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The Likelihood of Choosing the Borda-Winner 
With Partial Preference Rankings of the Electorate 

 
Ömer Eğecioğlu Ayça Ebru Giritligil 

University of California, 
Santa Barbara, CA 

Istanbul Bilgi University, 
Istanbul, Turkey 

 
 
Given that n voters report only the first r (1 ≤ r < m) ranks of their linear preference rankings over m 
alternatives, the likelihood of implementing Borda outcome is investigated. The information contained in 
the first r ranks is aggregated through a Borda-like method, namely the r-Borda rule. Monte-Carlo 
simulations are run to detect changes in the likelihood of r-Borda winner(s) to coincide with the original 
Borda winner(s) as a function of m, n and r. The voters’ preferences are generated through the Impartial 
Anonymous and Neutral Culture Model, where both the names of the alternatives and voters are 
immaterial. It is observed that, for a given r, the likelihood of choosing the Borda winner decreases down 
to zero independent of n as m increases within the computed range of parameter values, 1 ≤ m, n ≤ 30. For 
n = 30, this likelihood is given as an approximating function of r and m through least square fit method. 
 
Key words: Borda rule, r-Borda rule, impartial anonymous, neutral culture. 
 
 

Introduction 
A voting rule solves the collective decision 
problem where voters must jointly choose one 
among a number of possible candidates 
(alternatives) on the basis of reported ordinal 
preferences. The choice of a voting rule has been 
a major ethical question since the political 
philosophy of the Enlightenment. When only 
two alternatives are at stake, the ordinary 
majority voting is unambiguously regarded as 
the best method. For three and more alternatives, 
plurality voting at which each voter is asked to 
report exactly one alternative at her/his ballot 
and the alternative voted the most wins, has been 
historically the most popular voting rule. The 
two celebrated critiques of plurality voting, 
Borda (1781) and Condorcet (1785) noted that 
plurality voting may elect a poor candidate, 
namely, one that would lose in a simple pair-
wise majority comparison to every other 
candidate, or one ‘disliked’ by the strict majority 
of voters. 
_______________________________________ 
 
Ömer Eğecioğlu is at the Department of 
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Borda and Condorcet are individually 

devised different rules to replace plurality 
voting. Borda introduced a scoring method; the 
Borda rule that assigns points to each candidate, 
increasing linearly with a candidate’s ranking in 
a voter’s opinion, and elects the alternative with 
the highest total score. Condorcet provided the 
voting principle which states that if a candidate 
defeats every other candidate in simple majority 
rule, then that candidate should be the winner in 
the election. These two approaches have 
generated most of the modern scholarly research 
in social choice literature.  

As discussed by Niemi and Riker 
(1976), Fishburn (1984), Nurmi (1987) and Amy 
(2000), no voting rule is perfect in aggregating 
individual preferences into social decisions in a 
manner compatible with the fulfillment of a 
variety of positive and normative criteria. 
However, some procedures are clearly superior 
to others in satisfying these criteria. Saari (1987, 
1989, 1990, 2001) show that the Borda rule is 
less susceptible than other positional scoring 
rules to some unsettling possibilities and 
paradoxes. Some of the theoretical and 
probabilistic results concerning the Borda rule 
are summarized in Brams and Fishburn (2002) 
and Pattanaik (2002). However, among its 
shortcomings, its vulnerability to strategic 
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manipulations and the practical difficulties of 
implementing it remain as the most criticized 
properties of the Borda rule. There are many 
studies theoretically and/or probabilistically 
considering the former issue. This article focuses 
on the latter which has not been studied in detail. 

The implementation criterion is 
concerned with the complexity of information 
that a voting procedure requires voters to reveal 
concerning their preferences regarding the 
alternatives. Unlike non-ranked single-stage 
voting procedures (such as plurality voting, 
negative plurality voting and approval voting) 
and non-ranked multistage voting procedures 
(such as plurality with a run-off and plurality 
with successive elimination), the Borda rule is a 
ranked procedure. Asking the voters to provide 
their complete preference rankings over the set 
of all available alternatives is a difficult-to-fulfill 
requirement due to the associated complications 
both on the side of voters as well as 
administrators to collect the information. 

This study investigates the likelihood of 
implementing Borda outcome when voters are 
asked to rank only a specified number of 
alternatives. The situations where n voters are 
required to report only the first r (1 ≤ r < m) 
ranks of their linear (i.e., full or total) 
preferences over m alternatives are considered. It 
is assumed that the partial individual preferences 
are aggregated through a Borda-like method, 
namely the r-Borda rule. The r-Borda rule 
assigns strictly positive points to each alternative 
appearing in the first r-ranks of a voter’s total 
preference, linearly increasing with its rank, and 
assigns zero points to those that are not among 
the top r-ranks in the voter’s decision. The 
alternative(s) that receive(s) the highest score 
aggregated over the electorate’s preferences is 
(are) chosen as the r-Borda winner(s). 

