 8 12%

Number of startup: 1 out of 1 100%

Total equivalent gate count for design: 1743

Additional JTAG gate count for rOBs: 240

Timed. pad

PAR: Xilinx Place And Route C.16.

Copyright (c) 1995-1999 Xilinx, Inc. All rights reserved.

Wed Mar 20 02:50:54 2002

Xilinx PAD Specification File

Input file:

Output file:

Part type:

Speed grade:

Package:

VITERBI. ncd

Timed.ncd

xc4005xl

-09

pc84

Wed Mar 20 02:50:54 2002

Pinout by Pin Name:

+--+-----------+--------------+
Pin Name I Direction I Pin Number

+--+-----------+--------------+
clk

data_in (0)

data_in (1)

data out

rst all

INPUT

INPUT

INPUT

OUTPUT

INPUT

P13

P45

P46

P25

P44

Dedicated or special Pin Name

+--+-----------+--------------+
Pin Number

+--+--------------+
/PROG

CCLK

P55

P73

47

+--+--------------+

viterbi. pcf

SCHEMATIC START ;

II created by map version C.16 on Wed Mar 20 02:49:47 2002

COMP "rst all" LOCATE = SITE "P44" LEVEL Ii

COMP "data out" LOCATE = SITE "P25" LEVEL 1;

COMP "data_in(ll" LOCATE = SITE "P46" LEVEL 1;

COMP "data_in(Ol" LOCATE = SITE "P45" LEVEL 1;

49

CaMP "elk" LOCATE

SCHEMATIC END ;

SITE "PI3" LEVEL 1;

Viterbi.pin

Xilinx signal/pin map file produced by ngd2vhdl, version C.16

Options: -w -pf -ti UUT

Date: Wed Mar 20 02:51:55 2002

Part 4005xl

Package pc84

Speed -09

CLK

RST ALL

DATA_IN (1)

DATA_IN (0)

DATA OUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

13

44

46

45

25

Vi terbi. sum

Cell: viterbi View: behavioral Library: work

Total accumulated area

Number of FG Function Generators 119

Number of H Function Generators 46

Number of Packed CLBs : 60

50

Number of CLB Flip Flops 132

Number of STARTUP 1

Number of IBUF : 3

Number of IOB Output Flip Flops 1

Number of ports : 5

Number of nets : 311

Number of instances 30B

Number of references to this view 0

Cell Library References Total Area

F1 LUT xi4xl 4 x 1 4 F1 LUT

F3 LUT xi4xl 86 x 1 B6 FG Function Generators

H3 LUT xi4xl 46 x 1 46 H Function Generators

F4 LUT xi4xl 31 x 1 31 FG Function Generators

F2 LUT xi4xl 2 x 1 2 FG Function Generators

BUFG xi4xl 1 x 1 1 BUFG

FDPE xi4xl 3 x 1 3 eLB Flip Flops

FDCE xi4xl 129 x 1 129 CLB Flip Flops

OFDX xi4xl 1 x 1 1 IOB OUtput Flip Flops

INV xi4xl 1 x 1 1 INV

IBUF xi4xl 3 x 1 3 IBUF

STARTUP xi4xl 1 x 1 1 STARTUP

Device Utilization for 4005xlPCB4

Resource Used Avail Utilization

IOs 5 61 B.20%

51

FG Function Generators 119

H Function Generators 46

CLB Flip Flops 132

392

196

616

30.36%

23.47%

21.43%

Using default wire table: 4000xl-default

Vi.terbi..ucf

net clk loc=p13i

net rst_all loc=p44i

net data_in(O) loc=p45i

net data_in(1) loc=p46i

net data out loc=p25i

We also used Mentor Graphics software to generate schematic and layout for

our Viterbi decoder. Fig(27) illustrates the Ie station LVS check result.

