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Chapter 1: Introduction 
 

1.1 HIV-1 Epidemiology and life cycle 
          Human immunodeficiency virus (HIV) was first characterized as the direct cause of Acquired 

Immune Deficiency Syndrome (AIDS) in 1983[1]. Initially a devastating diagnosis with few options for 

treatment, major research efforts led to the development of multiple small molecule inhibitors through the 

mid-1990s and into the mid-2000s [2]. These efforts continue to contribute to a reduction in AIDS related 

deaths; there was a reduction of ~35% in AIDS death worldwide from 2011 to 2015 (World Health 

Organization, 2015). However, the number of people living with HIV worldwide has increased by ~10% 

over this same span, and effective treatment remains an important global concern. 

 
Table 1.1 World Health Organization (WHO) data illustrating worldwide HIV/AIDS prevalence for the 
year 2015. This report is compiled biannually by a consortium of the WHO, UNAIDS, and Unicef. 
 

          HIV is a Lentivirus (a genus of the Retroviridae family) and human infection is caused by two 

species: HIV-1 and HIV-2. HIV-2 is mostly local to western Africa and has lower virulence and 



 

 

 

infectivity than HIV-1, the latter of which causes the majority of HIV infections throughout the world [3, 

4].  

          The HIV life cycle begins with the attachment of virus to host immune cells, predominantly T4-

lymphocytes (Fig 1.1). These cells express the CD4 receptor on their surface, and interactions between 

this receptor (along with the co-receptors CCR5 and CXCR4) and HIV glycoproteins gp41 and gp120  

allow the virus to fuse with and release its contents into the cell. The virus contains two copies of the 

single-stranded, positive sense RNA genome, as well as the viral enzymes reverse transcriptase and 

integrase. The former transcribes the RNA genome into DNA, creating a second strand of DNA in the 

process to create complete double-stranded DNA. Integrase binds and cleaves a dinucleotide group from 

the 3’ ends of the nascent DNA, priming it to react with host DNA. This complex of newly synthesized 

DNA and bound viral enzymes is called the pre-integration complex, and along with some host proteins it 

translocates into the nucleus. Once inside, integrase catalyzes the strand-transfer reaction that allows the 

exposed hydroxyl groups from the newly nicked 3’ DNA ends to hydrolyze phosphodiester bonds in 

actively transcribed host DNA regions. Host cell DNA repair proteins repair the single stranded breaks, 

integrating the viral DNA into the host genome. The host DNA is then transcribed, and the viral protein 

containing mRNA is processed by the HIV protease, releasing structural and non-structral viral proteins. 

Mature virions are then assembled and bud off from the host cell membrane, allowing the cycle to repeat. 

The time to complete this replication cycle is approximately 36 hours. 

 



 

 

 

 

Figure 1.1 The HIV-1 life cycle. The figure covers virus attachment through budding and maturation 
(aidsinfo.nih.gov) 



 

 

 

1.2 The HIV genome 
          HIV possesses two copies of its 9,719 nucleotide containing positive-sense RNA genome. Each 

RNA component contains a 3’ poly(A) tail and a 5’Gppp cap [5]. The viral RNA is tightly associated with 

viral nucleocapsid proteins to prevent degradation via host cell nucleases. The HIV genome contains 3 

major open reading frames, and utilizes differential RNA splicing to produce 9 gene products (Fig 1.2). 

The 3 major genes are gag, pol and env. Gag encodes viral structural proteins including MA (p17, the 

matrix protein), CA (the capsid protein p24) and NC (nucleocapsid protein p7). Pol encodes viral 

enzymes including reverse transcriptase, integrase, and protease. Env encodes envelope glycoproteins 

including gp120 and gp41, which are essential for viral entry[6]. 

Fig 1.2 The HIV-1 RNA genome. Overlap occurs between some gene products due to differential RNA 
splicing [7]. 

 
          The essential and accessory regulatory proteins (many of which are shared by most retroviruses, 

some of which are unique to HIV) are produced in smaller, spliced mRNA transcripts. While gag and pol 

are produced as an unspliced 9.2kb transcript (in addition to a smaller gag-only transcript), the essential 

regulatory proteins Tat and Rev are found on a multiply spliced 2 kb transcript[8]. These proteins 

function mainly in the nucleus where they serve to stimulate transcription and regulate viral RNA 

production. Vif, Vpu, and Vpr are found on a singly spliced 4.5 kb transcript. Vif (viral infectivity factor) 

improves the efficiency of mature virion assembly by degrading a host cell antiretroviral cytidine 

aminase; Vpu (viral protein u) aids in virion release from the host cell membrane; Vpr (viral protein r) 

arrests the host cell in G2 and allows for translocation of the pre-integration complex (containing the 

reverse transcribed viral DNA) into the host cell nucleus [9]. The long terminal repeats found on both the 

3’ and 5’ ends of the genome are essential and serve as recognition sites for integrase. 

           



 

 

 

1.3 HIV-1 protease 
          HIV-1 protease (protease) is a 99-amino acid containing homodimer (Fig 1.3). It is an aspartyl 

protease and is essential to the HIV life cycle, rendering it an attractive and very successful drug target. 

The enzyme contains the classic aspartyl protease motif (Asp/Thr/Gly) at residues 25-27, with residue 25 

acting as the catalytic residue (and both monomers contributing one Asp residue that extends into the 

active site cavity). Each monomer contains an anti-parallel β-sheet with a turn (referred to as the “flap”) 

that in the homodimer forms the top of the active site cavity (residues 46-56). Crystal structures of both 

apo and ligand bound protease show that these flaps can move as much as 7 Å upon substrate or inhibitor 

binding, and their motion is affected by drug-resistance mutations [10]. protease performs 12 proteolytic 

reactions, 5 on the Gag polyprotein, 6 on the Gag-Pol polyprotein, and one on Nef. The initial auto-

cleavage of protease from the Gag-Pol polyprotein occurs via an intramolecular reaction [11]. The 

MA/CA cleavage site on the Gag polyprotein is the site with the highest affinity for protease, as it 

strongly prefers binding to the N-terminal side of Pro residues (with either Tyr or Phe residues adjacent). 

Notably, there are no known human enzymes that cleave at a similar site (an aromatic residue directly 

adjacent to a Pro residue) [12]. These reactions occur late in the viral life cycle during virion assembly 

and maturation near the host cell membrane.  



 

 

 

 

          The mechanism of action of the HIV protease has been extensively studied, and is thought to 

proceed in a similar manner to other aspartyl proteases [13]. Although two Asp residues exist in the active 

site, only one is protonated at any given time, allowing for the activation of a water molecule held 

between the two catalytic residues. This activated water molecule is then able to perform nucleophilic 

attack on the carbonyl carbon of the substrate’s scissile bond (Fig 1.4).  

1.4 HIV-1 Protease inhibitors and mechanism of action 
          There are 9 FDA approved protease inhibitors (PIs), most of which are peptidomimetic and 

designed to mimic the tetrahedral intermediate cleavage substrate product (Fig 1.5). PIs quickly became a 

mainstay of HIV treatment. Highly Active Anti-Retroviral Therapy (HAART) became the standard of 

Fig 1.3 Wild type HIV-1 Protease. The catalytic Asp residues are highlighted in red. Note that the 
flaps are closed in this conformation (PDB  3PHV) 
 



 

 

 

care throughout the late 90s and into the 2000s, and this treatment involves a combination of drug 

 

Fig 1.4 General mechanism of action for aspartyl proteases (including HIV-1 protease). D/T/G represent 
the conserved Aspartic acid, threonine, glycine catalytic triad [13]. 
 
therapies, generally including 2 nucleoside reverse transcriptase inhibitors, and one ritonavir-boosted 

protease inhibitor. Depending on patient need, occasionally the PI is substituted for a non-nucleoside 

reverse transcriptase inhibitor or integrase strand transfer inhibitor [14]. Saquinavir (SQV) was the first PI 

to be approved, entering clinical trials in 1989 and reaching the market in 1995. It was initially designed 

to mimic a proline residue at P1’ and a phenylalanine residue at the P1site [15]. As noted above, this is a 

unique recognition motif for HIV protease. These groups were eventually changed slightly to increase 

contacts with the protease and improve binding affinity. SQV is generally well tolerated but is unable to 

achieve high blood serum levels.  