In this study, Monte Carlo simulations 
are run to ascertain the information content of 
only the first r ranks of the electorate’s 
preferences from the perspective of 
implementing the (original) Borda outcome. The 
way the r-Borda rule aggregates the voters’ 
preferences is different than the aggregation 
methods implemented by well-known single- 
and multi-stage non-ranked procedures which 
permit truncated ballots. In other words, the 
present study does not aim to detect the 

likelihood of any of these rules to choose the 
Borda outcome. 

The Borda-like aggregation of partially 
stated individual preferences is a popular 
method for sports and contests in real life. The 
Most Valuable Player of the National Basketball 
Association in the United States, the Eurovision 
Song Contest, The People’s Remix Music 
Competition and the Formula 1 Car Race are 
well-known examples such cases. These contests 
require voters to rank a specified number of 
candidates. Each stated candidate is given a 
score depending on its rank in the preference 
ordering of a voter, and the candidate that 
receives the highhest total score over the 
electorate is elected as the winner. The number 
of candidates to be ranked and the scores to be 
assigned to the ranks differs from one contest to 
another.  

Given that the Borda rule can choose 
more than one alternative as winners, in this 
study, two types of probabilities are computed 
for triples of m, n and r as the likelihood of 
choosing the Borda winner with partial 
individual preferences. The first type refers to 
the likelihood of the r-Borda rule choosing 
exactly the set of Borda winners. The second 
type of probability considers the likelihood of r-
Borda winners to be included in the set of Borda 
winners. The changes in these values as a 
function of m, n and r are investigated by 
considering all possible values of these 
parameters in an appropriate range. 

For Monte Carlo simulations, the voters’ 
preferences are generated via the Impartial 
Anonymous and Neutral Culture Model (IANC). 
As introduced by Eğecioğlu and Giritligil 
(2011), IANC treats voters’ preferences through 
a class of preference profiles, namely root 
profiles, where the names of both voters and 
alternatives are immaterial. 
 
Contribution and Relation to Literature 

To our knowledge, this study is the first 
attempt in the literature to analyze the extent of 
difficulty in implementing Borda outcome when 
voters are asked to rank only a specified number 
of alternatives and where the underlying model 
is as structurally general as is possible. The 
contribution of this computational work and its 
relation to literature can be discussed based on 
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two grounds: aggregation of truncated 
preferences and sampling voters’ preferences. 
 
Aggregation of Truncated Preferences 

A positional scoring rule assigns a score 
vector s = (s1, s2, …, sm) with s1  ≥ s2 ≥ … ≥ sm 
and s1 > sm to a preference ranking over a set of 
m alternatives, and chooses the alternative(s) 
with the highest total score aggregated over the 
rankings of all voters. The Borda rule is defined 
by the scoring vector s(Bm) = (m, m−1,…, 1). 
That is, si = m + 1- i for all i, and the difference 
in scores si-sj is proportional to j−i for all i and j. 
This article considers the situation where voters 
are asked to state only the first r ranks of their 
linear preferences over m alternatives and 
investigates the importance of the information 
revealed in the first r ranks of the electorate’s 
preferences from the perspective of 
implementing the Borda outcome. This partial 
information is aggregated through r-Borda rule 
Br which assigns alternative i the score        
si(Br) = r + 1−i if i ≤ r, and si(Br) = 0 otherwise. 

It should be noted that the r-Borda rule 
aggregates the partial preferences unlike 
constant scoring rules. A constant scoring rule 
asks each voter to indicate a given (and 
constant) number of alternatives. Each indicated 
alternative receives one point whereas all others 
get zero, and the alternative with the most votes 
is elected. Hence, for m ≥ 3, the scoring vector 
imposed by the r-Borda rule is not the same as 
the one assigned by a constant scoring procedure 
unless r = 1 implying the scoring vector           
(1, 0, …, 0) which identifies the most popular 
constant scoring rule, namely the plurality rule. 
The probability of constant scoring voting rules 
to select the Borda outcome has been studied by 
Gehrlein (1981), Gehrlein and Lepelley (2000) 
and Vandercruyssen (1999). Gehrlein and 
Fishburn (1980) and Gehrlein, et al. (1982) 
provide the propensity of pairs of score vectors 
for a set A of alternatives and a non-empty 
proper subset of A to yield the same ranking 
over the subset for an arbitrary profile of linear 
orders on A. 

The method adopted in this paper to 
aggregate truncated preferences is also different 
than the procedures that permit truncated ballots. 
Among these, approval voting has been widely 
considered in theoretical and practical grounds. 

Brams and Fishburn (2002) provide a summary 
of the theoretical debate between approval 
voting and the Borda rule. Approval voting 
requires each voter to indicate the alternatives 
that she/he approves. Each approved alternative 
by a voter receives one point and the 
alternative(s) with the highest point summed 
over all voters’ preferences is (are) chosen as the 
winner(s). Note that, in approval voting, the 
number of alternatives to be indicated or ranked 
by the electorate is not given and thus, is not 
homogeneous across voters. 

