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Abstract 
A simple yet general method for specifying contrasts to test hypotheses in regression and 

latent curve structural equation models is presented. The traditional qualitative variable 

coding schemes used in multiple regression (e.g., dummy coding) have a more general 

formulation. Five matrices are involved: The coding scheme, A. The matrix which gives 

the distribution and ordering of cases, W; WA = X; X is the design matrix. The contrast 

coefficient matrix C; and C
-1

 = A. In practice, only C, C
-1

, and A are necessary because 

the statistical software generates the design matrix.  This method has great generality 

because the same coding matrix, A, is used in multiple regression, multilevel modeling, 

and latent curve structural equal models. Starting with the contrasts allows one to 

compute the coding matrix, A, for a wide variety specific hypothesis.   
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1. Introduction 
 

A well rehearsed line from regression methodology is that the number of contrasts is one 

less than the number of categories. Thus a coding scheme for a categorical variable with 

  levels would be displayed in a matrix with   rows representing the categories and 

    columns representing variables (e.g., Cohn and Cohn, 1983, p. 183). If a linearly 

independent column vector is added to the coding scheme, the resulting matrix, say  , is 

       invertible. It turns out that for certain choices of the column vector, say the 

constant 1, the rows of     correspond to coefficients for linear combinations of cell 

means. Reversing this operation makes it possible to determine a coding schemes from a 

set of contrasts defined in terms of cell means,          . There is some ambiguity in 

how the coefficients in the first row of   are to be determined and the effect of this 

coding on the obtained contrasts.  

 

1.1 Example: Contrast Definitions from Dummy Codes 
A command in R can be used to generate dummy codes. Some documentation refers to 

these as “treatment contrasts” and to the resulting matrix as a “contrast matrix”. This 

terminology is contradictory to the definitions being offered here. The treatment contrasts 

created in R with the addition of a column vector of 1’s is an example of the regression 

variable coding matrix, A. I show below that A
-1

 = C, the contrasts of interest.   
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> contr.treatment(4) 
   2 3 4 
1  0 0 0 
2  1 0 0 
3  0 1 0 
4  0 0 1 
 
If we add the intercept we get an m x m coding scheme, A, that can be used to generate a 

design matrix: 
 
>A = matrix ( c( 
1,  0,  0,  0, 
1,  1,  0,  0, 
1,  0,  1,  0, 
1,  0,  0,  1), byrow=T, ncol=4) 
 
>A 
  [,1] [,2] [,3] [,4] 
[1,]    1    0    0    0 
[2,]    1    1    0    0 
[3,]    1    0    1    0 
[4,]    1    0    0    1 
 

> C = solve(A) 
     [,1] [,2] [,3] [,4] 
[1,]    1    0    0    0 
[2,]   -1    1    0    0 
[3,]   -1    0    1    0 
[4,]   -1    0    0    1 

 
This is clearly the coefficient matrix of interest. It shows that the dummy coding scheme 

compares the first factor level with each succeeding level. The meaning of the first row is 

ambiguous. It appears that this code identifies the first cell as the reference cell.  

 

1.2 Coding schemes for longitudinal data  
The coding schemes that are used to create contrasts of category means can be used to 

create contrasts for longitudinal or repeated measures data as well. For example, the 

coding scheme for dummy variables when applied to longitudinal data can be made to 

compare each successive wave of data with the first wave or the last wave.  

 

1.3 Novel Codes from Contrasts: Latent Curve Multiple Baseline Model 
Using the fact that       , the desired coding matrix for a wide variety of different 

hypotheses can be determined. For example, suppose a multiple baseline design with two 

baseline and one follow-up measure. The hypothesis is that the average of the baseline 

assessment differs from the follow-up assessment. The desired contrast is in the third row 

of C below:   
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The mean of the first two periods is compared to the mean of the third period. The second 

contrast is also of some interest because it compares the first two periods which are 

expected to be equal.  

The coding matrix, A, for this is:       
   
   
    

 . 

 
The model and codes (in red) are shown in Figure 1 below. The estimated coefficient for 

the first column of A was the mean of   . This is shown in the figure as     (= 1.45). The 

estimated coefficient for the third column of A, the contrast of interest, was      (= -.01). 

This coefficient is the difference in latent means expected from the contrast specified in 

row 3 of C above. The latent means were 1.4745, 1.481, 1.4665, respectively. The value 

of the contrast computed from the latent means was exactly as expected. Data published 

in Steyer, et al (2000) was used in this example. 