 

 

 

          Following the release of SQV, three other PIs attained FDA approval within one year: Ritonavir, 

Indinavir, and Nelfinavir. Ritonavir in particular was an important discovery; although it has significant 

side effects when administered at a dose effective for protease inhibition, it was discovered that it acts as 

a potent cytochrome P450-3A4 inhibitor, which is the cytochrome P450 form responsible for metabolism 

of the other PIs [16]. Thus, a low dose of ritonavir co-administered with another PI allows for effective 

protease inhibition at a lower dosing concentration, further reducing the chance of severe side effects. 

Nearly all PIs are now co-administered with ritonavir. Lopinavir (LPV), first approved by the FDA in 

2000, was the first PI to be approved exclusively for co-administration with ritonavir [16]. Amprenavir 

was approved in late 1999, and was supplanted by fosamprenavir a few years later. The latter is a prodrug 

formulation of amprenavir, allowing for the drug to last longer with each dosing and to require fewer pills 

overall [15]. Atazanavir was approved in 2003 and was popular not only because of its effectiveness as a 

PI, but because it is less likely than the other PIs to cause lipodystrophy (abnormal fat deposits, especially 

in the neck and back) and produce elevated cholesterol levels, significant side effects that often 

accompany PI treatment. It also has a more favorable resistance profile than earlier PIs [17].  Tipranvir 

was approved in 2005, and is generally reserved for use as a second-line or “rescue” PI, because it retains 

effectiveness in the face of resistance to other PIs (it generally requires multiple mutations before its 

effectiveness wanes as severely) [18]. Additionally, the side effect profile for Tipranavir is worse than 

most other PIs making it less attractive as an initial therapy. Finally, Darunavir was the most recent HIV 

PI to be FDA approved, attaining this status in 2006. It was specifically designed to utilize a hydrogen 

bonding strategy with the backbone structure of both wild type and PI-resistant HIV protease, and is 

capable of rescuing patients who have developed drug resistance to other PIs [19]. It too is administered 

with ritonavir as a booster, in a formulation marketed as prezista.  



 

 

 

 

Fig 1.5 FDA approved HIV-1 protease inhibitors. The hydroxyl highlighted in blue interacts with the 
protease catalytic Asp residues and is conserved across all but one of the HIV PIs [20].  
 
          All but one PI contains a hydroxyl attached to the core of the molecule that upon binding to the 

protease is oriented toward the catalytic Asp residues, forming a hydrogen bond with the carboxylic acid 

on these residues. Additionally, most PIs form hydrogen bonds via a bridging water molecule with Ile 50 

and 50’, which helps to tether the flaps in their closed position, increasing contacts with the PI [16]. 

Crystal structures of protease in complex with all 9 of the FDA approved inhibitors exist. Fig 1.6 



 

 

 

illustrates the HIV protease – DRV complex at 1.7 Å resolution [21].

 

Figure 1.6 HIV-1 protease in complex with Darunavir (pdb: 4YOA). One monomer is shown as a surface 
filling model to show the fit of DRV in the active site more clearly. 
  

1.5 HIV Protease inhibitor resistance 
          As mentioned above, HIV replication occurs rapidly, and the reverse transcriptase has no 

proofreading capability and as such is highly prone to error (incorporating an incorrect nucleotide on 

average once every 1700 nucleotides). This allows various mutations to accumulate in the host HIV 

population [22]. With HAART/PI treatment, patients can (and often do) develop drug resistance 

mutations in HIV protease (and other viral enzymes depending on treatment, including Integrase) that 

reduce the efficacy of treatment over time [23]. This is especially pronounced in patients that are poorly 

adherent to their treatment regimen. The Stanford HIV Drug Resistance Database reports major mutations 

appear in treatment experienced HIV protease populations at 13 different residues (30D, 32V, 33L, 46M, 

47I, 48G, 50I, 54I, 76L, 82V, 84I, 88N, and 90L) [24]. Table 1.2 illustrates the wide variety of mutations 

that can affect treatment, and which PIs they affect. The mutations producing the most marked effect on 

phenotype are displayed bold in red. All of the noted mutations ultimately reduce the number and strength 

of contacts between the protease and PIs. As noted earlier, darunavir and tipranavir have a higher barrier 



 

 

 

to resistance, and this is evident in the lower number of major mutations reported that interfere with their 

treatment efficacy.

 

Table 1.2 Stanford HIV Drug Resistance Database reported major resistance mutations. The mutations 
displayed in bold and red have a more severe effect on treatment efficacy for their respective PI. The “/r” 
nomenclature indicates concurrent administration with ritonavir as a booster. 
 
          Understanding the effects these mutations have on the HIV protease, and thus how to potentially 

design new and more effective PIs to overcome this drug resistance, is a major focus of ongoing HIV 

research including the work the forms the bulk of this thesis.  

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 2: Materials and Methods 

2.1 HIV-1 protease expression and purification 
          MDR769 L33F is based on the previously studied multi-drug resistant variant 769 (MDR769) 

which contains the mutations Q7K, L10I, M36V, M46L, I54V, I62V, L63P, A71V, V82T, I84V, L90M 

[25]. This isolate was originally obtained from a patient who was poorly adherent to antiretroviral therapy 

at the Wayne State University infectious disease clinic in Detroit, MI. MDR769 L33F contains all 

mutations present in MDR769 as well as the additional mutation L33F. This mutation was initially 

identified as an accessory (minor) mutation affecting darunavir treatment. Its status was upgraded to a 

major drug resistance mutation in 2013, concurrent with the release of the work described in chapter 3. 

The Q7K mutation is not found in patient HIV populations but rather is introduced in order to prevent 

protease autoproteolysis.  

          The recombinant MDR769 L33F HIV-1 protease was expressed using a pET-21b T7 promoter 

expression vector with Escherichia coli BL21 (DE3) as the host (and ampicillin as the selectable marker).  

A 20 mL liquid culture was inoculated with a single colony of transformed cells, and incubated at 37 °C 

at 220 rpm for ~2 hrs. These bacteria were then used to inoculate a large 1L culture, which was induced at 

an absorbance of 0.5 with 1 mM IPTG and allowed to grow for 3 hours after induction. Cells were 

harvested via centrifugation at 10,000g for 5 minutes at 4 °C. The pellet was washed once (50 mM Tris, 

pH 7.5, 200 mM NaCl, 2 mM β-mercaptoethanol, 2 mM EDTA) and suspended in lysis buffer (50 mM 

Tris, pH 7.5, 200 mM sodium chloride, and 10 mM β-mercaptoethanol). The bacterial cells were lysed 

using a one inch diameter French Press operating at 20,000 psi. The HIV protease is fairly insoluble and 

is deposited into inclusion bodies. These inclusion bodies containing the protease were separated from the 

soluble fraction by centrifugation at 38,000g for 30 minutes (at 4 °C). Inclusion bodies were washed three 

times with lysis buffer with sequential additives (first, 0.1% Triton X-100; second, 1M NaCl; third, 1M 

Urea) with a 5 minute centrifugation at 38,000g following each wash. Following the third wash, the 

inclusion bodies were solubilized using lysis buffer with 6M Urea addition. This sample was then allowed 

to flow over a Q-Sepharose ion exchange column which was equilibrated with the same 6M urea 



 

 

 

containing lysis buffer. The protease was contained in the flow-through from the column (Fig 2.1).

 

Figure 2.1 Purification of MDR 769 L33F HIV-1 protease. A) Lane 1, marker; lane 2, wash with lysis 
buffer; lane 3, supernatant; lane 4: wash with lysis buffer containing 0.2% Triton X-100; lane 5, wash 
with lysis buffer containing 1 M sodium chloride; lane 6, wash with lysis buffer containing 1 M urea. (B) 
Lane 1, sample of solubilized inclusion bodies applied to Q-Sepharose ion exchange column; lane 2, 
flowthrough from ion exchange column; and lane 3, wash with buffer A containing 6 M urea. The arrow 
indicates purified MDR HIV-1 protease (10.8 kDa monomer). 
           