Another rule which permits voters to 
submit truncated preference rankings is 
majoritarian compromise since it needs at most 
the first half of the voters’ rankings over the 
entire set of alternatives. Introduced by Sertel 
(1987), majoritarian compromise selects the 
candidate(s) that has (have) the support of the 
majority in the best degree possible. Clearly, 
both approval voting and majoritarian 
compromise aggregate the truncated preferences 
in a different fashion than the r-Borda rule 
adopted herein.  

Consider a social planner who believes 
that Borda rule is the ‘best’ voting rule to 
aggregate individual preferences into a social 
choice. Due to the complications about requiring 
voters to state their total preference orderings, 
the planner can ask the electorate to report the 
first r (1 ≤ r < m) ranks of their linear preference 
rankings instead of asking them to state only 
their first-best choices in the hope of increasing 
the probability of choosing the Borda winner. In 
such a case, it seems natural to aggregate the 
reported partial rankings via a Borda-like 
procedure for the sake of preserving some 
consistency in the aggregation method. 
 
Sampling Voters’ Preferences 

An immense literature has been devoted 
to analyze the outcomes of various social choice 
rules through the use of computer simulations 
employing probability models to generate 
voters’ preferences. The most commonly used 
probability models in the literature are Impartial 
Culture (IC) and Impartial Anonymous Culture 
(IAC) conditions. Introduced by Guilbaud 
(1952), IC is a multinomial equiprobable 
preference profiles model which assumes that 
each voter selects her/his preference according 
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to a uniform probability distribution. IAC, which 
was first introduced by Fishburn and Gehrlein 
(1978), also relies on an equiprobability 
assumption, but without taking the identity of 
the voters into account. Details about these 
assumptions and their use in the literature are 
presented in Berg and Lepelly (1994) and 
Gehrlein (1997). 

In this paper, voters’ preferences are 
sampled through IANC which is also an 
equiprobability assumption, however, neglecting 
the names of both alternatives and voters. IANC 
treats each ‘root profile’ (profile from which all 
preference profiles can be generated through 
renaming the alternatives and voters) equally 
probable. Because the number of root profiles is 
small relative to the number of profiles that can 
be generated for m alternatives and n voters, 
IANC enables the researchers to obtain accurate 
probabilities even for large parameter values. 
Based on Eğecioğlu and Giritligil (2011), it is 
known that the probabilities computed using the 
IAC and IANC models coincide only in the 
vanishingly small likelihood of m! and n being 
relatively prime. 

In the social choice theory literature, 
anonymity and neutrality are among the most 
important ethical axioms which a voting rule is 
expected to fulfill. Anonymity requires all voters 
to be treated equally whereas neutrality calls for 
equal treatment of alternatives. A large group of 
voting rules including all scoring rules and pair-
wise majority relation rules fulfill these two 
axioms. The outcomes of anonymous and 
neutral voting rules are invariant under group 
symmetries of voter and alternative names. 
Among the probability models used for 
sampling voters’ preferences, IC assumes no set 
of symmetries whereas IAC takes into account 
only the symmetry of voter names. On the other 
hand, IANC takes into account the symmetries 
of both voters’ and alternatives’ names. This 
paper is the first study in the literature that 
adopts IANC to sample electorate’s preferences. 

Through the preference sampling 
method developed by Falmagne and 
Regenwetter (1996), Regenwetter and Grofman 
(1998) analyzed seven three-candidate elections 
conducted under approval voting and 
constructed a distribution of preference rankings 
from subset choice data to compare the results 

with potential winners of the Borda and 
Condorcet rules. Based on the method of 
generalized spectral analysis introduced by 
Lawson et al. (2006), Brams et al. (2006) 
compare the results of The Public Choice 
Society presidential elections in 2006, which 
was run through approval voting, with the 
possible outcomes that would have been 
obtained if plurality, Condorcet, Borda or a 
single transferable vote had been adopted.  

Both Regenwetter and Grofman (1998) 
and Brams, et al. (2006) start with partial 
information on voter preferences and assign 
probabilities to each alternative to be the Borda 
winner, and based on these probabilities, check 
whether the possible Borda winner(s) 
coincide(s) with the actually elected 
alternative(s). The present study, on the other 
hand, generates the full orderings of the 
electorate over the set of alternatives and then 
considers the first r ranks of the preference 
profiles. The approaches of the former studies 
and the present one are clearly different from 
each other methodologically.  

 
Preliminaries: Preference Profiles and the Borda 
rule 

A preference on a set A means any 
function p: A → 2A which assigns to every         
a ∈ A a subset (lower contour set) p(A) ⊆ A 
such that, at all a, b ∈ A: 
 
(1) b ∈ p(a) or a ∈ p(b): completeness; 
(2) p(b) ⊂ p(a) whenever b ∈ p(a): transitivity 
(3) b ∈ p(a) and a ∈ p(b) only if a = b:      

anti-symmetry. 
 