52

UtUlllttlllltlltll#t#t#tl#tl#tUIIIII#11I11I11
U III
#II CALIIlI\E STS'IElI U
U #1
U LVS REPORT ##
#II II
UIU#IIIIII#IIIIII#I#I#II##I#IUII#II#II##Itlll

REPORT rILE 1lMI!::
LAYOllX NAI!E:
SOURCE NAI!E:
LVS NODE:
RULE rILE NAI!E:
CREATIONTIllE:
C1lRI\ENT DIRECTORY:
USER IIANE:

lu /nkhoder/ ... ntor/vhdlllv •. rep
SDESIDNS!vork/vi t.rbi
SIIDCVD/vorklvi terbillv.
1I0.k-
/U.or./llOlItorq/ADUodk/technoloqy/ic/u.i05. rule.
Wed lIor 20 15 :50 :42 2002
lu. o.. /nkhode r I ..entor IvhdL
nkhoder

..
OVERALL COIIP ARISO. RESULTS..
11111111111111####
I I
I CORRlC'I I
#
IIII#I#t#II#II#I

#
I

I I
II
I

.. ..

Fig(33) Ic-statlon LVS check result

.': Open ' ...•....•••..

.•. 'Qea\8 '. '.'...
08a\8 - SOL .:

O'IIata VIa

.09atavpt
~8WP

. Ie
0lIf Templet. ..
S818<:Uon

•• Raprwt.t ..•..•.••••

ItlIW WIndow.
... A1ftl·

Se••.
Process

QoaI8

•. Eclt .
..•• " I.Ilad .

. ... All........ ·
... Sav.

load RulBS

IJIlt:'ary

53

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we implemented a Viterbi decoder into an FPGA under IEEE 802.16

specifications. A noisy transmission channel causes bit errors at the receiver. The

Viterbi algorithm finds the most likely sequence of bits that is closest to the actual

received sequence. The Viterbi decoder uses the redundancy, which the convolutional

encoder imparted, to decode the bit stream and remove the errors.

With the increasing need for the transmission of digital data over a wide variety of

mediums, the need for error control coding will increase significantly as well. Viterbi

coding provides a robust error control method for many common types of data transfer

mediums, particularly those that are one-way or that are noisy and sure to produce

errors. Error Control Codes are already the standard for a large number of satellite

transmission specifications as well as for compact disc technology. It is unlikely that the

needs will decrease in our increasing technological society. The trend will continue.

Programmable logic also has a trend that will continue: bigger, faster, and

cheaper. Even today it can be seen that for many large complex functions such as RS

and Viterbi codes, programmable logic is not only a viable solution, but is the best

solution. The huge strides that have been made in only the last five years can be

expected to continue, with the ability to incorporate even larger and more complex

functions into programmable logic at increased levels of performance. These larger,

faster devices, combined with the increasing availability of intellectual property targeted

at programmable logic, such as the functions evaluated in this paper, is a win not only

54

for the PLD manufacturer and the designer, but also the end customer who should see

increased performance at lower cost in the end item product as well.

Our results showed that our design can correct errors up to 14% of the number of

data points without any problem. When we increased the error rate up to15%, we saw

that the output started to change. The accuracy of our design depends on the error rate

inserted in the input data points as was shown before.

Some directions to continue this work are the following:

Changing the parameters of the decoding algorithm, like the number of states per

stage, and observing the effect on the hardware implementation.

Combining Viterbi Algorithm with other decoding methods to improve the error

correction rate.

55

BIBLIOGRAPHY

[GAROO]. Garrett D., Stan M. "Lower power Architecture of the soft output Viterbi

Algorithm", ACM ISBN 1-58113-059-7/98/08,2000.

[ALT01]. Altera Corporation, "Viterbi Compiler, MegaCore Function", user guide,

November, 2001.

[MEG01]. Meguerdichian S., Koushanfar F., Mogre A., Petranovic D., Potkonjak M.,

"MetaCores: Design and Optimization Techniques", ACM ISBN 1-58113-297-2/01/0006,

2001.