          To refold the pure protease, the fractions containing protease were combined and diluted to ~0.2 

mg/ml in the 6M urea containing lysis buffer. The dilute protease was dialyzed against 4L of dialysis 

buffer (pH 7.0, 25 mM NaCl, 20 mM sodium phosphate, 0.2% β-mercaptoethanol, 10% glycerol). The 

buffer was changed twice using a secondary 4L dialysis buffer omitting the glycerol (pH 7.0, 25 mM 

NaCl, 20 mM sodium phosphate, 0.2% β-mercaptoethanol), twice using a 4L tertiary dialysis buffer (pH 

5.6, 10 mM sodium acetate, 0.2% β-mercaptoethanol), and once using a final 4L dialysis buffer (pH 5.6, 

10 mM sodium acetate, 10 mM DTT). protease was concentrated to 5 mg/ml using a Centriprep YM-3 

filter concentrator at 3000g.   

 
2.2 HIV-1 Protease crystallization and diffraction data collection 
          Apo MDR769 L33F was crystallized using the hanging-drop vapor diffusion method. Two 

precipitant conditions produced crystals: (2.4 M ammonium sulfate, 0.1 M MES, pH 6.2) and (2.4 M 

ammonium sulfate, 0.1 M HEPES, pH 6.8). Co-crystallization methods were unable to produce high-



 

 

 

quality crystals. As a result, apo crystals were soaked for 19 h in conditions matching the mother liquor in 

which they were formed, with the addition of DRV in molar excess (5 mM DRV, 5% DMSO). The 

crystals were cryoprotected with 30% glucose and were flash frozen in liquid nitrogen. Data were 

collected at the LS-CAT facility, located within the Advanced Photon Source at Argonne National 

Laboratory. 

 
2.3 HIV-1 protease structure refinement and analysis 
          The structure of the apo L33F model was determined at a resolution of 1.50 Å. It was phased by 

molecular replacement using PHASER [26] with PDB entry 1TW7 as the initial search model. 

Refinement was performed using Phenix [27]. Subsequent structures containing a PI were phased using 

the apo L33F structure as a search model. The models were built in COOT [28]. After molecular 

replacement, ligands were added manually into the model after the protein was refined. A round of 

refinement was performed with PDB-REDO [29] before deposition to the protein data bank 

(www.wwpdb.org). The final models were analyzed and validated with MolProbity [30]. All images were 

created using PyMoL [31]. Noncovalent interactions were identified using LigPlot+ [32]. Hydrogen 

bonds were defined utilizing a donor–acceptor cutoff distance of 3.2 Å; all distances were measured in 

PyMoL. Crystallographic data are presented in the appendix Table A1. 

 
2.4 Molecular Dynamics 
          Molecular Dynamics (MD) is a computational method that allows the evolution of a prepared 

molecular system to be calculated (approximately, using one of the handful of available molecular force 

fields written for this purpose) over a given length of time, generally in a nanosecond to microsecond time 

range. These calculations can often reveal the likely internal motion of proteins, including changes in 

conformation that may play a critical role in protein function. Simulations in the nanosecond range may 

reveal atomic fluctuations, side chain motion, and loop movement, whereas those in the microsecond 

range can allow for identification of helix and whole subunit/domain motions [33]. MD simulations 

lasting milliseconds (or longer!) currently require very specialized equipment and enormous processing 



 

 

 

power, but may be capable of revealing the dynamics behind protein folding and unfolding, as well as the 

binding and dissociation of protein substrate and ligands [34]. New molecular force fields are continually 

published and updated, and continue to increase the accuracy of MD output as well. Thus, molecular 

dynamics will continue to be an important experimental methodology well into the future. 

 
2.4.1 The CHARMM force field 
          All MD simulations were performed using the CHARMM 36 (Chemistry at HARvard 

Macromolecular Mechanics) forcefield which was developed in the lab of Dr. Martin Karplus, initially 

released for public use in the 1980s, and is regularly updated today by the lead developer Dr. Alex 

MacKerell and his team [35]. All experiments were performed using version c39b1; the latest version is 

c40b2 and can be downloaded at http://www.charmm.org. CHARMM was one of the first force fields 

written for MD experiments, and the first to account for atomic partial charges derived from quantum 

mechanical calculations of the interactions between model atoms and water. CHARMM accounts for 

torsion (the dihedral angle), bond angle bending and bond stretching, as well as non-bonded interactions. 

The latter include van der Waals and Coulomb energies [36]. The potential energy and related terms are 

calculated from the coordinates based on fixed point charges as shown in Figure 2.2. 

 

 
Figure 2.2 Calculation of potential energy in the CHARMM force field [36] 
 
          The potential energy, (U(R�)), is a summation of terms that represent the non-bonded and internal 

contributions as a function of the atomic coordinates. Internal terms include valence angle (θ), improper 

angle (ω), dihedral angle (φ), bond (b), Urey-Bradley (UB, S), and backbone torsional correction (CMAP, 



 

 

 

φ,ψ) contributions. The parameters Kb, K φ, KUB, Kθ and Kω are the force constants and all variables 

with the subscript 0 are their respective equilibrium values. Additionally, n is the multiplicity of the 

dihedral angle and δ is the phase shift [36]. 

2.4.2 Molecular Dynamics using NAMD 
          All MD simulations were performed using Scaling NAno Molecular Dynamics (NAMD) V. 2.9 

[37]. The protease models were solvated in a water box utilizing the TIP3P model for all water atoms. 

The cutoff for non-bonded interactions was 10 Å. The Particle Mesh Ewald (PME) method was used for 

the calculation of long-range electrostatic interactions [38]. Our system does not possess large 

fluctuations in density making the PME method more efficient than the fast multipole method used in 

systems that do. All model systems were initially energy minimized using the conjugate gradient method 

and heated gradually over 200 picoseconds from a liquid nitrogen temperature of 70K to the physiological 

temperature of 310K (~98 °C). Simulations were conducted in the NPT ensemble in order to maintain a 

constant number of atoms, pressure, and temperature. Langevin dynamics were used to keep the system’s 

temperature constant at 310K, and the Nose-Hoover Langevin piston method was utilized to maintain a 

constant pressure of 1.0 atm. Simulations were performed for 40 ns using the CHARMM force field 36 

and a timestep of 2 fs. This simulation length ensures all the conformers of likely biological relevance are 

sampled during the simulation. A trajectory frame was recorded every 1000 timesteps, producing an 

output trajectory of 20,000 frames. 

          MD simulations were performed in parallel on multiple processors using the Wayne State 

University high performance scientific computing Grid (www.grid.wayne.edu). The WSU Grid currently 

has the combined processing power of 7,376 cores: 2,480 Intel cores, 4,896 AMD cores, with over 22TB 

of RAM and 1.2PB of disk space. 

2.4.3 Model preparation for MD 
          The X-ray structures of the WT, MDR, and MDR L33F HIV-1 proteases are solved and were used 

to determine coordinates for these structures. Homology models for DetMDR1, DetMDR2, and 

DetMDR3 were created using SWISS-MODEL [39] and utilizing wild type HIV-1 protease as a template. 



 

 

 

Based on the known catalytic mechanism of HIV-1 protease, residues Asp 25 and Asp 25’ were assigned 

alternative protonation states (Asp 25 was protonated and Asp 25’ was deprotonated). All histidine 

residues were assigned a neutral charge. Protonation states of other amino acid residues were determined 

based on their likely state at physiological pH. Crystallographic waters were added to the non-

crystallographic MD set ups by merging the water coordinates from the template PDB into the new 

model. All apo/complexed protease prior to MD were placed into a TIP3P water box and magnesium 

chloride atoms were added by VMD in order to neutralize any charge on the system. The system was 

prepared in Visual Molecular Dynamics v1.91 (VMD) [40]. 

2.4.4 Analysis of molecular dynamics trajectories 
          All output trajectories of MD experiments were analyzed using VMD. Pymol. Root-mean-square 

deviation (RMSD) values were calculated using in VMD using the RMSD trajectory wizard. The first 

frame following energy minimization (frame 21) was used as the top reference frame. The RMSD wizard 

generated RMSD values for Cα backbone atoms of the protease for each complex. The Timeline wizard 

in VMD was used to generate RMSD values for each residue side chain utilizing either the first frame 

after energy minimization or the first frame of the final 10 ns of the simulation as the reference frame. 