Such a preference clearly corresponds to a linear 
(or total) order on A. 

p(A) denotes the set of all preferences on 
A, any positive integer n means [n] = {1, 2,. ,n}, 
and a preference profile for a society of n voters 
on a set A means any family                          
Pm,n = (pi)i∈[n] ∈ p(A)[n] of preferences pi on A 
indexed by voters i ∈ [n]. Let card(pi(a)) be the 
cardinality of the lower counter set of a ∈ A for  
the voter i ∈ [n]. Note that the cardinality of the 
lower counter set of the top- and bottom- ranked 
alternatives are m and 1, respectively. 
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The Borda score of a ∈ A for i∈[n] is 
defined as, 

a
iB  = card(pi(a)), 

 
and the set of Borda winners at each               
Pm,n ∈ p(A)[n] is determined by setting 
 

B(Pm,n) = 
Aa∈

maxarg
[ ]

Σ
∈ ni

a
iB . 

 
Thus, the Borda rule chooses the candidates who 
maximize the total Borda score aggregated over 
the set of all n voters. 

Let r
nmP ,  denote the portion of a 

preference profile Pm,n where only the first r 
ranks of the voters’ preferences can be observed. 

Viewing the profile Pm,n as a m × n matrix, r
nmP ,  

corresponds to the r × n submatrix of Pm,n. Note 
that, if r = m or r = m − 1, B(Pm,n) is detectable. 
However, if r < m −1, the observable preference 

r
ip of voter i corresponds to a partial strict 

ordering on A, which is transitive and anti-

symmetric, however incomplete. Let r
iA ⊆  A 

be the set of alternatives appearing at r
ip . 

Let card( r
ip (a)) be the cardinality of 

the observable lower counter set of a ∈ r
iA  for 

i∈[n]. Note that 1 ≤ card( r
ip (a)) ≤  r. The 

Borda score of a ∈ A for i∈[n] is redefined as: 
a
iB  = card( r

ip (a)), if a ∈ r
iA , and 0 otherwise, 

and the set of r-Borda winners at any r
nmP ,  

is 

given by: 

B( r
nmP , ) = 

Aa∈
maxarg

[ ]
Σ
∈ ni

a
iB . 

 
In other words, if an alternative is 

among the first r-ranks in voter i’s ranking, then 
its associated r-Borda score is equal to the 

cardinality of its lower counter set in r
ip . If it is 

not among the top r-ranked alternatives, it 
receives a score of zero. The r-Borda rule 
chooses the alternative(s) with the highest r-

Borda score aggregated over r
nmP ,  

as winner(s). 

From this point on, B( r
nmP , ) and B(Pm,n) will be 

denoted by Br and B, respectively, for                
1 ≤  r ≤  m.  
 
Root Profiles and IANC 

Let Ω (m, n) denote the set of all 
preference profiles that can be generated for m 
alternatives and n voters. As shown in Eğecioğlu 
and Giritligil (2011), a product permutation 
group on the names of alternatives and of voters 
‘acts’ on Ω (m, n), and splits it into a disjoint 
union of subsets called orbits, that is: 
 

Ω (m, n) = 1θ + 2θ + ··· + ωθ  

 
where each iθ  is an anonymous and neutral 

equivalence class (ANEC). All preference 
profiles within an ANEC can be generated from 
each other through re-labeling the alternatives 
and/or the voters. That is, all preference profiles 
in any ANEC are ‘equalivalent’ in the sense that 
any anonymous and neutral voting rule (such as 
the Borda rule) yields the same outcome (under 
different names) for all of these profiles. 

A root profile is any preference profile 
that represents an ANEC. That is, all other 
preference profiles within the same equivalence 
class can be generated from this root profile via 
permuting the names of the m alternatives and of 
the n voters. The collection of all root profiles 
for m alternatives and n voters is denoted by               
R = R (m, n), and each element of this set 
represents an ANEC in Ω (m, n). 

 Consider a case with two alternatives, a 
and b, and three voters labeled v1, v2 and v3 
linearly ranking these alternatives. Note that, in 
this example, there are 2! preference rankings 
over alternatives (a being strictly preferred to b 
and b strictly preferred to a). Below are the   
(2!)3 = 8 possible preference profiles that can be 
generated:  

 

P1: 
v1 v2 v3 
a a a 
b b b 

 

P2: 
v1 v2 v3 
a a b 
b b a 
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P3: 
v1 v2 v3 
a b a 
b a b 

 

P4: 
v1 v2 v3 
b a a 
a b b 

 

P5: 
v1 v2 v3 
b b a 
a a b 

 

P6: 
v1 v2 v3 
b a b 
a b a 

 

P7: 
v1 v2 v3 
a b b 
b a a 

 

P8: 
v1 v2 v3 
b b b 
a a a 

 

 
If the group of permutations on the 

names of the voters acts on the above set of 
preference profiles, it partitions it into four 
anonymous equivalence classes (AECs):  

1AEC  = { 1P }, 2AEC = { 2P , 3P , 4P }, 

3AEC  = { 5P , 6P , 7P }, 4AEC  = { 8P }. 