[ACT9?). Actel Corporation, "Designing Telecommunication Applications Using Digital

Signal Processing Functions With FPGAs", Actel 5192622-0, pages (1-8), 1997.

[XILlNX] www.xilinx.com

[CHIPCENTER] www.chipcenter.com

[XESS] www.xess.com

[ORCAD] www.orcad.com

[DUOO). Du J., Falkowski J., Aziz A., Lane J., " Implementation of Viterbi Decoding On

StarCore SC140 DSP", CMP Media Inc., DSP conference proceedings, 2000.

[MEN98]. Some decoding techniques in this work were taken from: Mentor Graphics

Corporation, "Viterbi Decoder Algorithm ", Copyright 1998.

[SWA02]. Swaminathan S., Tessier R., Goeckel D., Burleson W., "A Dynamically

reconfigurable Adaptive Viterbi Decoder ", ACM 1-58113-452-5/02/0002, 2002.

[SKA96]. Skahill K., 'VHDL for Programmable Logic", Addison-Wesley Publishing,

1996.

http://www.xilinx.com
http://www.chipcenter.com
http://www.xess.com
http://www.orcad.com

56

[SCI02]. SClworx, "Viterbi Decoder", .Doc. No.:VC0181.002HO, Rev 01.00.02. Sci-

worx.GmbH, 2002.

[XIL01] XILINX Inc., "Viterbi Decoder", LogicCore V1.0, 2001.

57

ABSTRACT

IMPLEMENTATION OF VITERBI DECODER
ON XILINX XC4005XL FPGA

by

NABIL ABU-KHADER

May 2002

Advisor: Dr. Pepe Siy

Major: Electrical Engineering

Degree: Master of Science

The Viterbi decoding algorithm is used to decode convolutional codes and is

found in many systems that receive digital data that might contain errors. The use of

error-correcting codes has proven tobe an effective way to overcome data corruption in

digital communication channels. In previous works, researchers describe the Viterbi

Algorithm, but the accuracy does not exceed 10% of data points. Also, a lot of previous

works do not follow IEEE 802.16 new specifications. Viterbi decoders are generally

implemented using programmable digital signal processors (DSPs) or special purpose

chip sets and application-specific integrated circuits (ASICs). Here, we aim to implement

such decoder on an FPGA.

In This paper, we provide a more accurate Viterbi decoder according to IEEE

802.16 specifications. We used VHDL hardware description language to implement the

algorithm. We also used OrCAD Capture V9.1 to compile, synthesize, and simulate our

code. IEEE 802.16 standard specifies the air interface of fixed point-to-multipoint

58

broadband wireless access (BWA) systems providing multiple services. This standard is

intended to enable rapid worldwide deployment of broadband wireless access products.

The new IEEE 802.16 specifications require a Viterbi block decoder with constraint

length of 3, traceback length of 32, and minimum throughput requirement of 44.8 Mbps.

The Implementation parameters for the decoder have been determined through

simulation and the decoder has been implemented on a Xilinx XC4005XL FPGA.

59

AUTOBIOGRAPHICAL STATEMENT

NABIL ABU-KHADER

Education

• Towards the Ph.D. in ASICNLSI

Wayne State University; Detroit, Michigan

• M.S. in Electrical Engineering, 2002

Wayne State University; Detroit, Michigan

• B.S. in Electrical Engineering, 1999

AI-Balqa Applied University; Amman, Jordan

Experience

• Graduate Teacher Assistant, VLSI Lab,WSU, Detroit, MI. 2000-2002

• Electrical Engineer, Barada Electrical Company, United Arab Emirates. 1999-

2000

• Electrical Engineer, General Plastic Industrial Company, Jordan. 6/1999-9/1999

	Wayne State University
	4-9-2002
	Implementation of Viterbi decoder on Xilinx XC4005XL FPGA
	Nabil Abu-Khader
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67