Structure figures were prepared in PyMol. 

2.5 Ligand docking and scoring with Swiss Dock 
          Protein-ligand docking is a computational method that utilizes a molecular mechanics force field 

(often a CHARMM force field) and a scoring algorithm to predict the binding location and conformation 

of a ligand to its protein target. This method can additionally provide an estimate of the affinity of 

binding. Docking is somewhat limited in that the protein target must generally be held rigid (and so large 

changes in conformation that may occur during ligand binding cannot be predicted or observed), but it is 

extremely useful as a precursor to more rigorous methods (like molecular dynamics). Experiments can be 

run with differing degrees of rigor, allowing for high-throughput methods to screen millions of 

compounds quickly looking for possible molecules to study in more detail, or a more detailed analysis 

allowing for highly accurate active side binding predictions. HIV-1 PI drug design studies were 



 

 

 

performed here using the web based docking program SwissDock to predict the binding mode and affinity 

of the protease inhibitors. 

          SwissDock is a protein-ligand docking UI based on EADock DSS that provides rapid docking 

results and has proven to be highly accurate in its prediction of binding modes [41]. In a test docking of 

251 protein-ligand complexes, 57% of the top-scoring ligand binding modes predicted by the software 

were within at least 2Å of the known crystal structure. This number rose to 70% when considering the top 

five scoring predictions, and the scoring algorithm is continually be improved upon [42]. Multiple HIV-1 

protease structures were used as input for docking experiments, including crystal structures of both wild 

type (PDB: 2S09) and MDR 769 (PDB: 3SPK). SwissDock prepares input PDB files by converting them 

to CHARMM format, adding the hydrogen atoms that are likely present at physiological pH (all PDB 

files are lacking hydrogen atoms), and performing energy minimization on the protein using the steepest 

decent method.  All lopinavir analogs were drawn in ChemDraw, saved as .smi files, and then converted 

to a three dimensional .mol2 file using ChemBioDraw3D, and uploaded to SwissDock. SwissDock 

performs energy minimization of all ligands via the Merck Molecular Force Field prior to all docking 

experiments. Ligands are allowed to remain flexible during docking. Docking performed by SwissDock 

proceeds over multiple steps. Initially, multiple binding modes for the ligand are generated, and the 

CHARMM energies associated with these modes are estimated on a grid covering the protein target. 

Subsequently, the binding modes with the most favorable energies are evaluated with a scoring algorithm 

and grouped into clusters of similar poses. The predicted binding energies of modes within the most 

favorable clusters are attached to a pose viewer file, and can be visualized in UCSF Chimera [43]. 

Rescoring of all docking output was performed manually based on a combination of their predicted ΔG of 

binding values as well as a visual inspection of the ligand to ensure that it was properly placed in the 

active site (and for the lopinavir analogs, ensuring that the central hydroxyl is oriented toward the 

catalytic Asp residues). 



 

 

 

Chapter 3: The L33F darunavir resistance mutation acts as a 

molecular anchor reducing the flexibility of the HIV-1 protease 30s 

and 80s loops 

 
3.1 Introduction 
          This work was published in the journal Biochemistry and Biophysics Reports in July 2015. The 

current standard of care for HIV, HAART, often employs a protease inhibitor (PI) containing regimen 

[44] but mutations in HIV-1 protease (protease) that develop in treatment-experienced patients decrease 

the efficacy of all current PIs including DRV [44, 45]. Thus, further analysis of key HIV-1 protease 

resistance mutations is needed to develop more potent antivirals to combat drug resistance. 

          Clinical isolates previously obtained from the Wayne State University Infectious Disease Clinic in 

Detroit, MI contain major drug resistance mutations L33F, I47V, I50V, I54M, L76V, V82I/F, and I84F as 

well as non-polymorphic accessory mutations L10V/G, V11I, I13V, K20T/R, L33I/M, K43T, F53L, 

A71L, T74P, and L89V. These mutations confer resistance to all FDA approved PIs 

(http://hivdb.stanford.edu/) [24]. Molecular dynamics simulations with these isolates showed altered 

protease flap dynamics [46]. 

          To further investigate the role of the L33F mutation, we created a recombinant MDR769 L33F 

protease and performed X-ray crystallographic studies. L33F was initially identified as an accessory 

mutation to I54L/M, V32I+I47V, and I84V/I but is now recognized as a nonpolymorphic major drug 

resistance mutation [24, 47]. L33F is selected for in patients on a ritonavir pharmacokinetic boosted 

darunavir (DRV/r) regimen [45], is associated with DRV/r resistance [48], has greatly increased in 

prevalence since the year 2000, and has direct influence on inhibitor-interacting residues [49]. We 

hypothesize that reduced flexibility of the 30s and 80s loops due to molecular anchoring properties of 

L33F may contribute to drug resistance. 

3.2 Results 



 

 

 

3.2.1 Structural features of the residue 33 environment 
          The side chain of L33F extends 2.2 Å deeper into the hydrophobic pocket compared to L33 in WT 

protease (Fig. 1)  

Figure 3.1 Structural features of the HIV-1 protease residue 33 molecular anchor. (A) Superposition of 
the WT protease (green), MDR769 protease (magenta), and MDR769 L33F protease (yellow) apo 
structures. The 30s loop, which contains residue 33, is positioned between the 80s loop and the 
hydrophobic pocket. In (B), (C) and (D) WT, MDR769, and MDR769 L33F are shown, respectively. 
L33F fills the hydrophobic pocket more completely than L33. The inset in panel (D) shows the 2Fo– Fc 
map for MDR769 L33F contoured at 1σ 

leading to increased hydrophobic interactions between L33F and the hydrophobic pocket. The  

hydrophobic pocket is defined by residues I13, I15, K20, A22, T31, M/V36, L38, I64, I66, V75, V77, 

N83, and I85 (Fig. 3.1B–D). To visually identify changes in these residues, we aligned and superimposed 

the WT, MDR769, and MDR769 L33F structures. Although conformational and positional changes in 

these residues are seen between the WT and MDR769 structures (Fig. 3.1B and C), the L33F mutation 

produces further alterations in many of these residues (Fig. 3.1D). The most notable change is in residue 

I13, which rotates to avoid steric clashes with L33F. Other significant changes due to the L33F mutation 



 

 

 

are noted in residues I15, K20, A22, V36, L38, I66, and N83. These changes lead to increased 

hydrophobic interactions in L33F compared to the WT and MDR769 structures (Table 3.1). 

          The MDR769 L33F structures show increased rigidity compared to the WT and MDR769 

structures. Upon drug binding, L33 in the WT–DRV complex shifts 1.1 Å towards the active site and a 

hydrogen bond is formed between the backbone amide nitrogen of L33 and the backbone carbonyl of 

 

Table 3.1 The impact of L33F on interactions with the hydrophobic pocket and darunavir. Top row: non-
covalent interactions between residue 33 (L/F) and hydrophobic pocket residues. Bottom row: non-
covalent interactions between DRV and active site residues. Interactions involving residue 33L/F were 
identified using the DimPlot script in LigPlot+; interactions between protease and DRV in the complexed 
structures were determined using LigPlot+. Mutations present in MDR769 reduce the number of non-
covalent interactions with the hydrophobic pocket. Substitution of L33F restores the interactions between 
residue 33 and the hydrophobic pocket and extends them beyond what is observed in the WT structures. 
Interactions between DRV and the active site are reduced by mutations present in MDR769 but are 
further reduced due to the molecular anchoring properties of the non-polymorphic L33F mutation. 
 
G78. Additionally, the side chains of residues I13, I15, M36, I66, and V75 are rotated, residues I15, K20, 

M36, L38, and V77 shift 0.4 Å, 1.2 Å, 2.3 Å, and 2.1 Å, respectively, into the hydrophobic pocket, and 

residues T31, V75, N83, and I85 shift 0.8 Å, 0.7 Å, 1.0 Å, and 0.5 Å away from the pocket. Similar 

changes occur in the MDR769 structures upon drug binding. However, with the L33F mutation, minimal 

changes in conformation or position occur in either L33F or residues of the hydrophobic pocket upon 

drug binding in the MDR769 L33F structure. 