Note that there are two possible 
permutations on the names of the alternatives: 
one is the identity permutation which leaves the 
names of the alternatives intact and the other is 
the permutation which re-labels a as b and b as 
a. If this group of permutations act on the set of 
AECs, two ANECs are obtained:  

1ANEC = { 1AEC , 4AEC }, 

2ANEC  = { 2AEC , 3AEC }. 

The root representing 1ANEC  shows a 
preference structure at which all voters have the 
same preference ranking and the root 
representing 2ANEC  exhibits a structure where 
one of the preference rankings is adopted by two 
voters and the other is adopted by one voter. 

IANC uses root profiles to represent 
voters’ preferences through an application of the 
Dixon-Wilf algorithm which enables the root 
profiles to be generated from the uniform 
distribution for m alternatives and n voters. That 
is, each root profile is generated uniformly with 
probability 1/card(R(m, n)). The formula for 
card(R(m, n)) and the details of the application 
of the Dixon-Wilf algorithm are given by 
Eğecioğlu and Giritligil (2011). 

 

Likelihood Measures: Types of Likelihood 
Two types of probabilities are 

considered to measure the likelihood of 
implementing the Borda outcome with truncated 
preference orderings.  
 
1. Pr1 = Pr1(m, n, r) refers to the likelihood 
of choosing the entire set of Borda winners 
when only the first r rows of a preference 

profile, r
nmP , , are considered. In other words, 

Pr1 is the probability that Br = B.  
 

For a given preference profile Pm,n,, consider the 
random variable:  

f1(
r

nmP , ) = 1, if Br = B and 

0, otherwise. 
 
Given the distribution of profiles to be generated 
for given m, n and r, the approximate Pr1 is 
computed through Monte Carlo integration 
based on the law of large numbers. The law of 
large numbers implies that the average of a 
random sample from a large population is likely 
to be close to the mean of the whole population. 
That is, Pr1 is defined through the random 
variables f1 : 
 

Pr1 = 
)),((

1

nmRcard 1

m ,n

r
m ,n

P R( m ,n )
f ( P ).

∈
  

 
2. Pr2 = Pr2(m, n, r) is the likelihood that 
an r-Borda winner is among the Borda winners. 
Thus, it is the likelihood of an element of Br to 
be also an element of B. For a given Pm,n , 
consider the random variable: 
 

f2(
r

nmP , ) = 
)(

)(

r

r

Bcard
BBcard ∩

 

(Note that if f1(
r

nmP , ) = 1, then Br = B, and 

consequently, f2(
r

nmP , ) = 1. ) 

 
Then, through the above explanation on 
approximation,  
 

Pr2 = 
)),((

1

nmRcard 2

m ,n

r
m,n

P R( m,n )
f ( P ).

∈
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Below given some examples regarding the 

calculations of f1(
r

nmP , ) and f2(
r

nmP , ): 

 
Example 1 
 

a a b c d 

b b d d a 

c c c b b 

d d a a c 
 
Note that B = {b}. For r = 1, B1 = {a}. Since 

{a} ≠ {b},  f1(
1

5,4P ) = 0. Also f2(
1

5,4P ) = 0 

because {a} ∩ {b}= ∅. For r = 2, B2 = {a}. So, 
f1(

2
5,4P ) = 0 and f2(

2
5,4P ) = 0. 

 
Example 2 
 

a a b b c 

b c c c a 

c b a d b 

d d d a d 
 
For the above profile, B= {b, c} and B1 = {a, b}, 

so f1(
1

5,4P ) = 0. Since {b, c} ∩ {a, b} = {b}, 

f2(
1

5,4P ) = 1/2. For r = 2, B2 = {a, b, c}, so the 

profile yields f1(
2
5,4P ) = 0 and f2(

2
5,4P ) = 2/3 

(since {b, c} ∩ {a, b, c}={b, c}). 
 

The tools provided by Eğecioğlu and 
Giritligil (2011) allow for the generation of roots 
profiles from R(m,n) with probability 
1/card(R(m, n)). The actual probability can then 
be approximated as follows: generate a large 
number of root profiles from R(m, n) with 
uniform probability 1/card(R(m, n)), where each 
selection is independent of the others. If S(m, n) 
denote the set of these generated profiles, then 
the law of large numbers implies that 
 

Pr1 = 
)),((

1

nmScard 
∈ ),(

,1

,

)(
nmSP

r
nm

nm

Pf        (1)
 

 

Similarly, 
 

Pr2 = 
)),((

1

nmScard 
∈ ),(

,2

,

)(
nmSP

r
nm

nm

Pf       (2) 

 
Note that for (1) and (2) to result in a valid 
Monte Carlo algorithm for the computation of 
Pr1 and Pr2 respectively, it is essential that each 
Pm,n in S(m,n) be drawn from the uniform 
probability on R(m, n). 