 

 
 
Figure 1. Latent curve multiple baseline model showing coefficients from the coding 

matrix, A, in red. Note that columns in A correspond to ξ variables and rows, to η 

variables so       is the regression of          . 

  

1.4 Additional Background 
I explored these relationship and described a procedure to create customized contrasts in 

longitudinal SEM models (2007, 2008a, 2008b) including MR and latent curve models 

(LCMs). Recently, Axel Meyer and colleagues (Mayer, Steyer, & Mueller, 2012) 

described the use of the inverse transform to code quantitative (e.g., orthogonal 

polynomials) and qualitative research factors for first and second order LCMs. I could not 

find an explanation of why the inverse transform worked that was not tautological.  In the 

remainder of this article I develop a more general formulation of contrast coding using 

the inverse transform.  
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2. The General Formulation 
 

The regression variable coding schemes are not intuitive.  David Nichols (1997) gave the 

following explanation: 

 

             
 

 

where   is the design matrix and    is the contrast for an individual case.  

 

This suggests that a general formulation will need to define X in addition to C, and A. 

The design matrix is determined by the coding scheme, A, and the ordering and 

distribution of cases, W. Ordering of cases is design dependent.  For a between group 

design with equal n,  

                   
 

To make computations simple, assume three groups with 2 cases in Group 1 and one case 

in each of the other groups.  

 

           

   
   
   
   

         

 

Dummy coding for a three group design, with the third group as the reference cell is as 

follows: 

 

            
   
   
   

 . 

 

So the design matrix is: 

 

                  

   
   
   
   

         

 

The R code follows: 

 

> A = matrix( c(1,1,0,  1,0,1,   1,0,0), nrow=3, byrow=T) 

> A 

     [,1] [,2] [,3] 

[1,]    1    1    0 

[2,]    1    0    1 

[3,]    1    0    0 

 

> X = W%*%A 
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> X 

     [,1] [,2] [,3] 

[1,]    1    1    0 

[2,]    1    1    0 

[3,]    1    0    1 

[4,]    1    0    0 

 

The contrast coefficients that apply to each y_i are given by: 

 

C* =             

 

> C* = solve(t(X)%*%X)%*%t(X) , the asterisk was added for consistency in notation 

> C* 

     [,1] [,2] [,3] [,4] 

[1,]  0.0  0.0    0    1 

[2,]  0.5  0.5    0   -1 

[3,]  0.0  0.0    1   -1 

 

These are the weights applied to y that give the contrasts. To see the actual contrast 

coefficients, post multiply by W. 

 

> (C*)%*%W 

     [,1] [,2] [,3] 

[1,]    0    0    1 

[2,]    1    0   -1 

[3,]    0    1   -1 

 

C = the contrast matrix, the weights applied to cell means.  

 

 

   

                      
        
      
      

 

 

 

3. Discussion and Conclusions 
 

The inverse transform can be used to determine the coding scheme from meaningful 

contrast specifications for a wide variety of linear models. To facilitate further 

investigations of this approach to coding linear models, I developed a general 

formulation. Five matrices are involved: The coding scheme, A. The matrix which gives 

the distribution and ordering of cases, W; WA = X; X is the design matrix. The contrast 

coefficient matrix C; and C
-1

 = A. In practice, only C, C
-1

, and A are necessary because 

the statistical software generates the design matrix.   

In the example, W was used to give the distribution of cases within groups. It is 

expected that the form of W will depend on the nature of the design: In a within-subjects 

design, the rows of A will be distributed in X in a case-wise fashion, the codes are nested 

within person. In this case, W takes the form of stacked identity matrix.  
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Further research is needed: What is the effect of the row 1 non-contrast 

coefficients in C in determining what effects are estimated? It is expected that unequal n 

per group/level will estimate different effects than the equal n case. How can unequal n 

be taken into account?  And finally, how should contrast definitions be applied to 

individual cases and groups simultaneously? 

 

 

 

A. Starting with the observed data and design matrix, X, show that          

Rewrite the equation, C* =           , with X = WA and multiple by W to show 

that C = A
-1

 and consequently that AC = I. 

 

                
  

        

 

                 
  

         The transpose of a product is the 

transpose of the factors in reverse 

order 

 

                          Clearing parentheses  

 

                     Replacing     with   a diagonal 

matrix of cell sizes 

 

                              The inverse of a product is the 

product of the inverses in reverse 

order.  

                                 Clear parentheses and identify 

cancelations 

 

                    
 

          Q.E.D. 
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