3.2.2 L33F as a Molecular Anchor 
          When the 30s loop (residues 29–35) of protease bears the L33F mutation, flexibility of both the 30s 

and 80s loops (residues 79–84) is decreased, likely through increased hydrophobic interactions. The 80s 

loop influences the S1/S1′ binding site [50], and the 30s loop lies between the 80s loop and the 



 

 

 

hydrophobic pocket (Fig. 3.1A). In the WT–DRV complex, drug binding causes the 30s loop residues to 

shift, on average, 1.5 Å towards the active site compared to the WT apo structure (Fig. 3.2A). In a similar 

fashion, the adjacent 80s loop residues also shift, on average, 2.0 Å towards the active site (Fig. 3.2A). 

Furthermore, residue 33L in the WT–DRV complex displays fewer noncovalent interactions compared to 

the WT apo structure (Table 3.1).  

Figure 3.2 L33F acts as a molecular anchor that restricts movement of the 30s and 80s loops. (A) 
Superposition of WT apo protease (green) and WT–DRV complex (cyan). (B) Superposition of MDR769 
apo (magenta) and MDR769–DRV complex (blue). The 30s loop and 80s loop in (A) and (B) both shift 
with DRV bound. (C) Superposition of MDR769 33F apo (yellow) and MDR769 L33F–DRV complex 
(red). L33F prevents movement of the 30s and 80s loops towards the active site as in the WT and 
MDR769 structures. The inset in (C) shows the 2Fo– Fc map for the 30s loop residues (D29–E35) 
contoured at 1σ.

 
Similar to the WT–DRV complex, the 30s and 80s loops of the MDR769–DRV complex shift 1.6 Å and 

2.4 Å, respectively, towards the active site compared to the apo structure (Fig. 3.2B). Also, the number of 

noncovalent interactions is severely reduced in the MDR769 structures compared to the WT structures 

(Table 3.1). However, the 30s and 80s loops of the MDR769 L33F–DRV complex show minimal shifting 



 

 

 

upon drug binding; the only significant change is in residue P81, which shifts 0.4 Å into to the active site 

and puckers up when DRV is bound in the active site (Fig. 3.2C). In addition to the decreased flexibility 

of the 30s and 80s loops in the MDR769 L33F structures, the L33F mutation restores the noncovalent 

interactions with the hydrophobic pocket that were originally lost in the MDR769 complex. These 

restored interactions are also more extensively maintained than in the WT–DRV complex (Table 3.1). 

The decreased flexibility of both the 30s and 80s loops is likely due to enhanced anchoring by L33F via 

increased hydrophobic interactions within the hydrophobic pocket. 

         To further assess the hypothesis of L33F acting as a molecular anchor, 40 ns MD simulations were 

performed. Differences in protein flexibility due to molecular anchoring of L33F should be more 

pronounced in apo protease compared to PI-complexed forms. Therefore, the RMSD of the 30s and 80s 

loops for both chains of apo WT, MDR769, and MDR769 L33F were analyzed over the last 10 ns of the 

MD trajectory. For WT protease, the average RMSD values of the 30s and 80s loops were 1.53 Å and 

1.65 Å, respectively. The 30s loop of the MDR769 structure showed reduced flexibility compared to the 

WT structure with an RMSD of 1.34 Å whereas the 80s loop of the MDR769 showed similar flexibility 

compared to the WT (1.66 Å). Flexibility of the 30s and 80s loops in MDR769 L33F were further 

reduced compared to both WT and MDR769 structures with the 30s loop displaying an RMSD of 1.27 Å 

and the 80s loop displaying an RMSD of 1.55 Å. 

3.2.3 Reduced flap interactions and altered drug conformation 
           Previous work documented interactions between the 80s loop and the flap tips [51], their 

importance in substrate recognition and binding [52], and their influence on forming the S1/S1′ subsite 

[50]. Thus, effects of the L33F mutation on the 80s loop and flap tips are possibly implicated in resistance 

development. 

          In the WT protease, the flexibility of the 80s loop and flaps produces favorable interactions 

allowing for proper formation of the S1/S1′ subsite. In the WT apo structure, a large 7.5 Å gap between 

the P81 of the 80s loop and I50 of the flap tips exists, preventing any interactions between the two (Fig. 

3.3A). However, with DRV bound in the active site, the flaps close and the 80s loop shifts 2.0 Å towards 



 

 

 

the active site. This brings residue P81 within 3.7 Å of G49′ and T80 within 3.9 Å of I50′ (Fig. 3.3A). 

These distances allow for favorable interactions between the flap and the 80s loop resulting in a closed 

active 



 

 

 

 



 

 

 

Figure 3.3 Reduced flap interactions due to L33F anchoring. (A) WT apo protease and WT protease 
complexed with DRV. The apo WT shows a 7.5 Å gap between P81 of the 80s loop and I50 of the flap 
producing an active site in the open conformation. When complexed with DRV, the flaps and active site 
close. (B) MDR769 apo protease and MDR769–DRV complex. Despite interactions between the 80s loop 
and flaps in the MDR769 protease, the flaps and active site display an open conformation. With DRV in 
the active site, the flexibility of MDR769 protease produces a closed active site. (C) MDR769 L33F apo 
protease and MDR769 L33F complexed with DRV bound resembles the WT apo structure in (A) with a 
large gap between residues I50′ and P81. The gap between I50′ and P81 is maintained between the apo 
and complexed structures (5.8 Å and 5.9 Å, respectively) and is too large for interactions to occur. The 
active site and S1/S1′ subsite remain open. The inset in (C) shows the 2Fo– Fc map for DRV and the 80s 
loop in the L33F structure contoured at 0.5σ in order that the density around DRV is shown.   
 

site, and more specifically, a properly formed S1/S1′ subsite (Fig. 3.3A). As a result, DRV makes 

extensive noncovalent interactions with the residues lining the active site as indicated in Table 3.1. 

          Similar to the WT protease, the MDR769 protease displays considerable flexibility in the 30s and 

80s loops (Fig. 3.3B). The gap between residues P81 and I50′ in the MDR apo structure is not large 

compared to the WT (3.6 Å compared to 7.5 Å). The flaps are in a “wide-open” conformation as reported 

previously [25], which leaves the active site open. In the MDR769–DRV complex, the flexibility of the 

30s and 80s loops (Fig. 3.2B) allows the active site to close (Fig. 3.3B). Even though the active site is 

closed, the number of noncovalent interactions between DRV and the active site is decreased, suggesting 

a slightly distorted active site (Table 3.1). 

          In the MDR769 L33F apo structure, the gap between the 80s loop and the flaps resembles the WT 

apo structure, producing an open active site and an open S1/S1′ subsite. The apo structure contains a 5.8 

Å gap between P81 and I50′; this gap is smaller than the WT but still too large for any significant 

interactions to occur. In the L33F–DRV complex, P81 shifts 0.4 Å into the active site, but I50′ also shifts 

and rotates leaving a 5.9 Å gap which resembles the WT apo structure (Fig. 3.3C). The 5.9 Å gap 

between P81 and I50′ leaves an open S1/S1′ subsite and also results in an open active site. The result is a 

severely reduced number of interactions between DRV and the active site compared to both the WT and 

MDR769 structures (Table 3.1). 

          Additionally, in the L33F–DRV complex, the side chains of P2, P1, and P1′ of DRV are rotated to 

compensate for the open S1/S1′ subsite (Fig. 3.3C) which alters the hydrogen-bonding network compared 



 

 

 

to the WT–DRV complex. Previous reports have indicated a conserved hydrogen bonding network 

between DRV and backbone and side-chain atoms of residues D25, G27, D29, D30, D25′, and D30′ [50]. 