 
Monte Carlo Experiments 

At the heart of the Monte Carlo 
experiments of this study is the Mathematica 
program GenerateRoot[m, n] (the Mathematica 
notebook containing this function can be 
accessed online for experimentation: see 
Eğecioğlu, 2004). The program GenerateRoot 
[m, n] takes two integers m and n as input 
parameters and generates a root profile in a 
matrix form m ×  n as output. The preference 
profile generated each time by GenerateRoot    
[m, n] is guaranteed to be distributed over the 
R(m, n) roots uniformly. To be able to estimate 
the probabilities Pr1 and Pr2 through the 
formulations (1) and (2) by using the law of 
large numbers, the preference profiles generated 
must be uniform over the set of roots R(m, n): 
GenerateRoot[m, n] does exactly that. 

The design of the Monte Carlo 
experiments is as follows. One thousand root 
profiles are generated for each value of the 
parameters m, n under consideration. Thus, 
card(S(m, n)) = 1,000. The ranges 1 ≤  m ≤  30 
and 1 ≤  n ≤  30 for most of the Monte Carlo 
experiments carried out. The basic steps 
followed for the computation of Pr1 and Pr2 in 
the symbolic algebra package Mathematica are: 
 
1. Generate the values of m and n themselves, 

1 ≤  m, n ≤ 30 iteratively by means of two 
nested loops. 

2. For the given values of m and n, invoke the 
function GenerateRoot[m, n], which 
generates a preference profile Pm,n from the 
uniform distribution on the set of root 
profiles R(m, n). 

3. Compute the set of Borda winners B for the 
profile Pm,n returned. 
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4. For every value of r in the range 1 ≤  r < m, 
detect the set of r_Borda winners Br by 
considering only the first r rows of the 
profile Pm,n. 

5. For given m, n and r, compute the random 
variables f1 and f2 using the sets B and Br 
detected. 

 
Steps 2 through 5 are executed card(S(m, n)) 
times. The approximations to Pr1 and Pr2 for 
given m, n and r are calculated afterwards by 
dividing the sum of the computed values of f1 
and f2 in Step 5 by card(S(m, n)). 
 
Experimental Results on Pr1 Type Probabilities 

The computed Pr1 type probabilities are 
shown in Table 1 for 1 ≤ m ≤ 30, n = 30 and 
1 ≤ r ≤ m. The rows are indexed by m and the 
columns are indexed by r. For instance, when   
m = 5, Pr[B1=B] = 0.51, Pr[B2=B] = 0.671 and 
Pr[B3=B] = 0.818 for r = 1, r = 2 and r = 3, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

respectively. 
Figure 1 is a three-dimensional plot of 

the computed Pr1 type probabilities. Pr1 appears 
to be independent of n especially as the value of 
n increases. A close observation shows that for n 
fixed at 30, Pr1 approaches to zero as m gets 
large for a fixed r, and the behavior is roughly as 
(1+r)  / m. A least-squares fit model was carried 
out for 1 ≤  m ≤  30, by considering the family 
of functions of the form  

f(m, r) = c(1+ r)/ m      
where c is a constant. The best approximating 
function in the least-squares sense was found to 
be 

Pr1 ~ f(m, r) = r/m + 1.4/m              (3) 
 

Figure 2 is a three-dimensional plot of 
the values of the approximating function (3). 
Comparing Figure 2 with the plot of the actual 
probabilities shown in Figure 1, (3) is observed 
to be a fine approximation of Pr1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: For 1 ≤  m ≤  30, n = 30 and 1 ≤  r ≤  m, the Probability that the set of r-Borda Winners is Equal to 
the Set of Actual Borda Winners 