In the WT–DRV complex, the P2 bis-THF moiety, hydroxyl, and P2′ amine of DRV are responsible for 

formation of five hydrogen bonds with residues D25, D29, D30, D25′, and D30′. However, the L33F–

DRV complex contains an expanded active site and S1/S1′ subsite which alters the conformation of P2, 

P1, P1′, and P2′ of DRV. As a result, the P2 bis-THF moiety, hydroxyl, and P2′ amine of DRV form only 

three hydrogen bonds with residues D25N, D30, and D29′. Additionally, the number of contacts 

decreased between the P1 group of DRV and the residues of the S1/S1′ subsite (Table 3.1). 

3.3 Discussion 
          The L33F mutation is selected in patients receiving a DRV/r regimen [45], and is associated with 

reduced response to DRV/r treatment [24, 48] as it has direct influence on the inhibitor-interacting 

residues [49]. This work describes the effects of L33F on the structure of HIV protease as well as the 

effect it has on inhibitor recognition. 

          Superposition of MDR769 L33F with WT and MDR769 HIV-1 protease with and without DRV in 

the active site reveals altered conformation of the 30s and 80s loops. The larger side chain of L33F 

embeds further into the hydrophobic pocket than L33, the latter of which is present in both WT and 

MDR769 structures (Fig. 3.1). As a result, noncovalent interactions are increased in this region compared 

to the WT, causing the L33F to act as a molecular anchor. MD simulations showed a clear reduction in 

flexibility of both the 30s and 80s loops for MDR769 L33F compared to both WT and MDR769. The 

results of these simulations support the hypothesis that L33F may play a role as a molecular anchor within 

HIV-1 protease. 

          Enhanced molecular anchoring by the L33F mutation reduces the flexibility of the 30s and 80s 

loops, thereby inhibiting proper formation of the S1/S1′ subsite and keeping the active site in an open 

conformation in the MDR769 L33F–DRV complex (Fig. 3.2 & 3.3). Conversely, in the WT and 

MDR769 complex structures, DRV binding causes a shift in the 30s and 80s loops leading to formation of 

the S1/S1′ subsite and closing of the active site (Fig. 3.2 & 3.3). 



 

 

 

          The structure of the L33F DRV complex reported here shows the protease flaps in an open 

conformation. To date, all deposited structures of HIV protease L33F complexes have been solved in 

three different space groups: P212121, P61, and P41212. The majority of these HIV protease L33F DRV 

complexes have been solved with the flaps in a closed conformation. Other research groups such as the 

Schiffer group [53] and the Konvalinka group [54] have previously reported L33F DRV complexes with 

the flaps in a closed conformation by solving the structures in P212121 (PDB: 4QY1) and P61 (PDB: 

3GGU), respectively. In contrast, the Weber group [55] and this report describe the L33F DRV complex 

as a structure with open protease flaps when the structures were solved in P41212. The Weber group [55] 

(PDB: 4NPT) also utilized the inactivating mutation D25N to facilitate HIV protease expression, 

purification, and crystallization. 

          With specific regard to the L33F mutation, the Schiffer group (closed protease flaps) reports L33F 

may play a role in active site expansion [53]. The Konvalinka group (closed protease flaps) suggests that 

L33F is possibly implicated in structural changes in the flap and flap hinge regions of protease. Despite 

structural and symmetry differences between the aforementioned and this report, our results regarding 

L33F as a molecular anchor are consistent with the previous reports by the the Schiffer and Konvalinka 

groups. A key finding of our report is the influence of the L33F mutation on the open active site and on 

the S1/S1′ subsites through anchoring of the 30s and 80s loops independent of space group. 

          In conclusion, for the first time we here report the molecular mechanisms by which the non-

polymorphic protease mutation L33F contributes to DRV resistance. The L33F mutation may contribute 

to resistance via two mechanisms: one, by restoring noncovalent interactions lost due to other primary 

mutations, and two, by further reducing interactions between DRV and active site residues. These 

findings may contribute to our overall understanding of drug resistance as well as future drug design 

strategies. We propose that modifications to the P1/P1′ groups of existing PIs to fill the open S1/S1′ 

subsite might result in a greater response by patients who harbor the L33F mutation in HIV-protease. 
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Chapter 4: Structure based design of modified lopinavir analogs 
targeting multi-drug resistant HIV-1 Protease 

 
4.1 Introduction 
          HIV protease is a 99 amino acid aspartyl protease responsible for processing the viral polyprotein, 

resulting in mature enzymes and structural proteins. Proteolysis of the Gag and Gag/Pol polyproteins by 

HIV protease is an essential step in the replication and assembly of HIV virions thus making protease an 

important target for anti-retroviral therapy [13]. Peptidomimetic design based on HIV-1 protease 

substrates is a popular strategy for the design of HIV-1 protease inhibitors, and has been successful in the 

past [56]. However, the emergence of drug-resistant HIV variants with cross-resistance to protease 

inhibitors remains a major drug design challenge. To examine the effect of P1/P1’ size diversity and 

composition on binding affinity to multi-drug resistant (MDR) HIV-1 protease, we produced and 

examined a series of 36 lopinavir analogs with modifications at the P1/P1’ sites designed to increase 

contacts with the protease. An MDR HIV-1 protease isolate (MDR 769) was obtained from a patient at 

the Wayne State University infectious disease clinic who was poorly adherent to antiretroviral HAART 

therapy, and had developed multi-PI drug resistance. This isolate was previously crystallized, and with 

the set of MDR mutations present the protease adopts a wide-open flap conformation in the absence of 

ligand [25]. The asymmetric expansion of the MDR protease active site cavity is likely to play a role in 

the reduced efficacy of PIs against MDR variants [49]. MDR protease also has an expanded active site 

cavity with an enlarged substrate envelope that reduces the efficacy of FDA approved protease inhibitors 

including lopinavir, a common first line treatment option [25, 52]. Docking and molecular dynamics 

experiments were performed utilizing our 36 lopinavir analogs (Table 4.1) in order to predict their 

binding affinity against our MDR protease isolate. 



 

 

 

 
Table 4.1 Modifications made to LPV to increase binding affinity to HIV-1 protease. The top panel 
displays LPV, and identifies the P1 and P1’ moieties. These were modified via addition to the aromatic 
ring(s), or replacement of the aromatic ring(s) as indicated in the table. 



 

 

 

4.2 Results 

4.2.1 Fluorinated lopinavir has the highest predicted binding affinity against 
drug resistant HIV-1 protease 
          Crystal structures of both wild type (PDB: 2O4S) and multi-drug resistant HIV-1 protease (PDB: 

3D20 and 3SPK) were obtained from the Protein Data Bank. Modifications were made to the structure of 

Lopinavir (LPV) at the P1 and P1’ positions using ChemDraw Bio Ultra software [57]. The ligands and 

target protein were then submitted to the web based docking software SwissDock [41]. The modified LPV 

analogs were ranked based on their predicted binding affinities and active site conformations, and those 

with the highest binding affinity were submitted to all atom molecular dynamics simulations using 

NAMD v2.9. Fig 4.1 displays the compounds with the highest predicted binding affinity, those selected 

for MD experiments were (2) P-fluorobenzyl at P1, (3) isobutyl at P1, and (20) P-fluorobenzyl at P1/P1’.  

 

Figure 4.1 Predicted binding affinity of LPV analogs with an LPV control. The top 3 compounds (2, 3, 
20) along with the control were utilized in MD experiments. 

 
 



 

 

 

4.2.2 P1/P1’ fluorinated lopinavir stabilizes the HIV-1 protease 
          Using 10 ns molecular dynamics simulations, we monitored the RMSD of the protease backbone. 

After energy minimization using the conjugate gradient method, MD was performed for 10 nanoseconds 

using the CHARMM36 force field in the NPT ensemble accounting for a constant number of atoms, 

temperature (300K), and pressure (1.0 atm) with a 2 fs timestep. RMSD analysis of the protease Cα 

backbone atoms in the resultant MD trajectories showed that while the average RMSD increased for the 

MDR variants (as expected), the top performing lopinavir analogs reduced the average RMSD in the 

MDR protease variants. This reduction in RMSD was the strongest in compound (20), P1/P1’ p-

fluorobenzyl lopinavir (Fig 4.2).