1.
1. 1.
0.799 1. 1.
0.595 0.8 1. 1.
0.51 0.671 0.818 1. 1.
0.444 0.582 0.704 0.832 1. 1.
0.363 0.521 0.622 0.738 0.843 1. 1.
0.344 0.478 0.579 0.691 0.775 0.873 1. 1.
0.274 0.404 0.512 0.603 0.7 0.79 0.878 1. 1.
0.259 0.38 0.471 0.576 0.664 0.741 0.823 0.909 1. 1.
0.226 0.362 0.459 0.548 0.629 0.695 0.774 0.838 0.91 1. 1.
0.202 0.308 0.386 0.489 0.558 0.629 0.701 0.772 0.849 0.904 1. 1.
0.198 0.312 0.387 0.461 0.531 0.598 0.661 0.721 0.786 0.845 0.925 1. 1.
0.208 0.296 0.358 0.44 0.512 0.581 0.632 0.689 0.769 0.824 0.885 0.93 1. 1.
0.184 0.269 0.352 0.413 0.476 0.546 0.606 0.671 0.734 0.782 0.821 0.867 0.922 1. 1.
0.16 0.245 0.338 0.387 0.437 0.498 0.572 0.626 0.701 0.737 0.794 0.861 0.903 0.954 1.
0.175 0.259 0.33 0.387 0.443 0.498 0.551 0.599 0.643 0.691 0.752 0.805 0.851 0.893 0.946
0.131 0.224 0.286 0.334 0.394 0.449 0.504 0.559 0.617 0.671 0.716 0.762 0.822 0.866 0.901
0.133 0.209 0.271 0.332 0.389 0.449 0.51 0.551 0.607 0.655 0.709 0.754 0.791 0.837 0.878
0.117 0.204 0.259 0.326 0.388 0.436 0.475 0.513 0.556 0.613 0.648 0.7 0.748 0.785 0.832
0.124 0.198 0.259 0.309 0.365 0.416 0.456 0.5 0.543 0.596 0.631 0.662 0.714 0.754 0.801
0.116 0.188 0.247 0.298 0.332 0.378 0.435 0.471 0.508 0.562 0.604 0.655 0.691 0.73 0.77
0.089 0.17 0.222 0.269 0.319 0.361 0.39 0.448 0.495 0.532 0.573 0.611 0.657 0.709 0.753
0.096 0.181 0.211 0.251 0.302 0.341 0.387 0.437 0.48 0.517 0.554 0.601 0.644 0.688 0.733
0.107 0.17 0.216 0.263 0.302 0.329 0.38 0.422 0.459 0.506 0.549 0.596 0.635 0.669 0.704
0.079 0.138 0.183 0.22 0.271 0.305 0.346 0.38 0.423 0.454 0.497 0.543 0.573 0.602 0.635
0.086 0.159 0.203 0.248 0.283 0.312 0.353 0.383 0.419 0.455 0.497 0.534 0.566 0.598 0.63
0.078 0.141 0.186 0.232 0.274 0.299 0.337 0.369 0.402 0.438 0.465 0.509 0.543 0.574 0.609
0.076 0.145 0.182 0.229 0.27 0.303 0.339 0.383 0.416 0.444 0.468 0.507 0.54 0.583 0.603
0.07 0.124 0.173 0.214 0.246 0.291 0.319 0.34 0.374 0.418 0.451 0.491 0.518 0.547 0.572  
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Figure 2: Approximating Function of the Probability that r-Borda Winners are Identical to Actual Borda Winners 
 

Figure 1: The Probability that r-Borda Winners are Identical to the Actual Borda Winners 

 



BORDA-WINNER CHOICE WITH PARTIAL ELECTORATE PREFERENCE RANKINGS 
 

358 
 

To summarize, for large values of n, the 
likelihood of choosing all Borda winners by 
considering only the first r rows of a preference 
profile is independent of n and increases as the 
ratio r/m increases. It is impossible, however, to 
guarantee the exact Borda outcome unless r is 
set to be equal to m-1 or m. 
 
Experimental Results on Pr2 Type Probabilities 

Table 2 shows the computed Pr2 type 
probabilities for 1 ≤  m ≤  30, n = 30 and           
1 ≤  r ≤  m. Again, the rows are indexed by m 
and the columns are indexed by r. Figure 3 is a 
three-dimensional plot of the computed Pr2 type 
probabilities. 

It is observed that, as in the case of the 
Pr1 type probabilities, for n fixed at 30, Pr2 
approaches to zero as m gets large for a fixed r 
and the behavior is roughly as (1 + r )/ m. The  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

properties of the analytic approximations can be 
employed to surmise that 
 

Pr2 ~ f(m, r) = r/m + 2.1/m              (4) 
 
The plot of this function is given in Figure 4. 

Comparing Figure 4 with the plot of the 
actual probabilities shown in Figure 3, (4) is 
observed to be a fine approximation of Pr2.  

The results show that, for large values of 
n, the likelihood that an r-Borda winner is one of 
the actual Borda winners is independent of n and 
increases as the r/m ratio increases. Results from 
this study show that, for r = m − 2, Pr2 
approaches to 1 as m increases. Given this 
computational data, it can also be conjectured 
that, for any fixed k, Pr2 approaches to 1 for       
r = m − k, however, the rate of convergence 
decreases for larger k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: For 1 ≤   m ≤  30, n = 30 and 1 ≤  r ≤ m, the Probability that the Set r-Borda Winners to be a Subset 
of the Set of Actual Borda Winners 

1.
1. 1.
0.844 1. 1.
0.685 0.87 1. 1.
0.607 0.759 0.895 1. 1.
0.537 0.663 0.788 0.907 1. 1.
0.474 0.618 0.706 0.827 0.919 1. 1.
0.429 0.545 0.643 0.754 0.837 0.928 1. 1.
0.371 0.475 0.582 0.666 0.761 0.849 0.936 1. 1.
0.352 0.444 0.533 0.63 0.715 0.796 0.877 0.954 1. 1.
0.313 0.428 0.519 0.602 0.681 0.754 0.827 0.893 0.96 1. 1.
0.285 0.362 0.44 0.54 0.604 0.678 0.749 0.82 0.893 0.954 1. 1.
0.278 0.372 0.445 0.512 0.579 0.647 0.712 0.774 0.84 0.906 0.971 1. 1.
0.278 0.36 0.422 0.489 0.563 0.626 0.678 0.743 0.812 0.871 0.932 0.971 1. 1.
0.252 0.318 0.395 0.462 0.522 0.592 0.655 0.716 0.773 0.82 0.863 0.913 0.967 1. 1.
0.225 0.301 0.386 0.437 0.483 0.541 0.616 0.676 0.74 0.784 0.839 0.904 0.944 0.982 1.
0.239 0.301 0.37 0.418 0.476 0.529 0.582 0.631 0.681 0.73 0.785 0.842 0.891 0.931 0.976
0.187 0.264 0.328 0.371 0.428 0.483 0.535 0.586 0.644 0.698 0.745 0.794 0.854 0.898 0.928
0.196 0.257 0.309 0.365 0.423 0.48 0.542 0.584 0.635 0.684 0.736 0.779 0.822 0.875 0.909
0.18 0.247 0.299 0.36 0.42 0.469 0.506 0.547 0.588 0.639 0.679 0.728 0.776 0.819 0.862
0.192 0.25 0.303 0.355 0.406 0.446 0.485 0.529 0.576 0.627 0.669 0.699 0.75 0.797 0.839
0.173 0.231 0.281 0.323 0.36 0.409 0.465 0.503 0.541 0.591 0.634 0.683 0.724 0.766 0.807
0.151 0.211 0.259 0.302 0.347 0.385 0.423 0.475 0.522 0.558 0.601 0.645 0.687 0.745 0.782
0.154 0.222 0.252 0.291 0.334 0.371 0.424 0.47 0.51 0.551 0.593 0.635 0.681 0.719 0.765
0.154 0.212 0.247 0.293 0.325 0.354 0.4 0.446 0.48 0.531 0.573 0.617 0.66 0.692 0.728
0.127 0.172 0.213 0.256 0.301 0.333 0.377 0.409 0.447 0.486 0.53 0.576 0.604 0.64 0.673
0.135 0.195 0.233 0.271 0.305 0.338 0.38 0.408 0.45 0.484 0.523 0.557 0.593 0.623 0.656
0.129 0.179 0.22 0.261 0.295 0.32 0.362 0.393 0.423 0.459 0.49 0.534 0.57 0.602 0.631
0.132 0.184 0.219 0.259 0.298 0.335 0.371 0.411 0.443 0.472 0.499 0.539 0.579 0.616 0.638
0.127 0.168 0.207 0.251 0.279 0.322 0.349 0.368 0.406 0.448 0.481 0.52 0.549 0.576 0.603  
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Figure 3: Probability that an r-Borda Winner is a Borda Winner 
 

 
 

Figure 4: Approximating Function of the Probability that an r-Borda Winner is a Borda Winner 
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Conclusion 
The Borda rule is one of the most studied voting 
procedures in the social choice theory literature. 
However, despite its well-known superiorities 
concerning the fulfillment of important positive 
and normative it is very difficult to be 
implemented in practice since it requires voters 
to rank all the alternatives at stake. 

 This computational study investigates 
the likelihood of implementing Borda outcome 
when n voters are asked to report only the first r 
(1 ≤ r < m) ranks of their linear preferences over 
m alternatives. The truncated individual 
preferences are aggregated through a Borda-like 
method called the r-Borda rule.  

The voters’ preferences are sampled via 
IANC model which is an equiprobability 
assumption neglecting the names of both 
alternatives and voters. 

The results of the Monte Carlo 
simulations indicate that, for large values of n, 
the likelihood of choosing exactly the set of 
Borda winners by considering only the first r 
ranks of voter preference orderings is 
independent of n, and approaches to zero as m 
gets large for a fixed r. Through the least square 
fit method, it is shown that, for any m, it is 
impossible to guarantee the exact Borda 
outcome with partial rankings over the 
alternatives.  

It is observed that the likelihood that an 
r-Borda winner to be among the Borda winners 
is also independent of n and approaches to zero 
as  m  gets  large  for a fixed  r. Our results show 
that for r = m − k, k being fixed, this probability 
approaches to one as m increases.  

Some immediate directions exist for 
further research on this topic. First, although the 
r-Borda rule, as an equal-distance scoring 
method, is an intuitive way of aggregating the 
truncated preferences, computational studies can 
be designed to compare the success of assigning 
different score vectors to the reported ranks from 
the perspective of implementing the Borda 
outcome. Second, given truncated preferences of 
voters, the likelihood of implementing other 
well-known ranked rules can be investigated. 
However, especially in the case of pair-wise 
majority rules (such as the Condorcet rule), it 
should be noted that the methods used for 
aggregating truncated preferences are not as 

straightforward or intuitive as in the case of 
scoring methods. Hence, a similar study for such 
rules calls for theoretical and computational 
research. 
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