 

Figure 4.2 Average RMSD of wild type (2O4S) and DR/MDR protease when bound to lopinavir and 
lopinavir analogs. LPV: control lopinavir. ISO: compound (3), P1 isobutyl. P1: compound (2) P1 p-
fluorobenzyl. P1/P1’: compound (20), P1/P1’ p-fluorobenzyl. 
 

4.2.3 P1/P1’ fluorinated lopinavir increases non bonded interactions with 
HIV-1 protease 
          The final frame from each MD trajectory was analyzed in LigPlot+ [32]. Non-bonded interactions 

formed and lost with the protease by each of the top performing lopinavir analogs were compared to those 

interactions present in each of the protease-LPV complexes. Table 4.2 displays the list of these contacts 



 

 

 

for the best performing lopinavir analog, compound (20): P1/P1’ p-fluorobenzyl lopinavir. In both the 

wild type, and I54V drug resistant protease complexes, this compound gained only slightly more contacts 

than it lost (in comparison to the contacts lopinavir formed with these protease). But in the MDR 769 

protease complex, compound (20) gained many more contacts than those formed with the lopinavir 

control. 

 

Table 4.2 Non-bonded contacts gained and lost by compound (20) compared to the lopinavir control. 
2O4S: wild type protease. 3D20: I54V drug resistant protease. 3SPK: MDR 769 protease. 

 
4.3 Discussion 
          These results suggest that the presence of fluorinated  P1 or P1’ groups, particularly di-fluorobenzyl 

at P1/P1’, produces greater binding affinity  by facilitating an increase in the number of contacts between 

the ligand and the protease target. Analysis of MD simulation data further suggests that these groups play 

a role in stabilizing the protein backbone and therefore may increase overall efficacy against MDR 

protease variants. Interestingly, the fluorinated lopinavir analogs actually caused a slight increase in 

RMSD when bound to the wild type protease. This suggests that lopinavir is highly optimized for binding 

to wild type protease, and the extra atoms may cause binding to worsen in the analogs. However, it has 

been shown that the drug resistance mutations commonly acquired and that are present in the MDR form 

of protease, cause an expansion of the active site cavity [25]. The additional non-bonded interactions 

identified in the lopinavir analogs likely result from the ability for these analogs to better fill this 

increased space. Thus, these analogs may represent a class of PI that could be used as rescue treatment for 



 

 

 

patients who have accumulated multiple drug resistance mutations. More research into these compounds 

is needed. 

4.4 Author’s Contribution 
          The author performed all work described in this section himself. The project was a continuation 

of work begun by Dr. Tamaria Dewdney, and was overseen by her. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

Chapter 5: The role of mutations at codons 32, 47, 54, and 90 
in HIV-1 protease flap dynamics 

 
5.1 Introduction 
          This work was published in the journal Discoveries in December 2014. The high viral replication 

rate and error-prone reverse transcriptase leads to the emergence of drug resistant human 

immunodeficiency virus variants under the selective pressure of anti-retroviral therapy [58, 59]. The 

current standard treatment of HIV utilizes HAART where the PIs represent a key class of drugs [44]. PIs 

have a higher barrier of resistance relative to other classes of inhibitors, as multiple protease mutations are 

needed for a patient to develop resistance [60]. Although there are nine FDA approved PIs, some first 

generation inhibitors (e.g. indinavir, saquinavir, and nelfinavir) are considered obsolete by clinicians due 

to emergence of drug resistance or from their side effects [60]. Second generation PIs, especially 

darunavir and tipranavir, remain potent against mutant viral strains that are resistant to first generation PIs 

[61]. With the availability of second generation PIs, treatment of patients with MDR HIV is possible and 

can result in full viral suppression [61]. Many factors, including mutations in the viral polyprotein 

(particularly in Gag and Env) [62], the development of cross-resistance [63], and the high mutability of 

the HIV-protease [64] continue to produce viral strains that are resistant to second generation PIs [45]. 

Therefore, novel and potent new drugs are required for the treatment of multidrug resistant HIV infection. 

          This study utilized molecular dynamics simulation techniques in order to better understand the 

molecular mechanisms by which MDR-PRs are able to evade inhibition by potent PIs. Clinical MDR-

protease isolates were obtained from three patients at the Wayne State University Infectious Disease 

Clinic in Detroit, MI. On a boosted PI regimen, these patients had a low CD4 cell count and high HIV 

viral load, indicating treatment failure. 

          Genotypic and virtual phenotypic analysis of the protease genes showed multiple major and 

minor drug resistance mutations which imparted resistance to the nine FDA approved PIs. The DetMDRs 

differ from isolates previously studied by our group in that these contain the major drug resistance 

mutations L33F, I47V, I50V, I54M, L76V, V82I/F, and I84F not present in the previous isolate (Table 



 

 

 

5.1).

 

Table 5.1 Sequence alignment of WT, MDR769, and the DetMDR isolates. Drug resistance mutations are 
highlighted in bold. 
 
          The DetMDRs also contain previously identified non-polymorphic accessory mutations L10V/G, 

V11I, I13V, K20T/R, L33F/I/M, K43T, F53L, A71L, T74P, and L89V. To understand the molecular 

mechanisms of resistance of the MDR HIV protease, 40 ns molecular dynamics simulations of apo and 

complexed DetMDRs were performed. These studies provide insight into the structural changes that lead 

to multidrug resistance; in particular, we identify previously unreported roles for the I47V, V32I, I54M, 

L90M mutations in protease flap dynamics (Figure 5.1). 

 
5.2 Results 
 
5.2.1 Mutations in the Detroit isolates reveal alternative protein dynamics 
          RMSD analysis of the apo structure of the DetMDR isolates identified increased fluctuation of all 

three isolates compared to the WT protease (Figure 5.1). DetMDR1 shows only a brief increase in 

flexibility while DetMDR2 shows a sharp increase followed by sustained elevation in RMSD for the rest 

of the trajectory. DetMDR3 displays short bursts of increased flexibility but no sustained changes in 



 

 

 

RMSD. These data suggest a large conformational change in DetMDR1 and DetMDR2 but not in 

DetMDR3 or the WT. 

 

Figure 5.1 Root Mean Square Deviation (RMSD) of Cα backbone atoms of apo HIV-1 protease isolates. 
WT protease is displayed in green, DetMDR1 in pink, DetMDR2 in blue, and DetMDR3 in cyan. Note 
that DetMDR2 has an altered y-axis as it displayed a significantly larger increase in RMSD than the other 
protease. 

 
5.2.2 V32I interacts with I47V to tether the protease flaps in a closed 
conformation 
          Visual analysis of the trajectory shows that these increases in RMSD are due to opening of the flaps 

in DetMDR1 and DetMDR2. In DetMDR1 the flaps open and then close. In contrast, the flaps of 

DetMDR2 open and stay open for the remainder of the trajectory. The WT and DetMDR3 flaps do not 

open during these simulations. These differences in flap movement correspond to the presence or absence 

of particular mutations. I47V likely contributes to flap opening as it is present in both isolates 1 and 2 



 

 

 

where the flaps open but not in DetMDR3 where the flaps do not open. However, vdW interactions 

between the V32I and I47V mutations cause flap closure in HIV-1 protease (Figure 5.2). These vdW 

interactions could explain the flap opening followed by quick flap closure observed in DetMDR1, while 

the absence of V32I in DetMDR2 removes this interaction and cause the flaps to remain open. Similarly, 

the WT and DetMDR3 have V32 and I47 at these loci and therefore the vdW interactions in the WT and 

DetMDR3 are maintained casing the flaps to remain closed.

 

Figure 5.2 Change in the van der Waals volume induced by the drug resistance mutations I47V and 
V32L. The left panel shows DetMDR1 in pink. The right panel shows DetMDR2 in blue. 

 
5.2.3 I54M in combination with L90M plays a role in asymmetric flap 
movement 
          I54M and L90M are associated with asymmetric movement in DetMDR1 corresponding to opening 

of the flaps. The RMSD of L90M on chain B is different than that of chain A. In DetMDR1 the 

asymmetric movement of the flaps as indicated by the differences in RMSD at each residue show a 

difference in residues 47-54 on chain B compared to chain A (Figure 5.3). Movement of the residues in 



 

 

 

this region was symmetric in DetMDR2 where the residue fluctuation per residue is conserved between 

both chains of the protease. 



 

 

 

 

Figure 5.3 RMSD per residue of 

the uncomplexed HIV-1 

protease isolates compared to 

WT reveals alternate flap 

dynamics of WT and DetMDR 

protease. A) DetMDR1. B) 

DetMDR2. C) DetMDR3. The flap 

regions corresponding to 

residues 47-53 display an 

increase in RMSD on both 

protease chains in DetMDR2, 

but only on chain B of 

DetMDR1. 



 

 

 

5.2.4 Darunavir, atazanavir and lopinavir binding stabilize the HIV-1 
protease flaps 
          The opening of the flaps observed in the apo simulations of DetMDR1 and DetMDR2 did not occur 

in the drug complex simulations. Drug binding maintains a closed flap conformation in DetMDR2. This 

suggests that the structural mechanism of drug resistance in these isolates is not due to changes in protein 

flexibility (Figure 5.4).

 

Figure 5.4 Darunavir, atazanavir, and lopinavir stabilize the HIV-1 protease flaps. The top left panel 
shows the average RMSD of DetMDR2 either alone (blue) or in complex with DRV (red), ATV (green), 
and LPV (purple). The RMSD per residue is shown in the top right panel. The bottom left panel is 
representative of the 40ns MD simulation using frames post energy minimization and at 4ns intervals of 
uncomplexed and DRV complexed DetMDR2, respectively aligned by the Cα positions. The red dashed 
lines indicate a 17.8Å movement of the Cα of Ile50 of the protease flap. This figure was made in PyMol 

 
 



 

 

 

5.2.5 Mutation induced changes to the hydrogen bonding network alters 
inhibitor conformation 
          In addition to the altered protein dynamics, there is a change in the hydrogen bonding interactions 

in the WT compared to the MDR complex. DetMDR1 has 2.3%, 0.8% and 19.2% reduced hydrogen bond 

formation (compared to the WT) when complexed with DRV, ATV, and LPV respectively. Interestingly, 

DetMDR2 and DetMDR3 have increased hydrogen bond formation when in complex with DRV and 

ATV and a 21% and 36% decrease in hydrogen bond formation when in complex with LPV. The increase 

in hydrogen bonding is likely due to an alteration in the residues involved in an interaction with the PI. 

While changing the binding pocket may increase hydrogen bond formation, this also alters the 

conformation of the inhibitor. 

 
5.3 Discussion 
          Three multi-drug resistant HIV-1 protease clinical isolates were selected from patients attending the 

Wayne State University infectious diseases clinic and failing antiviral treatment therapy on PI based 

regimens. To explore the structural mechanisms resulting in treatment failure, we performed 40ns MD 

simulations on the Detroit MDR series. Our results indicate a novel structural role for the I47V, V32I, 

I54M and L90M resistance mutations.  

          The V32I and I47V mutations play a structural role in tethering the flaps to the active site. 

Sequence analysis comparisons of the DetMDR protease isolates showed that DetMDR2 does not contain 

the V32I and I47V mutation combination. It contains only the I47V mutation and without the V32I 

mutation there is a loss in vdW contact volume between these two residues. Analysis of this apo protease 

trajectory displayed a marked increase in RMSD when compared to the WT, and a visual inspection of 

the trajectory as well as per-residue RMSD analysis confirmed that this is due to the flaps opening. 

Therefore, we postulate that I47V is responsible for flap opening. However, V32I is a compensatory 

mutation that may be responsible for tethering the flaps to the active site through its contacts with I47V. 

Therefore, if I47V is the only mutation it may be responsible for promoting flap opening through the 

disruption of the vdW interactions between residues 32 and 47. 



 

 

 

          I54M and L90M may be responsible for asymmetric movement of the protease flaps. This mutation 

combination is only present in DetMDR1 which is the only protease in the series in where the flaps 

asymmetrically open and then close after 4 ns. The mechanism explaining asymmetric flap opening will 

be explored further in future characterization studies of the HIV-1 protease isolates. 

           

5.4 Author’s Contribution 
          The author worked with Dr. Dewdney to train Dr. Chordia in the setup, performance, and analysis 

of MD experiments. He performed setup and analysis of approximately half of the MD experiments. He 

also wrote and edited much of the conclusions section of the paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

Chapter 6: Future Directions 
 
6.1 HIV-1 
          Drug resistance remains a major problem for HIV-1 treatment, although many strides have been 

made in the last decade. Patients who develop drug resistance mutations to multiple inhibitors have very 

poor prognoses, and the development of new inhibitors that are effective against these variants is still a 

pressing need. Additionally, even with proper adherence to treatment, it is becoming clear that patients 

with otherwise undetectable viral plasma titers still maintain reservoirs of virus in privileged areas, 

including the brain and CNS [65]. PIs and other antiretroviral drugs are unable to gain access to these 

privileged compartments, allowing the virus to replicate freely and eventually cause significant damage. 

A majority of patients who otherwise have undetectable viral loads eventually experience some degree of 

neurological complication, years after initial infection [66]. Our lab has begun work on the development 

of a small molecule inhibitor targeting the P-glycoprotein ATPase, a promiscuous transporter responsible 

for pumping compounds out of the Brain/CNS. Effective inhibition of this enzyme may allow for current 

treatments to act on the otherwise unreachable HIV reservoirs, improving treatment outcomes for many 

patients. 
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Table A1: Crystallographic data for 4YOA and 4YOB. 

 
 
 

Parameters MDR769 L33F apo MDR 769 L33F-DRV Complex 
PDB Entry 4YOB 4YOA 
Data Collection:   
Space Group P41212 P41212 

Wavelength (Å) 0.979 
0.97856 

 

Cell Constants (Å) a = 45.75  b = 45.75 c = 102.22 
a = 45.47  b = 45.47 c = 102.22 

 

Resolution Range (Å) 
102.22-1.50 (1.68-1.50) 

 

102.22-1.70 (1.90-1.70) 

 

Number of unique reflections 
17,812 

 

12,545 

 

Completeness (%) 99.1 (98.2) 
99.9 (100) 

 

Redundancy 14.1 (14.5) 
13.7 (14.2) 

 

Mean I/σ (I) 
34.4 (3.4) 

 

26.9 (4.2) 

 

Rmerge 
0.046 (0.752) 

 

0.049 (0.615) 

 
Refinement:   

Rwork (%) 
17.60 

 

19.01 

 

Rfree (%) 
19.43 

 

22.46 

 
Number of Atoms:   

Ligand  
38 

 

Protease 
782 

 

784 

 

Solvent 
134 

 

71 

 
Average isotropic B factor (Å2):   

Ligand  
93.94 

 

Protease 
23.36 

 

35.11 

 

Solvent 
37.49 

 
46.03 

RMSD bond length (Å) 0.007 0.014 

RMSD bond angle (°) 
0.984 

 

1.543 

 
Ramachandran plot:   

Allowed/generous/disallowed (%) 
98/2/0 

 

98/2/0 
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          HIV-1 is the causative agent of the devastating human disease Acquired Immunodeficiency 

Syndome (AIDS). While much progress has been made over the past two decades, HIV-1 remains a major 

global health concern. HIV-1 protease is 99-amino acid homodimer aspartyl protease that is essential to 

the life cycle of HIV. This has rendered it an attractive and very successful drug target. However, due to 

the high error rate of the HIV -1 reverse transcriptase, drug resistance mutations in the protease can 

develop very rapidly in some patients, rendering current protease inhibitors (one of the main classes of 

drug in common antiretroviral therapy) less effective or completely ineffective. In this thesis, we 

investigate the structural impact of a number of HIV-1 protease drug resistance mutations. These include 

L33F, which is selected for on darunavir treatment (one of the most prescirbed protease inhibitors), I47V, 

and V54I (which we identify as compensatory mutations involved in the tethering of the protease flaps 

and proper formation of the active site). A fuller understanding of the structural impact of these resistance 

mutations will hopefully facilitate the development of protease inhibitors that can overcome this common 

drug resistance. 
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